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ABSTRACT

A problem frequently encountered in all disciplines of science is to obtain all the so-

lutions for a system of non-linear equations. A similar problem exists for reaction sys-

tems with many reactants, products, and intermediates. Such systemsmay have many

steady states. Here one would like to have a list of all such steady states. Conventional

methods rely on multiple initial start points, which means that they are initialization de-

pendent and also might converge to trivial or unfeasible solutions. Such methods give

one or a very limited set of steady states. The objective in thesis is to investigate how

useful method of interval analysis is for determining the steady states of reaction sys-

tems. In particular, we are interested in solving kinetic equations of reactions involved

in transition metal heterogeneous catalysis. The method of interval analysis can yield

all steady states of a reaction system with mathematical certainty and are initialization

independent. Here we will address how costly these methods are, and up to what size

of the systems that one can reasonably handle.
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1. INTRODUCTION

One of the relevant problems in mathematics is obtaining all solution for a system of

nonlinear equations. It emerges just about in every one of the disciplines like engi-

neering, physics, chemistry, economics and computer science. Most of the non-linear

equations can't be solved analytically, so it is of utmost importance to try and develop

better numerical algorithms. The main objective of this project is to understand how

useful the method of interval analysis is for solving systems of nonlinear equations. In

particular, we apply this method to study steady states of reactions in transition metal

heterogeneous catalysis.

Section 1.1 gives background about the current methods to solve non-linear equa-

tions. Section 1.2 describes the importance and application of non-linear equations in

chemistry.

1.1 Current Methods for Solving Non Linear

Equations

The mathematical statement of the problem is considered: How to enclose all the so-

lutions of a nonlinear system f(x) = 0, where x ∈ [x, x] and f : Rn → Rm,m < n?

The most common method used to solve non-linear systems is the Newton method.1

For an N dimensional equation (N=n=m), Newton's method is given by

xi+1 = xi − J−1i f(xi) (1.1)

Where i denotes the ith dimension and J denotes the Jacobian. Even though themethod

is quadratically convergent, it has got major draw backs. The method doesn't converge

to a solution unless the starting point is sufficiently close to a solution. The method fails

to find multiple solutions, so one has to rely on multiple initial guesses. Even then there

is no mathematical guarantee that all the solutions have been found out.

Several different methods exist for solving non-linear equations. But none except for

homotopy based methods2--5 can find multiple solutions. The basic idea in homotopy
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based algorithm is to start from a solution and move along a path to next solution.

Even though homotopy based method locates all solution in some cases, there is no

mathematical guarantee that all solutions have been found. There are several other

techniques to solve non-linear equation. These include techniques based on iterative

programming, trust-region method, Halley method, Secant method and neural network

based methods6--9 .

1.2 Application in Chemistry

Non-linear equations are an integral part of chemistry. The problem of computing all

steady states of a reaction system and reactive phase equilibrium has attracted signif-

icant attention from the research community.10 The non-linear nature of rate equations

and thermodynamic models in phase equilibrium makes computation difficult, since we

don't know beforehand the number of solutions that exist, or if there exist any.11 For

solving such models we need a method which can be completely reliable, find out all

solutions with mathematical and computational certainty. The standard local methods

can give no such guarantee.

In the thesis we will be primarily focusing on solving non-linear rate equations using

interval based methods(refer to chapter 2). Solving the rate equations gives important

information regarding reactionmechanisms, transition states and the quality of underly-

ing mathematical model. Computational methods like Density-functional Theory (DFT)

have been widely used to study catalytic systems. But we can hardly predict anything

about the kinetics by just looking at the DFT results. To get information regarding the

kinetics, we try to solve the rate equations which are extremely non-linear in nature.

1.2.1 Fischer-Tropsch process

Fischer-Tropsch process is a set of reactions where carbon monoxide and hydrogen

react to form hydrocarbons. Manymechanisms are suggested to explain the process.12

But there is no clear consensus in literature regarding the correct mechanism. A reac-

tion mechanism for Fischer Tropsch on a cobalt nanoparticle based on carbide model

is given below. A * denotes a vacant adsorption site. Non adsorbates are indicated by
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adding a "(liq)" to the chemical formula.

CO(liq) + ∗ 
 CO (1.2)

H2(liq) + 2∗ 
 2H (1.3)

CO+ ∗ 
 C+O (1.4)

C+ H 
 CH+ ∗ (1.5)

CH+ H 
 CH2 + ∗ (1.6)

CH2 + H 
 CH3 + ∗ (1.7)

CH3 + H → CH4(liq) + 2∗ (1.8)

CH3 + CH2 
 (CH2)CH3 + ∗ (1.9)

(CH2)nCH3 + CH2 
 (CH2)n+1CH3 + ∗ (1.10)

(CH2)nCH3 + H → Cn+1H2n+4(liq) + 2∗ (1.11)

O+ H 
 OH+ ∗ (1.12)

OH+ H 
 H2O+ ∗ (1.13)

H2O 
 H2O(liq) + ∗ (1.14)

Equations (1.10) and (1.11) represents chain growth and termination. Note that methane

formation and chain termination reactions are not reversible. The mechanism of the

reaction is dissociation of CO to form carbon followed by hydrogenation of carbon to

form CH3 to start chain growth with CH2 as building blocks. The objective is to find

out the coverages (θ) of these species on the catalyst surface at steady states using

reliable interval computation.

The thesis is structured as follows. Chapter 2 provides the history and basic con-

cepts in interval analysis. Chapter 3 discusses about the methods and methodology.

An algorithm for non-linear equation solver based on interval analysis is presented in

this chapter. Chapter 4 discusses the results obtained. Chapter 5 summarizes the

thesis and draws conclusions. All other information that is required are given in Ap-

pendices.The appendices give details regarding the rate constants and rate equations

used in the of Fischer Tropsch model.



2. BASICS OF INTERVAL ANALYSIS

This chapter introduces the main concepts of interval analysis .Section 2.1 gives a

brief history of development of interval arithmetic. Section 2.2 introduces the concept

of intervals and section 2.3 provides fundamentals of interval computation. A brief

description of available platforms to execute interval arithmetic is provided in the last

section.

2.1 History

Using intervals to solve problems is not a totally new marvel in science; it has existed

under various names throughout history. A very old and famous example is that of

Archimedes, who calculated the lower and upper bounds of π in the 3rd century. In the

modern era, Ramon E Moore used intervals to investigate and keep track of errors in

computers. In 1966, interval analysis rose to dominance after appearance of the book

Interval Analysis by Moore.13 In 1965 Eldon R. Hansen studied the use of interval arith-

metic in linear algebra,14 and later developed Hansen's method for global optimization

Alefeld,Krawczyk and Nickel played a crucial part in computer implementation of in-

terval analysis. Interval analysis attracted a lot of interest among research community

during the 1990's, and now it has its own journal called Reliable Computing.

2.2 Interval

An interval is a set of numbers that lies between two numbers. Mathematically, an

interval [x] is a connected subset of R. An interval will be denoted by [x]. The lower

bound of an interval [x] will be denoted by x and upper bound will be denoted by x.

Now we define an interval:

[x] = [x, x] = {x ∈ R : x ≤ x ≤ x}

The set of all possible intervals on a real line is denoted as IR:15

IR = {[x, x] : x ≤ x; x, x ∈ R}
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A real number b will correspond to a interval with zero width. These are referred to as

degenerate intervals.15

[b] = [b,b] where b = b = b

The elements of IR follow the usual set relations defined by,

[x] = [y] ⇔ x = y and x = y

[x] ⊆ [y] ⇔ y ≤ x and x ≤ y

[x] ⊂ [y] ⇔ [x] ⊆ [y] and [x] 6= [y]

Next section introduces interval analogue of real arithmetic operations.

2.2.1 Interval Arithmetic

Let ? denote one of the real arithmetic operations addition (+), subtraction (-), mul-

tiplication (*) or division (/). These real arithmetic operations can be defined on the

elements of IR by:16,17

[x] ? [y] = {x ? y : x ∈ [x], y ∈ [y]}

The definition holds true for all cases, except for operation [x]/[y] if 0 ∈ [y]. It is possible

to describe these operations in terms of the bounds on [x] and [y]. It is as follows:

[x] + [y] = [x+ y, x+ y]

[x]− [y] = [x− y, x− y]

[x] ∗ [y] = [min{xy, xy, xy, xy},max{xy, xy, xy, xy}]

[x]/[y] = [x] ∗ [1/y,1/y], if 0 /∈ [y]

The operation [x]/[y] when 0 ∈ [y] is dealt by using extended interval arithmetic.18

2.2.2 Interval Vectors

An interval vector [x] can be defined as a product of n closed Cartesian intervals. It will

be a subset of Rn and is defined as:17

[x] = [x1] ∗ [x2] ∗ ..... ∗ [xn], where [xi] = [xi, xi] for i = 1, ....., n.

The ith component will be projection of [x] onto ith axis. Interval vectors [x] are also

referred to as N dimensional box and geometrically it can be interpreted as an N-

dimensional rectangle. This definition can be extended to define an interval matrix
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B= (Bij) ∈ IRn×m has interval elements Bij ∈ IR.Now we compare some properties of

intervals, [x] ∈ IR and interval vectors [x] ∈ IRn.

Operation Interval: Interval Vector:

Midpoint mid([x])=1
2
(x+ x) mid([x])= [mid([x1],mid[x2]...mid[xn])

Width wid[x]=(x− x) wid([x])= wid([x2]...mid[xn)

Tab. 2.1: Operations on intervals and interval vectors19,20

2.2.3 Interval Function

An interval function is a function that take and return intervals instead of real numbers.

An interval function has the following property:

Consider a real function f : Rn −→ Rm. The interval function F:IRn −→ IRm is an inclu-

sion function of f only if,

f(x1, x2, ....xn) ∈ F([x1], [x2], .....[xn])

Whenever xi ∈ [xi] ∀ i = 1,2....n.16,17 An inclusion monotonic interval function F([x])

obeys the property:16,18,21,22

[xi] ⊂ [yi] (i = 1,2...n) =⇒ F([x1], [x2], .....[xn]) ⊂ F([y1], [y2], .....[yn])

In a rational real function replacing the real variables and real arithmetic operations by

corresponding intervals and interval operations one can obtain the inclusion monotonic

interval extension for the function. If 0 /∈ F([x]), were F([x]) is an inclusion monotone

interval extension of f(x) then we can conclude that there is no root of f(x)=0 in [x].

The interval function F([x]) encloses the range of the function f(x) ∀ x ∈ [x]. But

how good the bounds (tightness) are depends on the nature in which F([x]) is expressed

and evaluated. This is illustrated with an example, let f(x) = x3(x2−x1) = x3∗x2−x3∗x1
then the interval analogue F([x]) = [x]3([x]2 − [x]1) which can also be written as [x]3 ∗
[x]2 − [x]3 ∗ [x]1. Evaluating the function at [x]3 = [x]2 = [x]1 = [1,3] for the first form

( [x]3([x]2 − [x]1)) gives [1,3]([1,3] − [1,3]) = [1,3] ∗ ([−2,2]) = [−6,6] which is the

range of f(x) over [x]. Now evaluating the second expression([x]3 ∗ [x]2 − [x]3 ∗ [x])

yields ([1,3] ∗ [1,3] − [1,3] ∗ [1,3])= [1,9] − [1,9] = [−8,8] which encloses the range

of f(x) over [x] but is an overestimate. Overestimation happens because each time a

variable occurs in an interval expression, interval arithmetic treats it as an independent

variable, thereby failing to recognize the dependence. This is called the 'dependence

problem' and it implies that the form of algebraic expression plays a role in the quality

of result which is not the case in real arithmetic.
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2.3 Implementation in Computers

There are many platforms that permit implementation of numerical application using

interval arithmetic. In this section few of them are mentioned along with the one used

in this thesis. Some of the available software’s and compilers are:

INTLAB: INTerval LABortary(INTLAB) is an extension of MATLAB based on BLAS (Ba-

sic Linear Algebra Subprograms) routines.23For portability, speed and ease of use all

the INTLAB codes are written in MATLAB.

INTBIS: It was designed to find out solutions for polynomial systems of equations. The

codes were written in FORTRAN 77.24

Boost: It is a collection of C++ libraries that enables to perform interval arithmetic cal-

culations.25

PROFIL/BIAS: Programmer's Runtime Optimized Fast Interval Library(PROFIL) is a

portable C++ library that allows developing and implementing interval arithmetic in a

smart and efficient way.26 Interval algorithms in this thesis was developed with the

help of this library. It supports both real data types and the corresponding interval

ones. Some of the supported data types include: INT, REAL, VECTOR, INTERVAL,

INTERVAL VECTOR, MATRIX, INTERVAL MATRIX and complex numbers. BIAS (Ba-

sic Interval Arithmetic Subroutine) provides an interface for computation of interval vec-

tors/matrix operations. We use this library for implementation of interval arithmetic. An

interval say [1.2345,1.2346] will be represented as 1.234[5,6] in PROFIL/BIAS. Inter-

vals would be denoted by '[ ]' bracket.



3. INTERVAL ANALYSIS METHODS FOR

NON-LINEAR EQUATIONS

The previous chapter introduced the basic concepts of interval analysis. This chapter

primarily focuses on application of interval analysis for solving systems of non-linear

equation. This goal is achieved by developing an Interval Newton/Generalized Bisec-

tion (IN/GB) method. Unlike the other real arithmetic methods, if implemented properly

interval newton methods can find out all the solutions of an equation with mathematical

and computational certainty.27

If a function is just continuous, a bisection type method would be an apt choice.

For a differentiable function, Newton-type method is preferred. In section 3.1 interval

bisection method is introduced. Bisection methods are computationally very expensive

most of the times. To minimize the dependence on bisection method, the concept of

contractors are defined in section 3.2. Finally section 3.3 we describe the algorithm for

IN/GB method.

3.1 Interval Bisection Method

The problem we are addressing is to find out the solution set for f(x)= 0. We know from

section 2.2.3 that range of f(x) is a subset of the inclusion function F[x].In the bisection

method the initial domain, assuming to contain a solution, is bisected into two boxes

along the component with highest width. The bisected boxes are further evaluated to

contain any zero's; the box not containing the solution is discarded. The box containing

the solution is further bisected until width of the solution box is less than a predefined

tolerance given by the user.

The interval bisection method is accurate and robust, but computationally very ex-

pensive.The efficiency of bisection highly relies on the plane along which bisection is

performed. A better choice for bisection is given by Ratshek and Rokne,1995 and Ratz

and Csendes,281995. But when the dimensionality (number of variables) of a problem

is large, bisection should be used only as a last resort. This is because the complexity

of bisection algorithm is exponential in nature. This problem is also known as 'curse
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of dimensionality'. In order to overcome the problem, we introduce the concept of con-

tractors in the next section.

3.2 Contractors

A contractor is an operator which acts on a interval [x] to replace it with a smaller interval

[x∗] such that [x∗] ⊂ [x]. Using a contractor reduces the complexity of the algorithm by

giving a better bound on the solution set without relying on bisection method. In the

coming sections we will briefly describe some of the contractors used.

3.2.1 Gauss Seidel Contractor

Interval Gauss Seidel method is an interval analogue of real Gauss Seidel method.

Systems of linear interval equations can be represented in the matrix form as,

[A][q]− [b] = 0 (3.1)

where the matrix [A] denotes a square interval matrix, [q] and [b] denotes interval

vectors.Interval matrix [A] can be written as a sum of a diagonal matrix and a matrix

with zero's on its diagonal

[A] = diag[A] + extdiag[A] (3.2)

substituting equation(3.2) in equation(3.1) gives

diag([A])[q] + extdiag([A])[q] = [b] (3.3)

Assuming that [A] is invertible, we have

[q] = (diag([A]))−1([b]− extdiag([A])[q]) (3.4)

CGS :−→ [q] ∩ (diag([A]))−1([b]− extdiag([A])[q]) (3.5)

CGS is known as the Gauss-Seidel contractor. Gauss Seidel contractor might not nec-

essarily contract a given interval, the method is efficient when the interval matrix [A] is

close to identity matrix.17

The efficiency of Gauss - Seidel contractor could be improved by preconditioning

the matrix [A] . The preconditioned Gauss-Seidel contractor is denoted by CGSP. This

provides a tighter bound for the solutions. A simple way to precondition the matrix [A]

is to multiply it with the inverse of the matrix generated by computing the midpoints of
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[A], i.e, B=(mid[A])−1. The matrix [A] and [b] are replaced [A]'=B-1[A] and [b]'= B -1 [b].

The algorithm for the preconditioned Gauss-Seidel contractor is provided in table 3.1.

Algorithm CGSP

1 B= mid([A]);

2 [A]' = B-1([A]);

3 [b]'= B-1[b];

4 CGS (A
'[q]-[b]'=0);

5 [b]= B[b]' ∩ [b];

6 [A] = B[A]' ∩ [A];

Tab. 3.1: Preconditioned Gauss Seidel Method

3.2.2 Interval Newton Contractor

Consider a real function f : x → Rwhich is a continuously differentiable over its domain

with x0 ∈ x such that f (x0) = 0. Let’s assume that the derivative of function f'(x) 6= 0

over X and its inclusion function F
′
(x) exists. By applying the Mean Value Theorem for

any x ∈ x we get

f(x) = f(x0) + f'(c)(x− x0) (3.6)

for some c between x and x0. Solving for x0 gives:

x0 = x− f(x)

f'(c)
∈ x− f(x)

F′(x)
(3.7)

From the definition of inclusion function (section 2.2.3 ) f' (c) ∈ F'(x). Now we define

function

N(x,x) = x− f(x)

F′(x)
(3.8)

Since we said that x0 ∈ x and from equation we know that x0 ∈ N(x,x). This implies

that x0 ∈ N(x,x) ∩ x for all x ∈ x. The new interval we obtained can be iterated again

to get a tighter enclosure, the sequence would be as follows:

xm+1 = N(xm) ∩ xm m = 0,1,2,3.... (3.9)

The figure 3.1 given below represents one iteration of newton contractor.
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Fig. 3.1: One iteration of interval newton contractor15

The equation (3.9) not only gives a tight bound to the solution but also provides an

existence and uniqueness test. If N(xm) ∩ xm = φ then there is no solution in this

interval xm.If N(xm) ⊂ xm then there is a unique root of f(x) in xm. In the below table 3.2

we describe a brief algorithm for multidimensional Newton contractor. J([x]) denotes

interval analogue of the Jacobian matrix.

Algorithm CNewton

1 x∗= mid([x]);

2 A = J([x])

3 [q] = [x] - x∗

4 CGSP (Aq+f(x
∗)=0)

5 [x]= [x] ∩ ([q] + x∗)

Tab. 3.2: Newton Contractor17

3.3 Algorithm

We briefly describe the Interval Newton Generalized Bisection (IN/GB) algorithm that

was developed to solve system of non-linear equations. If executed property only mode

of failure is an excessive computational requirement. The method described in this

section is a serial version.

1. Input the domain space where you want to search for solutions. Provide a toler-

ance value (tol), which represents the smallest allowable box dimension.

2. Evaluate the function over the given domain.

3. Check if root lies in the obtained function range.

(a) If No, reject that domain space

(b) If Yes, Call the Newton contractor to converge to the solution.
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4. Check whether width of solution box is less than given tolerance.

(a) If No, bisect the box into two and repeat steps from 2.

(b) If Yes, store the box in solution list and stop.

Below we represent a flow chart for the algorithm.

Fig. 3.2: Represents flow chart for Interval Newton/Bisection Method.



4. RESULTS

4.1 PUMA problem

After developing the IN/GB algorithm we need to benchmark it. For this we test it on the

following problem , called Puma arose from inverse kinematics of 3R robot, commonly

used to benchmark non-linear system solvers:

x21 + x22 − 1 = 0 (4.1a)

x23 + x24 − 1 = 0 (4.1b)

x25 + x26 − 1 = 0 (4.1c)

x27 + x28 − 1 = 0 (4.1d)

0.004731 ∗ x1 ∗ x3 − 0.3578 ∗ x2 ∗ x3 − 0.1238 ∗ x1 (4.1e)

−0.001637 ∗ x2 − 0.9338 ∗ x4 + x7 − 0.3571 = 0

0.2238x1x3 + 0.7623x2x3 + 0.2638x1−0.07745x2−0.6734x4−0.6022 = 0 (4.1f)

x6x8 + 0.3578x1 + 0.004731x2 = 0 (4.1g)

−0.7623x1 + 0.2238x2 + 0.3461 = 0 (4.1h)

x1, ..., x8[−1,1]. (4.1i)

In the above form it is a well-determined set of 8 equations and 8 variables with 16

solutions. We ran the code taking a domain ranging from [-10, 10] for all the variables.

The tolerance set was 0.0001. We obtain all the 16 solutions in 92.3 seconds without

using a preconditioned interval newton method. Table 4.1 and 4.2 represents the litera-

ture reported solutions for this problem. Table 4.3 and 4.4 gives the solutions obtained

using Interval Newton/Generalised bisection method.

From the results of PUMA problem, we can conclude that the algorithm can provide

all the solutions for a set of non-linear equations. We can also infer from the tables

that the interval analysis solution encloses the actual solution. This is true for all the 16
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solution 1 solution 2 solution 3 solution 4 solution 5 solution 6 solution 7 solution 8

x1 0.16443 0.16443 0.16443 0.16443 0.16443 0.16443 0.16443 0.16443

x2 -0.98638 -0.98638 -0.98638 -0.98638 -0.98638 -0.98638 -0.98638 -0.98638

x3 0.23961 0.23961 0.23961 0.23961 -0.95472 -0.95472 -0.95472 -0.95472

x4 -0.97086 -0.97086 -0.97086 -0.97086 0.29747 0.29747 0.29747 0.29747

x5 0.99763 -0.99763 -0.99763 0.99763 0.91115 -0.91115 -0.91115 0.91115

x6 0.06872 -0.06872 0.06872 -0.06872 -0.41206 0.41206 -0.41206 0.41206

x7 -0.6155 -0.6155 -0.6155 -0.6155 0.99132 0.99132 0.99132 0.99132

x8 -0.78813 0.78813 -0.78813 0.78813 0.13145 -0.13145 0.13145 -0.13145

Tab. 4.1: Actual solutions for PUMA problem

solution 9 solution 10 solution 11 solution 12 solution13 solution 14 solution 15 solution 16

x1 0.67155 0.67155 0.67155 0.67155 0.67155 0.67155 0.67155 0.67155

x2 0.74095 0.74095 0.74095 0.74095 0.74095 0.74095 0.74095 0.74095

x3 -0.23961 -0.23961 -0.23961 -0.23961 0.95472 0.95472 0.95472 0.95472

x4 -0.97086 -0.97086 -0.97086 -0.97086 0.29747 0.29747 0.29747 0.29747

x5 -0.95791 0.95791 0.95791 -0.95791 -0.12877 0.12877 0.12877 -0.12877

x6 -0.28704 0.28704 -0.28704 0.28704 0.99167 -0.99167 0.99167 -0.99167

x7 -0.5279 -0.5279 -0.5279 -0.5279 0.96931 0.96931 0.96931 0.96931

x8 0.8493 -0.8493 0.8493 -0.8493 -0.24583 0.24583 -0.24583 0.24583

Tab. 4.2: Actual solutions for PUMA problem

solution 1 solution 2 solution 3 solution 4 solution 5 solution 6 solution 7 solution 8

x1 0.1644[28,36] 0.1644[28,36] 0.1644[28,36] 0.1644[28,36] 0.1644[28,36] 0.1644[28,36] 0.1644[28,36] 0.1644[28,36]

x2 -0.9863[85,94] -0.9863[85,94] -0.9863[85,94] -0.9863[85,94] -0.9863[85,94] -0.9863[85,94] -0.9863[85,94] -0.9863[85,94]

x3 0.2396[10,20] 0.2396[10,20] 0.2396[10,20] 0.2396[10,20] -0.9547[23,32] -0.9547[23,32] -0.9547[23,32] -0.9547[23,32]

x4 -0.9708[59,69] -0.9708[59,69] -0.9708[59,69] -0.9708[59,69] 0.2974[89,98] 0.2974[89,98] 0.2974[89,98] 0.2974[89,98]

x5 0.9976[29,38] -0.9976[29,38] -0.9976[29,38] 0.9976[29,38] 0.9107[71,16] -0.9107[71,16] -0.9107[71,16] 0.9107[71,16]

x6 0.0687[21,31] -0.0687[21,31] 0.0687[21,31] -0.0687[21,31] -0.4128[45,55] 0.4128[45,55] -0.4128[45,55] 0.4128[45,55]

x7 -0.6154[18,11] -0.6154[18,11] -0.6154[18,11] -0.6154[18,11] 0.9913[44,53] 0.9913[44,53] 0.9913[44,53] 0.9913[44,53]

x8 0.7881[35,45] 0.7881[35,45] -0.7881[35,45] 0.7881[35,45] 0.1312[06,16] -0.1312[06,16] 0.1312[06,16] -0.1312[06,16]

Tab. 4.3: Interval Analysis solution for PUMA problem

solution9 solution 10 solution 11 solution 12 solution13 solution 14 solution 15 solution 16

x1 0.67155[21,74] 0.67155[21,74] 0.67155[21,74] 0.67155[21,74] 0.67155[21,74] 0.67155[21,74] 0.67155[21,74] 0.67155[21,74]

x2 0.7409[47,57] 0.7409[47,57] 0.7409[47,57] 0.7409[47,57] 0.7409[47,57] 0.7409[47,57] 0.7409[47,57] 0.7409[47,57]

x3 -0.2396[01,10] -0.2396[01,10] -0.2396[01,10] -0.2396[01,10] 0.9547[23,32] 0.9547[23,32] 0.9547[23,32] 0.9547[23,32]

x4 -0.9708[69,78] -0.9708[69,78] -0.9708[69,78] -0.9708[69,78] 0.2974[60,70] 0.2974[60,70] 0.2974[60,70] 0.2974[60,70]

x5 -0.9579[18,27] 0.9579[18,27] 0.9579[18,27] -0.9579[18,27] -0.1287[41,50] 0.1287[41,50] 0.1287[41,50] 0.1287[41,50]

x6 -0.2870[36,46] 0.2870[36,46] -0.2870[36,46] 0.2870[36,46] 0.9912[00,95] -0.9912[00,95] 0.9912[00,95] -0.9912[00,95]

x7 -0.5278[68,16] -0.5278[68,16] -0.5278[68,16] -0.5278[68,16] 0.9692[85,95] 0.9692[85,95] 0.9692[85,95] 0.9692[85,95]

x8 0.8493[04,13] -0.8493[04,13] 0.8493[04,13] -0.8493[04,13] -0.2459[33,43] 0.2459[33,43] -0.2459[33,43] 0.2459[33,43]

Tab. 4.4: Interval Analysis solution for PUMA problem

solutions. Depending on the tolerance given one can go arbitrarily close to the solution.

Next we apply the method to solve kinetic equations in catalysis to figure out the steady

states at equilibrium.

4.2 CO oxidation with NO

The reaction of carbonmonoxide with nitrogenmonoxide occurs in catalytic converters.

A catalytic converter is device used to reduce the emissions from internal combustion

engines. It converts harmful gases like CO and NO to harmless CO2 and N2 via redox
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reaction with help of a catalyst. The reaction between CO and NO is given below:

2CO+ 2NO → 2CO2 + N2 (4.2)

Steps involved:

1. Adsorption of CO and NO

2. Desorption of NO

3. Dissociation of NO

4. Formation and immediate desorption of CO2

5. Formation and immediate desorption of N2

The kinetic rate equation for the process is given below:

d[N]

dt
= k2[NO][Z]− k4[N]

2 (4.3a)

d[NO]

dt
= k5[Z]− k6[NO]− k2[NO][Z] (4.3b)

d[CO]

dt
= k1[Z]− k3[CO][O] (4.3c)

d[O]

dt
= k2[Z]− k3[CO][O] (4.3d)

[N] + [NO] + [CO] + [O] + [Z] = 1 (4.3e)

In the above set of equations the square brackets indicate the surface coverage of the

molecule over the catalyst. [Z] denotes the free surface area on the catalyst. By setting

the differential values to 0 the set of equations becomes a set of non-linear equations.

The values of rate constants have to be chosen as k1 = 0.8, k2 = 0.2, k3 = k4 = k5 =

10, k6 = 0.25. The simulation details are given in table 4.5. Actual solutions obtained

via Mathematica and Interval analysis based solutions are given in table 4.6

Trial 1 2

Number of solution obtained 2 2

Tolerance 0.0001 0.000001

Time taken(s) 5.88 8.15

Tab. 4.5: Simulation Details of IN/GB algorithm for obtaining steady states
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IN/GB solution 1 IN/GB solution 2 Actual solution 1 Actual solution 2

[N] 0 0 0 0

[NO] 0 0 0 0

[CO] 0.999 0 1 0

[O] 0 0.999 0 1

[Z] 0 0 0 0

Tab. 4.6: Comparison of IN/GB solutions and actual solutions for steady states of CO

oxidation with NO

From table 4.6 we can infer that the actual solutions obtained via Mathematica and

the solutions obtained from Interval analysis are same. The steady state values indi-

cate a clear case of catalyst poisoning taking place due to either carbon monoxide or

oxygen.

4.3 Fischer Tropsch:Methanation Problem

In section 1.2.1 we introduced the Fischer-Tropsch process. The equations (1.2-1.14)

are the steps involved in the reaction. One can study the kinetics of methane formation

if the equations (1.9-1.11) are neglected. The neglected equations corresponds to the

hydrocarbon chain growth. To obtain the list of all steady states involved in methane

formation, we use the IN/GB method. The methanation process is studied using a set

of both fictitious and real rate constants. The rate equations and rate constants for the

steps involved are given in the appendix A.

4.3.1 Fictitious rate constants :

The fictitious rate constants are given random values between 1 and 2. This was done

because we wanted the rate constants to be of the same order of magnitude as the

real rate constants vary several orders of magnitude. The steady state solutions are

obtained by solving the rate equations simultaneously using the IN/GB method. The

results obtained and simulation details are given below:

Tolerance(tol) Number of solution boxes(N) Time taken(s)

0.05 1820837 2457.3

0.1 68871 107.28

0.2 3098 5.2

0.3 211 0.54

Tab. 4.7: Simulation details for IN/GB algorithm for Fischer-Tropsch

From the above table we can infer that:
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1. As the tolerance (width of solution box) decreases the number of solution boxes

increases

2. As tolerance decreases the computational time increases drastically.

The computation become so expensive that we fail to get results for any tolerance value

less than 0.05. Unless the tolerance is decreased further, we cannot conclusively say

anything about the number of solutions and the exact value of the solutions. To go to

lower tolerances using IN/GB method, the algorithm must be parallelized But here we

take another approach, that is to combine the IN/GB method with classical newton to

get a faster convergence to the solution. This is done by taking the midpoint of solution

boxes obtained from 0.05 tolerance as a starting point for classical newton. The time

taken to run this simulation was 4.3 hours. Below we plot the results obtained for the

coverages:

Fig. 4.1: Solutions for methanation problem with fictitious rate constants.
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In the above figure 'Z' denotes the coverage of vacant space(θ∗) on the catalyst sur-

face. From the above graph of coverage of Z, we can infer that the steady state value

of θ∗ is either 0 or 0.1239 . The value of θ∗ = 0 implies that there is catalyst poisoning

taking place. During poisoning the entire surface of the catalyst is covered with one or

more elements thereby making the catalyst ineffective. The chemical compounds/ele-

ments that cause poisoning are Carbon, CH, CH2,CH3, Oxygen and OH which can be

seen from Fig 4.1.

The other value θ∗ takes is 0.1239. The corresponding coverages of other compo-

nents are given in table 4.7. This solution is different from rest of the other solutions

because this is a reactive steady state. A reactive steady state can be identified by

having a non-zero value for θ∗. This means that there is probability for reactions to

take place, as there are vacant sites on the catalyst surface. In table 4.8 we compare

the reactive steady state solution obtained by IN/GB method and another one using a

kinetic ordinary differential equation (ODE) solver.

Chemical species Coverage from interval analysis Coverage from kinetic ODE solver

C 0.05822 0.112

CH 0.03631 0.007

CH2 0.01178 0.002

CH3 0.00883 0.001

CO 0.10093 0.146

H 0.10984 0.1077

H2O 0.14616 0.115

O 0.22357 0.1619

OH 0.18035 0.124

Z(Vacancy) 0.12395 0.121

Tab. 4.8: Comparison of solution from interval analysis method and kinetic ODE solver

From the table (4.8) we can clearly see that the interval analysis solution clearly

differs from the solution obtained from anODE solver. By substituting the values back in

the equation we see that the solution obtained from ODE solver is not an exact solution

but a very good approximation. This is the added advantage of interval analysis, not

only it finds all the solution but finds them with mathematical certainty.

4.3.2 Real rate constants

The real rate constants and rate equations are given in Appendix A. Same as the

case with the fictitious rate constants, the maximum tolerance we could go upto was

0.05 using IN/GB method. Any tolerance below that becomes computationally very
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expensive to compute. Like in the previous case we combine the IN/GB method with

classical newton to get a better convergence to the solution. The time taken to run this

simulation was 3.8 hours. The coverages obtained at steady states are plotted in the

graphs below:

Fig. 4.2: Solution for methanation problem with real rate constants
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The following information can be inferred from the graphs. The coverage of θ∗

(denoted by Z in graphs) is always 0, which means that there is no reactive steady

state. The coverages of θCO, θH, θH2O are also negligible. The coverage of CO,H2O are

negligible due to high desorption rate. The hydrogen available would have been used

for methane generation and formation of CHx species. Hence the coverage hydrogen

is low. At the steady state species like Carbon,Oxygen and OH can completely cover

the catalyst surface ( θ=1).

4.4 Fischer Tropsch:Chain Growth Problem

In the methanation problem we neglected equation (1.9-1.11). These equations cor-

respond to hydrocarbon chain growth. Now we include the chain growth phenomenon

and solve for the steady states. If chain length is included the set of rate equations in

Fischer Tropsch becomes infinite. By assuming a Flory-Schultz distribution29 for the

chain length the set of rate equations are decoupled. This results in a finite set of rate

equations and a quadratic equation for the Flory-Schultz parameter α.The full set of

rate equations and rate constants are given in Appendix B.

4.4.1 Fictitious rate constants

Just like in the methanation problem we solve for the steady states using fictitious as

well as real rate constants. The fictitious rate constants are given randomly between

0 and 2. We use the IN/GB combined with newton algorithm to solve the set of rate

equations which comprises of 12 equations and 12 variables. The domain for all the

variables are kept between 0 and 1.The time taken to run the simulation is 12.3 hours.

Compared to methanation problem the time taken to run the simulation is quite high.

This is because we have 12 variables to solve compared to the 10 variables in metha-

nation. The results obtained are plotted below:
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Fig. 4.3: Solutions for chain growth problem with fictitious rate constants.

From the graph of coverage of θ∗(denoted by Z in graphs) we can infer that there

exist a reactive steady state. All the other steady state values depict catalyst poisoning

taking place, i.e., value of θ∗= 0. The catalyst poisoning is caused by the coverages
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of Carbon, CH, CH2,CH3, OH, Oxygen and hydrocarbon chain. The reactive steady

state obtained is given below:

Chemical Species coverage

C 0.043369

CH 0.056271

CH2 0.019927

CH3 0.006641

CO 0.093672

H 0.100341

H2O 0.135775

O 0.256633

OH 0.171109

Z(Vacancy) 0.115095

chain 0.00116703

α 0.149459

Tab. 4.9: Reactive steady state for Fischer Tropsch with fictitious rate constants

The value of Flory-Schultz parameter α obtained for reactive steady state was

0.149459. Smaller value of α means that the probability of chain growth is less. From

the above table we can see that the coverage of hydrocarbon chain is the least. The

coverage of oxygen is the highest followed by OH,H2O,H,CO,CH,CH2,CH3,chain.

4.4.2 Real rate constants

The rate equations and rate constants for Fischer Tropsch process is given in Ap-

pendix B. The IN/GB combined with newton algorithm was used to solve the set of rate

equations which comprises of 12 equations and 12 variables. The domain for all the

variables are kept between 0 and 1.The time taken to run the simulation is 10.2 hours.

The results obtained are plotted below:
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Fig. 4.4: Solutions for chain growth problem with real rate constants.

From the graph of Z (vacant space) we can infer that there are no reactive steady

states. The outcome of this reaction is always catalyst poisoning due to Carbon, CH3,

CH, chain, Oxygen and OH. Surprisingly the coverage of CH2 is low compared to CH3

and CH groups. For value of coverage of chain equal to 1, we get the α value to be 1
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as expected. But we cannot conclude that higher value for α means higher coverage

for chain. Most of the steady states have very high value for α . The coverages for

H2O is very low because its rate of desorption is very high. It is not very clear among

the scientific community what actually causes catalyst deactivation if Fischer Tropsch

process. Salib and co-workers published a review stating the importance of the role of

carbon in deactivating the CO catalyst.30 Huffman et al. showed that its possible to ox-

idize cobalt particles under the conditions of Fischer Tropsch process.31 Sadeqzadeh

et al. advocates for deactivation done by both Carbon and Oxygen.32 From the solu-

tions of carbide model mechanism for Fisher Tropsch process using IN/GB combined

with newton method we can conclusively say that carbon, carbonaceous species and

oxygen play a crucial role in deactivating the catalyst. Moreover the model also pre-

dicts deactivation due to deposition of OH species. The above results seems to favor

carbide mechanism as an appropriate mechanism for Fischer Tropsch process.



5. CONCLUSION

We have described here a new method to figure out all solutions for a set of non-linear

equations. The method is based on interval analysis, to be more precise an Interval

Newton /Generalized bisection(IN/GB) method which provides all solutions with math-

ematical certainty. The IN/GB methods works really well for small chemical systems

as it can be seen from the results of oxidation of CO with NO The method also works

well for systems with a finite number of solutions with many variables. IN/GB method

becomes computationally very expensive for ill-defined systems, i.e. , situations where

the number of solutions are infinite. In such cases the interval newton contractor fails

and the method heavily relies on bisection. This makes it computationally very ex-

pensive, as bisection algorithms have an exponential complexity. The rate equations

corresponding to Fischer-Tropsch process belonged to this category. In such cases

we can combine the IN/GB method with classical newton so as to get a faster conver-

gence to solutions. Classical newton method is faster than the interval counterpart, but

the interval counterpart is more reliable. The computational time for interval methods

can be significantly decreased by parallelizing the algorithm, as interval methods are

highly parallelization As a modeler there is an option choose between a fast method

which may give incomplete answers or a slow method which guarantees accurate re-

sults. Further advancements in the software and hardware to implement interval based

methods, along with the rapidly increasing computational power, would make interval

analysis based methods an invaluable tool for computational chemistry.
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Appendix A

Full list of rate equations for methanation:

• CO:

dθCO
dt

= WCO,ads θ∗ −WCO,des θCO

−WCO,diss θCO θ∗ +WCO,frm θC θO (A.1)

WCO,ads and WCO,des are rate constants of adsorption and desorption of CO from a site.

WCO,diss and WCO,frm are rate constants of dissociation and formation of CO.

• Carbon:

dθC
dt

= WCO,diss θCO θ∗ −WCO,frm θC θO

−WC,hydr θC θH +WCH,dehydr θCH θ∗ (A.2)

WC,hydr is the rate constant of hydrogenation of a carbon atom , and WCH,dehydr is the

rate constant of dehydrogenation from CH group.

• CH:

dθCH
dt

= WC,hydr θC θH −WCH,dehydr θCH θ∗

−WCH,hydr θCH θH +WCH2,dehydr θCH2
θ∗ (A.3)

WCH,hydr is the rate constant of hydrogenation of CH and WCH2,dehydr is the rate constant

of dehydrogenation of CH2 group.

• CH2 :

dθCH2

dt
= WCH,hydr θCH θH −WCH2,dehydr θCH2

θ∗

−WCH2,hydr θCH2
θH +WCH3,dehydr θCH3

θ∗ (A.4)
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WCH2,hydr is the rate constant of hydrogenation of CH2 andWCH3,dehydr is the rate constant

of dehydrogenation of CH3

• CH3 :

dθCH3

dt
= WCH2,hydr θCH2

θH −WCH3,dehydr θCH3
θ∗

−WCH3,hydr θCH3
θH (A.5)

WCH3,hydr is the rate constant of hydrogenation of CH3, but note that there is no rate

constant WCH4,dehydr because methane formed by hydrogenation immediately desorbs.

• Oxygen :

dθO
dt

= WCO,diss θCO θ∗ −WCO,frm θO θC

−WOH,form θO θH +WOH,diss θOH θ∗ (A.6)

WOH,form and WOH,diss are rate constants of formation and dissociation of OH.

• OH :

dθOH
dt

= WOH,form θO θH −WOH,diss θOH θ∗

−WH2O,form θOH θH +WH2O,diss θH2O θ∗ (A.7)

WH2O,form and WH2O,diss are rate constants of formation and dissociation of water.

• H2O :

dθOH
dt

= WH2O,form θOH θH −WH2O,diss θH2O θ∗

+WH2O,ads θ∗ −WH2O,des θH2O (A.8)

WH2O,ads and WH2O,des are rate constants of adsorption and desorption of water.

• AtomicHydrogen ::

dθH
dt

= WH,ads θ∗ θ∗ −WH,des θH θH

−
3∑
0

WCHk,hydr θH θCHk
+

3∑
1

WCHk,dehydr θ∗ θCHk

−WOH,form θH θO +WOH,diss θ∗ θOH

−WH2O,form θH θOH +WH2O,diss θ∗ θH2O (A.9)
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WH,ads and WH,des are rate constants of adsorption and desorption of hydrogen.

These are the set of rate equations for themethanation problem. To obtain the steady

state solutions we set the left hand side of all these equations equal to zero and solve

using IN/GB method. An additional constraint is given as:

θCO + θC + θCH + θCH2
+ θCH3

+ θO + θOH + θH + θ∗ = 1 (A.10)

This ensures that the individual coverages of different groups on the catalyst surface

doesn't exceed unity.

Rate constants for methanation:

Symbol Real rate constant Fictitious rate constant

WCO,ads 194732 1.23

WCO,des 1.6128*108 1.5

WCO,diss 1.85931*106 1.75

WCO,frm 6.4532*106 1.6

WC,hydr 1.11941*107 1.434

WCH,hydr 1.80017*108 1

WCH2,hydr 22210.6 1.95

WCH3,hydr 42349.9 1.1

WCH,dehydr 1.08346*108 1.8

WCH2,dehydr 6.23561*106 2

WCH3,dehydr 80341 1.33

WOH,form 2.07595*107 1.5

WOH,diss 3.34319*109 1.6

WH2O,form 0 1.7

WH2O,diss 1.80298*1016 1.8

WH2O,ads 487.709 1.43

WH2O,des 5.22427*1011 1.22

WH,ads 5.59524*108 1.54

WH,des 668002 1.43

Tab. A.1: Methanation rate constants



Appendix B

If we include chain growth in the rate equations it forms an infinite set. So we need a

method to decouple the equations. Below we describe a method to do so:

θ(CH2)kCH3
= α θ(CH2)k−1CH3

(B.1)

for k ≥ 2 . Using this above rule we define:

θchain =
∞∑
1

θ(CH2)kCH3
(B.2)

θchain refers to the coverage of chain on catalyst surface. The rate equations for this

coverage is given by:

dθchain
dt

= Wgrow θCH3
θCH2

− [1− α] Wshrink θchain θ∗

+Wterm θchain θH (B.3)

Since a new coverage θchain is introduced it affects some of the other rate constants.

Equation (A.4) becomes

dθCH2

dt
= WCH,hydr θCH θH −WCH2,dehydr θCH2

θ∗

−WCH2,hydr θCH2
θH +WCH3,dehydr θCH3

θ∗

−Wgrow θCH3
θCH2

− Wgrow θCH2
θchain

+ α Wshrink θ∗ θchain + [1− α] Wshrink θchain θ∗ (B.4)

equation (A.5) becomes

dθCH3

dt
= WCH2,hydr θCH2

θH −WCH3,dehydr θCH3
θ∗

−WCH3,hydr θCH3
θH

−Wgrow θCH3
θCH2

+ [1− α] Wshrink θchain θ∗ (B.5)
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equation (A.9) becomes

dθH
dt

= WH,ads θ∗ θ∗ −WH,des θH θH

−
3∑
0

WCHk,hydr θH θCHk
+

3∑
1

WCHk,dehydr θ∗ θCHk

−WOH,form θH θO +WOH,diss θ∗ θOH

−WH2O,form θH θOH +WH2O,diss θ∗ θH2O −Wterm θH θchain (B.6)

the constraint becomes

θCO + θC + θCH + θCH2
+ θCH3

+ θO + θOH + θH + θ∗ + θchain = 1 (B.7)

The additional rate constants for chain growth are given below:

Symbol Real rate constant Factual rate constant

Wgrow 11393573.55 1.78

Wshrink 392940.4467 0.75

Wtermination 6746.548178 1.28

Tab. B.1: Rate constants for chain growth
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