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Abstract 

In spite of the multitude of studies that deal with the effect of fluctuating 

environments on bacterial populations, how fluctuations and complexity (multiple 

stresses silmultaneously) interact with each other is poorly studied. To investigate 

the interactions of complexity and fluctuations, different combination selection 

regimes such as Simple Predictable, Simple Unpredictable, Complex Predictable, 

and Complex Unpredictable were designed and bacterial populations were evolved 

in these selection regimes for approximately 300 generations. The fitness in terms of 

growth rate (r) and carrying capacity (K) of these evolved populations were assayed 

in different novel and component environments. No significant fitness difference was 

detected between different selection treatments in the novel environments. However, 

in component environments, Simple Predictable selection treatment showed the 

highest fitness and Complex Unpredictable had the lowest overall fitness. In general, 

predictable fluctuations had higher fitness than the unpredictable fluctuations and 

simple selection treatments (which faced one stress at a time) performed better than 

the complex selection treatments (which faced two stresses at a time).  
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Introduction  

In nature, temporally fluctuating stressful environments are faced routinely by 

different organisms. The environment can either consist of a single stress (simple 

environment) or multiple stresses (complex environment) changing simultaneously. 

Moreover, temporal fluctuations can either be predictable or unpredictable. 

Experimental evolution in laboratory, which uses organisms with shorter generation 

times, is an excellent way to simulate such temporally fluctuating environments and 

study their long term evolutionary effects (Kassen 2002). Therefore, there have been 

many studies that document the evolutionary effects of temporally varying 

environments on laboratory populations of microorganisms. Studies involving 

laboratory evolution experiments have demonstrated that predictably fluctuating 

environments lead to the evolution of generalists (organisms which are adapted to 

wide range of environments).  Constant environments on the other hand, promote 

the evolution of specialists – organisms with narrower niche width (Ketola et al., 

2013; Condon et al., 2013; Kassen 2002). There has also been comparison between 

the evolutionary outcomes of predictable and stochastic fluctuations suggesting that 

predictable fluctuations provide higher fitness advantage than the stochastic 

fluctuations (Alto et al., 2013) and produce superior generalists (Hughes et al., 

2007). Additionally, it has been shown that populations evolved in complex 

environments (containing more than one substitutable resource) were able to adapt 

to several substrates simultaneously and were neither complete specialists nor 

complete generalists but “jack of all, master of some” (Barrett et al., 2005). These 

studies being insightful, fail to describe the complete picture because they deal with 

only one axis at a time, either fluctuations or complexity. Moreover, most of these 

studies only deal with fluctuations of a single environment – temperature (Ketola et 

al., 2013) or pH (Hughes et al., 2007).  

In spite of the substantial corpus of studies, how predictability and complexity of 

environment interact with each other, remains poorly investigated.  This is a more 
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realistic scenario as fluctuations and complexity are intertwined in natural 

environments. However, a recent study published by Karve et al (2015) have 

observed that bacterial populations selected in unpredictably fluctuating complex 

stressful regime composed of pH, salt, and peroxide for 170 generations show 

fitness advantage in uncorrelated novel environments when compared to the control 

populations that were selected in nutrient broth. Moreover, the evolved populations 

did not show any fitness advantage in any of the three selection environments 

(Karve et al., 2015). 

However, it is not clear whether the fitness advantage observed in the novel 

environments is because of the complexity of the selection regime, unpredictability or 

a combination of both. Moreover, it is relevant to figure out how these two axes – 

fluctuations and complexity shape the evolutionary dynamics of bacterial populations 

and affect their fitness in selection as well as novel environments.  

Here, we designed different selection regimes that represent different combinations 

of fluctuations and complexity along with relevant controls. Replicate bacterial 

populations were evolved in these selection regimes for approximately 300 

generations. The fitness of the evolved populations were assayed in different abiotic 

novel and selection environments. 

  

Figure 1: The different selection regimes that were designed. 
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Materials and Methods 

Choice and standardisation of abiotic stresses 

Two abiotic stresses were required for the study. Abiotic stresses with broad 

spectrum of activity but without any antagonistic interactions with each other were 

considered. By using previous laboratory studies (unpublished data) and relevant 

literature screening, four abiotic stresses were considered initially: CTAB, (a cationic 

detergent) SDS, (an anionic detergent) pH, (acidic and basic) and Silver Nitrate. 

Eventually, CTAB was dropped due to logistic reasons. Pilot studies were done 

using pH - SDS and Silver Nitrate - SDS as two stressful combinations. Populations 

of a kanamycin resistant E coli MG1655 strain were exposed to a gradient of 

concentrations of these stresses separately as well as in the combinations 

mentioned above. 100µL of bacterial volume was inoculated form the glycerol stock 

in 50mL of NB with relevant stress. The populations were allowed to grow for 24 

hour in 100mL conical flasks grown at 37°C and 150rpm. Growth rate (r) (Ketola et 

al., 2013; Karve et al., 2015) and carrying capacity (K) (highest density reached in 24 

hours of growth trajectory) were measured as fitness to estimate the inhibitory action 

of different concentrations of the stresses. The aim was to determine sub lethal 

environmental values i.e. values which were stressful but not inhibitory in both simple 

(one stress) and complex (two stresses) scenarios. Since, the stresses did not have 

antagonistic effects, a complex combination of two stresses was always more 

stressful than the subsequent single stresses. Therefore, meeting the above 

mentioned condition of similar values for the both simple and complex treatments 

was elusive and could not be achieved in the case of pH. For example, a pH of 9 in 

conjugation with 0.25% of SDS was lethal/fatal whereas a pH of 9 alone supported 

the growth comparable to the control. As a result of this, the pH – SDS combination 

was dropped. Nevertheless, two sub-lethal values each for SDS and Silver Nitrate 
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were successfully determined that were stressful in both simple and complex 

scenarios. Therefore, Silver Nitrate (SN) and Sodium Dodecyl Sulphate (SDS) were 

chosen as stresses for the studies with following sub – lethal concentration values. 

 

 

SN – 0.08M and 0.112M 

SDS – 0.5% and 2% (w/v) 

In the pilot studies mentioned above, the individual stress values and their complex 

combinations (0.08M SN, 0.5% SDS), (0.08M SN, 2% SDS), (0.112M SN, 0.5% 

SDS), and (0.112M SN, 2% SDS) were all tested for their inhibition and all the 

environments were sub – lethal, though to the varying degree.  

 

Selection regimes 

After determining relevant stressful values, (two for each stress) different selection 

regimes were designed. The selection experiment was designed for 60 days with 

sub culturing after every 24 hours.  

A sequence of the four stress values (0.08M            0.112M             2%             0.5%) 

was iterated 15 times to generate the Simple Predictable (SP) selection regime of 60 

days in which each stress value appeared for equal number of days i.e. 15 (the 

arrow represents sub – culturing) 

A random sequence of the same four stress values was generated using a random 

number generator for 60 days such that the values appeared randomly but each 

value appeared for equal number of times. This selection regime was labelled as 

Simple Unpredictable (SU). 

The four Silver – SDS stressful combinations standardized were arranged in a 

sequence [(0.112M,0.5%)           (0.08M,0.5%)         (0.08M,2%)         (0.112M,2%)] 

and this sequence was iterated 15 to generate the Complex Predictable (CP) 

selection regime. Every combination appeared equal number of times. 
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A random order of the four Silver – SDS stressful combinations was generated such 

that each combination appeared for equal number of times but randomly for 60 days. 

This selection regime was labelled as the Complex Unpredictable (CU) selection 

regime. 

Note: The sequences described in the SP and CP regimes are the ones for which no 

extinction was observed in the first four days, during which the populations got 

exposed to every environment sequentially for the first time. In case of any extinction 

event before the 4th day, I generated a new sequence and restarted the selection. 

Similarly, in the case of SU and CU, in case of any extinction in the first 5 days, 

(before the making of the first stocks) it was decided to generate a new random 

sequence of the environments and restart the selection. Such extinction events 

happened only once. 

Apart from the above mentioned fluctuating selection regimes, three control selection 

regimes were also designed. Two stressful constant selection regimes were 

designed, one with a constant environment of 0.112M SN (SIL treatment) and 

another with a constant environment of 2% SDS (SDS treatment). Finally a selection 

regime was designed with no stress and thus, 60 days of selection in plain NB. This 

selection treatment was labelled as NB line.  

 

Selection Protocol 

Kanamycin resistant E coli strain (MG1655) was used for the study. Thus, 

kanamycin was always present in the medium to prevent growth of any contaminant. 

The stored glycerol stock of the strain was inoculated for 18 – 20 hours. This revived 

culture was used to start the different selection treatments. The same culture was 

also stored as the ancestral population at -800C. Each selection treatment consisted 

of five biological replicates (populations that faced the same treatment). Thus, a total 

of 35 populations for seven different selection treatments were evolved. The culture 

volume was 50mL. Each population was grown in 100mL conical flasks and 

maintained at 37°C and 150 rpm throughout the selection experiment. Sub culturing 

was done after every 24 hour. 1mL out of the 50mL grown population was inoculated 

into a fresh medium with corresponding environmental conditions. Selected 

populations were stored in 15% glycerol at -800C after every 5th day of the selection 
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for future fitness measurements. 14 randomly chosen populations out of 35 were 

plated to check for contamination. This was done thrice during the entire duration of 

the selection. The populations were plated on Nutrient Agar plates with Kanamycin 

to double check for any contamination. No contamination was observed. In case of 

any extinction event, which was defined as lack of visible growth in the flask after 24 

hours, the selection of the corresponding population was restarted from the previous 

day’s glycerol stock. The glycerol stock was revived in NB for 18 – 20 hours and was 

subsequently transferred into the corresponding selection environment. Keeping in 

mind the light sensitive nature of the SN solution, proper care was taken to minimally 

expose the populations to bright light during the entire duration of the selection. 

Because of the strong death phase (sharp decrease in optical density) in the growth 

trajectory of the populations caused by the action of SDS, the measurement of the 

optical density before every sub – culturing was not done, as it would not have 

helped in calculating the number of generations. The selection was continued for 55 

days i.e. ~300 generations (Bennett and Lenski, 1997).   

At the end of the selection, populations were inoculated in plain NB for 18 – 20 hours 

and used for fitness measurements in different abiotic environments. Moreover, the 

final selection cultures were also stored in the form of glycerol stocks at -80°C for 

future fitness measurements. 

 

Fitness measurements of bacterial populations 

The selected populations were assayed for their fitness in different abiotic 

environments. Fitness was measured as the maximum growth rate of the 

populations (Ketola et al., 2013; Karve et al., 2015) and the carrying capacity of the 

same. Growth assays were done in different novel (stresses never faced by the 

populations) and component (stresses faced during the selection) stresses.  

Selected populations were revived in plain NB for 18 – 20 hours (mentioned in the 

previous section). These revived cultures were then used to initiate the growth 

assays. 4µL revived culture was inoculated in 2mL of NB containing the relevant 

stress.  Fitness of each population was assayed twice in every assay environment. 

Growth assays were done in 24 well plates which were incubated at 37°C and 150 

rpm and optical density was measured on a plate reader (Synergy HT BioTek, 
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Winooski, VT, USA) after every one hour at 600nm. The optical density was 

measured till a particular population was saturated. Thus, in case of novel treatments 

and treatments with silver, the OD was measured till the population reached the 

saturation phase (constant OD for more than 2 hours). In case of SDS treated 

populations, OD was measured till 4 – 5 hours post death phase. The experiment 

was terminated at the 36th hour for the populations that did not grow. 

 

 

a. Fitness measurements in component environments 

Fitness measurements were also done in different component environments. 

These are the environments that were the part of the different selection 

treatments. Fitness measurements were done in 0.08M Silver, 0.112M Silver, 

0.5% SDS, 2% SDS, and NB. These values were used to design the Simple 

Predictable (SP) and Simple Unpredictable (SU) selection regimes and thus 

they will be referred as Simple selection environments. 

Similarly, fitness measurements were also done in (0.08M, 0.5%), (0.08M, 

2%), (0.112M, 0.5%), and (0.112M, 2%). These four combinations were used 

to design the CP and CU selection regimes and thus will be referred as the 

complex selection environments. 

Therefore, all the evolved populations were assayed for their fitness in the 

above mentioned nine component environments. 

 

b. Fitness measurements in novel environments 

Fitness measurements were done in multiple novel environments. The novel 

environments chosen for the fitness assays were not encountered by the 

bacterial populations during the selection. Moreover, these stresses have 

different mechanisms of action as compared with the component stresses 

(silver and SDS). Lastly, the multiple novel environments used were 

uncorrelated to each other as well in terms of their mechanism of actions. 

Previous range estimation studies (data nor published) were screened to 

select the novel stresses. Antibiotics were chosen as the novel stresses. Pilot 
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studies were performed to standardize a sub-lethal concentration for each 

novel stress. Ancestral population was used for the standardization. 

Finally, Norfloxacin, Rifampicin, and Chloramphenicol were chosen as the 

novel stresses. Norfloxacin is known to attack DNA Gyrase, an enzyme 

involved in DNA replication (Drlica and Zhao, 1997). Chloramphenicol inhibits 

protein synthesis by binding to the 50S ribosomal unit (Wolfe and Hahn, 

1965). Rifampicin inhibits transcription by inhibiting RNA polymerase (Calvori 

et al., 1965). 

 

Fitness estimation 

The fitness was estimated using the growth trajectory obtained during the assay in 

relevant environment. Growth rates (r) and carrying capacities (K) were computed 

using these growth trajectories.  A PYTHON script was used to determine the r and 

the K of the bacterial populations. The program fits a straight line on overlapping 

moving windows of four points on the time series data of the optical density values 

(growth trajectories). The maximum slope obtained through this method was taken 

as the growth rate of the population. The same script was also used to determine the 

carrying capacity (K) of the populations. The maximum optical density attained in a 

growth trajectory was taken as the carrying capacity of the population. Both r and K 

were used as the measure of fitness for all the populations and in all the tested 

environments. As mentioned above, each population was measured for the fitness in 

duplicates. The fitness values of the two measurements were averaged to obtain a 

single fitness value for each population in each assayed environment. This was done 

for both r and K measurements. Thus, a total of five fitness values for each r and K 

represented a selection treatment in an environment. 

 

Statistical Design  

a. Component and novel environments 

Pooled data of the fitness (r and K) was analysed using a two way ANOVA. 

Selection (seven levels: SP, SU, CP, CU, SIL, SDS, and NB) and assay 

environment were the two fixed factors. Assay environment had nine levels 

[0.08M SN, 0.112M SN, 0.5% SDS, 2% SDS, (0.08M, 0.5%), (0.08M, 2%), 
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(0.112M, 0.5%), (0.112M, 2%), and NB] for component environments and 

three levels (NOR, CHL, and RIF) for novel environments. Separate ANOVA’s 

were done for both r and K.  

In case of component environments, fitness of the selection treatments was 

also analysed separately for simple component environments (0.08M SN, 

0.112M SN, 0.5% SDS, and 2% SDS) and complex component environments 

[(0.08M SN, 0.5% SDS), (0.08M SN, 2% SDS), (0.112M SN, 0.5% SDS), and 

(0.112M SN, 2% SDS)]. Separate two way ANOVA’s were done for both 

simple and complex component environments.  

Similarly, to determine the effects of the fluctuations and complexity on the 

fitness (r and K), a three way ANOVA was done taking fluctuations (two 

levels: predictable and unpredictable), complexity (two levels: simple and 

complex) and assay environment as the fixed factors. As mentioned above, 

assay environment had nine levels for component environment assays and 

three levels for novel environment assays. 

The effects of fluctuations and complexity were also checked in simple 

component environments (0.08M silver, 0.112M silver, 0.5% SDS, and 2% 

SDS) and complex component environments [(0.08M, 0.5%), (0.08M, 2%), 

(0.112M, 0.5%), (0.112M, 2%)] separately. For this, two separate 3 - way 

ANOVA’s were done, one for the simple component environments and one for 

the complex component environments. The selection was the common fixed 

factor in both whereas the assay environment was simple component 

environments for the first ANOVA whereas it was complex component 

environment for the other one. Cohen’s d (Cohen 1988) was also computed 

as a measure of the effect size to determine the strength of the significance. It 

was interpreted as small, medium, and large for 0.2< d < 0.5, 0.5 < d < 0.8, 

and d> 0.8, respectively.  

 

 

Results 

Fitness in component environments 
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Selection affected the fitness (both r and K) significantly in the ANOVA pooled 

across all the nine component environments (F6,252 = 13.294, p < 0.001 for r and 

F6,252 = 26.09, p < 0.001 for K). (Table 1) (Fig 2). Moreover, assay environment i.e. 

component environments in this case also had a significant effect (F8,252 = 9.776, p 

<0.001 for r and F8,252 = 163.67, p < 0.001 for K ). This is expected as the component 

environments had both simple component and complex component environments 

which are likely to affect the populations in different ways. Similarly, selection × 

assay environment also had a significant effect (F48,252 = 2.909, p < 0.001 for r and 

F48,252 = 4.5, p < 0.001 for K) suggesting that the selection treatments responded 

differently to different component environments. (Table 1)  

The ANOVA pooled across all the simple component environments also showed 

significant effect of the selection on the fitness (F6,140 = 6.033, p < 0.001 for r and 

F6,140 = 15.01, p <0.001 for K). However, the effect of assay environment (simple 

component environments) was not significant in case of r (F4,140 = 2.175, p = 0.0749) 

but significant for K (F4,140 = 163.56, p <0.001). This informs that the five simple 

component environments were significantly different in the way they affected the 

carrying capacity and not the growth rate of the bacterial populations. Moreover, 

Selection × Assay interaction was also significant. (F24,140 = 2.878, p < 0.001 for r 

and F24,140 = 4.58, p < 0.001 for K). (Table 3) 

The ANOVA pooled across all the complex component environments also showed 

significant effect of the selection on the fitness (F6,112 = 15.491, p < 0.001 for r and 

F6,112 = 22.72, p < 0.001). Similarly, the assay environment (complex component 

environments) also significantly affected the fitness (F3,112 = 14.716, p < 0.001 for r 

and F3,112 = 21.126, p < 0.001 for K). The selection × assay interaction was non – 

significant in case of r (F18,112 = 1.617, p = 0.0675) but significant in case of K (F18,112 

= 2.004, p = 0.0148). (Table 1) 

Since, selection had a significant effect on the overall fitness in all the three 2- way 

ANOVA’s performed, Tukey post hoc test was performed to determine the pair-wise 

significance of the different selection treatments in all the ANOVA’s (Table 2) 

 

ANOVA Effect Dependent F - statistic p values 
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Factor 

All 

component 

environments 

Selection r F6,252 = 13.294 < 0.001 

K F6,252 = 26.09 < 0.001 

Assay 

environment 

r F8,252 = 9.776 < 0.001 

K F8,252 = 163.67 < 0.001 

Selection × 

Assay 

r F48,252 = 2.909 < 0.001 

K F48,252 = 4.5 < 0.001 

Simple 

component 

environments 

Selection r F6,140 = 6.033 < 0.001 

K F6,140 = 15.01 < 0.001 

Assay 

environment 

r F4,140 = 2.175 0.0749 

K F4,140 = 163.56 < 0.001 

Selection × 

Assay 

r F24,140 = 2.878 < 0.001 

K F24,140 = 4.58 < 0.001 

Complex 

component 

environments 

Selection r F6,112 = 15.491 < 0.001 

K F6,112 = 22.72 < 0.001 

Assay 

environment 

r F3,112 = 14.716 < 0.001 

K F3,112 = 21.126 < 0.001 

Selection × 

Assay 

r F18,112 = 1.617 0.0675 

K F18,112 = 2.004 0.0148 

Table 1: Summary of the three 2-way ANOVA’s performed for the component 

environments.  

Note: Separate ANOVA’s were done for r and K. Similarly, a main ANOVA was done 

pooled over all the component environments followed by two other ANOVA’s in 

simple component and complex component separately (all on the same data set, 

only the levels of environment variable changed). Since, r and K were not compared 

in the study and the results of different ANOVA’s were interpreted separately, there 

was no need of controlling for family wise error and hence no correction were 

performed. 
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ANOVA Approximate probabilities of the post hoc test (both r and K) 

All component 

environments 

SP (r, K) SP SU CP CU SIL SDS NB 

SU ns 

0.003 

      

CP ns, ns ns, ns      

CU <0.001 

<0.001 

0.0192 

0.0217 

0.0162 

<0.001 

    

SIL <0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

ns, 

0.0135 

   

SDS ns, ns ns, 

0.049 

ns, ns 0.0032 

<0.001 

<0.001 

<0.001 

  

NB 0.0092 

0.0012 

ns, ns ns, ns ns, 

0.044 

<0.001 

<0.001 

ns, 

0.025 

 

Simple 

component 

environments 

SP (r, K) SP SU CP CU SIL SDS NB 

SU ns, ns       

CP ns, ns ns, ns      

CU ns, 

<0.001 

0.0074 

<0.001 

ns, 

<0.001 

    

SIL <0.001 

<0.001 

<0.001 

<0.001 

0.0103 

<0.001 

ns, ns     

SDS ns, ns  ns, ns  ns, ns  ns, 

<0.001 

ns, 

<0.001 

  

NB ns, ns  ns, ns  ns, ns  ns, 

<0.001 

0.0017 

<0.001 

ns, ns   

Complex 

component 

environments 

SP (r, K) SP SU CP CU SIL SDS NB 

SU 0.0011 

<0.001 

      

CP ns, ns ns, ns      

CU <0.001 

<0.001 

ns, ns ns, ns     

SIL <0.001 

<0.001 

ns, 

0.0094 

<0.001 

<0.001 

ns, 

0.0116 

   

SDS ns, ns <0.001 

<0.001 

ns, ns <0.001 

<0.001 

<0.001 

<0.001 

  

NB <0.001 

<0.001 

ns, ns 0.0285, 

ns 

ns, ns ns, ns <0.001 

<0.001 

 

Table 2: Tukey post hoc pairwise interaction probabilities for both r and K for the 

different ANOVA’s done. “ns” means non-significant probability value. 
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When pooled across all the component environments, the average fitness (both r 

and K) of the SP selection treatment was highest among all the selection treatments 

with significantly higher than CU, SIL, and NB treatment. However, SP had non-

significantly higher fitness than SU, CP, and SDS selection treatments (Table 2, 

Table 3, Figure 2) Surprisingly, SP selection treatment also had significantly higher 

fitness (both r and K) than SU, CU, SIL, and NB fitness in complex component 

environments which were not faced by this selection treatment during the selection 

(Table 2) The mean fitness of all the selection treatments pooled over all the 

component environments is summarised in Table 3. 

 

 SELECTION AVG r SEM AVG K SEM 

All component 

environments  

SP 0.1952 0.006 0.893 0.0339 

SU 0.177 0.009 0.8022 0.04 

CP 0.1775 0.0079 0.836 0.0303 

CU 0.1475 0.0075 0.7248 0.0398 

SIL 0.1262 0.0083 0.644 0.0519 

SDS 0.1816 0.0066 0.8731 0.0339 

NB 0.1637 0.0095 0.7967 0.0507 

Simple 

component 

environments 

SP 0.1972 0.0076 1.0138 0.0444 

SU 0.2052 0.0118 0.9774 0.0423 

CP 0.1874 0.0129 0.9559 0.0368 

CU 0.1588 0.0097 0.84 0.055 

SIL 0.1421 0.0112 0.7968 0.0756 

SDS 0.1717 0.0092 0.9431 0.0531 

NB 0.1936 0.012 1.0307 0.0497 

Complex 

component 

environments 

SP 0.1928 0.0096 0.7421 0.0269 

SU 0.1417 0.0089 0.5832 0.0312 

CP 0.1651 0.0069 0.6861 0.0229 

CU 0.1333 0.0113 0.5808 0.0386 

SIL 0.1064 0.0113 0.4529 0.0394 

SDS 0.1939 0.0087 0.7855 0.0281 

NB 0.1264 0.0127 0.5402 0.0369 

Table 3: Mean r and K (±SE) of the selection treatments in component environments. 

Table 2 can be referred to know the significant pairwise differences. 
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 To determine the effects of fluctuations and complexity on the fitness of the evolved 

populations, a 3 way ANOVA was done with fluctuations, complexity, and assay 

environment (all component environments) as the fixed factors.  

The growth rate (r) and the carrying capacity (K) of the simple selection treatments 

(SP and SU) were significantly higher than the complex selection treatments (CP 

and CU) (F1,144 = 13.357, p < 0.001 for r and F1,144 = 15.514, p < 0.001 for K) when 

pooled across all the nine component environments with small effect size. Similarly, 

the r and K of the predictable selection treatments (SP and CP) were significantly 

higher than the unpredictable selection treatments (SU and CU) (F1,144 = 13.883, p < 

0.001 for r and F1,144 = 35.004, P < 0.001 for K) when pooled across all the 

component environments with small effect size. (Table 4 and Figure 3) 

This effect was further studied by performing two separate 3 way ANOVA’s for 

simple component environments and complex component environments. 

Fluctuations and complexity were the two fixed factors that were common for both 

the ANOVA’s whereas the assay environment was simple component environments 

(five levels) and complex component environments (four levels) for the two ANOVA’s 

respectively. 

When pooled across all the simple component environments, the r and K of the 

Simple selection treatments were significantly higher than the Complex selection 

treatments (F1,80 = 8.22, p = 0.0053 for r and F1,80 = 18.126, p < 0.001 for K). In 

terms of fluctuations, predictably fluctuating selection treatments had higher r and K 

than the unpredictable fluctuating selection treatments. However, the difference was 

non – significant in case of r (F1,80 = 1.09, p = 0.2996) but significant in case of K 

(F1,80 = 11.013, p = 0.0014). (Table 4) 

When pooled across all the complex component environments, Simple selection 

treatments had higher r and K than the complex selection treatments. However, in 

this case the difference was significant for r (F1,64 = 5.2918, p=0.0247) but non – 

significant for K (F1,64 = 1.305, p = 0.2576). Predictably fluctuating selection 

treatments had significantly higher r and K than the unpredictably fluctuating 

selection treatments (F1,64 = 27.922, p < 0.001 for r and F1,64 = 26.712, p < 0.001 for 

K). (Table 4) 
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ANOVA Effect   Mean F 

values  

ANOVA 

p values 

Cohen’s 

d 

Inference 

All 

component 

environments 

Complexity Simple 

(SP & SU) 

r 0.1861 F1,144 = 

13.357 

<0.001 0.45 Small 

K 0.8476 F1,144 = 

15.514 

<0.001 0.27 Small 

Complex 

(CP & CU) 

r 0.1625  

K 0.7804 

Fluctuations Predictable 

(SP & CP) 

r 0.1863 F1,144 = 

13.883 

<0.001 0.46 Small 

K 0.8645 F1,144 = 

35.004 

<0.001 0.41 Small 

Unpredictable 

(SU & CU) 

r 0.1622  

K 0.7635 

Simple 

component 

environments 

Complexity Simple 

(SP & SU) 

r 0.2012 F1,80 = 

8.22 

0.0053 0.52 Medium 

K 0.9956 F1,80 = 

18.126 

<0.001 0.43 Small 

Complex 

(CP & CU) 

r 0.1731  

K 0.898 

Fluctuations Predictable 

(SP & CP) 

r 0.1923 F1,80 = 

1.09 

0.2996 0.18  

K 0.9848 F1,80 = 

11.013 

0.0014 0.33 Small 

Unpredictable 

(SU & CU) 

r 0.182  

K 0.9087 

Complex 

component 

environments 

Complexity Simple 

(SP & SU) 

r 0.1672 F1,64 = 

5.2918 

0.0247 0.39 Small 

K 0.6626 F1,64 = 

1.305 

0.2576 0.19  

Complex 

(CP & CU) 

r 0.1492  

K 0.6334 

Fluctuations Predictable 

(SP & CP) 

r 0.1789 F1,64 = 

27.922 

<0.001 0.99 Large 

K 0.714 F1,64 = 

26.712 

<0.001 0.98 Large 

Unpredictable 

(SU & CU) 

r 0.1375  

K 0.582 
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Table 4: Summary of the main effects of the three 3 – way ANOVA’s done with 

fluctuations, complexity, and assay environment as the fixed factors. 

Note: Separate ANOVA’s were done for r and K. Similarly, a main 3 way ANOVA 

was done pooled over all the component environments followed by two other 

ANOVA’s in simple component and complex component separately (all on the same 

data set, only the levels of environment variable changed). Since, r and K were not 

compared in the study and the results of different ANOVA’s were interpreted 

separately, there was no need of family wise error and hence it was not performed 

 

Fitness in the novel environments 

The ANOVA pooled across all the novel environments did not show any significant 

effect of selection on both r and K (F6,84 = 1.1715, p = 0.3294 for r and F6,84 = 1.913, 

p = 0.0881 for K) (Fig 4). However, there was a significant effect of the assay 

environment i.e. novel environments (F2,84 = 6.2744, p = 0.0029 for r and F2,84 = 

3.323, p = 0.0408 for K). This is expected from the fact that the three novel 

environments are likely to affect the bacterial populations in different ways. There 

was also a non-significant selection × assay environment interaction (F12,84 = 1.4597, 

p = 0.1561 for r and F12,84 = 1.543, p = 0.1251 for K). Table 5 summarises the pooled 

ANOVA results. Since the pooled ANOVA did not give any significance, ANOVA’s 

were not performed in separate novel environments.  

 

Effect Dependent 

Factor 

F - statistic p values 

Selection r  F6,84 = 1.1715 0.3294 

K F6,84 = 1.913 0.0881 

Assay r  F2,84 = 6.2744 0.0029 

K F2,84 = 3.323 0.0408 

Selection × Assay r F12,84 = 1.4597 0.1561 

K F12,84 = 1.543 0.1251 

Table 5: Summary of the ANOVA pooled across all the novel environments 
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Predictable fluctuations (SP and CP) performed better than unpredictable 

fluctuations (SU and CU) when pooled across all the novel environments (Fig 5) 

However, the difference was non-significant in case of r (F1,48 = 1.5661, p = 0.2168 ) 

but significant for K (F1,48 = 5.966, p = 0.0183). The effect of complexity on the 

fitness was insignificant (F1,48 = 1.8978, p = 0.1747 for r and F1,48 = 0.392, ns for K). 

(Table 6 and Fig 5) 

All the interaction terms of the ANOVA namely, Complexity × Fluctuations, 

Complexity × Assay, Fluctuations × Assay, and Fluctuations × Complexity × Assay 

were insignificant for both r and K. 

 

 

 Effect   Mean SEM F1,48  ANOVA 

p values 

Complexity Simple 

(SP & SU) 

r 0.1232 0.0081 1.8978 0.1747 

K 0.9716 0.0337  0.392 ns 

Complex 

(CP & CU) 

r 0.1419 0.0121  

K 0.9453 0.0314 

Fluctuations Predictable 

(SP & CP) 

r 0.1411 0.0112 1.5661 0.2168 

K 1.0098 0.0279 5.966 0.0183 

Unpredictable 

(SU & CU) 

r 0.1240 0.0093  

K 0.9072 0.0343 

Table 6: Main effects of Complexity and Fluctuations on both r and K pooled over all 

the novel environments. 
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Figure 2 (A): Mean (±SE) growth rate (r) of different selection treatments pooled 

across all the component environments. (p < 0.001) CU is significantly different 

than the other selection treatments except SIL and NB. SIL is significantly different 

than the other selection treatments except CU. NB is significantly different than SP. 

All the other pair-wise interaction are non – significant. (Table 4) SP – Simple 

Predictable, SU – Simple Unpredictable, CP – Complex Predictable, CU – Complex 

Unpredictable, SIL – Constant Silver, SDS – Constant SDS, NB – Plain NB. 
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Figure 2 (B): Mean (±SE) carrying capacity (K) of different selection treatments 

pooled across all the component environments. (p < 0.001) CU is significantly 

different than all the other selection treatments. Similarly, SIL is also significantly 

different than all the other selection treatments. SP is significantly different than SU 

and the NB. SDS is significantly different than SU. NB is also significantly different 

than SDS. SP – Simple Predictable, SU – Simple Unpredictable, CP – Complex 

Predictable, CU – Complex Unpredictable, SIL – Constant Silver, SDS – Constant 

SDS, NB – Plain NB. 
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Figure 3 (A): Mean (±SE) growth rate (r) of Simple (SP and SU), Complex (CP, 

CU), Predictable (SP and CP), and Unpredictable (SU and CU) selection 

treatments pooled over all the component environments. The fluctuating 

selection treatments have been divided into these groups so as to compare the 

fitness effects of complexity and fluctuations. These four groups are overlapping in 

nature and are set on the same axis only for convenience. S must be compared to C 

and P must be compared to U only. (p <  0.001 for S and C and also for P and U) 
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Figure 3 (B): Mean (±) carrying capacity (K) of Simple (SP and SU), Complex 

(CP, CU), Predictable (SP and CP), and Unpredictable (SU and CU) selection 

treatments (p < 0.001 for both S, C comparison and P, U comparison).  

 

In component environments, the different selection treatments were significantly 

different than each other. When pooled across all the component environments, SP 

selection treatment had significantly higher fitness (both r and K) than CU and SIL 

selection treatments (Table 2, Fig 2). Moreover, the fitness of SDS and CP selection 

treatment is non-significantly different than the SP. Also. CU and SIL have 

significantly lower fitness than all the other selection treatments. CU and SIL are non 

– significantly different than each other. Thus, it can be seen that SP, CP, and SDS 

are the selection treatments with maximum fitness whereas CU and SIL have the 

least fitness when pooled over all the component environments. (Table 2, Fig 2) The 

other selection treatments lie in between these two groups in terms of their fitness. 

However, during the selection, SP and SU only faced the simple component 

environments whereas CP and CU only faced the complex component 

environments.  Therefore, it was expected that simple treatments (SP and SU) will 
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perform better in simple component environments and complex treatments (CP and 

CU) will perform better in complex component environments. To investigate this, the 

fitness of the selection treatments was analysed in simple component and complex 

component environments separately.  

Contrary to the expectations, the pattern of fitness and the pairwise interaction 

between different selection treatments remained fairly constant when analysed in 

simple component and complex component environments separately (Table 2). SP, 

SDS, and CP again performed better than CU and D1 in both simple and complex 

component environments (Table 3). It was surprising to see that CU performed 

poorly as compare to the SP in complex component environments given that CU was 

selected for 300 generations in these environments. This indicates that SP, SDS, 

and CP actually improved their fitness in all the component environments.  

The lowest fitness of SIL in all the component environments can be understood from 

the fact that it was only selected in 0.112M and assayed/analysed in all the 

component environments.  

It is interesting to note that SDS being a constant selection regime which faced only 

2% of SDS throughout the selection has the highest fitness comparable to that of SP 

(Table 2 and 3) . This hints towards the fact that SDS was a stronger component in 

all the selection regimes than the Silver Nitrate and had a much higher effect than 

the Silver Nitrate. This is possible as Silver Nitrate, the source of Silver ions in this 

study is known to release all the silver ions at once (Fox and Modak, 1974). Thus, it 

might act for shorter durations only. On the other hand, SDS dissolves the plasma 

membrane and tends to stay for longer duration of time. Therefore, it can play a 

major role in shaping the evolutionary dynamics of the bacterial populations. This 

can explain why SDS treatment has higher overall fitness over all the component 

environments. 

The effect of fluctuations and complexity on fitness was further investigated taking 

only the fluctuating selection treatments into account (SP, SU, CP, and CU). In case 

of fluctuations, predictable fluctuations (SP and CP) had significantly higher r and K 

than the unpredictable fluctuations (SU and CU) over all the selection environments. 

(Figure 3). However, the effect size was small for this significant difference. (Table 4) 
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However, when analysed over all the complex component environments, predictable 

fluctuations still had higher r and K than the unpredictable selection treatments. 

However, the effect size in this case was large (Table 4). This means that most of 

the effect seen in the pooled analysis is coming from the complex component 

environments. It also informs that CP performed much better than CU in complex 

component environments (Table 4) and thus it highlights that predictable fluctuations 

are better than unpredictable fluctuations in improving fitness of the selected 

populations in the component environments. Previous studies have shown that 

populations selected in deterministically fluctuating environments evolve to perform 

better in their respective selection environments compared to the populations 

selected in stochastic environments (Alto 2013). Similarly, populations selected in 

predictable fluctuations are superior generalist than those selected in randomly 

fluctuating environments (Hughes 2007). However, these studies involves 

fluctuations of only one environment. In the present case, predictable fluctuations 

were more complicated and realistic than the ones described in the previous studies 

as it consisted of both Simple fluctuations (one stress at a time) and complex 

fluctuations (simultaneous fluctuations of both the stresses). 

Moreover, the present study also demonstrates that simple selection treatments 

have significantly higher r and K than compared to the complex selection treatments 

across all the component environments. (Figure 3) However, the effect size is small 

(Table 4). This is in contrast to a previous study that has been published on complex 

environments which states that populations evolved in complex environments (more 

than one substitutable resources) were able to adapt to several substrates 

simultaneously (Barrett et al., 2005). Since the fluctuations were rapid and changed 

after every 6 generations, it is possible that the complex populations were not able to 

adapt to two stresses simultaneously. The unpredictable nature of the fluctuations in 

the case of CU further aggravated the adaptation. This is supported by the fact that 

CP also had high fitness comparable with that of SP.  

Finally, combining the two facts of predictable being better than the unpredictable 

and simple being better than the complex supported by the fact that CP, SP had the 

highest fitness and CU had the lowest. Thus, from the present investigation, it seems 

that fluctuations, especially the predictable ones are far more important in shaping 



32 
 

the evolutionary dynamics of bacterial populations than complexity in component 

environments. 

Further experiments can be done to compare the fitness of these different selected 

populations with the common ancestor.  

 

Fitness in the novel environments 
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Figure 4 (A): Mean (±SE) growth rate (r) of different selection treatments pooled 

across all the novel environments. (p = 0.1715)  No significant difference between 

any treatment pair (p = 0.3294). SP – Simple Predictable, SU – Simple 

Unpredictable, CP – Complex Predictable, CU – Complex Unpredictable, SIL – 

Constant Silver, SDS – Constant SDS, NB – Plain NB. 



33 
 

     SELECTION TREATMENT

SP SU CP CU SIL SDS NB

C
A

R
R

Y
IN

G
 C

A
P

A
C

IT
Y

 (
K

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

Figure 4 (B): Mean (±SE) carrying capacity (K) of different selection treatments 

pooled across all the novel environments. (p = 1.913) No significant difference 

between any treatment pair (p = 0.0881). SP – Simple Predictable, SU – Simple 

Unpredictable, CP – Complex Predictable, CU – Complex Unpredictable, SIL – 

Constant Silver, SDS – Constant SDS, NB – Plain NB. 
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Figure 5 (A): Mean (±) growth rate (r) of Simple (SP and SU), Complex (CP, CU), 

Predictable (SP and CP), and Unpredictable (SU and CU) selection treatments 

pooled across the novel environments. The fluctuating selection treatments have 

been divided into these groups so as to compare the fitness effects of complexity 

and fluctuations. These four groups are overlapping in nature and are set on the 

same axis only for convenience. However, S must be compared to C and P must be 

compared to U only (p = 0.1747 for S and C comparison and p = 0.2168 for P and U 

comparison) 
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Figure 5 (B): Mean (±) carrying capacity (K) of Simple (SP and SU), Complex 

(CP, CU), Predictable (SP and CP), and Unpredictable (SU and CU) selection 

treatments (p = ns for S and C comparison and p = 0.0183 for P and U 

comparison). 

 

In novel environments, there was no significant difference in terms of both r and K 

between any of the selection treatments (Table 5, Figure 4). This is in contrast to the 

results published in Karve et al (2015) where bacterial populations evolved in 

complex unpredictable selection regime had a significant growth rate advantage in 

novel environments when compared to the controls (selected in NB). However, in 

this study, the control (NB) also performs equally well compared to the fluctuating 

selection regimes and no significant difference is seen between the NB line and any 

other fluctuating selection treatment. However, it should be noted that in Karve et al, 

the type of unpredictability was different from the one studied here. In Karve et al 

(2015), there were three abiotic stresses with multiple values and the bacterial 

populations were randomly exposed to any two stress every day. So, there was an 

unpredictability arising from the nature of the stress that was used on a given day 
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and also from the value of the chosen stress (as every stress had multiple values). In 

the present case, there were only two stresses involved which were faced by the 

bacterial populations every day. The unpredictability of the selection regime came 

from the concentrations of the two stresses. However, every stress only had two sub 

– lethal values. Therefore, the unpredictability in this case was much less than the 

one used in Karve et al. This could possibly explain the lack of significant fitness 

different between CU selection treatment and the NB treatment at least. 

The lack of significant fitness difference can also be explained from the nature of the 

abiotic stresses that were used to generate the selection treatments. Silver Nitrate 

causes severe morphological aberrations such as detachment of cytoplasm from the 

cell wall which damages the cell wall (Feng et al., 2000). Similarly SDS, being an 

anionic detergent, dissolves the plasma membrane causing leakage of several 

proteins, DNA, and RNA out of the bacterial cell (Woldringh et al., 1972) Since, these 

two abiotic stress severely affect cell membrane/cell wall, it is entirely possible that 

the different selection treatments evolved robust cell membrane/cell wall which 

prevents the entry of the novel stresses also. Thus, all the selection treatments 

perform equally well as all of them were exposed to these stresses during the 

selection procedure. However, it should be noted that this argument does not 

explains the similar fitness of the NB line.  

Similarly, there is no significant difference between simple (SP and SU) and complex 

selection treatments (CP and CU). In terms of fluctuations, there is no significant 

difference between predictable (SP and CP) and unpredictable (SU and CU) in terms 

of r (Figure 5, Table 6). However, predicable fluctuations had higher fitness than the 

unpredictable fluctuations in terms of K (Table 6). It has been shown previously that 

populations evolved in predictably fluctuating environment (of a single environment) 

have a growth advantage in biotic and abiotic novel environments when compared to 

the populations evolved in constant environment (Ketola 2013). However, this study 

deals with the binary fluctuations of a single stress. In the present case, there were 

two stresses present and it also involved simultaneous fluctuations of two stresses.  

However, in the present case, all the fluctuating selection treatments were comprised 

of two environments and CP and CU selection treatments involved simultaneous 

fluctuations. This is a novel result which can be investigated further. 
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Conclusions 

The chief result of the study is that populations selected in Simple predictable 

selection regime have the highest fitness over all the component environments. This 

selection treatment also performs better than the other selection treatments in 

complex component environments. On the other hand, the study concludes that the 

Complex Unpredictable selection treatment has the lowest fitness over all the 

component environments. In general, the selection treatments that fluctuated 

predictably perform significantly better than the unpredictable selection treatments. 

Moreover, contrary to a previous study (Barrett et al., 2005) the study demonstrates 

that simple selection treatments had higher fitness than the complex selection 

treatments over all the component environments. In this study, no significant 

difference in fitness was found between different selection treatments in the novel 

environments. This is contrary to the results published in Karve et al., 2015. 
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