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Abstract

Spectral Clustering is a well known clustering method which overcomes the limitations of

traditional clustering algorithms like k-means clustering. The Algorithm involves finding

eigenvectors of a graph Laplacian which has two main drawbacks, namely, scalability and

out-of-sample predictions. SpectralNet is a deep neural network (NN) based method which

overcomes these limitations but uses Cholesky factorization to obtain output orthogonal

matrix and is not an end-to-end network. This method only performs well when the Laplacian

matrix is highly sparse. The model is also highly sensitive to the hyperparameter setting.

We developed an end-to-end neural network architecture called Extended Spectral Clustering

(ExSC)1 which employes �-VAE and cayley map to orthogonalize the input matrices and

minimize the spectral loss to update the network weights so as to obtain orthogonal output

which better resembles the eigenvector matrix of the Laplacian. The model performs better

than the SpectralNet base model. Also, as the model learns an encoder and a decoder, it can

also be used as a generative model or a feature extractor to simultaneously perform other

tasks.

1
Link to the GitHub repository: https://github.com/yadav-suraj/ExSC
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Introduction

Clustering analysis is an essential part of unsupervised learning which has proved to be of

great significance in the field of Machine Learning and Deep learning. A few popular appli-

cation of the field includes feature extraction, disease prediction, exploratory data analysis

to figure out subgroups with similar interest in a population, search engines, recommender

systems, etc.

Traditional methods such as k-means clustering performs well under the assumption

that data is spherical distributed. This is a limitation that spectral clustering (Shi and

Malik [2000a], Von Luxburg [2007]) overcomes. There are still two major limitations to the

spectral clustering algorithm. Firstly, it is not scalable as finding eigenvectors to the graph

laplacian (matrix of size n ⇥ n, where n is the number of datapoints; it basically contains

information regarding similarity between points) is infeasible when n is large or algebraic

multiplicity of an eigenvalue is > 1. Secondly, it is not possible to make predictions on the

unseen datapoints, the problem is referred as inability to do out-of-sample-extension(OOSE).

SpectralNet (Shaham et al. [2018]) however overcomes both these limitations but does not

have and end-to-end network and also involves finding cholesky decomposition of a matrix.

Spectral clustering is a strong traditional algorithm which finds clusters in small datasets

with complicated clusters like as shown in the Figure(1.1). It involves finding an orthogonal

matrix over which k-means is performed to obtain the end clusters. As it can be seen

that k-means tend to perform very poorly on such datasets and spectral clustering learns

these arbitrary shaped clusters very e↵ectively. This advantage of spectral clustering can

be leveraged to clusters large datasets with complicated clusters if one can overcome its

limitation of not being scalable and inability to do OOSE. The existence of a loss function

(a real valued function) with limitations that one can overcome using neural network was

the prime motivation of the project. The aim of the project was to build an end-to-end
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architecture and improve orthogonality of the matrices over which one performs k-means

clustering to obtain end clusters.

Original Contribution

The first two chapters are literature review. Chapter 3 and 4 are the original work which

includes the formulation of Algorithm (4) and Section (3.4) which highlights through Propo-

sition (3.4.1) that how selecting gaussian prior in a VAE network could give orthogonal

representations of the input. The proposed method of using a �-VAE network for cluster-

ing hasn’t been proposed in any of the previous work in the field. It was also realized by

us that how introducing sparsity in the latent variable through Spike and Slab prior (and

approximate posterior) can produces orthogonal representations (latent variables) which are

close to the solution of the balanced mincut problem (2.1.5). Extended Spectral Clustering

(ExSC)(4) simultaneously leverages variational inference and trivialization to achieve com-

parable clustering results on benchmark real world datasets. Also, ExSC has a decoder and

hence can very well be used for other side jobs such as generative tasks.

Scope of our work

Chapter 1 gives an overview of all the related work which were reviewed and used in the

making of the ExSC model. This is followed by Chapter 2 which provides relevant details

of these related work upon which the reader can build a strong understanding of what the

problem is and the utility of each component of ExSC. The next chapter, Chapter 3, is on

methods that were built along the way to tackle the problem of extending Spectral Clustering

to neural networks which ends with the details of the ExSC model. Chapter 4 states all the

results and involves a discussion over the results as well as the comparison between each

of the method used. This is followed by the final chapter, Chapter 5, which summarizes

the findings and proposes possible future work. Additionally, Appendix contains all the

experimental details and hyperparameter values which will be essential if the reader wants

to reproduce the results.

The code for the ExSC model can be found at https://github.com/yadav-suraj/ExSC.

2
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Chapter 1

Related Work

The chapter briefly gives highlight of the traditional method of clustering i.e. spectral

clustering and its extension to neural networks through SpectralNet and a brief introduction

to the idea of trivialization. These will be discussed in greater details in the following

Chapter.

Traditional methods

K-means Clustering

k-means algorithm forms the basis of many algorithm and is one of the widely and

well studied clustering algorithm. k-means clustering involves cluster center assignment

which changes with each iteration and finally converges to a solution. Algorithm start with

initialization of k cluster centers. Distance of each point in the dataset is calculated from

each of the cluster centers. Each points is assigned the cluster label to which it is closest to.

Hence each of the point is assigned a cluster based on the closest cluster center. Once the

clusters are assigned to each point, mean of each cluster is determined by taking mean of all

points in each cluster along each feature. Now each of the cluster center is updated to these

new corresponding mean of the clusters. The above step of assigning datapoints to one of

the cluster centers is repeated until we reach a point where the cluster center do not change

upon update.
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k-means clustering has many limitation. k-means clustering can only work well for spher-

ical distributed data since it uses euclidean distance to assign each point with a cluster label.

k-means is also highly dependent on the starting cluster center assignment and thus in most

cases require multiple restarts. k-means algorithm su↵er from curse-of-dimensionality if the

number of features or points is large. Like any other traditional algorithm it is incapable of

overcoming Out-of-sample-extension (we will see this in detail in the coming section).

1.0.1 Spectral Clustering

Spectral clustering is another traditional method of clustering which overcomes the k-

means limitation of only finding spherical clusters in the dataset. Spectral clustering is

capable of identifying complex clusters in the data set. The algorithm involves construction

of graph from the dataset and treat the clustering problem as graph partitioning problem.

The graph laplacian is a n⇥n matrix which captures similarities between each pair of points.

These similarities gives embedding(lower level representations of input) over which k means

clustering gives the final clusters. The algorithm is summarized in (1) and is talked in much

detail in the subsequent chapter.

Although Spectral clustering finds complex clusters in the data set, it still fails to do

Out-of-sample-extension (OOSE). It is also impractical to use spectral clustering for a large

dataset as it requires eigenvector calculation of the graph laplacian. Out-of-sample extension

is the ability of a model to make predictions on the unseen data. Even in case of addition

of a single new point to the dataset, one would need to reapply the complete algorithm to

the combined data in order to obtain the clusters. This would also means calculation of

eigenvectors of the new laplacian.

SpectralNet

SpectralNet(Shaham et al. [2018]) is an extension of Spectral clustering to the neural

network which overcomes both the limitation of Scalability and inability to do OOSE.

The spectral clustering requires calculation of eigenvectors of the graph laplacian. These

eigenvectors serves as a solution to the optimization problem (minimizing a real valued

function) which is also subjected to the constraint that the solution has to be orthogonal.

SpectralNet is a neural network which learns these eigenvectors by minimizing this real valued

8



Figure 1.1: Comparing clustering results of k-means clustering and spectral clustering on
toy dataset (Concentric circles). Same colour denotes points belonging to the same cluster.

function while satisfying the constraint on the output. SpectralNet implicitly satisfies this

orthogonality condition by making use of Cholesky factorization and uses Stochastic gradient

descent to update model parameters.

SpectralNet require calculation of cholesky factor of a certain matrix to set weight matrix

of the final layer. Cholesky factorization requires a matrix to be non-singular and thus Spec-

tralNet requires multiple restarts with di↵erent hyperparameter setting in order to obtain

clusters in the data. SpectralNet is highly sensitive to hyperparameter setting and requires

hyperparameter tuning in order to decide the best parameters. Hyperparameter tuning re-

quires supervision and with clustering being unsupervised learning, it becomes impractical

to use SpectralNet.

Trivialization

Trivialization is generalization of Riemannian gradient descent (RGD). Trivialization

translates the optimization problem with manifold constraints into unconstrained optimiza-

tion problem through parameterization of the manifold in terms of Euclidean space. These

parameterization which are called trivializations allows one to use well studied optimization

techniques like Stochastic gradient descent or optimizers like Adam, Adagrad or RMSProp

to make parameter updates.
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Casado [2019] proposes dynamic-trivialization which involves making K (not related to

number of clusters in any way) updates on the tangent space around a point and then move

on to the tangent space around the new point on the manifold. These tangent vectors

are projected on to the manifold through exponential maps after every K updates on the

tangent space. For K=1 dynamic trivialization reduces to RGD and for k=1, it reduces to

using a single map to parameterize the entire manifold by a euclidean space. Thus dynamic

trivialization serves as a generalization of RGD.

Since the problem of spectral clustering involves minimizing a real valued function with

orthogonality condition (rectangular orthogonal matrices forms a nice manifold called Stiefel

manifold), trivialization is leveraged to solve the spectral clustering’s constrained optimiza-

tion problem.

10



Chapter 2

Preliminaries

The chapter is a literature review where we build the understanding of what spectral clus-

tering is (Shi and Malik [2000a] and Von Luxburg [2007]) and how it has been extended to

neural networks through a model called SpectralNet proposed in Shaham et al. [2018]. The

chapter also includes details of trivialization (Casado [2019]) and variational autoencoder

(Higgins et al. [2017]) which were later leveraged in our model ExSC to achieve the goal of

orthogonalizing the input in a manner so as to obtain solution of the spectral clustering.

2.1 Spectral Clustering

Spectral clustering is a graph partitioning algorithm which partitions nodes of a graph

based on weights on the edges (which denotes similarity between the corresponding pair

of points). It partitions such that sum of weights going across the partitions is minimized

and sum of weights within each partition is maximized. This in fact forms the basis of

any clustering algorithm. This is a similarity based clustering where a measure of similarity

between each pair of points is established and is used to form clusters. In order to understand

the algorithm, we create a graph out of data points details of which will be discussed in the

subsequent sections.
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2.1.1 Basic definitions and notations

A graph G can be denoted by (V,E) where V is the set of nodes in the graph and E are the

edges (pair of nodes). That is, V = {x1, x2, . . . , xn} and E = {(xi, xj)| if ith and jth nodes

form an edge} . Weights (wij) on the edges maps relationship between each points. One can

think of it as measure of similarity between each pair of points which form an edge. In our

setting we assume that wij � 0 and wij = wji 8i, j.
The weighted adjacency matrix of a graph is the matrix W = (wij). Under the above

mentioned assumptions, W is symmetric and each entry is non-negative. wij = 0 for pair of

points (xi, xj) /2 E (i.e. 0 for pair of points that does not form an edge)

Definition 2.1.1. A degree matrix D is defined as the diagonal matrix with d1, d2, . . . , dn on

the diagonal where each di is the degree and is defined as

di =
nX

j=1

wij.

di is nothing but sum of weights of edges connected to the vertex xi. For simplicity, i 2 A

implies vertex xi 2 A. For a subset A ✓ V , Ā is the set complement, i.e. V \A and for sets

A,B ✓ V we define

W (A,B) :=
X

i2A,j2B

wij.

|A| denotes the set cardinality and vol(A) :=
P
i2A

di. A subset A is called a connected

component if any two points in A can be joined via a path such that all points in the path

also belongs to A. A subset A is called a connected component if A is connected and there

is no edge going from A to Ā. The non-empty subsets A1, A2, . . . , Ak forms a partition of

the graph if Ai \ Aj = ? and Ai [ . . . [ Ak = V , i.e. each vertex belongs to exactly one of

the sets.

2.1.2 Types of similarity graphs

There are di↵erent ways to construct the similarity graph and one can choose any of

method depending on the type of relation one wants to capture in the data. G = (V,E)

denotes the graph that we are constructing. x1, . . . , xn are data points and dij denotes

distance between the vertex xi and xj.
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The ✏-neighbourhood graph: If the distance between two points is less than ✏ then the

two vertices forms an edge in the graph. That is, if dij < ✏ =) (xi, xj) 2 E.

The k-nearest neighbour(knn) graphs: Broadly we want to connect each vertex to its

k nearest neighbours. But such a graph would be directed because if xj is in k nearest

neighbours to xi that doesn’t necessarily mean xi has to be in the k nearest neighbours of

xj. Hence such directed graph can be made undirected in two ways:

• k-nearest neighbour graph: join the vertices xi and xj if either xi belongs to the

k-nearest neighbours of xj or if xj belongs to the k-nearest neighbours of xi.

• Mutual k-nearest neighbour graph: join the vertices xi and xj if both xi belongs

to the k nearest neighbours of xj and xj belongs to the k nearest neighbours of xi.

After forming the edges one could put weight wij on the edges using a similarity function.

Gaussian kernel is one choice for the similarity function. Gaussian kernel (or gaussian simi-

larity function) is defined as

k(i, j) := e�
||xi�xj ||

2

2�2 (2.1)

where � parameters maps the local neighbourhood relationship.

The fully connected graph: Each point in the graph is connected to every other point

in the graph and weight on the edges is again decided using a similarity function. These

graph require careful selection of similarity function which models the local neighbourhood

relationship very well. Again, gaussian kernel is a common choice that goes with fully

connected graphs. Note that in gaussian kernel points which are far away have small weight

on the edge between them and points which are close to each other have large weight on the

edge between them.

There is no theoretical evidence which proves that a single type of graph works well across

every dataset but knn graphs and fully connected graphs are a common choice.

2.1.3 Graph Laplacians:

Remark 2.1.1. Throughtout the document, by “first k eigenvector” we refer to the eigen-

vectors corresponding to the smallest k eigenvalues. Also, “eigenvector matrix M 2 Rn⇥k”
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refers to the matrix constructed by putting first k eigenvectors along the column. That is,

A is called a eigenvector matrix of B 2 Rn⇥n if A = [u1, u2, . . . , uk] where u1 2 Rn is the

eigenvector corresponding to the smallest eigenvalue �1 of B, u2 2 Rn is the eigenvector

corresponding to the second smallest eigenvalue �2 of B and so on.

A few assumption that we will make are G is undirected, weight matrix (also called

a�nity matrix) W is symmetric and each of its entry is non-negative.

Definition 2.1.2. A unnormalized graph laplacian L is defined as

L = D �W (2.1)

where D is the degree matrix and W is the a�nity matrix (or the weight matrix).

Lemma 2.1.1. A matrix M is positive semi-definite i↵ all its eigenvalues are non-negative.

Proposition 2.1.2. L satisfies the following properties:

1. every vector f 2 Rn satisfies

fTLf =
1

2

nX

i,j=1

wij(fi � fj)
2

.

2. L is symmetric and positive sem-definite.

3. The smallest eigenvalue of L is 0 and eigenvector corresponding to it is 1 (constant

one vector).

4. L has n non-negative real valued eigenvalues 0 = �1  �2  . . .  �n.

Proof. 1.

fTLf = fTDf � fTWf =
nX

i=1

dif
2
i
�

nX

i,j=1

fifjwij

=
1

2

 
nX

i=1

dif
2
i
� 2

nX

i,j=1

fifjwij +
nX

j=1

djf
2
j

!

14



now since di =
nP

j=1
wij and dj =

nP
i=1

wij,

=
1

2

 
nX

i=1

 
nX

j=1

wij

!
f 2
i
� 2

nX

i,j=1

fifjwij +
nX

j=1

 
nX

i=1

wij

!
f 2
j

!

=
1

2

 
nX

i,j=1

wijf
2
i
� 2

nX

i,j=1

fifjwij +
nX

i,j=1

wijf
2
j

!

=
1

2

nX

i,j=1

wij(fi � fj)
2

fTLf =
1

2

nX

i,j=1

wij(fi � fj)
2

2. L is symmetric because D and W are symmetric.

That is, LT = DT �W T = D �W = L

and a matrix M is positive semi-definite i↵ for any vector v 2 Rn, vTMv � 0

Since for any f 2 Rn,

fTLf =
1

2

nX

i,j=1

wij(fi � fj)
2

(fi � fj)2 � 0 and by assumption wij � 0 8i, j

=) fTLf � 0 8f 2 Rn

3. Since,

L

2

66664

1

1
...

1

3

77775
= D

2

66664

1

1
...

1

3

77775
�W

2

66664

1

1
...

1

3

77775
=

2

64
d1 0

. . .

0 dn

3

75

2

66664

1

1
...

1

3

77775
�

2

64
w11 w1n
...

. . .
...

wn1 . . . wnn

3

75

2

66664

1

1
...

1

3

77775

=

2

666664

d1

d2
...

dn

3

777775
�

2

666664

P
n

i=1 w1i
P

n

i=1 w2i

...
P

n

i=1 wni

3

777775
= 0
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Algorithm 1: Unnormalized spectral clustering

Input: Input X 2 Rn⇥d

// where d are the number of input features

Output: Clusters in the data

1 Construct a graph and then its weighted adjacency(or a�nity) matrix W with any
of the methods described in Section 2.1.2.

2 Compute the unnormalized laplacian L := D �W
3 Compute the first k eigenvectors (2.1.1) u1, u2, . . . , uk of L.
4 Let H 2 Rn⇥k the eigenvector matrix of L containing u1, u2, . . . , uk as columns.
5 Let yi 2 Rk be the vector corresponding to the ith row of H.
6 Apply k-means clustering algorithm to cluster (yi)1in into k clusters C1, . . . , Ck

7 A1, A2, . . . , Ak are the final clusters with Ai = {xj | yj 2 Ci}

Hence

L · 1 = 0 =) 0 is a eigenvalue of L with eigenvector 1.

Lemma(2.1.1) and the above result implies that the smallest eigenvalue of L is 0 and

eigenvector corresponding to it is 1

(3) =) (4)

2.1.4 Unnormalized spectral clustering:

Clustering problem can be thought of as graph partitioning problem where aim is to

minimize sum of weight of edges going across the clusters and maximize the sum of weights

within the cluster.

A cut in a graph is defined as the partioning of graph into two disjoint subsets. That is,

cut(A, Ā) = W (A, Ā). This definition can be extended to partioning graph into k disjoint

subsets. That is,

cut(A1, A2, . . . , Ak) :=
1

2

kX

i=1

W (Ai, Āi). (2.1)

Here factor of 1/2 comes in to compensate for each edge being added twice in the sum. A

way to achieve graph partitioning is by minimizing this cut value. This problem is referred

to as mincut problem. Minimizing this cut value is minimizing the sum of weight going

across the clusters. Exact solution to this problem can be found for k = 2 and in most cases,
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solution just separates one vertex from rest of the graph. Hence, in most use cases, solving

mincut just seperates out an outlier from rest of the data. A workaround to this problem is

to introduce penalty on small sized clusters. This can be done by defining RationCut (Hagen

and Kahng [1992]) and NCut (Shi and Malik [2000b]).

Definition 2.1.3. RationCut and NCut for a given partition A1, . . . , Ak is defined as

RatioCut(A1, . . . , Ak) :=
kX

i=1

cut(Ai, Āi)

|Ai|

NCut(A1, . . . , Ak) :=
kX

i=1

cut(Ai, Āi)

vol(Ai)

Now the objective is to minimize the RatioCut which is a NP-hard problem.

Definition 2.1.4. Given a partition {A1, . . . , Ak} of V , an ortho matrix H is defined as

[h1, . . . , hk]n⇥k with hj := (h1j, . . . , hnj)T 2 Rn where

hij :=

8
><

>:

1p
|Aj|

if i 2 Aj

0 otherwise.

Proposition 2.1.3. An ortho matrix is orthogonal.

Proof. Let H be an ortho matrix.

hhj, hji =
nX

i=1

h2
ij
=

X

i2A)j

h2
ij
=
X

i2Aj

 
1p
|Aj|

!2

(since hij = 0 for i /2 Aj) (2.2)

and

hhi, hji =
nX

d=1

hdihdj = 0 (2.3)

since {A1, . . . , Ak} forms a partition of V, it implies if d 2 Ai =) d /2 Aj 8j 6= i

Hence, (2.2) and (2.3) =) HTH = I
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Theorem 2.1.4. For a given partition {A1, . . . , Ak} of V , let H be its ortho matrix. Then,

RatioCut(A1, . . . , Ak) = Tr(HTLH)

Proof. From the properties of laplacian L,

hT

p
Lhp =

1

2

X

i,j

wij(hip � hjp)
2

Now since wij = wji

=)

0

BB@
X

i2Ap

j /2Ap

wij(hip � hjp)
2 =

X

i/2Ap
j2Ap

wij(hip � hjp)
2

1

CCA

hT

p
Lhp =

1

2

�����������*0X

i2Ap
j2Ap

wij(hip � hjp)
2 +

2

2

X

i2Ap

j /2Ap

wij(hip � hjp)
2

+
1

2

�����������*0X

i/2Ap

j /2Ap

wij(hip � hjp)
2

=
X

i2Ap

j /2Ap

wij

 
1p
|Aj|

!2

=
W (Ap, Āp)

|Ap|

=
1/2

�
W (Ap, Āp) +W (Āp, Ap)

�

|Ap|
=

cut(Ap, Āp)

|Ap|

Also, hT

p
Lhp = (HTLH)ii

=) RatioCut(A1, . . . , Ak) =
nX

p=1

cut(Ap, Āp)

|Ap|

=
nX

p=1

hT

p
Lhp =

nX

p=1

(HTLH)ii = Tr(HTLH)
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This leads to the following proposition.

Proposition 2.1.5.

min
{A1, . . . , Ak}

RatioCut(A1, . . . , Ak) (2.4)

~w�

min
{A1, . . . , Ak}

Tr(HTLH) (2.5)

where H is as in (2.1.4) and hence further satisfies HTH = I.

These optimization problems are referred as balanced mincut problem since RatioCut

balances cluster sizes. Since the problem is still NP-Hard, the Problem(2.5) can be relaxed

to
min

H 2 Rn⇥k

Tr(HTLH)

s.t. HTH = I
(2.6)

which is referred to as relaxed RatioCut (or balanced mincut) problem. The solution

to this problem can be given using Rayleigh-Ritz theorem.

Definition 2.1.5. Rayleigh’s Quotient RA(x) : Rn �! R is defined as

RA(x) =
xTAx

xTx

Theorem 2.1.6 (Rayleigh-Ritz). If A is a symmetric n⇥n matrix with eigenvalues �min =

�1  . . .  �n = �max and let (u1, . . . , un) be the eigenvectors of A, where ui is the

eigenvector associated with �i, then

min
x 6=0

RA(x) = �1 and max
x 6=0

RA(x) = �n

where minimum is attained for x = u1 and maximum is attained for x = un

Proof. Since A 2 Rn⇥n is symmetric it can be decomposed into A = Q⇤QT where Q is

orthogonal (QTQ = I) and ⇤ = diag(�1, . . . ,�n). (p. 136, Corollary 2.5.11 of Horn and
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Johnson [2012])

xTAx = xT (Q⇤QT )x = (QTx)T⇤(QTx) = yT⇤y

=
nX

i=1

�i|yi|2 � �min

nX

i=1

|yi|2 = �miny
Ty

� �min(Q
Tx)T (QTx) = �minx

TQQTx = �minx
Tx

=) RA(x) � �min 8x 2 Rn (2.7)

but since

Au1 = �minu1 =) uT

1Au1

uT

1 u1
= �min

=) min
x 6=0

RA(x) = �min = �1

for x = u1. Similarly, max
x 6=0

RA(x) = �n for x = un.

Theorem 2.1.7 (Rayleigh-Ritz extension). If A is a symmetric n⇥n matrix with eigenvalues

�1  . . .  �n and if (u1, . . . , un) is any orthonormal basis of eigenvectors of A, where ui is

a unit eigenvector associated with �i, then for X 2 Rn⇥k

min
XTX = I

Tr(XTAX) = �1 + · · ·+ �k (2.8)

where minimum is attained for X = [u1, . . . , un]

Proof. Proof by induction.

Let X = [x1, . . . , xk] 2 Rn⇥k where xi 2 Rn. Since (XTAX)ii = xT

i
Axi

For k = 1:

=) min
X

XTAX = min
X

(XTAX)11 = min
X

xT

1Ax1 = �1 for x1 = u1.

(as xT

1 x1 = 1 since X is orthogonal)

Now for k = 2:

Tr(XTAX) = (XTAX)11 + (XTAX)22 = xT

1Ax1 + xT

2Ax2

which are independent terms as x1 · x2 = 0.
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min
x1

xT

1Ax1 = �1 for x1 = u1 and since X is orthogonal, x2 · x1 = 0 =) x2 · u1 = 0 hence

x2 6= u1, Thus min
x2

xT

2Ax2 = �2 for x2 = u2

For k = d, assume that the claim is true. That is, X = [u1, . . . , ud] minimizes (2.8) with

minimum being �1 + · · ·+ �d.

Now for k = d+ 1,

min
X

Tr(XTAX) = min
X

d+1X

i=1

(XTAX)ii = min
x1,...,xd+1

 
dX

i=1

xT

i
Axi + xT

d+1Axd+1

!

= (�1 + · · ·+ �d) + min
xd+1

xT

d+1Axd+1

since X has to be orthogonal, xd+1 · xi = 0 8 1  i  d

min
xd+1·ui=0
8 1id

xT

d+1Axd+1 = �d+1

for xd+1 = ud+1. These statements directly follows from Rayleigh-Ritz theorem(2.1.6)

min
X

Tr(XTAX) = �1 + · · ·+ �d+1

This directly gives the solution to Relaxed RatioCut problem (2.6). Let formalize this.

Proposition 2.1.8. The solution to the relaxed RatioCut problem is given by

arg min
H 2 Rn⇥k

Tr(HTLH) = [u1, . . . , uk]

s.t. HTH = I

(2.9)

where {u1, . . . , uk} are the “first k eigenvectors”(2.1.1) of the laplacian L.

But notice before relaxation, the solution was a discrete cluster assignment matrix. In

order to obtain the cluster assignment, one way is to do k-means clustering on the row

vectors. Since solution to (2.6) is H = [u1, . . . , uk] which can be written as H = [y1, . . . , yn]T

where yi’s are the rows of H. Now let C1, . . . , Ck be the clusters obtained from the k-means
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Figure 2.1: SpectralNet Model ouline where Xm is the mini-batch of size m

clustering on {y1, . . . , yk}. Then the final clusters can be given by {A1, . . . , Ak} where

xi 2 Aj if yi 2 Cj .

Recall, {x1, . . . , xn} is the input and {y1, . . . , yn} are the embeddings obtained from the so-

lution to the relaxed RatioCut problem. The complete algorithm is summarized in (1).

The solution to the relaxed problem does not guarantee the quality of the clusters and can

perform poorly when compared to the exact solution (solution to 2.1.5). One such example

is cockroach ladder graph where such comparison can be made. Reader is encouraged to

read more on this from Von Luxburg [2007].

2.2 SpectralNet

SpectralNet (Shaham et al. [2018]) is an extension of Spectral clustering to the neural

network which overcomes both the limitation of Scalability and inability to do OOSE. Spec-

tralNet implicitely produces orthogonal representations out of the input which can then be

used to calculate the spectral loss (objective of the relaxed RatioCut problem)(2.6).

It is a feed forward neural network which takes in {x1, . . . , xn} as input and produces
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Algorithm 2: SpectralNet training

Input: X ✓ Rd, number of clusters k, batch size m
Output: embeddings y1, . . . , yn, yi 2 Rk, cluster assignments c1, . . . cn, ci 2 {1, . . . k}

1 Construct a training set of positive and negative pairs for the Siamese network;
2 Train a Siamese network;
3 Randomly initialize the network weights ✓;
4 while LSpectralNet (✓) not converged do

5 Orthogonalization step:

6 Sample a random minibatch X of size m;

7 Forward propagate X and compute inputs to orthogonalization layer Ỹ ;

8 Compute the Cholesky factorization LLT = Ỹ T Ỹ ;

9 Set the weights of the orthogonalization layer to be
p
m (L�1)T ;

10 Gradient step:

11 Sample a random minibatch x1, . . . , xm;
12 Compute the m⇥m a�nity matrix W using the Siamese net;
13 Forward propagate x1, . . . , xm to get y1, . . . , ym;
14 Compute the loss (2.1);
15 Use the gradient of LSpectralNet (✓) to tune all F✓ weights, except those of the

output layer;

16 Forward propagate x1, . . . , xn and obtain F✓ outputs y1, . . . , yn;
17 Run k -means on y1, . . . , yn to determine cluster centers;

orthogonal representations {y1, . . . , yn} which serves as the approximation to the eigenvector

matrix of the graph laplacian (D � W ). Its training requires two forward passes in each

iteration. In the first forward pass output of the penultimate layer Y is used to determine L�T

factor which is then used to set the weights of the last layer. L is given by Y TY = LLT (i.e.

Cholesky factorization of Y TY ). This left multiplication of L�T with Y gives an orthogonal

output Ỹ (which is actually the Q-factor of the QR-decomposition of Y )(refer 5). Hence in

the second forward pass, Ỹ is calculated and used to minimize the loss 2.1 using mini-batch

gradient descent. Finally after training, all the data points are passed to the network to get

embeddings {y1, . . . , yn} over which k-means clustering is performed to obtain clusters. The

complete algorithm is summarized in (2).

SpectralNet model has fully connected layers of size 1024, 1024, 512 and 10 with ReLU

activation function in between each linear layer. The last layer is termed as ”Orthogonal
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Layer”. Loss function is defined as

LSpectralNet(✓) =
1

m2
Tr(Y T (D �W )Y )) (2.1)

where D is the degree matrix and W is the a�nity matrix.

SpectralNet uses Siamese network to better learn the relationship between points. Posi-

tive pairs and negative pairs are constructed using the nearest neighbours of each point and

then the siamese network is trained on the contrastive loss which is defined as

Lsiamese (✓siamese ; xi, xj) =

(
kzi � zjk2 , (xi, xj) is a positive pair

max (c� kzi � zjk , 0)2 , (xi, xj) is a negative pair,
(2.2)

where c is a margin (hyperparameter).

Then for each pair of points (xi, xj), kxi � xjk2 in the gaussian kernel(2.1) is replaced by

kzi � zjk2 for calculating laplacian.

2.3 Trivialization

Geodesics are the vectors(or rays) along the shortest path on a manifold.

Definition 2.3.1. Geodesics �p,v on manifold M (with complete metric) can be defined as

�p,v : [0,1) �! M
�p,v(0) = p, �0

p,v
(0) = v for v 2 TpM

Riemannian exponential map is defined as exp
p
(tv) := �p,v(t) for t � 0 i.e. mapping from

vectors on the tangent space with base at the origin to geodesics on M

Definition 2.3.2. For a given real valued function f : M �! R, Riemannian Gradient

Descent(RGD) can be defined as

xt+1 = exp
xt
(�⌘rf (xt))

�rf(xt) gives the direction of the steepest descent and is a ray in the tangent space.
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xt+1 is obtained upon moving along this direction of steepest descent on M by a step-size

of ⌘.

Definition 2.3.3 (Retraction). A di↵erentiable map � : TM ! M is called a retraction if

for every p 2 M, the map �p : TpM ! M satisfies �p(0) = p and (d�p)0 = I (identity).

Since retractions are first order approximations of exponential maps, descent can be

made along the retraction, that is, xt+1 = �xt (�⌘rf (xt)). Retractions are computationally

inexpensive as compared to the exponential maps.

Definition 2.3.4. A map � : Rn �! M is a trivialization if it is a di↵eomorphism and

surjective.

Such parameterization are required to be di↵eomorphism sincerf(x) becomesr(f��)(y)
for x = �(y). For a 1 -dimensional trivialization, by the chain rule, if �0(y) = 0 for some

y 2 R =) r(f � �)(y) = rf(�(y))�0(y) = 0. Hence such parameterizations add saddle

points or local minima. Surjectivity is also required. Suppose 9 x? 2 M such that

x? = arg min
x 2 M

f(x) (2.1)

but @ y 2 Rn for which x? = �(y). In such case, no matter how one moves in the tangent

space, one could never arrive at x?.

Since a tangent space at a point is isomorphic to Rn, di↵eomorphism and surjectivity

ensures that such maps can be used to parameterize a manifold in terms of the euclidean

space. Also, it just acts as a change of metric on the manifold.

Theorem 2.3.1. Let � be a trivialization. Then, solving the problem min
y2Rn

f(�(y)) through

gradient descent accounts for solving the problem min
x2M

f(x) using Riemannian gradient de-

scent for a certain metric on M induced by �.

Proof. Appendix B of Casado [2019]

Thus � can be used the translate a constrained optimization problem to an unconstrained

optimization problem.

min
x2M

f(x)
translates to�������! min

x2Rn
f(�(x))
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Figure 2.2: Trivialization compared with Dynamic trivialization

Riemannian(or Lie) retractions and exponential maps best serve the purpose since the gra-

dient gets preserved as exponential maps are a di↵eomorphism from an open subset of a

tangent space of a point on the manifold to the manifold (Theorem 4.4 and Theorem 4.7

Casado [2019]).

(Casado [2019]) proposes Dynamic trivialization where K number of updates are made

using expM,p at each step and then p is changed to the new point on the manifold.

Thus this does not require the condition of �p : TpM ! M being surjective. This is

because, as long as M is connected, we can still reach any point in M in the optimization

process by changing the basis of the dynamic trivialization whenever K < 1.

Algorithm 2.3.2 (Dynamic trivialization through retractions). Given a retraction �, an

integer K > 0 or K = 1, and a starting point p0, the dynamic trivialization induced by �

is defined as the sequence of problems indexed by i = 0, 1, . . .

min
y2TpiM

f (�pi(y))

where pi+1 := �pi (yi,K) 2 M, and yi,k 2 TpiM for k = 1, . . . , K, is a sequence of ap-

proximations given by a Euclidean optimization algorithm -e.g., SGD, ADAM, ADAGRAD,

RMSPROP, ...-applied to the i -th problem with starting point yi,0 = 0. We say that pi is the

basis at step i.

There are two limit case to the algorithm which proves that the dynamic trivialization is

the generalization of the trivialization and the RGD.
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When K = 1, it reduces to trivialization. Since a single map is used to make all the

updates.

When K = 1, it reduces to RGD. The base is changed at every step. Hence � at base

pi is used to obtain pi+1 at each step. Since by definition of retractions, r(f � �pi)(0) =

rf(pi) and yi,1 = �⌘r(f � �pi)(0) =) yi,1 = �⌘rf(�pi) =) pi+1 = �pi(�⌘rf(�pi))

which are exactly the updates we make in RGD.

For a Lie group G, lie algebra is the tangent space at the identity, i.e. g = TeG where

e is the identity element of G. For a matrix lie group G, any tangent space of G can be

written in terms of g. That is, if A 2 TBG then B�1A 2 g and if the metric on the lie group

is left-invariant, B exp (B�1A) lies in the neighbourhood of B. Exponential map thus can

be defined as

exp
B
: TBG �! G

A 7�! B exp
�
B�1A

�

For connected matrix lie group such as SO(n),U(n), SL(n), or GL+(n), above map can be

used to do dynamic trivialization.

Cayley map is a retraction from tangent space skew(n) of lie group SO(n) to SO(n) and

is surjective and is defined as

cay : skew(n) �! SO(n)

A 7�! (I� A)�1(I + A)

for SO(n) = {B 2 Rn⇥n | BTB = I, det(B) = 1} and skew(n)
.
=
�
A 2 Rn⇥n | A> + A = 0

 
.

Again by similar trick cayB(A) = B cay (B�1A), for B 2 SO(n), A 2 TBSO(n) = skew(n).

Figure 2.3 shows di↵erence between dynamic trivialization and RGD where Wt the start-

ing value and ai are the updates made using SGD. In case of just trivialization, a tangent

space around a single point on the manifold is used to parameterize the complete manifold.

Trivialization technique has been used to tackle the vanishing gradient problem of a deep

Recurrent Neural Network (RNN) where the weight matrix of the hidden state is constrained

to stay on a manifold (particularly on SO(n) ) through cayley map or matrix exponential.

Our goal had been to leverage trivialization to translate the constrained optimization
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Figure 2.3: Di↵erence between dynamic trivialization(for K=4) and RGD on W

Figure 2.4: Basic outline of VAE architecture.

problem to unconstrained one and use stochastic gradient descent.

2.4 Variational autoencoders

The main goal in Variational Inference is to learn the probability distribution of the given

input x. Variational autoencoder(Kingma and Welling [2014]) learns the parameters of the

approximate posterior and the likelihood through encoder and decoder system. Basic outline

of a VAE can be seen in the Figure(2.4).

2.4.1 Latent variable model

Latent variable models are statistical model which studies the relationship between a

observable and a latent variable. Probability distribution of the input(an observable variable)
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can be written in terms of likelihood and prior as

p(x) =

Z
p(x | z)p(z)dz

where p(x | z) is the likelihood and p(z) is the prior. In some cases, relatively simple

expression of p(x | z) and p(z) can give complicated p(x). For example in Mixture of k

gaussians, z is a discrete variable and likelihood follows normal distribution, that is

p(z = i) = ⇡i

p(x | z = i) = N
�
µi, �

2
i

�

=) p(x) =
kX

i=1

p(x, z = i) =
kX

i=1

⇡ip(x | z = i)

Hence, simple individual gaussian distribution can model complex distributions.

2.4.2 Non-linear Latent variable model

Here, latent variable z ⇠ Nz (0, I) and variance of prior is constant. That is,

p(z) = Nz (0, I)

p(x | z;�) = Nx

�
f(z,�) | �2 ⇤ I

�

f(z,�) is a family of deterministic function parameterized by �. We use this model mainly

to compute the posterior, sample data and calculate the likelihood.

Using Bayes rule, posterior can be written as

p(z | x) = p(x | z)p(z)
p(x)

But since the p(x) is clearly intractable, posterior cannot be calculated. This shows the need

to approximate the posterior using simpler probability distributions.

Sample z ⇠ Nz (0, I), compute f(z,�), then sample x? ⇠ N (f(z,�) | �2 ⇤ I)
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Liklihood can be determined by

p(z) =

Z
p(x, z | �)dz =

Z
Nx

�
f(z,�) | �2 ⇤ I

�
Nz (0, I)

which is intractable.

As it is clear that determining true posterior is intractable in most situation, Variational

Inference is thus used to approximate the true posterior with qz(z | x)(called approximate

posterior) which is tractable and is close to the true posterior. Variational Inference de-

termines approximate posterior through solving a optimization problem while methods like

MCMC performs selection through sampling.

2.4.3 Evidence Lower Bound

Let q✓ (z | xi) be the approximate posterior which is to be learnt through an encoder and

p� (xi | z) be the likelihood which is to be learnt through a decoder with parameters �.

The KL divergence between the approximate and the real posterior distributions is given by,

DKL (q✓ (z | xi) kp (z | xi)) = �
Z

q✓ (z | xi) log

✓
p (z | xi)

q✓ (z | xi)

◆
dz � 0 (2.1)

By Bayes theorem,

DKL (q✓ (z | xi) kp (z | xi)) = �
Z

q✓ (z | xi) log

✓
p� (xi | z) p(z)
q✓ (z | xi) p (xi)

◆
dz � 0 (2.2)

DKL (q✓ (z | xi) kp (z | xi)) = �
Z

q✓ (z | xi)


log

✓
p� (xi | z) p(z)

q✓ (z | xi)

◆
� log p (xi)

�
dz � 0

(2.3)

= �
Z

q✓ (z | xi) log

✓
p� (xi | z) p(z)

q✓ (z | xi)

◆
dz +

Z
q✓ (z | xi) log p (xi) dz � 0 (2.4)

Since log (p (xi)) independent of q and is a constant,

= �
Z

q✓ (z | xi) log

✓
p� (xi | z) p(z)

q✓ (z | xi)

◆
dz + log p (xi)

Z
q✓ (z | xi) dz � 0 (2.5)

= �
Z

q✓ (z | xi) log

✓
p� (xi | z) p(z)

q✓ (z | xi)

◆
dz + log p (xi) � 0. (2.6)
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Finally upon rearranging the terms, we get,

log p (xi) �
Z

q✓ (z | xi) log

✓
p� (xi | z) p(z)

q✓ (z | xi)

◆
dz. (2.7)

log p (xi) �
Z

q✓ (z | xi) log

✓
p(z)

q✓ (z | xi)

◆
dz +

Z
q✓ (z | xi) log p� (xi | z) dz

(2.8)

log p (xi) � �DKL (q✓ (z | xi) kp(z)) + E⇠q✓(z|xi) [log p� (xi | z)] (2.9)

where the term on the right is called Evidence Lower Bound (ELBO). From (2.6) and

(2.9)

DKL (q✓ (z | xi) kp (z | xi)) = �
ELBOz }| {�

�DKL (q✓ (z | xi) kp(z)) + E⇠q✓(z|xi) [log p� (xi | z)]
�

+ log p (xi) (2.10)

Since the log probability is constant, minimizing KL divergence between approximate pos-

terior and true posterior is equivalent to maximizing the ELBO.

The first term in ELBO is the KL divergence between the approximate posterior and the

prior. The second term is the reconstruction term.

Normal prior

We can make assumption about the distribution of the true posterior. If the approximate

posterior q✓(z | x) ⇠ Nx (µ | �2 ⇤ I) and the prior p(z) ⇠ Nz (0, I) then we have the following

closed form expression for the ELBO:

�DKL (q✓ (z | x) kp(z)) = 1

L

LX

i=1

 
JX

j=1

✓
1

2

⇥
1 + log

�
�2
ij

�
� �2

ij
� µ2

ij

⇤◆
!

(2.11)

E⇠q✓(z|x) [log p� (x | z)] = 1

L

LX

l=1

kxi � x
0

i
k22 (2.12)

where k · k is the L2 norm, L is the number of points, J is the number of latent features

and x 2 RL⇥S (S is the number of input features). For complete derivation of closed form

expression of ELBO one can refer (Kingma and Welling [2014]) and (Odaibo [2019]).
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Spike and slab prior

The Spike and Slab distribution S2(↵, µ, �) is defined over two variables; a binary spike

variable s and a continuous slab variable z.

The spike s ⇠ Ber(↵) is a Bernoulli random variable, the slab z ⇠ N (µ, �2) is normal

random variable when s = 1, and z ⇠ �(z) degenerates at z = 0 when s = 0:

p(s, z) = p(s) p(z|s)
= ↵ �(s)N (z|µ, �) + (1� ↵) �(s� 1) �(z). (2.13)

where �(·) is Dirac delta function centered at zero and J is the latent space dimension.

The prior for the multivariate random variable (latent variable in variational setting) can

be written as

ps(z) =
JY

j=1

(↵N (zj; 0, 1) + (1� ↵)� (zj))

The recognition function q�(z | x) can be chosen to be of form

q✓ (z | xi) =
JY

j=1

�
�i,jN

�
zi,j;µz,i,j, �

2
z,i,j

�
+ (1� �i,j) � (zi,j)

�

where µz,i,j, �2
z,i,j

and �i,j are the outputs of the encoder. The derivation of the ELBO for

spike and slab prior and spike and slab approximate posterior can be found in the Appendix

B of Tonolini et al. [2019].

2.4.4 Reparameterization trick

Since we learn the parameters of the approximate posterior through neural network, it

requires sampling of the latent variable before feeding it to the decoder. This sampling

process cannot be backpropagated and hence require a workaround which is achieved by

reparameterization trick.
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Figure 2.5: Reparameterization trick for gaussian prior and gaussian posterior based VAE
model

Gaussian prior

For VAE model with standard normal prior and gaussian posterior is illustrated in the

Figure(2.5). Since the encoder gives the parameters (µ, �) of the approximate posterior,

it still requires one to sample z from N (µ, �), which makes it a sampling process. Such

operation cannot be back propagated. In order to make such sampling deterministic, we add

additional variable ✏ which is sampled from N (0, 1) and the following parameterization is

used to obtain the latent variable z

z = µ+ � � ✏

which allows one to determine
@L

@z
which eventually through chain rule gives

@L

@✓
for encoder

parameter update. � is the element wise product. Note that it is not necessary that the

reparameterization trick can be derived for any kind of probability distribution.

Spike and slab prior

For a model with spike and slab as probability distribution of the prior and the ap-

proximate posterior, the latent variable zi is drawn using the following reparameterization

trick

zi = T (⌘i � 1 + �i)� (µi + �i � ✏i) (2.1)
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where � is the element wise product. Ideally T (yi) is a step function centered at zero

but in order to make the operation di↵erentiable it is defined in terms of scaled Sigmoid as

T (y) = S(cy) for some constant c. S is the sigmoid function. As c ! 0 , S(cy) tends towards

a true binary map. In practice, c has to be a relatively small number for stable gradient

ascent. In experiment, best strategy is to gradually increase value of c with training. Also,

⌘i is sampled from a uniform distribution.

Spike variable is also parameterized in the similar manner. Since spike variable si is a

binary variable, we can write si = T (⌘l � 1 + �i) where T is ideally a step function but can

be approximated in terms of scaled sigmoid as discussed above and ⌘l is a noise variable

sampled from a uniform distribution which is not dependent of �i. For a detailed discussion,

refer Tonolini et al. [2019].
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Chapter 3

Method

The chapter goes over the problem statement and each of the techniques that were con-

structed to solve the problem. This also includes initial tests which had their own limitations

and were improved with changes in the algorithm. Each of the methods apart from Geo-

metric approach were formulated by us. This majorly includes the use of VAEs to perform

clustering.

Our model consists of �-VAE(Variational Autoencoder)(Higgins et al. [2017]) backbone

together with a cayley layer which produces orthogonal representations of input. These

orthogonal representations then can be used to do spectral clustering. The bottleneck layer

of the �-VAE maps input x to latent variable z which has a prior probability distribution

p✓(z). In our model we chose spike and slab probability distribution (2.13) as the prior and

the approximate posterior.

3.1 Problem Statement:

The problem is a constrained optimization problem where the loss function to be mini-

mized is

min
Y 2Rn⇥k

Tr(Y TLY ) subject to Y TY = In. (3.1)

This is called the spectral loss. As one has seen in the Spectral Clustering section(2.1) that

how one arrive at trace minimization problem from minimizing RatioCut, minimization of

this real valued function (loss function) ensures that the learned representations are in fact
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Algorithm 3: Riemannian gradient descent for spectral clustering
Input: Laplacian L
Output: Clusters in the data

1 Initialize Y0 to be an orthogonal matrix // Any initialization method can be used

2 while Lspectral not converged do

3 Calculate Gm =
h

@L

@Ym[i,j]

i

// Gm is the standard gradient matrix

4 Calculate ⌦(Yi, Gi) = GiY T

i
� YiGT

i

// Riemannian gradient ⌦

5 Yi+1 = �( ⌘ ⌦(Yi, Gi)) Yi

// Update step where � is the exponential map or a retraction; ⌘ is the step

size

6 Lspectral = tr(Y T

i+1 L Yi+1)

/* Let Yoptimal be the matrix returned upon loss convergence */

7 Do k-means clustering on rows of the matrix Yoptimal to obtain clusters

close to the eigenvector matrix (actual solution to the relaxed version of balanced-mincut

problem) in equation (2.6). This is because of the fact that the eigenvector matrix forms the

solution to this trace minimization problem.

The constraint of matrix being orthogonal is implicitly being satisfied as the bottleneck

layer of our model ExSC produces orthogonal output over which the loss function can be

minimized. The exact details will be discussed in the section(3.5).

3.2 First method: Geometric Approach

The aim is to minimize the spectral loss while preserving the given orthogonality con-

straint. Since the collection of rectangular orthogonal matrices forms a well studied manifold

called Stiefel manifold, one can use Riemannian Gradient Descent(RGD)(2.3) to move on

this manifold while minimizing the given real valued function (i.e. spectral loss). Since

this would be an iterative method and hence one would still require a work-around to solve

OOSE(as we are not learning any parameters which could make predictions on the unseen

data).

Algorithm(3) minimizes spectral loss over Stiefel manifold. Recall, Stiefel manifold is a

space of all rectangular real orthogonal matrices. An exponential map or a retraction (�)
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can be used to map riemannian gradient (⌦) on to the stiefel manifold. Since exponential

maps for stiefel manifold does not have a closed form expression, one could use cayley

transformation (a retraction) in the Algorithm(3)

3.3 Initial approaches using neural network:

Several methods were tested which employs neural network. Neural networks were mainly

used for two reasons:

• Allows mini-batch gradient descent. This enables one to work with large datasets

and overcomes the scalability limitation of traditional clustering algorithms.

• Learns parameters. These parameters can be used to make predictions on the unseen

data and hence it allows OOSE.

3.3.1 VAE with iterative schemes

The Variational Autoencoder(VAE)(Kingma and Welling [2014])(2.4) network with the

gaussian prior produces near orthogonal representation in the bottle-neck layer. We will

discuss in a while that why the choice of a gaussian prior produces these near orthogonal

matrices (3.4). These near orthogonal representations can be fine tuned so as to resemble

the eigenvector matrix. This fine-tuning can be done using the spectral loss and minimizing

the spectral loss over these orthogonal matrices(each mini-batch produces one) can be done

in several ways. As shown in the Figure(3.1), trivialization (2.3) and Riemannian Gradient

Descent (RGD) can be used to solve the trace minimization problem (minimizing the spectral

loss). Since there is no clear way to back-propagate gradients to the parameters of the

VAE, such optimization techniques are still an iterative scheme which does not learn any

parameters during training. This does not allow one to do OOSE. Hence, RGD cannot

directly be used. This led to the next way of solving the problem by incorporating the

spectral loss in the loss function of the VAE itself.
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Figure 3.1: Basic outline of initial attempts involving orthogonal representations of input
and RGD. Yopt := Y obtained upon convergence of spectral loss.

Loss function of a VAE is the Evidence lower bound (ELBO)(2.4.3) which is defined as

LV AE = DKL(q�(z|x)|p✓(z|x))

=
1

m

mX

l=1

kxi � x
0

i
k22 +DKL(q�(z|x)|p✓(z))

whereDKL(q�(z|x)|p✓(z)) varies with the prior p✓(z) andm is the mini-batch size. In general,

prior is selected to be a standard normal distribution and such VAE is called VAE with

gaussian prior. Generally the prior is selected to be a simple and tractable probability

distribution.

3.3.2 VAE with spectral loss

This method involved using simple VAE with gaussian prior. The bottleneck layer of

this model produces orthogonal representations which can directly be used to minimize the

spectral loss. The gradient of this loss function with respect to each of the parameters in the

model can then be used to update the parameters. Training can be done until convergence
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in overall loss where overall loss Lmodel is

Lmodel = DKL(q�(z|x)|p✓(z|x)) + tr(µTLµ)

where first term is the VAE loss (ELBO) and second term is the spectral loss. L is the

laplacian of the input.

This type of training can produce orthogonal representations which forms solution to the

problem statement(3.1) and also minimizes the VAE loss. This method still had limitation.

The limitation being restrictive search space. Since the same matrix was used to minimize

the VAE loss and spectral loss, it was producing orthogonal matrices from a subspace of

stiefel manifold. In order to further allow orthogonal matrices to come from a much larger

space, cayley transformation(3.1) was used to parametrize the weight matrix of the cayleyNN

layer. A switch from the VAE to the �-VAE is also made due to the additional parameter

� in �-VAE which allows one to put more emphasis on learning the probability distribution

of the approximate posterior, q✓(z|x). In �-VAE loss function changes to

LV AE =
1

m

mX

l=1

kxi � x
0

i
k22 + � DKL(q�(z|x)|p✓(z)) (3.1)

where x, x
0
are input and reconstructed input respectively andDKL is KL Divergence between

two probability distributions.

The inclusion of � parameter allows one to better learn the parameters of the latent

space probability distribution as the loss function puts more weight on minimizing the KL-

Divergence (DKL). Hence, �-VAE produces better orthogonal matrices at the bottleneck.

3.3.3 VAE with parametrization (Gaussian prior)

The model is as shown in the Figure(3.2). The model consists of the �-VAE (true

posterior is assumed to be following gaussian distribution and hence prior is taken to be

standard normal distribution) in conjugation with a cayley layer (3.1).

This method of fine tuning through cayley transformation can be generalized to:

y = Mx
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whereM is parameterized to stay orthogonal (MTM = I). Now since x is already orthogonal,

y is also orthogonal. This is because (Mx)TMx = xT (MTM)x = xT Ix = xTx = I. Various

methods (like use of exponential maps) from trivialization (Casado [2019]) can be used to

restrict M to stay on O(n) manifold (orthogonal group).

Loss function of the model is:

Lmodel = DKL(q�(z|x)|p✓(z|x)) + tr(µT

new
Lµnew) (3.1)

=
1

m

mX

l=1

kxi � x
0

i
k22 +DKL(N (µ, �2)||N (0, I)) + tr(µT

new
Lµnew) (3.2)

=
1

m

mX

l=1

kxi � x
0

i
k22 �

1

m

mX

i=1

"
kX

j=1

1

2

⇥
1 + log

�
�2
ij

�
� �2

ij
� µ2

ij

⇤
#
+ tr(µT

new
Lµnew)

(3.3)

where µ and �2 are the mean and variance of the approximate posterior q and k is

the number of features of the latent variable z. Recall that the true posterior is assumed

to following gaussian distribution and thus q ⇠ N (µ, �2). The second terms changes for

di↵erent prior p✓(z) and has a closed form expression for tractable probability distributions

(such as gaussian distribution itself). µnew is as defined in Equation (3.4)

The final model ExSC uses spike and slab distribution (Tonolini et al. [2019]) as the prior

and the approximate posterior in the �-VAE and normalized output of cayley layer is then

used to do k-means clustering upon convergence of overall loss.

3.4 Why Gaussian (Normal) prior

When the prior is chosen to be standard normal distribution, the minimization of the VAE

loss function leads to the minimization of the di↵erence between the true posterior p✓(z|x)
and the approximate posterior q�(z|x). This leads to q�(z|x) follow a gaussian distribution.

Now if all the entries of a matrix are sampled from gaussian distribution, it can be made

near orthogonal matrix using normalization operation which is di↵erentiable operation.

Let X be a random variable being sampled from a standard normal distribution.

i.e. X ⇠ N (0, 1), then E[X] = 0 and E[X2] = 1
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Figure 3.2: Model architecture as in the Section 3.3.3. d is the number of input features and
k are the number of clusters in the dataset.

Figure 3.3: ExSC architecture as in Section 3.5 (which consists of a �-VAE model with Spike
and slab (sns) prior in conjugation with cayley layer). d is the number of input features and
k are the number of clusters in the dataset.
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Figure 3.4: Each layers-stack in the Figure(3.3) and Figure(3.2). This assembly of layers
forms the basic component of our model

For X ⇠ N (µ, �2),

E[X] = µ and E[X2] = µ2 + �2 . (3.1)

Either use the relation V ar(X) = E[X2]�E[X]2 or the pdf of a normal distribution to derive

the second moment above.

Now for any matrix B = {bij} 2 Rn⇥k, let M = BTB 2 Rk⇥k. Since,

mii =
nX

i=1

b2
ij

and if each bij ⇠ N (µ, �2), from equation (3.1)

=) E

"
nX

i=1

b2
ij

#
= n(µ2 + �2) (3.2)

=) mii ⇡ n(µ2 + �2) =) m
0

ii
⇡ 1 (3.3)
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for M
0
= B

0T
B

0
where B

0
= normalize(B)

Definition 3.4.1. In the above equation, the normalize transformation can be defined as

• �(B) := normalize(B) :=
n

bijpPn
i=1 b

2
ij

o
1  i  n
1  j  k

• �µ,�(B) := normalizeµ,�(B) := B/(
p

n(µ2 + �2))

Second normalize transformation can be regarded as an approximation to the first one

because of the equation (3.2).

Each entry of M is of form,

mij =
nX

k=1

bkibkj . (3.4)

Since for i.i.ds X, Y ⇠ N (0, 1),

E[XY ] = E[X]E[Y ] = 0

and for i.i.d X, Y ⇠ N (µ, �2),

nE[XY ] = nE[X]E[Y ] = nµ2

where n is a constant.

Hence, if each bpq in equation (3.4) is sampled independently from a normal distribution, then

nX

k=1

bkibkj ⇡ nµ2 8 i 6= j

From equation (3.1), equation (3.3) and the definition of the normalization transformation

above,

=) m
0

ij
⇡ nµ2

n(µ2 + �2)
⇡ 0 for either µ = 0 or µ < � (su�ciently smaller) (3.5)

Hence the normalize transformation over matrix that is being sampled from a normal dis-

tribution with mean µ and variance �2 is implicitly satisfying the orthogonality constraint.

In addition, the (3.5) proves the improvement in orthogonal representations with choosing

�-VAE over VAE. Since the � hyperparameter in (3.1) leads to further minimization of KL

divergence between the approximate posterior q�(z|x) (which gives the bottleneck output)
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and the prior p✓(z) (which is assumed to standard normal), this leads to µq �! 0 and

�q �! 1 for each sample where (µq, �q) are the output of the encoder(parameters of the

approximate posterior) q. This sets m
0
ij
�! 0 for i 6= j with training.

In summary, this gives a matrix B for which Y (= �µ,�(B)) is near orthogonal as (Y TY )ii ! 1

and (Y TY )ij ! 0 for i 6= j. This leads to the following proposition.

Proposition 3.4.1. The relaxed RatioCut problem (2.6) is equivalent to

minimize
Y=�µ,�(B),B={bij}2Rn⇥k

s.t bij⇠N (µ,�2)

Tr(Y TLY )
(3.6)

Hence minimizing the trace value (spectral loss) over a large matrix which is obtained

after applying the normalization transformation to a matrix that is being sampled from a

gaussian posterior is same as finding solutions to the relaxed RatioCut (or balanced-mincut)

problem.

3.5 Extended Spectral Clustering

Extended Spectral Clustering (ExSC) model broadly consists of an encoder, bottle-

neck layers, a decoder and a cayley layer as can be seen in the Figure(3.3) . The encoder

consists of 3 layers-stack. Each layers-stack consist of linear (also called dense) layer followed

by a batch-normalization layer and a tanh activation function as in the Figure(3.4). Each

linear layer is a feed forward fully connected layer(as on the right in the Figure(3.4)). A linear

layer of size (d) gives an output of shape (m,d) where m is the batch size. The components

in the bottle-neck layers changes with changes in the prior. The model with spike-and-slab

prior has additional parameter spike variable which is obtained by adding additional layers

in the bottleneck. These parameters which are sampled using a neural network are used to

sample points from the approximate posterior distribution using the reparametrization trick

as stated in the section(2.4.4)

Cayley layer(CayleyNN) is defined as:

y = cay(A)x = (I � A)�1(I + A)x (3.1)
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where A is initialized to be a skew-symmetric matrix using 5. x is the input and y is the

output. A is the parameter of this layer which allows fine tuning of input orthogonal matrix

to new orthogonal matrix which minimizes the spectral loss. (I�A)�1(I+A) is called cayley

transformation.

The loss function of the model is defined as:

Lmodel =

ELBOz }| {
DKL(q�(z|x)|p✓(z|x))+

Spectral lossz }| {
tr(µT

new
Lµnew) (3.2)

=
1

m

mX

l=1

kxi � x
0

i
k22 + �DKL(q�(z|x)|p✓(z)) + tr(µT

new
Lµnew) (3.3)

where

DKL(q�(z|x)|p✓(z)) =
mX

i=1

"
kX

j=1


�ij
2
(1 + log(�2

ij
)� (µnew)

2
ij
� �2

ij
)� (1� �ij)

✓
1� ↵

1� �ij

◆
� �ij

✓
↵

�ij

◆�#

since the prior is the spike and slab distribution (refer to the Appendix B of Tonolini

et al. [2019] for derivation of the ELBO).

µnew in Equation (3.2) is:

µnew = normalize(cay(A) µ) = normalize((I � A)�1(I + A) µ) (3.4)

where normalize transformation is as in Definition(3.4.1).

Hence,

Lmodel = �
mX

i=1

"
kX

j=1


�ij
2
(1 + log(�2

ij
)� (µnew)

2
ij
� �2

ij
)� (1� �ij)

✓
1� ↵

1� �ij

◆
� �ij

✓
↵

�ij

◆�#

+
1

m

mX

l=1

kxi � x
0

i
k22 +

1

m
tr(µT

new
Lµnew) (3.5)

where k is the number of features of the latent variable which is equal to the number of

clusters in the dataset. (�, µ, �) are the output of the encoder. m is the mini-batch size.

This correction in spectral loss comes in to normalize the spectral loss irrespective of the

45



mini-batch size for mini-batch training. µnew is as defined in the Equation (3.4).

The spike and slab probability distribution introduces sparsity to the orthogonal repre-

sentations which closely resembles the matrices in the solution space of the RatioCut problem

(or the balanced mincut problem) in (2.1.5). This sparsity in the latent variable sampling

allows it to have a structure close to the cluster assignment structure (exact one non-zero

entry in each row). We lose this cluster assignment structure when we relax the RatioCut

problem. Hence sampling from spike and slab distribution produces matrices which are close

to the exact solution.

Algorithm 4: ExSC training

Input: X 2 Rn⇥d, number of clusters k
Output: Embeddings y1, y2, . . . , yn and cluster assignments c1, c2, . . . , cn where

ci 2 1, 2, . . . , k
1 Initialize the �-VAE network weights
2 Initialize the cayley layer weight A 2 skew(p) using 5
3 while loss is not converged do

4 Sample a random mini-batch X of size m;
5 Calculate the a�nity matrix W using the gaussian kernel;
6 Calculate the unnormalized laplacian L;
7 Forward propagate X to get µ and then through CayleyNN to get µnew;
8 Compute the loss in (3.5);
9 Use the gradient of each term of the loss function w.r.t each parameter to update

all model parameters;

10 Forward propagate all data points x1, x2, . . . , xn to obtain µ1, µ2, . . . , µn

11 Normalize them using (3.4.1) to obtain y1, y2, . . . , yn
12 Do k-means clustering on y1, y2, . . . , yn to obtain clusters
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Chapter 4

Experimental Results

We compare the performance of our model with previous spectral clustering algorithm on

benchmark real datasets MNIST and FashionMNIST. Experiments were performed mostly

over MNIST dataset with models proposed in the previous chapter. The proposed mod-

els include geometric approach (through RGD), VAE trained on spectral loss and �-VAE

with parameterization and di↵erent choices of prior (gaussian and spike & slab). The ExSC

model which consist of �-VAE architecture (with spike and slab prior) together with param-

eterization is tested against various other clustering model on MNIST and FashionMNIST

dataset.

4.1 Evaluation metric:

The clustering accuracy can be determined using two well known metrics(Cai et al.

[2011]): Normalized Mutual Information(NMI) and unsupervised clustering accuracy (ACC).

Both the NMI score and the ACC score lie between 0 and 1.

NMI(or ACC) score of 1 denotes perfect clustering, that is, the two sets of clusters

are identical (perfect overlap). Whereas, 0 score denotes that the two set of clusters are

independent. Higher the score, better is the clustering.
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Normalized Mutual Information (NMI)

Let T be set of clusters obtained from the ground truth and T
0
be the set of clusters

obtained from a model’s prediction.

The Mutual Information(MI) metric is defined as:

MI(T, T
0
) =

X

ti2T,t
0
j2T

0

p(ti, t
0

j
) log2

 
p(ti, t

0
j
)

p(ti) · p(t0j)

!
(4.1)

where p(ti) and p(t
0
j
) are the probability that an arbitrary point picked from the data space

belongs to the clusters ti and t
0
j
respectively. p(ti, t

0
j
) is the joint probability that a point

picked at random belongs to both the clusters ti and t
0
j
.

The Entropy H(C) of a cluster C is defined as:

H(C) =
kX

i=1

p(ci) · log2(p(ci)) (4.2)

where C = {c1, c2, . . . , ck} are the k cluster labels.

Finally, the Normalized Mutual Information (NMI) is defined as:

NMI(T, T
0
) =

MI(T, T
0
)

max(H(T ), H(T 0))
(4.3)

ACC

Let S = {s1, s2, . . . , sn} and C = {c1, c2, . . . , cn} denote the true labels and predicted

labels for all n data points. That is, for datapoint x0, let s0 and c0 denotes true label and

predicted label respectively.

ACC is defined as:

ACC =
1

n
max
�2⇧

k�1X

i=0

�(ti,�(t
0

i
)) (4.4)
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where � is the Delta function and ⇧ denotes the space of all permutations of {1, 2, . . . , k}.

�(x, y) =

8
<

:
1, x = y

0, otherwise

The best mapping � can be obtained using the Kuhn-Munkres Algorithm (Munkres [1957]).

4.2 Datasets

MNIST Dataset

MNIST dataset is a collection of 70,000 gray-scale hand-written digits(0-9) of shape

(28⇥ 28) where each value denotes the pixel intensity. Each values lies between 0-255 where

0 denotes completely black pixel and 255 denotes the completely white pixel. This accounts

to 784 input features for each image. Furthermore, dataset is divided into 60,000 training

images and 10,000 test images.

FashionMNIST Dataset

FashionMNIST dataset is similar to MNIST dataset but relatively challenging in both

the classification problem and clustering. The dataset has 70,000 (60,000 train and 10,000

test images) gray-scale images belonging to one of these 10 classes: {T-shirt/top, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot}.

4.3 First Method: Geometric approach

Mainly two toy datasets were created for testing RGD for clustering, viz. concentric

circles and entangled CC. As it can be seen in the Figure(4.1) the spectral loss converges for

both data and Yoptimal from Algorithm(3) gives out desired clusters. k-means as expected

formed spherical clusters.
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Figure 4.1: RGD and k-means comparison on toy datasets. Top: entangled CC, Bottom:
Concentric circles

4.4 Initial approaches using neural network

4.4.1 �-VAE without any parametrization

Since the VAE bottleneck layer produces near orthogonal matrices(matrices with orthog-

onality index[5] close to 0), these representation were directly used for clustering in the initial

tests. These orthogonal representation were directly treated as the embeddings of the input

and k-means clustering was done on it. As expected, those representation were far from

the eigenvector matrix(2.1.1) of L and produced results which were same as doing k-means

clustering on the input itself. On over 60,000 training images, NMI came out to be 0.41 and

a ACC score of 0.5. The reconstructed images were also not good enough (when compared

to the 4.6) as can be seen in the Figure(4.2).

The next variation to this model was using �-VAE (gaussian prior) without any param-

eterization trained upon the sum of VAE loss and spectral loss as in the section(3.3.2). This

model performs well when compared to the previous approaches but the Table(4.1) shows

how crucial it is to add the cayley layer (or some other paramterization). This in fact shows

how such parameterizations can fine tune the orthogonal matrix at the bottleneck to produce

better orthogonal matrix(i.e. with lower orthogonality index).
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Prior Cayley layer Train Test
NMI ACC NMI ACC

7 0.52 0.66 0.51 0.62
gaussian

3 0.60 0.70 0.58 0.62

7 0.46 0.52 0.49 0.54
spike and slab

3 0.61 0.64 0.66 0.69

Table 4.1: Results demonstrating impact of the cayley layer addition.

Figure 4.2: Top row shows the original images. Bottom row shows the reconstructed images
from the simple �-VAE model.

4.4.2 �-VAE with parameterization and gaussian prior

The model is as in the section(3.3.3). Reconstructed images for the VAE model with

cayley for gaussian prior is as shown in Figure(4.4). Normalized µ is a near orthogonal

matrix at the end of the training but it further improves in terms of orthogonality upon

changing the prior from gaussian to spike and slab.

4.5 Extended Spectral Clustering

The ExSC model with architecture as shown in Figure(3.3) was tested on MNIST and

FashionMNIST datasets. The graph is constructed by joining each nodes with its 75 nearest

neighbours and assigning weight to each edge using gaussian kernel (2.1). The scale variable �

in gaussian kernel was calculated by taking mean of distance of each point to its 3rd nearest

neighbour (same way as SpectralNet decided �). If the graph has components, spectral

clustering tend to give each component as a separate cluster. Since the batch size (bs) is

taken to be 100, choosing a high value of k(� 0.5⇥ bs) ensures that each graph constructed

(for each mini-batch) is connected. Mini-batch size was taken to be 100 in all experiments.
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Figure 4.3: �-VAE with cayley layer and gaussian prior

Figure 4.4: Top row shows the original images. Bottom row shows the reconstructed images
from the �-VAE model with gaussian prior and cayley layer added.

Figure 4.5: µT

n
µn after training for spike and

slab prior. µn is normalized µ (Definition
3.4.1).

The model also learn decoder during

training, which can be used for multiple

side tasks like generative model, data au-

gentation, feature extraction, recommender

systems and search engines. Images recon-

structed from the model are as shown in Fig-

ure(4.6).

Clustering results over MNIST with the

ExSC model can be seen in Table(4.2). The

model outperforms SpectralNet base model

which uses euclidean metric to determine
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Figure 4.6: Top row shows the original images. Bottom row shows the reconstructed images
from the �-VAE model with spike and slab prior and cayley layer added.

Figure 4.7: No cayley layer is used. �-VAE with spectral loss was trained until convergence;
Left: Gaussian prior, Right: Spike and slab prior

Epochs Train Test
NMI ACC NMI ACC

800 0.665 0.710 0.693 0.734
Our model 980 0.675 0.766 0.687 0.765

970 0.699 0.775 0.711 0.782

SpectralNet - 0.671 0.62 - -

Table 4.2: Result comparison of our ExSC model on MNIST dataset with SpectralNet
(Shaham et al. [2018])

similarity (a�nity matrix) between points

and uses pixel values directly as an input instead of using a code space (a pre-trained model

which gives embeddings of an input. These embeddings can then used as an input to Spec-

tralNet instead of pixels values). There is significant improvement over NMI value and nearly

25% improvement in ACC score.

There was also a significant improvement in the accuracy of the model with addition of

batch normalization. Further improvement in results(even on individual mini-batch) can be

53



Figure 4.8: ExSC model (has Spike and Slab prior)

observed in Figure(4.7) by using Spike and slab prior instead of Gaussian prior in the �-VAE

architecture. Also, the overall loss and the spectral loss converges in all runs (Figure 4.3,

4.8).

Validation loss is a good measure of convergence to a solution in unsupervised setting.

10% of the total training data was used as validation set. Convergence in validation loss

can be seen with convergence in overall loss in Figure(4.9). All loss values converges with

training. Validation loss can be used as a stopping criteria. Figure(4.10) is the confusion

matrix plot for MNIST and FashionMNIST datasets. It shows good clustering as each row

and column has single large entry. Since the predicted label will not be same as the true

label, larger entries are not along the diagonal as one would expect for a confusion matrix(for

example, label = 4 in prediction might refer to clusters of all handwritten digits “7”).

In the Figure(4.11), it can be clearly seen that changing the prior distribution has im-

proved the quality of orthogonal representation at the bottleneck. More the µTµ is close

to being diagonal matrix, the better will be the normalized(µ) in terms of orthogonality.

Figure(4.5) shows that the normalized µ in case of the spike and slab prior is nearly an

orthogonal matrix and thus minimization of spectral loss over collection of such matrices is

leading to good clustering results.
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Figure 4.9: Overall loss, spectral loss and validation loss for 75nn with sns prior. All loss
values are converging.

Figure 4.10: Confusion matrix for both datasets with predicted labels. Each row and column
having single large entry indicates good clustering.

Nearest neighbours Train Test
NMI ACC NMI ACC

25 0.60 0.63 0.64 0.65
50 0.62 0.70 0.63 0.69
75 0.63 0.66 0.67 0.69
100 0.63 0.67 0.68 0.70

Table 4.3: Result comparison on the MNIST dataset with di↵erent values of nearest neigbour
for constructing laplacian. Mini-batch size = 100 and number of epochs = 400.

Our model is robust to selection of nearest neigbours while constructing the graph (which

in turn gives laplacian). SpectralNet result drastically change with change in this parameter

and can go as low as NMI ⇠ 0.25. This robustness can be observed in the Table(4.3)

Reconstructed images for FashionMNIST dataset are as shown in Figure(4.12) and con-

fusion matrix for clustering results is as shown in Figure(4.10) (right). Clustering on the

FashionMNIST dataset achieve NMI ⇠ 0.63 and ACC ⇠ 0.61.

We compared our model results with k-means (Macqueen [1967]), PSSC (Villar-Corrales

and Morgenshtern [2020]), DEC (Xie et al. [2016]), IDEC (Guo et al. [2017]), JULE (Yang

et al. [2016]), DCN (Yang et al. [2017]), DEPICT (Dizaji et al. [2017]), DDC (Ren et al.

[2018]), N2D (McConville et al. [2020]) and ADEC (Mrabah et al. [2019]). Our model
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Figure 4.11: µTµ for gaussian prior(left) and spike and slab prior(right). Diagonal matrices
are better matrices for clustering

Figure 4.12: Top row shows the original images for FashionMNIST dataset. Bottom row
shows the reconstructed images from the �-VAE model with spike and slab prior and cayley
layer added.

performed well against other clustering algorithms and outperformed most of them (Table

4.4) on FashionMNIST dataset.

Note: All the figures and plots are produced from training on MNIST dataset. For

FashionMNIST dataset results and plots, it is explicitly mentioned in the captions.
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Models MNIST FashionMNIST
ACC NMI ACC NMI

k-means 0.584 0.497 0.474 0.512
PSSC 0.965 0.913 0.628 0.644
DEC 0.863 0.834 0.518 0.546
IDEC 0.881 0.867 0.529 0.557
JULE 0.964 0.913 0.563 0.608
DCN 0.830 0.810 0.501 0.558

DEPICT 0.965 0.917 0.392 0.392
DDC 0.965 0.932 0.619 0.682
N2D 0.979 0.942 0.672 0.684
ADEC 0.986 0.961 0.586 0.662

ExSC (Our) 0.699 0.775 0.611 0.627

Table 4.4: Result comparison on MNIST and FashionMNIST dataset. Note that none of
them is an extension of Spectral clustering or uses Laplacian to determine clusters. (Source:
Villar-Corrales and Morgenshtern [2020])
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Chapter 5

Conclusion and Future work

Around 25% improvement in the ACC score and 4% improvement in NMI score can be ob-

served over the SpectralNet’s result on MNIST dataset. The model also produces comparable

results to the other clustering models on FashionMNIST dataset.

The ExSC model(our) consists of a trained decoder which can very well be used for

multiple side tasks. ExSC model performs well even on the unseen data as it can be seen

in the Table(4.2) that similar clustering accuracy is observed over test set (of 10,000 unseen

data points) after training. There were two major addition to the SpectralNet base model,

that were, the Siamese network (to better learn similarity between points) and the use of code

space (to only keep important input features for learning). Both of these are independent

of SpectralNet base model and can very well be implemented on top of our model as well.

Addition of these two components could possibly lead to similar improvement in the results

as the SpectralNet observed.

SpectralNet had a few major drawbacks. It doesn’t work across di↵erent datasets and

is highly dependent on the hyperparameter setting. The robustness to hyperparameter set-

ting is an important property for a clustering model since hyperparameter tuning requires

supervision. Even the slightest of changes to the hyperparameters of the SpectralNet leads

to a singular matrix before the “orthogonal layer” of SpectralNet and since Cholesky de-

composition in the last layer requires matrix to be non-singular, the SpectralNet model does

not work. Other limitation being loss of information. In the hyperparameter setting under

which SpectralNet’s best results were obtained, only 3 nearest neighbours were chosen to
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construct a�nity matrix. This lead to laplacian being highly sparse. With mini-batch of

size 1024 they only had 4 non-zero entries in each row of the laplacian. Our model works

well under all these conditions and even full a�nity can be used to do the clustering. Our

model is also not much sensitive to the hyperparameter setting as one can see in Table(4.3)

that for various values of nearest neighbour the model produces similar clustering results.

Notice there is a di↵erence in these results and the best results because of less number of

epochs (fixed to 400 in these tests).

Clustering over the FashionMNIST using our model is promising as the model is giving

comparable results to the other clustering algorithm (Table 4.4). Addition of a Siamese

network with a code space can likely produce state-of-the-art result on the dataset. More

theoretical work can be pursued on the topic. One can also review ways to improve CayleyNN

layer architecture which can be made batch size independent through operation like (y =

x cay(A)T ) and multiple such layer can be used before minimizing the spectral loss.
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Appendix

Experiment details:

The model architecture for the MNIST and FashionMNIST dataset: [784� 392� 261�
20� 10] for the encoder and decoder being [10� 20� 261� 392� 784] with cayley layer as

[10 � 10]. These number denotes the number of in-features and out-features of each of the

layers in the model. These number are specific to the MNIST and FashionMNIST dataset

and vary as according to (3.3).

The recognition function (encoder) takes in input xi 2 R1⇥d and returns the mean µi 2
R1⇥d, log variance log(�2

i
) 2 R1⇥d and log spike log(�i) 2 R1⇥d where (µ, �, �) are the

parameters of the approximate posterior. Each entry of �i has to lie in [0, 1], thus we output

log(�i) which ensures �i � 0 and further we can ensure �i  1 by

log (�i) = �ReLU (�vi)

where vi is the output of the encoder which goes into the bottle-neck layers.

zi is sampled using the reparameterization trick as in the section(2.4.4). c is initialized

with 50 and is gradually increased using �c = 0.001 in each iteration.

The dataloader is set to produce random mini-batch in each iteration. These mini-batches

also changes across epoch since keeping mini-batches same across epoch would mean only a

sequence of diagonal blocks of size m ⇥m in Wfull (n ⇥ n a�nity matrix) will be used for

training and hence most of the entries of Wfull are ignored.

Adam optimizer was used to make updates to the model parameters as it convergences

faster, is computationally e�cient and robust to the hyperparameter selection. The hyper-
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parameters being the learning rate and the weight decay (L2 penalty).

In initial testing, dropout layers were also used to further regularize the model but the

model performed poorly (in producing orthogonal respresentations) across all experimental

settings and hence dropout layers were dropped from the final model ExSC.

Stopping criteria

Stopping criteria was based on the validation loss. The last five validation loss values

v1, . . . , v5 were taken and if |vi � vi+1|  t 8 1  i < 5, the training stops. Here, t is the

threshold and hence a hyperparameter. Update strategy was used on t where t is doubled

in every 50 epochs after 800 epochs of training.

Orthogonality index

Orthogonality index of a matrix A 2 Rm⇥n is defined as

o(A) = kATA� IkF

where I 2 Rn⇥n is the identity matrix and the Frobenius norm k · kF for a matrix A 2 Rm⇥n

is defined as

kAkF =

vuut
mX

i=1

nX

j=1

a2
ij

Hyperparameter selection in our ExSC model was based on the quality of output or-

thogonal representations. The output was assessed based on the orthogonality index. This

doesn’t make use of data labels and hence can be used in the unsupervised setting of clus-

tering problem.

Nearest neighbour hyperparameter is used in constructing the laplacian and scale neigh-

bour parameter determines the � in the gaussian kernel (2.1). Let scale neighbour = l then

� is the median of distances of each point from its lth nearest neighbour. This strategy was

proposed by Shaham et al. [2018] and was followed by us for a fair comparison of the results.

66



General

Hyperparameter Values

batch size 100

Validation set fraction 10%

number of clusters 10

Optimizer Adam

activation function Tanh

learning rate 1e-4

weight decay 1e-4

nearest neighbours 75

scale neighbours 2

threshold t 0.1

Spike and slab prior

Hyperparameter Values

↵ 0.5

c 50

�c +0.001

� 0.1

�� 0

gaussian prior

Hyperparameter Values

� 20

Table 1: Hyperparameter setting

Skew-symmetric matrix initialization

We use the method proposed in Helfrich et al. [2018] to initialize the weight matrix of

the cayley layer. A 2 skew(n) is initialized to be block diagonal matrix.

A =

2

64
B1

. . .

Bbn/2c

3

75 where Bj =

"
0 sj

�sj 0

#

sj =
q

1�cos(tj)
1+cos(tj)

and tj is sampled from U
⇥
0, ⇡2

⇤
.

QR and Cholesky decomposition relation

Since we know these two relations:

Y = QR (1)

Y TY = LLT (2)
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Where first is the QR-decomposition of Y and second is the Cholesky factorization of Y TY .

=) Q = Y R�1

Now since QTQ = I

=) (Y R�1)T (Y R�1) = I

=) (R�TY T ) (Y R�1) = I

=) RTR = Y TY = LLT

=) RTR = LLT

=) L = RT

=) Y L�T = Y R�1 = Q

This implies that right matrix multiplying Y with L�T is giving the Q component of QR-

decomposition of Y

So as we were taking Q
0
= Y L�T in SpectralNet is same as taking Q from QR-decomposition

as in the equation (1).
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