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Abstract

Higher dimensional Gravity is important to understand Gravity in general.
As we see that the Uniqueness of Black Holes is not followed in higher di-
mensions as it does in four dimensions. Apart from the �ve dimensionsal
spherical black hole solution given by Myers and Perry there is a Black ring
for Einstein's equations in �ve dimensions.

String theory, till date the most consistent theory of Gravity suggests
higher dimensions. We try to understand the solutions given by Emparan and
Reall termed �Black Rings� which are objects with horizons having S1 × S2

topology.

We try to understand the general Black ring solution and also look at the
thin and thick ring solutions. Using the phase diagrams we try to show that
the two solutions for �ve dimensions are unique. We conclude by looking at
the Stability of the solutions
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Chapter 1

Introduction

1.1 History

In the year 16871, Newton proposed this theory of Gravity which gave us
some inital idea which later became one of the four fundamental forces of
Nature. His theory calculates the gravitational pull to be directly propor-
tional to the masses of the objects and inversely to the square of distance
between the two. This theory was quiet extra-ordinary in the way-it applied
to all massive objects. As we now this theory didn't give a complete picture
as it was relevant in only the non-relativistic regime.

In the year 1905, Einstein wrote the paper �On Electrodynamics of the
moving bodies� which is now what we call Special Theory of Relativity. (as
it is applicable to only special case where the curvature of the earth is consid-
ered almost negligible) In that thoery he postulated that the speed of light
in vacuum is same for any observer (whether stationary or moving) and all
the laws of mechanics are invariant in any non-accelerating (interial) frames
of reference.

Later, Einstein published a revolutionary paper in 1915 where Gravity
was described not as a simple force but as a property of the space-time. Any
object with Energy and momentum can bend spacetime.This came to be
known as the theory of General Relativity. So the concept of only massive
objects having gravitatioanl force was changed and also gravity was consid-
ered as an intrinsic property of the spacetime manifold rather as a force.
In that same paper Einstein predicted objects which we now call as �Black

1 Although, Newton's book Principia was submitted to the Royal society in 1686
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holes� 2

As Wald [12] de�ned it �A black hole is a region of spacetime exhibit-
ing strong gravitational e�ects that nothing including particles and electro-
magnetic radiation such as light can escape from inside it.� Thus they are
considered as objects with massive gravitational attraction like no other and
justi�ed the name �black�-as nothing, not even light could escape it once it
crossed the event horizon of the black hole.

In the beginning they were studied in four dimensions ( three space and
one time) and as Hawking spherical event horizons 3 meaning, having sym-
metries of that of S2 4

They were majorly studied in four dimensions till Myers and Perry in the
year 1986 gave a solution of a Black Hole in �ve dimensions.These solutions
had properties similar to those of standard Kerr Black Holes5 in four dimen-
sions,are rotating and have charge. These solutions also gave insights about
event horizons and extended horizons in higher dimensions.

1.2 Work in Higher Dimensions

Roberto Emparan and Harvey S. Reall published �A rotating ring in �ve di-
mensions� in the year 2001, which gave an idea of a di�erent kind of event
horizon for a black hole in �ve dimensions-that of S2 × S1 topology, a non-
spherical ring-like horizon. These new solutions were termed �Black Rings�.

They described that such a topology of a event horizon can exist unqiuely
and thus a new set of Uniqueness theorems have to formulated for higher di-
mensions.6. In the papers they showed that this solution is diferent from
that of Meyers and Perry's Black hole solution and showed that at a �xed
mass (M), and an appropriate choice of area aH and angular momentum (J),
a sperical and non sperical solution to Einstein's equations is found in d=5.

2This term was coined by John Wheeler in the year 1967
3Event horizon roughly means a surface past which particles can never escape to in�nity
4For d dimensional object, spherical symmetries mean having symmetries of that of

Sd−2

5Section 4: Kerr solution
6One that incorporates that a few conserved charges not necessarily �xes the Black

Hole solution
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1.3 Outline

In the following set of chapters I would like to go through the details of the
Black Rings in �ve dimensions. In Motivation and Background we will �rst
try to understand the necessity of studying higher dimenisonal gravity and
in Basics we will look into Laws of Black Hole Physics, di�erential forms and
E-M duality.

In Black Hole solutions we will study the general Black Hole formulation
in four dimensions- Schwarschild solution,Tangherlini solution, Kerr solution
and Myers perry solution in d=5. In the next section, Black Rings, we will
look into the C-metric, the derivation of Black rings and their basic proper-
ties.

In the following section Shape and Stability of Black Ring, we will un-
derstand the topology of Black ring. We also look at the instability of the
Black Rings along with other higher dimensional solutions. Lastly we will
conclude with challenges and futher problems with the Black Rings solutions
and Higher dimensional gravity in general along.
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Chapter 2

Motivation

Our world is percieved in three dimensions. So intuitively forces in nature
are taken in d=3. As time was added as a dimension, it became d=4. But as
we extended �eld theories in n dimensions, gravity was also studied in higher
dimensions. Theories in 4 dimensions cannot just be directly extended to
higher dimensions, as there are a few factors which have to be taken care of.

A di�erent rotation dynamics comes into play and this a�ects the appearance
of the extended black objects to a great extent.
With higher dimensions, there is a possibility of more independent rotation
planes. The rotation group SO(d − 1) has Cartan subgroup U(1)N with
N = bd−1

2
c hence there is a possibility of N independent angular momenta.

As number of dimensions increases, the balance between the gravitational
and centrifugal potentials change.The peculiar feature about higher dimen-
sional rotations is that Newtonian potential is dependent on dimenions while
the centrifugal potential is not. So when they compete to balance dimen-
sionality plays a crucial role. The radial fall-o� of the newtonian potential
which is given by

−GM
rd−3

(2.1)

has a dependence on dimension d, while the centrifugal potential is considered
to be on a plane and thus is always,

J2

m2r2
(2.2)

where G is Gravitational constant, J is angular momentum, r distance and
m is mass.
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This is not what exactly happens while solving higher dimensional Einstein's
equations but it gives an intutive idea.

2.1 Some important theorems

Israel in 1967, published a paper titled �Event horizons in Static Vacuum
Space times� where he looked at spacetimes in four dimensions- which solved
Einstein's equations. He came up with certain conditions which needs to
be satis�ed by the static space times using properties of four dimensional
Geometry arguments mentioned in [23].

He stated the following theorem �Israel theorem states that the only static
and asymptotically �at vacuum space time posessing a regular horizon is the
Schwarzchild solution This thoerem can be generalized to obtain the result
which states the uniqueness of Reisnner Nordstrom black holes as the only
solution for the charges black holes.� [23]

Similarly he showed that Kerr solution is a unque solution for a rotating
black hole in d= 4.

�Uniqueness in black holes means, the choice of all of these asymptotic
black hole parameters select a unique black hole rather than a continuous
set.�[8]

John Wheeler conjectured that �Black Holes have No hair� . This was
backed by a uniqueness theorems for Schwarzschild and Kerr Newmann so-
lutions. Black Hole solutions are de�ned by a small set of parameters.

�Whether this no hair property continues to hold for higher dimensional
black holes could depend on the way one chooses to generalize it. If one
generalises no hair to mean that the solutions are determined in term of a
small number of (not necessairly conserved)asymptotic data than it contin-
ues to hold in higher dimensions as far as we know. However, if one choose to
more restrictive de�nition which requires conserved charges then this prop-
erty fails in higher dimensions as there are objects with have non-conserved
charges.� [8] [ For example, Rotating black rings have parameters which
include non-conserved dipole charges]
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2.2 Applications of studing Higher Dimensional

Gravity

There are also a few applications of higher dimensions which give us more
reason to study it.

1. String theory, one of the most consistent theory for quantum gravity
till date requires extra dimensions. This theory has successfully calculated
the microscopic counting of entropy of a black hole.
2. The production of higher dimensional black holes in future colliders be-
comes a concievable possibility in scenarios involving extra dimensions.[6]
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Chapter 3

Important results and de�ntions

3.1 Black Hole Physics Laws

Barden, Cartan and Hawking gave the laws of Black Holes Mechanics [22]
in the form similar to Laws of Thermodynamics They can be summarised as
the following:

1. The surface gravity κ is a constant over the event horizon of a stationary
Black Hole. Like the zeroth law of thermodynamics.

2. Any two neighbouring stationery axisymmetric solutions containng a per-
fect �uid with circular �ow and a central black hole are related by

δM =
κ

8π
δA+ ΩHδJH +

∫
ΩδdJ +

∫
µδdN +

∫
θδdS (3.1)

where A is area of event horizon, ΩH is angular velocity , J = angular mo-
mentum, N is S is . This is called the di�erential mass formula.

3. δA ≥ 0
with A as the area of the horizon. This bears similarity with the second law
of thermodynamics with anology between area and entropy.

4. It is not possible to reduce κ to zero by a �nite sequence of operations.

Laws of Thermodynamics

1. If two systems are both in thermal equilibrium with the third system
then in thermal equilibrium with each other
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2. Energy cannot be created or destroyed : it can only be changed from
one form to another.

3. For an isolated system, process with δS ≥ 0 are possible, where S is
Entropy of the system.

4. For a crystaline solid the entropy of a the state is zero at absolute zero
temperature. For non-crystaline solids the entropy doesn't reach zero at
absolute zero.

Here, we can see that κ plays role of Temperature and A plays role of
entropy.

3.2 Di�erential forms

A di�erential p-form is a p rank tensor that is antisymmetric under exchange
of any pair of indices. tensor. Thus, scalars are automatically 0-forms and
liner functions are di�erential 1-form.

Hodge star operator

In an n-dimensional manifold, Hodge star is an operator is a map from p
form to (n-p) form given by

∗ωµ1µ2µ3µ1..µn−p =

√
|g|
p!

εµ1µ2µ3µ1..µpg
µn−(p+1)ν1 ...gµnνpwν1ν2...νp (3.2)

It is denoted by star ∗. In the above equation, ∗ω is the Hodge dual of ω.

3.3 E- M duality

Maxwell's equations in vacuum are given by [29]

∇. ~E = 0

∇. ~B = 0

∇× ~E = −∂
~B

∂t

∇× ~B = µ0ε0
∂ ~E

∂t
(3.3)

These equations are invariant when we switch Electric �eld and Magnetic
�eld as

( ~E, ~B) −→ (− ~B, ~E) (3.4)
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We denote the �eld strength by Fµν

F 0i = −F i0 = −Ei F ij = εijkB
k (3.5)

So the Maxwell's equations can be written as

∂νF
µν = 0 ∂∗νF

µν = 0 (3.6)

with ∗F µν = 1
2
εµνρσFρσ So the E- M Duality take the F to the ∗F and ∗F to

negative of F.

For Maxwell's equations with a source are as follows

∇. ~E =
ρ

ε0

∇. ~B = 0

∇× ~E = −∂
~B

∂t

∇× ~B = µ0J + µ0ε0
∂ ~E

∂t
(3.7)

As we got the relation for F and ∗F the sourceless Maxwell's equations, we
get a relation with a source term for Maxwell's equations in matter.
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Chapter 4

Some Black Hole solutions

4.1 Schwarzschild solution

Schwarzschild solution is spherically symmetric 1 Einstein's equation in vac-
cum

Rµν = 0 (4.1)

Schwarzschild solution is as given below [13]

(ds)2 = −
(

1− 2GM

c2r

)
(cdt)2 +

(
1− 2GM

c2r

)−1

dr2 + r2
(
(dθ)2 + sin2 θ(dφ)2

)
(4.2)

with Gravitational constant G, Mass M, speed of light c, θ and φ being az-
imuthal and polar angles respectively.

We can see that the metric breaks down at r = 0, 2M which are called sin-
gularities. The singularty at r = 2M is a coordinate singularity, which can be
removed with another coordinate system called Kruskal Szkeres coordinates[14],
while the one at r = 0 is a curvature singularity where the metric scalars like
RµνRµν , R

µνρσRµνρσ diverges.
This solution is characterised by Mass, Charge and Spin.

4.2 Tangherlini Solution

Tangherlini found a solution to d- dimensional static spinning spherical black
holes which solves Einstein's vacuum equations in d > 4.This solution [32] is

1 with symmteries of that of a sphere and in d dimensions that of S(d−2)
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a simple generalisaton to the Schwarzschild solution ( for d=4 ) given above.

ds2 = −
(

1− µ

rd−3

)
dt2 +

(
1− µ

rd−3

)−1

dr2 + r2dΩ2
d−2 (4.3)

where µ = 16πGM
(d−2)Ω(d−2)

and Ω is line element of unit (d− 2) sphere.

4.3 Kerr solution

After almost 50 years after the Schwarzschild's solution to get the solution
of a rotating black hole. It is non static, stationery solution to Einstein's
vacuum equations which is also axisymmetric.

The metric is given as [13]

ds2 = −
(

1− 2GMr

Σ

)
(dt)2 −

(
2GMar sin2 θ

Σ

)
(dφdt+ dtdφ)

Σ

∆
dr2 + Σdθ2

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ2

(4.4)

where Σ = r2 + a2 cos2 θ ∆ = r2 − 2Mr + a2

The killing vectors of the above metric is K = ∂t and R = ∂φ. The vector
Kµ is not orthogonal to t= constant hypersurfaces and thus the metric is
stationary, as it is rotating it is not static. The norm of Kµ is given by

KµKµ = −∆− a2 sin2 θ

Σ
(4.5)

At r = r+ ( root of ∆ = 0 ). As

KµKµ =
a2

Σ
sin2 θ ≥ 0 (4.6)

The region between the two surfaces-the outer horizon and stationary limit
surface( locus of KµKµ = 0). This region is called the ergosphere.
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4.4 Myers Perry solution

In the year 1986 Myers and Perry found an exact solution to Black Hole in
any dimension d > 4 rotating in all possible independent rotation planes.
The solutions belong to the class of solutions called the Kerr-Schild class

gµν = ηµν + 2H(xρ)kµkν (4.7)

where kν is the null vector with respect to both gµν and the Minkowski space
ηµν .This approach takes a form of the general metric gmuν like the one of
linearised gravity. (It is not exactly linearised gravity as the H(xρ) is a gen-
eral function). This approach gives the solution in a relatively simple manner.

We �rst look at the solutions with rotation in one plane. The metric take
the following form [3]

ds2 = −dt2 +
µ

rd−5Σ
(dt− a sin2 θdφ)2 +

Σ

∆
dr2+ (4.8)

Σdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdΩ2
d−4

where Σ = r2 + a2 cos2 θ and ∆ = r2 + a2 − µ
rd−5

We can calculate the mass and angular momentum by comparison the
asymptotic �eld to the equation mentioned above [Check Appendix A] and
we get

M =
(d− 2)Ωd−2

16πG
µ (4.9)

J =
2

d− 2
Ma (4.10)

The above equation has its similarity with the Kerr solution. The 1
r
is

replaced by 1
rd−3 and it gives an idea that the higher dimensional black holes

could just normally extended from four dimensions and don't di�er much
from them.

When we take a = 0 in the above metric we get the Tangherlini solution
mentioned above.
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4.4.1 General Solution

The general solution [3] with arbitary rotation in odd d dimension is given
as

ds2 = −dt2 + (r2 + a2
i )(dµ

2
i + µ2dφ2

i ) +
µr2

ΠF
(dt− aiµ2

i dφi)
2 +

ΠF

Π− µr2
dr2

(4.11)

and for even d

ds2 = −dt2 + r2dα2(r2 + a2
i )(dµ

2
i + µ2dφ2

i ) +
µr

ΠF
(dt− aiµ2

i dφi)
2 +

ΠF

Π− µr2
dr2

(4.12)

Where mass paramter is µ, i runs from 1 to N and µ2
i + α2 = 1.

F (r, µi) = 1− a2
iµ

2
i

r2 + a2
i

Π(r) =
N∏
i=1

(r2 + a2
i ) (4.13)
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Chapter 5

Black Rings

Roberto Emparan and Harvey S. Reall gave the solution to Einstein's vacuum
equations in d = 5. These were called Black rings as they are black holes
with the horizon topology S1 × S2 in d=5.

5.1 Solution using the C metric

As it is almost impossible to directly solve Einstein's equations to get the
solution, a Wick rotated version of special metric is taken which is given
below. This metric belongs to the bigger class of metric called the C- metric.
It was �rst discovered by Levi-Civita [31] in 1918 as the class of metrics having
timelike killing vector orthogonal to three space whose Ricci curvature tensor
is of the given form as

Ra
b = αηaηb + βδab (5.1)

It belongs to the family with three parameters which are solution to the
vacuum Einstein's equations. It provides new examples of items like Killing
horizons, trapped surfaces, incomplete geodesics, etc [25] C- metric has a
clear and unambiguous physical interpretation as the combined gravitational
and electromagnetic �eld of the uniformly accelerating charged mass. The
following metric is the Wick rotated version of the metric in [25]

ds2 = −F (x)

F (y)

(
dt+

√
ν

ξ1

ξ2 − y
A

dψ

)2

+
1

A2(x− y)2

[
−F (x)

(
G(y)dψ2 +

F (y)

G(y)
dy2

)
+ F (y)2

(
dx2

G(x)
+
G(x)

F (x)
dφ2

)]
(5.2)
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where

F (ξ) = 1− ξ

ξ1

G(ξ) = 1− ξ2 + νξ3 (5.3)

We follow the notations as given in the [6] where ξ1 is used to de�ne F (ξ)
and ξ2, ξ3 and ξ4 are the roots of G(ξ).

A condition is imposed on the value of ν to obtain only real and distinct
roots of G(ξ) which is

0 < ν < ν∗ ≡
2

3
√

3
(5.4)

And also the roots are arranged such that the condition can be imposed

−1 < ξ2 < 0 < 1 < ξ3 < ξ4 <
1

ν
(5.5)

A double root appears only when ν is ν∗.
Consider x to be in the region [ξ2, ξ3]

Case 1

where ξ1is greater then ξ3 and gφφ vanishes at x = ξ3 and to avoid conical
singularity we have the following condition:

∆φ
′
=

4π
√
F (ξ3)

G′(ξ3)
=

4π
√
ξ1 − ξ3

ν
√
ξ1(ξ3 − ξ2)(ξ4 − ξ3)

(5.6)

This is the has to be in equal to the periodicty imposed on φ [check Appendix
1] and so the value of ξ1 is �xed using ξ2 and ξ3.
This gives the realtion betweeen the roots as given below:

ξ1 =
ξ2

4 − ξ2ξ3

2ξ4 − ξ2 − ξ3

(5.7)

This value of ξ1 gives the black ring solution.

This can be explained as mentioned in [2] that with given relation and
constriants in the values of the roots, factors of F(x) in the metric are non
zero. When t and y have constant values, the cross section has a topology of
a ring, while x and φ show the regular surface of the sphere.
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Case 2

ξ1 = ξ3 Unlike the previous case, gφφ does not vanish, so the periodicity
condition of φ

′
is not imposed. The sections of constant y and t have S3

topology withh ψ and φ as independent angles of rotation. The metric on
the spatial cross section is written as

ds2
H = R2

(
ν2(1 + λx)λ

(1 + νx)3

dx3

(1− x2)
+
ν2(1− x2)

1 + νx
dφ2 +

λ(1 + λ)(1− ν)2

ν(1− λ)(1 + λx)
dψ2

)
(5.8)

But this does not give any clear geometric picture.
To get some idea the topology we take the ring coordinates and a �at four
dimension metric.

5.2 Visualising S2 * S1 using Ring coordinates

The �at metric is written in spherical form as two spheres of radius r1 and r2.
And then with a suitable set of coordinates which we get but taking the ones
which give equipotential surface of the 2 form potential Bµν and its Hodge
Dual Aφ.

The ring coordinates are de�ned as the following
x1 = r1 cosφ x2 = r1 sinφ
x3 = r2 cosψ x4 = r2 sinψ

In a four dimensional spacetime two independent roatations planes φ and
ψ are possible. They have independent angular momenta Jφ and Jψ

The �at metric of four dimensional ring co-ordinates given above is of the
form as given in [2]

dx2
4 = dr2

1 + r2
1dφ

2 + dr2 + r2
2dψ

2 (5.9)

We take the rings which extend along (x3, x4) plane and rotate along ψ
and this gives a non-vanishing angular momentum term Jψ. We take the
ring as the circular string which is like the electric source of the 3-form �eld
strength H which gives the two form potential B as H = dB
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We have the �eld strength H obeying the following equation

∂µ(
√

(−g)Hµνρ) = 0 (5.10)

We construct the solution of the �eld equation with a special condition where
the electric source is circular and is at r1 = 0 and r2 = R and

0 ≤ ψ ≤ 2π (5.11)

This gives us a special case where a point source is located at the circumfer-
ence (or circular boundary) of the circular source.

In order to look at the equipotential surfaces of 2-form B, we �nd a
solution with a �xed guage [1] and we get

Btψ =
R

2π

∫ 2π

0

dψ
r2 cosψ

r2
1 + r2

2 − 2Rr2 cosψ
(5.12)

= −1

2

(
1− R2 + r2

1 + r2
2

Σ

)
(5.13)

where

Σ =
√

(r2
1 + r2

2 +R2)2 − 4R2r2
2 (5.14)

The above solution is given in [1].

We can note that it is very similar to the solution of the potential of that
of a circular ring for a point on the ring-except that in them denominator
term we �nd another r1 term which is present due to the point source present
at that point.

The Hodge dual of the �eld F is ∗H = dA where A is the one form
potential so the dual is

Aφ = −1

2

(
1 +

R2 − r2
1 + r2

2

Σ

)
(5.15)

Now, we de�ne our coordinates x and y, that correspond to the values of
constant Btψ and its Hodge dual Aφ as

y = −R
2 + r2

1 + r2
2

Σ
x =

R2 − r2
1 − r2

2

Σ
(5.16)
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Figure 5.1: Ring coordinates in �at d=4 [1]

Taking the values of r1 and r2 from the above equation as

r1 = R

√
1− x2

x− y
x = R

√
y2 − 1

x− y
(5.17)

and the coordinates ranges are

−∞ ≤ y ≤ −1 − 1 ≤ x ≤ 1 (5.18)

where y = −∞ refers to the ring source position and asymptotic in�nty
is recoverd as x −→ y −→ −1.

In the newly de�ned coordinates the �at metric takes the form

dx2
4 =

R2

(x− y)2

[
(y2 − 1)dψ2 +

dy2

y2 − 1
+

dx2

1− x2
+ (1 + x2)dφ2

]
(5.19)
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To get some clarity we can rewrite the same metric in a di�erent way
with the sphercial components r and φ which are de�ned in [1] as a

r = −R
y

cos θ = x (5.20)

with the coordiants ranging in

0 ≤ r ≤ R, 0 ≤ θ ≤ π (5.21)

The �at metric then is transformed as

dx2
4 =

1

1 +
(
r cos θ
R

)2

[(
1− r2

R2

)
R2dψ2 +

dr2

1− r2

R2

+ r2
(
dθ2 + sin2 θdφ2

)]
(5.22)

There is an apparent singularity at r = R which corresponds to ψ axis of
rotation.

The surfaces of constant r which is actually constant y have a ring-like
topology S1 × S1 where S2 is parameterised by (θ, φ) coordinates and S1

by ψ. This metric is also Reimann �at which is just the trivial solution to
Einstein's equations, whereas the actual solution is only Ricci �at. But this
solution gives a very clear idea of the topology of the S2 × S1 event horizon
of the Black ring solution.

5.3 Neutral Ring

Another way to write black ring solution is to write it [1] as follows:

ds2 = −F (y)

F (x)

(
dt− CR1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dφ2

]
(5.23)

where

F (ζ) = 1 + λζ G(ζ) = (1− ζ2)(1 + νζ) (5.24)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
(5.25)
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The dimensionless parameters λ and ν are in the range (0, 1) with the con-
dition ν ≤ λ The coordinates vary in the ranges

−∞ ≤ y ≤ −1 − 1 ≤ x ≤ 1 (5.26)

When both the parameter λ and ν vanishes we recover the �at form of the
metric. Asympotic in�nity occurs at x −→ y −→ −1. In order to avoid
conical singularity1 angular variables are identi�ed with periodicity

∆ψ = ∆φ = 2π

√
1− λ

1− ν
(5.27)

The two parameters must satisfy the following condition

λ =
2ν

1 + ν2
(5.28)

which comes from the cubic equation in [1]

5.4 Phase diagram

The �gure below [2] is obtained when horizon area and spin squared is plotted
for a �xed mass for the neutral black ring and Myers Perry Black Hole.

The two �gures below are plotted using the range of values of ν for the
following equations: For black ring,

aH = 2
√
ν(1− ν) (5.29)

j2 =
(1 + ν)3

8ν

where parameter ν can vary as 0 < ν ≤ 1

For MP Black Hole

aH = 2
√

2(1− j2) (5.30)
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Figure 5.2: Black rings

In the last �gure, the dotted branch shows the MP Black Solution, while
the thick branches represent thin and fat black ring. Out of the two thick
lines, the lower one is the Fat ring solution while the one above is the thin
ring solution.

In the region,

27

32
< j2 < 1 (5.31)

three di�erent solutions - MP black hole and two rings is found.

1See appendix:Conical singularity
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Figure 5.3: Angular momentum
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Figure 5.4: Phase-diagram
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Chapter 6

Shape and Stability of the Ring

Shape of the Black ring

Figure 6.1: Black rings [7]

The above �gure taken from [7] show that a ring with same mass can
vary a lot in shape just by varying the parameter ν.

The topology S2×S1 is exactly S2 but it is a distorted S2 in an isometric
embedding 1 of the shape of the ring.

Figure shows the isometric emedding of cross section of the black ring
2-sphere (with azimuthal angle suppressed) with varied value of ν and j. The
size of the S1 is estimated as the inner radius of the horizon.

1It is an idea to visualise a curved geometry in �at Euclidean space in a way it preserves

the distance
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Figure 6.2: Isometric-Embedding [7]

The distortion j −→ 1) in the fat black ring branch when ν −→ 1, the S2

�attens out (for a �xed mass) and when j = 1 the horizon disappears and a
singular ring remains. Similarly if you look at the MP Black Hole at j = 1
the S3 horizon �attens out. And thus at j = 1 MP black Hole and fat black
ring give the same solution.

6.1 Stability

Supersymmetric black rings are stable as Supersymmetry ensures the stabil-
ity to quadratic perturbations. As we take the linearized gravity to study
the vacuum solutions, we need to check stability of the solutions in those
perturbations.

Looking at it qualitatively, we know that thin rings undergo Gregory-
La�amme instability. The black ring formed in between the thin and the fat
ring must be highly unstable as adding extra matter that gives mass but no
angular momentum, there is no black ring the system can evolve too which
will make it react backwards forcefully. [7]
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In the radial stability section we notice the the fat black ring is radially
unstable while thin one is. It can be backed by the argument derived from
the study of the black ring and MP black hole phase diagram which shows
that one unstable mode is added from thin to at black ring making the latter
more unstable. The dipole charge solution can remove the unstability (G-L
type) as the charges can balance it.

6.2 O� shell perturbation

Introducing an external forces to understand the equilibrium is very useful.
So we can take the system a little away from the equilibrium and we can
understand the potential that the equilibrium extremizes. [7]

We take a radial force2 for the black ring.

Create a conical defect δ in the disk inside the ring. It creates a tension
τ acting per unit length of the black ring circle

τ =
3

16πG
δ =

3

8G

(
1− 1 + ν

1− ν

√
1− λ
1 + λ

)
(6.1)

When τ is zero it is in equilibrium.

We take the radial potential as

V (R1) = −
∫ R1

τ(R
′

1)d(R
′

1) (6.2)

although we are interested only at the points around the equilibrium values
where V

′
= τ = 0 where τ is tension per unit length. Perturbating away

from equilibrium we �nd

V
′′

= − dτ

dR1

∣∣∣∣
equil

> 0 (6.3)

which is stable equilibrium.

2which keeps the Killing symmtries but deforms the radius and takes it away from it

value at equilibrium

28



With some outword pressure the ring can be made static at

Requil
1 + dR1 (6.4)

If

V
′′

= − dτ

dR1

∣∣∣∣
equil

< 0 (6.5)

is interpreted as the inward pulling tension required to prevent the runaway
increase of the ring radius from equilibrium.

6.3 Radial stability

The above mentioned radial o�-shell purturbations are applied to black rings.
In order to do that we choose the radius of ring as the radius of the inner3

ring Rinner
1 = R1

1 This gives us

R1 = R

√
λ

ν
(6.6)

We keep J and M to be �xed while we perturb the ring radius.(
dλ

dν

)
= −

∂j
∂ν
∂j
∂λ

(6.7)

We look at reduced area, âH = AH
J

and reduced radius r = R1

J
1
3
.

So that (
dλ

dν

)
AH ,J

= −∂âH/∂ν
∂âH/∂λ

=
2(2− ν)(1− ν)

(1 + ν2)2
(6.8)

We use the above results to commute(
dτ

dr

)
∗,J

=
(dτ/dν)∗,J
(dr/dν)∗,J

=
∂ντ +

(
dλ
dν

)
∗,J ∂λτ

∂νr +
(
dλ
dν

)
∗,J ∂λr

(6.9)

where ∗ is used for M or AH

From the sign of the above equation; sign of
(
dτ
dr

)
∗,J , we get that the

thin rings are radially stable while the fat ones are unstable, as we get a

3as we need to study the inner hole
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Figure 6.3: Radial-perturbations [7]

positive sign for thin black rings (0 ≤ ν < 1/2) and negative for fat ring
(1/2 ≤ ν < 1)[7]

The diagram below shows Radial Potential V(r) for �xed values of mass
and spin. Fat black ring have unstable equilibrium at local maxima while
thin black ring have stable equilibrium at local minima.

Figure 6.4: Radial-Potential [7]
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In the recent paper by Jorge Santos and Benson Way[30], it was shown
using numerical methods that not just fat black rings but also thin black
rings are unstable by studying the non-axisymmetric linearised gravitational
perturbations on the Black rings.
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Chapter 7

Conclusions

After looking at the phase diagram of the Myers Perry Black Hole and Black
Rings solution both solutions to Einstein's equations in vacuum in �ve dimen-
sions, we see that the Uniqueness theorems for four dimensions are violated
by this solution in �ve dimensions. Thus the earlier claims of only Spherical
topology for event horizons were disproved in higher dimensions. With more
number of dimensions, more degrees of freedoms and so we can expect new
things as we study higher dimensions.

It is obvious to ask the next question about the possibility of Black rings
with topology S1 × Sd−3 in d > 5. As suggested by the Higher dimensional
topology theorem [26] these possibilities could be true.

IR and UV theory have been developed to describe Black Rings with
conserved charges and dipole charges repectively. As in String theory, the
microscopic description of the black holes is based on dynamics of a con�g-
urationof branes that has the same set of charges as Black Hole.

After the Black ring with one angular momentum and two angular mo-
menta were found, a Black saturn solution was discovered. It is a black hole
surrounded by concentric rotating black ring. These were constructed in [27].
Similarly two concentric Black rings called Di-rings solutions were constructed
in [28]

Thus, we see that there is a lot of scope for di�erent kind of solutions in
higher dimensions.
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Appendix A

Linearised Gravity

Einstein-Hilbert action can be genralised in d > 4 as given below as just a
straightforward generalisation.

I =
1

16πG

∫
dd
√
−gR + Imatter (A.1)

Einstein's equations:

Rµν −
1

2
gµνR = 8πG2(−g)−

1
2

(
δImatter
δgµν

)
(A.2)

where Tµν = 2(−g)−
1
2

(
δImatter
δgµν

)
This above form of gives a dimensionless

de�niton of g.
We can write the general Einstein metric as a small perturbation over Minkowski
metric. It can be written as

gµν = ηµν + hµν (A.3)

Thus, we get

h̄µν = 16πGTµν (A.4)

where h̄µν = hµν− 1
2
hηµν Solving the above equation for Tµν while keeping in

mind that we have localised sources and the �elds in the asymptotic region are
same as created by the pointlike sources of mass M and angular momentum
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with antisymmetric matrix Jij at origin X
k = [6]

Ttt = Mδd−1(xk)

Tti = −1

2
Jijδ

d−1(xk)

h̄tt =
16πG

(d− 3)Ωd−2

M

rd−3

h̄ti = − 8πG

Ωd−2

xkJki
rd−1

(A.5)

where r =
√
xixi and Ωd−2 = 2π( d−1

2 )Γ
(
d−1

2

)
We recover metric perturbation hµν = h̄µν − 1

d−2
h̄ηµν as

htt =
16πG

(d− 2)Ωd−2

M

rd−3

hij =
16πG

(d− 2)(d− 3)Ωd−2

M

rd−3
δij

hti = − 8πG

Ωd−2

xkJki
rd−1

(A.6)
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Appendix B

Conical singularity and

Periodicity

Conical singularity is a non-curavature singularity. It can be visualised by
taking a taking a �at sheet of paper and shaping it in a cone. The curvature
of the �at paper is 0, but when shaped as a cone, it can a singularity at the
top point.

We see that the coordinates in Section have conical singularity. To remove
them, special periodicity conditions are imposed on the spherical coordinates
in order to remove conical singularity.

Given below is the condition for φ to avoid conical singularity at x = ξ2,

∆φ =
4π
√
F (ξ2)

G′(ξ2)
=

4π
√
ξ1 − ξ2

ν
√
ξ1(ξ3 − ξ2)(ξ4 − ξ2)

(B.1)

In the case where ξ1 > ξ2, there is another conical defect at x = ξ3.To
remove that we identify φ as

∆φ
′
=

4π
√
F (ξ3)

G′(ξ3)
=

4π
√
ξ1 − ξ3

ν
√
ξ1(ξ3 − ξ2)(ξ4 − ξ3)

(B.2)

We demand ∆φ = ∆φ
′
for consistency and get the following result.

ξ1 =
ξ2

4 − ξ2ξ3

2ξ4 − ξ2 − ξ3

(B.3)
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Appendix C

Einstein's �eld equations

Einstein's �eld equation show how Rµν with Tµν

Rµν −
1

2
Rgµν − Λgµν =

8πG

c2
Tµν (C.1)

where Rµν is Ricci tensor in four dimensions,

R Ricci scalar, gµν space time metric,
Λ cosmological constant, G Newton's gravitational constant,
Tµν in stress energy tensor
in compact form taking

Gµν = Rµν −
1

2
Rgµν (C.2)

gives the �nal equation as

Gµν − Λgµν =
8πG

c2
Tµν (C.3)
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Appendix D

Weyl Metric

In order to get the exact solutions of Einstein's equations a lot of e�orts were
made and techniques were developed. Weyl was the �rst to have found the
general static axisymmetric solution of the vacuum Einstein equations which
are given in [25] as:

ds2 = −e2Udt2 + e−2U(e2γ(dr2 + dz2) + r2dφ2) (D.1)

where U (r, z) is an axisymmetric harmonic solution of the Laplace's equa-
tions in a three dimensional �at space with metric

ds2 = dr2 + r2dφ2 + dz2 (D.2)

where γ satis�es

∂γ

∂r
= r

[(
∂U

∂r

)2

−
(
∂U

∂z

)2
]

∂U

∂z
= 2r

∂U

∂r

∂U

∂z
(D.3)

The C metric used in the solution of black rings is a subset of this large
class of Weyl metrics.
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