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Abstract

The goal in Spectral Graph Theory is to understand the structure of a graph using the spec-

trum of its associated matrices. This MS thesis is a contribution to the study of constructions

of cospectral nonisomorphic graphs. We first generalize a construction based on partitioned

tensor product introduced by Godsil and Mckay and discuss its particular cases. Then, we

use the idea of taking partitioned tensor products to obtain new cospectral constructions

from the existing ones. We also generalize the unfolding operation on the bipartite graph

introduced by Butler, obtain its modifications, as well as introduce the notion of unfolding

a multipartite graph to obtain cospectral nonisomorphic graphs.

Keywords: Graph, adjacency matrix, normalized Laplacian matrix, spectrum, unfolding,

bipartite graph, partitioned tensor product
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Chapter 1

Introduction

1.1 Problem motivation

The goal in Spectral Graph Theory is to understand the structure of a graph using the

spectrum of its associated matrices. The spectrum of a matrix is the set of its eigenvalues.

A graph can be associated with various matrices and each matrix spectrum provides us

diiferent information about the graph structure. Two graphs having the same spectrum

of an associated matrix M are called M-cospectral graphs. There are limitation to the

information the spectrum of a certain matrix M can provide, since two graphs with the

same M -spectrum can be nonisomorphic. Let G be a graph on n vertices with adjacency

matrix A and the degree matrix D which is a diagonal matrix with the degree of G as the

diagonal entries. Let J and I be the all-one and the identity matrices of the same order as

the graph. The associated matrices M can any of the following:

1. The adjacency matrix A

2. The adjacency matrix of the complement Ā = J − A− I

3. The Laplacian matrix L = D − A

4. The signless Laplacian matrix Q = D + A

5. The normalized Laplacian matrix L = D−1/2LD−1/2, defined when the corresponding

graph has no isolated vertices.
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6. The Seidel matrix S = Ā− A

7. The distance matrix ∆

The spectrum of A together with the spectrum Ā is referred to as generalized spectrum.

Suppose the associated matrix is the adjacency matrix. We call A-cospectral graphs as

simply cospectral graphs. A graph is said to be determined by its spectrum (DS for short)

if any other graph which is cospectral to it is also isomorphic. Otherwise we say that this

graph has a cospectral mate. Haemers [7] conjectured the following,

Conjecture 1.1. Almost all graph are DS.

In other words, the fraction of DS graphs on n vertices→ 1 as n→∞. For more evidence

for and against the conjecture see [7]. Only a very small number of graphs are known to be

DS since this property is hard to prove. To show that a graph is not DS, we provide the

construction of a cospectral mate. This conjecture suggests that examples of cospectral and

nonisomorphic graphs are rare. Hence, given a graph G and an associated matrix M , try to

answer the following two questions,

Problem 1.2. Is G DS with respect to M?

Problem 1.3. Find all possible M-cospectral mates of G.

Answer to either one gives us information about the graph structure. The matrix with

respect to which there are less number of cospectral mates for a given graph is most suitable

in understanding its structure.

Note that the Graph Isomorphism Problem for DS graphs reduces to the problem of

checking whether they are cospectral.

1.2 Survey of existing results

Schwenk gave a construction to obtain cospectral trees based on which he proved

Theorem 1.4. [19] Almost all trees are non-DS.

6



Godsil and Mckay [4] proved it for the adjacency matrix of the complement Ā and Mckay

[18] proved it for the Laplacian L (and hence for the signless Laplacian Q [22]) and the dis-

tance matrix ∆. Seidel switching introduced by Van Lint and Seidel [16] produces cospectral

nonisomorphic graphs with respect to the Seidel matrix. Let S be the Seidel matrix for the

graph G such that S is partitioned as S =

[
S1 S2

ST2 S3

]
. The Seidel switch S̃ is given by

S̃ =

[
S1 −S2

−ST2 S3

]
such that S and S̃ are cospectral. It can be shown that

Theorem 1.5. [20] No graph with more than one vertex is DS with respect to Seidel matrix.

Seidel switching is a special case of GM-switching or Godsil-Mckay switching. Let G be a

graph on n vertices and let A(G) denote the corresponding adjacency matrix. Consider the

simplest version of this switching and consider the orthogonal matrix Q = diag(Q0, In−2m)

where

Q0 =
1

m
J2m − I2m.

Godsil and Mckay [5] investigated conditions on the graph G such that the matrix QTA(G)Q

is also an adjacency matrix of some graph G′. Then, it follows that the graphs G and G′ are

generalized cospectral. Wang, Qiu and Hu [23] consider another orthogonal matrix Q such

that Q = diag(U, In−2p) where

U =
1

p

[
pIp − Jp Jp

Jp pIp − Jp

]

and answer the same question. The corresponding construction is called Generalized GM-

switching. Godsil and Mckay [5] gave another construction which is a generalization of this

simplest version of GM-switching. Let A and B be two m× n congruent matrices (that is,

ATA = BTB). Let H be an adjacency matrix of a graph on n vertices. Then the graphs

corresponding to the following adjacency matrices are cospectral:[
0 A

AT H

]
and

[
0 B

BT H

]

Another cospectral construction introduced by Godsil and Mckay [3] is based on the idea

of taking partititioned tensor product of a bipartitioned matrix whose diagonal blocks are
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identity matrices with any bipartitioned matrix. Let L =

[
Im V

W In

]
, H =

[
A B

C D

]
and

H# =

[
D C

B A

]
be partitioned matrices such that V is a m × n matrix. Let ⊗p denote the

partitioned tensor product defined as

L⊗p H =

[
Im ⊗ A V ⊗B
W ⊗ C In ⊗D

]
, L⊗p H# =

[
Im ⊗D V ⊗ C
W ⊗B In ⊗ A

]
.

Then,

Theorem 1.6. [3] The matrices L ⊗p H and L ⊗p H# are cospectral if and only if either

m = n or A and D are cospectral.

When these matrices are taken to be adjacency matrices, the corresponding graphs are

cospectral. This is one of the two constructions Godsil and Mckay introduced in [3] .

Butler [1] introduced an unfolding operation on a bipartite graph. Let us discuss this

construction using the matrix forms. Let G be a bipartite graph with the adjacency matrix[
0 B

BT 0

]
where the biadjacency matrix B is a square matrix. Then, G can be unfolded in

two ways to obtain bipartite graphs Γ1 and Γ2 with the adjacency matrices, 0 B B

BT 0 0

BT 0 0

 and

 0 BT BT

B 0 0

B 0 0

 .
The bipartite graphs Γ1 and Γ2 are cospectral with respect to the adjacency as well as

the normalized Laplacian matrix. We refer to [14] and [12] for some of it modifications

and generalizations. Ji, Gong and Wang [12] gave equivalent conditions of isomorphism

for the generalized case. Hence, Γ1 and Γ2 are isomorphic if and only if the block B is

permutationally equivalent to its transpose.

Recently, Dutta and Adhikari [2] gave another cospectral construction motivated by

GM-switching. Let A be a m × m partitioned block matrix such that the ijth block for

1 ≤ i, j ≤ m is Aij. The partial transpose of A is given by Aτ by replacing each block of A

by its transpose. Then, the ijth block of Aτ is ATij. They show that if the blocks of A form
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a commuting family of normal matrices, then the matrices A and Aτ are cospectral. Hence,

when A is taken to be an adjacency matrix of a graph, then the graphs corresponding to A

and Aτ are cospectral.

1.3 Original contributions

Three forthcoming papers are planned. The first paper [15] will include the second idea

below. The second paper will include the first and the fourth idea. The third paper will

include the third idea.

1. Generalization of a cospectral construction based on partitioned tensor prod-

uct given by Godsil and Mckay (Chapter 3, 4, 5)

Godsil and Mckay [3] gave two cospectral constructions (one of them described by Theorem

1.6). These constructions essentially involve taking partitioned tensor product of a biparti-

tioned matrix whose diagonal blocks are identity matrices with any bipartitioned matrix. We

generalize this construction in Chapter 3 by showing that the bipartitioned matrix whose di-

agonal block are identity matrices can be replaced with any bipartitioned matrix satisfying a

certain C/M/T property. When these matrices are taken to be adjacency matrices of graphs,

we get cospectral graphs. We give necessary and sufficient conditions for the corresponding

graphs to be isomorphic. In chapter 4 and 5, we give more candidates for matrices that

satisfy C/M/T property and apply the isomorphism results on the corresponding cospectral

constructions (see Constructions I-A, II-A, I-B, I-C, I-D and I-E).

2. Generalization of unfolding operation on a bipartite graph (Chapter 4)

The very important observation in generalizing unfolding of a bipartite graph is that the

adjacency matrices corresponding to the unfoldings Γ1 and Γ2 can be written as partitioned

tensor products. Let J1,2 be the 1× 2 all one matrix. Then,
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 0 B B

BT 0 0

BT 0 0

 =

[
0 J1,2 ⊗B

J2,1 ×BT 0

]
=

[
0 J1,2

J2,1 0

]
⊗p

[
0 B

BT 0

]
 0 BT BT

B 0 0

B 0 0

 =

[
0 J1,2 ⊗BT

J2,1 ⊗B 0

]
=

[
0 J1,2

J2,1 0

]
⊗p

[
0 BT

B 0

]

Generalizations of unfoldings considered by Kannan and Pragada [14] and Ji, Gong and

Wang [12] are essentially replacement of the all one matrix J1,2 to any all one matrix Jm,n.

Since we realized that unfoldings can be expressed as partitioned tensor product we show

that the block Jm,n be be replaced by any m×n matrix V , hence generalizing the cospectral

construction. We also show that the matrix

[
0 V

V T 0

]
satisfies C/M/T property. Then, we

apply the the isomorphism results obtained for the generalized construction of Godsil and

Mckay. This construction is known by I-A and produces cospectral bipartite graphs which

are cospectral for the adjacency as well as the normalized Laplacian. For these graphs to be

nonisomorphic, we introduce a certain property η1 that the bipartite graphs corresponding

to V and B have to satisfy. This property is satisfied when in one the following cases

1. the bipartite graph corresponding to V is biregular with distinct degrees

2. when the bipartite graphs corresponding to V and B are connected.

The former generalizes the cospectral nonisomorphic construction of Ji, Gong and Wang [12]

and the latter relates with a complete different problem considered by Hammack [8] which is

the investigation of isomorphism of the components of the direct product of two connected

bipartite graphs. In other words, we unite the two different results from [12] and [8] under

the property η1.

3. Obtaining new cospectral graphs from the existing ones (Chapter 6)

In Chapter 6, we discuss how the idea of partitioned tensor product can be applied on some

of the existing cospectral constructions to obtain new constructions.
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The first candidate is a construction based on partial transpose introduced by Dutta and

Adhikari [2]. We first give an alternate proof for their main result (Construction III-A) and fix

an error in another result (Construction III-B). After applying the idea of partitioned tensor

product, we are able to discuss a notion of unfolding a multipartite graph. In particular, we

show how to unfold a tripartite graph to obtain cospectral nonisomorphic tripartite graphs.

The second candidate is GM-switching [5] (Construction IV). Since GM-switching pro-

duces generalized cospectral graphs, so does the new construction.

The third candidate is a construction based on congruence [5](Construction V). We first

give equivalent conditions for the graphs to be isomorphic, we do the same for the new

construction as well. Inspired by this construction, we show how a semi reflexive bipartite

graph can be unfolded (Construction VI) to obtain cospectral nonisomorphic graphs.

4. Modifications of unfoldings (Chapter 5, 6)

Along with a generalization of unfolding operation, Kannan and Pragada [14] consider three

modifications. The first modification is given by the following result

Theorem 1.7. [14] Let A =

K
′ B B

BT 0 K

BT K 0

 and C =

K BT BT

B 0 K ′

B K ′ 0

. Then, the matrices

A⊕

[
0 K ′

K ′ 0

]
⊕K and C ⊕

[
0 K

K 0

]
⊕K ′ are cospectral.

If we only consider the matrices A and C, then they can be written as partitioned tensor

products such that A =

[
S J1,2

J2,1 T

]
⊗p

[
K ′ B

BT K ′

]
and C =

[
S J1,2

J2,1 T

]
⊗p

[
K BT

B K

]
where

S and T are the permutation matrices S =
[
1
]

and T =

[
0 1

1 0

]
respectively. Surprisingly,

Construction I-C generalizes this, that is, we show S and T can be replaced by any per-

mutation matrices and give necessary and sufficient conditions for A and C be represent

cospectral nonisomorphic graphs.

Now consider another modification,
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Theorem 1.8. [14] Let C =



0 B B . . . B

BT 0 I . . . I

BT I 0 . . . I
...

...
...

. . .
...

BT I I · · · 0


and E =



0 BT BT . . . BT

B 0 I . . . I

B I 0 . . . I
...

...
...

. . .
...

B I I · · · 0


be

matrices of orders nq+ p and np+ q respectively, where B is a p× q matrix such that p ≥ q.

Then the matrices E ⊕ 0p−q and C ⊕ (J − I)n ⊕ . . .⊕ (J − I)n︸ ︷︷ ︸
(p−q)−times

are cospectral.

Here also observe C and E can be expressed as partitioned tensor products, C =[
0 J1,n

Jn,1 Jn − In

]
⊗p

[
0 B

BT I

]
and E =

[
0 J1,n

Jn,1 Jn − In

]
⊗p

[
0 BT

B I

]
. Surprisingly, C and

E represent unfoldings of a semi reflexive bipatite graph given by the adjacency matrix[
0 B

BT I

]
and this construction is a special case of Construction VI. Our motivation to this

construction has come from applying the idea of partitioned tensor product on the congru-

ence construction. We provide necessary and sufficient conditions for C and E to represent

cospectral nonisomorphic graphs.

In Table 1.1., some of the modifications that we have obtained on the unfoldings of the

bipartite graph are summarized (only the special cases). The conditions for the graphs to

be nonisomorphic are obtained under the assumption that the matrix B has no zero rows or

zero columns.
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Construction I-A I-B I-C VI

Graph

[
0 B
BT 0

] [
A B
BT D

] [
A B
BT D

] [
0 B
BT I

]

Unfolding-1

 0 B B
BT 0 0
BT 0 0

  A B B
BT D 0
BT 0 D

  A B B
BT 0 D
BT D 0

  0 B B
BT 0 I
BT I 0



Unfolding-2

 0 BT BT

B 0 0
B 0 0

 D BT BT

B A 0
B 0 A

 D BT BT

B 0 A
B A 0

  0 BT BT

B 0 I
B I 0



Unfoldings are B is square A and D A and D B is square
cospectral iff are cospectral are cospectral

Unfoldings are B is non-PET B is non-PET B is non-PET B is non-PET
nonisomorphic or GA and GD are or GA and GD are

if nonisomorphic nonisomorphic

Table 1.1: Unfoldings and modifications

13
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Chapter 2

Preliminaries

In this chapter, we introduce some of the ideas and results that will be used in the further

chapters.

2.1 Graphs and Matrices

A digraph G is a finite set V (G) taken together with a binary relation E(G) on V (G).

Elements of V (G) and E(G) are called vertices and arcs respectively. This binary relation is

symmetric if (u, v) ∈ E(G) implies (v, u) ∈ E(G). Symmetric digraphs are called undirected.

One vertex arcs, (v, v) for v ∈ V (G), are called loops.

A graph is defined as an undirected digraph usually without loops. In case of graphs, the

arcs (u, v) and (v, u) combined are referred to as an edge {u, v}, and the vertices u and v

are called adjacent. A graph is called reflexive if every vertex has a loop, and called simple

if no vertex has a loop.

The adjacency matrix A(G) associated with a digraph G is an n × n 0-1 matrix where

|V (G)| = n. The ijth entry (for 1 ≤ i, j ≤ n) of A(G) is given by =

A(G)ij =

1 (i, j) ∈ E(G)

0 otherwise
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While the adjacency matrix of a digraph could be any 0-1 square matrix, the adjacency

matrix of a graph is usually a symmetric 0-1 matrix with all diagonal entries 0. If the graph

is reflexive, then all the diagonal entries of A(G) are 1. Given a square 0-1 matrix A, the

corresponding digraph or graph is denoted by GA.

Let G and H be two digraphs. A homomorphism of G to H, written as f : G → H,

is a mapping f : V (G) → V (H) such that if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H).

Hence, homomorphisms preserve the directions of edges. In case of graphs, they preserve

the adjacency. This homomorphic map is called isomorphism if it is also a bijection. In that

case, G and H are called isomorphic.

An automorphism of a graph is an isomorphism from the graph to itself. The set of

automorphism of a graph G is denoted by Aut(G) and it forms a group. A graph is called

asymmetric if its automorphism group is only the identity map.

The Kronecker product of two m × n matrices A and B is denoted by A ⊗ B which

consists of m rows of n blocks where jth block in the ith row is the matrix aijB. The direct

product of two digraphs G and H is denoted by G ×H. The resultant digraph is given by

the adjacency matrix A(G×H) = A(G)⊗ A(H).

Consider a graph G. The degree of a vertex v ∈ V (G) is the number of vertices it is

adjacent to. A vertex is called isolated if it has degree 0. The degree matrix D(G) is a n×n
diagonal matrix whose iith entry is given by the degree corresponding to the ith vertex or

the ith row sum of A(G).

The Laplacian matrix L(G) is defined as L(G) = D(G) − A(G). If the graph G has no

isolated vertices, then the normalized Laplacian matrix is defined as

L(G) = D(G)−1/2L(G)D(G)−1/2 = In −D(G)−1/2A(G)D(G)−1/2

where In is a n×n identity matrix. The adjacency, Laplacian and the normalized Laplacian

matrices of a graph are symmetric matrices.

Two graphs are called cospectral, if the corresponding adjacency matrices have the same

eigenvalues. Similarly, two graphs are called Laplacian-cospectral, if the corresponding Lapla-

cian matrices have the same eigenvalues.
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2.2 Matrix relations

Similarity

Two matrices A and B are called similar if there exists an invertible matrix Q such that

Q−1AQ = B. A matrix is called diagonalizable if it is similar to a diagonal matrix. Recall

that symmetric matrices are diagonalizable, have real eigenvalues and,

Theorem 2.1. [11][Corollary 2.5.11] Two real symmetric matrices are real orthogonally

similar if and only if they have the same eigenvalues.

Hence, the adjacency matrices of cospectral graphs are real orthogonally similar. Now

the following proposition shows equivalence between permutation similarity of matrices and

isomorphism of the corresponding digraphs. Every isomorphism map can be represented by

a permutation matrix.

Proposition 2.2. Two digraphs G and H are isomorphic if and only if the corresponding

adjacency matrices are permutationally similar.

Since we are interested in the construction of cospectral nonisomorphic graphs in this

thesis, equivalently we want to find pairs of matrices which are orthogonally similar but

not permutationally similar. Let us also discuss graph automorphisms. Without loss of

generality, we can assume that Aut(G) is the set of permutation matrices P such that

P TA(G)P = A(G). Let Sn denote the set of all permutation matrices of order n, then

|Sn| = n!.

Proposition 2.3. Let On, In, Kn and Jn be the graphs corresponding to the adjacency

matrices 0n, In, Jn − In and Jn, where 0n, In and Jn are zero, identity and all-one matrices

respectively. Then, the automorphism group of all these graphs is Sn.

Lemma 2.4. Let G and H be two graphs. Then,

Aut(G×H) ⊇ Aut(G)× Aut(H)

If the direct product of graphs is asymmetric, the factors are necessarily asymmetric.
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Lemma 2.5. If A and B are two matrices, then there exists a permutation matrix P such

that P T (A⊗B)P = B ⊗ A.

This shows that if G and H are two graphs, then G×H and H ×G are isomorphic.

Theorem 2.6. [21] A real square matrix is real similar to its transpose.

The matrix similarity is directly related with the isomorphism of the graphs. But since we

deal with bipartitioned graphs/matrices in this thesis, the matrix equivalence also appears

in our discussion.

Equivalence

Two matrices A and B are called equivalent if there exists two invertible matrices P and

Q such that Q−1AP = B. Hence, if two matrices are similar, then they are automatically

equivalent.

Lemma 2.7. A real square matrix is real orthogonally equivalent to its transpose.

Proof. Recall that the Singular Value Decomposition (Corollary 2.6.7. [11]) of a real matrix

A is given by A = UΣV T , where U and V are real orthogonal and Σ is a real diagonal

matrix. Taking transposes on both sides, we have AT = V ΣUT . Substituting Σ = UTAV ,

we have AT = V UTAV UT . Let Q = V UT , then Q is also real orthogonal matrix satisfying

QAQ = AT .

Lemma 2.8. If two m×n matrices A and B are permutationally equivalent, then every row

of A is some permuted row of B. Similarly, every column of A is some permuted column of

B

Proof. Suppose P TAQ = B for two permutation matrices P and Q. The left multiplication

(P TA) by P T permutes the rows of A and the right multiplication (AQ) by Q permutes the

columns of A. Hence, ith row and ith column of P TAQ are permutations of jth row and kth

column of A respectively, where σP (i) = j and σQ(i) = k and the permutations σP and σQ

correspond to the permutation matrices P and Q respectively.
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Corollary 2.9. If A and B are two m× n permutationally equivalent 0-1 matrices, then

1. the set of row sums of A is same as the set of row sums of B

2. the set of column sums of A is same as the set of column sums of B

3. the sum of all entries of A is same as the sum of all entries of B.

4. the maximum row sum of A is same as the maximum row sum of B

5. the maximum column sum of A is same as the maximum column sum of B

Proof. Let 1 be an all-one n× 1 vector. Then A1 and B1 are m× 1 vectors of row sums of

A and B respectively. Since A are B are permutationally equivalent, every row of A is some

permuted row of B. Also since, A and B are 0-1 matrices, the vector A1 is a permutation

of B1. The set of row sums of the matrix A and B are the set of entries of the vector A1

and B1 respectively. Hence, set of row sums of A is the same as set of column sums of B.

The second statement can be shown similarly by considering the equation QTATP = BT .

Remaining statements follow from the first two.

If any one of these five conditions does not hold, then A and B are not permutationally

equivalent. A square matrix M is called PET if it is permutationally equivalent to its

transpose, that is, if there exists two permutation matrices such that P TMQ = MT .

Corollary 2.10. If a matrix M is PET, then

1. set of row sums of M is same as the set of column sums of M

2. maximum row sum of M is same as the maximum column sum of M

Hence, if a matrix doesn’t satisfy one of these two conditions, then we have a non-PET

matrix. Non-PET matrices are very important in the construction of cospectral nonisomor-

phic graphs.
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2.3 Cancellation Laws

In this section, we recall some of the cancellation laws for graphs/digraphs (see [17], [9]) and

a cancellation law for matrices (see [8]).

Lemma 2.11. [9][Corollary 9.8] Suppose A, B and C are bipartite graphs. If A × C and

B × C are isomorphic, then A and B are.

Theorem 2.12. [17][Theorem 9] If K is a nonbipartite graph, then G×K and H ×K are

isomorphic if and only if G and H are.

The above two results will be used later as cancellation law for graphs. To obtain a

cancellation law for matrices, the following lemma will be useful.

Lemma 2.13. [17][Theorem 6] Suppose A, B, C and D are digraphs and there is a homo-

morphism D → C. If A× C and B × C are isomorphic, then A×D and B ×D are.

The following theorem will be used later as cancellation law for matrices.

Theorem 2.14. [8][Lemma 3] Suppose A, B and C are 0-1 matrices for which C 6= 0, and

A is square and has at least one nonzero entry in each row. Then, C ⊗ A and C ⊗ B are

permutationally equivalent if and only if A and B are. Similarly, A ⊗ C and B ⊗ C are

permutationally equivalent if and only if A and B are.

Proof. Suppose C ⊗ A and C ⊗ B are permutationally equivalent, then there exists two

permutation matrices P1 and P2 such that P T
2 (C ⊗ A)P1 = C ⊗ B. Suppose C is an m× n

matrix, then let E =

[
0 C

0 0

]
be the square matrix of order (m+ n), where the (2, 1)th zero

20



block has the same size as CT . Suppose P =

[
P2 0

0 P1

]
. Then,

P T (E ⊗ A)P =

[
P2

P1

]T [
0 C ⊗ A
0 0

][
P2

P1

]

=

[
0 P T

2 (C ⊗ A)P1

0 0

]

=

[
0 C ⊗B
0 0

]
= E ⊗B

This shows that the digraphs GE⊗A and GE⊗B are isomorphic. Let K =

[
0 1

0 0

]
be an

adjacency matrix of a digraph on two vertices with one arc. Since C 6= 0, we have a

homomorphism from GK to GE. Hence, from Lemma 2.13., GK⊗A and GK⊗B are isomorphic.

Then, there exist a permutation matrix Q such that QT (K ⊗ A)Q = K ⊗B, that is,

QT

[
0 A

0 0

]
Q =

[
0 B

0 0

]

Since A is a square matrix and has no zero rows, the rows of A must be permuted only

among themselves. Hence, any such Q must be of the form Q =

[
Q2 0

0 Q1

]
where Q1 and

Q2 are also permutation matrices. Then, QT
2AQ1 = B and A and B are permutationally

equivalent.

The assumption that ‘A has has no zero rows’ can also be replaced with the assumption

that ‘A has no zero columns’ (see proof of Lemma 3 in [9]). Hence, A cannot have both a

zero row and a zero column. We will be stating this assumptions as ‘A has no zero rows or

zero columns’. It is also enough to make such an assumption for at least one of A or B, but

we will be stating it for both A and B.
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Chapter 3

Partitioned tensor product

In this chapter, we first discuss the constructions of cospectral matrices introduced by Godsil

Mckay in [3]. These constructions essentially involve taking partitioned tensor product of

a bipartitioned matrix whose diagonal blocks are identity matrices with any bipartitioned

matrix. We generalize these constructions by showing that the bipartitioned matrix whose

diagonal block are identity matrices can be replaced with any bipartitioned matrix satisfy-

ing a certain C/M/T property. When these matrices are taken to be adjacency matrices of

graphs, we get cospectral graphs. We give necessary and sufficient conditions for the cor-

responding graphs to be isomorphic. In the further chapters, we apply these isomorphism

results on the particular cases which satisfy C/M/T property and result in a cospectral

construction.

3.1 Construction of Godsil and Kckay

Let us first recall the definition and some of the properties of Kronecker products.

Definition 3.1. Let A = (aij) be an m× n matrix. The Kronecker product of the matrices

A and B is denoted by A⊗B which consists of m rows of n blocks where jth block in the ith

row is the matrix aijB.

Lemma 3.2. Let A,B,C,D be matrices of appropriate order. Then,

23



1. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

2. (A⊗B)T = AT ⊗BT .

3. If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.

4. If A is n × n square matrix and B is m × m square matrix have eigenvalues {λi}
where i = {1, 2, . . . , n} and {µj} where j = {1, 2, . . . ,m} respectively, then A⊗ B has

eigenvalues {λiµj} where i = {1, 2, . . . , n}, j = {1, 2, . . . ,m}.

Now, we introduce the notion of partitioned tensor product.

Definition 3.3. [3] The partitioned tensor product of two partitioned matrices K =

[
U V

W X

]

and H =

[
A B

C D

]
is denoted by K⊗pH. It is obtained by taking blockwise Kronecker products

of the corresponding blocks, that is,

K ⊗p H =

[
U ⊗ A V ⊗B
W ⊗ C X ⊗D

]
.

This product depends on the way K and H are partitioned.

Given the matrices U , V , W and X, define I(U,X) and P(V,W ) to be the block matrices[
U 0

0 X

]
and

[
0 V

W 0

]
respectively, where 0 is the zero matrix of appropriate order. A 2× 2

block matrix is diagonal (respectively counter-diagonal) block matrix if it is of the form

I(U,X) (respectively P(V,W )).

Proposition 3.4. Let Q and R be of the form I(Q1, Q2) and I(R1, R2) respectively. Then

for all matrices K =

[
U V

W X

]
and H =

[
A B

C D

]
,

(Q⊗p R)(K ⊗p H) = (QK)⊗p (RH).

The same holds true when Q and R are both of the form P(Q1, Q2) and P(R1, R2) respec-

tively.
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Proof. Suppose the matrices Q and R are of the form I(Q1, Q2) and I(R1, R2). Then,

(Q⊗p R)(K ⊗p H) =

[
Q1 ⊗R1 0

0 Q2 ⊗R2

][
U ⊗ A V ⊗B
W ⊗ C X ⊗D

]

=

[
(Q1 ⊗R1)(U ⊗ A) (Q1 ⊗R1)(V ⊗B)

(Q2 ⊗R2)(W ⊗ C) (Q2 ⊗R2)(X ⊗D)

]

=

[
Q1U ⊗R1A Q1V ⊗R1B

Q2W ⊗R2C Q2X ⊗R2D

]

=

[
Q1U Q1V

Q2W Q2X

]
⊗p

[
R1A R1B

R2C R2D

]
= (QK)⊗p (RH)

In the second step, Lemma 3.2. (1) is used. Hence, (Q⊗pR)(K⊗pH) = (QK)⊗p (RH).

Similarly, this equation can be shown to hold in case Q and R are of the form P(Q1, Q2)

and P(R1, R2)

Proposition 3.5. [3] For r = 1, 2, 3, . . . we have

1. I(A,D)r = I(Ar, Dr)

2. P(B,C)2r = I((BC)r, (CB)r)

3. P(B,C)2r+1 = P((BC)rB, (CB)rC)

4. I(A,D)P(B,C) = P(AB,DC)

5. P(B,C)I(A,D) = P(BD,CA)

Define f(H) = f(I(A,D),P(B,C)) and g(H) = gij(A,B,C,D) for some monomials f

and g. Whenever f(H) is used, it is implied that f takes the variables I(A,D) and P(B,C)

that appear in the decomposition H = I(A,D) + P(B,C). Whenever, g(H) is used, it is

implied that g takes the variables A, B, C and D, the blocks in the partitioned matrix H .

Proposition 3.6. [3] f(H) =

[
g11(H) g12(H)

g21(H) g22(H)

]
where f and gij; 1 ≤ i, j ≤ 2 are monomi-

als.
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Proof. Let s be the degree of the term P(B,C) in the monomial f(H) and let t be the total

degree. If s is even, then from Proposition 3.5,

f(I(A,D),P(B,C)) = I(A,D)t−sP(B,C)s

= I(At−s, Dt−s)I((BC)s/2, (CB)s/2)

= I(At−s(BC)s/2, Dt−s(CB)s/2)

If s is odd, then from Proposition 3.5,

f(I(A,D),P(B,C)) = I(A,D)t−sP(B,C)s

= I(At−s, Dt−s)P((BC)(s−1)/2B, (CB)(s−1)/2C)

= P(At−s(BC)(s−1)/2B,Dt−s(CB)(s−1)/2C)

Hence, f(H) =

[
g11(A,B,C,D) g12(A,B,C,D)

g21(A,B,C,D) g22(A,B,C,D)

]
for some monomials gij for 1 ≤ i, j ≤

2.

Lemma 3.7. [3]f(K ⊗p H) = f(K)⊗p f(H)

Proof. Consider a monomial gij, then from Proposition 3.2, we get

gij(U ⊗ A, V ⊗B,W ⊗ C,Z ⊗D) = gij(U, V,W,X)⊗ gij(A,B,C,D)

Hence,

f(K ⊗p H) = f(I(U ⊗p A,Z ⊗p D),P(V ⊗p B,W ⊗p C))

=

[
g11(U ⊗ A, V ⊗B,W ⊗ C,Z ⊗D) g12(U ⊗ A, V ⊗B,W ⊗ C,Z ⊗D)

g21(U ⊗ A, V ⊗B,W ⊗ C,Z ⊗D) g22(U ⊗ A, V ⊗B,W ⊗ C,Z ⊗D)

]

=

[
g11(U, V,W,Z) g12(U, V,W,Z)

g21(U, V,W,Z) g22(U, V,W,Z)

]
⊗p

[
g11(A,B,C,D) g12(A,B,C,D)

g21(A,B,C,D) g22(A,B,C,D)

]
= f(K)⊗p f(H)
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Define H# =

[
D C

B A

]
where A is p×p matrix and D is q×q matrix. Then Q = P(Ip, Iq)

satisfies QTHQ = H#. Hence, H and H# are permutationally similar

Lemma 3.8. [3] g11(H) = g22(H#) and g12(H) = g21(H#)

Proof. Since Q = P(Ip, Iq) satisfies QTHQ = H#, then for a monomial f ,

QTf(H)Q = QTf(I(A,D),P(B,C))Q

= f(QTI(A,D)Q,QTP(B,C)Q)

= f(QTHQ)

= f(H#)

To illustrate the second step, consider the example f(X, Y ) = X2Y X3 such that products

are defined. Then,

QTf(X, Y )Q = QTX2Y X3Q

= (QTXQ)2(QTY Q)(QTXQ)3

= f(QTXQ,QTY Q)

Consider f(H#) =

[
g11(H#) g12(H#)

g21(H#) g22(H#)

]
and

QTf(H)Q =

[
0 Ip

Iq 0

]T [
g11(H) g12(H)

g21(H) g22(H)

][
0 Ip

Iq 0

]

=

[
g22(H) g21(H)

g12(H) g11(H)

]

Since, QTf(H)Q = f(H#), we obtain g11(H) = g22(H#) and g12(H) = g21(H#).

Lemma 3.9. [3]

tr[f(K ⊗p H)− f(K ⊗p H#)] = tr[g11(K)− g22(K)]× tr[g11(H)− g22(H)]
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Proof. Using the Lemma 3.7., we can write,

tr[f(K ⊗p H)] = tr[f(K)⊗p f(H)]

= tr[g11(K)]tr[g11(H)] + tr[g22(K)]tr[g22(H)]

Similarly, using Lemma 3.7. and Lemma 3.8., we can write,

tr[f(K ⊗p H#)] = tr[f(K)⊗p f(H#)]

= tr[g11(K)]tr[g11(H#)] + tr[g22(K)]tr[g22(H#)]

= tr[g11(K)]tr[g22(H)] + tr[g22(K)]tr[g11(H)]

Then,

tr[f(K ⊗p H)− f(K ⊗p H#)] = tr[g11(K)]tr[g11(H)] + tr[g22(K)]tr[g22(H)]

− tr[g11(K)]tr[g22(H)]− tr[g22(K)]tr[g11(H)]

= tr[g11(K)− g22(K)]× tr[g11(H)− g22(H)]

Let Ki =

[
Ui Vi

Wi Xi

]
; i = 1, 2.

Lemma 3.10. [3]

tr[f(K1 ⊗p H)− f(K2 ⊗p H)] =tr[g11(H)](tr[g11(K1)]− tr[g11(K2)])

+ tr[g22(H)](tr[g22(K1)]− tr[g22(K2)])

Proof. Using the Lemma 3.7., we can write,

tr[f(K1 ⊗p H)] = tr[f(K1)⊗p f(H)]

= tr[g11(K1)]tr[g11(H)] + tr[g22(K1)]tr[g22(H)]

Similarly, using Lemma 3.7., we can write,

tr[f(K2 ⊗p H)] = tr[f(K2)⊗p f(H)]

= tr[g11(K2)]tr[g11(H)] + tr[g22(K2)]tr[g22(H)]
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Then,

tr[f(K1 ⊗p H)]− tr[f(K2 ⊗p H)] =tr[g11(K1)]tr[g11(H)] + tr[g22(K1)]tr[g22(H)]

− tr[g11(K2)]tr[g11(H)] + tr[g22(K2)]tr[g22(H)]

=tr[g11(H)](tr[g11(K1)]− tr[g11(K2)])

+ tr[g22(H)](tr[g22(K1)]− tr[g22(K2)])

Let us now turn to the applications of the above theory. Let the diagonal blocks in the

matrix Mi be identity matrices. Let us call such matrices Li =

[
Imi Vi

Wi Ini

]
. If f(X, Y ) is

monomial in X and Y , then let s be the degree of the variable Y in f(X, Y ) and t be the total

degree. Then f(Li) = f(I(Imi , Ini),P(Vi,Wi)). Since, I(Imi , Ini) and P(Vi,Wi) commute,

we have f(Li) = P(Vi,Wi)
s when s 6= 0 and f(Li) = I(Imi , Ini) when s = 0.

Proposition 3.11. Let V and W are m×n and n×m matrices respectively, then tr[(VW )r] =

tr[(WV )r] holds for all r.

Proof. The statement holds trivially for r = 0. Let r = 1, then

tr[VW ] =
m∑
i=1

(VW )ii

=
m∑
i=1

n∑
k=1

VikWki

=
n∑
k=1

m∑
i=1

WkiVik

=
n∑
k=1

(WV )kk = tr[WV ]
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Let Z = (WV )r−1W , then tr[V Z] = tr[ZV ] and

tr[(VW )r] = tr[V (WV )r−1W ]

= tr[V Z]

= tr[ZV ]

= tr[(WV )r−1WV ]

= tr[(WV )r]

Lemma 3.12. [3] With above notations,

1. if s 6= 0, then tr[g11(Li)] = tr[g22(Li)]

2. if s = 0, then tr[g11(Li)] = mi, tr[g22(Li)] = ni

3. if s 6= 0, then tr[g11(L1)] = tr[g22(L2)] for all monomials f if and only if L1 and L2

are cospectral.

Proof. 1. Suppose s is odd, that is, s = 2r + 1. Then,

f(Li) = P(Vi,Wi)
s = P((ViWi)

rVi, (WiVi)
rWi)

Hence, tr[g11(L1)] = tr[g22(L2)] = 0 and 1. holds. Suppose s is even, that is, s = 2r where

r 6= 0. Then,

f(Li) = P(Vi,Wi)
s = I((ViWi)

r, (WiVi)
r)

Hence, tr[g11(L1)] = tr[(ViWi)
r] and tr[g22(L1)] = tr[(WiVi)

r]. Then, from Proposition 3.11,

tr[(ViWi)
r] = tr[(WiVi)

r], hence 1. holds.

2. If s = 0, f(Li) = I(Imi , Ini). Hence, 2. holds.

3. We have, f(L1) = g11(L1)+g22(L1) and f(L2) = g11(L2)+g22(L2). Suppose s 6= 0, then

from 1., tr[g11(L1)] = tr[g22(L1)] and tr[g11(L2)] = tr[g22(L2)]. Hence, having tr[g11(L1)] =

tr[g22(L2)] is equivalent to tr[f(L1)] = tr[f(L2)]. Since for any monomial f , we have f(Li) =

P(Vi,Wi)
s. Hence, we want to show that tr[P(V1,W1)t] = tr[P(V2,W2)t] for all t 6= 0 if and
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only if L1 and L2 are cospectral. Now consider

Lti = (Imi+ni + P(Vi,Wi))
t = Imi+ni +

(
t

1

)
P(Vi,Wi) + . . .+ P(Vi,Wi)

t (3.1)

Now suppose tr[P(V1,W1)t] = tr[P(V2,W2)t] for all t 6= 0 then it follows that tr[Lt1] =

tr[Lt2] that is, L1 and L2 are cospectral.

Now conversely, suppose L1 and L2 are cospectral. Then, tr[Lt1] = tr[Lt2] for t =

0, 1, 2, . . .. Note that tr[P(V1,W1)t] = tr[P(V2,W2)t] is true when the monomial corresponds

to odd s since in that case trace is zero. Hence, we only need to show that it holds in the

even cases. Let t = 2, then from equation 3.1, we have

tr[Im1+n1 + P(V1,W1) + P(V1,W1)2] = tr[Im2+n2 + P(V2,W2) + P(V2,W2)2]

Hence, tr[P(V1,W1)2] = tr[P(V2,W2)2]

Now suppose tr[P(V1,W1)t−1] = tr[P(V2,W2)t−1] holds as the induction assumption.

Then, from equation 3.1, trace of all the terms in tr[Lti] except the last term tr[P(Vi,Wi)
t]

are same for i = 1 and i = 2. Since tr[Lt1] = tr[Lt2], then tr[P(V1,W1)t] = tr[P(V2,W2)t]

This shows tr[f(L1)] = tr[f(L2)] for all monomials f if and only if L1 and L2 are cospec-

tral. Hence, it follows if s 6= 0, tr[g11(L1)] = tr[g22(L2)] for all monomials f if and only if L1

and L2 are cospectral.

Lemma 3.13. [3] tr[(L⊗pH)t]− tr[(L⊗pH#)t] = (m−n)(tr[At]− tr[Dt]) for t = 0, 1, 2, . . .

Proof. From Lemma 3.9, we have tr[f(L ⊗p H)] − tr[f(L ⊗p H#)] = tr[g11(L) − g22(L)] ×
tr[g11(H)− g22(H)]

Case 1: s = 0

From Lemma 3.12., we have tr[g11(L) − g22(L)] = m − n. Since f(H) = I(A,D)t, we have

tr[g11(H)−g22(H)] = tr[At]−tr[Dt]. Also for any monomial f(L⊗pH) = I(Im⊗A, In⊗D)t =

(L⊗p H)t, hence the statement follows.

Case 2: s 6= 0

From Lemma 3.12., we have tr[g11(L)−g22(L)] = 0. Hence, tr[f(L⊗pH)]−tr[f(L⊗pH#)] = 0
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for all monomials. Since, (L⊗pH)t and (L⊗pH#)t both can be written as binomial expansions

in which each term is a monomial, the LHS of the statement is zero. The statement trivially

holds.

Lemma 3.14. [3] Let L1 and L2 be cospectral. Then, tr[(L1 ⊗p H)t] − tr[(L2 ⊗p H)t] =

(m1 −m2)(tr[At]− tr[Dt]) for t = 0, 1, 2, . . .

Proof. From Lemma 3.10, we have

tr[f(L1 ⊗p H)]− tr[f(L2 ⊗p H)] = tr[g11(H)](tr[g11(L1)]− tr[g11(L2)]

+ tr[g22(H)](tr[g22(L1)]− tr[g22(L2)]

Case 1: s = 0

From Lemma 3.12, we have tr[g11(L1)] = m1, tr[g22(L1)] = n1, tr[g11(L2)] = m2 and

tr[g22(L2)] = n2. Since f(H) = I(A,D)t, we have g11(H) = At and g22(H) = Dt. Also

for any monomial f , f(L ⊗p H) = I(Im ⊗ A, In ⊗ D)t = (L ⊗p H)t. Hence, tr[f(L1 ⊗p
H)]− tr[f(L2 ⊗p H)] = (m1 −m2)tr[At] + (n1 − n2)tr[Dt]. Since L1 and L2 are cospectral,

m1 + n1 = m2 + n2, that is, m1 −m2 = n2 − n1. Hence, tr[(L1 ⊗p H)t] − tr[(L2 ⊗p H)t] =

(m1 −m2)(tr[At]− tr[Dt]).

Case 2: s 6= 0

From Lemma 3.12, and since L1 and L2 are cospectral, we have tr[g11(L1)] = tr[g22(L2)] and

tr[g11(L2)] = tr[g22(L1)]. We also have tr[g11(L1)] = tr[g22(L1)] and tr[g11(L2)] = tr[g22(L2)].

Hence, tr[f(L⊗pH)]−tr[f(L⊗pH#)] = 0 for all monomials. Since, (L⊗pH)t can be written

as sum of monomials, the LHS of the statement is zero. Hence, the statement trivially

holds.

Now we state the main results of Godsil and Mckay,

Theorem 3.15. [3]Let

L =

[
Im V

W In

]
, H =

[
A B

C D

]
, H# =

[
D C

B A

]

where A and D are square matrices and Im and In are m×m and n× n identity matrices.

Then, L⊗p H and L⊗p H# are cospectral if and only if m = n or A and D are cospectral.
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Proof. Follows from Lemma 3.13.

Theorem 3.16. [3] Let

Li =

[
Imi Vi

Wi Ini

]
, i = 1, 2;H =

[
A B

C D

]

where A and D are square matrices and Imi and Ini are identity matrices. Let L1 and L2 be

cospectral. Then, L1 ⊗p H and L2 ⊗p H are cospectral if and only if m1 = m2 or A and D

are cospectral.

Proof. Follows from Lemma 3.14.

3.2 Generalizing the construction of Godsil and Mckay

In this section, we generalize the construction we just discussed. We extend the results to

matrices of the form other than L =

[
Im V

W In

]
. Such matrices are given by the following

definition. Let K =

[
U V

W X

]
such that the blocks U and X are square matrices of the order

m and n respectively. Similarly, let Ki =

[
Ui Vi

Wi Xi

]
for i = 1, 2 such that the blocks Ui and

Xi are square matrices of the order mi and ni respectively.

Definition 3.17. A matrix K is said to satisfy C/T property if it satisfies only the com-

muting and the trace property. Two matrices K1 and K2 are said to satisfy C/M/T property

if they satisfy the commuting, the monomial and the trace property.

1. (Commuting Property) I(U,X) and P(V,W ) commute, that is, UV = V X and XW =

WU

2. (Monomial Property) tr[f(K1)] = tr[f(K2)] for all monomials f if and only if tr[Kt
1] =

tr[Kt
2] for all t = 0, 1, 2, . . . (that is, K1 and K2 are cospectral).

3. (Trace Property) tr[U t−s(VW )r] = tr[X t−s(WV )r] holds for all t and even s where

s = 2r and s 6= 0
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We can write f(Ki) = f(I(Ui, Xi),P(Vi,Wi)). Let s be the degree of P(Vi,Wi) in f and

t be the total degree of f . The following proposition shows that the forward implication of

the monomial property is true. Hence, in the further results when we need to show that

monomial property holds, we will only need to show that the backward implication is true.

Proposition 3.18. Let K1 and K2 be two matrices such that tr[f(K1)] = tr[f(K2)] holds

for all monomials f , then K1 and K2 are cospectral.

Proof. Since, f(Ki) = I(Ui, Xi)
t−sP(Vi,Wi)

s for all nonnegative t and s, the following holds

for every t and s,

tr[I(U1, X1)t−sP(V1,W1)s] = tr[I(U2, X2)t−sP(V2,W2)s]

Now consider the following for t = 0, 1, 2, . . .

tr[Kt
1] = tr[(I(U1, X1) + P(V1,W1))t]

= tr[I(U1, X1)t] +

(
t

1

)
tr[I(U1, X1)t−1P(V1,W1)1] + . . .+ tr[P(V1,W1)t]

= tr[I(U2, X2)t] +

(
t

1

)
tr[I(U2, X2)t−1P(V2,W2)1] + . . .+ tr[P(V2,W2)t]

= tr[(I(U2, X2) + P(V2,W2))t]

= tr[Kt
2]

Hence, K1 and K2 are cospectral.

We now extend Lemma 3.12 to matrices not just of the form

[
Im V

W In

]
but any matrices

satisfying C/T and C/M/T property respectively.

Lemma 3.19. If a matrix K satisfies C/T property, then it satisfies the first two condi-

tions below. If two matrices K1 and K2 satisfy C/M/T property, then the satisfy all three

conditions below.

1. If s 6= 0, tr[g11(K)] = tr[g22(K)],

2. If s = 0, tr[g11(K)] = tr[U t] and tr[g22(K)] = tr[X t],
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3. If s 6= 0, tr[g11(K1)] = tr[g22(K2)] for all monomials f if and only if K1 and K2 are

cospectral.

Proof. 1. If s 6= 0, then f(K) = I(U,X)t−sP(V,W )s. We have two cases:

Case 1: s is odd and s = 2r + 1

Then P(V,W )s = P [(VW )rV, (WV )rW ] and I(U,X)t−s = I(U t−s, X t−s). Hence,

f(K) = I(U t−s, X t−s)P [(VW )rV, (WV )rW ]

= P [U t−s(VW )rV,X t−s(WV )rW ]

Then, tr[g11(K)] = tr[g22(K)] = 0.

Case 2: s is even and s = 2r

Then P(V,W )s = I[(VW )r, (WV )r]. Hence,

f(K) = I(U t−s, X t−s)I[(VW )r, (WV )r]

= I[U t−s(VW )r, X t−s(WV )r]

tr[g11(K)] = tr[U t−s(VW )r] and tr[g22(K)] = tr[X t−s(WV )r]. Since, K satisfies trace prop-

erty, then tr[g11(K)] = tr[g22(K)], hence 1. holds.

2. If s = 0, f(K) = I(U t, X t). Then, tr[g11(K)] = tr[U t] and tr[g22(K)] = tr[X t].

3. If s 6= 0, and suppose K1 and K2 be cospectral, then tr[f(K1)] = tr[f(K2)] for all

monomials f because the matrices K1 and K2 satisfy monomial property. We can write,

tr[f(Ki)] = tr[g11(Ki)] + tr[g22(Ki)] and also from 1. we have tr[g11(Ki)] = tr[g22(Ki)].

Hence, when s 6= 0 having tr[f(K1)] = tr[f(K2)] is equivalent to tr[g11(K1)] = tr[g22(K2)]

for all monomials f . Conversely suppose tr[g11(K1)] = tr[g22(K2)] holds for all monomials
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f . From 1., we have tr[g11(Ki)] = tr[g22(Ki)]. Then,

tr[f(K1)] = tr[g11(K1)] + tr[g22(K1)]

= tr[g22(K2)] + tr[g11(K2)]

= tr[f(K2)]

Hence, K1 and K2 are cospectral.

Theorem 3.20. Let the matrix K satisfy C/T property, and let

K =

[
U V

W X

]
, H =

[
A B

C D

]
, H# =

[
D C

B A

]

Then, K ⊗p H and K ⊗p H# are cospectral if and only if U and X are cospectral or A and

D are cospectral.

Proof. From Lemma 3.9, we have

tr[f(K ⊗p H)]− tr[f(K ⊗p H#)] = (tr[g11(K)]− tr[g22(K)])(tr[g11(H)]− tr[g22(H)])

Case 1: s = 0

Then for some t, f(K) = I(U t, X t), f(H) = I(At, Dt) and

f(K ⊗p H) = I((U ⊗p A)t, (X ⊗p D)t) = (K ⊗p H)t

Similarly, f(K ⊗p H#) = (K ⊗p H#)t. Hence, tr[g11(K)] = tr[U t], tr[g22(K)] = tr[X t],

tr[g11(H)] = tr[At], tr[g22(H)] = tr[Dt]. Then, we obtain

tr[(K ⊗p H)t]− tr[(K ⊗p H#)t] = (tr[U t]− tr[X]t)(tr[At]− tr[Dt])

for t = 0, 1, 2, . . .. Hence, K ⊗p H and K ⊗p H# are cospectral if and only if U and X are

cospectral or A and D are cospectral

Case 2: s 6= 0

From Lemma 3.19 (1), we have tr[g11(K)] = tr[g22(K)]. Then,

tr[f(K ⊗p H)]− tr[f(K ⊗p H#)] = 0
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then it follows from Proposition 3.18 that K ⊗p H and K ⊗p H# are cospectral.

Theorem 3.21. Let K1 and K2 be cospectral and satisfy C/M/T property. Let

Ki =

[
Ui Vi

Wi Xi

]
, for i = 1, 2, H =

[
A B

C D

]

Then K1 ⊗p H and K2 ⊗p H are cospectral if and only if U1 and U2 are cospectral or A and

D are cospectral.

Proof. From Lemma 3.10, we have

tr[f(K1 ⊗p H)− f(K2 ⊗p H)] = tr[g11(H)](tr[g11(K1)]− tr[g11(K2)])

+ tr[g22(H)](tr[g22(K1)]− tr[g22(K2)])

Case 1: s = 0

Then for some t, f(Ki) = I(U t
i , X

t
i ), f(H) = I(At, Dt) and

f(Ki ⊗p H) = I((Ui ⊗p A)t, (Xi ⊗p D)t) = (Ki ⊗p H)t

Hence, tr[g11(Ki)] = tr[U t
i ], tr[g22(Ki)] = tr[X t

i ], tr[g11(H)] = tr[At], tr[g22(H)] = tr[Dt].

Then,

tr[(K1 ⊗p H)t]− tr[(K2 ⊗p H)t] = tr[At](tr[U t
1]− tr[U t

2]) + tr[Dt](tr[X t
1]− tr[X t

2])

Since K1 and K2 are cospectral, tr[f(K1)] = tr[f(K2)] holds for all monomials f . We have

tr[f(Ki)] = tr[U t
i ]+ tr[X t

i ]. Hence, tr[U t
1]+ tr[X t

1] = tr[U t
2]+ tr[X t

2], that is, tr[U t
1]− tr[U t

2] =

−tr[X t
1] + tr[X t

2]. We obtain

tr[(K1 ⊗p H)t]− tr[(K2 ⊗p H)t] = (tr[U t
1]− tr[U t

2])(tr[At]− tr[Dt])

for all t = 0, 1, 2, . . .. Hence, K1 ⊗p H and K2 ⊗p H are cospectral if and only if U1 and U2

are cospectral or A and D are cospectral.

Case 2: s 6= 0

Since K1 and K2 are cospectral, from Lemma 3.19 (3), we have tr[g11(K1)] = tr[g22(K2)]

and tr[g11(K2)] = tr[g22(K1)] for all monomials. Then, tr[f(K1 ⊗p H) − f(K2 ⊗p H)] = 0
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for all monomials. Then, it follows from Proposition 3.18 that K1 ⊗p H and K2 ⊗p H are

cospectral.

3.3 Isomorphism of the corresponding graphs

If the matrices in the construction we just obtained are taken to be adjacency matrices of

graph or digraphs, then we get conspectral graphs or digraphs. Let us assume the matrices

to be adjacency matrices of graphs, that is, let the matrices be symmetric 0-1 matrices. We

will not assume that the graphs don’t have loops, that is, some matrices might have nonzero

diagonal entries. In this section, we investigate necessary and sufficient conditions for the

corresponding graphs to be isomorphic. A similar analysis can also be done for the digraphs.

Let H be a symmetric partitioned matrix such that H =

[
A B

BT D

]
and the diagonal

blocks A and D are square symmetric.

Definition 3.22. A graph GH is said to have interchanging automorphism with respect to

its bipartition, if it interchanges the induced graphs GA and GD.

Proposition 3.23. If a graph GH admits an interchanging automorphism with respect to

its bipartition, then the corresponding permutation matrix has the form P(Q1, Q2) such that

Q1 and Q2 are permutation matrices. Then, Q = I(Q1, Q2) satisfies QTHQ = H#.

Proof. It can be easily seen that the permutation matrix corresponding to such an auto-

morphism has the form Q′ = P(Q1, Q2) such that Q1 and Q2 are permutation matrices of

appropriate orders. Then from Q′THQ′ = H, we have QT
1BQ2 = BT , QT

1AQ1 = D, and

QT
2DQ2 = A. Let Q = I(Q1, Q2), then it satisfies QTHQ = H#.

The following proposition gives a sufficient condition for a graph to not admit an inter-

changing automorphism.

Proposition 3.24. A graph GH does not admit an interchanging automorphism with respect

to its bipartition if one of the following holds:

1. B is not PET (in particular, B is not square)
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2. the graphs GA and GD are not isomorphic, (in particular, they are are not cospectral)

Proof. If GH admits such an automorphism, then the corresponding permutation matrix has

the form P(Q1, Q2) such that Q1 and Q2 are permutation matrices satisfying QT
1BQ2 = BT ,

QT
1AQ1 = D, and QT

2DQ2 = A, that is, B is PET and GA and GD are isomorphic. When

GA and GD are not cospectral, the graphs GA and GD are nonisomorphic. If B is not square,

then B is not PET. Hence, if any one of the two conditions hold, the automorphism cannot

interchange GA and GD.

3.3.1 Construction-I

Recall the construction given by Theorem 3.20. Let us assume that the matrix K =[
U V

V T X

]
satisfies C/T property, and at least one of the pairs U and X or A and D is

cospectral. Hence, the graphs GK⊗pH and GK⊗pH# corresponding to the matrices K ⊗p H
and K ⊗p H# as adjacency matrices are cospectral. This also implies that least one of GK

or GH admits equal bipartition size.

The following lemma gives a sufficient condition for the graphs to be isomorphic.

Lemma 3.25. If at least one of GK or GH admits an interchanging automorphism with

respect to its bipartition, then GK⊗pH and GK⊗pH# are isomorphic.

Proof. Case 1: Suppose GK admits such as automorphism

Then, there exists permutation matrices R2 and R3 such that R = P(R2, R3) satisfies

RTKR = K. Since QTHQ = H# for Q = P(Ip, Iq), the partitioned tensor product

P = R⊗p Q is also a permutation matrix.

Case 2: Suppose GH has such an automorphism

Then there exists permutation matricesQ1 andQ4 such thatQ = I(Q1, Q4) satifiesQTHQ =

H#. Let R be an identity matrix, then the partitioned tensor product P = R⊗p Q is also a

permutation matrix.
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In any case, it follows that

P T (K ⊗p H)P = (R⊗p Q)T (K ⊗p H)(R⊗p Q)

= (RT ⊗p QT )(K ⊗p H)(R⊗p Q)

= (RTKR)⊗p (QTHQ)

= K ⊗p H#

Note that Proposition 3.4 is used in the second step. Hence, GK⊗pH and GK⊗pH# are

isomorphic, since the corresponding adjacency matrices are permutationally similar.

Let us define a property that will help us showing the sufficient condition for the isomor-

phism to be also a necessary condition.

Definition 3.26. The graphs GK and GH are said to satisfy property η1, if whenever GK⊗pH

and GK⊗pH# are isomorphic, the induced subgraph GU⊗A of GK⊗pH is isomorphic to at least

one of the induced subgraphs GU⊗D and GX⊗A of GK⊗pH#.

Lemma 3.27. Let the graphs GK and GH satisfy property η1 and let GK⊗pH and GK⊗pH#

be isomorphic. Then at least one of the following holds:

1. P T
1 (U ⊗ A)P1 = U ⊗D, P T

1 (V ⊗ B)P4 = V ⊗ BT , P T
4 (X ⊗D)P4 = X ⊗ A for some

permutation matrices P1 and P4. Then,

If GU is nonbipartite, then GA and GD are isomorphic.

If GA, GD and GU are bipartite, then GA and GD are isomorphic.

If V 6= 0 and B has no zero rows or zero columns, then B is PET.

If GU is nonbipartite, then GA and GD are isomorphic.

If GA, GD and GX are bipartite, then GA and GD are isomorphic.

2. P T
2 (U ⊗ A)P2 = X ⊗ A, P T

3 (V T ⊗ BT )P2 = V ⊗ BT and P T
3 (X ⊗D)P3 = U ⊗D for

some permutation matrices P2 and P3. Then,

If GA is nonbipartite, then GU and GX are isomorphic.

If GU , GX and GA are bipartite, then GU and GX are isomorphic.

If B 6= 0 and V has no zero rows or zero columns, then V is PET.
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If GD is nonbipartite, then GU and GX are isomorphic.

If GU , GX and GD are bipartite, then GU and GX are isomorphic.

Proof. Suppose GK⊗pH and GK⊗pH# are isomorphic and P =

[
P1 P2

P3 P4

]
is a permutation

matrix such that P T (K ⊗p H)P = K ⊗p H#. Then from,[
P1 P2

P3 P4

]T [
U ⊗ A V ⊗B
V T ⊗BT X ⊗D

][
P1 P2

P3 P4

]
=

[
U ⊗D V ⊗BT

V T ⊗B X ⊗ A

]

Then from property η1, P has either the form I(P1, P4) or P(P2, P3). If P = I(P1, P4),

we have, P T
1 (U ⊗ A)P1 = U ⊗ D, P T

1 (V ⊗ B)P4 = V ⊗ BT , P T
4 (X ⊗ D)P4 = X ⊗ A. If

P = P(P2, P3), we have, P T
3 (X⊗D)P3 = U⊗D, P T

3 (V T ⊗BT )P2 = V ⊗BT , P T
2 (U⊗A)P2 =

X ⊗ A. The further statements follow from the cancellation law for graphs (Lemma 2.11,

Theorem 2.12) and matrices (Lemma 2.14).

We will apply these isomorphism results on the particular constructions corresponding

to K’s that satisfy C/M/T property in the further chapters.

3.3.2 Construction-II

Recall the construction given by Theorem 3.21. Let us assume that the matrices K1 =[
U1 V1

V T
1 X1

]
and K2 =

[
U2 V2

V T
2 X2

]
are cospectral and satisfy C/M/T property. Let at also

assume that least one of the pair U1 and U2 or A and D is cospectral. Hence, the graphs

GK1⊗pH and GK2⊗pH corresponding to the matrices K1 ⊗p H and K2 ⊗p H as adjacency

matrices are cospectral. This also implies that either GH admits equal bipartition size or

GK1 and GK2 are partitioned similarly.

Definition 3.28. Let the graphs GK1 and GK2 be isomorphic. An isomorphism between

them is called a Type-1 (Type-2) isomorphism, if it maps the induced subgraph GU1 of GK1

to the induced subgraph GU2 (GX2) of GK2.

The permutation matrices corresponding to Type-1 and Type-2 isomorphisms are of the
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form I(Q1.Q2) and P(Q1, Q2) respectively for permutation matrices Q1 and Q2 of appropri-

ate orders. The following proposition gives a sufficient condition for the isomorphic graphs

GK1 and GK2 to not admit such a isomorphism.

Proposition 3.29. Let the graphs GK1 and GK2 be isomorphic. They do not admit isomor-

phism of Type-1 (Type-2) if one of the following holds:

1. GU1 is not isomorphic with GU2 (GX2)

2. GX1 is not isomorphic with GX2 (GU2)

3. V2 is not permutationally equivalent to V1 (V T
1 ).

Proof. Since GK1 and GK2 are isomorphic, there exists a permutation matrix P such that

P TK1P = K2. Let P =

[
P1 P2

P3 P4

]
such that the blocks are of appropriate orders. If case

the isomorphism is Type-1, we have P = I(P1, P3), and hence P T
1 U1P1 = U2, P T

1 V1P3 =

V2, and P T
4 X1P4 = X2. In case the isomorphism is Type-2, we have P = P(P2, P3), and

hence P T
3 X1P3 = U2, P T

3 V
T

1 P2 = V2, and P T
2 U1P2 = X2. The proposition follows by

contrapositive.

The next lemma gives a sufficient condition for the graphs constructed to be isomorphic.

Lemma 3.30. The graphs GK⊗pH and GK⊗pH# are isomorphic if at least one of the following

holds:

1. K1 and K2 are isomorphic via a Type-1 isomorphism

2. K1 and K2 are isomorphic via a Type-2 isomorphism, and GH admits an interchanging

automorphism with respect to its bipartition

Proof. Case 1: Suppose K1 and K2 ar isomorphic via a Type-1 isomorphism

If R is the corresponding permutation matrix such that RTK1R = K2, then R has form

R = I(R1, R4) for two permtuation matrices R1 and R4 of appropriate orders. Let Q = Ip+q

be an identity matrix, then the partitioned tensor product P = R⊗pQ is also a permutation

matrix.
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Case 2: Suppose K1 and K2 ar isomorphic via a Type-2 isomorphism, and GH admits

an interchanging automorphism with respect to its bipartition

If R is the corresponding permutation matrix such that RTK1R = K2, then R has form

R = P(R2, R3) for two permutationa matrices R2 and R3 of appropriate orders. Since

GH has such an interchanging automorphism with respect to its bipartition, there exists

permutation matrices Q2 and Q3 such that Q = I(Q2, Q3) and QTHQ = H. Then, the

partitioned tensor product P = R⊗p Q is also a permutation matrix.

In any case,

P T (K1 ⊗p H)P = (R⊗p Q)T (K1 ⊗p H)(R⊗p Q)

= (RT ⊗p QT )(K1 ⊗p H)(R⊗p Q)

= (RTK1R)⊗p (QTHQ)

= K2 ⊗p H

Note that Proposition 3.4 is used in the second step. Hence, GK1⊗pH and GK2⊗pH are

isomorphic since the corresponding adjacency matrices are permutationally similar.

Let us define a property that will be helpful in showing the sufficient condition for iso-

morphism to be also a necessary condition.

Definition 3.31. The graphs GK1, GK2 and GH are said to satisfy property η2, if whenever

GK1⊗pH and GK2⊗pH are isomorphic, the induced subgraph GU1⊗A of GL1⊗pH is isomorphic

to at least one of the induced subgraphs GU2⊗A and GX2⊗D of GK2⊗pH .

Lemma 3.32. Suppose GK1, GK2 and GH satisfy property η2 and suppose GK1⊗pH and

GK2⊗pH are isomorphic. Then at least one of the following holds:

1. P T
1 (U1⊗A)P1 = U2⊗A, P T

1 (V1⊗B)P4 = V2⊗B, P T
4 (X1⊗D)P4 = X2⊗D for some

permutation matrices P1 and P4. Then,

If GA is nonbipartite, then GU1 and GU2 are isomorphic.

If GA, GU1 and GU2 are bipartite, then GU1 and GU2 are isomorphic.

If B 6= 0 and V1 and V2 have no zero rows or zero columns, then V1 is permuta-

tionally equivalent to V2.

If GD is nonbipartite, then GX1 and GX2 are isomorphic.
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If GD, GX1 and GX2 are bipartite, then GX1 and GX2 are isomorphic.

2. P T
3 (X1 ⊗ D)P3 = U2 ⊗ A, P T

3 (V T
1 ⊗ BT )P2 = V2 ⊗ B, P T

2 (U1 ⊗ A)P2 = X2 ⊗ D for

some permutation matrices P2 and P3. Suppose A = D and B = BT . Then,

If GA is nonbipartite, then GX1 and GU2 are isomorphic and GU1 and GX2 are

isomorphic

If GA, GX1 and GU2 are bipartite, then GX1 and GU2 are isomorphic.

If GA, GU1 and GX2 are bipartite, then GU1 and GX2 are isomorphic.

If B 6= 0 and V1 and V2 have no zero rows or zero columns, then V T
1 is permuta-

tionally equivalent to V2.

Proof. Suppose GK1⊗pH and GK2⊗pH are isomorphic, the there exists a permutation matrix

P such that P T (K1 ⊗p H)P = K2 ⊗p H. Let P =

[
P1 P2

P3 P4

]
, then

[
P1 P2

P3 P4

]T [
U1 ⊗ A V1 ⊗B
V T

1 ⊗BT X1 ⊗D

][
P1 P2

P3 P4

]
=

[
U2 ⊗ A V2 ⊗B
V T

2 ⊗BT X2 ⊗D

]

From property η2, P is either of the form I(P1, P4) or P(P2, P3). In case P = I(P1, P4),

we have, P T
1 (U1 ⊗ A)P1 = U2 ⊗ A, P T

1 (V1 ⊗ B)P4 = V2 ⊗ B, P T
4 (X1 ⊗ D)P4 = X2 ⊗ D.

In case P = P(P2, P3), we have P T
3 (X1 ⊗ D)P3 = U2 ⊗ A, P T

3 (V T
1 ⊗ BT )P2 = V2 ⊗ B,

P T
2 (U1⊗A)P2 = X2⊗D. The further statements follow from the cancellation law for graphs

(Lemma 2.11, Theorem 2.12) and matrices (Lemma 2.14).
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Chapter 4

Unfolding a bipartite graph

In this chapter, we first discuss a construction based on unfolding a bipartite graph to obtain

bipartite graphs which are cospectral for the adjacency as well as the normalized Laplacian

(see [1]) and some of its existing generalizations (see [14], [12]). We then introduce the idea

of partitioned tensor products to obtain the most generalized version of this construction.

We show it is in fact a particular case of Theorem 3.20 discussed in the previous chapter,

in other words, we discuss a candidate for a matrix satisfying C/M/T property. We then

apply the isomorphism results from the previous chapter to obtain equivalent conditions for

the cospectral graphs to be nonisomorphic. We give partial characterization of property η1

required in the investigation of the isomorphism and show how a result of Ji, Gong and Wang

[12] can be generalized and also show a complete different problem considered by Hammack

[9] is related to unfolding.

4.1 Butler’s construction of unfolding a bipartite graph

Let G be a bipartite graph with vertex partitioning V (G) = X ∪ Y such that |X| = p and

|Y | = q. The adjacency matrix of graph G can be given by

A(G) =

[
0 B

BT 0

]
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where the biadjacency matrix B is a p × q matrix. The operation of unfolding a partition

can be done in following way: Consider two copies Y1 and Y2 of partition Y. If there is an

edge between xi ∈ X and yj ∈ Y , then draw an edge between xi and y1
j , and between xi and

y2
j , where y1

j ∈ Y1 and y2
j ∈ Y2. Note that the vertices y1

j ∈ Y1 and y2
j ∈ Y2 corresponds to

the vertex yj ∈ Y . Call this resultant graph Γ1. Similarly Γ2 can be obtained by unfolding

the partition X twice in similar way. The adjacency matrices of Γ1 and Γ2 are given by:

A(Γ1) =

 0 B B

BT 0 0

BT 0 0

 , A(Γ2) =

 0 BT BT

B 0 0

B 0 0



Figure 4.1: Smallest unfolding example: G, Γ1, Γ2

The square matrices A(Γ1) and A(Γ2) have orders (p + 2q) and (2p + q) respectively.

The graphs G, Γ1 and Γ2 corresponding to the matrix B =

[
1 1

0 0

]
are shown in Figure 4.1.

Vertices from the same partite sets are coloured using the same colour in G. The colours of

the new vertices in Γ1 and Γ2 denote the new unfolded partite sets.

The following theorems discusses the eigenvalues of the unfoldings in terms of the base

bipartite graph. Let σ(A) denote the eigenvalues of the matrix A.

Theorem 4.1. [1]If p ≥ q, then

σ(A(Γ1)) =
√

2× σ(A(G)) ∪ {0 . . . 0︸ ︷︷ ︸
q−times

}

σ(A(Γ2)) =
√

2× σ(A(G)) ∪ {0 . . . 0︸ ︷︷ ︸
p−times

}
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and if p = q, then A(Γ1) and A(Γ2) are cospectral.

Recall that if a graph G has no isolated vertices, then the normalized Laplacian is given

by L(G) = I −D(G)−1/2A(G)D(G)−1/2 where D(G) is the degree matrix of G.

Theorem 4.2. [1]Suppose G has no isolated vertices. If p ≥ q, then

σ(L(Γ1)) =
√

2× σ(L(G)) ∪ {1 . . . 1︸ ︷︷ ︸
q−times

}

σ(L(Γ2)) =
√

2× σ(L(G)) ∪ {1 . . . 1︸ ︷︷ ︸
p−times

}

and if p = q, then L(Γ1) and L(Γ2) are cospectral.

Hence, if G has no isolated vertices and has equal partition sizes (p = q), the bipartite

graphs Γ1 and Γ2 are cospectral for the adjacency matrix as well as for the normalized

Laplacian. These two results are also be generalized by unfolding each partition n-times

instead of twice. Adjacency matrices of such unfoldings are given by:

A(Γ1) =


0 B B . . . B

BT 0 0 . . . 0

BT 0 0 . . . 0
...

...
...

. . .
...

BT 0 0 . . . 0



A(Γ2) =


0 BT BT . . . BT

B 0 0 . . . 0

B 0 0 . . . 0
...

...
...

. . .
...

B 0 0 . . . 0


In this case, A(Γ1) and A(Γ2) are square matrices of orders p+nq and np+q respectively.

The following theorems discusses the eigenvalues of these new graphs.
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Theorem 4.3. [14]If p ≥ q, then

σ(A(Γ1)) =
√
n× σ(A(G)) ∪ {0 . . . 0}︸ ︷︷ ︸

(n−1)q−times

σ(A(Γ2)) =
√
n× σ(A(G)) ∪ {0 . . . 0}︸ ︷︷ ︸

(n−1)p−times

and if p = q, then A(Γ1) and A(Γ2) are cospectral.

Theorem 4.4. [14]Suppose G has no isolated vertices. If p ≥ q, then

σ(L(Γ1)) =
√
n× σ(L(G)) ∪ {1 . . . 1}︸ ︷︷ ︸

(n−1)q−times

σ(L(Γ2)) =
√
n× σ(L(G)) ∪ {1 . . . 1}︸ ︷︷ ︸

(n−1)p−times

and if p = q, then L(Γ1) and L(Γ2) are cospectral.

Hence, similarly when G has no isolated vertices and has equal partition sizes (p = q), the

bipartite graphs Γ1 and Γ2 are cospectral for the adjacency matrix as well as the normalized

Laplacian matrix.

Remark 4.5. The matrix B is a 0-1 matrix. In both of these constructions in [1] and [14],

if B is chosen in such a way that the maximum row sum of B is different than the maximum

column sum of B, then the bipartite graphs Γ1 and Γ2 are non-isomorphic. The maximum

row sum and the maximum column sum of B corresponds to the vertex with maximum degree

in partition X and in the partition Y of the graph G respectively.

Let us discuss how to generalize this idea further. Let n be a positive integer, k be any

divisor of n and σ(n) be the number of divisors of n. Consider a bipartite graph G such that

the vertex set is partitioned as V (G) = X ∪ Y . Take n
k

copies of the partition X and form a

set W = X1 ∪X2 ∪ · · · ∪Xn
k
. Take k copies of Y and form a set Z = Y1 ∪ Y2 ∪ · · · ∪ Yk. Use

the independent sets W and Z as partitions to construct a bipartite graph Γk as follows: For

all 1 ≤ i ≤ n
k

and 1 ≤ j ≤ k, draw edges between Xi and Yj as given by the edges between

X and Y . For a fixed partition Xi, the partition Y is ’unfolded ’ k times. Since there are
n
k

such i’s, the total number of unfoldings is k × n
k

= n. Let Fk = A(Γk) be the adjacency
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matrix of the unfolding Γk of graph G. Then Fk is a square matrix of order n
k
p + kq given

by:

Fk =



0 · · · 0 B · · ·B
...
. . .

...
...
. . .

...

0 · · · 0 B · · ·B
BT · · ·BT 0 · · · 0

...
. . .

...
...
. . .

...

BT · · ·BT 0 · · · 0


There are n

k
columns whose first entry is a zero block of order p and k columns whose

first entry is the block B. For a fixed n, there are σ(n) such possible Fk’s.

Theorem 4.6. [14] Let p ≥ q. Consider the family of adjacency matrices Fk constructed

above. Then,

σ(A(Γk)) = σ(Fk) =
√
n× σ(A(G)) ∪ {0, 0, . . . 0}︸ ︷︷ ︸

[(n
k
−1)p+(k−1)q]−times

then A(Γk)⊕ 0(n−n
k

)p+(1−k)q, with k varying over the set of all divisors of n, are cospectral.

Similarly for normalized Laplacian matrix, we can write,

Theorem 4.7. Suppose G has no isolated vertices. Let p ≥ q. Consider the family of

adjacency matrices Fk constructed above. Then

σ(L(Γk)) =
√
n× σ(L(G)) ∪ {1, 1, . . . 1}︸ ︷︷ ︸

[(n
k
−1)p+(k−1)q]−times

If p = q, then for any divisior k of n, the pair L(Γk) and L(Γn
k
) is cospectral.

Example 4.8. Let n = 6, then divisors of n are {1, 2, 3, 6}. Hence, four such matrices Fk

are possible. Note that the nodes in the figures of Table 4.1 represent the copies of the partite

sets of the base bipartite graph. We have not specified the graph G.

In particular,
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k Γk σ(Fk)

1
√

6× σ(A(G)) ∪ {0, 0, . . . 0}︸ ︷︷ ︸
5p−times

2
√

6× σ(A(G)) ∪ {0, 0, . . . 0}︸ ︷︷ ︸
3p−times

3
√

6× σ(A(G)) ∪ {0, 0, . . . 0}︸ ︷︷ ︸
3p−times

6
√

6× σ(A(G)) ∪ {0, 0, . . . 0}︸ ︷︷ ︸
5p−times

Table 4.1: Unfoldings Γ1, Γ2, Γ3 and Γ6 for n = 6

Theorem 4.9. If G has no isolated vertices, then the graphs Γk and Γn/k are cospectral for

the adjacency matrix as well as the normalized Laplacian.

Proof. The result follows from Theorem 4.6 and Theorem 4.7.

So far, the condition ’maximum row sum is not same as maximum column sum of B’

was sufficient to have the constructed cospectral graphs to be nonisomorphic. The following

theorem gives the equivalent conditions for the isomorphism. Let k and l to be any two

natural numbers and let n = kl to be the fixed total number of unfoldings. Let p = q. Since

k and l both are divisors of n, consider the graphs Γk and Γl which are cospectral for the

adjacency matrix as well the normalized Laplacian. We assume the matrix B to have no

zero rows as well as no zero columns. The reason for it is that if B has a zero row and no

zero columns, then Γk and Γl have l and k isolated vertices respectively and they might not

be cospectral with respect to the normalized Laplacian.

Theorem 4.10. [12] Suppose B is a square matrix without any zero rows or zero columns

and k 6= l. Then, the graphs Γk and Γl are nonisomorphic if and only if B non PET.

We refer to [12] for the proof of this theorem which is based on Hall’s theorem. We will
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give an alternate proof in the general setting in the next section. Two of the properties of

the unfoldings are:

Proposition 4.11. The unfolding preserves the diameter, diam(Γk) = diam(G).

Proposition 4.12. If G has no isolated vertices, then the unfolding preserves the number

of connected components, n(Fk) = n(G).

Proof. If G has no isolated vertices, then from Theorem 4.7, the multiplicity of eigenvalue

zero in σ(L(Γk)) is same as in σ(L(G)). The multiplicity of eigenvalue zero of the Laplacian

matrix corresponds to the number of connected components. The multiplicity of eigenvalue

zero is same for the Laplacian and the normalized Laplacian. Hence, unfolding preserves the

number of connected components.

4.2 Generalization of the unfolding operation

Consider the matrices of the form L =

[
0 V

W 0

]
such V and W are m×n and n×m matrices

respectively.

Lemma 4.13. The matrix L = P(V,W ) satisfies C/T property. Two matrices L1 =

P(V1,W1) and L2 = P(V2,W2) satisfy C/M/T property.

Proof. The commuting property is trivially satisfies since I(U,X) is a zero matrix which

commutes with P(V,W ).

Let f be a monomial, then for i = 1, 2 f(Li) = 0t−sP(Vi,Wi)
s. Hence, f(Li) is either

P(Vi,Wi)
t = Lti for some t or a zero matrix. Hence, tr[f(L1)] = tr[f(L2)] holds for all

monomials if and only if tr[Lt1] = tr[Lt2] holds for all t. Hence, the monomial property is

satisfied.

Suppose s = 2r and s 6= 0. If t 6= s, then tr[U t−s(VW )r] = 0 and tr[X t−s(WV )r] =

0. If t = s, then tr[U t−s(VW )r] = tr[(VW )r] and tr[X t−s(WV )r] = tr[(WV )r]. But

from Proposition 3.11, we have tr[(VW )r] = tr[(WV )r]. Hence, the trace property is also

satisfied.
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Now that we’ve shown that the matrices of the form L = P(V,W ) satisfy C/M/T

property, we can apply the isomorphism results from the previous chapter.

4.2.1 Construction I-A: Bipartite graph

Let L =

[
0 V

V T 0

]
= P(V, V T ), H =

[
0 B

BT 0

]
= P(B,BT ) and H# =

[
0 BT

B 0

]
=

P(BT , B) be the adjacency matrices of the bipartite graphs such that V and B are m × n
and p× q 0-1 matrices respectively.

Theorem 4.14. The bipartite graphs GL⊗pH and GL⊗pH# are cospectral if and only at least

one of GL or GH admits equal partition sizes.

Proof. From Lemma 4.13, L satisfies C/T property. Then the result follows as a corollary

of Theorem 3.20.

The next lemma gives a relation between the normalized Laplacian of partitioned tensor

product and its individual components.

Lemma 4.15. Let G1 and G2 be two graphs with no isolated vertices such that the correspond-

ing adjacency matrices are bipartitioned. Then, L(GA(G1)⊗pA(G2)) = 2I − L(G1)⊗p L(G2).

Proof. Let D(G1) and D(G2) denote the degree matrices corresponding to the graphs G1

and G2 respectively. Since G1 and G2 do not have any isolated vertices, D(G1)−1/2 and

D(G2)−1/2 exists. Then,

L(GA(G1)⊗pA(G2)) = I −D(GA(G1)⊗pA(G2))
−1/2(A(G1)⊗p A(G2))D(GA(G1)⊗pA(G2))

−1/2

= I − (D(G1)−1/2 ⊗p D(G2)−1/2)(A(G1)⊗p A(G2))(D(G1)−1/2 ⊗p D(G2)−1/2)

= I − (D(G1)−1/2A(G1)D(G1)−1/2)⊗p (D(G2)−1/2A(G2)D(G2)−1/2)

= I − [(I − L(G1))⊗p (I − L(G2))]

= I ⊗p L(G2) + L(G1)⊗p I − L(G1)⊗p L(G2)

= 2I − L(G1)⊗p L(G2)

The third step in the above computations uses Proposition 3.4 and the matrices I ⊗ L(G2)

and L(G1)⊗p I are identity matrices.
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Theorem 4.16. Let GL and GH be bipartite graphs with no isolated vertices, then the graphs

GL⊗pH and GL⊗pH# are cospectral for the normalized Laplacian if and only if at least one of

GL or GH admits equal partition sizes.

Proof. Equivalently, we must show that the corresponding normalized Laplacian matrices

L(GL⊗pH) and L(GL⊗H#) have the same eigenvalues if and only if m = n or p = q. Let

D(GL), D(GH) and D(GH#) denote the degree matrices for the graphs GL, GH and GH#

respectively. Suppose either m = n or p = q holds. Then,

Case 1: Suppose m = n

Let D(GL) = I(C1, C2) where C1 and C2 are diagonal matrices. Since GL does not have any

isolated vertices, C
−1/2
1 and C

−1/2
2 exists. Let E = C

−1/2
1 V C

−1/2
2 . Then from Lemma 2.7. and

the assumption that m = n, the matrix E is orthogonally equivalent to its transpose. Hence,

there exists two orthogonal matrices R1 and R2 such that E = RT
2E

TR1. Let R = P(R1, R2).

Then,

L(GL) = I −D(GL)−1/2LD(GL)−1/2

= I −

[
0 C

−1/2
1 V C

−1/2
2

C
−1/2
2 V TC

−1/2
1 0

]

= I −

[
0 RT

2 (C
−1/2
2 V TC

−1/2
1 )R1

R2(C
−1/2
1 V C

−1/2
2 )RT

1 0

]

=

[
0 R1

R2 0

]T (
I −

[
0 C

−1/2
1 V C

−1/2
2

C
−1/2
2 V TC

−1/2
1 0

])[
0 R1

R2 0

]
= RTL(GL)R

The permutation matrix Q = P(Ip, Iq) satisfies QTL(GH)Q = L(GH#). The partitioned

tensor product P = R⊗pQ is also an orthogonal matrix and from Proposition 3.4 it satisfies

P T (L(GL)⊗p L(GH))P = L(GL)⊗p L(GH#).

Case 2: Suppose p = q

Let D(GH) = I(D1, D2) where D1 and D2 are diagonal matrices. Then, D(GH#) =

I(D2, D1). Since GH does not have any isolated vertices, D
−1/2
1 and D

−1/2
2 exists. Let

F = D
−1/2
1 BD

−1/2
2 . Then from Lemma 2.7. and the assumption that p = q, the matrix

F is orthogonally equivalent to its transpose. Hence, there exists two orthogonal matrices
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Q1 and Q2 such that QT
1 FQ2 = F T , that is, QT

1 (D
−1/2
1 BD

−1/2
2 )Q2 = D

−1/2
2 BTD

−1/2
1 . Let

Q = I(Q1, Q2). Then,

L(GH#) = I −D(H#)−1/2H#D(GH#)−1/2

= I −

[
0 D

−1/2
2 BTD

−1/2
1

D
−1/2
1 BD

−1/2
2 0

]

= I −

[
0 QT

1 (D
−1/2
1 BD

−1/2
2 )Q2

Q1(D
−1/2
2 BTD

−1/2
1 )QT

2 0

]

=

[
Q1 0

0 Q2

]T (
I −

[
0 D

−1/2
1 BD

−1/2
2

D
−1/2
2 BTD

−1/2
1 0

])[
Q1 0

0 Q2

]
= QT (I −D(GH)−1/2HD(GH)−1/2)Q

= QTL(GH)Q.

Let R be the identity matrix such that RTL(GL)R = L(GL). The partitioned tensor product

P = R⊗pQ is also an orthogonal matrix and from Proposition 3.4 it satisfies P T (L(GL)⊗p
L(GH))P = L(GL)⊗p L(GH#).

In both of the cases, we have shown that the matrices L(GL) ⊗p L(GH) and L(GL) ⊗p
L(GH#) are orthogonally similar. Since GL and GH have no isolated vertices, we have,

L(GL⊗pH) = 2I − L(GL) ⊗p L(GH) as well as L(GL⊗pH#) = 2I − L(GL) ⊗p L(GH#) from

Lemma 4.15. Then, the matrices L(GL⊗pH) and L(GL⊗pH#) are orthogonally similar, and

hence have the same eigenvalues.

Now conversely assume that the graphs GL⊗pH and GL⊗pH# are cospectral for normalized

Laplacian, then the corresponding normalized Laplacian matrices have the same order. Then,

mp+ nq = mq + np, that is, (m− n)(p− q) = 0. Hence, either m = n or p = q holds.

We have seen that the condition on the bipartite graphs GL and GH to have no isolated

vertices is required for the cospectrality with respect to the normalized Laplacian. This

condition is not required for the cospectrality with respect to the adjacency matrix. In this

chapter, let us assume that both GL and GH have no isolated vertices. This is equivalent to

assuming that both V and B have no zero rows as well as no zero columns.

Let G be a bipartite graph whose vertex set is partitioned as V (G) = X∪Y . We say that

an automorphism f of G fixes the partite sets if f(X) = X and f(Y ) = Y , and interchanges
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the partite sets if f(X) = Y and f(Y ) = X.

Proposition 4.17. The bipartite graph G corresponding to the adjacency matrix

[
0 B

BT 0

]
admits an automorphism that interchanges its partite sets if and only if the biadjacency

matrix B is PET.

Proof. The permutation matrix corresponding to such an automorphism is of the form

P = P(P1, P2) for some permutation matrices P1 and P2 of same size. Since P satisfies

P TA(G)P = A(G), equivalently P T
1 BP2 = BT holds, that is, B is PET.

Let us restate property η1 for the bipartite graphs.

Definition 4.18. The bipartite graphs GL and GH are said to satisfy property η1, if whenever

the bipartite graphs GL⊗pH and GL⊗pH# are isomorphic, there exists an isomorphism between

them that respects the partite sets.

The next theorem gives equivalent conditions for the graphs GL⊗pH and GL⊗pH# to be

isomorphic.

Theorem 4.19. Let the bipartite graphs GL and GH satisfy property η1, then GL⊗pH and

GL⊗pH# are isomorphic if and only if at least one of GL and GH admits an automorphism

that interchanges its partite sets.

Proof. Suppose at least one of GL and GH admits an automorphism that interchanges its

partite sets, then from Lemma 3.25, the bipartite graphs GL⊗pH and GL⊗pH# are isomorphic.

Now conversely, suppose they are isomorphic, since GL and GH satisfy property η1, then from

Lemma 3.27 at least one of V or B is PET. Hence, from Proposition 4.17 at least one of GL

and GH admit an automorphism that interchanges its partite sets.

Now let us discuss when bipartite graphs GL and GH satisfy property η1 and how our

construction relates with some of the existing results.
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Connected bipartite graphs

Let G1 and G2 be two isomorphic bipartite graphs whose vertex sets are partitioned as

V (G1) = X1 ∪ Y1 and V (G2) = X2 ∪ Y2. If f is an isomorphism from G1 to G2, we say that

f respects the partite sets if it satisfies either f(X1) = X2 and f(Y1) = Y2 or f(X1) = Y2

and f(Y1) = X2.

Lemma 4.20. If G1 and G2 are two connected isomorphic bipartite graphs, then any iso-

mophism between them respects the partite sets.

Proof. Let x1, x2 ∈ X1. Then, there exists a path between x1 and x2 due to connectedness

of G1. Since, these vertices belong to the same partition, this path has even length. The

isomorphism f preserves the distance between vertices. Hence, the path between f(x1) and

f(x2) has even length. Since G2 is bipartite, f(x1) and f(x2) belong to either X2 or Y2.

Since, for a given x1 ∈ X1, all x2 ∈ X1 are at even distance from x1, then either f(X1) = X2

or f(X1) = Y2. The result follows.

Corollary 4.21. If G is a connected bipartite graph, then its every automorphism repects

the partite sets.

Next, we provide a lemma which is useful for proving the theorem 4.23.

Lemma 4.22. [24] If GL and GH are two connected bipartite graphs, then GL × GH has

exactly two connected bipartite components.

We observe that the disjoint union of the bipartite graphs GL⊗pH and GL⊗pH# is in fact

same as the direct product GL⊗H = GL × GH . Hence, if GL and GH are connected, then

from Lemma 4.22, the two connected components of GL⊗H are precisely GL⊗pH and GL⊗pH# .

Theorem 4.23. If the bipartite graphs GL and GH are connected, then they satisfy property

η1.

Proof. Suppose GL and GH are connected and GL⊗pH and GL⊗pH# are isomorphic. Since

GL⊗pH andGL⊗pH# are connected, it follows from Lemma 4.20 that any isomorphism between

them respects the partite sets. Hence, GL and GH satisfy property η1.
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Hammack [9] had already given an equivalent condition for the isomorphism of the com-

ponents of direct product of two connected bipartite graphs. We state it here as a corollary.

Corollary 4.24. [9] Let G1 and G2 be two connected bipartite graphs. The two components

of G1×G2 are isomorphic if and only if if at least one of G1 or G2 admits an automorphism

that interchanges its partite sets.

Proof. Follows from the Theorems 4.19, and 4.23.

Since we are interested in the construction of cospectral nonisomorphic graphs, we use

this result as a cospectral construction.

Theorem 4.25. Let GL and GH be connected bipartite graphs and let at least one of them

have equal partition sizes. Then, the bipartite graphs GL⊗pH and GL⊗pH# are cospectral for

the adjacency as well as the normalized Laplacian and they are nonisomorphic if and only if

both GL and GH do not admit an automorphism that interchanges its partite sets.

Proof. Cospectrality follows from Theorem 4.14 and Theorem 4.16,. The condition for non-

isomorphism follows from Theorem 4.19 and Theorem 4.23.

Example 4.26. Suppose GL admits equal partition sizes and GH does not. Then, GH

automatically does not admit an automorphism that interchanges its partite sets, since B

is non-square and hence non-PET. Then, finding cospectral nonisomorphic graphs using the

theorem 4.25 requires finding

1. A square 0-1 non-PET matrix V which corresponds to a connected bipartite graph GL

2. A non-square 0-1 matrix B which corresponds to a connected bipartite graph GH .

The smallest size candidates for such a V are the following 3× 3 matrices:

V1 =

1 1 1

1 0 0

0 1 0

 , V2 =

1 1 1

1 0 1

0 1 0

 , and V3 =

1 1 1

0 1 0

1 1 1

 .
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Figure 4.2: Example 1 of construction I-A: GL1 , GH1 , GL1⊗H1 and GL1⊗H#
1

Let us denote the corresponding bipartite graph by GL1, GL2, and GL3 respectively. The

smallest size candidates for such a B (which cannot be obtained by the construction in the

next subsection) are the following 2× 3 matrices:

B1 =

[
1 1 1

1 0 0

]
, B2 =

[
1 1 0

1 0 1

]
, and B3 =

[
1 1 1

1 1 0

]
.

Let us denote the corresponding bipartite graph by GH1, GH2, and GH3 respectively. Hence,

we can obtain the following nine different pairs of bipartite graphs GLi⊗Hj and GLi⊗H#
j

for

1 ≤ i, j ≤ 3 whose biadjacency matrices are Vi⊗Bj and Vi⊗BT
j respectively. Note that these

are the smallest sized graph pairs possible using this construction and they are of order 15. It

can be verified that all 9 pairs of graphs are nonisomorphic and cospectral for the adjacency

as well as the normalized Laplacian but not for the Laplacian matrix. Figure 4.2 shows the

graphs GL1, GH1, GL1⊗H1 and GL1⊗H#
1

respectively.

Biregular bipartite graphs

The following theorem gives another partial characterization of property η1. A biregular

bipartite graph is a bipartite graph such that the vertices from the same partite sets have

the same degrees.

Theorem 4.27. If GL is a biregular bipartite graph with distinct degrees, then GL and GH

satisfy property η1.

Proof. Let GL be a biregular bipartite graph and let the biadjacency matrix V have constant

row sum l and constant column sum k such that l 6= k, where 1 ≤ k ≤ m and 1 ≤ l ≤ n.
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Suppose k < l. Let Γ1 = GL⊗pH and Γ2 = GL⊗pH# be isomorphic. Then, there exists a

permutation matrix P =

[
P1 P2

P3 P4

]
such that P T (L⊗p H)P = L⊗p H#. Consider,

L⊗p H =

[
0 V ⊗B

V T ⊗BT 0

]
and L⊗p H# =

[
0 V ⊗BT

V T ⊗B 0

]
.

Let the vertex sets be partitioned as V (Γ1) = X1 ∪ Y1 and V (Γ2) = X2 ∪ Y2 as shown by

the corresponding partitioned adjacency matrices. Let f be an isomorphism from Γ1 to Γ2.

Let bi and b′i denote the ith row sum of the matrices B and BT respectively. Let xi ∈ X1

be the vertex of maximum degree in this set and suppose f(xi) ∈ Y2. Then, dΓ1(xi) = lbi

for some 1 ≤ i ≤ p. Then, dΓ2(f(xi)) = kbj for some 1 ≤ j ≤ p. Since the isomorphism

preserves the degrees, we have lbi = kbj. Since xi has maximum degree in X1, bi ≥ bj

for any 1 ≤ j ≤ p. Then, kbj ≥ lbj. Since GH has no isolated vertices, bj 6= 0. Hence,

k ≥ l which is a contradiction to the initial assuption that k < l. Hence, if xi ∈ X1, then

f(xi) ∈ X2. Now removing the vertex xi of the maximum degree in X1 from Γ1 and f(xi)

in X2 from Γ2 respectively, we apply the same argument on the induced graphs to conclude

that f(X1) = X2 and hence f(Y1) = Y2.

In case k > l, consider a vertex yi of maximum degree in Y1. Similarly, we can show that

f(X1) = X2 and f(Y1) = Y2. Hence, GL and GH satisfy property η1.

Since we are interested in the construction of cospectral nonisomorphic graphs, we use

this result as a cospectral construction.

Theorem 4.28. Let GL be a biregular bipartite graph with distinct degrees and let GH have

equal partition sizes. Then, the bipartite graphs GL⊗pH and GL⊗pH# are cospectral for adja-

cency as well as normalized Laplacian matrix and they are nonisomorphic if and only if GH

does not admit an automorphism that interchanges its partite sets.

Proof. Since GL is a biregular bipartite graph with distinct degrees, suppose the correspond-

ing m×n biadjacency matrix V has constant row sums k and constant column sums l. Since,

the sum of row sums must be the same as the sum of column sums, we have km = ln. But

k 6= l, hence m 6= n. Hence, GL has unequal partition sizes. Since GH has equal partition

sizes, then cospectrality follows from Theorem 4.14 and Theorem 4.16,. Now since GL has
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unequal partitions sizes, it doesn’t admit an automorphism that interchanges its partite sets.

Hence, the condition for nonisomorphism follows from Theorem 4.19 and Lemma 4.27.

Example 4.29. Unlike Theorem 4.25., finding cospectral nonisomorphic graphs using The-

orem 4.28 requires finding:

1. a non-square 0-1 matrix V with constant row sums (different than) and constant column

sums with no zero rows and no zero columns

2. a square 0-1 non-PET matrix B with no zero rows and no zero columns.

The smallest size candidates for such a V (which cannot be obtained by the construction in

the previous subsection or the special case we discuss next) are the following matrices:

V4 =

[
1 1 0 0

0 0 1 1

]
, and V5 =

[
1 1 1 0 0 0

0 0 0 1 1 1

]
.

We observe that V4 and V5 correspond to union of complete bipartite graphs (trivial extension

of the special case we discuss next). Excluding such cases, the smallest such matrix V is a

3× 6 matrix:

V6 =

1 1 1 1 0 0

0 0 1 1 1 1

1 1 0 0 1 1

 .
Let us denote the corresponding bipartite graph by GL4, GL5 and GL6 respectively. The

smallest size candidates for such a B are the following 3× 3 matrices:

B4 =

1 1 1

1 0 0

0 1 0

 , B5 =

1 1 1

1 0 1

0 1 0

 , and B6 =

1 1 1

0 1 0

1 1 1

 .
Let us denote the corresponding bipartite graph by GH4, GH5 and GH6. Hence, we can obtain

the following nine different pairs of graphs GLi⊗Hj and GLi⊗H#
j

for 4 ≤ i, j ≤ 6 whose

biadjacency matrices are Vi ⊗ Bj and Vi ⊗ BT
j respectively. Note that these are the smallest

size graph pairs possible using this construction, the one in the figure 4.3 is of order 27 and

shows the graphs GL6, GH4, GL6⊗H4 and GL6⊗H#
4

respectively. It can be verified that all nine
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Figure 4.3: Example 2 of construction I-A: GL6 , GH4 , GL6⊗H4 and GL6⊗H#
4

pairs of graphs are nonisomorphic and cospectral for the adjacency as well as the normalized

Laplacian but not for the Laplacian matrix.

Now as a corollary, we obtain the main result of Ji, Gong and Wang.

Corollary 4.30. [12] Let V = Jm,n such that m 6= n and let B is a square matrix. Then, the

bipartite graphs GL⊗pH and GL⊗pH# are cospectral for adjacency as well as the normalized

Laplacian matrix and they are isomorphic if and only if B is PET.

Proof. Since V = Jm,n and m 6= 0, the corresponding bipartite graph GL is a biregular

bipartite graph with distinct degrees. Hence, the result follows as a corollary of Theorem

4.28.

Note that this corollary follows from the most general result Theorem 4.19 which uses

cancellation law for matrices (Theorem 2.14). The cancellation idea of Ji Gong and Wang is

different. They show that when V = Jm,n and B has no zero rows or zero columns, V ⊗ B
and V ⊗BT are permutationally equivalent if and only if B is PET using another approach

based on Hall’s Theorem.

Example 4.31. For this construction, the smallest such V ’s are V7 = J1,2, V8 = J1,3 and

V9 = J2,3. Let us denote the corresponding bipartite graph by GL7, GL8 and GL9 respectively.

The smallest such B’s can be taken to be B4, B5 and B6. Hence, we can obtain the following

nine different pairs of graphs GLi⊗Hj and GLi⊗H#
j

for 7 ≤ i ≤ 9 and 4 ≤ j ≤ 6 whose

biadjacency matrices are Vi ⊗ Bj and Vi ⊗ BT
j respectively. Note that these are the smallest

size graph pairs possible using this construction, the one in the Figure 4.4 is of order 9

and shows the graphs GL7, GH7, GL7⊗H4 and GL7⊗H#
4

respectively (the original unfolding
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Figure 4.4: Example 3 of construction I-A: GL7 , GH7 , GL7⊗H4 and GL7⊗H#
4

construction of Butler). It can be verified that all nine pairs of graphs are nonisomorphic

and cospectral for the adjacency as well as the normalized Laplacian but not for the Laplacian

matrix.
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Chapter 5

Some particular cospectral

constructions based on partitioned

tensor product

In the previous chapter, we showed that the matrices of the form

[
0 V

W 0

]
satisfy C/M/T

property and discussed the corresponding Construction - I (Theorem 3.20). We showed that

this construction produces cospectral bipartite graphs which are cospectral for the normalized

Laplacian as well.

In this chapter, we first discuss the corresponding Construction - II (Theorem 3.21) for

the bipartite case and give a partial characterization of property η2. We then give four more

candidates for matrices which satisfy C/M/T property and discuss only the corresponding

Construction - I . We give partial characterization of property η1 required in the investigation

of the isomorphism.

Similarly, Construction - II can also be discussed for these candidates and the isomor-

phism results obtained in the previous chapter can be applied. But characterization of

property η2 is required which we leave it as an open problem. Also note that all the con-

structions in this chapter are cospectral only for the adjacency matrix. We have not yet

shown if they are cospectral with respect to some other matrices.
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5.1 Construction II-A: Bipartite graph

Let Li =

[
0 Vi

V T
i 0

]
; i = 1, 2 and H =

[
0 B

BT 0

]
be the adjacency matrices of the bipartite

graphs such that Vi and B are mi × ni and p× q nonzero 0-1 matrices respectively.

Theorem 5.1. Let L1 and L2 be cospectral. Then, the bipartite graphs GL1⊗pH and GL2⊗pH

are cospectral if and only if m1 = m2 or p = q.

Proof. From Lemma 4.13, L1 and L2 satisfy C/M/T property. Then from Theorem 3.21,

the result follows.

The following proposition states the statements about Type-1 and Type isomorphism for

the bipartite graph case.

Proposition 5.2. GL1 and GL2 are isomorphic via Type-1 (Type-2) isomorphism if and only

if V2 is permutationally equivalent to V1 (V T
1 ).

Proof. Follows from Definition 3.28.

Theorem 5.3. Let GL1, GL2 and GH satisfy property η2 and let GL1 and GL2 have no

isolated vertices. Then,

1. Let p 6= q, then GL1⊗pH and GL2⊗pH are isomorphic if and only if V2 is permutationally

equivalent to V1.

2. Let B = BT , then GL1⊗pH and GL2⊗pH are isomorphic if and only if V2 is permuta-

tionally equivalent to either V1 or V T
1 .

Proof. Case 1: Suppose V2 is permutationally equivalent to V1

Then from Proposition 5.2, it follows that GL1 and GL2 are isomorphic via Type-1 isomor-

phism. From Lemma 3.30, the graphs GL1⊗pH and GL2⊗pH are isomorphic.

Case 2: Suppose V2 is permutationally equivalent to V T
1 and B is PET

Then from Proposition 5.2, it follows that GL1 and GL2 are isomorphic via Type-2 isomor-

phism. Also, the graph GH admits an automorphism that interchanges its partite sets. From

Lemma 3.30, the graphs GL1⊗pH and GL2⊗pH are isomorphic.
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Now conversely, suppose the graphs GL1⊗pH and GL2⊗pH are isomorphic. Since GL1 , GL2

and GH satisfy property η2, from Theorem 3.32 at least one of the following two cases occurs:

Case 1: If V1 and V2 have no zero rows or zero columns, then V1 is permutationally

equivalent to V2

Hence, if GL1 and GL2 have no isolated vertices, the graphs GL1⊗pH and GL2⊗pH are

isomorphic if and only if V2 and V1 are permutationally equivalent.

Case 2: Suppose B = BT and V1 and V2 have no zero rows or zero columns, then V T
1 is

permutationally equivalent to V2.

Since B = BT , B is PET. Hence, if GL1 and GL2 have no isolated vertices, the graphs

GL1⊗pH and GL2⊗pH are isomorphic if and only if V2 is permutationally equivalent to either

V1 or V T
1 .

We now discuss a partial characterization of property η2.

Lemma 5.4. If GLi for i = 1, 2 and GH are connected, then they satisfy property η2.

Proof. Suppose GL1 , GL2 and GH are connected bipartite graphs, then Lemma 4.22, the

two components of the GL1×H and GL2×H are also connected. The bipartite graphs GL1⊗pH

and GL2⊗pH are one of the two components of GL1×H and GL2×H respectively. Now suppose

GL1⊗pH and GL2⊗pH are isomorphic, from Lemma 4.20, any isomorphism between them

respects the partite sets. Hence, GL1 , GL2 and GH satisfy property η2.

The following theorem shows how to obtain cospectral nonisomorphic graphs.

Theorem 5.5. Let GL1 and GL2 be cospectral bipartite graphs with no isolated vertices.

Suppose GL1, GL2 and GH are connected. Then

1. Let p 6= q and m1 = m2, then GL1⊗pH and GL2⊗pH are cospectral. They are noniso-

morphic if and only if V2 is not permutationally equivalent to V1.

2. Let B = BT , then GL1⊗pH and GL2⊗pH are cospectral. They are nonisomorphic if and

only if V2 is permutationally equivalent to neither V1 nor V T
1 .
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Figure 5.1: Example 1 of construction II-A: GH , GL1 and GL2

Figure 5.2: Example 1 of construction II-A: GL1⊗pH and GL2⊗pH

Proof. Follows from Theorem 5.1 and Theorem 5.3.

Example 5.6. Let V1 =

1 1 1 1 0

1 0 0 0 1

0 1 1 1 1

 and V2 =

1 1 1 0 0

1 1 0 1 1

1 0 1 1 0

, then the corresponding

bipartite graphs GL1 and GL2 are connected, cospectral and nonisomorphic. V2 is permuta-

tionally equivalent to neither V1 nor V T
1 . Let B =

[
1 1

]
, then p 6= q and m1 = m2. Figure

5.1 shows the corresponding graphs GH , GL1 and GL2 and Figure 5.2 shows the cospectral

nonisomorphic graphs GL1⊗pH and GL2⊗pH . This demonstrates Theorem 5.5.(1). Note that

there are 3 pairs of cospectral nonisomorphic bipartite graphs on 8 vertices having the same

partitioning and the example of GL1 and GL2 we have considered is only one of the 3. Hence,

2 more cospectral nonisomorphic graphs GL1⊗pH and GL2⊗pH can be generated for the same

matrix B.

Example 5.7. Let V1 =


1 1 1 1

0 1 0 0

0 1 0 0

0 1 0 0

 and V2 =

[
1 1 1 1 1 0

0 1 0 0 0 1

]
, then the corresponding

bipartite graphs GL1 and GL2 are connected, cospectral and nonisomorphic. V2 is permuta-

tionally equivalent to neither V1 nor V T
1 . Let B =

[
1 1

1 0

]
, then B = BT . Figure 5.3 shows
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Figure 5.3: Example 2 of construction II-A: GH , GL1 and GL2

Figure 5.4: Example 2 of construction II-A: GL1⊗pH and GL2⊗pH

the corresponding graphs GH , GL1 and GL2 and Figure 5.4 shows the cospectral nonisomor-

phic graphs GL1⊗pH and GL2⊗pH . This demonstrates Theorem 5.5.(2). Note that there are 8

pairs of cospectral nonisomorphic bipartite graphs on 8 vertices and the example of GL1 and

GL2 we have considered is only one of the 8. Hence, 7 more cospectral nonisomorphic graphs

GL1⊗pH and GL2⊗pH can be generated for the same matrix B.

5.2 Construction I-B: Reflexive bipartite graph

In this section we apply the isomorphism results on the original construction of Godsil and

Mckay. Let L =

[
Im V

V T In

]
H =

[
A B

BT D

]
and H# =

[
D BT

B A

]
be the adjacency matrices

of graphs such that V and B are m×n and p× q matrices respectively. We will be assuming

that the blocks V , A, B, D are nonzero to distinguish this construction from the others.

Theorem 5.8. The graphs GL⊗pH and GL⊗pH# are cospectral if and only if m = n or A and

D are cospectral.

Proof. Follows from Theorem 3.15.
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The matrix L corresponds to the adjacency matrix of a reflexive bipartite graph. Similar

to the bipartite case, we have

Proposition 5.9. The reflexive bipartite graph GL corresponding to the adjacency matrix

L =

[
Im V

V T In

]
admits an automorphism that interchanges its partite sets if and only if V is

PET.

The following theorem gives sufficient condition for the graphs constructed to be noniso-

morphic.

Theorem 5.10. Let GL and GH satisfy property η1, and let V and B have no zero rows

or zero columns. The graphs GL⊗pH and GL⊗pH# are nonisomorphic if at least one of the

following holds:

1. V is non-PET

2. B is non-PET

3. GA and GD are nonisomorphic.

In case p 6= q, the graphs GL⊗pH and GL⊗pH# are nonisomorphic if and only if V is non-PET.

Proof. Let V is non-PET and GH does not admit an automorphism that interchanges GA

and GD. Suppose on the contrary, the graphs GL⊗pH and GL⊗pH# are isomorphic. Since GL

and GH satisfy property η1, then from Lemma 3.27, at least one of the following holds:

Case 1: P T
1 (Im⊗A)P1 = Im⊗D, P T

1 (V ⊗B)P4 = V ⊗BT , P T
4 (In⊗D)P4 = In⊗A for

some permutation matrices P1 and P4

Since both GIm and GIn are nonbipartite, GA and GD are isomorphic. Since V 6= 0 and B

has no zero rows or zero columns, B is PET.

Case 2: P T
2 (Im⊗A)P2 = In⊗A, P T

3 (V T ⊗BT )P2 = V ⊗BT and P T
3 (In⊗D)P3 = Im⊗D

for some permutation matrices P2 and P3

Since B 6= 0 and V has no zero rows or zero columns, V is PET.
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The result follows by taking contrapositive. Now suppose the graphs GL⊗pH and GL⊗pH#

are nonisomorphic, then from Lemma 3.25, V is non-PET and GH doesn’t admit an auto-

morphism that interchanges GA and GD. Now suppose p 6= q, then the first case does not

occur. In that case, GL⊗pH and GL⊗pH# are nonisomorphic iff V is non-PET.

This theorem gives sufficient condition to construct nonisomorphic graphs and equivalent

condition in case when p 6= n. It would be interesting to see if the condition ’V is non-PET

and GH doesn’t admit an automorphism that interchanges GA and GD’ is an equivalent

condition for the isomorphism. In particular, it remains to see if the three equalities in Case

1 imply that GH admits such an automorphism.

Now we give a partial characterization of property η1 for this construction.

Lemma 5.11. The graphs GL and GH satisfy property η1 in the following cases:

1. B has no zero rows, V has constant row sum l and constant column sum k and k < l

2. B has no zero columns, V has constant row sum l and constant column sum k and

k > l

3. B has no zero rows, V = Jm,n and m < n

4. B has no zero columns, V = Jm,n and m > n.

Proof. Suppose V has constant row sum l and constant column sum k, where 1 ≤ k ≤ m

and 1 ≤ l ≤ n. Let Γ1 = GL⊗pH and Γ2 = GL⊗pH# be isomorphic. Then, there exists a

permutation matrix P =

[
P1 P2

P3 P4

]
such that P T (L⊗p H)P = L⊗p H#. We have,

L⊗p H =

[
Im ⊗ A V ⊗B
V T ⊗BT In ⊗D

]
and L⊗p H# =

[
Im ⊗D V ⊗BT

V T ⊗B In ⊗ A

]

Let f be an isomorphism from Γ1 to Γ2. Let the vertex sets be partitioned as V (Γ1) =

X1 ∪Y1 and V (Γ2) = X2 ∪Y2 as shown by the corresponding adjacency matrices. Let bi and

b′i denote the ith row sum and column sum of B respectively. Let ai and di denote the ith

row sums of A and D respectively.
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1. Let k < l and B has no zero rows

Let xi ∈ X1 be the vertex of maximum degree in this set and suppose f(xi) ∈ Y2. Then,

dΓ1(xi) = ai + lbi for some 1 ≤ i ≤ p. This explains the subscript i in xi. Then, dΓ2(f(xi)) =

kbj +aj for some 1 ≤ j ≤ p. Since the isomorphism preserves the degrees, we have ai + lbi =

kbj + aj. Since xi has maximum degree in X1, ai + lbi ≥ aj′ + lbj′ for any 1 ≤ j′ ≤ p

in particular for j. Hence, kbj + aj ≥ aj + lbj and since B has no zero row, we have

k ≥ l. This is a contradiction to the initial assumption that k < l. Hence, if xi ∈ X1, then

f(xi) ∈ X2. Now removing the vertex xi of the maximum degree in X1 from Γ1 and f(xi)

in X2 from Γ2 respectively, we apply the same argument on the induced graphs to conclude

that f(X1) = X2 and hence f(Y1) = Y2.

2. Let k > l and B has no zero columns

Let yi ∈ Y1 be the vertex of maximum degree in this set and suppose f(xi) ∈ X2. Then,

dΓ1(yi) = di + kb′i for some 1 ≤ i ≤ q. This explains the subscript i in yi. Then, dΓ2(f(yi)) =

dj + lb′j for some 1 ≤ j ≤ q. Since the isomorphism preserves the degrees, we have di + kb′i =

dj + lb′j. Since yi has maximum degree in Y1, di + kb′i ≥ dj′ + kb′j′ for any 1 ≤ j′ ≤ q

in particular for j. Hence, dj + lb′j ≥ dj + kb′j and since B has no zero column, we have

l ≥ k. This is a contradiction to the initial assumption that k > l. Hence, if yi ∈ Y1, then

f(xi) ∈ Y2. Now removing the vertex yi of the maximum degree in Y1 from Γ1 and f(yi)

in Y2 from Γ2 respectively, we apply the same argument on the induced graphs to conclude

that f(Y1) = Y2 and hence f(X1) = X2.

In both cases, the isomorphism between Γ1 and Γ2 maps the induced subgraph GIm⊗A to

GIm⊗D and GIn⊗D to GIn⊗A. Hence, GL and GH satisfy property η1 in the first two cases.

The remaining two cases follow as a corollary.

A particular case

Let L =

 1 1 1

1 1 0

1 0 1

, H =

[
A B

BT D

]
, H# =

[
D BT

B A

]
where H is an adjacency matrix of

a graph. Then L⊗p H =

 A B B

BT D 0

BT 0 D

 , L⊗p H# =

D BT BT

B A 0

B 0 A

. In this case, m < n.
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Corollary 5.12. The graphs GL⊗pH and GL⊗pH# are cospectral if and only if A and D are.

Suppose B does not have any zero rows, then GL⊗pH and GL⊗pH# are nonisomorphic if one

of the following holds:

1. B is non-PET

2. GA and GD are nonisomorphic.

Example 5.13. Let A = D =

[
0 1

1 0

]
and B =

[
1 0

1 0

]
. Then B is a non-PET matrix and

has no zero rows. Although, the graphs GA and GD are cospectral as well as isomorphic, the

graphs GL⊗pH and GL⊗pH# are cospectral and nonisomorphic as shown in Figure 5.5.

Figure 5.5: Example of construction I-B

5.3 Construction I-C: Modified complete bipartite graph

Consider the matrices of the form L =

[
S Jm,n

Jn,m T

]
where S and T are permutation matrices

of orders m and n respectively and Jm,n is a m× n all-one matrix. Li =

[
Si Jmi,ni

Jni,mi Ti

]
for

i = 1, 2.

Lemma 5.14. L satisfies C/T property and L1 and L2 satisfy C/M/T property.

Proof. Since SJm,n = Jm,n and Jm,nT = Jm,n for any permutation matrices S and T , we

have SJm,n = Jm,nT . Similarly, TJn,m = Jn,mS holds. Hence, the commuting property is

satisfied.
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Suppose L1 and L2 are cospectral, then we need to show that tr[f(L1)] = tr[f(L2)] holds

for all monomials f . Let f be some monomial, then we have f(Li) = I(Si, Ti)
t−sP(Jmi,ni , Jni,mi)

s

for some t and s.

Case 1: s is even and s = 2r

Then from Proposition 3.5, we have

P(Jmi,ni , Jni,mi)
s = I((Jmi,niJni,mi)

r, (Jni,miJmi,ni)
r)

= (mini)
r−1I(niJmi,mi ,miJni,ni)

Hence,

tr[f(Li)] = (mini)
r−1tr[I(niS

t−s
i Jmi,mi ,miT

t−s
i Jni,ni)]

= (mini)
r−1tr[I(niJmi,mi ,miJni,ni)]

= 2(mini)
r

Case 2: s is odd and s = 2r + 1

Then from Proposition 3.5, we have

P(Jmi,ni , Jni,mi)
s = P((Jmi,niJni,mi)

rJmi,ni , (Jni,miJmi,ni)
rJni,mi)

= (mini)
rP(Jmi,ni , Jni,mi)

Hence,

tr[f(Li)] = (mini)
rtr[I(Si, Ti)

t−sP(Jmi,ni , Jni,mi)]

= (mini)
rtr[P(St−si Jmi,ni , T

t−s
i Jni,mi)]

= (mini)
rtr[P(Jmi,ni , Jni,mi)]

= 0

Suppose L1 and L2 are cospectral, then tr[Lt1] = tr[Lt2] holds for all t = 0, 1, 2, . . .. Suppose
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t = 0, then we have m1 + n2 = m2 + n2. Suppose t = 2, then we have

tr[L2
i ] = tr[I(Si, Ti)

2 + 2P(Jmi,ni , Jni,mi) + P(Jmi,ni , Jni,mi)
2]

= tr[I(Imi , Ini)] + 0 + tr[I(niJmi,mi ,miJni,ni)]

= mi + ni + 2mini

Since tr[L2
1] = tr[L2

2], we have m1 + n1 + 2m1n1 = m2 + n2 + 2m2n2. Hence, m1n1 = m2n2.

It follows that tr[f(L1)] = tr[f(L2)] when f corresponds to even s as well as odd s. Hence,

the monomial property is satisfied

Now consider,

tr[U t−s(VW )r] = tr[St−s(Jm,nJn,m)r]

= nrtr[St−sJrm,m]

= nrmr−1tr[St−sJm,m]

= nrmr−1tr[Jm,m]

= (mn)r

Similarly, we have tr[X t−s(WV )r] = (mn)r. This shows that tr[U t−s(VW )r] = tr[X t−s(WV )r]

holds for all t and s. Hence, the trace property is satisfied.

Let us first show that the graphs corresponding to two cospectral symmetric permutation

matrices are isomorphic.

Proposition 5.15. Eigenvalues of a symmetric permutation matrix can only be -1 or 1.

Proof. Let S be a permutation matrix and let λ be an eigenvalue of S with eigenvector x.

Then, Sx = λx and ‖Sx‖2 = λ2‖x‖2. But ‖Sx‖ = ‖x‖, hence λ2 = 1. Since S is symmetric,

all its eigenvalues are real. Hence, λ can either be 1 or −1.

A reversal matrix is a permutation matrix whose counterdiagonal entries are 1. Let

rvsn denote a n × n reversal matrix. A symmetric permutation matrix S of order n is

permutationally similar to the direct sum of reversal matrices

S ′ = rvs1 ⊕ . . .⊕ rvs1︸ ︷︷ ︸
s1−times

⊕ rvs2 ⊕ . . .⊕ rvs2︸ ︷︷ ︸
s2−times

. . .⊕ rvsn ⊕ . . .⊕ rvsn︸ ︷︷ ︸
sn−times
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where
∑i=n

i=1 sii = n and si ≥ 0 for each i. Hence, any symmetric permutation matrix is

determined by some parameters s1, s2, . . . , sn upto permutational similarity.

Lemma 5.16. 1. Multiplicities of the eigenvalues -1 and 1 of rvsn are bn/2c and dn/2e
respectively.

2. Let S be a symmetric permutation matrix of order n determined by the parameters

s1, s2, . . . , sn upto permutational similarity. The multiplicities of the eigenvalues -1

and 1 of S are
∑i=n

i=1 sibi/2c and
∑i=n

i=1 sidi/2e respectively.

Proof. 1. If n is even and n = 2m, then the eigenvalues -1 and 1 of rvsn both have multiplic-

ities m. If n is odd and n = 2m+ 1, then the eigenvalues -1 and 1 of rvsn have multiplicities

m and m+ 1 respectively. Hence, the result follows.

2. The result follows from the fact that S is permutationally similar to the direct sum of

reversal matrices given by the parameters s1, s2, . . . sn.

Let Grvsn and GS denote the graphs corresponding to the matrices rvsn and S respec-

tively.

Lemma 5.17. 1. A graph Grvsn is disjoint union of bn/2c edges and n− 2bn/2c loops

2. The multiplicity of eigenvalue −1 for the graph Grvsn is same as the number of edges.

3. A graph GS is disjoint union of
∑i=n

i=1 sibi/2c edges and n− 2
∑i=n

i=1 sibi/2c loops.

4. The multiplicity of eigenvalue −1 for the graph GS is same as the number of edges.

Proof. 1. This result follows trivially since rvsn is a permutation matrix whose counterdiag-

onal entries are all one.

2. Follows from Lemma 5.16.(1) and the Lemma 5.17.(1).

3. Follows from Lemma 5.17.(1). and the observation that S is permutationally similar

to the direct sum of reversal matrices.

4. Follows from Lemma 5.17.(3). and Lemma 5.16.(2).
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Lemma 5.18. The graphs corresponding to two cospectral symmetric permutation matrices

are isomorphic.

Proof. Consider two cospectral symmetric permutation matrices, then they must have the

same multiplicity for the eigenvalues −1. Hence, from Lemma 5.17.(4), the corresponding

graphs must have the same number of disjoint edges and from Lemma 5.17.(3), they must

also have the same number of loops. Then, these graphs are isomorphic.

Now let S and T to be symmetric permutation matrices of orders m and n respectively.

Let H =

[
A B

BT D

]
and H# =

[
D BT

B A

]
be two partitioned matrices such that A and D are

square symmetric matrices of orders p and q respectively. We assume that the blocks A, B,

D are nonzero to distinguish this construction from the others.

Theorem 5.19. The graphs GL⊗pH and GL⊗pH# are cospectral if and only if S and T are

cospectral or A and D are cospectral.

Proof. From Lemma 5.14, the matrix L satisfies C/T property, then the result follows from

Theorem 3.20.

Proposition 5.20. The graph GL corresponding to the adjacency matrix L =

[
S Jm,n

Jn,m T

]
admits an interchanging automorphism with respect to its bipartition if and only if the graphs

GS and GT are isomorphic.

Proof. Suppose GL admits such an automorphism, then m = n and there exists a permu-

tation matrix P = P(P1, P2) such that P1 and P2 are permutation matrices of size m ×m.

Suppose P TLP = L, then,

P TLP =

[
0 P T

2

P T
1 0

][
S Jm,n

Jn,m T

][
0 P1

P2 0

]

=

[
P T

2 TP2 P T
2 Jn,mP1

P T
1 Jm,nP2 P T

1 SP1

]
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Then, P T
2 Jn,mP1 = Jm,n and hence m = n. Also, P T

1 SP1 = T , that is, S and T are

permutationally similar. The equation P T
2 TP2 = S also says the same. Hence, GS andGT are

isomorphic. Conversely, if GS and GT are isomorphic, then P T
1 SP1 = T for some permutation

matrix P1. Let P2 = P T
1 and P = P(P1, P

T
1 ). Then, the isomorphism corresponding to P is

an automorphism such that it interchanges GS and GT .

The following lemma gives a sufficient condition for the graphs to be isomorphic.

Lemma 5.21. If S and T are cospectral or if GH admits an interchanging automorphism

with respect to its bipartition, then GL⊗pH and GL⊗pH# are isomorphic.

Proof. If S and T are cospectral, then from Lemma 5.18., the graphs GS and GT are isomor-

phic. Hence, from Proposition 5.20., the graph GL admits an interchanging automorphism

with respect to its bipartition. Recall Lemma 3.25 that if at least one of GL or GH admits

an interchanging automorphism with respect to its bipartition, then GL⊗pH and GL⊗pH# are

isomorphic. Hence, the result follows.

The following theorem gives sufficient condition for the graphs to be nonisomorphic.

Theorem 5.22. Let the graphs GL and GH satisfy property η1 and let B have no zero rows

or zero columns. Then, GL⊗pH and GL⊗pH# are nonisomorphic if

1. B is non-PET

2. Either one of GS or GT is nonbipartite and GA and GD are nonisomorphic

3. Either one of GA and GD is nonbipartite and GS and GT are nonisomorphic.

Proof. Suppose the graphs GL⊗pH and GL⊗pH# are isomorphic. Since GL and GH satisfy

property η1, then from Lemma 3.27, we have

Case 1: P T
1 (S ⊗ A)P1 = S ⊗D, P T

1 (Jm,n ⊗ B)P4 = Jm,n ⊗ BT , P T
4 (T ⊗D)P4 = T ⊗ A

for some permutation matrices P1 and P4

Since Jm,n 6= 0 and B has no zero rows or zero columns, B is PET. If either GS or GT is

nonbipartite, then GA and GD are isomorphic.
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Case 2: P T
2 (S⊗A)P2 = T⊗A, P T

3 (Jn,m⊗BT )P2 = Jm,n⊗BT and P T
3 (T⊗D)P3 = S⊗D

for some permutation matrices P2 and P3

Since B 6= 0 and Jm,n has no zero rows or zero columns, m = n. If either GA or GD is

nonbipartite, then GS and GT are isomorphic.

The result follows by taking contrapositive.

Next, we give a partial characterization of property η1 for this construction.

Lemma 5.23. The graphs GL and GH satisfy property η1 if one of the following occurs:

1. m < n and B has no zero rows

2. m > n and B has no zero columns

Proof. Suppose Γ1 = GL⊗pH and Γ2 = GL⊗pH# be isomorphic. Then, there exists a permu-

tation matrix P =

[
P1 P2

P3 P4

]
such that P T (L⊗p H)P = L⊗p H#. We have,

L⊗p H =

[
S ⊗ A Jm,n ⊗B

Jn,m ⊗BT T ⊗D

]
and L⊗p H# =

[
S ⊗D Jm,n ⊗BT

Jn,m ⊗B T ⊗ A

]

Let f be an isomorphism from Γ1 to Γ2. Let the vertex sets be partitioned as V (Γ1) =

X1 ∪Y1 and V (Γ2) = X2 ∪Y2 as shown by the corresponding adjacency matrices. Let bi and

b′i denote the ith row sum and column sum of B respectively. Let ai and di denote the ith

row sums of A and D respectively.

1. Suppose m < n and B has no zero rows

Let xi ∈ X1 be the vertex of maximum degree in this set and suppose f(xi) ∈ Y2. Then,

dΓ1(xi) = ai+nbi for some 1 ≤ i ≤ p. This explains the subscript i in xi. Then, dΓ2(f(xi)) =

mbj + aj for some 1 ≤ j ≤ p. Since the isomorphism preserves the degrees, we have

ai + nbi = mbj + aj. Since xi has maximum degree in X1, ai + nbi ≥ aj′ + nbj′ for any

1 ≤ j′ ≤ p in particular for j. Hence, mbj + aj ≥ aj + nbj and since B has no zero row,

we have m ≥ n. Since m 6= n, this implies m > n. This is a contradiction to the initial

assumption that m < n. Hence, if xi ∈ X1, then f(xi) ∈ X2. Now removing the vertex xi

77



of the maximum degree in X1 from Γ1 and f(xi) in X2 from Γ2 respectively, we apply the

same argument on the induced graphs to conclude that f(X1) = X2 and hence f(Y1) = Y2.

2. Suppose m > n and B has no zero columns

Then consider a vertex yi of maximum degree in Y1. Similarly, we can show that f(Y1) = Y2

and f(X1) = X2.

In both cases, the isomorphism between Γ1 and Γ2 maps the induced subgraphs GS⊗A

and GT⊗D of Γ1 to GS⊗D and GT⊗A of Γ2 respectively. Hence, GL and GH satisfy property

η1.

Now we show how to construct cospectral nonisomorphic graphs using this construction.

Theorem 5.24. Suppose m < n and B has no zero rows or m > n and B has no zero

columns. Let A and D be cospectral, then GL⊗pH and GL⊗pH# are cospectral. They are

nonisomorphic if

1. B is non-PET

2. Either one of GS or GT has a loop and GA and GD are nonisomorphic

Proof. Since m < n and B has no zero rows or m > n and B has no zero columns, then

from Theorem 5.23, the graphs GL and GH satisfy property η1. Hence, from Theorem 5.22,

the conditions for nonisomorphism follows.

Note that since m 6= n, the graphs GS and GS are noncospectral and hence nonisomor-

phic. Hence, the third condition for nonisomorphism from Theorem 5.22 disappears. Also

the graphs GS and GT are nonbipartite if and only if they allow loops.
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A particular case

Let L =

 1 1 1

1 0 1

1 1 0

, H =

[
A B

BT D

]
, H# =

[
D BT

B A

]
where H is an adjacency matrix of

a graph. Then L⊗p H =

 A B B

BT 0 D

BT D 0

 , L⊗p H# =

D BT BT

B 0 A

B A 0

. In this case, m < n.

Corollary 5.25. The graphs GL⊗pH and GL⊗pH# are cospectral if and only if A and D are.

Suppose B has no zero rows, then GL⊗pH and GL⊗pH# are nonisomorphic if

1. B is non-PET

2. GA and GD are nonisomorphic.

Example 5.26. Let A = D =

[
0 1

1 0

]
and B =

[
1 0

1 0

]
. Then B is a non-PET matrix and

has no zero rows. Although, the graphs GA and GD are cospectral as well as isomorphic, the

graphs GL⊗pH and GL⊗pH# are cospectral and nonisomorphic as shown in Figure 5.6.

Figure 5.6: Example of construction I-C

Observe that this graph pair is the same as the one in Figure 5.5.

5.4 Construction I-D: Disjoint union of graphs

Consider the matrices of the form L =

[
U 0

0 X

]
= I(U,X) where U and X are square

matrices of orders m and n respectively.
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Lemma 5.27. The matrix L = I(U,X) satisfies C/T property. Two matrices L1 =

I(U1, X1) and L2 = I(U2, X2) satisfy C/M/T property.

Proof. The commuting property is trivially satisfies since P(V,W ) is a zero matrix which

commutes with I(U,X).

Let f be a monomial, then for i = 1, 2 f(Li) = I(Ui, Xi)
t−s0s. Hence, f(Li) is either

I(Ui, Xi)
t = Lti for some t or a zero matrix. Hence, tr[f(L1)] = tr[f(L2)] holds for all

monomials if and only if tr[Lt1] = tr[Lt2] holds for all t. Hence, the monomial property is

satisfied.

If s = 2r and s 6= 0, then tr[U t−s(VW )r] = 0 and tr[X t−s(WV )r] = 0. Hence, the trace

property is also satisfied.

Theorem 5.28. Let L = I(U,X), H = I(A,D) and H# = I(D,A) such that U , X, A and

D symmetric matrices of orders m,n, p and q respectively. The graphs GL⊗pH and GL⊗pH#

are cospectral if and only if U and X are or A and D are.

Proof. From Lemma 5.27, L satisfies C/T property. Then the results follows as a corollary

of Theorem 3.20.

Theorem 5.29. Suppose GL and GH satisfy property η1.

1. Suppose m 6= n, and GU and GX are nonbipartite. Then, GL⊗pH and GL⊗pH# cospectral

nonisomorphic if and only if GA and GD are cospectral nonisomorphic

2. Suppose m 6= n, and GU , GX , GA and GD are bipartite. Then, GL⊗pH and GL⊗pH#

cospectral nonisomorphic if and only if GA and GD are cospectral nonisomorphic

3. Suppose p 6= q, and GA and GD are nonbipartite. Then, GL⊗pH and GL⊗pH# cospectral

nonisomorphic if and only if GU and GX are cospectral nonisomorphic

4. Suppose p 6= q, and GA, GD, GU and GD are bipartite. Then, GL⊗pH and GL⊗pH#

cospectral nonisomorphic if and only if GU and GX are cospectral nonisomorphic

Proof. Follows from Theorem 5.28, Lemma 3.25 and Lemma 3.27.
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This result is only a trivial extension of the cancellation law for graphs (Lemma 2.11

and Theorem 2.12) that had been used in the proof. Let us look at the implication of the

cancellation law given by Theorem 2.12.

Lemma 5.30. Let GA and GD be two nonempty graphs, and GU be a nonbipartite graph.

Then, GU × GA and GU × GD are cospectral and nonisomorphic if and only if GA and GD

are.

Example 5.31. Suppose U1 =

[
1 1

1 0

]
, then GU1 is nonbipartite since it has a loop. The

graphs GAi and GDi in Figure 5.7 and Figure 5.8 are cospectral and nonisomorphic. Hence,

the corresponding graphs GU1 × GAi and GU1 × GDi are also cospectral and nonisomorphic

for i = 1, 2.

Figure 5.7: Example 1 of construction I-D: GA1 and GD1 , GU1 ×GA1 and GU1 ×GD1

Figure 5.8: Example 2 of construction I-D: GA2 and GD2 , GU1 ×GA2 and GU1 ×GD2

Now let us look at the implication of the cancellation law given by Lemma 2.11.

Lemma 5.32. Let GA, GD and GU be bipartite graph. Then, GU × GA and GU × GD are

cospectral and nonisomorphic if and only if GA and GD are.
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Figure 5.9: Example 3 of construction I-D: GA1 and GD1 , GU2 ×GA1 and GU2 ×GD1

Example 5.33. Let U2 =

0 1 1

1 0 0

1 0 0

, then GU2 is a bipartite graph. Since the graphs GA1

and GD1 shown in Figure 5.9 are cospectral nonisomorphic bipartite graphs, the corresponding

graphs GU2 ×GA1 and GU2 ×GD1 are also cospectral and nonisomorphic.

5.5 Construction I-E: Two matched cospectral graphs

Consider the matrices of the form L =

[
U E

ET X

]
where E is a permutation matrix such that

ETUE = X. L1 and L2 are similarly defined using corresponding subscripts.

Lemma 5.34. L satisfies C/T property and L1 and L2 satisfy C/M/T property.

Proof. The commuting property is satisfied since UE = EX and XET = ETU .

Suppose L1 and L2 are cospectral, then we need to show that tr[f(L1)] = tr[f(L2)] holds

for all monomials f . Let f be some monomial, then we have f(Li) = I(Ui, Xi)
t−sP(Ei, P

T
i )s

for some t and s.

Case 1: Let s be odd

Then from Proposition 3.5, we have P(Ei, E
T
i )s = P(Ei, E

T
i ) and f(Li) = P(U t−sEi, X

t−sET
i ).

Hence, we have tr[f(L1)] = tr[f(L2)] = 0 when the monomial f corresponds to an odd s.

Case 2: Let s be even

Then from Proposition 3.5, we have P(Ei, E
T
i )s = I and f(Li) = I(Ui, Xi)

t−s. We need to
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show that tr[I(U1, X1)t−s] = tr[I(U2, X2)t−s] holds for any even s. Now consider tr[Lti] =

tr[(I(Ui, Xi) +P(Ei, E
T
i ))t] for some t. If t = 1, then tr[L1

i ] = tr[I(Ui, Xi)]. Hence, tr[L1] =

tr[L2] implies tr[I(U1, X1)] = tr[I(U2, X2)]. If t = 2, then

tr[L2
i ] = tr[(I(Ui, Xi) + P(Ei, E

T
i ))2]

= tr[I(Ui, Xi)
2 + 2I(Ui, Xi)P(Ei, E

T
i ) + P(Ei, E

T
i )2]

= tr[I(Ui, Xi)
2 + I]

Hence, tr[L2
1] = tr[L2

2] implies tr[I(U1, X1)2] = tr[I(U2, X2)2]. Now consider

tr[Lzi ] = tr[(I(Ui, Xi) + P(Ei, E
T
i ))z]

= tr[I(Ui, Xi)
z] +

(
z

1

)
tr[I(Ui, Xi)

z−1P(Ei, E
T
i )1] + . . .+ tr[P(Ei, E

T
i )z]

For every odd power of P(Ei, E
T
i ) in the above expansion, the corresponding trace term

is 0. Suppose z is odd, then

tr[Lzi ] = tr[(I(Ui, Xi) + P(Ei, E
T
i ))z]

= tr[I(Ui, Xi)
z] +

(
z

2

)
tr[I(Ui, Xi)

z−2P(Ei, E
T
i )2] + . . .+

(
z

z − 1

)
tr[I(Ui, Xi)

1P(Ei, E
T
i )z−1]

= tr[I(Ui, Xi)
z] +

(
z

2

)
tr[I(Ui, Xi)

z−2] + . . .+

(
z

z − 1

)
tr[I(Ui, Xi)

1]

Hence, finally we have only the odd powers of I(Ui, Xi) in the expansion. Suppose z is even,

then

tr[Lzi ] = tr[(I(Ui, Xi) + P(Ei, E
T
i ))z]

= tr[I(Ui, Xi)
z] +

(
z

2

)
tr[I(Ui, Xi)

z−2P(Ei, E
T
i )2] + . . .+ tr[P(Ei, E

T
i )z]

= tr[I(Ui, Xi)
z] +

(
z

2

)
tr[I(Ui, Xi)

z−2] + . . .+ tr[I(Ui, Xi)
0]

Hence, finally we have only the even powers of I(Ui, Xi) in the expansion. By the induction

assumption, suppose we have tr[P(V1,W1)t] = tr[P(V2,W2)t] for t = 0, 1, 2, . . . , z − 1. Since

tr[Lz1] = tr[Lz2], all the terms except the first in the expansion (take any odd or even case)

of tr[Lz1] and tr[Lz2] are equal. Hence, tr[I(U1, X1)z] = tr[I(U2, X2)z]. This shows L1 and L2
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are cospectral implies tr[I(U1, X1)t−s] = tr[I(U2, X2)t−s] for all t− s. Hence, the monomial

property is satisfied.

Now to show trace property, consider

tr[U t−s(VW )r] = tr[U t−s(PP T )r] = tr[U t−s]

tr[X t−s(WV )r] = tr[X t−s(P TP )r] = tr[X t−s]

Since, P TUP = X, U and X are cospectral. Then, tr[U t−s] = tr[X t−s] for all t− s. Hence,

tr[U t−s(VW )r] = tr[X t−s(WV )r] for, in particular, all t and s such that s = 2r and s 6= 0.

Hence, the trace property is also satisfied.

Let H =

[
A B

BT D

]
and H# =

[
D BT

B A

]
be two partitioned matrices such that A and D

are square symmetric matrices of orders p and q respectively.

Theorem 5.35. The graphs GL⊗pH and GL⊗pH# are cospectral.

Proof. From Lemma 5.34, the matrix L satisfies C/T property. Since, U and X are permu-

tationally similar, they are cospectral. Hence, from Theorem 3.20, L⊗pH and L⊗pH# are

also cospectral.

Proposition 5.36. The graph GL admits an interchanging automorphism with respect to its

bipartition.

Proof. Since ETUE = X for the permutation matrix E, let P = P(E,ET ), then

P TLP =

[
0 E

ET 0

][
U E

ET X

][
0 E

ET 0

]

=

[
EXET E

ET ETUE

]

=

[
U E

ET X

]
= L

This proves the proposition.

84



Theorem 5.37. The graphs GL⊗pH and GL⊗pH# are isomorphic as well.

Proof. From Proposition GL admits an interchanging automorphism with respect to its bi-

partition, then from Lemma 3.25, the isomorphism follows.

Although L satisfies C/T property, we show that the cospectral graphs constructed using

Construction-I corresponding to this particular L are isomorphic.

85



86



Chapter 6

Application of partitioned tensor

product

In this chapter, we apply the idea of partitioned tensor product on some of the existing

cospectral constructions to obtain new cospectral constructions. The following theorem

show how:

Theorem 6.1. Let H1 and H2 be two multipartioned (m×m) cospectral block matrices such

that the similarity matrix Q satisfying Q−1H1Q = H2 is a diagonal block matrix. Let L be

a multipartitioned (m ×m) block matrix such that L ⊗p H1 and L ⊗p H2 are defined, then

L⊗p H1 and L⊗p H2 are cospectral.

Proof. Let the diagonal block matrix Q be such that Q = diag(Q1, Q2, . . . , Qm) where Qi’s

are nonsingular matrices of appropriate orders. Let I be an m × m partitioned identity

matrix such that R = I ⊗p Q is a diagonal block nonsingular matrix. Then, R satisfies

R−1(L⊗p H1)R = L⊗p H2. Hence, L⊗p H1 and L⊗p H2 are cospectral.

Suppose H1 and H2 are adjacency matrices of cospectral graphs GH1 and GH2 , then the

graphs GL⊗pH1 and GL⊗pH2 are cospectral. If at most one of GH1 and GH2 is allowed loops,

then the graphs GL⊗pH1 and GL⊗pH2 don’t have loops.
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In the first section, we discuss a candidate for H1 and H2 which is given by the construc-

tion based on partial transpose (III-A, III-B) introduced by Dutta and Adhikari (see [2]).

We give alternate proof for the main theorem (III-A) and fix an error of the second (III-B).

The new constructions based on partitioned tensor product help us discuss the notion of

unfolding a multipartite graphs. We also give examples of how a tripartite graph can be

unfolded to obtain cospectral nonisomorphic graphs.

In the next sections, we discuss GM switching (IV) and a construction based on con-

gruence (V) both introduced by Godsil and Mckay (see [5]) as candidates for H1 and H2.

Inspired by the construction V, we introduce another construction VI which is based on un-

folding a semi reflexive bipartite graph. Since GM switching produces cospectral graphs with

cospectral complement, the new construction using partitioned tensor product also produces

cospectral graphs with cospectral complements. We give conditions for obtaining cospec-

tral nonisomorphic graphs for the constructions V and VI as well as the new constructions

obtained using partitioned tensor product

6.1 Construction III: Partial transpose

A partitioned block matrix A is a block matrix of order mn whose ijth block is the matrix

Aij of order m where 1 ≤ i, j ≤ n. Let Aτ be the matrix whose ijth block is ATij. The matrix

Aτ is called the partial transpose of matrix A.

A =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm

 , Aτ =


AT11 AT12 . . . AT1m
AT21 AT22 . . . AT2m

...
...

. . .
...

ATm1 ATm2 . . . ATmm



6.1.1 Construction III-A: Commuting family of normal matrices

Recall the following result on commuting family of diagonalizable matrices.

Lemma 6.2. [11][Theorem 1.3.21.] Let F ⊂ Mn be a family of diagonalizable matrices.

Then F is a commuting family if and only if it is a simultaneously diagonalizable family.
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The following lemma shows that the commuting family of diagonalizable matrices are

simultaneouly similar to their transposes.

Lemma 6.3. Let {Ai, i = 1, . . . , k} be a commuting family of diagonalizable matrices of order

m. Then, there exists a real nonsingular matrix X such that ATi = X−1AiX for i = 1, . . . , k.

Proof. From Lemma 6.2., there exists a nonsingular matrix V such that Ai = V −1DiV

for each i = 1, . . . , k, where Di is a diagonal matrix of eigenvalues of Ai. Then, we have

V AiV
−1 = Di. Since V is nonsingular, we have V V −1 = I. Then, (V −1)TV T = I. Since V T

is also nonsingular, (V −1)T = (V T )−1. By taking transposes on both sides of the original

equation,

ATi = V TDi(V
−1)T

= V T (V AiV
−1)(V −1)T

= (V TV )Ai(V
−1(V T )−1)

= (V TV )Ai(V
TV )−1

Let X = (V TV )−1, then it is a nonsingular matrix and ATi = X−1AiX for i = 1, 2, . . . , k.

Now we a give a construction of cospectral matrices.

Theorem 6.4. Let A be a partitioned matrix block matrix of order mn. If the blocks of

matrix A form a commuting family of diagonalizable matrices, then A and Aτ are cospectral.

Proof. Let

A =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm


Since the blocks of A form a commuting family of diagonalizable matrices, from Lemma

6.3., it follows that there exists a real nonsingular matrix X such that ATij = X−1AijX for

1 ≤ i, j,≤ m. Now consider the block diagonal orthogonal matrix Q = diag(X,X, . . . , X).
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Then,

Q−1AQ =


X−1A11X X−1A12X . . . X−1A1mX

X−1A21X X−1A22X . . . X−1A2mX
...

...
. . .

...

X−1Am1X X−1Am2X . . . X−1AmmX



=


AT11 AT12 . . . AT1m
AT21 AT22 . . . AT2m

...
...

. . .
...

ATm1 ATm2 . . . ATmm


= Aτ

Hence A and Aτ are cospectral.

Now let A be an adjacency matrix of a graph such that its blocks form a commuting family

of diagonalizable matrices. Since A is symmetric, consider the off diagonal blocks Aij and

ATij. Aij and ATij commute, hence all the off diagonal blocks are normal. The diagonal blocks

Aii are symmetric, hence they are also normal. This shows if A is symmetric and blocks of

A form commuting diagonalizable family, then it is in fact commuting normal family. Now

we do the similar analysis by considering results on commuting family of normal matrices

and we show that the similarity matrix is an orthogonal matrix. Recall,

Lemma 6.5. [11][Theorem 2.5.5.] Let N ⊆ Mn be a nonempty family of normal matrices.

Then N is a commuting family if and only if it is a simultaneously unitarily diagonalizable

family.

The following is the main result given by Dutta and Adhikari [2] which uses Lemma 6.5

in its proof.

Lemma 6.6. [2] Let {Ai, i = 1, . . . , k} be a commuting family of normal matrices of order

m. Then, there exists a nonsingular matrix X such that ATi = X−1AiX for i = 1, . . . , k.

We give an alternate proof for this theorem to show that the similarity matrix is an

orthogonal matrix. The original proof is based on vectorization of matrices and solving

Lyapunov equations. The following lemma shows, in particular, that two real unitarily

similar matrices are real orthogonally similar.
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Lemma 6.7. [11][Theorem 2.5.21.] Let F = {Aα : α ∈ I} ⊂ Mn(R) and G = {Bα :

α ∈ I} ⊂ Mn(R) be given families of real matrices. If there is a unitary U ∈ Mn such

that Aα = UBαU
∗ for every α ∈ I, then there is a real orthogonal Q ∈ Mn(R) such that

Aα = QBαQ
T for every α ∈ I.

Similarly, we now show that commuting family of normal matrices is simultaneously

orthogonally similar to their transposes.

Lemma 6.8. Let {Ai, i = 1, . . . , k} be a commuting family of normal matrices of order m.

Then, there exists a real orthogonal matrix Y such that ATi = Y −1AiY for i = 1, . . . , k.

Proof. From Lemma 6.5., there exists a unitary matrix U such that U∗AiU = Di for each

i = 1, . . . , k, where Di is a diagonal matrix of eigenvalues of Ai. Then, Ai = UDiU
∗. By

taking transposes on both sides,

ATi = (U∗)TDT
i U

T

= UDiU
T

= U(U∗AiU)UT

= (UUT )∗Ai(UU
T )

Let X = UUT , then X is an unitary matrix and ATi = X∗AiX for i = 1, 2, . . . , k. Since

Ai’s are real matrices, it follows from Lemma 6.7., that there exists a real orthogonal matrix

Y such that ATi = Y TAiY .

Now we give construction of cospectral matrices.

Theorem 6.9. [2] Let A be a partitioned matrix block matrix of order mn. If the blocks of

matrix A form a commuting family of normal matrices, then A and Aτ are cospectral.

Proof. Let

A =


A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm


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Since the blocks of A form a commuting normal family, from Lemma 6.8., it follows that

there exists a real orthogonal matrix Y such that ATij = Y −1AijY for 1 ≤ i, j,≤ m. Now

consider the block diagonal orthogonal matrix Q = diag(Y, Y, . . . , Y ). Then,

Q−1AQ =


Y −1A11Y Y −1A12Y . . . Y −1A1mY

Y −1A21Y Y −1A22Y . . . Y −1A2mY
...

...
. . .

...

Y −1Am1Y Y −1Am2Y . . . Y −1AmmY



=


AT11 AT12 . . . AT1m
AT21 AT22 . . . AT2m

...
...

. . .
...

ATm1 ATm2 . . . ATmm


= Aτ

Hence A and Aτ are cospectral.

Now let A to be a symmetric 0-1 matrix, then the graphs corresponding to A and Aτ

are cospectral. In that case, diagonal blocks needs to be symmetric and Aji = ATij for all

1 ≤ i, j ≤ m. It should be noted that the construction based on commuting family of

diagonalizable matrices is a construction of cospectral digraphs, but only the construction

based on commuting family of normal matrices is useful in construction of cospectral graphs.

Now we apply the idea of partitioned tensor product on this construction. Let L and A

be two symmetric partitioned matrices whose partitioning is the same, that is, let L and A

be two m ×m block matrices such that the partitioned tensor product L ⊗p A exists. Let

the blocks of A form a commuting family of normal matrices. Hence, from Theorem 6.9., A

and Aτ are cospectral. Also note that the partitioned tensor product L⊗p Aτ is the partial

transpose of L⊗p A.

Theorem 6.10. The graphs GL⊗pA and GL⊗pAτ are cospectral.

Proof. Since the blocks of A forms a commuting family of normal matrices, from the proof

of Lemma 6.9, the orthogonal matrix Q satisfying QTAQ = Aτ is a diagonal block matrix.

Let I be an identity matrix, then ITLI = L. The partitioned tensor product R = I ⊗p Q is

also an orthogonal matrix such that RT (L⊗p A)R = L⊗p Aτ .
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In case the diagonal blocks of L and A are zero blocks, then the correspond to adjacency

matrix of multipartite graphs.

6.1.2 Construction III-B: Unfolding a multipartite graph

Let us now consider a particular case of multipartite graphs whose adjacency matrices are

constructed using only one nontrivial block. The idea for the following theorem comes from

Theorem 6.9. Let A be a partitioned symmetric matrix of order mn such that each of its

blocks is of order m. Let the diagonal blocks of A to be zero matrices and the off diagonal

blocks of A are either B,BT , Im or 0m where B is a m×m matrix.

Theorem 6.11. A and Aτ are cospectral if any of the following holds:

1. B is normal

2. B is similar to its transpose via an involutory matrix1

3. B is similar to its transpose via an orthogonal matrix

Proof. 1. Then, {B,BT , Im, 0m} forms a commuting family of normal matrices. Hence, the

result follows as a corollary of Theorem 6.9.

2. Since B is similar to its transpose, S−1
0 BS0 = BT holds for some invertible ma-

trix S0. Since S0 is involutory, we have S0 = S−1
0 , and hence S−1

0 BTS0 = B. Let S =

diag(S0, S0, . . . , S0︸ ︷︷ ︸
n−times

). Let X be ijth block of A for 1 ≤ i, j ≤ n where X ∈ {B,BT , Im, 0m}.

Then the ijth blocks of S−1AS are S−1
0 XS0 ∈ {BT , B, Im, 0m} respectively. Hence, S−1AS =

Aτ and A and Aτ are cospectral.

3. Since B is similar to its transpose, Q−1BQ = BT holds for some orthogonal matrix

Q. Since Q is orthogonal, we have QT = Q−1, and hence by taking transposes, we have

Q−1BTQ = B. The rest follows similar to the proof of the second statement.

1this result is obtained by fixing an error in Theorem 7 of [2] where only the fact ‘B is similar to its
transpose’ is used which is insufficient.
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Now let us apply the idea of partitioned tensor product on this construction too. Let

A and L be two symmetric matrices partitioned similarly such that the partitioned tensor

product L⊗p A exists.

Theorem 6.12. Let A and Aτ be cospectral under the assumptions of Theorem 6.11. Then,

the graphs GL⊗pH and GL⊗pHτ are cospectral.

Proof. The proof is similar to the proof of Theorem 6.10.

Next, we give sufficient condition for the graphs to be isomorphic.

Lemma 6.13. If B is permutationally similar to its transpose, then GA and GAτ are iso-

morphic as well as GL⊗pA and GL⊗pAτ are.

Proof. If B is permutationally similar to its transpose, then P T
0 BP0 = BT for some permuta-

tion matrix P0. Since P is also orthogonal, we have P T
0 B

TP0 = B. Let P = diag(P0, P0, . . . , P0),

then P TAP = Aτ . Hence, GA and GAτ are isomorphic. Since this similarity matrix P is

diagonal block matrix, GL⊗pA and GL⊗pAτ are also isomorphic.

Let us now discuss how Theorem 6.12 is related to unfoldings of a bipartite graphs. Let

G be a bipartite graph with an adjacency matrix A(G) = P(B,BT ). Then, the adjacency

matrices of its two unfoldings Γ1 and Γ2 as defined by Butler [1] are given by:

A(Γ1) =

 0 B B

BT 0 0

BT 0 0

 and A(Γ2) =

 0 BT BT

B 0 0

B 0 0

 .

Let L = P(J1,2, J2,1), the A(Γ1) = L ⊗p A(G) and A(Γ2) = L ⊗p A(G)τ . The matrices

A(Γ1) and A(Γ2) are, in fact, partial transposes of each other. Recall that if B is a square

matrix, then A(Γ1) and A(Γ2) are cospectral. No other condition on B is required. This is

bacause of the bipartite graph case and the fact that the similarity matrix between A(Γ1)

and A(Γ2) is not a diagonal block matrix. In case of multipartite graphs, we can use Theorem

6.10 and Theorem 6.12 to develope the notion unfolding a multipartite graphs.

We say that the graph GA is unfolded with respect to the graph GL to obtain the un-

foldings GL⊗pA and GL⊗pAτ .
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Unfolding a tripartite graph

In this subsection, we demonstrate how to use Theorem 6.12. on a tripartite graph GA to

obtain cospectral nonisomorphic unfoldings GL⊗pA and GL⊗pAτ . Let

A =

 0 B B

BT 0 B

BT BT 0

 and Aτ =

 0 BT BT

B 0 BT

B B 0


where B be a n× n 0-1 matrix. Observe that A and Aτ are permutationally similar via the

permutation matrix P =

 0 0 In

0 In 0

In 0 0

. Let Jm,n be all-one matrix of size m× n and let

L(p, q, r) =

 0 Jp,q Jp,r

Jq,p 0 Jq,r

Jr,p Jr,q 0

 .

If B is permutationally similar to its transpose, then from Lemma 6.13, the graphs

GL(p,q,r)⊗pA and GL(p,q,r)⊗pAτ are isomorphic. Here is another sufficient condition for the

isomorphism.

Proposition 6.14. If p = r, then the graphs GL(p,q,r)⊗pA and GL(p,q,r)⊗pAτ are isomorphic.

Let B =

[
1 1

0 0

]
, then B is similar to its transpose via real orthogonal symmetric involu-

tary matrix Q = 1√
2

[
1 1

1 −1

]
. Note that B is not permutationally similar to its transpose.

For this particular B, we give examples of cospectral non-isomorphic graphs GL(p,q,r)⊗pA and

GL(p,q,r)⊗pAτ for different pairs of (p, q, r) such that p 6= r. Each pair (p, q, r) corresponds to

a different way of unfolding the given tripartite graph GA. The matrix L(p, q, r) need not

be the adjacency matrix of the complete multipartite graph in general.

Figure 6.1. shows the tripartite graphs GA and GAτ corresponding to the triadjacency

matrix B. Vertices from the same partite sets of the graphs GA and GAτ are coloured

using the same colour. Table 6.1 gives cospectral nonisomorphic graph pairs GL(p,q,r)⊗pA
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Figure 6.1: Tripartite graphs GA and GAτ

and GL(p,q,r)⊗pAτ for each (p, q, r). Vertices of the same colour in the graphs GL(p,q,r)⊗pA and

GL(p,q,r)⊗pAτ indicate the appropriate number of unfolded partite sets. Note that GL(p,q,r)⊗pA

and GL(p,q,r)⊗pAτ are tripartite graphs.

6.2 Construction IV: Godsil-Mckay switching

Let us discuss the famous Godsil-Mckay switching (see [5]). LetG be a graph with partitioned

adjacency matrix,

A(G) =


C1 C12 . . . C1k D1

CT
12 C2 . . . C2k D2

...
...

. . .
...

...

CT
1k CT

2k . . . Ck Dk

DT
1 DT

2 . . . DT
k D


such that each Ci and Cij have constant row sums and constant column sums, and each

column of each Di has either 0, ni
2

or ni ones, where ni is the number of rows of the block

Di. Each Ci is an ni × ni block. Let D be an n0 × n0 block. Define Qm = 2
m
Jm − Im

and Q = diag(Qn1 , Qn2 , . . . , Qnk , In0). Then, QTA(G)Q is also an adjacency matrix of some

graph, Let G′ be a graph with adjacency matrix A(G′) = QTA(G)Q. The graph G and G′

are cospectral.

An orthogonal matrix is said to be regular if all its row sums and column sums are 1. A

rational orthogonal matrix has all its entries rational.

Lemma 6.15. [13]Let G1 and G2 be two cospectral graphs. Then TFAE:
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(p,q,r) GL(p,q,r)⊗pA GL(p,q,r)⊗pAτ

(1,1,2)

(1,1,3)

(1,2,2)

(1,2,3)

(1,3,3)

Table 6.1: Unfoldings of tripartite graphs GL(p,q,r)⊗pA and GL(p,q,r)⊗Aτ
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1. G1 and G2 has cospectral complements

2. the orthogonal matrix of similarity Q such that QTA(G1)Q = A(G2) is rational and

regular.

Since the orthogonal similarity matrix in the Godsil-Mckay switching is a rational regular

matrix, from Lemma 6.15., the construction produces cospectral graphs with cospectral

complements. Let us now apply the idea of partitioned tensor product. Let L be a symmetric

partitioned (k+1)×(k+1) block matrix such that the partitioned tensor products L⊗pA(G)

and L⊗P A(G′) exists, where the graphs G and G′ are cospectral through the Godsil-Mckay

switching. Then,

Theorem 6.16. The graphs GL⊗pA(G) and GL⊗pA(G′) are cospectral with cospectral comple-

ments.

Proof. Since G and G′ are cospectral via Godsil-Mckay switching, the orthogonal similarity

matrix Q = diag(Qn1 , Qn2 , . . . , Qnk , In0) which satisfies A(G′) = QTA(G)Q is a rational

regular matrix. Let I be an identity matrix of the order same as L. Then, R = I ⊗p Q
is also a rational regular orthogonal matrix such that RT (L ⊗p A(G))R = L ⊗p A(G′).

Hence, from Lemma 6.15. the graphs GL⊗pA(G) and GL⊗pA(G′) are cospectral with cospectral

complements.

6.3 Construction V: Congruence

Suppose the blocks Ci’s and Cij’s are zero blocks and k = 1. Then, A(G) =

[
0 D1

DT
1 D

]

and A(G′) =

[
0 D′1

D′T1 D

]
are cospectral such that the orthogonal similarity matrix is Q =

diag(Qn1 , In0) where Qn1 = 2
m
Jm − Im, D1 is a n1 × n0 matrix and D0 is square matrix of

order n0. In this section, we consider the generalization of this special case we described.

Construction

Two m× n matrices A and B are called congruent if ATA = BTB.
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Lemma 6.17. Two real m × n matrices A and B are congruent if and only if there exists

an orthogonal matrix Q such that A = QB.

Proof. Suppose we have an orthogonal matrix Q such that A = QB. Then, ATA =

(QB)T (QB) = BTQTQB = BTB. Now suppose we have ATA = BTB. Let x ∈ Rn, then

〈Ax,Ax〉 = 〈x,ATAx〉 = 〈x,BTBx〉 = 〈Bx,Bx〉. This shows ‖Ax‖ = ‖Bx‖ for all x ∈ Rn.

Then, ker(A) = ker(B) and hence range(A) = range(B). Suppose rank(A) = k and let

range(A) = span{v1, v2, . . . , vk} such that {Av1, Av2, . . . , Avk} and {Bv1, Bv2, . . . , Bvk} are

orthonormal basis for range(A) and range(B) respectively. Since range(A) = range(B),

there exists an orthogonal matrix Q such that Avi = QBvi for each 1 ≤ i ≤ k. This shows

Av = QBv for any v ∈ range(A). Let x ∈ Rn, then x = v + w for v ∈ range(A) and

w ∈ ker(A). Now Ax = Av + Aw = QBv = QBv + QBw = QBx. Hence, Ax = QBx for

all x ∈ Rn. This shows A = QB.

Hence, if A and B are two m × n real matrices, then ATA = BTB holds if and only if

A = QB for some orthogonal matrix Q. Similarly, AAT = BBT holds if and only if A = BR

for some orthogonal matrix R.

Let H be an adjacency matrix of a graph on n vertices and let A be an m×n 0-1 matrix.

Then H(A) is defined to be the matrix

[
0 A

AT H

]
. The following theorem generalizes the

special case of Godsil-Mckay switching we described earlier.

Theorem 6.18. [5] Let A and B be two congruent matrices, then H(A) and H(B) are

cospectral.

Proof. Suppose A and B are congruent, then there exists an orthogonal matrix Q such that

B = QA. Consider an orthogonal matrix R = I(Q, I), then RH(A)RT = H(B). Hence,

H(A) and H(B) are similar and cospectral.

One source of congruent matrices comes from GM-switching. Let R = 1
m
J2m − I2m and

let C be a 2m× (n− 2m) 0-1 matrix such any columns of C has exactly 0, m or 2m nonzero

entries. Then RC is also a 0-1 matrix. Let D = RC. Since, R is an orthogonal matrix, D

is a 0-1 matrix and C and D are congruent.
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Now we apply the idea of partitioned tensor product. Let X and H be an adjacency

matrices of graphs on n and q vertices respectively, and A and B be two congruent p × q
0-1 matrices. Let U be an m× n 0-1 matrix. (Note the notational change in the sizes of the

matrices). Then, X(U) =

[
0 U

UT X

]
.

Lemma 6.19. If A and B are congruent, then X(U) ⊗p H(A) and X(U) ⊗p H(B) are

cospectral.

Proof. Since A and B are congruent, there exists an orthogonal matrix Q such that B = QA.

Let R = I(Q, I), then RH(A)RT = H(B). Since R is block diagonal, the partitioned

tensor product Q0 = I ⊗p R is also an orthogonal matrix, where I is an identity matrix.

Then, Q0(X(U)⊗pH(A))QT
0 = X(U)⊗pH(B), and X(U)⊗pH(A) and X(U)⊗pH(B) are

cospectral.

Isomorphism

Let us first discuss the concept of weak permutation matrices which will be useful in the

investigation of the isomorphism of the corresponding graphs. Consider a 2n×2n partitioned

permutation matrix P =

[
∗ P0

∗ ∗

]
, where the block P0 has size n×n. If the matrix P0 has a

nonzero entry, then all other entries in that row and column are zero, but P0 can also admit

zero rows and zero columns. In this way, the matrices P0 are different that the permutation

matrices, let’s call such matrices P0 weak permutation matrices. We assume that a weak

permutation matrix is nonzero. A permutation matrix is a weak permutation matrix, but a

weak permutation need not be a permutation matrix.

Lemma 6.20. Let P0 be a weak permutation matrix of order n and let G be a graph on n

vertices. Then, P T
0 A(G)P0 = 0 implies P0 = 0 if and only if G is reflexive.

Proof. The matrix P0 is permutationally similar to

[
P ′0 0

0 0

]
, where P ′0 is either a permutation

matrix or a zero matrix. Hence, there exists a permutation matrix R such that P0 =
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RT

[
P ′0 0

0 0

]
R. Suppose RA(G)RT =

[
A1 A2

AT2 A4

]
. Then,

P T
0 A(G)P0 = RT

[
P ′T0 0

0 0

]
RA(G)RT

[
P ′0 0

0 0

]
R

= RT

[
P ′T0 0

0 0

][
A1 A2

AT2 A4

][
P ′0 0

0 0

]
R

= RT

[
P ′T0 A1P

′
0 0

0 0

]
R.

Since R is a permutation matrix, P T
0 A(G)P0 = 0 implies P ′T0 A1P

′
0 = 0. If P ′0 is a permutation

matrix, then A1 = 0. If P ′0 is a zero matrix, then there are no conditions on A1. Since P ′0 = 0

implies P0 = 0, if P T
0 A(G)P0 = 0 for some weak permutation matrix P0, then either A1 = 0

or P0 = 0.

Suppose the graph G is reflexive, then all the diagonal entries of A(G) are 1. Hence, A1

is never zero and P0 = 0. Now suppose the graph G is not reflexive and there is one vertex

which does not have a loop. Then, the adjacency matrix can be written as A(G) =

[
0 A2

AT2 A4

]

where the block A4 has size n− 1×n− 1. Let P0 =

[
1 0

0 0n−1

]
where 0n−1 is a n− 1×n− 1

zero matrix. Then, P T
0 A(G)P0 = 0 but P0 6= 0. This proves the result.

The following theorem gives equivalent condition for the isomorphism of the congruence

construction given in Theorem 6.18.

Theorem 6.21. Let GH be a reflexive graph. Then, the graphs GH(A) and GH(B) are isomor-

phic if and only if there exists two permutation matrices P1 and P2 such that P1AP
T
2 = B

and P2HP
T
2 = H.

Proof. Let GH(A) and GH(B) be isomorphic. Then there exists a permutation matrix P =

101



[
P1 P2

P3 P4

]
such that PH(A)P T = H(B). Consider,

H(B) = PH(A)P T

=

[
P1 P2

P3 P4

][
0 A

AT H

][
P T

1 P T
3

P T
2 P T

4

]
[

0 B

BT H

]
=

[
P2A

TP T
1 + P1AP

T
2 + P2HP

T
2 P2A

TP T
3 + P1AP

T
4 + P2HP

T
4

P4A
TP T

1 + P3AP
T
2 + P4HP

T
2 P4A

TP T
3 + P3AP

T
4 + P4HP

T
4

]

Comparing both sides, we have P2A
TP T

1 + P1AP
T
2 + P2HP

T
2 = 0. All the matrices on the

left side are 0-1 matrices, hence P2HP
T
2 = 0. Since the graph GH is reflexive, from Lemma

6.20, it cannot be weak permutationally similar to a zero matrix. Hence, P2 is a zero matrix.

It follows P3 is also a zero matrix, since P needs to be a permutation matrix. Then P1 and

P4 are permutation matrices and we have, P1AP
T
4 = B and P4HP

T
4 = H.

Now conversely, suppose P1AP
T
2 = B and P2HP

T
2 = H holds for some permuta-

tion matrices P1 and P2. Let P = I(P1, P2), then P is a permutation matrix satisfying

PH(A)P T = H(B). Hence, H(A) and H(B) are isomorphic.

The following lemma gives a sufficient condition for the isomorphism of the graphs con-

structed in Theorem 6.19.

Lemma 6.22. If there exists two permutation matrices P1 and P2 such that P T
1 AP2 = B

and P T
2 HP2 = H, then GX(U)⊗pH(A) and GX(U)⊗pH(B) are isomorphic.

Proof. Suppose there exists two permutation matrices P1 and P2 such that P T
1 AP2 = B and

P T
2 HP2 = H. Let P = I(P1, P2), then P TH(A)P = H(B). Since P is block diagonal, the

partitioned tensor product P0 = I ⊗p P is also a permutation matrix, where I is an identity

matrix whose order is same as X(U). Then P T
0 (X(U)⊗p H(A))P0 = X(U)⊗p H(B), hence

GX(U)⊗pH(A) and GX(U)⊗pH(B) are isomorphic.

Now to obtain a necessary condition for the isomorphism, we need to recall property η1.

We restate the definition with the new terms.

Definition 6.23. The graphs GX(U) and GH(A) are said to satisfy property η1 if the graphs

GX(U)⊗pH(A) and GX(U)⊗pH(B) are isomorphic, then there exists an isomorphism between them
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such that it takes the copy of GX⊗H in GX(U)⊗pH(A) to the copy of GX⊗H in GX(U)⊗pH(B), in

other words, the induced isomorphism is an automorphism for the induced subgraph GX⊗H .

Now we give the necessary condition for the isomorphism.

Lemma 6.24. Let U and H be nonzero, and let A and B have no zero rows or zero columns.

Let GX(U) and GH(A) satisfy property η1. If GX(U)⊗pH(A) and GX(U)⊗pH(B) are isomorphic,

then A and B are permutationally equivalent.

Proof. Suppose GX(U)⊗pH(A) and GX(U)⊗pH(B) are isomorphic. Then there exists a permuta-

tion matrix P such that P T (X(U)⊗pH(A))P = X(U)⊗pH(B). From property η1, P must

be block diagonal matrix with form I(P1, P2). Then, we have P T
1 (U ⊗ A)P2 = U ⊗ B and

P T
2 (X ⊗ H)P2 = X ⊗ H. Using cancellation law (2.14.) in the first equation, there exists

permutation matrices R1 and R2 such that RT
1AR2 = B.

Hence, under the assumptions of this lemma, if A and B are congruent but not permu-

tationally equivalent, then GX(U)⊗pH(A) and GX(U)⊗pH(B) are nonisomorphic and cospectral.

In case, automorphism group Aut(GH) the graph GH is the group Sq (the set of all permu-

tation matrices of order q), then the necessary condition is also the sufficient one. Examples

of those cases are H = Iq and H = Jq.

Theorem 6.25. Let GH be a reflexive graph on q vertices such that Aut(GH) = Sq. Let U

be nonzero and A and B have no zero rows and zero columns. Let GX(U) and GH(A) satisfy

property η1. Then, the graphs GX(U)⊗pH(A) and GX(U)⊗pH(B) are nonisomorphic if and only

if A and B are not permutationally equivalent.

Hence, we must find matrices A and B such that they are congruent but not permuta-

tionally equivalent, to obtain cospectral nonisomorphic graphs using this construction. Note

that if X has no diagonal entries, the construction produces graphs with no loops. This

justifies why the matrix H was allowed nonzero diagonal entries. We leave characterization

of property η1 for this construction as an open problem, but investigate it for a modified

construction in the next section.
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6.4 Construction VI: Unfolding a semi-reflexive bipar-

tite graph

In this section, we discuss the case when H to be an identity matrix. We replace A and B

by B and BT . The next theorem shows how the assumption of congruence of B and BT ,

that is, the normality of B can be dropped for this particular case. Let B be a square 0-1

matrix and let I be the identity matrix of the same order p such that I(B) =

[
0 B

BT I

]
.

Let X be an adjacency matrix of a graph on n vertices and let U be some m× n 0-1 matrix

such X(U) =

[
0 U

UT X

]
.

Theorem 6.26. The matrices I(B) and I(BT ) are cospectral. The matrices X(U)⊗p I(B)

and X(U)⊗p I(BT ) are also cospectral.

Proof. Since B is a square matrix, from Lemma 2.7. there exists orthogonal matrices Q1

and Q2 such that QT
1BQ2 = BT . Taking transposes on both sides, we have QT

2B
TQ1 = B.

The diagonal block matrix Q = I(Q1, Q2) is also orthogonal. Consider

QT I(B)Q =

[
QT

1 0

0 QT
2

][
0 B

BT I

][
Q1 0

0 Q2

]

=

[
0 QT

1BQ2

QT
2B

TQ1 QT
2Q2

]

=

[
0 BT

B I

]
= I(BT )

This shows I(B) and I(BT ) are similar, hence cospectral.

Since Q is orthogonal, the partitioned tensor product R = Im+n ⊗p Q is also orthogonal.
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Consider

R−1(X(U)⊗p I(B))R = (Im+n ⊗p Q)−1(X(U)⊗p I(B))(Im+n ⊗p Q)

= (I−1
m+nX(U)Im+n)⊗p (Q−1I(B)Q)

= X(U)⊗p I(BT )

This show X(U)⊗p I(B) and X(U)⊗p I(BT ) are similar, hence cospectral.

Lemma 6.27. The graphs GI(B) and GI(BT ) are isomorphic if and only if B is PET.

Proof. Since GI is a reflexive graph, the result follows as a corollary of Theorem 6.21.

Theorem 6.28. Suppose U is nonzero and B does not have zero row or column. Suppose

GX(U) and GI(B) satisfy property η1. Then, the graphs GX(U)⊗pI(B) and GX(U)⊗pI(BT ) are

nonisomorphic if and only if B is non-PET.

Proof. Since GI is a reflexive bipartite graph, the result follows a corollary of Theorem

6.25.

We now give a partial characterization of property η1 for this construction. Let G be

a semi reflexive bipartite graph with the adjacency matrix A(G) = I(B) and with vertex

partitioning given by V (G) = X ∪ Y such that every vertex in Y has a loop. Let Γ1 =

GX(U)⊗pI(B) and Γ2 = GX(U)⊗pI(BT ) be graphs with vertex partitioning given by V (Γi) =

Xi ∪ Yi for i = 1, 2 as indicated in the adjacency matrices below,

X(U)⊗p I(B) =

[
0 U ⊗B

UT ⊗BT X ⊗ I

]

X(U)⊗p I(BT ) =

[
0 U ⊗BT

UT ⊗B X ⊗ I

]
Let ui, u

′
i, bi, b

′
i, xi denote the ith row sum of the matrices U,UT , B,BT , X respectively.

Lemma 6.29. Suppose U = Jm,n, X = Jn − In, then X(U) and I(B) satisfy property η1 in

the following cases:

1. m = 1, n > 1 and at least one row B has row sum at least 2.
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2. m divides n, m 6= 1

Proof. Let Γ1 and Γ2 be isomorphic and let f be an isomorphism from Γ1 to Γ2. Let x ∈ X1

be the vertex of maximum degree in this set. Then, we will show that f(x) ∈ X2. Suppose

on the contrary f(x) ∈ Y2. Then, dΓ1(x) = uibj for some 1 ≤ i ≤ m, 1 ≤ j ≤ p and

dΓ2(f(x)) = u′kbl + xk for some 1 ≤ k ≤ n, 1 ≤ l ≤ p. Since the isomorphism preserves the

degrees, we have uibj = u′kbl+xk. Also since U = Jm,n, X = Jn−In, we have nbj = mbl+n−1.

Since x has maximum degree in X1, bj ≥ bl for any 1 ≤ l ≤ p.

Case 1: Suppose m = 1, n > 1 and at least one row of B has row sum at least 2.

Then consider (bj − bl) + (n− 1)(bj − 1) = 0. Since n 6= 1 and bj ≥ bl, we have bj − 1 ≤ 0.

Then, 1 ≥ bj ≥ bl. This is a contradiction since at least one row of B has row sum at least

2.

Case 2: Suppose n = km for some k and m 6= 1.

Then, kmbj = mbl + km− 1, that is, kbj − bl = k − 1
m

. Since the LHS is an integer and the

RHS is not, this gives a contradition.

Hence, f(x) ∈ X2 in any of the cases above. Removing the vertices x and f(x) respectively

from Γ1 and Γ2 and repeating the same procedure for other vertices in set X1, we show

f(X1) = X2 and hence f(Y1) = Y2.

Now the following example demonstrates how Theorem 6.28 can be thought of as un-

folding a semi reflexive bipartite graph or a modification of the unfolding operation on the

bipartite graphs.

Example 6.30. Let U = jTn be the all-one vector of length n > 1 and X be the adjacency

matrix of a complete graph on n vertices, that is, X = J − I. Let the matrix B have no zero

rows or zero columns and at least one row with row sum at least 2. Then,

X(U)⊗p I(B) =


0 B B . . . B

BT 0 I . . . I

BT I 0 . . . I
...

...
...

. . .
...

BT I I · · · 0

 ;
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X(U)⊗p I(BT ) =


0 BT BT . . . BT

B 0 I . . . I

B I 0 . . . I
...

...
...

. . .
...

B I I · · · 0


From the Theorem 6.26., the graphs GX(U)⊗pI(B) and GX(U)⊗pI(BT ) are cospectral and from

Theorem 6.28. they are nonisomorphic if and only if B is PET. This specific construction

also appears as the Construction-III in [14], but here we give the equivalent condition for its

isomorphism.

Let n = 2, then U = jT2 and X = J2 − I2. Let B =

[
1 1

0 0

]
, then B has a row with row

sum 2 but also a zero row. Recall that the condition ’B has no zero rows or zero columns’ was

required in proving equivalent conditions of isomorphism. Hence, this example will show that

this assuption can be dropped in some cases and we can still obtain cospectral nonisomorphic

graphs.

Figure 6.2: Unfoldings of a bipartite graph

Figure 6.3: Unfoldings of a semi reflexive bipartite graph

Figure 6.2. shows the unfoldings of a bipartite graph corresponding to B and given by the
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adjacency matrices  0 B B

BT 0 0

BT 0 0

 and

 0 BT BT

B 0 0

B 0 0


Figure 6.3. shows the unfoldings of a bipartite graph corresponding to B and given by the

adjacency matrices  0 B B

BT 0 I

BT I 0

 and

 0 BT BT

B 0 I

B I 0


Note that the unfoldings in both cases are cospectral and nonisomorphic since B is non-

PET.

Remark 6.31. We can also allow all the vertices in the graph GI(B) to have loops, but

then the diagonal blocks will be the same, hence such construction would be the same as

Construction I-B. The identity matrix in

[
0 B

BT In

]
can be replaced by I(In−1, 0) if B admits

Q2 such that Q2BQ2 = BT and Q2 = I(Q, 1), where Q is orthogonal matrix of order n− 1.
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Chapter 7

Other results and open problems

7.1 Natural number network

In this section, we first collect some properties of a Natural Number Network and give some

computational evidence that this graph could be a DS graph, that is, any graph which is

cospectral to it is also isomorphic.

Natural Number Network (NNN) is a Divisibility Graph on first n natural numbers

denoted by Gn. The vertex set V (Gn) is a set of first n natural numbers. If i divides j or

j divides i, then (i, j) is an edge, that is, (i, j) ∈ E(Gn). Since Diam(Gn) = 2,∀n ≥ 3, the

distance matrix is ∆ = 2J − 2I − A.

Seidel switching on NNN implies,

Lemma 7.1. Consider the graph Gn. The graph obtained by removing all the edges adjacent

to the vertex 1 is Seidel-cospectral with the original graph.

Proof. Since, the vertex 1 is adjacent to all other vertices, The first row of the adjacency

matrix is (0, 1, 1, . . . , 1)T . The adjacency matrix of Gn can be written as A(Gn) =

[
0 1T

1 A′

]
where A′ is a square matrix of size n− 1 and 1T is a vector of length n− 1. Then the Seidel

matrix is given by S(Gn) =

[
0 −1T

−1 S ′

]
. The Seidel switch S(G̃n) =

[
0 1T

1 S ′

]
is cospectral
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with S(Gn). The adjacency matrix of the Seidel switch is A(G̃n) = 1
2
(J − I − S(G̃n)) =[

0 0T

0 A′

]
. The graph G̃n is essentially obtained by removing all the edges adjacent to the

vertex 1.

Theorem 7.2. Automorphism group of Gn is non-trivial for n > 1.

Proof. The number of degree-one vertices in Gn is same as the number of primes i such that

n/2 < i ≤ n. Only when n ∈ {2, 4, 6, 10}, the number of degree-one vertices is exactly 1. If

n /∈ {2, 4, 6, 10}, there are at least 2 vertices with degree 1. Let f be an automorphism on

V (G) such that if (i, j) is an edge then (f(i), f(j)) is also an edge. Let p1 and p2 be two

primes, then (1, p1) and (1, p2) are edges of Gn. Hence, under automorphism, (f(1), f(p1))

and (f(1), f(p2)) are also edges. Construct another automorphism g such that

g(x) =


f(p2) if x = p1

f(p1) if x = p2

f(x) if otherwise

x

If f is a trivial automorphism, then g is a non-trivial. Hence, automorphism group of

Gn is non trivial for n /∈ {2, 4, 6, 10}. The automorphism groups of G2, G4, G6 and G10 are

permutations groups defined using generators (1, 2), (2, 4), (2, 6)(3, 4) and (4, 8) respectively.

This shows automorphism group of Gn is non-trivial for n > 1.

We observe that the number of pendant vertices, that is, the number of degree one vertices

in Gn is the number of primes p such that n/2 < p ≤ n. Let L(Gn) denote the Laplacian

matrix of Gn and σ(L(Gn)) denote its Laplacian eigenvalues. Suppose |{p is a prime : n/2 <

p ≤ n}| = k. Then,

Theorem 7.3. [10] Multiplicity of eigenvalue 1 in L(Gn) = k.

Proposition 7.4. Suppose {0, λ2, λ3, . . . , λn} are the Laplacian eigenvalues of a graph G on

n vertices in the nondecreasing order. Construct a graph G′ by adding a vertex v in G and

drawing an edge between v and every other vertex in G. Then, the Laplacian eigenvalues of

G′ are {0, λ2 + 1, λ3 + 1, . . . , λn + 1, n+ 1}

Proof. Let v be a vector of size n all of whose entries are 1 and let In be an n× n identity

matrix. Let L(Gn) and L(G′n) denote the Laplacian matrices of the graphs Gn and G′n
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respectively. Then,

L(G′) =

[
L(Gn) + In −v
−vT n

]

Let λ′ be an eigenvalue of L(G′) with eigenvector Y where Y =
[
XT xn+1

]T
and X =[

x1 x2 . . . xn

]T
. Then,

λ′Y = L(G′)Y

=

[
L(Gn) + In −v
−vT n

][
X

xn+1

]
[
λ′X

λ′xn+1

]
=

[
L(Gn)X +X − vxn+1

−vTX + nxn+1

]

Case 1 : X = v and xn+1 = 1

That is, Y is an all one vector. Hence λ′ = 0 and also L(Gn)v = 0

Case 2: xn+1 = 0

Then, L(Gn)X = (λ′ − 1)X and vTX = 0. Then,
∑n

i=1 xn = 0. Hence, if λ is an eigenvalue

of L(Gn) whose corresponding eigenvector X is orthogonal to the all-one vector v, then λ+1

is an eigenvalue for L(G′). Since vTX = 0, λ cannot be 0. Hence, if λ2, λ3, . . . , λn are

eigenvalues of L(Gn), then λ2 + 1, λ3 + 1, . . . , λn + 1 are eigenvalues of L(G′n).

The remaining one eigenvalue is obtained using the following corollary.

Corollary[13.14 [6]] Let X be a graph on n vertices, then λn(X) ≤ n. If the complement

graph X̄ has c components, then the multiplicity of n as an eigenvalue of the Laplacian L(X)

is c− 1.

The complement Ḡ′n has two connected components. Hence, the multiplicity of n+ 1 as

an eigenvalue of L(G′n) is 1.

Theorem 7.5. Let Hn be an induced subgraph formed by removing the vertices {1} ∪
{p is a prime : n/2 < p ≤ n} from the Gn. Let σ(L(Hn)) = {0, λ2, λ3, . . . , λn−k−1} , then

σ(L(Gn)) = {n, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k times

, λ2 + 1, λ3 + 1, . . . , λn−k−1 + 1}.
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Proof. If {0, λ2, λ3, . . . , λn−k−1} are the eigenvalues of L(Hn), then the Laplacian eigenvalues

of the disjoint union of the graph Hn and k isolated vertices in {p is a prime : n/2 < p ≤ n}
is {0, 0, . . . , 0︸ ︷︷ ︸

k+1 times

, λ2, λ3, . . . , λn−k−1}. Then add the vertex 1 to this disjoint union and draw an

edge between 1 and every other vertex. From Proposition 7.4., it follows that the eigenvalues

of L(Gn) are {n, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k times

, λ2 + 1, λ3 + 1, . . . , λn−k−1 + 1}.

Not only Theorem 7.5. gives a proof for Theorem 7.3., but also shows that the Laplacian

spectrum of Gn is completely determined by the induced subgraph Hn. Hence, the problem

of finding Laplacian cospectral graphs to Gn reduces to finding Laplacian cospectral graphs

to Hn. Suppose Hn and H ′n are Laplacian cospectral, then add a vertex v to H ′n which is

adjacent to all the vertices. Then add k pendant vertices which are adjacent to only v. Call

the new graph G′n, then Gn and G′n are Laplacian cospectral.

Based on the direct SageMath computations, we have the following propositions,

Proposition 7.6. For n = 1, 2, . . . , 8, Gn is DS for the adjacency, signless Laplacian and

the normalized Laplacian matrix.

Proposition 7.7. For n = 1, 2, . . . , 11, Gn is DS for the Laplacian matrix.

That is, for n = 1, 2, . . . , 11 any graph which is Laplacian cospectral with Gn is also

isomorphic to it.

The adjacency matrices of Gn can be shown to be permutationally similar to the matrices

of the form

[
0 Bn

BT
n Hn

]
. Hence, construction V can be applied to find cospectral graphs as

follows:

1. Find Cn’s which are congruent with Bn, that is, BT
nBn = CT

nCn. Then the graph G′n

corresponding to the adjacency matrix

[
0 Cn

CT
n Hn

]
is cospectral with Gn.

2. Now from among these Cn’s find the ones for which P T
1 BnP2 = Cn and P T

2 HnP2 = Hn

doesn’t hold for some permutation matrices P1 and P2. Then, G′n and Gn will be

nonisomorphic graphs.
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7.2 PET matrices

In this thesis, construction of a non-PET matrix is necessary in producing cospectral noni-

somorphic graphs. Let Mn be the set of all 0-1 matrices of order n which are PET and let

Pn be the set of all 0-1 matrices of order n for which the set of row sums is the same as the

set of column sums. Then Corollary 2.10 implies Mn ⊆ Pn, that is, Pcn ⊆Mc
n. Hence, |Pcn|

is a lower bound for |Mc
n|, that is, for the number of n× n 0-1 non-PET matrices.

n |Mn| |Pn| |Mc
n| |Pcn| frac. of |Pcn| frac. of |Mc

n|
1 2 2 0 0 0 0
2 12 12 4 4 0.25 0.25
3 248 248 264 264 0.52 0.52
4 15428 18884 50108 46652 0.71 0.76
5 - 5651872 - 27902560 0.83 at least 0.83

Table 7.1: non-PET matrices

The numbers in Table 7.1) are obtained by direct SageMath computations. SinceMc
n =

Pcn for n = 1, 2, 3, we have

Proposition 7.8. Let M be a 0-1 matrix of order n ≤ 3. Then, M is non-PET if and only

if the set of row sums of M is different that the set of column sums of M .

The following lemma gives a relation between a non-PET matrix and its submatrices.

Lemma 7.9. Let M be a square matrix of order n and let ith row of M be a permutation of

jth column for some 1 ≤ i, j ≤ n. If the submatrix M [i, j] is non-PET, then M is non-PET.

Proof. Suppose on the contrary, that M is PET. Then, P TMQ = MT holds for some

permutation matrices P and Q. Then every row of M is a permutation of some column.

Consider the permutation association {(i, σP (i))}ni=1 where ith row is a permutation of σP (i)th

column. The way they are permuted is given by Q. For some index i0, remove the row-

column pair (i0, σ(i0)) to obtain a submatrix M [i0, σ(i0)]. This submatrix still carries the

permutation association {(i, σ(i))}i 6=i0 , that is, for every i 6= i0 and i ∈ {1, . . . , n} every row

of M [i0, σ(i0)] is a permutation of some column given by the matrix Q. Hence, M [i0, σ(i0)]

is PET.
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Hence, there exists exactly n submatrices of order n− 1 which are PET. This proves the

lemma.

7.3 Open problems

Problem 7.10. Prove or disprove:

1. Construction V cannot produce a cospectral mate for Natural Number Network.

2. Natural Number Network is DS for adjacency, Laplacian, signless Laplacian and the

normalized Laplacian.

Problem 7.11. 1. Give a combinatorial characterization for non-PET square matrices.

Do the same for matrices with no zero rows and also for the matrices with no zero rows

as well as no zero columns.

2. Show that the fraction of non-PET matrices of order n → 1 as n→∞.

We gave a few candidates for the matrices satisfying C/M/T property which resulted

in the constructions I-A, II-A, I-B, I-C, I-D and I-E. We showed construction I-D is trivial

extension of the cancellation law and construction I-E produces cospectral but isomorphic

graphs. The isomorphism results can be applied II-B, II-C and II-E which we left as an open

problem, since characterization of property η2 was not obtained for these constructions.

Problem 7.12. 1. Give complete characterization of bipartitioned matrices satisfying C/M/T

property.

2. Give complete characterizations of property η1 and η2 for each construction.

We also discussed the idea of unfolding a multipartite graph to obtain cospectral noni-

somorphic graphs and gave some sufficient conditions for their isomorphism.

Problem 7.13. 1. Find necessary and sufficient conditions for the graphs constructed

using construction III-B to be isomorphic.

2. Study 0-1 matrices that are similar to their transpose via an involutory or orthogonal

matrix
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