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Abstract

The goal in Spectral Graph Theory is to understand the structure of a graph using the spec-
trum of its associated matrices. This MS thesis is a contribution to the study of constructions
of cospectral nonisomorphic graphs. We first generalize a construction based on partitioned
tensor product introduced by Godsil and Mckay and discuss its particular cases. Then, we
use the idea of taking partitioned tensor products to obtain new cospectral constructions
from the existing ones. We also generalize the unfolding operation on the bipartite graph
introduced by Butler, obtain its modifications, as well as introduce the notion of unfolding

a multipartite graph to obtain cospectral nonisomorphic graphs.

Keywords: Graph, adjacency matrix, normalized Laplacian matrix, spectrum, unfolding,

bipartite graph, partitioned tensor product
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Chapter 1

Introduction

1.1 Problem motivation

The goal in Spectral Graph Theory is to understand the structure of a graph using the
spectrum of its associated matrices. The spectrum of a matrix is the set of its eigenvalues.
A graph can be associated with various matrices and each matrix spectrum provides us
diiferent information about the graph structure. Two graphs having the same spectrum
of an associated matrix M are called M-cospectral graphs. There are limitation to the
information the spectrum of a certain matrix M can provide, since two graphs with the
same M-spectrum can be nonisomorphic. Let G be a graph on n vertices with adjacency
matrix A and the degree matrix D which is a diagonal matrix with the degree of G as the
diagonal entries. Let J and I be the all-one and the identity matrices of the same order as

the graph. The associated matrices M can any of the following:
1. The adjacency matrix A
2. The adjacency matrix of the complement A =J — A — I
3. The Laplacian matrix L =D — A

4. The signless Laplacian matrix Q = D + A

5. The normalized Laplacian matrix £ = D~/2LD~/2  defined when the corresponding

graph has no isolated vertices.



6. The Seidel matrix S=A — A

7. The distance matrix A

The spectrum of A together with the spectrum A is referred to as generalized spectrum.
Suppose the associated matrix is the adjacency matrix. We call A-cospectral graphs as
simply cospectral graphs. A graph is said to be determined by its spectrum (DS for short)
if any other graph which is cospectral to it is also isomorphic. Otherwise we say that this

graph has a cospectral mate. Haemers [7] conjectured the following,

Conjecture 1.1. Almost all graph are DS.

In other words, the fraction of DS graphs on n vertices — 1 as n — oo. For more evidence
for and against the conjecture see [7]. Only a very small number of graphs are known to be
DS since this property is hard to prove. To show that a graph is not DS, we provide the
construction of a cospectral mate. This conjecture suggests that examples of cospectral and
nonisomorphic graphs are rare. Hence, given a graph GG and an associated matrix M, try to

answer the following two questions,
Problem 1.2. Is G DS with respect to M ?

Problem 1.3. Find all possible M-cospectral mates of G.

Answer to either one gives us information about the graph structure. The matrix with
respect to which there are less number of cospectral mates for a given graph is most suitable

in understanding its structure.

Note that the Graph Isomorphism Problem for DS graphs reduces to the problem of

checking whether they are cospectral.

1.2 Survey of existing results

Schwenk gave a construction to obtain cospectral trees based on which he proved

Theorem 1.4. [19] Almost all trees are non-DS.
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Godsil and Mckay [4] proved it for the adjacency matrix of the complement A and Mckay
[18] proved it for the Laplacian L (and hence for the signless Laplacian @ [22]) and the dis-
tance matrix A. Seidel switching introduced by Van Lint and Seidel [16] produces cospectral
nonisomorphic graphs with respect to the Seidel matrix. Let S be the Seidel matrix for the
S1 5

o gl The Seidel switch S is given by
2 3

graph G such that S is partitioned as S = [

- S, —S ~
S = [ ;T S 2] such that S and S are cospectral. It can be shown that
— g 5

Theorem 1.5. [20] No graph with more than one vertex is DS with respect to Seidel matriz.

Seidel switching is a special case of GM-switching or Godsil-Mckay switching. Let G be a
graph on n vertices and let A(G) denote the corresponding adjacency matrix. Consider the
simplest version of this switching and consider the orthogonal matrix @ = diag(Qo, I—2m)

where )
QO = _J2m - [2m-
m

Godsil and Mckay [5] investigated conditions on the graph G such that the matrix Q7 A(G)Q
is also an adjacency matrix of some graph G’. Then, it follows that the graphs G and G’ are

generalized cospectral. Wang, Qiu and Hu [23] consider another orthogonal matrix @ such
that @ = diag(U, I,,_9,) where

U — 1 plp, — Jp Ip
p Ip pl, — Jp

and answer the same question. The corresponding construction is called Generalized GM-
switching. Godsil and Mckay [5] gave another construction which is a generalization of this
simplest version of GM-switching. Let A and B be two m X n congruent matrices (that is,
ATA = BTB). Let H be an adjacency matrix of a graph on n vertices. Then the graphs

corresponding to the following adjacency matrices are cospectral:

0 A
AT H

0 B

d
an BT H

Another cospectral construction introduced by Godsil and Mckay [3] is based on the idea

of taking partititioned tensor product of a bipartitioned matrix whose diagonal blocks are

7



. . : . . e . I, V A B
identity matrices with any bipartitioned matrix. Let L = Ik = c D and
D C . . : .

H# = B A be partitioned matrices such that V' is a m x n matrix. Let ®, denote the
partitioned tensor product defined as

I, A V®B I, D VaC

Ly, H= ® ® L®, o ® ® '
Wl I,®D WeB [,2A

Then,

Theorem 1.6. [3] The matrices L ®, H and L ®, H* are cospectral if and only if either

m=mn or A and D are cospectral.

When these matrices are taken to be adjacency matrices, the corresponding graphs are

cospectral. This is one of the two constructions Godsil and Mckay introduced in [3] .

Butler [I] introduced an wunfolding operation on a bipartite graph. Let us discuss this

construction using the matrix forms. Let G be a bipartite graph with the adjacency matrix
0

BT
two ways to obtain bipartite graphs I'y and I'; with the adjacency matrices,

where the biadjacency matrix B is a square matrix. Then, G' can be unfolded in

0 B B 0 BT BT
BT 0 O|land |{B 0 0
BT 0 0 B 0 0

The bipartite graphs I'y and I'y are cospectral with respect to the adjacency as well as
the normalized Laplacian matrix. We refer to [14] and [12] for some of it modifications
and generalizations. Ji, Gong and Wang [12] gave equivalent conditions of isomorphism
for the generalized case. Hence, I'y and I'y are isomorphic if and only if the block B is

permutationally equivalent to its transpose.

Recently, Dutta and Adhikari [2] gave another cospectral construction motivated by
GM-switching. Let A be a m x m partitioned block matrix such that the ij'" block for
1 <14,5 <mis A;;. The partial transpose of A is given by A™ by replacing each block of A
by its transpose. Then, the ij" block of A™ is AZ They show that if the blocks of A form

8



a commuting family of normal matrices, then the matrices A and A™ are cospectral. Hence,
when A is taken to be an adjacency matrix of a graph, then the graphs corresponding to A

and A” are cospectral.

1.3 Original contributions

Three forthcoming papers are planned. The first paper [15] will include the second idea
below. The second paper will include the first and the fourth idea. The third paper will
include the third idea.

1. Generalization of a cospectral construction based on partitioned tensor prod-
uct given by Godsil and Mckay (Chapter 3, 4, 5)

Godsil and Mckay [3] gave two cospectral constructions (one of them described by Theorem
. These constructions essentially involve taking partitioned tensor product of a biparti-
tioned matrix whose diagonal blocks are identity matrices with any bipartitioned matrix. We
generalize this construction in Chapter 3 by showing that the bipartitioned matrix whose di-
agonal block are identity matrices can be replaced with any bipartitioned matrix satisfying a
certain C'/M /T property. When these matrices are taken to be adjacency matrices of graphs,
we get cospectral graphs. We give necessary and sufficient conditions for the corresponding
graphs to be isomorphic. In chapter 4 and 5, we give more candidates for matrices that
satisfy C'/M /T property and apply the isomorphism results on the corresponding cospectral
constructions (see Constructions I-A; II-A; I-B, I-C, I-D and I-E).

2. Generalization of unfolding operation on a bipartite graph (Chapter 4)

The very important observation in generalizing unfolding of a bipartite graph is that the
adjacency matrices corresponding to the unfoldings I'y and I'; can be written as partitioned

tensor products. Let Jj 2 be the 1 x 2 all one matrix. Then,
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0 BB 0 Ji2® B 0 J 0 B
BT 0 ol = . 1,2 _ 1,2 S |
BT J271 X B 0 J271 0 B 0
0 BT BT . .
O Jl 2 ® B 0 J1 2 O B
B 0 0= ’ = * ®,
5 o0 o Jo1 ® B 0 Joi 0 B 0

Generalizations of unfoldings considered by Kannan and Pragada [14] and Ji, Gong and
Wang [12] are essentially replacement of the all one matrix J; » to any all one matrix J,, .
Since we realized that unfoldings can be expressed as partitioned tensor product we show

that the block J,,,, be be replaced by any m x n matrix V', hence generalizing the cospectral

0o Vv
construction. We also show that the matrix [VT 0 satisfies C'/M /T property. Then, we
apply the the isomorphism results obtained for the generalized construction of Godsil and
Mckay. This construction is known by I-A and produces cospectral bipartite graphs which
are cospectral for the adjacency as well as the normalized Laplacian. For these graphs to be
nonisomorphic, we introduce a certain property 7; that the bipartite graphs corresponding

to V and B have to satisfy. This property is satisfied when in one the following cases

1. the bipartite graph corresponding to V' is biregular with distinct degrees

2. when the bipartite graphs corresponding to V' and B are connected.
The former generalizes the cospectral nonisomorphic construction of Ji, Gong and Wang [12]
and the latter relates with a complete different problem considered by Hammack [§] which is
the investigation of isomorphism of the components of the direct product of two connected

bipartite graphs. In other words, we unite the two different results from [12] and [8] under

the property 7;.

3. Obtaining new cospectral graphs from the existing ones (Chapter 6)

In Chapter 6, we discuss how the idea of partitioned tensor product can be applied on some

of the existing cospectral constructions to obtain new constructions.
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The first candidate is a construction based on partial transpose introduced by Dutta and
Adhikari [2]. We first give an alternate proof for their main result (Construction ITI-A) and fix
an error in another result (Construction I1I-B). After applying the idea of partitioned tensor
product, we are able to discuss a notion of unfolding a multipartite graph. In particular, we

show how to unfold a tripartite graph to obtain cospectral nonisomorphic tripartite graphs.

The second candidate is GM-switching [5] (Construction IV). Since GM-switching pro-

duces generalized cospectral graphs, so does the new construction.

The third candidate is a construction based on congruence [5](Construction V). We first
give equivalent conditions for the graphs to be isomorphic, we do the same for the new
construction as well. Inspired by this construction, we show how a semi reflexive bipartite

graph can be unfolded (Construction VI) to obtain cospectral nonisomorphic graphs.

4. Modifications of unfoldings (Chapter 5, 6)

Along with a generalization of unfolding operation, Kannan and Pragada [14] consider three

modifications. The first modification is given by the following result

K' B B K BT BT
Theorem 1.7. [Ij] Let A= |BT 0 K| andC = |B 0 K'|. Then, the matrices
BT K 0 B K 0

!/

A® G K and CP @ K' are cospectral.

K/

If we only consider the matrices A and C, then they can be written as partitioned tensor
S i K" B S Jia K BT
’ and C' = ’
Jo1 T BT K’ Jo1 T B

products such that A = where

p p

0 1
S and T are the permutation matrices S = [1} and T = Lo respectively. Surprisingly,

Construction I-C generalizes this, that is, we show S and T can be replaced by any per-
mutation matrices and give necessary and sufficient conditions for A and C' be represent

cospectral nonisomorphic graphs.
Now consider another modification,

11



(0 B B ... B (0 BT BT ... BT]

BT o I ... I B o I ... I
Theorem 1.8. [/ Let C = |B" I 0 ... I| andE=|B I 0 ... I be

BT 1 I -+ 0 B I I - 0

matrices of orders nqg—+p and np+ q respectively, where B is a p X ¢ matriz such that p > q.
Then the matrices E & 0,_q and C & (J — 1), & ... & (J — I), are cospectral.

g

(p—q)—times

Here also observe C' and E can be expressed as partitioned tensor products, C' =
0 Jin 0 Jin 0 BT
Qp | S Dp
In1 o — 1, B Ini o —1Ip B
E represent unfoldings of a semi reflexive bipatite graph given by the adjacency matrix

0
BT
construction has come from applying the idea of partitioned tensor product on the congru-

and F = . Surprisingly, C' and

and this construction is a special case of Construction VI. Our motivation to this

ence construction. We provide necessary and sufficient conditions for C' and E to represent

cospectral nonisomorphic graphs.

In Table [I.1], some of the modifications that we have obtained on the unfoldings of the
bipartite graph are summarized (only the special cases). The conditions for the graphs to
be nonisomorphic are obtained under the assumption that the matrix B has no zero rows or

zero columns.

12



Construction I-A I-B I-C
Graph 0 B A B A B 0 B
P BT 0 BT D BT D BT I
0 B B A B B A B B 0 B B
Unfolding-1 BT 0 0 BT D 0 BT 0 D BT 0 I
BT 0 0 BT 0 D BT D 0 BT I 0
0 BT BT D BT BT D BT BT 0 BT BT
Unfolding-2 B 0 0 B A 0 B 0 A B 0 I
B 0 0 B 0 A B A 0 B I 0
Unfoldings are B is square Aand D Aand D B is square
cospectral iff are cospectral are cospectral
Unfoldings are | B is non-PET B is non-PET B is non-PET B is non-PET
nonisomorphic or G4 and Gp are | or G4 and Gp are
if nonisomorphic nonisomorphic

Table 1.1: Unfoldings and modifications

13
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Chapter 2

Preliminaries

In this chapter, we introduce some of the ideas and results that will be used in the further

chapters.

2.1 Graphs and Matrices

A digraph G is a finite set V(G) taken together with a binary relation F(G) on V(G).
Elements of V(G) and E(G) are called vertices and arcs respectively. This binary relation is
symmetric if (u,v) € E(G) implies (v,u) € F(G). Symmetric digraphs are called undirected.

One vertex arcs, (v,v) for v € V(G), are called loops.

A graph is defined as an undirected digraph usually without loops. In case of graphs, the
arcs (u,v) and (v,u) combined are referred to as an edge {u,v}, and the vertices u and v
are called adjacent. A graph is called reflerive if every vertex has a loop, and called simple

if no vertex has a loop.

The adjacency matrix A(G) associated with a digraph G is an n x n 0-1 matrix where
[V(G)| = n. The 5" entry (for 1 <i,j < n) of A(G) is given by =

1 (i,)) € E(G)

AG)y =
’ 0 otherwise
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While the adjacency matrix of a digraph could be any 0-1 square matrix, the adjacency
matrix of a graph is usually a symmetric 0-1 matrix with all diagonal entries 0. If the graph
is reflexive, then all the diagonal entries of A(G) are 1. Given a square 0-1 matrix A, the

corresponding digraph or graph is denoted by G 4.

Let G and H be two digraphs. A homomorphism of G to H, written as f : G — H,
is a mapping f : V(G) — V(H) such that if (u,v) € E(G), then (f(u), f(v)) € E(H).
Hence, homomorphisms preserve the directions of edges. In case of graphs, they preserve
the adjacency. This homomorphic map is called isomorphism if it is also a bijection. In that

case, G and H are called isomorphic.

An automorphism of a graph is an isomorphism from the graph to itself. The set of
automorphism of a graph G is denoted by Aut(G) and it forms a group. A graph is called

asymmetric if its automorphism group is only the identity map.

The Kronecker product of two m X n matrices A and B is denoted by A ® B which
consists of m rows of n blocks where j™ block in the i row is the matrix a;; B. The direct
product of two digraphs G and H is denoted by G x H. The resultant digraph is given by
the adjacency matrix A(G x H) = A(G) ® A(H).

Consider a graph G. The degree of a vertex v € V(G) is the number of vertices it is
adjacent to. A vertex is called isolated if it has degree 0. The degree matrix D(G) isan xn
diagonal matrix whose i7'" entry is given by the degree corresponding to the it vertex or
the i row sum of A(G).

The Laplacian matrix L(G) is defined as L(G) = D(G) — A(G). If the graph G has no

isolated vertices, then the normalized Laplacian matrix is defined as
L(G) = D(G)Y?L(G)D(G)Y* = I, — D(G)"V>A(G)D(G)~'/?

where [, is a n X n identity matrix. The adjacency, Laplacian and the normalized Laplacian

matrices of a graph are symmetric matrices.

Two graphs are called cospectral, if the corresponding adjacency matrices have the same
eigenvalues. Similarly, two graphs are called Laplacian-cospectral, if the corresponding Lapla-

cian matrices have the same eigenvalues.

16



2.2 Matrix relations

Similarity

Two matrices A and B are called similar if there exists an invertible matrix () such that
Q1'AQ = B. A matrix is called diagonalizable if it is similar to a diagonal matrix. Recall

that symmetric matrices are diagonalizable, have real eigenvalues and,

Theorem 2.1. [11][Corollary 2.5.11] Two real symmetric matrices are real orthogonally

similar if and only if they have the same eigenvalues.

Hence, the adjacency matrices of cospectral graphs are real orthogonally similar. Now
the following proposition shows equivalence between permutation similarity of matrices and
isomorphism of the corresponding digraphs. Every isomorphism map can be represented by

a permutation matrix.

Proposition 2.2. Two digraphs G and H are isomorphic if and only if the corresponding

adjacency matrices are permutationally similar.

Since we are interested in the construction of cospectral nonisomorphic graphs in this
thesis, equivalently we want to find pairs of matrices which are orthogonally similar but
not permutationally similar. Let us also discuss graph automorphisms. Without loss of
generality, we can assume that Aut(G) is the set of permutation matrices P such that
PTA(G)P = A(G). Let S, denote the set of all permutation matrices of order n, then
|Sy| = nl.

Proposition 2.3. Let O,, Z,,, K,, and J, be the graphs corresponding to the adjacency
matrices O, I,, J, — I, and J,, where 0,, I, and J, are zero, identity and all-one matrices

respectively. Then, the automorphism group of all these graphs is S,,.

Lemma 2.4. Let G and H be two graphs. Then,

Aut(G x H) 2 Aut(G) x Aut(H)

If the direct product of graphs is asymmetric, the factors are necessarily asymmetric.

17



Lemma 2.5. If A and B are two matrices, then there exists a permutation matrix P such

that PT(A® B)P = B® A.

This shows that if G and H are two graphs, then G x H and H x G are isomorphic.

Theorem 2.6. [21] A real square matriz is real similar to its transpose.

The matrix similarity is directly related with the isomorphism of the graphs. But since we
deal with bipartitioned graphs/matrices in this thesis, the matrix equivalence also appears

in our discussion.

Equivalence

Two matrices A and B are called equivalent if there exists two invertible matrices P and
Q such that Q 'AP = B. Hence, if two matrices are similar, then they are automatically

equivalent.

Lemma 2.7. A real square matriz is real orthogonally equivalent to its transpose.

Proof. Recall that the Singular Value Decomposition (Corollary 2.6.7. [11)]) of a real matrix
A is given by A = UXVT, where U and V are real orthogonal and ¥ is a real diagonal
matrix. Taking transposes on both sides, we have AT = VXU?. Substituting ¥ = UT AV,
we have AT = VUTAVUT. Let Q = VU, then ( is also real orthogonal matrix satisfying
QAQ = AT, O

Lemma 2.8. If two m x n matrices A and B are permutationally equivalent, then every row

of A is some permuted row of B. Similarly, every column of A is some permuted column of

B

Proof. Suppose PTAQ = B for two permutation matrices P and ). The left multiplication
(PTA) by PT permutes the rows of A and the right multiplication (AQ) by @ permutes the

" row and " column of PTAQ are permutations of j** row and k**

columns of A. Hence, #*
column of A respectively, where op(i) = j and 0¢(i) = k and the permutations op and og

correspond to the permutation matrices P and () respectively. O
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Corollary 2.9. If A and B are two m x n permutationally equivalent 0-1 matrices, then

1. the set of row sums of A is same as the set of row sums of B

2. the set of column sums of A is same as the set of column sums of B
3. the sum of all entries of A is same as the sum of all entries of B.
4. the mazimum row sum of A is same as the maximum row sum of B

5. the maximum column sum of A is same as the maximum column sum of B

Proof. Let 1 be an all-one n x 1 vector. Then A1 and B1 are m x 1 vectors of row sums of
A and B respectively. Since A are B are permutationally equivalent, every row of A is some
permuted row of B. Also since, A and B are 0-1 matrices, the vector A1 is a permutation
of B1. The set of row sums of the matrix A and B are the set of entries of the vector A1
and B1 respectively. Hence, set of row sums of A is the same as set of column sums of B.
The second statement can be shown similarly by considering the equation QT ATP = BT.

Remaining statements follow from the first two. O

If any one of these five conditions does not hold, then A and B are not permutationally
equivalent. A square matrix M is called PET if it is permutationally equivalent to its

transpose, that is, if there exists two permutation matrices such that PTMQ = M7”.

Corollary 2.10. If a matrix M is PET, then

1. set of row sums of M is same as the set of column sums of M

2. mazimum row sum of M is same as the maximum column sum of M

Hence, if a matrix doesn’t satisfy one of these two conditions, then we have a non-PET
matrix. Non-PET matrices are very important in the construction of cospectral nonisomor-

phic graphs.
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2.3 Cancellation Laws

In this section, we recall some of the cancellation laws for graphs/digraphs (see [17], [9]) and

a cancellation law for matrices (see [§]).

Lemma 2.11. [9//Corollary 9.8] Suppose A, B and C are bipartite graphs. If A x C and

B x C are isomorphic, then A and B are.

Theorem 2.12. [17/[Theorem 9] If K is a nonbipartite graph, then G x K and H x K are
tsomorphic if and only if G and H are.

The above two results will be used later as cancellation law for graphs. To obtain a

cancellation law for matrices, the following lemma will be useful.

Lemma 2.13. [17][Theorem 6] Suppose A, B, C and D are digraphs and there is a homo-
morphism D — C. If A x C' and B x C are isomorphic, then A x D and B x D are.

The following theorem will be used later as cancellation law for matrices.

Theorem 2.14. [§//Lemma 3] Suppose A, B and C' are 0-1 matrices for which C' # 0, and
A is square and has at least one nonzero entry in each row. Then, C ® A and C ® B are
permutationally equivalent if and only if A and B are. Similarly, A ® C' and B ® C are

permutationally equivalent if and only if A and B are.

Proof. Suppose C' ® A and C' ® B are permutationally equivalent, then there exists two
permutation matrices P, and P, such that PJ(C ® A)P, = C ® B. Suppose C is an m X n

matrix, then let £ =

] be the square matrix of order (m + n), where the (2,1)" zero
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P, 0
block has the same size as CT. Suppose P = g Then,
1
P 0 CeAllPr
PIE@AP=]|" = ?
P 0 0 Py
[0 PrCw® AP
0 0
[0 cen
0 0
=F®B

01
This shows that the digraphs Ggg4 and Gggp are isomorphic. Let K = 0 0 be an

adjacency matrix of a digraph on two vertices with one arc. Since C' # 0, we have a
homomorphism from G to Gg. Hence, from Lemma|2.13|, Gxga and G kg p are isomorphic.
Then, there exist a permutation matrix @ such that QT (K ® A)Q = K ® B, that is,

0 A
0 0

0 B

T —
Q Q=1 4

Since A is a square matrix and has no zero rows, the rows of A must be permuted only
0

among themselves. Hence, any such ) must be of the form @ = [C(Q)Q 0 ] where ()7 and
1

(), are also permutation matrices. Then, QT AQ; = B and A and B are permutationally

equivalent. O

The assumption that ‘A has has no zero rows’ can also be replaced with the assumption
that ‘A has no zero columns’ (see proof of Lemma 3 in [9]). Hence, A cannot have both a
zero row and a zero column. We will be stating this assumptions as ‘A has no zero rows or
zero columns’. It is also enough to make such an assumption for at least one of A or B, but
we will be stating it for both A and B.
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Chapter 3

Partitioned tensor product

In this chapter, we first discuss the constructions of cospectral matrices introduced by Godsil
Mckay in [3]. These constructions essentially involve taking partitioned tensor product of
a bipartitioned matrix whose diagonal blocks are identity matrices with any bipartitioned
matrix. We generalize these constructions by showing that the bipartitioned matrix whose
diagonal block are identity matrices can be replaced with any bipartitioned matrix satisfy-
ing a certain C'/M /T property. When these matrices are taken to be adjacency matrices of
graphs, we get cospectral graphs. We give necessary and sufficient conditions for the cor-
responding graphs to be isomorphic. In the further chapters, we apply these isomorphism
results on the particular cases which satisfy C/M /T property and result in a cospectral

construction.

3.1 Construction of Godsil and Kckay

Let us first recall the definition and some of the properties of Kronecker products.

Definition 3.1. Let A = (a;;) be an m x n matriz. The Kronecker product of the matrices
A and B is denoted by A® B which consists of m rows of n blocks where 7 block in the i*"

row is the matriz a;; B.

Lemma 3.2. Let A, B,C, D be matrices of appropriate order. Then,
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1. (A® B)(C® D) = (AC) ® (BD).
2. (A® B)T = AT @ BT.
3. If A and B are invertible, then (A® B)™' = A~ @ B~1.

4. If A is n X n square matriz and B is m X m square matriz have eigenvalues {\;}
where i = {1,2,...,n} and {p;} where j ={1,2,...,m} respectively, then A® B has
eigenvalues { iy} where i ={1,2,...,n}, j ={1,2,...,m}.

Now, we introduce the notion of partitioned tensor product.

u v

Definition 3.3. [3] The partitioned tensor product of two partitioned matrices K = WX

A B
and H = c D is denoted by K®,H . It is obtained by taking blockwise Kronecker products

of the corresponding blocks, that is,

UA V&®B

K®, H=
P WeC X®D

This product depends on the way K and H are partitioned.

Given the matrices U, V, W and X, define Z(U, X) and P(V, W) to be the block matrices
U 0

0 X
block matrix is diagonal (respectively counter-diagonal) block matrix if it is of the form

Z(U, X) (respectively P(V,W)).

0o Vv
and [W 0] respectively, where 0 is the zero matrix of appropriate order. A 2 x 2

Proposition 3.4. Let Q and R be of the form Z(Qq,Q2) and Z(Ry, Ry) respectively. Then
u v A B

and H = ,
X C D

for all matrices K =

(Q @ R)(K @, H) = (QK) @, (RH).

The same holds true when @ and R are both of the form P(Q1,Q2) and P(R1, Ry) respec-
tively.
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Proof. Suppose the matrices ) and R are of the form Z(Q1,Q2) and Z(R;, Ry). Then,

(Q @ R)(K @, H) =

Q1 ® Ry 0
0 Q2 ® Ry

URA VeB
WeC X®D

(@ R)U®A) (@ R)(V®B)
(Q2®@ Ro)(W®C) (Q2® Ry)(X ® D)
OU®RA Q1V®RB
QW ®@ RoC Q2 X ® Ry D
QIU le RlA RlB
QQW QZX RQO RQD

p

= (QK) @, (RH)

In the second step, Lemma[3.2] (1) is used. Hence, (Q ®, R)(K ®, H) = (QK) ®, (RH).
Similarly, this equation can be shown to hold in case ) and R are of the form P(Q1,Q2)

and P(Rl, RQ)

Proposition 3.5. [3] Forr=1,2,3,..

1. T(A, D) = T(A", D")

2. P(B,C)* =Z((BC)",(CB)")

. we have

3. P(B,C)>+ = P((BC)'B, (CB)C)

J. (A, D)YP(B,C) = P(AB, DC)

5. P(B,C)I(A, D) = P(BD,CA)

]

Define f(H) = f(Z(A,D),P(B,C)) and g(H) = g;;(A, B,C, D) for some monomials f
and g. Whenever f(H) is used, it is implied that f takes the variables Z(A, D) and P (B, C)
that appear in the decomposition H = Z(A, D) + P(B,C). Whenever, g(H) is used, it is
implied that ¢ takes the variables A, B, C' and D, the blocks in the partitioned matrix H .

Proposition 3.6. [3] f(H) = [

als.

gu(H) gi2(H)
921(H) 922<H)

] where f and g;;;1 < 4,5 < 2 are monomi-



Proof. Let s be the degree of the term P (B, C) in the monomial f(H) and let ¢ be the total
degree. If s is even, then from Proposition [3.5|

f(Z(A,D),P(B,C)) =Z(A, D)*P(B,C)*
(Atfs7 ths)I«BC)s/Z’ (CB)S/Q)

(At_S(BC)S/2, Dt—s(CB)s/Q)

7
ya

If s is odd, then from Proposition [3.5]

f(Z(A,D),P(B,C)) = Z(A, D) *P(B,C)*
I(A"*, D' *)P((BC)* V2B, (CB)*V/2C)

P(At—s(BC)(s—l)/QB7 Dt_S(CB)(S_l)/2C)

gll(Aanov D) 912<A7-8707 D)

Hence, f(H) =
g21(Aanc’7D) 922(AaB7C7D>

for some monomials g;; for 1 < 4,5 <

2.

Lemma 3.7. [F/f(K ®, H) = f(K)®, f(H)

Proof. Consider a monomial g,;, then from Proposition [3.2] we get
Hence,

f<K®p H) = f(I(U®p AaZ®p D)77)(V®p B:W®p C))

(W (U®AVRBW®C,Z®D) glU®AVeBWeC,Z® D)
g1 (U® AV @BW®C,Z0D) gn(U®AV®BW®C,Z®D)
911

(

o (UVWZ) 912(U7V7VVJZ) 911<A7B707D) 912<A;B7C7D)
(
) ®

I
.

91 (U, V. W, Z) ga(U,V,W, Z)| " | 921(A, B,C, D) gx(A, B,C, D)

= [(K) ®, f(H)

26



D C
Define H# =
B A

satisfies QT HQ = H?. Hence, H and H# are permutationally similar

where A is p x p matrix and D is ¢ x ¢ matrix. Then Q) = P(I,, I,)

Lemma 3.8. [3] g11(H) = goo(H?) and gi12(H) = g1 (H?)

Proof. Since Q = P(I,, I,) satisfies QT HQ = H#, then for a monomial f,

Q" f(H)Q =Q"f(Z(A, D), P(B,C))Q
= f(Q"Z(A, D)Q,Q"P(B,C)Q)

= f(QTHQ)
= f(H")

To illustrate the second step, consider the example f(X,Y) = X?Y X3 such that products
are defined. Then,
QTf(X,Y)Q = QXY X?Q
= (Q"XQPQ'YQ)QTXQ)
= [(Q"XQ,Q"YQ)

911(H#) 912(H#)] and

Consider f(H") =
onside f( ) [ng(H#) ggz(H#)

Qe =], g]
)
)

Since, QTf(H)Q = f(H#), we obtain gi1(H) = 922(H#) and g12(H) = 921(H#)-

Lemma 3.9. [3/
trif(K @, H) — f(K @, H*)] = tr[g11(K) — go2(K)] x tr{gi(H) — g22(H))

27



Proof. Using the Lemma |3.7|, we can write,

trlf(K ®, H)| = tr[f(K) ®, f(H)]
= tr{gn (K)]tr(gn (H)] + tr{gea(K)]tr[gez(H)]

Similarly, using Lemma |3.7] and Lemma [3.8|, we can write,

trlf(K @, H")] = tr[f(K) @, f(H")]
= tr[gn(K)]tr[gH(H#)] + tr[922(K)]t7"[922(H#)]
= tr{gn (K)]tr(goa(H)] + tr{geo(K)]tr[gii (H)]

Then,
tr(f(K ®, H) — f(K ®, H*)| = tr{g11(K)]tr[gi1 (H)] + trgoa(K)]tr([gs2(H)]
— tr[g11 (K)]t7[gaz(H)] — tr[gaa(K)Jtr[g11 (H)]
= tr{gn(K) — g22(K)] X trign(H) — g22(H)]
Let K; = Ui Vi i=1,2.
Wi X;

Lemma 3.10. [3/

trf (K, @, H) — f(Ky ®p H)| =tr[gu (H)](tr[g11(K1)] — trigin (K2)])
+ tr[goa (H)|(tr[goa(K1)] — tr{gez(K2)])

Proof. Using the Lemma |3.7|, we can write,

tr(f(Ky @, H)] = tr[f (K1) ®, f(H)]
= trgn (K1)]tr(gun (H)] + tr{gea(K1)]tr(gez(H)]

Similarly, using Lemma [3.7], we can write,

trlf(Ky ®, H)] = tr[f(K2) ®, f(H)]
= tr{gn (Ka)ltr(gn (H)] + tr(ges(Ka)]tr(gox(H)]

28



Then,

tr(f (K @, H)| = trf (K ®@p H)] =tr[gii (K1)]tr(gi (H)] + tr{gos(K1)]tr[gaz(H)]
— trlgn (K2)trgin (H)] + tr{gae(K2)]tr[gea(H))]
=tr[gu (H)](tr[gn (K1)] — trign(K>)])
+ tr(gaa(H )| (tr(g22(K1)] — tr{g22(K2)])

Let us now turn to the applications of the above theory. Let the diagonal blocks in the

I, Vi

matrix M; be identity matrices. Let us call such matrices L; = I f(X)Y) s

monomial in X and Y, then let s be the degree of the variable Y in f(X,Y’) and ¢ be the total
degree. Then f(L)) = f(Z(In,, In,), P(Vi, W), Since, Z(Iy, I,) and P(V;, W;) commute,

we have f(L;) = P(V;, W;)® when s # 0 and f(L;) = Z(I,, In,) when s = 0.

Proposition 3.11. Let V and W are mxn and nxm matrices respectively, then tr[(VW)"] =
tr[(WV)"] holds for all r.

Proof. The statement holds trivially for » = 0. Let r = 1, then

m

VW] => (VW)

i=1

=) VaWi

i=1 k=1

AT

k=1 =1

3

= (WV)kk = t’f’[WV]

k=1
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Let Z = (WV) ™ 'W, then tr[VZ] = tr[ZV] and

Lemma 3.12. [3] With above notations,

1. if s #0, then tr[gi1(L;)] = tr[gsa(L;)]
2. if s =0, then tr(gi1(L;)] = my, trigee(L;)] = n;

3. if s # 0, then tr{gi1(L1)] = trigee(Le)] for all monomials f if and only if Ly and Lo

are cospectral.

Proof. 1. Suppose s is odd, that is, s = 2r 4+ 1. Then,
f(Li) = P(Vi, Wi)* = P((ViW3)" Vi, (W V)" W)

Hence, tr[g11(L1)] = tr[gee(L2)] = 0 and 1. holds. Suppose s is even, that is, s = 2r where
r # 0. Then,
f(Li) = P(Vi, Wi)* = Z((ViW3)", (WiVi)")

Hence, tr(gi1(L1)] = tr[(V;W;)"] and tr{gs(L1)] = tr[(W;V;)"]. Then, from Proposition [3.11],
tr[(ViW;)™| = tr[(W;V;)7], hence 1. holds.
2.1t s=0, f(L;) =Z(Im,, In,). Hence, 2. holds.

8. We have, f(L1) = g11(L1)+go2(L1) and f(La) = g11(L2)+ga2(L2). Suppose s # 0, then
from 1., trgi1(L1)] = tr[gea(L1)] and tr[gi1(La)] = tr[gea(L2)]. Hence, having tr[gi1(L1)] =
tr[gea(L2)] is equivalent to tr[f(Ly)] = tr[f(Lz)]. Since for any monomial f, we have f(L;) =
P(V;, W;)*. Hence, we want to show that ¢tr[P(Vy, W1)'] = tr[P(Va, Ws)!] for all ¢ # 0 if and
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only if L; and Ly are cospectral. Now consider

t

)P(Vi,wi>+...+79<vi,vvi>f (3.1)

Now suppose tr[P(Vy, W1)!] = tr[P(Vay, W3)!] for all ¢ # 0 then it follows that ¢r[L!] =
tr[L5] that is, L, and Ly are cospectral.

Now conversely, suppose L; and Ly are cospectral. Then, ¢r[L] = tr[L}] for t =
0,1,2,.... Note that tr[P(Vy, W1)] = tr[P(Va, W2)'] is true when the monomial corresponds
to odd s since in that case trace is zero. Hence, we only need to show that it holds in the

even cases. Let t = 2, then from equation [3.1] we have
tr[ Ly ny + PV, W) + P(Vi, W12 = tr[ Ly iy + P(Va, Wa) + P (Va, W)
Hence, tr[P(Vy, W1)?] = tr[P(Va, Wy)?|

Now suppose tr[P(Vy, W)™ = tr[P(Va, W2)'™!] holds as the induction assumption.
Then, from equation [3.1] trace of all the terms in ¢tr[L!] except the last term tr[P(V;, W;)]
are same for i = 1 and i = 2. Since ¢r[Lt] = tr[L}], then tr[P(Vy, W)t = tr[P(Va, Wa)Y]

This shows tr[f(L1)] = tr[f(Ls)] for all monomials f if and only if L, and L, are cospec-
tral. Hence, it follows if s # 0, tr[g11(L1)] = tr[gee(Ls)] for all monomials f if and only if L,

and Ls are cospectral. O]

Lemma 3.13. [3] tr[(L®, H)'| —tr[(L®, H?*)!] = (m—n)(tr[A"] —tr[D]) fort=0,1,2,...

Proof. From Lemma , we have tr[f(L ®, H)] — tr[f(L @, H*)] = tr{gii(L) — ga2(L)] x
trign(H) — goo(H)]

Case 1: s =0
From Lemma [3.12|, we have tr[g11(L) — go2(L)] = m — n. Since f(H) = Z(A, D)', we have
tr(gin(H)—go2(H)] = tr[A']—tr[D']. Also for any monomial f(L®,H) = Z(1,®A, ,&D)" =
(L ®, H)', hence the statement follows.

Case 2: s #0
From Lemmal3.12|, we have tr[g11(L)—g22(L)] = 0. Hence, tr[f(L®,H)]—tr[f(L&,H#)] =0
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for all monomials. Since, (L®,H)" and (L®,H*)! both can be written as binomial expansions
in which each term is a monomial, the LHS of the statement is zero. The statement trivially
holds. [

Lemma 3.14. [3] Let Ly and Ly be cospectral. Then, tr[(L; ®, H)"| — tr[(Ls ®, H)"| =
(my — mg)(tr[AY] — tr[DY]) fort=0,1,2,...

Proof. From Lemma [3.10 we have

tr(f(Ly ®p H)| — tr[f(Le ®, H)] = tr{gu(H)](tr[gu(L1)] — tr]gii(Le)]
+ tr{goo(H)|(tr(goz(L1)] — tr{gaa(Ls)]

Case 1: s =10
From Lemma we have tr[g11(L1)] = ma, trigee(L1)] = ny, trigin(L2)] = me and
tr[gaa(La)] = na. Since f(H) = Z(A, D), we have g1;(H) = A" and goo(H) = D'. Also
for any monomial f, f(L®, H) = Z(I,, ® A, I, ® D)" = (L ®, H)". Hence, tr[f(L; ®,
H)] —tr[f(Ly ®, H)] = (mq — ma)tr[A] + (ny — na)tr[D']. Since L; and Lo are cospectral,
my + ny = ma + ng, that is, my; — mg = ny — ny. Hence, tr{(L, @, H)"] — tr[(Ls ®, H)'| =
(my1 — mo)(tr[AY] — tr[D]).

Case 2: s # 0
From Lemma [3.12] and since Ly and L, are cospectral, we have tr[gi1(L1)] = tr[g(Ls)] and
tr(gi1(Le2)] = tr[gea(L1)]. We also have tr{gi1(L1)] = tr{gee(L1)] and tr{g11(L2)] = trigee(Le)].
Hence, tr[f(L®, H)]|—tr[f(L®, H#)] = 0 for all monomials. Since, (L®, H) can be written
as sum of monomials, the LHS of the statement is zero. Hence, the statement trivially
holds. O

Now we state the main results of Godsil and Mckay,

Theorem 3.15. [3/Let

A B
C D

I, V
w I,

D C
B A

L = H# —

Y 9

where A and D are square matrices and I,,, and I, are m x m and n X n identity matrices.

Then, L ®, H and L ®, H* are cospectral if and only if m =n or A and D are cospectral.
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Proof. Follows from Lemma [3.13] O

Theorem 3.16. [3] Let

A B

i=1,2H =
C D

I . .
P
Wi [ni

where A and D are square matrices and I,,, and I,,, are identity matrices. Let Ly and Ly be

cospectral. Then, Ly ®, H and Ly ®, H are cospectral if and only if mi = mg or A and D

are cospectral.

Proof. Follows from Lemma, |[3.14] O

3.2 Generalizing the construction of Godsil and Mckay

In this section, we generalize the construction we just discussed. We extend the results to

I, V

matrices of the form other than L = . Such matrices are given by the following

n

u v
definition. Let K = [W % such that the blocks U and X are square matrices of the order

UiV .
m and n respectively. Similarly, let K; = for ¢ = 1, 2 such that the blocks U; and

i K
X, are square matrices of the order m; and n; respectively.

Definition 3.17. A matriz K is said to satisfy C/T property if it satisfies only the com-
muting and the trace property. Two matrices K1 and Ko are said to satisfy C' /M /T property

if they satisfy the commuting, the monomial and the trace property.
1. (Commuting Property) Z(U, X) and P(V, W) commute, that is, UV = VX and XW =
wuU

2. (Monomial Property) tr[f(K1)] = tr[f(K2)] for all monomials f if and only if tr[K}] =
tr[KE] for allt =0,1,2,... (that is, K1 and Ky are cospectral).

3. (Trace Property) tr(U5(VW)"] = tr[X'"5(WV)"| holds for all t and even s where
s=2r and s # 0
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We can write f(K;) = f(Z(U;, X;), P(Vi, W;)). Let s be the degree of P(V;, W;) in f and
t be the total degree of f. The following proposition shows that the forward implication of
the monomial property is true. Hence, in the further results when we need to show that

monomial property holds, we will only need to show that the backward implication is true.
Proposition 3.18. Let K| and Ky be two matrices such that tr[f(K;)|] = tr[f(K3)] holds

for all monomials f, then K; and Ky are cospectral.

Proof. Since, f(K;) = Z(U;, X;)' 5P (V;, W;)* for all nonnegative ¢ and s, the following holds

for every t and s,
tr[Z(Uy, X1)" P (Vi, Wh)®] = tr[Z(Usy, Xo) 5P (Va, Wa)®]
Now consider the following for t = 0,1,2,...
tr[Ki] = tr[(Z(Uy, X1) + P(Vi, Wh))']
= tr[Z(Uy, X1)" + G)tr[I(Ul, X)) TPV, W)+ .+ tr[P(V, W)Y
= tr[Z(Us, Xo)"] + G)tr[z(UQ, Xo) TPV, Wo)' | + ... + tr[P(Va, Wa)']

= tr[(Z(Us, X2) + P(Va, Wa))']
= tr[K}]

Hence, Ky and K, are cospectral. O

L,V .
We now extend Lemma |3.12 to matrices not just of the form [ ] but any matrices

n

satisfying C'/T and C'/M /T property respectively.
Lemma 3.19. If a matrizc K satisfies C'/T property, then it satisfies the first two condi-
tions below. If two matrices Ky and Ky satisfy C /M /T property, then the satisfy all three
conditions below.

1. If s # 0, tr{gn (K)] = tr(ga(K)],

2. If s =0, tr(gi(K)] = tr[U"] and tr(ge(K)] = tr[X],
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3. If s # 0, tr[gi1(K1)] = tr[gea(K3)] for all monomials f if and only if K1 and Ky are

cospectral.

Proof. 1. If s # 0, then f(K) =Z(U, X)"*P(V,W)*. We have two cases:

Case 1: sisodd and s =2r +1
Then P(V,W)* = P[(VW)"V,(WV) W] and Z(U, X)"~5 = Z(U'*, X*~*). Hence,

fK) =Z(U", X" P[(VW)'V, (WV)' W]
= PUS(VIW)'V, XS (WV) W]

Then, tr[g;1(K)] = tr{gs(K)] = 0.

Case 2: s is even and s = 2r

Then P(V,W)* = I[(VW)", (WV)"]. Hence,
JK) =Z(U, X I[(VIV)", (WV)']
=IU (VW) , X" (WV)]

tr(gi (K)] = tr[U5(VW)"] and tr[gee(K)] = tr[ X' 5(WV)"]. Since, K satisfies trace prop-
erty, then tr[g) (K)] = tr{gee(K)], hence 1. holds.

2. It s=0, f(K)=Z(U", X"). Then, tr[g;1(K)] = tr[U"] and tr[gs(K)] = tr[X"].

3. If s # 0, and suppose K; and K, be cospectral, then tr[f(K,)] = tr[f(K>)] for all
monomials f because the matrices K; and K, satisfy monomial property. We can write,
tr[f(K;)] = trign(K;)] + trige2(K;)] and also from 1. we have tr{g1(K;)] = tr[ga2(LK;)].
Hence, when s # 0 having tr[f(K)] = tr[f(K2)] is equivalent to tr[gi1(K1)] = tr[gea(K2)]

for all monomials f. Conversely suppose tr[gi1(K7)] = tr[gee(K>)] holds for all monomials
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f. From 1., we have tr[g;1(K;)] = tr[geo(K;)]. Then,

tr[f(K4)] = trig (K1)] + tr]gee (1))
= tr[gaa(K2)] + tr{gi (K2)]
= tr[f(K3)]

Hence, K; and K5 are cospectral. O

Theorem 3.20. Let the matriz K satisfy C'/T property, and let

D C
B A

u v
W X

A B
C D

# _

s =

’

Then, K ®, H and K ®, H* are cospectral if and only if U and X are cospectral or A and

D are cospectral.

Proof. From Lemma [3.9] we have

trif(K ®p H)| —tr[f(K Op H#)] = (tr[g11(K)] — tr(ge(K)])(trlgn (H)] — triga(H)])

Case 1: s =10
Then for some ¢, f(K) =Z(U", X"), f(H) = Z(A", D") and

f(K ®p H) :I((U Qp A)t7(X ®p D)t) = (K Qp H)t

Similarly, f(K ®, H*) = (K ®, H*)!. Hence, tr(gi(K)] = tr[UY], tr(ge(K)] = tr[X?],
trigi1(H)] = tr[AY], tr(gea(H)] = tr[D']. Then, we obtain

tr[(K @, H)'| — tr[(K ®, H?)"] = (tr[U"] — tr[X]")(tr[A"] — tr[D"])

for t =0,1,2,.... Hence, K ®, H and K ®, H* are cospectral if and only if U and X are

cospectral or A and D are cospectral

Case 2: s #0
From Lemma [3.19] (1), we have tr[g11(K)] = tr[g2(K)]. Then,

trlf(K @, H)] — tr[f(K @, H")] = 0
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then it follows from Proposition m that K ®, H and K ®, H* are cospectral. O]

Theorem 3.21. Let Ky and Ky be cospectral and satisfy C/M /T property. Let

A B
C D

Ui Vi

Ki -
W; X

Jfori=1,2,H =

Then Ky ®, H and Ky, ®, H are cospectral if and only if Uy and Uy are cospectral or A and

D are cospectral.

Proof. From Lemma [3.10, we have

trf (K1 @, H) — f(Ky @y H)| = tr{gu(H)|(tr{gi (K1)] — tr{gin (K2)])
+ tr(gao(H)](tr(gaa(K1)] — tr{gaa(K>)])

Case 1: s =0
Then for some t, f(K;) =Z(UL, X)), f(H) = Z(A', D) and
f(Ki @p H) = Z((U; @, A (X ®p D)t) = (Ki @y H)t

Hence, tr[gi1(K;)] = tr[U}], tr(ge(K;)] = tr[X}], trlgi(H)] = tr[AY], trlge(H)] = tr[D].
Then,

tr((Ky @, H)'] = tr[(Ky ®, H)'| = tr[A"](tr[U}] — tr(Us]) + tr[D)(tr[X}] — tr[X3])

Since K; and K are cospectral, tr[f(K)] = tr[f(K3)] holds for all monomials f. We have
trif(K;)] = tr[U}]+tr[X}]. Hence, tr[Uf]+tr[X}] = tr[UL] +tr[XE], that is, tr[Uf] —tr[UL] =
—tr[X!] + tr[X%]. We obtain

tr((Ky @, H)'| = tr{(Ky ®, H)'] = (tr[Uy] — tr[U3]) (¢r[A'] — tr[D'])

forall £ =0,1,2,.... Hence, K| ®, H and K; ®, H are cospectral if and only if U; and U,

are cospectral or A and D are cospectral.

Case 2: s #£0
Since K; and K, are cospectral, from Lemma (3), we have tr[gi1(K1)] = tr(gea(K2)]
and tr{gi1(K3)] = tr[ge2(K)] for all monomials. Then, tr[f(K, ®, H) — f(K: ®, H)] =0

37



for all monomials. Then, it follows from Proposition that Ky ®, H and Ky, ®, H are

cospectral. O

3.3 Isomorphism of the corresponding graphs

If the matrices in the construction we just obtained are taken to be adjacency matrices of
graph or digraphs, then we get conspectral graphs or digraphs. Let us assume the matrices
to be adjacency matrices of graphs, that is, let the matrices be symmetric 0-1 matrices. We
will not assume that the graphs don’t have loops, that is, some matrices might have nonzero
diagonal entries. In this section, we investigate necessary and sufficient conditions for the
corresponding graphs to be isomorphic. A similar analysis can also be done for the digraphs.

B
Let H be a symmetric partitioned matrix such that H = [ D] and the diagonal

BT

blocks A and D are square symmetric.

Definition 3.22. A graph Gy is said to have interchanging automorphism with respect to

its bipartition, if it interchanges the induced graphs G4 and Gp.

Proposition 3.23. If a graph Gy admits an interchanging automorphism with respect to
its bipartition, then the corresponding permutation matriz has the form P(Q1, Q2) such that
Q1 and Qy are permutation matrices. Then, Q = T(Q,,Qs) satisfies QT HQ = H.

Proof. It can be easily seen that the permutation matrix corresponding to such an auto-
morphism has the form @' = P(Q1,Q2) such that @; and @ are permutation matrices of
appropriate orders. Then from QT HQ' = H, we have QT BQ, = BT, QTAQ, = D, and
QYDQ, = A. Let Q = I(Q1,Q»), then it satisfies QT HQ = H*. O

The following proposition gives a sufficient condition for a graph to not admit an inter-
changing automorphism.
Proposition 3.24. A graph Gy does not admit an interchanging automorphism with respect
to its bipartition if one of the following holds:

1. B is not PET (in particular, B is not square)
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2. the graphs G 4 and Gp are not isomorphic, (in particular, they are are not cospectral)

Proof. If Gy admits such an automorphism, then the corresponding permutation matrix has
the form P(Q1, Q2) such that Q; and Q, are permutation matrices satisfying Q¥ BQ, = BT,
QTAQ, = D, and QI DQ, = A, that is, B is PET and G4 and Gp are isomorphic. When
G 4 and Gp are not cospectral, the graphs G, and G p are nonisomorphic. If B is not square,
then B is not PET. Hence, if any one of the two conditions hold, the automorphism cannot

interchange G4 and Gp. O

3.3.1 Construction-I

Recall the construction given by Theorem Let us assume that the matrix K =
U

VT
cospectral. Hence, the graphs Gge,n and Ggg, g# corresponding to the matrices K ®, H

satisfies C'/T property, and at least one of the pairs U and X or A and D is

and K ®, H* as adjacency matrices are cospectral. This also implies that least one of Gx

or Gy admits equal bipartition size.

The following lemma gives a sufficient condition for the graphs to be isomorphic.

Lemma 3.25. If at least one of Gx or Gy admits an interchanging automorphism with

respect to its bipartition, then Gxg,n and Ggg, g+ are isomorphic.

Proof. Case 1: Suppose G admits such as automorphism
Then, there exists permutation matrices Ry and Rz such that R = P(Rs, R3) satisfies
RTKR = K. Since QTHQ = H* for Q = P(I,,1,), the partitioned tensor product

P = R®, @ is also a permutation matrix.

Case 2: Suppose Gy has such an automorphism
Then there exists permutation matrices Q; and Q4 such that Q = Z(Q1, Q) satifies QT HQ =
H#. Let R be an identity matrix, then the partitioned tensor product P = R®, Q is also a

permutation matrix.
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In any case, it follows that

PY(K ®, H)P = (R®, Q)" (K ®, H)(R®, Q)
= (R" @, Q")(K @, H)(R @, Q)
= (RTKR) @, (Q"HQ)
=K ®, H*

Note that Proposition is used in the second step. Hence, Gkg,n and Ggg, g# are

isomorphic, since the corresponding adjacency matrices are permutationally similar. O

Let us define a property that will help us showing the sufficient condition for the isomor-

phism to be also a necessary condition.

Definition 3.26. The graphs G and Gy are said to satisfy property n,, if whenever Ggg,n
and Ggg g# are isomorphic, the induced subgraph Guga of Gke,n s isomorphic to at least

one of the induced subgraphs Guep and Gxga of Gg,m#-

Lemma 3.27. Let the graphs G and Gy satisfy property m and let Grg,n and Ggg, g+
be isomorphic. Then at least one of the following holds:

1. PIT(U®A)P1 U® D, PT(V®B)P4 V ® BT, PT(X®D)P4 X ® A for some

permutation matrices Py and P,. Then,
If Gy is nonbipartite, then G o and Gp are isomorphic.
If G4, Gp and Gy are bipartite, then G 4 and Gp are isomorphic.
If V # 0 and B has no zero rows or zero columns, then B is PET.
If Gy is nonbipartite, then G 4o and Gp are isomorphic.
If G4, Gp and Gx are bipartite, then G4 and Gp are isomorphic.
2. PP{U AP, =X® A, PF(VI @ BYP, =V @ BT and P} (X @ D)P3=U ® D for
some permutation matrices Py and P3. Then,
If G 4 is nonbipartite, then Gy and Gx are isomorphic.
If Gy, Gx and G 4 are bipartite, then Gy and Gx are isomorphic.

If B#0 and V' has no zero rows or zero columns, then V is PET.
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If Gp 1s nonbipartite, then Gy and Gx are isomorphic.

If Gy, Gx and Gp are bipartite, then Gy and Gx are isomorphic.

P R

Proof. Suppose Gkg,n and Gkg, g+ are isomorphic and P = PP
3 Iy

is a permutation

matrix such that P*(K ®, H)P = K ®, H*. Then from,

T
P P

Py Py

UA VB
Ve BT X®D

IS
P Py

UD VBT
VieB X®A

Then from property 7y, P has either the form Z(P;, Py) or P(P», P3). If P =Z(P;, Py),
we have, PI({U® A)P, =U® D, PFr(V® B)P, =V ® BT, Pl(X®@ D)P, = X ® A. If
P =P(P,, P3), we have, P/ (X®@D)P3 =U®D, P/ (VI@BT)P,=V®B" PFURA)P, =
X ® A. The further statements follow from the cancellation law for graphs (Lemma ,
Theorem and matrices (Lemma [2.14)). O

We will apply these isomorphism results on the particular constructions corresponding
to K’s that satisfy C'/M /T property in the further chapters.

3.3.2 Construction-I1

Recall the construction given by Theorem Let us assume that the matrices K; =

u, » Uy Vs .
and Ky, = are cospectral and satisfy C/M /T property. Let at also
vIoX, 2 VI X, p y C/M/T property

assume that least one of the pair U; and U, or A and D is cospectral. Hence, the graphs

Gk,e,0 and Gg,g,n corresponding to the matrices K ®, H and K; ®, H as adjacency
matrices are cospectral. This also implies that either Gy admits equal bipartition size or

Gk, and G, are partitioned similarly.

Definition 3.28. Let the graphs G, and Gg, be isomorphic. An isomorphism between
them is called a Type-1 (Type-2) isomorphism, if it maps the induced subgraph Gy, of Gk,
to the induced subgraph Gy, (Gx,) of Gk,.

The permutation matrices corresponding to Type-1 and Type-2 isomorphisms are of the
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form Z(Q1.Q2) and P(Q1, Q)2) respectively for permutation matrices (); and Q)2 of appropri-
ate orders. The following proposition gives a sufficient condition for the isomorphic graphs

Gk, and Gk, to not admit such a isomorphism.

Proposition 3.29. Let the graphs G, and G, be isomorphic. They do not admit isomor-
phism of Type-1 (Type-2) if one of the following holds:

1. Gy, is not isomorphic with Gy, (Gx,)
2. Gx, 1is not isomorphic with Gx, (Gy,)

3. Vs is not permutationally equivalent to Vy (ViT).

Proof. Since Gk, and Gk, are isomorphic, there exists a permutation matrix P such that
PP
Py Py
the isomorphism is Type-1, we have P = Z(Py, P3), and hence PLU, P, = U,, PIViP3 =
Va, and PIX1P; = X,. In case the isomorphism is Type-2, we have P = P(P,, P3), and
hence PI X Py = Uy, P/VIP, = V,, and P/U P, = X,. The proposition follows by

contrapositive. 0

PTK\P = K,. Let P = such that the blocks are of appropriate orders. If case

The next lemma gives a sufficient condition for the graphs constructed to be isomorphic.

Lemma 3.30. The graphs Gkg,n and Ggg, g+ are isomorphic if at least one of the following
holds:

1. K and Ky are isomorphic via a Type-1 isomorphism

2. K1 and Ky are isomorphic via a Type-2 isomorphism, and Gy admits an interchanging

automorphism with respect to its bipartition

Proof. Case 1: Suppose K; and Ky ar isomorphic via a Type-1 isomorphism

If R is the corresponding permutation matrix such that RTK;R = K, then R has form
R =1(Ry, R,) for two permtuation matrices Ry and R, of appropriate orders. Let Q) = 1,4,
be an identity matrix, then the partitioned tensor product P = R®, () is also a permutation

matrix.
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Case 2: Suppose K; and K, ar isomorphic via a Type-2 isomorphism, and Gy admits
an interchanging automorphism with respect to its bipartition
If R is the corresponding permutation matrix such that RT K, R = K,, then R has form
R = P(Rs, R3) for two permutationa matrices Ry and Rj of appropriate orders. Since
Gy has such an interchanging automorphism with respect to its bipartition, there exists
permutation matrices Qo and Q3 such that Q = Z(Q,,Q3) and QTHQ = H. Then, the

partitioned tensor product P = R ®, () is also a permutation matrix.

In any case,

PY(K,®, H)P=(R®,Q)" (K, ®, H(R®,Q)
= (RT ®p QT)<K1 ®p H)(R Qp Q)
= (R"K\R) ®, (Q"HQ)
=K, ®,H

Note that Proposition is used in the second step. Hence, Gk 0,7 and Gg,g,n are

isomorphic since the corresponding adjacency matrices are permutationally similar. O]

Let us define a property that will be helpful in showing the sufficient condition for iso-

morphism to be also a necessary condition.

Definition 3.31. The graphs Gk,, Gk, and Gy are said to satisfy property no, if whenever
Grio,a and Gr,e,m are isomorphic, the induced subgraph Guy,ga of Gr,e,m s isomorphic

to at least one of the induced subgraphs Gu,pa and Gx,op of Grye,H-

Lemma 3.32. Suppose Gg,, Gk, and Gy satisfy property n, and suppose Gk, g, n and

Gk,e,m are 1somorphic. Then at least one of the following holds:

1. PIT(U1®A)P1:U2®A, PF(%@B)P4:‘/2®B7 P4T(X1®D)P4:X2®Df07“some

permutation matrices Py and Py. Then,
If G4 is nonbipartite, then Gy, and Gy, are isomorphic.
If Ga, Gy, and Gy, are bipartite, then Gy, and Gy, are isomorphic.

If B # 0 and Vy and V3 have no zero rows or zero columns, then Vi is permuta-

tionally equivalent to V5.

If Gp s nonbipartite, then Gx, and Gx, are isomorphic.

43



If Gp, Gx, and Gy, are bipartite, then Gx, and Gx, are isomorphic.
2. P3T(X1®D)P3 = U2®A, P3T(Vv1T®BT)P2 = %@B, PQT(U1®A)P2 :X2®Df07"
some permutation matrices Py and Ps. Suppose A =D and B = BT. Then,

If G4 is nonbipartite, then Gx, and Gy, are isomorphic and Gy, and Gx, are

isomorphic
If Ga, Gx, and Gy, are bipartite, then Gx, and Gy, are isomorphic.
If G4, Gy, and Gx, are bipartite, then Gy, and Gx, are isomorphic.

If B # 0 and Vy and Vy have no zero rows or zero columns, then Vi'' is permuta-

tionally equivalent to V5.

Proof. Suppose Gk, g,n and Gk,g,n are isomorphic, the there exists a permutation matrix

P, P
P such that PT(K, ®, H)P = K, ®, H. Let P= | 2| then
3 4
T
PP Uh®A VieB| |k P Uy A Vo®B
P, P| |VT®@BT Xy®D||P, P| |V/®BT X,®D

From property 7, P is either of the form Z(Py, P;) or P(Py, P;). In case P = Z(Py, Py),
we have, PI(U; @ A)P, = Uy, ® A, Pl (Vi @ B)P; = Vo, @ B, P[ (X, ® D)Py, = X, ® D.
In case P = P(P, ), we have P{ (X, ® D)P3 = Uy, ® A, PT (V! @ BT)P, = V, ® B,
PHU @ A)P, = X, D. The further statements follow from the cancellation law for graphs

(Lemma [2.11], Theorem [2.12)) and matrices (Lemma [2.14)). O
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Chapter 4

Unfolding a bipartite graph

In this chapter, we first discuss a construction based on unfolding a bipartite graph to obtain
bipartite graphs which are cospectral for the adjacency as well as the normalized Laplacian
(see [1]) and some of its existing generalizations (see [14], [12]). We then introduce the idea
of partitioned tensor products to obtain the most generalized version of this construction.
We show it is in fact a particular case of Theorem discussed in the previous chapter,
in other words, we discuss a candidate for a matrix satisfying C'/M /T property. We then
apply the isomorphism results from the previous chapter to obtain equivalent conditions for
the cospectral graphs to be nonisomorphic. We give partial characterization of property n,
required in the investigation of the isomorphism and show how a result of Ji, Gong and Wang
[12] can be generalized and also show a complete different problem considered by Hammack

[9] is related to unfolding.

4.1 Butler’s construction of unfolding a bipartite graph

Let G be a bipartite graph with vertex partitioning V(G) = X UY such that | X| = p and
|Y| = ¢q. The adjacency matrix of graph G can be given by

0 B

AG) =pr
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where the biadjacency matrix B is a p X ¢ matrix. The operation of unfolding a partition
can be done in following way: Consider two copies Y; and Y5 of partition Y. If there is an
edge between z; € X and y; € Y, then draw an edge between x; and yjl-, and between x; and
yjz, where yjl- € Y and y]2 € Y. Note that the vertices yjl € Y and y]2- € Y, corresponds to
the vertex y; € Y. Call this resultant graph I';. Similarly I'; can be obtained by unfolding

the partition X twice in similar way. The adjacency matrices of I'; and I's are given by:

0 B B 0 BT BT
AT)=|BT" 0 0|, ATy)=|B 0 0
BT 0 0 B 0 0
O
G . © ©
@) O O

Figure 4.1: Smallest unfolding example: G, I'y, I'y

The square matrices A(I'y) and A(I'y) have orders (p + 2¢) and (2p + q) respectively.
11
The graphs G, I'; and I's corresponding to the matrix B = 0 0 are shown in Figure 4.1

Vertices from the same partite sets are coloured using the same colour in G. The colours of

the new vertices in I'; and I'y denote the new unfolded partite sets.

The following theorems discusses the eigenvalues of the unfoldings in terms of the base

bipartite graph. Let o(A) denote the eigenvalues of the matrix A.

Theorem 4.1. [i/If p > q, then

(A1) = V2 x o(A(G) U{Q...0}

g—times

o(A(l)) = V2 x o(AG))U{0...0}

p—times
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and if p = q, then A(T'y) and A(T'3) are cospectral.

Recall that if a graph G has no isolated vertices, then the normalized Laplacian is given
by L(G) = I — D(G)™'2A(G)D(G)~/? where D(G) is the degree matrix of G.

Theorem 4.2. [i/Suppose G has no isolated vertices. If p > q, then

o(£(1)) = V2 x o(£(G)) U{L... 1}

qg—times

o(L(Dy)) = V2 x o(L(G)U{l...1}

p—times

and if p = q, then L(T'1) and L(T'y) are cospectral.

Hence, if G has no isolated vertices and has equal partition sizes (p = ¢), the bipartite
graphs I'y and I'y are cospectral for the adjacency matrix as well as for the normalized
Laplacian. These two results are also be generalized by unfolding each partition n-times

instead of twice. Adjacency matrices of such unfoldings are given by:

0 B B ... B

BT 0 0 ... 0

AT) =[BT 0 0 0
BT 0 0 0]
[0 BT BT ... BT]

B 0 0 ... 0
AT)=|B 0 0 ... 0
B 0 0 ... 0]

In this case, A(T'1) and A(T'3) are square matrices of orders p+ng and np+ g respectively.

The following theorems discusses the eigenvalues of these new graphs.
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Theorem 4.3. [T]]If p > q, then

o(A(T})) = vin x o(AG)) U {0...0}

(n—1)g—times

o(A(Ty)) = v/ x o(AG)) U {0...0}
—

(n—1)p—times

and if p = q, then A(T'1) and A(T'3) are cospectral.

Theorem 4.4. [T]|/Suppose G has no isolated vertices. If p > q, then

o(L(T) = v x o(L(G) U {1...1}

(n—1)g—times

o(L(Dy)) = v x o(L(G) U {1...1}
——

(n—1)p—times

and if p = q, then L(I'1) and L(T'y) are cospectral.

Hence, similarly when G has no isolated vertices and has equal partition sizes (p = ¢), the
bipartite graphs I'y and I'y are cospectral for the adjacency matrix as well as the normalized

Laplacian matrix.

Remark 4.5. The matriz B is a 0-1 matriz. In both of these constructions in [1] and [1]),
if B is chosen in such a way that the mazimum row sum of B is different than the maximum
column sum of B, then the bipartite graphs I'y and 'y are non-isomorphic. The mazimum
row sum and the mazimum column sum of B corresponds to the vertex with mazimum degree

in partition X and in the partition Y of the graph G respectively.

Let us discuss how to generalize this idea further. Let n be a positive integer, k£ be any
divisor of n and o(n) be the number of divisors of n. Consider a bipartite graph G such that
the vertex set is partitioned as V(G) = X UY. Take 7 copies of the partition X and form a
set W:X1UX2U---UX%. Take k copies of Y and form aset Z =Y, UYoU---UY). Use
the independent sets W and Z as partitions to construct a bipartite graph I';, as follows: For
all 1 <7 < 2 and 1 < j <k, draw edges between X; and Y; as given by the edges between
X and Y. For a fixed partition X;, the partition Y is 'unfolded’ k times. Since there are

n

% such i’s, the total number of unfoldings is k x 3 = n. Let I, = A(I'x) be the adjacency
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matrix of the unfolding I'y of graph G. Then Fj is a square matrix of order 7p + kq given
by:

BT...BT 0...0

BT...BT 0...0

There are 7 columns whose first entry is a zero block of order p and k columns whose

first entry is the block B. For a fixed n, there are o(n) such possible Fy’s.

Theorem 4.6. [1]] Let p > q. Consider the family of adjacency matrices Fy constructed

above. Then,

o(A(Ty) = o(Fp) = vn x o(AG)u  {0,0,...0}

(% —Dp+(k—1)q]—times

then A(T'y) ® On—2)p+(1-k)gs With k varying over the set of all divisors of n, are cospectral.

Similarly for normalized Laplacian matrix, we can write,

Theorem 4.7. Suppose G has no isolated vertices. Let p > q. Consider the family of

adjacency matrices Fy constructed above. Then

o(L(TW) = A x o(L@GHU  {1,1,...1}

(% —1Dp+(k—1)g]—times
If p = q, then for any divisior k of n, the pair L(T'y) and L(T'») is cospectral.

Example 4.8. Let n = 6, then divisors of n are {1,2,3,6}. Hence, four such matrices Fy,
are possible. Note that the nodes in the figures of Table[{.1] represent the copies of the partite
sets of the base bipartite graph. We have not specified the graph G.

In particular,
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k L'y o(Fy)

1 m V6 x 0(A(G)) U {0,0,...0}
N’

S5p—times

3p—times

2 N\ V6 x o(A(G)) U {0,0,...0}
———

V6 x 0(A(G)) U {0,0,...0}
N—_———

3p—times

6 W@ V6 x o(A(G)) U {0,0,...0}
————

5p—times

Table 4.1: Unfoldings I'y, I's, I's and I'g for n =6

Theorem 4.9. If G has no isolated vertices, then the graphs I'y and Iy, are cospectral for

the adjacency matriz as well as the normalized Laplacian.

Proof. The result follows from Theorem and Theorem [4.7] O

So far, the condition 'maximum row sum is not same as maximum column sum of B’
was sufficient to have the constructed cospectral graphs to be nonisomorphic. The following
theorem gives the equivalent conditions for the isomorphism. Let k£ and [ to be any two
natural numbers and let n = kl to be the fixed total number of unfoldings. Let p = ¢. Since
k and [ both are divisors of n, consider the graphs I'y and I'; which are cospectral for the
adjacency matrix as well the normalized Laplacian. We assume the matrix B to have no
zero rows as well as no zero columns. The reason for it is that if B has a zero row and no
zero columns, then I'y, and I'; have [ and £ isolated vertices respectively and they might not

be cospectral with respect to the normalized Laplacian.
Theorem 4.10. [72] Suppose B is a square matriz withoul any zero rows or zero columns
and k # 1. Then, the graphs 'y and I'; are nonisomorphic if and only if B non PET.

We refer to [12] for the proof of this theorem which is based on Hall’s theorem. We will
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give an alternate proof in the general setting in the next section. Two of the properties of

the unfoldings are:
Proposition 4.11. The unfolding preserves the diameter, diam(I'y) = diam(G).

Proposition 4.12. If G has no isolated vertices, then the unfolding preserves the number

of connected components, n(Fy) = n(G).

Proof. If G has no isolated vertices, then from Theorem 1.7 the multiplicity of eigenvalue
zero in o(L(I'y)) is same as in 0(L£(G)). The multiplicity of eigenvalue zero of the Laplacian
matrix corresponds to the number of connected components. The multiplicity of eigenvalue
zero is same for the Laplacian and the normalized Laplacian. Hence, unfolding preserves the

number of connected components. O

4.2 Generalization of the unfolding operation

Consider the matrices of the form L = [W O] such V and W are m x n and n X m matrices

respectively.

Lemma 4.13. The matriz L = P(V,W) satisfies C/T property. Two matrices Ly =
P(Vi,Wh) and Ly = P(Vo, Wy) satisfy C/M /T property.

Proof. The commuting property is trivially satisfies since Z(U, X) is a zero matrix which
commutes with P(V, W).

Let f be a monomial, then for i = 1,2 f(L;) = 0" *P(V;, W;)*. Hence, f(L;) is either
P(V;,W;)! = L for some t or a zero matrix. Hence, tr[f(L1)] = tr[f(Lz2)] holds for all
monomials if and only if ¢r[L}] = ¢r[L}] holds for all ¢. Hence, the monomial property is
satisfied.

Suppose s = 2r and s # 0. If t # s, then tr[U"5(VW)'] = 0 and tr[ X" 5(WV)"] =
0. If t = s, then tr[U™*(VW)"| = tr[(VW)"] and tr[X"5(WV)"] = tr[(WV)"]. But
from Proposition [3.11} we have tr[(VIV)"] = ¢tr[(WV)"]. Hence, the trace property is also
satisfied. O

o1



Now that we've shown that the matrices of the form L = P(V,W) satisty C/M/T

property, we can apply the isomorphism results from the previous chapter.

4.2.1 Construction I-A: Bipartite graph

0 BT
B 0
P(BT, B) be the adjacency matrices of the bipartite graphs such that V and B are m x n

0 B

BT

0o Vv
Let L = = P(V,VT), H = — P(B,BT) and H* =
VT

and p x g 0-1 matrices respectively.

Theorem 4.14. The bipartite graphs Grg,n and Grg, g+ are cospectral if and only at least

one of G or Gy admits equal partition sizes.

Proof. From Lemma {4.13| L satisfies C'//T property. Then the result follows as a corollary
of Theorem [3.201 O

The next lemma gives a relation between the normalized Laplacian of partitioned tensor

product and its individual components.

Lemma 4.15. Let Gy and G5 be two graphs with no isolated vertices such that the correspond-

ing adjacency matrices are bipartitioned. Then, L(G ac)e,aGe)) = 21 — L(G1) @, L(G2).

Proof. Let D(G1) and D(G9) denote the degree matrices corresponding to the graphs Gy

—-1/2

and Gy respectively. Since G; and G5 do not have any isolated vertices, D(G1) and

D(G5)~Y/? exists. Then,

I

I — (D(G1)™? ®, D(G2)'*)(A(G1) @, A(G2))(D(G1)™* ®, D(Ga)~'?)

= I — (D(Gy) "2 A(G1)D(G1) %) @, (D(G2) /2 A(G2) D(Go)7?)

I —[(I = L(G1)) @, (I = L(G2))]

I ®, L(G2) + L(G1) @, I — L(G1) ®, L(G2)
2

I - L(Gy) ®, L(G2)

The third step in the above computations uses Proposition and the matrices I ® L(Gs)
and L£(G1) ®, I are identity matrices. O
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Theorem 4.16. Let G and Gy be bipartite graphs with no isolated vertices, then the graphs
Gre,un and Grg g+ are cospectral for the normalized Laplacian if and only if at least one of

G or Gy admits equal partition sizes.

Proof. Equivalently, we must show that the corresponding normalized Laplacian matrices
L(Gre,n) and L(Ggp#) have the same eigenvalues if and only if m = n or p = ¢. Let
D(GL), D(Gy) and D(Gp#) denote the degree matrices for the graphs G, Gy and G«
respectively. Suppose either m = n or p = ¢ holds. Then,

Case 1: Suppose m =n
Let D(GL) = Z(Cy,Cy) where C; and Cy are diagonal matrices. Since G, does not have any
isolated vertices, 01—1/2 and 02_1/2 exists. Let &/ = 01_1/2‘/02_1/2. Then from Lemma . and
the assumption that m = n, the matrix E is orthogonally equivalent to its transpose. Hence,
there exists two orthogonal matrices R; and Ry such that £ = RITETR;. Let R = P(Ry, Ry).
Then,

L(Gp) =1—D(GL)’LD(GL)™?

0 cr Pveg

= [ —

cyPvret? 0

[ 0 RL(C;V*VTe YR,
=1- —1/2 —1/2\ pT

T
0 R 0 o Pvey 0 R

= I— —1/2v,7 ~—1/2
= RTL(GL)R

The permutation matrix Q = P(I,, I,) satisfies QTL(Gy)Q = L(Gy#). The partitioned
tensor product P = R®, () is also an orthogonal matrix and from Proposition it satisfies
PH(L(GL) ®p L(Gu))P = L(GL) ®p L(Gp#).

Case 2: Suppose p = ¢q
Let D(Gg) = Z(D1,D;) where Dy and D, are diagonal matrices. Then, D(Gp#) =
Z(Ds, D). Since Gy does not have any isolated vertices, Dl_l/2 and D;l/Q exists. Let
F = D;1/2BD2_1/2. Then from Lemma [2.7, and the assumption that p = ¢, the matrix

F' is orthogonally equivalent to its transpose. Hence, there exists two orthogonal matrices
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Q: and Q, such that QTFQ, = FT, that is, QT(D;Y*BD;Y*)Q, = Dy *BTD["?. Let
Q = I(Ql, QQ) Then,

L(Gy#)=1— DH*)"V2H#D(G ys) />

[ 0 D; BT D V?
_J_
Dl—l/zBD2—1/2 0
B 0 T D—1/2BD—1/2
_ 7 PP Q1 (D, 5 ' )Q2
_Ql(Dz B'D; )@, 0

e o], o piED ] @ o
o0 @ D, "*BTD;"? 0 0 Q

=Q"(I - D(Gy) "’ HD(Gu)*)Q
= Q"L(Gn)Q.

Let R be the identity matrix such that RT £(G1)R = L(G). The partitioned tensor product
P = R®,Q is also an orthogonal matrix and from Proposition [3.4]it satisfies PT(L(GL) ®,
L(Gp))P = L(GL) ®, L(Gg#).

In both of the cases, we have shown that the matrices £(G1) ®, L(Gy) and L(GL) ®,
L(Gy#) are orthogonally similar. Since G, and Gy have no isolated vertices, we have,
L(Gre,n) = 21 — L(GL) ®, L(Gg) as well as L(G g, g#) = 2] — L(GL) @, L(Gy#) from
Lemma m Then, the matrices £(Grg,n) and L(G g, g#) are orthogonally similar, and

hence have the same eigenvalues.

Now conversely assume that the graphs Grg,n and Gpg, g# are cospectral for normalized
Laplacian, then the corresponding normalized Laplacian matrices have the same order. Then,

mp + nqg = mq + np, that is, (m —n)(p — q) = 0. Hence, either m =n or p = ¢ holds. [

We have seen that the condition on the bipartite graphs G, and Gy to have no isolated
vertices is required for the cospectrality with respect to the normalized Laplacian. This
condition is not required for the cospectrality with respect to the adjacency matrix. In this
chapter, let us assume that both GG, and Gy have no isolated vertices. This is equivalent to

assuming that both V' and B have no zero rows as well as no zero columns.

Let G be a bipartite graph whose vertex set is partitioned as V(G) = X UY. We say that
an automorphism f of G fizes the partite sets if f(X) = X and f(Y) =Y, and interchanges
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the partite sets if f(X) =Y and f(Y) = X.

0 B
BT 0
admits an automorphism that interchanges its partite sets if and only if the biadjacency
matrix B is PET.

Proposition 4.17. The bipartite graph G corresponding to the adjacency matrix

Proof. The permutation matrix corresponding to such an automorphism is of the form
P = P(Py, P,) for some permutation matrices P, and P, of same size. Since P satisfies
PTA(G)P = A(G), equivalently PL BP, = BT holds, that is, B is PET. O

Let us restate property 7, for the bipartite graphs.

Definition 4.18. The bipartite graphs G and Gy are said to satisfy property ny, if whenever
the bipartite graphs Grg,n and Grg g+ are isomorphic, there exists an isomorphism between

them that respects the partite sets.

The next theorem gives equivalent conditions for the graphs Grg,n and Gpg, g# to be

isomorphic.

Theorem 4.19. Let the bipartite graphs G and Gy satisfy property ni, then Grg,n and
Grg,m# are isomorphic if and only if at least one of G and Gy admits an automorphism

that interchanges its partite sets.

Proof. Suppose at least one of G, and Gy admits an automorphism that interchanges its
partite sets, then from Lemma , the bipartite graphs G g, and G, g# are isomorphic.
Now conversely, suppose they are isomorphic, since G and Gy satisfy property 7, then from
Lemma [3.27] at least one of V or B is PET. Hence, from Proposition at least one of G,

and Gy admit an automorphism that interchanges its partite sets.

Now let us discuss when bipartite graphs GG and Gy satisfy property n; and how our

construction relates with some of the existing results.
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Connected bipartite graphs

Let GG; and G5 be two isomorphic bipartite graphs whose vertex sets are partitioned as
V(G1) = X1 UY; and V(Gs) = Xo UYs, If f is an isomorphism from G to G, we say that
f respects the partite sets if it satisfies either f(X;) = Xy and f(Y}) = Y5 or f(X;) = Y5
and f(Y1) = X,

Lemma 4.20. If G; and G5 are two connected isomorphic bipartite graphs, then any iso-

mophism between them respects the partite sets.

Proof. Let x1,x5 € X;. Then, there exists a path between x; and x5 due to connectedness
of G1. Since, these vertices belong to the same partition, this path has even length. The
isomorphism f preserves the distance between vertices. Hence, the path between f(z;) and
f(z2) has even length. Since G, is bipartite, f(z1) and f(z2) belong to either X, or Y.
Since, for a given x; € X3, all 5 € X are at even distance from xq, then either f(X;) = X
or f(X;) =Y5. The result follows. n

Corollary 4.21. If G is a connected bipartite graph, then its every automorphism repects

the partite sets.

Next, we provide a lemma which is useful for proving the theorem [4.23|

Lemma 4.22. [2]] If G, and Gy are two connected bipartite graphs, then G x Gy has

exactly two connected bipartite components.

We observe that the disjoint union of the bipartite graphs Gre,m and Grg g# is in fact
same as the direct product Grey = G X Gg. Hence, if G and Gy are connected, then

from Lemma .22} the two connected components of Grg are precisely Grg,m and Grg, p#-

Theorem 4.23. If the bipartite graphs G, and Gy are connected, then they satisfy property
M-

Proof. Suppose G, and Gy are connected and Grg,n and Grg g# are isomorphic. Since
Gre,n and G g p# are connected, it follows from Lemmathat any isomorphism between
them respects the partite sets. Hence, G and Gy satisfy property n;. m
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Hammack [9] had already given an equivalent condition for the isomorphism of the com-

ponents of direct product of two connected bipartite graphs. We state it here as a corollary.

Corollary 4.24. [9] Let G1 and Gy be two connected bipartite graphs. The two components
of Gy X Gy are isomorphic if and only if if at least one of G1 or Go admits an automorphism

that interchanges its partite sets.

Proof. Follows from the Theorems [4.19], and [£.23] O]

Since we are interested in the construction of cospectral nonisomorphic graphs, we use

this result as a cospectral construction.

Theorem 4.25. Let G and G be connected bipartite graphs and let at least one of them
have equal partition sizes. Then, the bipartite graphs Gre,n and Grg, g+ are cospectral for
the adjacency as well as the normalized Laplacian and they are nonisomorphic if and only if

both G, and Gy do not admit an automorphism that interchanges its partite sets.

Proof. Cospectrality follows from Theorem and Theorem [4.16}. The condition for non-
isomorphism follows from Theorem and Theorem [4.23] ]

Example 4.26. Suppose G admits equal partition sizes and Gg does not. Then, Gy
automatically does not admit an automorphism that interchanges its partite sets, since B

s non-square and hence non-PET. Then, finding cospectral nonisomorphic graphs using the

theorem requires finding

1. A square 0-1 non-PET matriz V' which corresponds to a connected bipartite graph Gp,

2. A non-square 0-1 matrix B which corresponds to a connected bipartite graph Gg.

The smallest size candidates for such a V are the following 3 X 3 matrices:

1 11 1 11 1 11
Vi=|10 0f,V=1|10 1|,andVs=1{0 1 0
010 010 1 11
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Figure 4.2: Example 1 of construction I-A: Gp,, Gg,, Gp,en, and GL1®H1¢
Let us denote the corresponding bipartite graph by Gr,, Gr,, and Gy, respectively. The
smallest size candidates for such a B (which cannot be obtained by the construction in the

next subsection) are the following 2 X 3 matrices:

1 11 1 10
Blz ],B2:[ ], and33:

1 00

Let us denote the corresponding bipartite graph by G, , Gg,, and G, respectively. Hence,
we can obtain the following nine different pairs of bipartite graphs Gr,om; and GL@H]# for
1 <4, 5 < 3 whose biadjacency matrices are V; @ B; and VZ-®BJT respectively. Note that these
are the smallest sized graph pairs possible using this construction and they are of order 15. It
can be verified that all 9 pairs of graphs are nonisomorphic and cospectral for the adjacency
as well as the normalized Laplacian but not for the Laplacian matriz. Figure [{.3 shows the

graphs Gr,, Gu,, Gr,em, and GL@H# respectively.

Biregular bipartite graphs

The following theorem gives another partial characterization of property ;. A bireqular
bipartite graph is a bipartite graph such that the vertices from the same partite sets have

the same degrees.

Theorem 4.27. If G, is a bireqular bipartite graph with distinct degrees, then G and Gy
satisfy property ;.

Proof. Let G, be a biregular bipartite graph and let the biadjacency matrix V' have constant

row sum [ and constant column sum k such that [ # k, where 1 < k <mand 1 <[ < n.
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Suppose k < [. Let I'y = Grg,n and I'y = Gy g# be isomorphic. Then, there exists a

P P
permutation matrix P = Pl P2 such that P*(L ®, H)P = L ®, H*. Consider,
5 Py
0 V&B 0 V @ BT
L®,H= and L @, H* =
8 VIigBT 0 8 VIi@B 0

Let the vertex sets be partitioned as V(I';) = X; UY] and V(I's) = X5 UY5 as shown by
the corresponding partitioned adjacency matrices. Let f be an isomorphism from I'; to I's.
Let b; and b} denote the i row sum of the matrices B and B respectively. Let z; € X,
be the vertex of maximum degree in this set and suppose f(z;) € Y. Then, dr,(x;) = lb;
for some 1 < i < p. Then, dp,(f(z;)) = kb; for some 1 < j < p. Since the isomorphism
preserves the degrees, we have [b; = kb;. Since x; has maximum degree in X, b, > b;
for any 1 < j < p. Then, kb; > Ilb;. Since Gy has no isolated vertices, b; # 0. Hence,
k > [ which is a contradiction to the initial assuption that k£ < [. Hence, if x; € X;, then
f(z;) € Xy. Now removing the vertex z; of the maximum degree in X; from I'y; and f(z;)
in X5 from I's respectively, we apply the same argument on the induced graphs to conclude

that f(X;) = X3 and hence f(Y}) = Y5.

In case k > [, consider a vertex y; of maximum degree in Y;. Similarly, we can show that
f(X1) = X5 and f(Y1) =Y. Hence, G and Gy satisfy property ;. O

Since we are interested in the construction of cospectral nonisomorphic graphs, we use

this result as a cospectral construction.

Theorem 4.28. Let G, be a biregular bipartite graph with distinct degrees and let Gy have
equal partition sizes. Then, the bipartite graphs Gre,m and Grg, g+ are cospectral for adja-
cency as well as normalized Laplacian matrix and they are nonisomorphic if and only if Gy

does not admit an automorphism that interchanges its partite sets.

Proof. Since G, is a biregular bipartite graph with distinct degrees, suppose the correspond-
ing m x n biadjacency matrix V' has constant row sums k and constant column sums /. Since,
the sum of row sums must be the same as the sum of column sums, we have km = In. But
k # [, hence m # n. Hence, GG, has unequal partition sizes. Since Gy has equal partition
sizes, then cospectrality follows from Theorem [4.14] and Theorem [£.16]. Now since G, has
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unequal partitions sizes, it doesn’t admit an automorphism that interchanges its partite sets.
Hence, the condition for nonisomorphism follows from Theorem [4.19| and Lemma [4.27 [

Example 4.29. Unlike Theorem[4.25., finding cospectral nonisomorphic graphs using The-
orem |4.28 requires finding:
1. anon-square 0-1 matriz V with constant row sums (different than) and constant column
sums with no zero rows and no zero columns
2. a square 0-1 non-PET matriz B with no zero rows and no zero columns.

The smallest size candidates for such a V' (which cannot be obtained by the construction in

the previous subsection or the special case we discuss next) are the following matrices:

1100 111000
Vy = ,and Vi = i
0011 000111
We observe that Vy and Vs correspond to union of complete bipartite graphs (trivial extension

of the special case we discuss next). Excluding such cases, the smallest such matriz V is a

3 X 6 matriz:

Ve =

=
_ o
o =
o = -
— = o
—_ = O

Let us denote the corresponding bipartite graph by Gr,, Gr, and G, respectively. The

smallest size candidates for such a B are the following 3 x 3 matrices:

1 11 1 11 1 11
B4 =11 0 0 y B5 =1 0 1 y and BG =10 1 0
010 010 1 11

Let us denote the corresponding bipartite graph by Gy,, Gu, and Gy,. Hence, we can obtain
the following nine different pairs of graphs Gr,om, and GL@H]# for 4 < i,5 < 6 whose
biadjacency matrices are V; ® B; and V; ® BjT respectively. Note that these are the smallest
size graph pairs possible using this construction, the one in the figure[{.3 is of order 27 and

shows the graphs G, Gu,, Green, and G%@Hf respectively. It can be verified that all nine
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Figure 4.3: Example 2 of construction I-A: G, Gu,, Gren, and G

Le@HY

pairs of graphs are nonisomorphic and cospectral for the adjacency as well as the normalized

Laplacian but not for the Laplacian matrix.

Now as a corollary, we obtain the main result of Ji, Gong and Wang.

Corollary 4.30. [12] Let V = J,,, such that m # n and let B is a square matriz. Then, the
bipartite graphs Grg,n and Grg g+ are cospectral for adjacency as well as the normalized

Laplacian matriz and they are isomorphic if and only if B is PET.

Proof. Since V' = J,,, and m # 0, the corresponding bipartite graph G, is a biregular
bipartite graph with distinct degrees. Hence, the result follows as a corollary of Theorem
4. 28] O

Note that this corollary follows from the most general result Theorem [4.19] which uses
cancellation law for matrices (Theorem [2.14]). The cancellation idea of Ji Gong and Wang is
different. They show that when V' = J,,,, and B has no zero rows or zero columns, V ® B
and V ® BT are permutationally equivalent if and only if B is PET using another approach

based on Hall’s Theorem.

Example 4.31. For this construction, the smallest such V'’s are V; = Jy1 2, Vs = Ji 3 and
Vo = Ja3. Let us denote the corresponding bipartite graph by Gr.,, G, and G, respectively.
The smallest such B’s can be taken to be By, Bs and Bg. Hence, we can obtain the following
nine different pairs of graphs Gr,eu; and GL@Hf for 7 < i <9 and 4 < j < 6 whose
biadjacency matrices are V; ® B; and V; ® BjT respectively. Note that these are the smallest
size graph pairs possible using this construction, the one in the Figure [{.]] is of order 9

and shows the graphs Gp., Gu,, Gr,on, and GL7®Hf respectively (the original unfolding
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Figure 4.4: Example 3 of construction I-A: G, Gp,, Gr.gu, and G

L@HY
construction of Butler). It can be verified that all nine pairs of graphs are nonisomorphic

and cospectral for the adjacency as well as the normalized Laplacian but not for the Laplacian

matriz.
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Chapter 5

Some particular cospectral
constructions based on partitioned

tensor product

0 Vv
In the previous chapter, we showed that the matrices of the form w0 satisfy C/M /T

property and discussed the corresponding Construction - I (Theorem [3.20)). We showed that
this construction produces cospectral bipartite graphs which are cospectral for the normalized

Laplacian as well.

In this chapter, we first discuss the corresponding Construction - II (Theorem for
the bipartite case and give a partial characterization of property 7,. We then give four more
candidates for matrices which satisfy C'/M /T property and discuss only the corresponding
Construction - I . We give partial characterization of property n; required in the investigation

of the isomorphism.

Similarly, Construction - II can also be discussed for these candidates and the isomor-
phism results obtained in the previous chapter can be applied. But characterization of
property 7 is required which we leave it as an open problem. Also note that all the con-
structions in this chapter are cospectral only for the adjacency matrix. We have not yet

shown if they are cospectral with respect to some other matrices.
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5.1 Construction II-A: Bipartite graph

0 V
T
graphs such that V; and B are m; x n; and p X ¢ nonzero 0-1 matrices respectively.

0
Let LZ = BT

1=1,2and H = [ be the adjacency matrices of the bipartite

Theorem 5.1. Let Ly and Lo be cospectral. Then, the bipartite graphs G om0 and Gr,e,n

are cospectral if and only if my = ms or p =q.

Proof. From Lemma Ly and Ly satisfy C'/M/T property. Then from Theorem [3.21}
the result follows. O

The following proposition states the statements about Type-1 and Type isomorphism for

the bipartite graph case.

Proposition 5.2. G, and G, are isomorphic via Type-1 (Type-2) isomorphism if and only
if Va is permutationally equivalent to Vy (VF).

Proof. Follows from Definition [3.28] O

Theorem 5.3. Let G1,, G, and Gy satisfy property n, and let G, and G, have no

1solated vertices. Then,

1. Letp # q, then Gp,e,u and Gr,e,u are isomorphic if and only if Vs is permutationally

equivalent to V.

2. Let B = BT, then Grie,n and Gr,e,n are isomorphic if and only if V is permuta-

tionally equivalent to either Vi or VL.

Proof. Case 1: Suppose V5 is permutationally equivalent to V;
Then from Proposition [5.2] it follows that G, and G, are isomorphic via Type-1 isomor-
phism. From Lemma [3.30, the graphs G'r,,5 and G,g,m are isomorphic.

Case 2: Suppose Vs is permutationally equivalent to V| and B is PET
Then from Proposition [5.2] it follows that G, and G, are isomorphic via Type-2 isomor-
phism. Also, the graph Gy admits an automorphism that interchanges its partite sets. From

Lemma [3.30}, the graphs Gp,¢,n and G,g,n are isomorphic.
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Now conversely, suppose the graphs G, g, 1 and Gp,g,m are isomorphic. Since G, G,

and Gy satisfy property 72, from Theorem [3.32]at least one of the following two cases occurs:

Case 1: If V} and V5, have no zero rows or zero columns, then V) is permutationally

equivalent to V5

Hence, if G, and G, have no isolated vertices, the graphs G ¢, g and Gr,e,n are

isomorphic if and only if V5 and V) are permutationally equivalent.

Case 2: Suppose B = BT and V; and V; have no zero rows or zero columns, then VT is

permutationally equivalent to V5.

Since B = BT, B is PET. Hence, if G, and G, have no isolated vertices, the graphs
Gr,e,a and G, are isomorphic if and only if V5 is permutationally equivalent to either
Vi or VT

We now discuss a partial characterization of property 7s.

Lemma 5.4. If G, fori=1,2 and Gy are connected, then they satisfy property ns.

Proof. Suppose Gy, G, and Gy are connected bipartite graphs, then Lemma [4.22] the
two components of the Gz, xx and Gr,x g are also connected. The bipartite graphs G, e, 1
and Gr,g,n are one of the two components of G, xx and G,y respectively. Now suppose
Gr,e,n and Gpr,e,n are isomorphic, from Lemma , any isomorphism between them

respects the partite sets. Hence, G1,, G, and Gy satisfy property 7;. n

The following theorem shows how to obtain cospectral nonisomorphic graphs.

Theorem 5.5. Let G, and Gy, be cospectral bipartite graphs with no isolated vertices.

Suppose Gr,, G, and Gy are connected. Then
1. Let p # q and my = my, then Gp,o,n and Gpr,g,n are cospectral. They are noniso-
morphic if and only if Vs is not permutationally equivalent to V.

2. Let B = B”, then Grie,n and Gr,e,u are cospectral. They are nonisomorphic if and

only if Vy is permutationally equivalent to neither Vi nor ViT.
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Figure 5.2: Example 1 of construction II-A: G, ¢, 5 and Gr,e,u0

Proof. Follows from Theorem [5.1] and Theorem [5.3 O
11110 11100

Example 5.6. LetVi= |1 0 0 0 1| andVo= |1 1 0 1 1|, then the corresponding
01111 10110

bipartite graphs G, and G, are connected, cospectral and nonisomorphic. Vs is permuta-
tionally equivalent to neither Vi nor VL. Let B = [1 1}, then p # q and my = mo. Figure
shows the corresponding graphs Gy, G, and G, and Figure shows the cospectral
nonisomorphic graphs Gr,e,n and Gpr,e,n. This demonstrates Theorem . (1). Note that
there are 3 pairs of cospectral nonisomorphic bipartite graphs on 8 vertices having the same
partitioning and the ezample of G, and G, we have considered is only one of the 3. Hence,

2 more cospectral nonisomorphic graphs Gp,e,n and Gr,e,n can be generated for the same

matriz B.
1111
0100 111110
Example 5.7. Let V} = and Vo = , then the corresponding
0100 01 0001
0100

bipartite graphs G, and Gp, are connected, cospectral and nonisomorphic. Vs is permuta-

1
0] , then B = BT. Fz'gure shows

tionally equivalent to neither Vy nor VI'. Let B =
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Figure 5.4: Example 2 of construction II-A: G, ¢, 1 and Gr,e,u

the corresponding graphs Gy, G, and G, and Figure shows the cospectral nonisomor-
phic graphs Gr,e,n and Gr,e,n. This demonstrates Theorem . (2). Note that there are 8
pairs of cospectral nonisomorphic bipartite graphs on 8 vertices and the example of G, and
G, we have considered is only one of the 8. Hence, 7 more cospectral nonisomorphic graphs

Grie,n and Gr,g,u can be generated for the same matriz B.

5.2 Construction I-B: Reflexive bipartite graph

In this section we apply the isomorphism results on the original construction of Godsil and

I, V A B D BT
Mckay. Let L = H = and H# = be the adjacency matrices
vt I, BT B A

of graphs such that V and B are m x n and p X ¢ matrices respectively. We will be assuming

that the blocks V', A, B, D are nonzero to distinguish this construction from the others.
Theorem 5.8. The graphs Grg,n and Grg, g# are cospectral if and only if m =n or A and
D are cospectral.

Proof. Follows from Theorem [3.15] O
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The matrix L corresponds to the adjacency matrix of a reflexive bipartite graph. Similar

to the bipartite case, we have

Proposition 5.9. The reflexive bipartite graph G corresponding to the adjacency matriz
I, V
vt I,

admits an automorphism that interchanges its partite sets if and only if V is

The following theorem gives sufficient condition for the graphs constructed to be noniso-

morphic.

Theorem 5.10. Let G and Gy satisfy property n1, and let V and B have no zero rows
or zero columns. The graphs Greg,n and Grg g# are nonisomorphic if at least one of the

following holds:

1. V is non-PET
2. B is non-PET

3. G4 and Gp are nonisomorphic.

In case p # q, the graphs Grg,n and Grg, g# are nonisomorphic if and only if V' is non-PET.

Proof. Let V' is non-PET and Gy does not admit an automorphism that interchanges G4
and G'p. Suppose on the contrary, the graphs Grg,r and Gg g# are isomorphic. Since G,

and Gy satisfy property n;, then from Lemma [3.27] at least one of the following holds:

Case 1: Pl (I,,® A)P, =1,® D, P (Ve B)Py=V @ BT, P (I, ® D)P, = I, ® A for
some permutation matrices P, and P,
Since both Gy, and G|, are nonbipartite, G4 and Gp are isomorphic. Since V' # 0 and B

has no zero rows or zero columns, B is PET.

Case 2: Pl (I, A)P, =1, A, PF(VIT@BT)P, =V ®BT and P{ (I,®@D)P; = I,,®D
for some permutation matrices P, and P

Since B # 0 and V' has no zero rows or zero columns, V' is PET.
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The result follows by taking contrapositive. Now suppose the graphs Grg,n and Grg, g
are nonisomorphic, then from Lemma [3.25] V' is non-PET and Gy doesn’t admit an auto-
morphism that interchanges G4 and Gp. Now suppose p # ¢, then the first case does not

occur. In that case, Grg,n and Grg, g# are nonisomorphic iff V' is non-PET. O]

This theorem gives sufficient condition to construct nonisomorphic graphs and equivalent
condition in case when p # n. It would be interesting to see if the condition 'V is non-PET
and Gy doesn’t admit an automorphism that interchanges G, and Gp’ is an equivalent
condition for the isomorphism. In particular, it remains to see if the three equalities in Case

1 imply that Gy admits such an automorphism.
Now we give a partial characterization of property n; for this construction.

Lemma 5.11. The graphs G and Gy satisfy property n; in the following cases:

1. B has no zero rows, V' has constant row sum [ and constant column sum k and k <[

2. B has no zero columns, V has constant row sum [ and constant column sum k and
k>1

3. B has no zero rows, V = Jp, and m <n

4. B has no zero columns, V = J,, , and m > n.

Proof. Suppose V' has constant row sum [ and constant column sum k, where 1 < k < m
and 1 <[ < n. Let It = Grg,mg and I'y = GL®pH# be isomorphic. Then, there exists a
P P

such that P*(L ®, H)P = L ®, H*. We have,
Py Py

permutation matrix P =

I, A V®B
Vi@ BT I,®D

I,@D VBT

L® H=
P VIeB I, A

and L ®, H* =

Let f be an isomorphism from I'y to I'y. Let the vertex sets be partitioned as V(I'y) =
X1UY; and V(T'y) = Xy U Y5 as shown by the corresponding adjacency matrices. Let b; and
b, denote the i row sum and column sum of B respectively. Let a; and d; denote the it

row sums of A and D respectively.
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1. Let k£ < [ and B has no zero rows
Let x; € X; be the vertex of maximum degree in this set and suppose f(z;) € Y3. Then,
dr,(z;) = a; +1b; for some 1 < i < p. This explains the subscript ¢ in z;. Then, dr,(f(z;)) =
kbj 4 a; for some 1 < j < p. Since the isomorphism preserves the degrees, we have a; +[b; =
kb; + a;. Since x; has maximum degree in Xy, a; + lb; > aj + lby for any 1 < j" < p
in particular for j. Hence, kb; + a; > a; + lb; and since B has no zero row, we have
k > 1. This is a contradiction to the initial assumption that k£ < [. Hence, if x; € Xy, then
f(z;) € X5. Now removing the vertex z; of the maximum degree in X; from I'; and f(z;)
in X, from I'y respectively, we apply the same argument on the induced graphs to conclude
that f(X;) = X5 and hence f(Y}) = Y5.

2. Let £ > [ and B has no zero columns
Let y; € Y7 be the vertex of maximum degree in this set and suppose f(z;) € X;. Then,
dr, (y;) = d; + kb for some 1 < i < ¢g. This explains the subscript ¢ in y;. Then, dr,(f(y;)) =
dj +1b; for some 1 < j < ¢. Since the isomorphism preserves the degrees, we have d; + kb; =
dj + lb}. Since y; has maximum degree in Y1, d; + kb; > dj + kb, for any 1 < j° < ¢
in particular for j. Hence, d; + IV, > d; + kb and since B has no zero column, we have
[ > k. This is a contradiction to the initial assumption that & > [. Hence, if y; € Y7, then
f(z;) € Y. Now removing the vertex y; of the maximum degree in Y; from I'; and f(y;)

in Y5 from I's respectively, we apply the same argument on the induced graphs to conclude
that f(Y;) = Y3 and hence f(X;) = Xo.

In both cases, the isomorphism between I'y and I's maps the induced subgraph G;, g4 to
Gr1,9p and Gy, op to Gj,ga. Hence, G and Gy satisfy property n; in the first two cases.

The remaining two cases follow as a corollary. O]

A particular case

111 1
A B D BT _ . .
Let L=1|1|1 0|, H= , H# = where H is an adjacency matrix of
BT D B
110 1
A B B D BT BT
a graph. Then L®, H= BT D 0|,L®,H*=|B A 0 |.In this case, m < n.
BT 0 D B 0 A
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Corollary 5.12. The graphs Grg,n and Grg g# are cospectral if and only if A and D are.
Suppose B does not have any zero rows, then Grg,n and Grg pg# are nonisomorphic if one

of the following holds:

1. B is non-PET

2. G4 and Gp are nonisomorphic.

0 1 10
Example 5.13. Let A=D = Lo and B = Lol Then B is a non-PET matrix and

has no zero rows. Although, the graphs G o and Gp are cospectral as well as isomorphic, the

graphs Gre,u and Grg g# are cospectral and nonisomorphic as shown in Figure .

Figure 5.5: Example of construction I-B

5.3 Construction I-C: Modified complete bipartite graph

S J
Consider the matrices of the form L = [ mn] where S and T" are permutation matrices
n,m
S, .
of orders m and n respectively and .J,, ,, is a m x n all-one matrix. L; = [J ’ m“m] for
Ng,Mm; %
1=1,2.

Lemma 5.14. L satisfies C/T property and Ly and Ly satisfy C/M/T property.

Proof. Since SJ,,n = Jmpn and Jp T = Jp,, for any permutation matrices S and T, we
have SJp,n = Jp . Similarly, T'J, ,, = J,,mS holds. Hence, the commuting property is
satisfied.
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Suppose L; and Ly are cospectral, then we need to show that ¢r[f(Ly)] = tr[f(Lz)] holds
for all monomials f. Let f be some monomial, then we have f(L;) = Z(S;, T;)" *P (s nis Jnim;)°

for some ¢ and s.

Case 1: sis even and s = 2r

Then from Proposition |3.5] we have

P(JmiJLN Jni,mi)s = I((Jmi,me,mi)ra (Jm,mijmi,niy)

— (mini)r_lz(nit]mi,mi ) mi‘]ni7ni)

Hence,

(mini)r_ltr [I(nsz_s‘]mumz ’ mi,rit_s‘]”iﬂni)]

= (mmi)r*ltT[Z(niJmi,m“ mlJnm%)]

trf(Ls))

Case 2: sisodd and s =2r +1

Then from Proposition |3.5] we have

P(szynz ’ Jni7mi )S = P((szynz Jniymi )r Jmiyni ’ (Jni7mi Jmiyni )T Jniymi )
- (mini)rp(‘]mi,m’ Jnumi)

Hence,

trif (L)) = (mana) tr[Z(Si, T)' P (Jminis Inims )]
= (mini)rtr[,P(Sf_s‘]mi,nn Et_s‘]numi)]

(mini)TtT[,P(Jmi,nﬂ Jni,mi)]

=0

Suppose L; and Ly are cospectral, then ¢tr[L}] = tr[L%] holds for all t = 0,1,2,.... Suppose
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t =0, then we have m; + no = mso + ny. Suppose t = 2, then we have

tr[L?] = tr[Z(S;, T1)2 + 27)(‘]7711'7”1’7 Jni,mi) + ,P(Jmi,nw Jnmml-)Q]
= tT[I(ImH Inz)] +0+ tT[I<niJmi,mi7 ml']num)]

=m; + n; + 2m;n;

Since tr[L3] = tr[L3], we have my + ny + 2myn; = ma + ny + 2many. Hence, min, = mans.
It follows that tr[f(L1)] = tr[f(Lz2)] when f corresponds to even s as well as odd s. Hence,

the monomial property is satisfied

Now consider,

trlU (VW) = tr[S"™*(JomnInm)"]
=n"tr[S"0T) ]
=n"m" " [S"5 Tl
=n"m" [ o)

= (mn)"

Similarly, we have tr[X*=*(WV)"] = (mn)". This shows that tr[U*5(VIW)"] = tr[ X" 5(WV)"]
holds for all ¢ and s. Hence, the trace property is satisfied. n

Let us first show that the graphs corresponding to two cospectral symmetric permutation

matrices are isomorphic.

Proposition 5.15. Figenvalues of a symmetric permutation matrix can only be -1 or 1.

Proof. Let S be a permutation matrix and let A be an eigenvalue of S with eigenvector z.
Then, Sz = Az and ||Sz||? = N\?||z|>. But ||Sz|| = ||z||, hence A\* = 1. Since S is symmetric,

all its eigenvalues are real. Hence, A can either be 1 or —1. O

A reversal matrix is a permutation matrix whose counterdiagonal entries are 1. Let
ruvs, denote a n X n reversal matrix. A symmetric permutation matrix S of order n is

permutationally similar to the direct sum of reversal matrices

S':rvsl69...697"1)51691’1)52@...@rvs%...@fvsn@..ﬂ%rvsn

vV vV vV
s1—times so—times Sn—times
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where >~ \'s;i = n and s; > 0 for each ¢. Hence, any symmetric permutation matrix is

determined by some parameters si, So, ..., s, upto permutational similarity.

Lemma 5.16. 1. Multiplicities of the eigenvalues -1 and 1 of rvs, are |n/2| and [n/2]

respectively.

2. Let S be a symmetric permutation matriz of order n determined by the parameters
S1,82,...,8, upto permutational similarity. The multiplicities of the eigenvalues -1
and 1 of S are 30— s;[i/2] and 3120 s;[i/2] respectively.

Proof. 1. If n is even and n = 2m, then the eigenvalues -1 and 1 of rvs,, both have multiplic-
ities m. If n is odd and n = 2m+ 1, then the eigenvalues -1 and 1 of rvs,, have multiplicities

m and m + 1 respectively. Hence, the result follows.

2. The result follows from the fact that S is permutationally similar to the direct sum of

reversal matrices given by the parameters sy, sg, ... S,. O

Let G,,s, and Gg denote the graphs corresponding to the matrices rvs, and S respec-

tively.

Lemma 5.17. 1. A graph G,.s, is disjoint union of |n/2] edges and n —2|n/2| loops
2. The multiplicity of eigenvalue —1 for the graph G,,s, is same as the number of edges.
3. A graph Gy is disjoint union of S.\=+ s;|i/2] edges and n —23\=" s;|i/2] loops.

4. The multiplicity of eigenvalue —1 for the graph Gg is same as the number of edges.

Proof. 1. This result follows trivially since rvs, is a permutation matrix whose counterdiag-

onal entries are all one.
2. Follows from Lemma [5.16](1) and the Lemma [5.17(1).

3. Follows from Lemma [5.17/(1). and the observation that S is permutationally similar

to the direct sum of reversal matrices.
4. Follows from Lemma [5.17.(3). and Lemma |5.16[(2). O
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Lemma 5.18. The graphs corresponding to two cospectral symmetric permutation matrices

are 1somorphic.

Proof. Consider two cospectral symmetric permutation matrices, then they must have the
same multiplicity for the eigenvalues —1. Hence, from Lemma m.(él), the corresponding
graphs must have the same number of disjoint edges and from Lemma [5.17}(3), they must

also have the same number of loops. Then, these graphs are isomorphic.

Now let S and T' to be symmetric permutation matrices of orders m and n respectively.

A B D BT . .

Let H = and H* = be two partitioned matrices such that A and D are
BT D B A

square symmetric matrices of orders p and ¢ respectively. We assume that the blocks A, B,

D are nonzero to distinguish this construction from the others.

Theorem 5.19. The graphs Gre,n and Grg g# are cospectral if and only if S and T are

cospectral or A and D are cospectral.

Proof. From Lemma [5.14] the matrix L satisfies C'//T property, then the result follows from
Theorem [3.201 O

S Jmn

Jpm T
admits an interchanging automorphism with respect to its bipartition if and only if the graphs

Proposition 5.20. The graph G, corresponding to the adjacency matrix L =
Gs and Gp are isomorphic.

Proof. Suppose GGy admits such an automorphism, then m = n and there exists a permu-
tation matrix P = P(P;, P») such that P; and P, are permutation matrices of size m X m.
Suppose PTLP = L, then,

0 Pf
Pl 0

[ PITP, PlJ,mP
Pl JnnPy PISP

S T
Jom T

0 A
P 0

PTLP =
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Then, Pl J,mP1 = Jmn, and hence m = n. Also, P[SP, = T, that is, S and T are
permutationally similar. The equation P{ T P, = S also says the same. Hence, Gg and G are
isomorphic. Conversely, if Gg and G are isomorphic, then PSP, = T for some permutation
matrix P;. Let P, = Pl and P = P(P;, PT'). Then, the isomorphism corresponding to P is

an automorphism such that it interchanges Gg and Gr. O

The following lemma gives a sufficient condition for the graphs to be isomorphic.

Lemma 5.21. If S and T are cospectral or if Gy admits an interchanging automorphism

with respect to its bipartition, then Grg,n and Grg pg# are isomorphic.

Proof. 1f S and T are cospectral, then from Lemma[5.18], the graphs G and Gr are isomor-
phic. Hence, from Proposition [5.20}, the graph G admits an interchanging automorphism
with respect to its bipartition. Recall Lemma that if at least one of G or Gy admits
an interchanging automorphism with respect to its bipartition, then Gre,n and Grg g# are

isomorphic. Hence, the result follows. O
The following theorem gives sufficient condition for the graphs to be nonisomorphic.
Theorem 5.22. Let the graphs G, and Gy satisfy property n; and let B have no zero rows

or zero columns. Then, Gre,n and Grg g# are nonisomorphic if
1. B is non-PET
2. FEither one of Gg or Gr is nonbipartite and G4 and Gp are nonisomorphic
3. FEither one of G4 and Gp is nonbipartite and Gs and G are nonisomorphic.
Proof. Suppose the graphs Grg,n and Grg, g+ are isomorphic. Since G and Gy satisty

property 71y, then from Lemma [3.27] we have

Case 1: PI[(S®@ A)P,=S® D, Pl (Jy, ® B)Py=J,,, @ BT, PI(T@ D)Py =T ® A
for some permutation matrices P, and Py
Since J,,,, # 0 and B has no zero rows or zero columns, B is PET. If either Gg or Gr is

nonbipartite, then G4 and Gp are isomorphic.
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Case 2: P} (S@ AP, =T®A, Pl (Jym@BY)Py, = J,,,@ BT and P} (T®@D)Py = S® D
for some permutation matrices P, and P
Since B # 0 and J,,, has no zero rows or zero columns, m = n. If either G4 or Gp is

nonbipartite, then Gg and Gt are isomorphic.

The result follows by taking contrapositive. O]

Next, we give a partial characterization of property n; for this construction.

Lemma 5.23. The graphs G and Gy satisfy property n1 if one of the following occurs:

1. m < n and B has no zero rows

2. m>mn and B has no zero columns

Proof. Suppose I'y = Grg,m and 'y = Gg g# be isomorphic. Then, there exists a permu-

PP

tation matrix P = such that PT(L ®, H)P = L ®, H*. We have,

Py Py

SA  Ju.®B
Jom @ BT T®D

S®D  Jnn,® BT

L®, H=
b Jom@B T®A

andL®pH#:

Let f be an isomorphism from I'; to I'y. Let the vertex sets be partitioned as V(I';) =
X;UY] and V(T'y) = X, UY5 as shown by the corresponding adjacency matrices. Let b; and
b, denote the i'" row sum and column sum of B respectively. Let a; and d; denote the i*"

row sums of A and D respectively.

1. Suppose m < n and B has no zero rows
Let z; € X; be the vertex of maximum degree in this set and suppose f(z;) € Y. Then,
dr,(z;) = a;+nb; for some 1 < i < p. This explains the subscript ¢ in z;. Then, dr,(f(x;)) =
mb; + a; for some 1 < j < p. Since the isomorphism preserves the degrees, we have
a; +nb; = mbj + a;. Since x; has maximum degree in X, a; + nb; > aj + nby for any
1 < j° < p in particular for j. Hence, mb; + a; > a; + nb; and since B has no zero row,
we have m > n. Since m # n, this implies m > n. This is a contradiction to the initial

assumption that m < n. Hence, if z; € Xj, then f(z;) € X3. Now removing the vertex x;
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of the maximum degree in X; from I'; and f(z;) in X, from T's respectively, we apply the

same argument on the induced graphs to conclude that f(X;) = X5 and hence f(Y;) = Y.

2. Suppose m > n and B has no zero columns
Then consider a vertex y; of maximum degree in Y;. Similarly, we can show that f(Y;) =Y,
and f(Xl) = XQ.

In both cases, the isomorphism between I'; and I'y maps the induced subgraphs Ggga
and Grgp of I'1 to Gsep and Grga of I'y respectively. Hence, G and Gy satisfy property
M. [

Now we show how to construct cospectral nonisomorphic graphs using this construction.

Theorem 5.24. Suppose m < n and B has no zero rows or m > n and B has no zero
columns. Let A and D be cospectral, then Grg,m and Gpg g+ are cospectral. They are

nonisomorphic if

1. B is non-PET

2. FEither one of Gs or Gt has a loop and G4 and Gp are nonisomorphic

Proof. Since m < n and B has no zero rows or m > n and B has no zero columns, then
from Theorem [5.23] the graphs G and Gy satisfy property 7;. Hence, from Theorem [5.22]

the conditions for nonisomorphism follows.

Note that since m # n, the graphs G and Gg are noncospectral and hence nonisomor-
phic. Hence, the third condition for nonisomorphism from Theorem disappears. Also
the graphs G and G are nonbipartite if and only if they allow loops. m
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A particular case

111 1
A B D BT
Let L=1]1]0 1|, H=  HY = where H is an adjacency matrix of
BT D B
111 0
A B B D BT BT
a graph. Then L®, H= BT 0 D|,L®,H*=|B 0 A |.In this case, m <n.
BT D 0 B A 0

Corollary 5.25. The graphs Grg,n and Grg g# are cospectral if and only if A and D are.

Suppose B has no zero rows, then Gre, i and Grg, g+ are nonisomorphic if

1. B is non-PET

2. G4 and Gp are nonisomorphic.

0 1
Example 5.26. Let A=D = Lo and B =

1
. g] . Then B is a non-PET matrix and

has no zero rows. Although, the graphs G 4 and Gp are cospectral as well as isomorphic, the

graphs Gre,n and Grg, g# are cospectral and nonisomorphic as shown in Figure .

Figure 5.6: Example of construction I-C

Observe that this graph pair is the same as the one in Figure[5.5,

5.4 Construction I-D: Disjoint union of graphs

U 0

Consider the matrices of the form L = = Z(U, X) where U and X are square

matrices of orders m and n respectively.
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Lemma 5.27. The matrix L = Z(U,X) satisfies C/T property. Two matrices L; =
Z(Uy, X1) and Ly = Z(Us, X3) satisfy C/M /T property.

Proof. The commuting property is trivially satisfies since P(V,W) is a zero matrix which
commutes with Z(U, X).

Let f be a monomial, then for ¢ = 1,2 f(L;) = Z(U;, X;)'50%. Hence, f(L;) is either
Z(U;, X;)" = L for some t or a zero matrix. Hence, tr[f(L1)] = tr[f(Lz2)] holds for all
monomials if and only if ¢r[L}] = ¢r[L}] holds for all ¢. Hence, the monomial property is
satisfied.

If s =2r and s # 0, then tr[U*(VIW)"] = 0 and tr[X*5(WV)"] = 0. Hence, the trace
property is also satisfied. O

Theorem 5.28. Let L=7(U,X), H=1Z(A,D) and H* = Z(D, A) such that U, X, A and
D symmetric matrices of orders m,n,p and q respectively. The graphs Grg,u and G g, g+

are cospectral if and only if U and X are or A and D are.
Proof. From Lemma , L satisfies C'//T property. Then the results follows as a corollary
of Theorem [3.20] O
Theorem 5.29. Suppose G, and Gy satisfy property n;.
1. Suppose m # n, and Gy and Gx are nonbipartite. Then, Grg,n and Grg g# cospectral
nonisomorphic if and only if G4 and Gp are cospectral nonisomorphic

2. Suppose m # n, and Gy, Gx, Ga and Gp are bipartite. Then, Gre,n and Grg pg#

cospectral nonisomorphic if and only if Ga and Gp are cospectral nonisomorphic

3. Suppose p # q, and G a and Gp are nonbipartite. Then, Grg,n and Grg g# cospectral

nonisomorphic if and only if Gy and Gx are cospectral nonisomorphic
4. Suppose p # q, and G4, Gp, Gy and Gp are bipartite. Then, Gre,n and Grg g+
cospectral nonisomorphic if and only if Gy and Gx are cospectral nonisomorphic
Proof. Follows from Theorem [5.28, Lemma [3.25] and Lemma [3.27] O
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This result is only a trivial extension of the cancellation law for graphs (Lemma
and Theorem [2.12)) that had been used in the proof. Let us look at the implication of the

cancellation law given by Theorem [2.12

Lemma 5.30. Let G4 and Gp be two nonempty graphs, and Gy be a nonbipartite graph.
Then, Gy x G4 and Gy X Gp are cospectral and nonisomorphic if and only if G4 and Gp
are.

11
, then Gy, 1is nonbipartite since it has a loop. The

Example 5.31. Suppose Uy =

the corresponding graphs Gy, x G4, and Gy, x Gp, are also cospectral and nonisomorphic
foriv=1,2.

graphs G 4, and Gp, in Figure and Figure[5.§ are cospectral and nonisomorphic. Hence,

Figure 5.8: Example 2 of construction I-D: G4, and Gp,, Gy, X G4, and Gy, x Gp,

Now let us look at the implication of the cancellation law given by Lemma [2.11

Lemma 5.32. Let G4, Gp and Gy be bipartite graph. Then, Gy X G4 and Gy X Gp are

cospectral and nonisomorphic if and only if Gao and Gp are.
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Figure 5.9: Example 3 of construction I-D: G4, and Gp,, Gy, X G4, and Gy, x Gp,

Example 5.33. Let Uy, = , then Gy, is a bipartite graph. Since the graphs G 4,

— = O
o O =
o O =

and Gp, shown in Figure[5.9 are cospectral nonisomorphic bipartite graphs, the corresponding

graphs Gy, x G4, and Gy, X Gp, are also cospectral and nonisomorphic.

5.5 Construction I-E: Two matched cospectral graphs

U

Consider the matrices of the form L = BT X where F is a permutation matrix such that

ETUE = X. Ly and L, are similarly defined using corresponding subscripts.

Lemma 5.34. L satisfies C/T property and Ly and Ly satisfy C/M/T property.

Proof. The commuting property is satisfied since UE = EX and XET = ETU.

Suppose L; and Lo are cospectral, then we need to show that tr[f(L;)] = tr[f(L2)] holds
for all monomials f. Let f be some monomial, then we have f(L;) = Z(U;, X;)"SP(E;, PT)*

for some ¢ and s.

Case 1: Let s be odd
Then from Proposition[3.5] we have P(E;, Ef')* = P(E;, EF) and f(L;) = P(U**E;, X*"*EY).
Hence, we have tr[f(L;)] = tr[f(L2)] = 0 when the monomial f corresponds to an odd s.

Case 2: Let s be even
Then from Proposition we have P(E;, ET)* = I and f(L;) = Z(U;, X;)' ™. We need to
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show that tr[Z(Uy, X1)""*] = tr[Z(Us, X2)""*] holds for any even s. Now consider tr[Ll] =
tr[(Z(U;, X;) + P(E;, ET))] for some t. If t = 1, then tr[L}] = tr[Z(U;, X;)]. Hence, tr[L]
tr[Lo] implies tr[Z(Uy, X1)| = tr[Z(Usz, Xo)]. If t = 2, then

tr[L?) = tr[(Z(Us, X;) + P(E;, ET))?]
tr[Z(Us, Xi)? + 2Z(U;, X3)P(E;, ET) + P(Es, EF)?)
tT[I(UZ,X2)2 + ]]

Hence, tr[L?] = tr[L23] implies tr[Z(Uy, X,)?] = tr[Z(Us, X5)?]. Now consider

tr[Li] = tr[(Z(U:, X;) + P(E;, )]

= tr[Z(U;, X;)°] + G) tr[Z(Us, X;)" 'P(E;, ENDY 4 ...+ tr[P(E;, EI)?]

For every odd power of P(E;, E') in the above expansion, the corresponding trace term

is 0. Suppose z is odd, then

tr[L?] = tr[(Z(U;, X;) + P(E;, E))?]

= tr[Z(Us;, X3)*] + (;) tr[Z(Us, X;)" *P(E;, EN)* 4+ ...+ ( : l)tr[Z(Ui,Xi)IP(Ei,EZ.T)Z‘I]

z —

z

= tr[Z(U;, X)) + (;)w[I(Ui,Xi)z_Q] T ( )tr[I(Ui,Xi)l]

z—1

Hence, finally we have only the odd powers of Z(U;, X;) in the expansion. Suppose z is even,
then

tr[L?] = tr[(Z(Us, X;) + P(E;, EL))?]
= tr[Z(U;, X;)7] + (;) tr[Z(Us, X3)" 2P (E;, ED? + ... + tr[P(E;, EI)?]

= tr[Z(U;, X;)7] + (;) tr[Z(Us, Xo)* 72 + ...+ tr[T(Us, X;)°)

Hence, finally we have only the even powers of Z(U;, X;) in the expansion. By the induction
assumption, suppose we have tr[P(Vy, W1)!] = tr[P(Va, Ws)!] for t = 0,1,2,...,2 — 1. Since
tr[L5] = tr[Lj], all the terms except the first in the expansion (take any odd or even case)
of tr[Lj] and tr[L3] are equal. Hence, tr[Z(Uy, X1)?] = tr[Z(Us, X2)?]. This shows L; and Lo
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are cospectral implies tr[Z(Uy, X1)'*] = tr[Z(Us, X3)"#] for all ¢t — s. Hence, the monomial
property is satisfied.

Now to show trace property, consider
tr[U(VW)| = tr[U"*(PP")"] = tr[U"*]

tr[ XS (WV)'] = tr[ X (PTP)] = tr[X'7]

Since, PPUP = X, U and X are cospectral. Then, tr[U**] = ¢tr[X*~¢] for all ¢ — s. Hence,
tr[U==(VW)"| = tr[X'=5(WV)"] for, in particular, all ¢ and s such that s = 2r and s # 0.

Hence, the trace property is also satisfied. O
A B D BT
Let H = [BT D] and H# = be two partitioned matrices such that A and D

are square symmetric matrices of orders p and q respectively.

Theorem 5.35. The graphs Gre,n and Grg g# are cospectral.

Proof. From Lemma [5.34] the matrix L satisfies C'/T property. Since, U and X are permu-
tationally similar, they are cospectral. Hence, from Theorem [3.20, L ®, H and L ®, H¥ are

also cospectral. O

Proposition 5.36. The graph G, admits an interchanging automorphism with respect to its

bipartition.

Proof. Since ETUE = X for the permutation matrix E, let P = P(E, ET), then

o Ellu E|l[o0 E
PTLpP =
ET o| |ET X||ET 0
|exET  E
| ET  ETUE
v E
BT X

=L

This proves the proposition.
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Theorem 5.37. The graphs Gre,n and Grg g# are isomorphic as well.

Proof. From Proposition GGy, admits an interchanging automorphism with respect to its bi-
partition, then from Lemma [3.25] the isomorphism follows. n

Although L satisfies C'/T property, we show that the cospectral graphs constructed using

Construction-I corresponding to this particular L are isomorphic.
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Chapter 6

Application of partitioned tensor

product

In this chapter, we apply the idea of partitioned tensor product on some of the existing
cospectral constructions to obtain new cospectral constructions. The following theorem

show how:

Theorem 6.1. Let Hy and Hs be two multipartioned (m x m) cospectral block matrices such
that the similarity matriz Q satisfying Q" 'H,Q = Hy is a diagonal block matriz. Let L be
a multipartitioned (m x m) block matriz such that L ®, H, and L ®, Hy are defined, then
L ®, Hy and L ®, Hy are cospectral.

Proof. Let the diagonal block matrix @ be such that @ = diag(Q1,Q2, ..., Q) where @Q;’s
are nonsingular matrices of appropriate orders. Let I be an m x m partitioned identity
matrix such that R = I ®, ) is a diagonal block nonsingular matrix. Then, R satisfies
R L®, H)R =L ®, Hy. Hence, L ®, H; and L ®, H, are cospectral.

Suppose H; and H, are adjacency matrices of cospectral graphs Gy, and Gp,, then the
graphs Grg,m, and Grg, g, are cospectral. If at most one of Gy, and Gy, is allowed loops,

then the graphs Gre,n, and Grg,n, don’t have loops.
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In the first section, we discuss a candidate for H; and Hy which is given by the construc-
tion based on partial transpose (III-A, III-B) introduced by Dutta and Adhikari (see [2]).
We give alternate proof for the main theorem (III-A) and fix an error of the second (III-B).
The new constructions based on partitioned tensor product help us discuss the notion of
unfolding a multipartite graphs. We also give examples of how a tripartite graph can be

unfolded to obtain cospectral nonisomorphic graphs.

In the next sections, we discuss GM switching (IV) and a construction based on con-
gruence (V) both introduced by Godsil and Mckay (see [0]) as candidates for H; and H,.
Inspired by the construction V, we introduce another construction VI which is based on un-
folding a semi reflexive bipartite graph. Since GM switching produces cospectral graphs with
cospectral complement, the new construction using partitioned tensor product also produces
cospectral graphs with cospectral complements. We give conditions for obtaining cospec-
tral nonisomorphic graphs for the constructions V and VI as well as the new constructions

obtained using partitioned tensor product

6.1 Construction III: Partial transpose

A partitioned block matrix A is a block matrix of order mn whose 5" block is the matrix
A;j of order m where 1 <1,5 <n. Let A™ be the matrix whose i7" block is AZ The matrix

AT is called the partial transpose of matrix A.

AH A12 Ce Alm A{l A{2 R A{m
LA A A AL AL AT
Ami Ams oo Ay AT, AT, AT

6.1.1 Construction III-A: Commuting family of normal matrices

Recall the following result on commuting family of diagonalizable matrices.

Lemma 6.2. [11/[Theorem 1.3.21.] Let F C M, be a family of diagonalizable matrices.

Then F is a commuting family if and only if it is a simultaneously diagonalizable family.
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The following lemma shows that the commuting family of diagonalizable matrices are

simultaneouly similar to their transposes.

Lemma 6.3. Let {A;,i =1,...,k} be a commuting family of diagonalizable matrices of order

m. Then, there exists a real nonsingular matriz X such that AT = X 1A X fori=1,... k.

Proof. From Lemma ., there exists a nonsingular matrix V such that 4, = V1D,V
for each i = 1,...,k, where D; is a diagonal matrix of eigenvalues of A;. Then, we have
VA, V~! = D;. Since V is nonsingular, we have VV ! = I. Then, (V")TVT = I. Since V7
is also nonsingular, (V1T = (VT)~1. By taking transposes on both sides of the original

equation,

Al =VID,(VvHT
=VivAV HVHT
= (VI AV
= (VIV)A,(VTV)!

Let X = (VTV)~! then it is a nonsingular matrix and AT = X 1A, X fori=1,2,.... k. O

Now we a give a construction of cospectral matrices.

Theorem 6.4. Let A be a partitioned matriz block matriz of order mn. If the blocks of

matrix A form a commuting family of diagonalizable matrices, then A and A™ are cospectral.

Proof. Let
A]_]_ A12 .. Alm
A= A.Ql A.22 .- A2m
Aml Am2 s Amm

Since the blocks of A form a commuting family of diagonalizable matrices, from Lemma
., it follows that there exists a real nonsingular matrix X such that AZ.Tj = X 1A4,;X for
1 <4,5,< m. Now consider the block diagonal orthogonal matrix @ = diag(X, X, ..., X).
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Then,

[ XANX X ARX . XT'ALX
0140 — X 1AnX X 'ApX ... X 'AX
_X‘lAle X1A,.X ... X 1A, X
AL AL L AT
_ AL AL 0 AL
_Afnl AT, .. AT
— AT
Hence A and A™ are cospectral. n

Now let A be an adjacency matrix of a graph such that its blocks form a commuting family
of diagonalizable matrices. Since A is symmetric, consider the off diagonal blocks A;; and
A;‘Z A;j and AZ?; commute, hence all the off diagonal blocks are normal. The diagonal blocks
A;; are symmetric, hence they are also normal. This shows if A is symmetric and blocks of
A form commuting diagonalizable family, then it is in fact commuting normal family. Now
we do the similar analysis by considering results on commuting family of normal matrices

and we show that the similarity matrix is an orthogonal matrix. Recall,

Lemma 6.5. [11]//Theorem 2.5.5.] Let N C M,, be a nonempty family of normal matrices.
Then N s a commuting family if and only if it s a simultaneously unitarily diagonalizable

family.

The following is the main result given by Dutta and Adhikari [2] which uses Lemma

in its proof.

Lemma 6.6. [2] Let {A;,i = 1,...,k} be a commuting family of normal matrices of order

m. Then, there exists a nonsingular matriz X such that AT = XA, X fori=1,... k.

We give an alternate proof for this theorem to show that the similarity matrix is an
orthogonal matrix. The original proof is based on vectorization of matrices and solving
Lyapunov equations. The following lemma shows, in particular, that two real unitarily

similar matrices are real orthogonally similar.
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Lemma 6.7. [I1//Theorem 2.5.21.] Let FF = {A, : a € I} C M,(R) and G = {B, :
a € I} € M,(R) be given families of real matrices. If there is a unitary U € M, such
that A, = UBLU* for every a € I, then there is a real orthogonal Q) € M,(R) such that
Ay = QB.QT for every a € 1.

Similarly, we now show that commuting family of normal matrices is simultaneously

orthogonally similar to their transposes.

Lemma 6.8. Let {A;,i =1,...,k} be a commuting family of normal matrices of order m.
Then, there exists a real orthogonal matriz Y such that AT = Y YAY fori=1,... k.

Proof. From Lemma [6.5], there exists a unitary matrix U such that U*A;U = D; for each
1 =1,...,k, where D; is a diagonal matrix of eigenvalues of A;. Then, A; = UD,U*. By

taking transposes on both sides,

Al = (Un'pru”
=UD,U"
=UU*AU)UT
= (UUTy A, (Uut)

Let X = UUT, then X is an unitary matrix and A7 = X*A,X for i =1,2,...,k. Since
A;’s are real matrices, it follows from Lemma[6.7], that there exists a real orthogonal matrix
Y such that A7 = YTAY. O

Now we give construction of cospectral matrices.

Theorem 6.9. [2] Let A be a partitioned matriz block matriz of order mn. If the blocks of

matriz A form a commuting family of normal matrices, then A and A™ are cospectral.

Proof. Let
A A oo A
A A.Ql A.QQ e Agm
Aml Am2 Amm



Since the blocks of A form a commuting normal family, from Lemma [6.8], it follows that
there exists a real orthogonal matrix Y such that Az; =Y 1A4,;Y for 1 <4,5,< m. Now
consider the block diagonal orthogonal matrix @ = diag(Y,Y,...,Y). Then,

(Y1ALY YTARY . YTALY
0-1AQ — Y‘lflle Y‘11'422Y Y‘lszQmY
_Y‘lAle Y1A,,Y ... Y71A,Y
AT AT, AT,
_ AL AL 0 AL
_Aﬁl AL, ... AT
— A"
Hence A and A" are cospectral. n

Now let A to be a symmetric 0-1 matrix, then the graphs corresponding to A and A"
are cospectral. In that case, diagonal blocks needs to be symmetric and Aj; = Az; for all
1 < 14,7 < m. It should be noted that the construction based on commuting family of
diagonalizable matrices is a construction of cospectral digraphs, but only the construction

based on commuting family of normal matrices is useful in construction of cospectral graphs.

Now we apply the idea of partitioned tensor product on this construction. Let L and A
be two symmetric partitioned matrices whose partitioning is the same, that is, let L and A
be two m x m block matrices such that the partitioned tensor product L ®, A exists. Let
the blocks of A form a commuting family of normal matrices. Hence, from Theorem [6.9], A
and A" are cospectral. Also note that the partitioned tensor product L ®, A” is the partial
transpose of L ®, A.

Theorem 6.10. The graphs Grg,a and Grg,ar are cospectral.
Proof. Since the blocks of A forms a commuting family of normal matrices, from the proof
of Lemma , the orthogonal matrix @ satisfying QT AQ = A" is a diagonal block matrix.

Let I be an identity matrix, then I” LI = L. The partitioned tensor product R = I ®, Q is
also an orthogonal matrix such that R (L ®, A)R =L ®, A", O
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In case the diagonal blocks of L and A are zero blocks, then the correspond to adjacency

matrix of multipartite graphs.

6.1.2 Construction III-B: Unfolding a multipartite graph

Let us now consider a particular case of multipartite graphs whose adjacency matrices are
constructed using only one nontrivial block. The idea for the following theorem comes from
Theorem [6.9) Let A be a partitioned symmetric matrix of order mn such that each of its
blocks is of order m. Let the diagonal blocks of A to be zero matrices and the off diagonal

blocks of A are either B, BT, I,, or 0,, where B is a m x m matrix.

Theorem 6.11. A and A™ are cospectral if any of the following holds:

1. B is normal
2. B is similar to its transpose via an involutory matrid)

3. B s similar to its transpose via an orthogonal matriz

Proof. 1. Then, {B, BT, I,,,0,,} forms a commuting family of normal matrices. Hence, the
result follows as a corollary of Theorem

2. Since B is similar to its transpose, Sy 'BS; = BT holds for some invertible ma-
trix Sp. Since Sy is involutory, we have Sy = 50—17 and hence SO_IBTSO = B. Let § =
diag(So, So, ..., S). Let X be ij" block of A for 1 <i,j < n where X € {B, BT, I,,,0,,}.

—_———

n—times

Then the ij™* blocks of S™'AS are S;*X Sy € {B”, B, I,,,,0,,, } respectively. Hence, S7'AS =

A" and A and A™ are cospectral.

3. Since B is similar to its transpose, Q@ 'BQ = BT holds for some orthogonal matrix
Q. Since () is orthogonal, we have Q7 = Q~!, and hence by taking transposes, we have
Q'BTQ = B. The rest follows similar to the proof of the second statement. O

this result is obtained by fixing an error in Theorem 7 of [2] where only the fact ‘B is similar to its
transpose’ is used which is insufficient.
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Now let us apply the idea of partitioned tensor product on this construction too. Let
A and L be two symmetric matrices partitioned similarly such that the partitioned tensor
product L ®, A exists.

Theorem 6.12. Let A and A™ be cospectral under the assumptions of Theorem|[0.11. Then,

the graphs Gre,n and Grg, - are cospectral.
Proof. The proof is similar to the proof of Theorem [6.10] m

Next, we give sufficient condition for the graphs to be isomorphic.

Lemma 6.13. If B is permutationally similar to its transpose, then G4 and G- are iso-

morphic as well as Grg,a and Gpg,a- are.

Proof. If B is permutationally similar to its transpose, then P BPy = BT for some permuta-
tion matrix Py. Since P is also orthogonal, we have P{ BT Py = B. Let P = diag(Py, Py, . .., Py),
then PTAP = A7. Hence, G4 and G4~ are isomorphic. Since this similarity matrix P is

diagonal block matrix, Grg,4 and Grg, - are also isomorphic. O

Let us now discuss how Theorem [6.12] is related to unfoldings of a bipartite graphs. Let
G be a bipartite graph with an adjacency matrix A(G) = P(B, BT). Then, the adjacency
matrices of its two unfoldings I'; and I'y as defined by Butler [I] are given by:

0 B B 0 BT BT
AT))=|B" 0 0| andA(l,)=|B 0 0
BT 0 0 B 0 0

Let L = P(J12,J21), the A(T'1) = L ®, A(G) and A(I'y) = L ®, A(G)". The matrices
A(T;) and A(T'9) are, in fact, partial transposes of each other. Recall that if B is a square
matrix, then A(I'y) and A(I'y) are cospectral. No other condition on B is required. This is
bacause of the bipartite graph case and the fact that the similarity matrix between A(I';)

and A(T'y) is not a diagonal block matrix. In case of multipartite graphs, we can use Theorem
and Theorem to develope the notion unfolding a multipartite graphs.

We say that the graph G4 is unfolded with respect to the graph G to obtain the un-

foldings Grg,a and Grg,ar.
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Unfolding a tripartite graph

In this subsection, we demonstrate how to use Theorem [6.12} on a tripartite graph G4 to

obtain cospectral nonisomorphic unfoldings Grg,4 and Grg,a-. Let

0 B B 0 B" BT
A=|BT 0 BlandA"=|B 0 BT
BT BT 0 B B 0

where B be a n x n 0-1 matrix. Observe that A and A” are permutationally similar via the

0o 0 I,
permutation matrix P = [0 [, 0. Let J,,, be all-one matrix of size m x n and let
I, 0 0
0 Jpg Jpr
L(p) q, T) = Jqp 0 Jq,r
Jrp Jrg O

If B is permutationally similar to its transpose, then from Lemma |6.13] the graphs
Grpare,a and Grpqre,ar are isomorphic. Here is another sufficient condition for the

isomorphism.

Proposition 6.14. If p =, then the graphs Grp.qre,a and Grpgre,ar are isomorphic.

Let B =

] , then B is similar to its transpose via real orthogonal symmetric involu-

1
tary matrix ) = \% ) | Note that B is not permutationally similar to its transpose.

For this particular B, we give examples of cospectral non-isomorphic graphs G, ¢.)@,4 and
G Lp.gr)e,4r for different pairs of (p, ¢, r) such that p # r. Each pair (p, ¢,r) corresponds to
a different way of unfolding the given tripartite graph G 4. The matrix L(p, ¢, ) need not

be the adjacency matrix of the complete multipartite graph in general.

Figure [6.1} shows the tripartite graphs G4 and G 4- corresponding to the triadjacency
matrix B. Vertices from the same partite sets of the graphs G4 and G4- are coloured

using the same colour. Table gives cospectral nonisomorphic graph pairs G'r(pq.r)e,4

95



Figure 6.1: Tripartite graphs G4 and G 4-
and G'r(p,q.ne,47 for each (p,q,r). Vertices of the same colour in the graphs G,;4r),4 and

G'L(pgr)®,4- indicate the appropriate number of unfolded partite sets. Note that G’ 40,4

and G'r(pqre,ar are tripartite graphs.

6.2 Construction IV: Godsil-Mckay switching

Let us discuss the famous Godsil-Mckay switching (see [5]). Let G be a graph with partitioned

adjacency matrix,

[C, Ci ... Cy D]
CcL, Cy ... Cy D,
AG) =+ Co
ch. ¢t ... C, Dy
DT DI ... DI D

such that each C; and C;; have constant row sums and constant column sums, and each
column of each D; has either 0, % or n; ones, where n; is the number of rows of the block
D;. Each C; is an n; X n; block. Let D be an ng x ng block. Define @Q,, = %Jm - I,
and Q = diag(Qn,, Qnyy -+ - Qnys Ing)- Then, QT A(G)Q is also an adjacency matrix of some
graph, Let G’ be a graph with adjacency matrix A(G") = QT A(G)Q. The graph G and G’

are cospectral.

An orthogonal matrix is said to be reqular if all its row sums and column sums are 1. A

rational orthogonal matrix has all its entries rational.

Lemma 6.15. [I3/Let Gy and Gy be two cospectral graphs. Then TFAE:
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(p,q.r) G Lpgr)®pA G L(pgr)pA

@ (]

[ ]
(1,1,2)
(1,1,3)
(1,2,2)
(1,2,3)
(1,3,3)

Table 6.1: Unfoldings of tripartite graphs Gr.¢.m@,4 and Grp qrear
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1. G and G5 has cospectral complements

2. the orthogonal matriz of similarity Q such that QT A(G1)Q = A(Gs) is rational and

reqular.

Since the orthogonal similarity matrix in the Godsil-Mckay switching is a rational regular
matrix, from Lemma [6.15, the construction produces cospectral graphs with cospectral
complements. Let us now apply the idea of partitioned tensor product. Let L be a symmetric
partitioned (k+1) x (k+1) block matrix such that the partitioned tensor products L®, A(G)
and L ®p A(G’) exists, where the graphs G and G’ are cospectral through the Godsil-Mckay
switching. Then,

Theorem 6.16. The graphs Grg,aq) and Grg,acry are cospectral with cospectral comple-

ments.

Proof. Since G and G’ are cospectral via Godsil-Mckay switching, the orthogonal similarity
matrix Q = diag(Qn,, Qnys - - - s Qnys Iny) Wwhich satisfies A(G') = QTA(G)Q is a rational
regular matrix. Let I be an identity matrix of the order same as L. Then, R = I ®, @)
is also a rational regular orthogonal matrix such that RT(L ®, A(G))R = L ®, A(G').
Hence, from Lemma the graphs G'rg,a(q) and Grg,a(c) are cospectral with cospectral

complements. O

6.3 Construction V: Congruence

0 D
Suppose the blocks C;’s and Cj;’s are zero blocks and k = 1. Then, A(G) = DT D1]
1
0 Dj o o
and A(G') = DT D are cospectral such that the orthogonal similarity matrix is Q) =
1

diag(Qn,, In,) where Q,, = %Jm — I,,, Dy is a ny X ng matrix and Dy is square matrix of

order ng. In this section, we consider the generalization of this special case we described.

Construction

Two m x n matrices A and B are called congruent if ATA = BTB.
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Lemma 6.17. Two real m x n matrices A and B are congruent if and only if there exists
an orthogonal matriz Q) such that A = QB.

Proof. Suppose we have an orthogonal matrix @ such that A = QB. Then, ATA =
(QB)T(QB) = BTQTQB = BTB. Now suppose we have ATA = BTB. Let x € R", then
(Ax, Az) = (x, AT Az) = (v, BT Bx) = (Bxz, Bz). This shows ||Az|| = ||Bz|| for all z € R™.
Then, ker(A) = ker(B) and hence range(A) = range(B). Suppose rank(A) = k and let
range(A) = span{vy,ve, ..., vx} such that {Avy, Avs, ..., Avg} and {Buvy, Bus,. .., By} are
orthonormal basis for range(A) and range(B) respectively. Since range(A) = range(B),
there exists an orthogonal matrix () such that Av;, = QBuv; for each 1 < i < k. This shows
Av = @QBv for any v € range(A). Let x € R", then x = v+ w for v € range(A) and
w € ker(A). Now Az = Av + Aw = QBv = QBv + QBw = QBx. Hence, Az = Bz for
all z € R™. This shows A = @B. O

Hence, if A and B are two m X n real matrices, then AT A = BT B holds if and only if
A = @B for some orthogonal matrix ). Similarly, AA” = BB” holds if and only if A = BR

for some orthogonal matrix R.

Let H be an adjacency matrix of a graph on n vertices and let A be an m x n 0-1 matrix.

Then H(A) is defined to be the matrix . The following theorem generalizes the

AT

special case of Godsil-Mckay switching we described earlier.

Theorem 6.18. [3] Let A and B be two congruent matrices, then H(A) and H(B) are

cospectral.

Proof. Suppose A and B are congruent, then there exists an orthogonal matrix () such that
B = QA. Consider an orthogonal matrix R = Z(Q,I), then RH(A)RT = H(B). Hence,
H(A) and H(B) are similar and cospectral. O

One source of congruent matrices comes from GM-switching. Let R = %JQm — I, and
let C be a 2m x (n —2m) 0-1 matrix such any columns of C' has exactly 0, m or 2m nonzero
entries. Then RC' is also a 0-1 matrix. Let D = RC'. Since, R is an orthogonal matrix, D

is a 0-1 matrix and C' and D are congruent.
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Now we apply the idea of partitioned tensor product. Let X and H be an adjacency
matrices of graphs on n and ¢ vertices respectively, and A and B be two congruent p X ¢

0-1 matrices. Let U be an m x n 0-1 matrix. (Note the notational change in the sizes of the
0 U

matrices). Then, X (U) = .
) W=

Lemma 6.19. If A and B are congruent, then X(U) ®, H(A) and X(U) ®, H(B) are

cospectral.

Proof. Since A and B are congruent, there exists an orthogonal matrix ) such that B = QA.
Let R = Z(Q,I), then RH(A)R" = H(B). Since R is block diagonal, the partitioned
tensor product )y = I ®, R is also an orthogonal matrix, where / is an identity matrix.
Then, Qo(X(U) ®, H(A))Qt = X(U)®, H(B), and X(U) ®, H(A) and X (U) ®, H(B) are

cospectral. O

Isomorphism

Let us first discuss the concept of weak permutation matrices which will be useful in the
investigation of the isomorphism of the corresponding graphs. Consider a 2n x 2n partitioned

Fy

permutation matrix P = , where the block P has size n X n. If the matrix P, has a

x %
nonzero entry, then all other entries in that row and column are zero, but Py can also admit

zero rows and zero columns. In this way, the matrices P, are different that the permutation
matrices, let’s call such matrices F, weak permutation matrices. We assume that a weak
permutation matrix is nonzero. A permutation matrix is a weak permutation matrix, but a

weak permutation need not be a permutation matrix.

Lemma 6.20. Let Py be a weak permutation matriz of order n and let G be a graph on n
vertices. Then, P A(G)Py = 0 implies Py = 0 if and only if G is reflexive.

/

0

Proof. The matrix P, is permutationally similar to [ ] , where P is either a permutation

matrix or a zero matrix. Hence, there exists a permutation matrix R such that P, =
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P 0 A A
RT |7V R. Suppose RA(G)RT = ; *|. Then,
0 0 AT A,
P70 P, 0
PTAG)Py=R" |'? RAGR" |'° | R
0 0 0 O
[P0 [a A [ o),
0 0| AT Ao o
e [REAR o)
0 0

Since R is a permutation matrix, P A(G)P, = 0 implies P;T A; P} = 0. If P} is a permutation
matrix, then A; = 0. If F} is a zero matrix, then there are no conditions on A;. Since P =0
implies Py = 0, if B A(G) P, = 0 for some weak permutation matrix Py, then either A; =0
or P, =0.

Suppose the graph G is reflexive, then all the diagonal entries of A(G) are 1. Hence, A;

is never zero and Py = 0. Now suppose the graph G is not reflexive and there is one vertex
0 A
AT Ay

which does not have a loop. Then, the adjacency matrix can be written as A(G) =

where the block A4 hassizen —1xn—1. Let Py =

1
] where 0,,_1isan—1xn—1
n—1

zero matrix. Then, P A(G)Py = 0 but Py # 0. This proves the result. O

The following theorem gives equivalent condition for the isomorphism of the congruence
construction given in Theorem [6.18]

Theorem 6.21. Let Gy be a reflexive graph. Then, the graphs Gy ay and Gy gy are isomor-
phic if and only if there exists two permutation matrices Py and Py such that PLAP} = B
and P,HP] = H.

Proof. Let Gg(ay and Gg(py be isomorphic. Then there exists a permutation matrix P =
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P R

such that PH(A)PT = H(B). Consider,
Py Py

H(B) = PH(A)PT

(A B|[o Aal[pr pr

- |py, Py |AT H| |PI PT
0 B| [PATPI+ PAP] + P,HPY P,ATP! + PLAPT + P,HPY
BT H| |PATPT + PAP] + PLHP] PATPT + PAPT + PLHPT

Comparing both sides, we have P AT Pl + PLAP] + P,HPJ = 0. All the matrices on the
left side are 0-1 matrices, hence P,HP;y = 0. Since the graph Gy is reflexive, from Lemma
[6.20] it cannot be weak permutationally similar to a zero matrix. Hence, P, is a zero matrix.
It follows Pj is also a zero matrix, since P needs to be a permutation matrix. Then P; and

Py are permutation matrices and we have, P, AP} = B and P,HP] = H.

Now conversely, suppose PLAP] = B and P,HP] = H holds for some permuta-
tion matrices P; and P,. Let P = Z(P;, P,), then P is a permutation matrix satisfying
PH(A)PT = H(B). Hence, H(A) and H(B) are isomorphic. O

The following lemma gives a sufficient condition for the isomorphism of the graphs con-
structed in Theorem [6.19]

Lemma 6.22. If there exists two permutation matrices Py and Py such that Pl AP, = B

and PYHP, = H, then Gxw)e,ma4) and Gxw)e,m(B) are isomorphic.

Proof. Suppose there exists two permutation matrices P, and P, such that PT AP, = B and
PI'HP, = H. Let P = Z(Py, P»), then PTH(A)P = H(B). Since P is block diagonal, the
partitioned tensor product Py = I ®, P is also a permutation matrix, where / is an identity
matrix whose order is same as X (U). Then P{ (X (U) ®, H(A))P, = X(U) ®, H(B), hence

Gxwe,u4) and Gx e, H(B) are isomorphic. 0
Now to obtain a necessary condition for the isomorphism, we need to recall property 7;.

We restate the definition with the new terms.

Definition 6.23. The graphs Gxw) and Gya) are said to satisfy property ny if the graphs

Gxwye,a(A) ond Gxne,H(B) are isomorphic, then there exists an isomorphism between them
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such that it takes the copy of Gxer M Gxw)e,m(A) to the copy of Gxer M Gxw)e,H(B), N

other words, the induced isomorphism is an automorphism for the induced subgraph G xgg.

Now we give the necessary condition for the isomorphism.

Lemma 6.24. Let U and H be nonzero, and let A and B have no zero rows or zero columns.
Let Gx @y and Guay satisfy property ni. If Gxwe,mna) and Gxwe,nB) are isomorphic,

then A and B are permutationally equivalent.

Proof. Suppose Gxue,H(4) and Gxu)s,m(B) are isomorphic. Then there exists a permuta-
tion matrix P such that PT(X (U)®, H(A))P = X(U) ®, H(B). From property n;, P must
be block diagonal matrix with form Z(P;, P,). Then, we have Pl (U @ A)P, = U ® B and
Pf(X ® H)P, = X ® H. Using cancellation law (2.14]) in the first equation, there exists
permutation matrices R; and Ry such that RITARQ = B. O

Hence, under the assumptions of this lemma, if A and B are congruent but not permu-
tationally equivalent, then G x)g,m4) and Gx e, n () are nonisomorphic and cospectral.
In case, automorphism group Aut(Gpy) the graph Gy is the group S, (the set of all permu-
tation matrices of order ¢), then the necessary condition is also the sufficient one. Examples

of those cases are H = I, and H = J,.

Theorem 6.25. Let Gy be a reflexive graph on q vertices such that Aut(Gg) = S,. Let U
be nonzero and A and B have no zero rows and zero columns. Let Gxy and Gray satisfy
property 1. Then, the graphs Gxw)e,m4) and Gxwye,HB) are nonisomorphic if and only

if A and B are not permutationally equivalent.

Hence, we must find matrices A and B such that they are congruent but not permuta-
tionally equivalent, to obtain cospectral nonisomorphic graphs using this construction. Note
that if X has no diagonal entries, the construction produces graphs with no loops. This
justifies why the matrix H was allowed nonzero diagonal entries. We leave characterization
of property n; for this construction as an open problem, but investigate it for a modified

construction in the next section.
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6.4 Construction VI: Unfolding a semi-reflexive bipar-

tite graph

In this section, we discuss the case when H to be an identity matrix. We replace A and B
by B and B?. The next theorem shows how the assumption of congruence of B and B7,

that is, the normality of B can be dropped for this particular case. Let B be a square 0-1

0 B
matrix and let I be the identity matrix of the same order p such that I(B) = Bl
Let X be an adjacency matrix of a graph on n vertices and let U be some m x n 0-1 matrix

0 U
such X(U) = :
) Ul X

Theorem 6.26. The matrices I(B) and I(BT) are cospectral. The matrices X(U) ®, I(B)
and X(U) ®, I[(BT) are also cospectral.

Proof. Since B is a square matrix, from Lemma [2.7] there exists orthogonal matrices @4
and @, such that QT BQ, = BT. Taking transposes on both sides, we have QI BTQ, = B.
The diagonal block matrix @ = Z(Q1, Q2) is also orthogonal. Consider

T fer o]fo B|[e: o
@BR= 1" ol 157 1|0 QJ
| o @fBe
QFBQ: Q10
fo B7
B B 1
= I1(BT)

This shows [(B) and I(BT) are similar, hence cospectral.
Since () is orthogonal, the partitioned tensor product R = I,,,+, ®, () is also orthogonal.
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Consider

R_I(X(U) Qp ](B))R - (Im—f—n Qp Q)_I(X(U) Qp ]<B>)(Im+n Qp Q)
= (L3 X (U) i) @, (@7 I(B)Q)
= X(U)®, I(B")

This show X(U) ®, I(B) and X (U) ®, [(B") are similar, hence cospectral. O

Lemma 6.27. The graphs Gy and Ggry are isomorphic if and only if B is PET.

Proof. Since Gy is a reflexive graph, the result follows as a corollary of Theorem [6.21] [

Theorem 6.28. Suppose U is nonzero and B does not have zero row or column. Suppose
Gxw) and Gy satisfy property m. Then, the graphs Gxwne,18) and Gxw)e,1(BT) are
nonisomorphic if and only if B is non-PET.

Proof. Since (G is a reflexive bipartite graph, the result follows a corollary of Theorem
0,20l O

We now give a partial characterization of property 7; for this construction. Let G be
a semi reflexive bipartite graph with the adjacency matrix A(G) = I(B) and with vertex
partitioning given by V(G) = X UY such that every vertex in Y has a loop. Let I'} =
Gxwye,r) and T'y = Gx(u)g,1(pr) be graphs with vertex partitioning given by V/(T';) =

X, UY; for i = 1,2 as indicated in the adjacency matrices below,

0 U®B

X(U) &, I(B) = UTe BT X®I

0 U® BT

X(U) &, 1(B7) = UT®B X®I

Let u;, u;, b;, b,

77

z; denote the i row sum of the matrices U, U, B, BT, X respectively.

Lemma 6.29. Suppose U = Jy, 0, X = J, — I,, then X(U) and I(B) satisfy property ny in

the following cases:

1. m=1,n>1 and at least one row B has row sum at least 2.
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2. m divides n, m # 1

Proof. Let I'y and I's be isomorphic and let f be an isomorphism from I'y to I's. Let x € X;
be the vertex of maximum degree in this set. Then, we will show that f(z) € X,. Suppose
on the contrary f(z) € Ys. Then, dr,(x) = w;b; for some 1 < i < m, 1 < j < p and
dr,(f(x)) = ujb; + xy, for some 1 < k <n, 1 <[ < p. Since the isomorphism preserves the
degrees, we have w;b; = wjbj+xy. Alsosince U = J,,,,, X = J,—1I,,, we have nb; = mb+n—1.

Since z has maximum degree in X, b; > b; for any 1 <1 <p.

Case 1: Suppose m =1, n > 1 and at least one row of B has row sum at least 2.
Then consider (b; — b;) + (n — 1)(b; — 1) = 0. Since n # 1 and b; > b;, we have b; — 1 < 0.
Then, 1 > b; > b;. This is a contradiction since at least one row of B has row sum at least

2.

Case 2: Suppose n = km for some k and m # 1.
Then, kmb; = mb; + km — 1, that is, kb; — b, = k — % Since the LHS is an integer and the

RHS is not, this gives a contradition.

Hence, f(z) € X, in any of the cases above. Removing the vertices x and f(z) respectively
from I'y and I'y and repeating the same procedure for other vertices in set X;, we show
f(X1) = X5 and hence f(Y]) = Ya.

]

Now the following example demonstrates how Theorem [6.28 can be thought of as un-
folding a semi reflexive bipartite graph or a modification of the unfolding operation on the

bipartite graphs.

Example 6.30. Let U = jI' be the all-one vector of length n > 1 and X be the adjacency
matriz of a complete graph on n vertices, that is, X = J — I. Let the matrix B have no zero

rows or zero columns and at least one row with row sum at least 2. Then,

0O BB ... B

BT 0 I .. I
X(U)®, I(B)=|B" I 0 ... I|;
BT I I -+ 0]
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(0 BT BT ... BT]
B 0o I ... I
XU, (BY=|B I 0 ... I
B I I - 0]

From the Theorem ., the graphs Gxwye,1(8) and Gxw)e,1(sm) are cospectral and from
Theorem [6.28. they are nonisomorphic if and only if B is PET. This specific construction
also appears as the Construction-I11 in [14], but here we give the equivalent condition for its

isomorphism.

11
Letn =2, then U = jI and X = Jo — I,. Let B = 00 , then B has a row with row

sum 2 but also a zero row. Recall that the condition B has no zero rows or zero columns’ was
required in proving equivalent conditions of isomorphism. Hence, this ezample will show that
this assuption can be dropped in some cases and we can still obtain cospectral nonisomorphic

graphs.

Figure 6.3: Unfoldings of a semi reflexive bipartite graph

Figure[6.3. shows the unfoldings of a bipartite graph corresponding to B and given by the
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adjacency matrices

0 B B 0 BT BT
BT 0 O|land|B 0 0
BT 0 0 B 0 0

Figure[6.3. shows the unfoldings of a bipartite graph corresponding to B and given by the

adjacency matrices

0 B B 0 BT BT
BT 0 I|land|B 0 I
BT T 0 B I 0

Note that the unfoldings in both cases are cospectral and nonisomorphic since B is non-
PET.

Remark 6.31. We can also allow all the vertices in the graph Gy to have loops, but

then the diagonal blocks will be the same, hence such construction would be the same as

0 B

Construction I-B. The identity matrix in BT

can be replaced by Z(I,,—1,0) if B admits

n

Qs such that QaBQs = BT and Q, = Z(Q, 1), where Q is orthogonal matriz of order n — 1.
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Chapter 7

Other results and open problems

7.1 Natural number network

In this section, we first collect some properties of a Natural Number Network and give some
computational evidence that this graph could be a DS graph, that is, any graph which is

cospectral to it is also isomorphic.

Natural Number Network (NNN) is a Divisibility Graph on first n natural numbers
denoted by G,,. The vertex set V(G,,) is a set of first n natural numbers. If ¢ divides j or
j divides i, then (7, j) is an edge, that is, (¢,5) € E(G,). Since Diam(G,,) = 2,Yn > 3, the
distance matrix is A = 2J — 2] — A.

Seidel switching on NNN implies,

Lemma 7.1. Consider the graph G,,. The graph obtained by removing all the edges adjacent

to the vertex 1 is Seidel-cospectral with the original graph.

Proof. Since, the vertex 1 is adjacent to all other vertices, The first row of the adjacency

0 17
matrix is (0,1,1,...,1)T. The adjacency matrix of G,, can be written as A(G,,) = Lo
where A’ is a square matrix of size n — 1 and 17 is a vector of length n — 1. Then the Seidel

0 —17
-1 9

o is cospectral

matrix is given by S(G,,) = [

. : ~ 0 17
. The Seidel switch S(G,,) = .
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with S(G,). The adjacency matrix of the Seidel switch is A(G,) = 3(J — I — S(Gy)) =
0 0F

0 A
vertex 1. O

. The graph G, is essentially obtained by removing all the edges adjacent to the

Theorem 7.2. Automorphism group of G,, is non-trivial for n > 1.

Proof. The number of degree-one vertices in G, is same as the number of primes ¢ such that
n/2 < i <mn. Only when n € {2,4,6,10}, the number of degree-one vertices is exactly 1. If
n ¢ {2,4,6,10}, there are at least 2 vertices with degree 1. Let f be an automorphism on
V(@) such that if (i,7) is an edge then (f(i), f(7)) is also an edge. Let p; and py be two
primes, then (1,p;) and (1,ps) are edges of G,,. Hence, under automorphism, (f(1), f(p1))
and (f(1), f(p2)) are also edges. Construct another automorphism ¢ such that

fp2) if x=m
fp) if x=py @
f(x) if otherwise

g(z) =

If f is a trivial automorphism, then ¢ is a non-trivial. Hence, automorphism group of
G, is non trivial for n ¢ {2,4,6,10}. The automorphism groups of Gs, G4, G and Gy are
permutations groups defined using generators (1,2), (2,4), (2,6)(3,4) and (4, 8) respectively.

This shows automorphism group of G,, is non-trivial for n > 1. O]

We observe that the number of pendant vertices, that is, the number of degree one vertices
in G,, is the number of primes p such that n/2 < p < n. Let L(G,) denote the Laplacian
matrix of G, and o(L(G,,)) denote its Laplacian eigenvalues. Suppose |[{p is a prime : n/2 <
p < n}| = k. Then,

Theorem 7.3. [10] Multiplicity of eigenvalue 1 in L(G,) = k.

Proposition 7.4. Suppose {0, A2, A3, ..., A\, } are the Laplacian eigenvalues of a graph G on
n wvertices in the nondecreasing order. Construct a graph G’ by adding a vertex v in G and
drawing an edge between v and every other vertex in G. Then, the Laplacian eigenvalues of
G are {0, + 1, A3+ 1,.... N, +1,n+1}

Proof. Let v be a vector of size n all of whose entries are 1 and let ,, be an n x n identity
matrix. Let L(G),) and L(G.,) denote the Laplacian matrices of the graphs G, and G,
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respectively. Then,
L(G") =

T
Let A be an eigenvalue of L(G’) with eigenvector Y where Y = [X T xn+1] and X =

T
[1’1 Ty ... xn] . Then,
Y = L(G)Y
@)+ =] [ x
a —vT no| | Tnt1

[ NX ] (L(G)X + X — van]

/ T
Napig —v' X +nrp

Casel: X =vand x,4; =1
That is, Y is an all one vector. Hence X' = 0 and also L(G,)v =0

Case 2: z,,1 =0
Then, L(G,)X = (N —1)X and v"X = 0. Then, >} | x, = 0. Hence, if A is an eigenvalue
of L(G,,) whose corresponding eigenvector X is orthogonal to the all-one vector v, then A4 1
is an eigenvalue for L(G’). Since v X = 0, A cannot be 0. Hence, if Xy, A3,..., )\, are
eigenvalues of L(G,,), then Ay + 1, 3+ 1,...,\, + 1 are eigenvalues of L(G)).

The remaining one eigenvalue is obtained using the following corollary.

Corollary[15.14 [6]] Let X be a graph on n vertices, then \,,(X) < n. If the complement
graph X has ¢ components, then the multiplicity of n as an eigenvalue of the Laplacian L(X)

s ¢c— 1.

The complement G/, has two connected components. Hence, the multiplicity of n + 1 as

an eigenvalue of L(G),) is 1. O

Theorem 7.5. Let H, be an induced subgraph formed by removing the vertices {1} U
{p is a prime : n/2 < p < n} from the G,. Let o(L(H,)) = {0, A2, A3,..., An—k—1} , then
O'(L(Gn>> = {n,O,l,l,...,l,)\2+ 1,)\3 + 17---7/\n7k71 + 1}

—_———

k times
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Proof. Tt {0, Ay, A3, ..., \n_k_1} are the eigenvalues of L(H,), then the Laplacian eigenvalues

of the disjoint union of the graph H,, and k isolated vertices in {p is a prime : n/2 < p < n}

is {0,0,...,0, A2, A3,..., An_g—1}. Then add the vertex 1 to this disjoint union and draw an
—

k+1 times
edge between 1 and every other vertex. From Proposition[7.4], it follows that the eigenvalues

of L(G,) are {n,0,1,1,..., 1, A0+ 1, A+ 1,..., A1 + 1} 0
—

k times

Not only Theorem [7.5] gives a proof for Theorem [7.3], but also shows that the Laplacian
spectrum of G,, is completely determined by the induced subgraph H,,. Hence, the problem
of finding Laplacian cospectral graphs to G,, reduces to finding Laplacian cospectral graphs
to H,. Suppose H, and H] are Laplacian cospectral, then add a vertex v to H] which is
adjacent to all the vertices. Then add k pendant vertices which are adjacent to only v. Call

the new graph G, then GG,, and G/, are Laplacian cospectral.
Based on the direct SageMath computations, we have the following propositions,

Proposition 7.6. Forn =1,2,....8, G, is DS for the adjacency, signless Laplacian and

the normalized Laplacian matriz.

Proposition 7.7. Forn=1,2,...,11, G, is DS for the Laplacian matriz.

That is, for n = 1,2,...,11 any graph which is Laplacian cospectral with G,, is also

isomorphic to it.

The adjacency matrices of (G,, can be shown to be permutationally similar to the matrices

B,
of the form BT . Hence, construction V can be applied to find cospectral graphs as

follows:

1. Find C,’s which are congruent with B, that is, BB, = CTC,,. Then the graph G’,

0 C
corresponding to the adjacency matrix | "1 is cospectral with G,,.
n n

2. Now from among these C,,’s find the ones for which PlT B, P, = C, and PQT H,P,=H,
doesn’t hold for some permutation matrices P; and P,. Then, G! and G, will be

nonisomorphic graphs.

112



7.2 PET matrices

In this thesis, construction of a non-PET matrix is necessary in producing cospectral noni-
somorphic graphs. Let M, be the set of all 0-1 matrices of order n which are PET and let
P,, be the set of all 0-1 matrices of order n for which the set of row sums is the same as the
set of column sums. Then Corollary implies M,, C P, that is, PS C M¢. Hence, |P¢|

is a lower bound for |[M¢|, that is, for the number of n x n 0-1 non-PET matrices.

H n |M,| | P, | M| |Ps| frac. of |P¢| frac. of | M| H
1 2 2 0 0 0 0
2 12 12 4 4 0.25 0.25
3 248 248 264 264 0.52 0.52
4 15428 18884 50108 46652 0.71 0.76
D - 5651872 - 27902560 0.83 at least 0.83

Table 7.1: non-PET matrices

The numbers in Table[7.1]) are obtained by direct SageMath computations. Since M¢ =

P for n =1,2,3, we have

Proposition 7.8. Let M be a 0-1 matriz of order n < 3. Then, M is non-PET if and only
if the set of row sums of M is different that the set of column sums of M.

The following lemma gives a relation between a non-PET matrix and its submatrices.

Lemma 7.9. Let M be a square matriz of order n and let it" row of M be a permutation of
g column for some 1 <'i,j <n. If the submatriz M|i, j| is non-PET, then M is non-PET.

Proof. Suppose on the contrary, that M is PET. Then, PTMQ = M? holds for some
permutation matrices P and (). Then every row of M is a permutation of some column.

" row is a permutation of op(i)""

Consider the permutation association {(i, op(7))}?; where i*
column. The way they are permuted is given by ). For some index iy, remove the row-
column pair (ig, o(i0)) to obtain a submatrix M [ig, o (ip)]. This submatrix still carries the
permutation association {(¢, (%)) }izi,, that is, for every i # iy and i € {1,...,n} every row
of Mlig,o(ip)] is a permutation of some column given by the matrix Q). Hence, M [ig, o (ig)]

is PET.
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Hence, there exists exactly n submatrices of order n — 1 which are PET. This proves the

lemma. O

7.3 Open problems

Problem 7.10. Prove or disprove:

1. Construction V cannot produce a cospectral mate for Natural Number Network.

2. Natural Number Network is DS for adjacency, Laplacian, signless Laplacian and the

normalized Laplacian.

Problem 7.11. 1. Give a combinatorial characterization for non-PET square matrices.
Do the same for matrices with no zero rows and also for the matrices with no zero rows

as well as no zero columns.

2. Show that the fraction of non-PET matrices of order n — 1 as n — oo.

We gave a few candidates for the matrices satisfying C'/M /T property which resulted
in the constructions I-A, II-A; I-B, I-C, I-D and I-E. We showed construction I-D is trivial
extension of the cancellation law and construction I-E produces cospectral but isomorphic
graphs. The isomorphism results can be applied II-B, II-C and II-E which we left as an open

problem, since characterization of property 7, was not obtained for these constructions.

Problem 7.12. 1. Give complete characterization of bipartitioned matrices satisfying C/M /T
property.

2. Give complete characterizations of property m1 and ne for each construction.

We also discussed the idea of unfolding a multipartite graph to obtain cospectral noni-

somorphic graphs and gave some sufficient conditions for their isomorphism.

Problem 7.13. 1. Find necessary and sufficient conditions for the graphs constructed

using construction I1I-B to be isomorphic.

2. Study 0-1 matrices that are similar to their transpose via an involutory or orthogonal

matrix
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