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Abstract

In this work we develop a non-equilibrium approach to study the time
evolution of a coupled electron-phonon many-body system, with electronic
initial states driven far-away from the ground states (the Hot Electron
problem) to probe its behaviour with regards to thermalisation. The
equilibration of "hot electrons”, excited to a high energy state either by
external electromagnetic waves or by collision with high energy particles,
is relevant to a large class of problems, viz. in pump-probe spectroscopy,
stability of solid state transistors, response of photodetectors, operation
of thermoelectric devices etc. Most previous studies of the “hot electron”
problem treat the phonons as a thermal bath whose density matrix (or
distribution functions) remain invariant with time. In this project we wish
to delve in with the self-consistent time evolution of the coupled system
using Schwinger-Keldysh field theory.

We construct an evolution scheme where we assume quassi-static of the
electronic sector whereas the phononic sector has been treated preserving
is complete non-equilibrium nature. Here we first develop the iteration for
phonons and test its dynamics coupling with an Ohmic Bath. Equipped
with this we wish to couple this to the system electrons and study their
joint dynamics in a self-consitent way.
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Chapter 1

Introduction

A generic system in Condensed Matter Physics consists of a material lattice consti-
tuted of atoms (of one or multiple kind) at its each lattice points, which interact with
each other in some specified manner.

In the work presented in this thesis, we are interested in studying dynamical be-
haviour of such an Fermionic Lattice, with one free-electron at each lattice site, in-
teracting with themselves as well as the Lattice Phonons.

For such a system initially the electrons can be assumed to be in the ground state
of the Fermi Sea with zero (or with a small but finite) temperature. Then an exter-
nal interaction is turned on (such as a LASER like in pump-probe experiments or
bombardment of high energy charged particles as in the particle detectors), which
excites these electrons to very high energy eigenstates, but leaves the phonon sector
unaltered to a good approximation.

We are interested in studying how this system of Hot-electrons coupled to the
systems of lattice phonons equilibriate.

One interesting question to ask in this respect is the final temperature as a func-
tion of the input energy, which can be easily computed from equilibrium statistical
mechanics. However, this is an answer at infinite time which is much beyond the
usual measurement timescales.

Again, in the experiments described above, there is always some finite energy being
injected as an input, and in equilibrium treatment any finite energy has a zero density
in the phase space. Hence irrespective of the input energy, at the thermodynamic
limit, an equilibrium treatment of the problem will give rise to no temperature rise.
However, all the detectors as well as probes are of finite size and they do record a
rise in temperature in these experiments. Hence the final answer of the common
temperature also becomes a function of the system size.

In this work we seek to develop machinaries for a non-equilibrium treatment of this



problem. In specific we are interested in computing the time scale of equilibration,
whether every phonon mode has the same equilibriation timescale, the efficiency of
energy transfer at finite time scales involved etc. We wished to study these by setting
up a dynamical framework using Keldysh-Schwinger Field Theory|1, 2].

In study of Hot-electron thermalisation it is customary to assume that the elec-
trons thermalise between themselves very quickly[3]. The electrons interact among
themselves via a long-range coulomb interaction, which has a thermalisation timescale
of the order of femto-seconds. The other relevant timescales reletaed to phenomena
one is usually interested in studying (such as electron-phonon interaction, transient
dynamics) tends to be of the order of pico-seconds [4]. Hence in study of the mech-
anism of redistribution of the energy among the phonon degrees of freedom and the
approach to a common equilibrium it is usually safe to assume a quassi-static nature
of the electrons.

We are interested in investigating the mechanism of this process by keeping into
account the non-equilibrium nature of the phonons.

The remainder of this report is structured as follows.

In the following section we briefly review the Two Temperature Model due to
Anisimov et. al. [3], which is customary to invoke in study of these systems, which
also assumes a quassi-static nature of the phonons and outline some problems it may
suffer owing to this assumption.

In the following chapter we review the relevant results of the Keldysh-Schwinger
formulation[1, 2] of field theory, required for the study. We briefly summarise some
preliminary results for the phononic sector, where we have studied dynamics of non-
equilibrium phonons coupled to an ohmic bath. Lastly we trace out the routes to
further works and conclude.

1.1 Two Temperature Model

The prototype of the system whose dynamical behaviour we seek to model are stud-
ied with Pump-Probe Spectroscopy [3-6]. In these experiments we usually start with
a lattice of a suitable material, with an electronic and a phononic sub-lattice. The
electron population is then driven away from equilibrium by exciting them to higher
momentum levels by shining high frequency photons (The Pump Pulse). To a good
approximation the phonons can be assumed to retain their initial equilibrium config-
uration.

The resulting non-thermal population of electrons usually have an self-equilibrium
time scale of 10-100 femto-seconds mediated by the electron electron coulomb scat-
tering. Afterwards, in the time scale of the orders of pico-seconds, the interactions
with the phononic sub-lattice plays the primary role as a thermalisation channel.



It is inherently assumed that the el-el interaction as well as the ph-ph interaction
mixes the degrees of freedom of the individual sub-systems at time scales much faster
than that of the interaction that couples those two. Hence at the time scales compa-
rable to the later it can be assumed that at all times there is a electron temperature
(T%) and a phonon temperature (7},) at every time step. The action of the coupling is
then reduced to updating these two values. Eventually both the sub-system temper-
ature reaches a common equilibrium value and heat diffusion in the system restores
to its initial state.

The dynamics of the temperatures of the two sub-systems (7¢,7,,) under the ac-
tion of the electron-phonon coupling in this model is summarised by the following
governing coupled differential equations.

dT,

Ce(Te)d_te =V (k. VT,) — G(T., Tyn) (T. — Tpn) + S(1)
(1.1)
dT,
Cph(ﬂ)’l)ﬁ = v(“phVTph) + G(Tea Tph) (Te - Tph)

Here C,, Cp, denotes the respective heat capacities, k., £, stands for the respective
thermal conductivities, G(T¢,T,) is the electron phonon coupling that in general
depends on both the temperatures and S(t) is the forcing term for the electronic
sub-sector, that summarises the contribution of the pulse.

Equations (1.1) can not be solved in closed form in its full generality. But it’s
application to small systems such as nano-material thin-films allows for certain sim-
plifications. In these systems the temperature becomes spatially uniform at a short
time scales [7], so the terms proportional to the temperature gradients can be ignored.
The forcing term, S(t) can be traded for choosing a high initial temperature, at which
the sub-system settles down after an initial non-equilibrium intermediate dynamics.

The two equations in (1.1) then can be subtracted to obtain,
d

1
—(Te = Tpn) = =G(Te, Tyn) (@(Te) " Con(Ton)

JT-Tw) (1)

If the heat capacities as well as the interaction term were independent of temper-
ature, then (1.2) could have been integrated to obtain the analytical solution,

T.(t) = Tyn(t) = [T = TypJe ™~ (13)

which states that the electronic and the phonon temperatures relaxes exponentially
two a common temperature with a time scale,



%:G(i+i) (1.4)

However, this assumption is only true for classical ideal gases. In non-interacting
metallic systems phonons and electrons have heat-capacities that varies as power
law of the temperature. Yet, in analogy, one can define a local time-scale for these
systems,

1 1 1
=G(T,,T, + 1.5
o = G T 5+ ) (15)

such that the electron temperature can be modeled with an effective exponential
decay,

T,(t) = TP+ + Ty (1.6)

where T, is the final common temperature. The quantities in (1.5) can be obtained
from ab-initio first principle calculations, such as Density Functional Theory, viz.
Forno et al [4]. For some systems like in TiN this approximation is known to replicate
closely direct numerical solutions of (1.2).

Inherent to the assumption of two temperatures ,

1.2 A change is in order

The two-temperature model inherently assumes instantaneous thermalisation for both
the sectors. However, that, especially with regard to the phononic sector is known to
not hold good for many scenarios.

Consider a 3 dimensional system of phonons. In this case the phononic phase
space volumes varies as k?dk. If we assume a linear dispersion relation, then the
DOS varies as w?. Which necessarily means that the low energy phonons has almost
negligble scattering, which is contrary to the requirement of assuming instantaneous
thermalisation. In general for finite size systems there is no instantaneous process,
but an exponetial decay. But for phonons it is possible to get a power-law instead.

Similar scenarios can be argued for the electronic sector. Especially close to the
Fermi surface, the electronic sector is known to have almost no effective scattering
due to electron-electron interactions, which forms the basis of theories like that of
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the Fermi Liquids [8]. With that the validity of instantaneous thermalisation of
electronic sectors, especially involving energy scales of the order of Fermi Energy
comes to questioning.

No effective scattering near Fermi Surface is hwowever a zero temperature state-
ment. So, at finite temperature probably it can still be assumed that the electrons
will exhibit instantaneous self-thermalisation. Hence the validity of this statement
becomes a cut-off dependent question. It is not entirely obvious statement that it hap-
pens at all energy scales. The approximation has been at use in study and modelling
of thermalization for various systems where it exhibits quite reasonable effectiveness.
However, Even if the electrons are, Phonons are hardly expected to exhibit instanta-
neous thermalisation for a spanning range of parameters.

It has been recently shown that both the phonons as well as the fermions when
coupled to infinite non-interacting phononic/ fermionic baths, they can exhibit power
law decays given there are singularities in the bath spectral functions. [9]. Inherent to
the assumption of instantaneous thermalisation lies the assumption of Marcovianity
or involvement of memoryless cores. It has been exhibited that following does not
hold true for all cases of the scenario we are concerned, especially when we start from
arbitrary initial conditions, which is not necessarily a density matrix[10].

In light of that we wish to reopen the quest and set up a general non-equilibrium
framework to study the time evolution of the coupled electron-phonon systems in a
self-consistent way and revisit some of these questions.






Chapter 2

Theory

2.1 Grassmann Algebra & Coherent States

Consider a single fermionic level, which is spanned by the number states |0) and |1).
The annihilation and creation operators, ¢, ¢ are defined by their acion as,

cloy=0, '1)=10),
cloy =11), c'[1)=0

It follows that the anticommutator, {c,c'} = cc' + c¢fc = I and that ¢ = ¢/? = 0.
The number operator is defined as,

c'eln) = nin)

Individual Fermionic states are parametrized by Grassmann Numbers.

Definition 1 (Grassmann Number). Let G denote set of Grassmann numbers. Then

VY eG.

a. {9} =0
b. {¥,c}={v,c"} =0

It follows from property a. that ¢> =0, V4 € G. A fermionic left coherent state
|1) is paramterized using the Grassmann Field as,
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) =10) =% 1), ¢veG

by construction such a state is an eigenstate to the annihilation operator.

clg) =cl0) = c¥|1)
=¢[0) =¥ [0) — ¢*[1)
=¥ [Y)

Before deriving furthers properties of coherent states it is useful to develop functions
and calculus of Grassmann Numbers. Functions of Grassmann Numbers are defined
using its Taylor expansion.

Definition 2 (Functions of Grassmann Numbers). Let f be a map from G to G. Then

fW)=fo+ fiv, fo,fi€R (2.1)

The definition is naturally generalised to 2 and higher dimensions as follows. Let f
be a map from G? to G. Then,

f@W,¥") = foo + frov + ford" + fudd,  foo, fr0, fro, f11 €R (2.2)

This allows us to introduce the derivatives of Grassmann Numbers in terms of their
action on these functions.

Definition 3 (Derivatives of Grassmann Numbers ). Let f(v), ¢ € G denote a
generic function of Grassmann Number. f(1) = fo+ fivv. Then the derivative with
respect to ¥ can be defined as map from G to G s.t.

0
%f@/}) = h

Derivatives anti-commute with Grassmann Numbers. Then it follows that deriva-
tives anti-commute with each other. Consider,

%%f@ﬂb') = %(fm - f111/1) = —f11
0 0 , 0 N
ad}/% (W' y) = a¢,(f10+f11¢)—f11

Ultimately the integrals with respect to Grassmann Numbers are defined as follows,
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Definition 4 (Integrals of Grassmann Numbers). Let v € G. Then the integrals
w.r.t. ¢ are defined as function from G to G such that,

/dzp:o , /wd¢:1

The differentials anti-commute with each other and Grassmann Numbers. The
differential and the Integral map are thus identical for Grassmann Numbers.

Now, since any function of Grassmann Numbers are defined only upto the first
order of their Taylor Series, we can rewrite the left coherent state as,

1

—Tr|U_ Ceol =1 2.
,-I,r[po] [U oo,ooUoo,ttht ,oo] ( 3)

) =10) — 1)
= (1 —¢c)[0) = e |0)

Similarly the right coherent state is defined as the right eigenstate of creation
operator, cl.

(¥ = (0] e
=0 - (1|, ¥e€G

Here 1 is an independent Grassmann Number unrelated to 1. It follows then, that
the coherent states are not orthonormal and their inner product is given by,

(Wly")y = (0] = (A P)(J0) —¢'[1))
=1+ =™

The identity can be resolved in terms of the projection operator as follows.

1= [ @ [ave ™0y (2.4)

Proof. Tt follows from the definitions that,
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/@/wawww|
:/da/dw (1= T)(0) — & [1))((0] — (1)

:/ﬁ@/mﬁ—Ewmmm+mﬂmw1/@wﬁ/wwmmm+mww
=1

]

Definition 5 (Normally ordered operators). An operator, A is said to be normally
ordered if the amnihilation operators, ¢ appears at the right of the corresponding
creation operator, ¢ (if any) in all its additive constituent components.

Normal Ordered operators are denoted as : A : to distinguish them from the general
ones.

Property 1. Matrixz elements of the normally ordered operators are then evaluated
as,

Wl A () = A: (@, u)e™ (2.5)
(Y,

=t A (9,9 (YY)

This follows from the definition of Coherent states and the Normal Ordered Oper-
ator.

Property 2 (Trace of an Operator). Trace of an operator can be computed as follows
by utilizing the resolution of identity,

Tr[0] = ) (n|On)

n=0,1

=Y [ [ e i) o)

n=0,1

=3 [ [ 0w nl - v)

n=0,1

=Y [ @ [av e wiol-u)

n=0,1

The sign here follows from the anti-commutation property of Grassmann Numbers.
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2.2 Gaussian Integrals of Grassmann Fields

To what follows in our discussion of the physics, especially in construction of the
Path integral and the Green’s Functions, which forms the fulcrum of Keldysh Field
Theory, the following results related to the (multidimensional) Gaussian Integral plays
a relevant role.

Definition 6 (Gaussian Integral of Grassmann Fields). Let 1;,v;,%X;,x; € G*, j €
[1,n] be four mutually independent sets of Grassmann numbers. Let A;; € GL"(R)
be an invertible n x n matriz. Then the Gaussian Integration of Grassman fields can
be parametrically defined as,

ZIX, x| = /dw_j/dwj e~ g Yidig i+ Pix XY

= det(A)e” > XAy X

(2.7)

Note that unlike the Gaussian Integration involving c-numbers the determinant of
the coefficient matrix appears in the denominator in the formula.

This allows to compute various moments with respect to the Gaussian Distribution
summarised by the Wick’s theorem.

Theorem 1 (Wick’s Theorem for Fermions).

Wt = Z00.0] v,
1 I*ZX, x|
[07 O} aXdaXcaYbaYa

-1
Aab

(2.8)

(Wathetba) = - = A Ay AGA

For any odd permutation of the indices the corresponding terms acquire a negative
sign as the partial derivatives w.r.t. Grassmann Numbers anti-commute.

2.3 Fermionic Partition Function

We first delve with the non-interacting case. The Hamiltonian for the system is given
by,

Hy, = Z e(k)cl e (2.9)



The energy levels are determined from the system dispersion relation €(k) = % for
free fermions .

The Keldysh Formulation is formulated upon the idea of time evolution of the
density matrix from an initial time ¢ = ¢y to t = 00, followed by a backward evolution
to ¢ = oo then back to ¢t = t; generates the identical state.

The Partition function is then constructed by first discretising the closed time
contour into 2N many instants and using the resolution of identity to unfoliate the
following Identity,

Definition 7 (Fermionic Partition Function).

N
1 —_— . 2N =1
7 = // | | dip;dip; e n Zi=1 iV = T (2.10)
Tr[po] =1 S

where the invertible matrix G,;jj has the following form,

—1 0 0 00 0 0 —pol€r)
1—iedt -1 0 010 0 0 0
0 1 —iepdt —1 00 0 0 0
S 0 0 “1] 0 0 0 0
G 0 0 0 T =1 0 0 0
0 0 0 0|0 1 0 0
0 0 0 010 1 +iedt  —1 0
0 0 0 010 0 1 +iedt —1
(2.11)

It suffices to sample the momentum only in the first Brillouin zone.

Note that all the momentum levels have independent Matrices. This is a feature
of the non-interacting theory that we exploit to write the Partition Functions in the
discrete time basis. As we will develop later, these degrees of freedom are mixed as
the interaction is turned on.

The argument of the exponent can be rewritten in the continuous notation to define
a Action function in terms of the Grassmann fields. After suitable normalisation and
regularisation of the initial term, in the continum limit we obtain,

!Here in we neglect the spin degrees of freedom, since for the results we are concerned with we
need to everage over the spins and both results are identical.
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S, ] = / @) [0 00— a0 - T (60 —ap] (@12

Here the *,~ fields respectively lives in the forward and the backward contours.
Diagrammatically, the fields can be represented on the discretised Keldysh contour
as follows,

OO0000

: |
Which under the *,~ relabeling becomes,
. °

porereTororo

Figure 2.1: Digramatic representation of the time labelling of the Fermionic ¢ field in the discrete Keldysh contour.
The notion for the ¥ is analogous. It is worth noting that the when they are relabeled as o1, 1, the ¢~ coordinates
are ordered in the opposite way in the backward coordinate. This facilitates the difference in sign of §t in the fourth
co-ordinate of (2.11).

It is customary in Keldysh-Schwinger Field theory to do a basis rotation of the
equation()for each individual degrees (here the momentum) of freedom. Since the
1,1 are independent Grassmann Fields, they are needed to be rotated individually.

The following prescription is due to Larkin and Ovchinnikov [11].

i) = (WF O+ (0)/V2 5 WR(t) = (W (8) — v (1) /V2

_ I, e 2.13
L) = (0% (8) = 97u(0)/V2 5 PR(t) = (0F () + (1) /V2 21

The Green’s Functions of the free field theory (Bare Green’s Functions) are thus
obtained in the w domain as,

13



1
O S (2.14)

G (w) = —2mid(w — €,) (1 — 2np ()

These can be projected onto the time domain using an inverse Fourier Transform,

GE(t, 1) = —if(t — t')e e t=1)
Gt ) = it —t)e ) (2.15)
GE(t, 1) = —if(t — t')e " np(e)

Following decomposition properties of the Green’s Function follows from the ex-
pressions in (2.15).

Property 3 (Decomposition of Green’s Function (first order)). The Retarded and the
Keldysh components of the Green’s function have the following decomposition property,

G, 1) = GEt TG (T, ) ¥ t > 7>t (2.16)
Gf(t,t/) _ Gé%(t,T)G(I){(,R t/) Yit>T> tl .

Here the subscript zero denotes free Green’s Function. Momentum Indices has
been suppressed. The decomposition property of the Advanced Green’s function is
analogous.

2.4 Interaction

Here in we develop the perturabative theory to treat fermionic interactions using
Diagrammatic Techniques. We consider the following momentum space Hamiltonian
with a four-fermionic interaction term.

1
H= E e(k)cler + 5 g u(q)el el cryqCr_q (2.17)
k kK \q

The action S;,; corresponding to the interaction term is,

Sus =3 [ dt 3wl BT (st (0 (218)

C kg
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The total/dressed Green’s Functions can be then defined as various moments of the
Path Integral with respect to the total action Sy; = S + Sint,

Definition 8 (Dressed Green’s Functions (Fermions)). The various components of
the Dressed Green’s Functions are defined as,

GE“? t/) Gi{ <t7 t/) af i(So+Sint)
(5 Ghirl)) = e Hdwydz/zjwk L) O
(2.19)
A series solution for them can be obtained in the following way by expanding the

interaction exponential.

For the sake of simplicity we will assume that the interaction strength is indepen-
dent of the momentum level u(q) = g. Various orders in the series then can be labeled
using various powers of g.

Consider the first non-trivial order terms in the series. The S;,; can be rewritten
with the Keldysh rotation given by eq(2.13) as,

Sw= [ > [P OB, 0o (0) = T O, 0 )
. o

_9 / dt Z [T (9 g (0o (1) + D2 (OTT (O o) (0)

+¢2k(t)¢lk/(t)wiﬂ(twiuq(t)+ L)Y (8) g (D)o (1)
+2, ()P () hpy o ()R, (1) + Tk(t)_lk’<t)¢lz+q<t> pg(t)
F 2 ()02 ()07 (o () + DT ()T () g ()07, (1)
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These eight terms can be represented diagrammatically as the following vertices,

_ 2 —_— 1 Y 1 ) 2
(2 Virp VY, Vhip (U Virp V2, Victp

N e
7/
A& A
N

- 2 — 1
¢2k~’ wk” -p 2/)214 wk’—p
-5 2 — 2
@Z)Qk ¢k+p @Z)l k ¢k+p

) 1 E 1 ER 2 )
wzk’ wk/—p wlkl ¢k/—p wlk./ wk/_p ka’

Figure 2.2: Diagrammatic representation of the Vertices of the four-fermionic interaction

where we denote ¢! with solid and v¢? with dashed lines. However this terms do
not contribute in the sum. Their contraction are of the form,

<YL O P2 (V4 (00— (1) + D2 ()T () o (D0 (8) >
—< GE(t,0)[GE(t, 1) + G, )] > (2.21)
=0

Calculations of the other six terms are similar.

Definition 9 (Irreducible Diagrams). A diagram of the fields and their contractions is
called reducible if there exist an edge such that its removal produces two disconnected
components. A diagram is called irreducible if it is not a disconnected and is not
reducible.

Theorem 2. Only Irreducible and non-loop diagrams have finite contribution to the
sum in the Path Integral in computation of the Dressed Greens Functions. Sum of all
such diagrams are defined as the Self Energy.

Similar to the greens functions, the self energies (denoted by ) for individual
momentum can be written in the v, 1), basis. It has the following Causality Structure,

sty (P00 B0 o

4
~
~—
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Y (t,t') in general contains fro all other momentum states.

It can be shown then that the complete series solution of for the Dressed Green’s
Functions can be obtained as,

Gr(t,t) = GR(t, ) + GL(t, 1) o Ti(t, 1) o G(¢, 1)
+ Gt 1) o Si(t, ') o Go(t, ') o Sy (t, 1)) 0 G, )

or,

Gr(t,t') = GU(t, V) + Gt t") o Si(t, V') 0 Gi(t, 1) (2.23)

where o denotes component-wise multiplication in the 1,19 basis as well as a
convolution in the time parameter. Equation 2.37 is named after Sir Freeman Dyson.
This forms the basis of our endeavour in unraveling the dynamics of the interacting
systems.

2.5 Real Scalar Field Theory

In the rest of this chapter we delve with developing similar results for the real scalar
field theory which appears as a solution to the Klein-Gordon Equation[12], which is
second order in time with an instantaneous infinite source term,

(=02 — V) p(z,t) = 5(t — t') (2.24)

Unlike the fermions for which the theory is developed above the bosons are de-
scribed by the scalar fields (c-numbers). If the underlying bosons have mass then
they are described as a solution to a first order equation instead, which is similar
to the theory developed above, except that c-numbers commutes unlike the anticom-
muting Grassmann numbers. This also brings in changes in the Causality structure
which will be similar to the theory we develop below.

We are concerned with phonons which are mass less and is described by a real
scalar field theory. For the discussion of complex field theory the usueal introduction
are [13, 14]. The Keldysh formalism for the same is developed at [2].

In the following section we define the Gaussian Integral for scalar fields and state
the wick theorem and then go on to derive the Green’s Function and Dyson Equation
for the bosonic systems.

17



2.6 Gaussian Integrals of Real Scalar Fields

Like wise for the Fermions, the idea of Path Integral of bosons are also hinged on the
corresponding Gaussian Integrals defined in the following way

Definition 10 (Gaussian Integral of Real Fields). Let ¢;, x; € R", j € [1,n] be two
mutually independent sets of real fields. Let A;; € GL"(R) be an invertible n x n
matriz. Then the Gaussian Integration of Real fields is then parametrically defined
as,

Z[x] = /dgbj e~ 2y PiAij®i+oiX;
B 1
~ det(A)

B (2.25)
e~ Ei,j XiAij X3

Again, this allows to compute various moments with respect to the Gaussian Dis-
tribution summarised by the Wick’s theorem.

Theorem 3 (Wick’s Theorem for Bosons).

1 PZ[X]

WD) = = A1
(ad) Z[0] Ox0Xa ab 59
<¢¢¢¢>_ 1 84Z[X] _A*lA*l_’_AflAfl <6)
aPbPcPd) — Z[O] aXdaXcaXbaXa — “tac “bd ad * *be

Since c-numbers commute, the permutation of indices do not acquire any sign in
contrast to the Fermionic Cases.

2.7 Bosonic Partition Function

Again, We start with the non-interacting case. The Hamiltonian for the phonon
system is given by,

Hy =Y w(k)ajax (2.27)

The energy levels are determined from the system dispersion relation w(k) =

Wo /sin2('“2—“) for acoustic phonons, a being the lattice constant.
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a,a’ are the bosonic creation and annihilation operators, which follows the following
algebra,

aln)y=Valn+1), alln+1) = aln)

It follows that the commutator, [a,a’] = aa’ — a’a = I. The number operator is
defined as,

a'a|n) =n|n)

The Partition function is then constructed by first similary discretising the closed
time contour into 2N many instants and again using the resolution of identity to
unfoliate the following Identity,

Definition 11 (Bosonic Partition Function).

7 =

N
1 / . 2N . p—1 .
| | d¢ eszijzl ¢1Dk,jj¢1 =1 (2.28)
Tr(po] J 5

where the invertible matriz ijzj has the following form,

1 1 —iw, 0 0 |0 0 0 po(wr)
1 —iwdt =1 1—iwy 0 | o 0 0 0
0 1—iwdt —1 o l—iwg| 0 0 0 0
0 0 0 - -1 |1 0 0 0
0 0 0 1 =1 0 0 0
0 0 0 0o |0 1 1+ iwy 0
0 0 0 0o |o 14iwdt =1 1+ iw,
0 0 0 0 |0 0 14iwst —1
(2.29)

The momentum is sampled only from the first Brillouin zone.

The argument of the exponent can be rewritten in the continuous notation to
define a Action function in terms of the Scalar fields. After suitable normalisation
and regularisation of the initial term, in the continuum limit we similarly obtain,
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¢l = /_OO dt Y [6H (0] — w)dt (1) — ¢~ ()10} — wi)d(1)] (2.30)

The *,~ fields respectively lives in the forward and the backward contours. Di-
agrammatically, the fields can be similarly represented on the discretised Keldysh
contour as follows,

OO0
OO0

Which under the *,~ relabeling becomes,

@C@@
MDA O

Figure 2.3: Digramatic representation of the time labelling of the Bosonic ¢ field in the discrete Keldysh contour

Then we do the Keldysh rotation to obtain the classical and quantum components
of the fields.

G (t) = (o () + o (1)/2 5 o) = (& (1) — o (1) /2 (2.31)

The Green’s Functions of the free field theory (Bare Green’s Functions) are thus
obtained in the w domain as,

R/A, \ 1
D) = (wF i0)? — wy (2.32)

Dy (w) = (1 + 2np(wr))[D(w) — Dy ()]

The last relation is called the Fluctuation Dissipation Theorem. The Green’s Func-
tions can be projected onto the time domain using an inverse Fourier Transform as,
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1
DE(t,t) = 2—9(t — ') sinfwy(t — )]
o e (2.33)
DE(t,t) = o cos[wg(t — t')] coth [2 Topuem

Following decomposition properties of the Green’s Function follows from the ex-
pressions in (2.33).

Property 4 (Decomposition of Green’s Function (second order)). The Retarded and
the Keldysh components of the Green’s function have the following decomposition

property,

DE(t,#) = DE(t, 7\ Dy (1, ¢') + Dy (t, 7)DE(T, ) ¥ t > 7>t/

Di(t,t") = D{(t, 7)Dy (1,t') + Dy (t, 7)DE(T,¢') ¥ t > 7 >t

Here the subscript zero denotes free Green’s Function and the bar denotes time
derivative with respect to the first index. Momentum Indices has been suppressed
here.

2.8 Dyson Equation

The perturbative theory for the bosonic sector is defines in the exact same way as
in the case of phonons, modulo the causality. First we define the Dressed Green’s
Functions of the real scalar field theory.

Definition 12 (Dressed Green’s Functions (Bosons)). The various components of the
Dressed Green’s Functions are defined as,

K DR N ‘
(D ) = o) == [ TLaes st s (239)
j=1

The self energies (denoted by X)) for individual momentum can be written in the
¢, @9 basis by summing up the respective irreducible diagrams obtained from con-
tracting the interaction nodes. It has the following Causality Structure for Bosons,

Ep(t,t) = (EOR gi) (2.36)
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The complete series solution of for the Dressed Green’s Functions is similarly be
obtained as,

Dy(t,t') = D(t, ') + Dp(t,t') o Sy (t, ') o DY(t, 1)
+ DY(t,t") o Sy (t,t') o DY(t,t") o Ty (t,t') o DY(t, )

This in the closed form gives the Bosonic Dyson Equation

Dy(t,t') = DY(t,t') + DY(t, t') o Si(t, t') o Dy(t,t) (2.37)

Equipped with this results, in the following sections we delve into developing a
iterative measure to encapsulate the dynamics of the electron-phonon coupled system
in a self consistent way.
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Chapter 3

Non interacting Bosons Coupled
with Ohmic Bath

In this section we delve in study the dynamical behaviour of the phononic sector as
is dictated by the Dyson Equation when it is coupled to an external Ohmic bath.

Before we delve in with our complete system we wished to test the time evolution of
the phononic sector under Dyson Equation, when coupled to an external bath, with
analytical expressions of self energy.

As is illustrated before, in our alogorithm the non-equilibrium time evolution under
the Dyson Equation is kept intact whereas in the electronic sector we have assumed
a quassi-static feedback. The results in this chapter were generated to test the be-
haviour of this sector with a known bath.

For this purpose, we had prepared a 1-d system of non-interacting phonons and
had coupled them with an Ohmic bath with an Gaussian Dressing. The Ohmic bath
produces closed form expressions for the Keldysh and Retarded component of the
self-energy in the w domain. These then can be projected onto the time domain using
an inverse Fourier Transform.

With these analytical expressions in hand, dynamics of the occupation of the system
is studied for each individual energy levels, for various bath and system parameters
as well as for various interaction strengths. The methods, expressions and the results
are summarised below.

3.1 Green’s Functions, Self Energies

We start with an 1-dimensional system with 19 equi-seperated momentum modes in
the first brillouin zone. It suffices to restrict our discussion in this zone owing to the
periodic boundary condition in the configuration space.
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Since the photons are described by a real scalar field theory (uncharged bosons),
the underlying dynamical equations are second order in time.

It then follows that the bare green’s functions are,

1
DE(t ) = —sinfwp(t —t)] ¥V t>1

=0 otherwise
The Keldysh Component is,
DE(t,t) = _ b cos|wy (t — t')] coth [L} (3.2)
’ QUJk 2 Tsystem

The advanced component is defined as the Hermitian Conjugate of the Retarded
one.

DE(tt) = D}t t)° (3.3)

It is apparent from equation (3.2) that the Keldysh component is anti-Hermitian.

DE(t,t') = —DE, (', t)° (3.4)

Since we work with a Dispersion Relation Symmetric in momentum, for the pur-
poses of this discussion it reduces to,

DE(t, V)= —DF( 1) (3.5)

Here, we have chosen the thermal F'(wy), as we start from a thermal system with
temperature Tygtem-

The bath is defined using the bath spectral function J(w). The Ohmic Bath has a
linear spectral density in w.

qw‘ Ew

J(w) = nwe™ (3.6)

Here 7 is a proportionality constant!, which has the dimension of w for the second
order theory. The Gaussian dressing of the bath is chosen to ensure the convergence

'For the purposes of rest of this chapter we set it to 1.
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Figure 3.1: Plot of the initial Energy Levels v/s the momentum level in the First Brillioun Zone. The plot in the right
shows the initial occupation numbers corresponding to the said energy levels. We are working with acoustic phonons
so the dispersion relation is sinusoidal as is given by Eq. (3.9). The occupation number for each energy level is then
computed using a Bose Distribution, with 8 = 1. For phonons the chemical potential, v = 0. The bandwidth of the
distribution wq is set at 2

of the fourier integrals. The o gives a measure of the bath bandwidth and is kept
fixed at 1 for the purpose of the study. The self energies in the w domain are obtained
as,

2 w w?
Y (w) = \2—=wD F(——) —i)\? -= .
(w) ﬁw awson (\/50) iX“wexp( 02) (3.7)
2
) w
ZK(M) = —Z2)\2(A} exp(—ﬁ) COth (m) (38)

Here, Ty, is the bath temperature and the Dawson Function, which is obtained as
the dressing of the real part of % from the Kramers-Kronig relation, is defined by,

DawsonF (x) = 6_$2/ e’ dy
0

The system under our consideration is 1D and consists of 19 phonon modes with
the dispersion relation,




3.2 Iterating the Dyson Equation

The Dyson Equation of the phononic sector have the form,

DX DR) (D{f D{;) (D5< Dgf) (o 2A> (DK DR)
= + (@] O 310
(DA 0 Dy 0 D¢ 0 yE ¥k DA 0 (3.10)

Here the o denotes convolution over corresponding time indices. Component wise
the equation can be decomposed into the retarded part,

t t1
DE(t, 1) :Dg%(t,t’)Jr/ dtl/ dto D (t, 1) (t1, ) DE (2o, 1) (3.11)
t/ t!

and the Keldysh Part,

0 t1
DK(t,t’):DK(t,t’)+/ dtl/ dta DE (1, 1) 54 (11, ta) DA (ta, )
4 4
t t
s [ [ aunfenst o mpter  612)
0 0

t 11
+/ dtl/ dto D (L, 1) (ty, 1) DX (Lo, 1)
0 0

The idea then is to use (3.11), (3.12) to obtain DT (t+e¢, '), DX (t +¢,t') iteratively,
which can then be fed to the electronic sector to obtain G¥(t + €t + ¢). We first look
at the retarded component.

D™(t +e,t') = DE(t + €, t)DE(t, ') + DE(t + ¢, t) DR(t, ¢')

t+e t1
+/ dtl/ dto Dt + €, 1) (81, t5) DR (to, 1)
t t’
(3.13)

where the bar denotes total derivative w.r.t the first time index. We can now use
a two-point Eulerian Quadrature, to approximate the ¢; integral and obtain,

D™t + e,t') = DE(t + €, t)DE(t, ') + DE(t + ¢, t) DR(t, ¢')

t
+§D{f(t+e,t)/ dto SR (t, 1)) DR (ty, 1)) (3.14)
tl
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One of the boundary term in the quadrature drops off, as the equal-time retarded
Green’s Function being zero. Since it does not depend on DE(t + ¢,t'), the iteration

is not self-consistent. The iteration equation for m(t, t') can be obtained by taking
derivative w.r.t the first time index of the both sides of eq (3.14).

The equations for the Keldysh Component is similar. The following section sum-
marises the findings of this test.

3.3 Findings

Since the bath spectral function extends to infinite frequencies we expect all modes
to thermalise for all parameter values for bath bandwidth and coupling strength.

We compute the imaginary part of the diganoal elements of the Keldysh Component
for each energy level. This is related to the occupation number at a particular time
t.

As we turn on the bath at time t=0, the bath renormalises the energy levels. Owing
to this we expect the —i DX (¢,t) to show transient oscillations initially but eventually
settle down to its equilibrium value dictated by the Bath Temperature.

We also expect the following behaviour as we vary various parameters.

In general a stronger coupling strength is supposed to result in faster damping of
the initial oscillations. That is higher A shows faster timescale of equilibriation.

Bath Bandwidth ¢ usually does not effectively factor in as long it is not comparable
to system bandwidth. That is for a bigger bath bandwidth the system effectively sees
it as infinite and shows equivalent timescale of thermalisation.

That is however not true for 0 < wy. In this case the system shows extremely long
timescale of thermalisation. The lower energy levels which still has some comparable
overlap seems to faster timescale than the higher modes.

These behaviour of various levels are summarised in the following plots,

The collective behaviour of various levels are summarised in the following plots,
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Figure 3.8: Plots for —iD¥ (t,t) vs t for level=07 of the phononic system for various o = 10, 5, Tyqsn, = 0.8,1, A = 0.5, 1
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Figure 3.9: Plots for —iD¥ (t,t) vs t for level=08 of the phononic system for various o = 10, 5, Tyasn, = 0.8,1, A = 0.5, 1
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Figure 3.10: Plots for —iDK(z‘,7 t) vs t for level=09 of the phononic system for various o = 10,5, Tpqtp, = 0.8,1,A = 0.5,1
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Figure 3.11: Plots for —iD¥ (t,t) vs t for various levels with Tya¢, = 0.8
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Chapter 4

Further Work

As discussed in the previous chapter, the non-equilibrium treatment of the phonons
using DYson Equation coupled to an Ohmic Bath seems to exhibit to reasonable
degrees of accuracy the expectation from such a system coupled to an infinte bath.

In coming days we used to couple this with the Fermionic system where we treat
the Fermionic evolution in a quassi-static way and delve into the dynamics of the
complete systems.

We are in particular interested in Phonon equilibration because often the measure-
ment in Condensed Matter Experiments are done on the phonons.

Even for finite size and input energy density in experiments like pump-probe usually
the involved change in energy and temperature change is very small. The phonon
specific heat which varies as T so it gives a very sensitive measurement, as it changes
very fast with the temperature.

In case the decay is a power law, that brings in a lot of fundamental changes in the
way we see these experiments. The final measure of the system is often the specific
heat, in simply in a calorimeter. FExistance of a temperature as well as a linear
response assumes instantaneous thermalisation which in turn assumes exponential
decays.

More importantly the 72 from the phonons comes from very low momentum modes.
Now those one would expect to be very hard to thermalise, due to phase space cri-
terion. One might end up in situations the high energy modes thermalise but the
lower ones still exhibit prevalent non-equilibrium features. The boiling question this
becomes whether it is possible to recover the behaviour of 72 heat capacity. These
properties can be investigated in a detector specific way.

Analouges of this problem arise owing to the non-thermal behavior of phonons and
their mediation in electron equilibriation in Pump-Probe type experiments and can
potentially pave routes to unexplored physics.
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Enabled with the self consistent framework, we wish to explore at least some of
these in the times to come.
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