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GENERAL REMARKS

'H spectra were recorded on a JEOL ECX 400 MHz or a Bruker 400 MHz spectrometer
unless otherwise specified using an internal tetramethylsilane (°H = 0.00). Chemical
shifts are expressed in ppm units downfield to TMS.

3C spectra were recorded on a JEOL 100 MHz or a Bruker 100 MHz spectrometer
unless otherwise specified using an internal tetramethylsilane (°C = 0.0).

Chemical shifts (0) are reported in ppm and coupling constants (J) in Hz.

Mass spectra were obtained using HRMS-ESI-Q-Time of Flight LC-MS (Synapt G2,
Waters) or MALDI TOF/TOF Analyser (Applied Biosystems 4800 Plus).

FT-IR spectra were obtained using Bruker Alpha-FT-IR spectrometer and reported in
cm.
All reactions were monitored by Thin-Layer Chromatography carried out on precoated
Merck silica plates (F254, 0.25 mm thickness); compounds were visualized by UV light
and different stains of a TLC plate.

All reactions were carried out under nitrogen or argon atmosphere with dried solvents
under anhydrous conditions and yields refer to chromatographically homogenous
materials unless otherwise stated.

All evaporations were carried out under reduced pressure on Biichi and Heildoph rotary
evaporator below 40 °C unless otherwise specified.

Silica gel (60-120) and (100-200) mesh were used for column chromatography.
Materials were obtained from commercial suppliers and were used without further
purification.

Preparative HPLC purification was performed using high performance liquid
Chromatography (HPLC) with C-18 preparative column (21.2 mm % 250 mm, 10 um;
Kromasil®C-18).
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ABSTRACT

Synthesis of MAG and lyso-PS Lipids with Varying Lipid Tails (July 2021)

Minhaj S. Shaikh, M. Sc., University of Pune

Chair of Research Advisory Committee Dr. Siddhesh S. Kamat

My doctoral research described in this thesis involves the synthesis, and characterization of
mono-acyl glycerol (MAG) and lysophosphatidylserine (lyso-PS) lipids with varying lipid
tails. PHARC syndrome is a neurodegenerative disease abbreviated based on its symptoms 1i.e.
polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract. It has been attributed to
a mutation in the abhdl2? gene which encodes for lysophosphatidylserine (lyso-PS) lipase
ABHDI12. ABHDI2 is an integral membrane enzyme which a member of the serine hydrolase
family. Mice models for PHARC i.e. ABHDI12 knock-out (KO) mice exhibits locomotor
defects, microglial activation, and accumulation of lyso-PS in the cerebellum. Biochemical
characterization and pathways downstream of lyso-PS is unclear in PHARC syndrome. The
diastereomeric complexity in the lyso-PS structure has caused its commercial paucity to study
its biological role in detail. Hence, in this study, I have chemically synthesized a library of
lyso-PSs chain lengths such as medium, long, and very-long-chain fatty acyl chains to
investigate their role in (neuro) immunological processes. We used these lipids to understand
the enzyme kinetics of ABHD12. We found that ABHD12 is highly stereospecific and strongly
prefers the (R) configuration of Me-lyso-PSs over (S) analogs. Next, we used our synthetic
Me-lyso-PS library to investigate the pathways that can be triggered through lyso-PS signaling.
We measured release of calcium, cytokines, and histamine that were involved in the immune
cell activation and phosphorylation pathways in immune cells as a function of lyso-PS
treatment. VLC lyso-PS have been found to elicit immune responses in the form of heightened
cytokine release via the toll-like receptor 2 (TLR2) signalling pathway. We have also observed
that upon LC lyso-PS stimulation, there is an increase in the cytosolic Ca**, cAMP, and
phospho-ERK levels which we hypothesize might be due to the activation of a yet unknown
GPCR. This study suggests the intricate balance between LC and VLC lysoPS which influence
significant biological processes via specific receptors. Currently, I have synthesized a library of

(R) (Me-lyso-PS) with unsaturated fatty acid chains. However, using this synthetic strategy we



are synthesizing bifunctional Me-lyso-PS lipid probes in an attempt to map the interacting

partners of lyso-PS using chemical proteomics.



CHAPTER 1

INTRODUCTION



In the living organism, lipids are energy-rich organic substances and hydrophobic molecules
which are soluble in organic solvents (Alcohol, Ether, Chloroform, Acetone, and Benzene,
etc.)!. Like any organic molecule, it is made up of hydrogen, carbon, nitrogen, oxygen, and
phosphorous. Phospholipids are one such class of lipid molecules. Predominantly,
phospholipids have three main components; a hydrophilic head group, glycerol backbone and
hydrophobic fatty acyl chains. Glycerol is trihydric alcohol i.e., with hydroxyl groups
substituted at 1, 2, and 3 positions of the propane molecule. The three carbon atoms of glycerol
are numbered stereospecifically which is denoted as ‘sn’. Based on the degree of unsaturation
in the fatty acyl chain, they are classified into either saturated or unsaturated fatty acids. The
fatty acids esterified at sn-1 and 2 positions of a glycerol backbone, and sn-3 positions are
esterified with different head groups which results in various phospholipid species (X) such as
(PE), (PI), (PS),

phosphatidicacid (PA), phosphatidylcholine (PC), phosphatidylglycerol (PG) (Figure 1.1) %-.

phosphatidylethanolamine phosphatidylinositol phosphatidylserine

H
] +
X P Y o (g
R™™Q o OH coo
£ Ethanolamine
R__O__X__0 10X Glycerol Serine
\n/ v, OH
@3 3
(0] NG
phospholipids
CHy OH OH
OH (I? E{\;I}I—CH:,,
CH
P 3
R)\:/\O’(I);'OH OH
NH, Choline OH
sphingosine 1-phosphate lonositol

Figure 1.1. Structure and classification of phospholipids and sphingosine 1-phosphate. X
represents the head group of phospholipids

Lysophospholipid (lyso-PL) have recently become the focus of special attention since it was
discovered that lysophosphatidylserine (lyso-PS) are potent hormone-like signalling lipids.
Lyso-PS have a common structure consisting of hydrophilic head portion of phosphate group
and hydrophobic tail portion of fatty acid chain. Naturally occurring lyso-PS has two chiral

centers such as 1) (R) configuration of sn-2 hydroxyl group of a glycerol backbone 2) Phospho-
4



L-serine head group on Co-carbon atom. It shows amphiphilic properties due to the
hydrophobic (fatty acid) and hydrophilic (glycerophosphoserine) head group. Lyso-PS induce
several cellular responses through the interaction with specific receptors. To date, three kinds
of specific receptors (GPR34, GPR174, and P2Y10) have been identified for lyso-PS
respectively. In biological systems, lyso-PS are produced as a result of the action of
phospholipase enzymes namely Phospholipase Al (PLA1), Phospholipase A2 (PLA2) on
phosphatidylserine. PLA1 and PLA2 hydrolytically cleave acyl moiety of PS at either the sn-1
or sn-2 position producing sn-1 lysophospholipids and sn-2 lysophospholipids as products
respectively. (Figure 1.2)*.

sn-1 Fatty acid-O-CH, pLa, Fattyacid-O-CH,

sn-2 Fatty acid-O-CH 0 —2> HO-CH o)
Il | |l

sn-3 CHZ-O-FI’fO-Head group CHZ-O-IID*O—Head group
OH OH

Phospholipids sn-1 lysophospholipid

PLA,

HO-(]:H2
Fatty acid-O-CH 0

||
CHZ-O-E’*O-Head group
OH

sn-2 lysophospholipid

Figure 1.2. Enzymatic action of phospholipids and site of action of phospholipase

Lyso-PLs are the family of simple phospholipids in which one acyl chain is lacking and only
one hydroxyl group of glycerol backbone is acylated (Figure 1.3). Lyso-PL has only one fatty
acid group which is esterified to either sn-1 or sn-2 hydroxy group of a glycerol backbone. The
most  familiar  lysophospholipids are  lysophosphatidyl-ethanolamine  (lyso-PE),
lysophosphatidyl-inositol (lyso-PI), lysophosphatidyl-serine (lyso-PS), lysophosphatidic-acid
(lyso-PA), lysophosphatidyl-choline (lyso-PC), lysophosphatidyl-glycerol (lyso-PG), and
sphingosine 1-phosphate (S1P) (Figure 1.3). Defect in lyso-PL metabolism is often associated
with various human diseases like cancer, neurological and inflammatory diseases. Among
them, lyso-PA, and SIP are the best-studied examples for this lipid class and are also well-
characterized over the past two decades. However, lyso-PA and S1P are well-established

signalling biological lipid mediators in pathophysiology and their protein interactors have been
5



exploited as drug targets. Except for lyso-PA and S1P, other lyso-PL are not very well
characterized as lyso-PS molecules. Recently, lyso-PS have emerged as an extra class of
signalling lysophospholipids that showcased biological importance in the mammalian central
nervous system (CNS) and immune system. As my thesis work describes in the coming
chapter, 1 have developed methodologies, synthesized, and characterized numerous lyso-PS

lipids with varying lipid tails to investigate lyso-PS metabolism and functions’®.

0
)]\ Fatty Acid
0~ R

o)

Glycerol HO{ h
O—P—0-X

|
OH
Phosphate head group
o~ RN NH, OH
TN AN AR
lyso-PA I ~NY S£-OH
lyso-PC o
lyso-PS lyso-PlI

Figure 1.3. General chemical structure of lysophospholipids and the classification of
lysophospholipids  (R)-2-hydroxy-3-(phosphooxy) propyl fatty acid with the different
alternative head group represented by X: lysophosphatidicacid (lyso-PA) with acid,
lysophosphatidylcholine (lyso-PC) with choline, lysophosphatidylserine (lyso-PS) with serine,
lysophosphatidylinositol (lyso-PI) with inositol. X represents the head group of
lysophospholipids

1.1 Biological Functions of Lysophosphatidylserine (Lyso-PS)
Lyso-PS has been a potent bioactive lipid that induces several cellular responses in vitro and in

vivo (Figure 1.4)*!1°. Importantly, lyso-PS has a crucial role in biological processes like mast

11-16

cell degranulation’' '°, inducing the chemotactic migration of human glioma cells and murine

19-23

fibroblast!”!8, inhibition of lymphocyte proliferation'®?}, and macrophages clearance of

apoptotic cells®*.
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o
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Figure 1.4. Biological role of lyso-PS. Lyso-PS mediates degranulation of mast cells,
stimulation of chemotactic migration in glioma cells, suppresses T-cell proliferation, and acts

as a mediator of macrophage-mediated phagocytosis.

1.2 Metabolism of Lyso-PS
o/B hydrolase domain (ABHD) protein family was first identified in 1992 and was found to be

a part of the most diverse and universal protein family which include esterase, protease, lipase,
and epoxide hydrolase, also it is a part of lyso-PS metabolizing enzymes. It has been showing
lyso-PS majorly biosynthesized in CNS from PS precursors through a PS lipase activity. o/
hydrolase domain-containing protein 16 (ABHD16A) was first discovered in 2014 and has
been shown to be highly expressed in the mammalian CNS and immune cells. Biochemical
studies have shown that ABHD16A is the integral membrane enzyme that acts as a major PS
lipase in CNS and primary macrophages. Another integral membrane lipase is o/p hydrolase
domain-containing protein 12 (ABHDI12) that hydrolysis of lyso-PS lipids. In short, the
ABHDI16A enzyme hydrolyses phosphatidylserine and gets sn-1 lyso-PS which is further
hydrolyzed again by the ABHD12 enzyme to give glycerophosphoserine (GPS) head group
and free fatty acid (FFA) (Figure 1.5)>7.




OZOH Ox_OH OxOH
NH g\:NH ;NH O
? ABHD16A 2 ’ PR

Os :o O <O ABHD12 O\\P:O + R OH
6 OH -R,COOH 6 OH 6 OH _
o] L/ L/ L Free Fatty Acid
RZ)J\O O\H/R1 HO O\H/R1 HO OH
o (0]
Phosphatidylserine Lysophosphatidylserine Gycerophosphoserine

Figure 1.5. General scheme for the metabolism of lysophosphatidylserine

ABHDI12 is a ~45 kDa transmembrane glycoprotein and is highly expressed in murine tissue
and cells, including the brain, microglia, macrophages, and white adipose tissue. Of note,
ABHDI2 showed MAG lipase activity in which ABHDI12 robustly hydrolyze the
endocannabinoid 2-arachidonoyl glycerol (2-AG). The three serine hydrolases, namely
monoacylglycerol lipase (MAGL) and the a/f-hydrolase domain-containing protein 6
(ABHD6) and ABHD12, approx. 99% of brain 2-AG hydrolase activity shows in CNS?*?. The
previous report showed MAGL is a soluble membrane protein that is associated with
cytoplasmic orientation. ABHD12 and ABHDG6 are integral membrane proteins associated with

luminal/extracellular orientation and cytoplasmic orientation (figure 1.6)°.

Lumenal/
Extracellular

D

Cytosolic

Figure 1.6. Cartoon model representation of 2-AG hydrolases in mouse brain

We recently demonstrated that ABHD12 is an integral membrane enzyme localized at the

cellular compartment (ER membrane) where phosphatidylserine lipids and very-long-chain

8



(VLC) fatty acids are biosynthesized in major forms. Also, our data supported that ABHD12
prefers VLC lipids, it functions as a lyso-PS lipase, and lyso-PS is also constantly
biosynthesized in ER membrane as well>'. Our group recently quantified oxidized PS by LC-
MS analysis. Importantly, we showed ABHD12 hydrolyzed oxidized PS to get sn-1 lyso-PS
and then further hydrolyzed by ABHDI12 to yield free fatty acid and glycerophosphoserine™?.
More recently, our group demonstrated ABHD12 prefers VLC lyso-PSs as substrates and also
showed VLC lyso-PS easily produces a pro-inflammatory response from macrophages through
Toll-like receptor 2 (TLR2)-dependant pathway resulting in neuroinflammation®’. Our finding
emphasizes the new aspect of the recent report PHARC subject that showcased a strong
correlation between VLC lyso-PS activity and neuroinflammation. Disruption in ABHDI12
activity increased level of lyso-PS result into PHARC subject. Blankman ef al. have shown that
very-long-chain (VLC > C22) lyso-PS accumulation in the ABHDI12 knockout mice brain
leads to neuroinflammation and neurobehavioral disturbances seen in human PHARC subjects

(Figure 1.7).

Y d ’Y& I
Macgophages mj\/o-z-o 7

NHg* Brain
lyso-PS \
l AB><12 (Neuro)inflammation, PHARC
0
nJLon
FFA

Figure 1.7. Mutation in ABHD12

Recently, the ABHD12 knockout mouse showed massive accumulation of lyso-PS lipid inside
the brain. In this study, they observed the accumulation of lyso-PS significantly increase in
particular very-long-chain (VLC > C22) carbon chain length C22 and C24 chain length
elevated (Figure 1.8) in the brain of ABHD12 knockout mice level®.
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Figure 1.8. VLC lyso-PS accumulate in ABHD12 knockout mice brain®

PHARC disease was first time reported in a Norwegian family and found in both children and
adult mutation in ABHD12 cause neurodegenerative disease. Also, homozygosity mapping
was done and found particular gene is responsible for the disease, this gene was an ABHD12
gene. The symptoms of PHARC have seemed in late childhood or early teenage years and
worsen progressively with age. The PHARC patient has characteristic symptoms of hearing
loss, demyelination, and cerebellar ataxia. Towards this, to date, five well-defined ABHD12
mutations were identified in a patient with PHARC disease, and all those anticipated to lead to
the complete loss of ABHD12 expression. Untargeted lipidomics has shown high levels of
VLC lyso-PS in ABHDI12 knockout mice brain, suggesting the role of the lyso-PS pathway in
PHARC like symptoms displayed in ABHD12 knockout mice brain. Accumulation of lyso-PS

in the brain of ABHDI12 knockout mice contributes to neuroinflammation and PHARC

)34~37

behaviour (Figure 1.9
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Figure 1.9. Symptoms of PHARC syndrome in humans*¢

ABHDI12 hydrolyzed various lysophospholipid species and the highest hydrolysis activity was
observed in lyso-PS and 1-monoacylglycerol (MAG) lipids (Figure 1.10) but did not display
significant activity for doubly acylated glycerol backbone containing lipids (e.g. DAG, PA, PC,
PE, PI, PG, PS)*.
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Mammalian ABHDI12 can use long-chain lipid-containing mono-1-(fatty) acyl-glycerol (1-

MAG) and mono-2-(fatty) acyl-glycerol (2-MAG) lipid substrate at the comparable enzymatic

role but mammalian ABHD12 does not use phospholipid, diacylglycerols, and triacylglycerol

lipid as a substrate. The substrate scope of the enzyme is limited to only four lipids as lyso-PS,

oxidised-PS, 2-MAG, and 1-MAG.
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Figure 1.11. Mammalian ABHD12 catalyzed lipase reaction
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1.3 Direction of research

Given the structural diversity and limited commercial availability, we took it upon ourselves to
chemically synthesize the library of lyso-PS lipids with varying lengths of the fatty acid chain
of medium to very-long-chain of lyso-PS. Only a few lyso-PS, MAG lipids are commercially
available and to date, nobody has synthesized a library of lyso-PS and MAG lipids. To the best
of our knowledge very-long-chain lyso-PS has not been tested, to date against ABHD12 except
accumulation study in ABHD12 knockout mice brains. However, because of the lack of
detailed structural activity relationship (SAR) of these lyso-PSs lipids, it remains unclear about
the diverse role of lyso-PS in signalling functions and how these functions affect, balance,
and/or modulate an immunological process. But, lyso-PS synthesis is extremely challenging
compared to MAG lipids. We, therefore, initially started the synthesis of a relatively simple
MAG library in order to optimize the synthetic routes that can help us to build the library of

lyso-PS lipids, and then, moved to synthesize the more complex lyso-PS library.

As a part of this thesis, I developed methodologies, to synthesize physiologically relevant
biomolecules, such as mono-acyl glycerol (MAG) and lysophosphatidylserine (lyso-PS) lipids
with varying lipid tails, and study their roles in mammalian neuro and immune physiology. I
generated a library of monoacylglycerols and lyso-PS with varying chain length species and
used them in substrate assays to show that the ABHDI2 enzyme (PHARC syndrome-
associated enzyme) prefers very-long-chain free fatty acid esterified lipids (Chapter II). I
screened and utilized several different strategies to synthesize and purify lyso-PS followed by
its structural elucidation using NMR and mass spectrometry (MS). I also utilized various
spectroscopic methods for the structural determination of unexpected products along with the
desired ones (Chapter III). I used my lyso-PS library and we demonstrated that very long-chain
lyso-PS is immune potent and it activates microglia and causes neuroinflammation in the brain.
On the other hand, we found that long-chain lyso-PS species acted through some unidentified
receptors and triggered calcium influx, ERK1/2 activation, and cAMP synthesis in the immune
cells. (Chapter IIl). I also generated a library of lyso-PS with unsaturated fatty acid chains and
those libraries will be testing for biological assay (Chapter IV). On similar lines, currently, we
are working on to generate lyso-PS probes with biorthogonal handles and this bifunctional
lyso-PS probe in tandem with a recently established MS-based chemoproteomics platform can
help in the identification of unknown lyso-PS protein and/ or receptors. To identify such

proteins, we have prepared a set of probes that contains diazirine photoreactive group, an
12



alkyne handle, and the binding group as fatty acid with varying chain lengths and degree of
unsaturation including palmitic Acid (C16:0), stearic Acid (C18:0), and oleic Acid (C18:1).
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CHAPTER 2

SYNTHESIS OF 1-MAG LIPIDS FOR BIOCHEMICAL
CHARACTERIZATION OF ABHD12

Adapted with permission from: Journal of Biological Chemistry, 2018; 293 (44),
pp 16953-16963 https.//doi.org/10.1074/jbc.RA118.005640
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2.1 Introduction and Classification of MAG Lipids

MAG lipids in which one acyl chain is lacking and only one hydroxyl group of glycerol
backbone is acylated (Figure 2.1). MAG lipid has only one fatty acid group which is esterified
to either sn-1 or sn-2 hydroxyl group of a glycerol backbone depends on which fatty acid is
esterified. Fatty acid esterified with sn-1 hydroxyl group of glycerol backbone which is called
1-MAG lipid and fatty acid esterified with the sn-2 hydroxyl group of glycerol backbone which
is 2-MAG lipid.

Monoacylglycerol Structure
1-MAG 16:0 iy A
-M : RIS NP NN NN NN
HO (0]
29
HO_ sn-3
(o]
2-MAG 16:0 Ho;ﬂn_;)\o

Figure 2.1. Structure of 1-MAG and 2-MAG lipids

In vitro, MAG lipids hydrolysis study has been shown in previous literature by ABHD12
enzyme. A mammalian ABHD12 substrate profiling study has been done with 1-MAG and 2-
MAG lipid substrate at comparable enzymatic rates. This substrate profiling study was done at
a single substrate concentration (25 to 100 uM) for the only medium (C8 to C12) and long-
chain (C14 to C20) fatty acid MAG substrate but VLC (> C22) fatty acid MAG substrate
profiling studies are lacking. Because only a few 1-MAG lipids are commercially available
these are listed below. Also, VLC containing 1-MAG lipids is not commercially available

because these are very expensive for such types of studies.

In 2012, Navia P. et. al. has performed an hABHD12 substrate profiling study. In this study,
they showed that mammalian ABHD12 hydrolysis activity both 1-MAG vs 2-MAG lipid at
comparable rates with slightly preferred 1-MAG lipid over 2-MAG lipid (Figure 2.2). For ex.
hABHDI12 preferred 1-arachidonoyl-glycerol (1-AG) compare to 2-arachidonoyl-glycerol (2-
AG). Also, ABHDI12 did not hydrolyze di-or triglyceride lipids®.
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Table 2.1

Commercial available MAG lipids

Saturated 1-MAG lipids Unsaturated 1-MAG lipids
C18:1
C10:0
C18:2
C12:0
C14:0
Cl16:0

W * %k

0 5 10 15
Glycerol production
[nmol/mg/min]

Figure 2.2. Substrate profile assay of 1-MAG and 2-MAG lipids against hABHD12

2.2. Synthesis of 1-MAG Lipids for Biochemical Characterization of
ABHD12

Given the lack of commercial sources, we decided to perform a meticulous substrate profiling
study of mammalian ABHDI12. Concerning, we decided to develop a synthetic route to
generate 1-MAG lipids of varying fatty acid chain lengths, and differing extent of unsaturation,
to assess broadly the 1-MAG substrate preference of mammalian ABHD12. We wanted the

synthesis route to be relatively easy, possible at a small scale (low milligram) using
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commercially available free fatty acids, and able to generate good reaction yields. Towards

this, we developed a two-step synthetic scheme (Scheme 2.1).

EXPERIMENTAL SECTION:

O

HO/\/\OJ\R

OH R = Fatty acid chain

Mono-1-(fatty) acyl-glycerol (1-MAG)

2.3 Result and Discussion:

o) EDC-HCI (1.0 equiv) 0] Amberlyst-15 0O

HO i
R)J\OH N /EAO DMAP (0.25 equiv) RJ\O/\/\O 0.5 equiv RJ\O/\/\OH
CH,Cl, o# MeOH OH
0°Ctort,16h rt, 16 h

1.0 equiv

Scheme 2.1. Synthetic route for generating 1-MAG lipids from 1a’ to 1p’.

We have done synthesis in two steps and both steps are well-reported synthetic reactions. In
the first step, I prepared 1, 2-isopropylidene glycerol and esterified of a free fatty acid form
(C10 to C24), and then we used 1-(3-dimethylamino propyl)-3-ethyl carbodiimide
hydrochloride (EDC-HCI) as a coupling reagent!!. The second step involved the deprotection
of the isopropylidene group using the Amberlyst-15 catalyst to yield the corresponding 1-MAG
lipid of interest®®. All reactions were performed on a 10 — 20 mg scale depending on the cost
and availability of the starting free fatty acid, and these reactions afforded yields from 50 —
94% (Table 2.2).

2.4. Substrate Profiling Study against Recombinant hABHD12

All substrate assays was performed by Alaumy, a project student in our lab. Having
synthesized 16 1-MAG lipids in hand we decided to perform enzyme kinetics studies on
recombinant hABHD12 against this lipid substrate library. Regarding this, firstly we have

accessed the relationship between enzyme concentration and enzymatic rate.
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Table 2.2

Reaction Yeild of 16 1-MAG Lipids

Types of Scale of
Chain FFA reaction
Sr.No 1-MAG lipids length (mg) % (Yield)

la’ Decanoic Acid 10:0 Medium 30 65
2y’ Dodecanoic Acid 12:0 Medium 30 65
3¢ Myristic Acid 14:0 Long 30 72
44’ Palmitic acid 16:0 Long 20 94
5e’ Steric acid 18:0 Long 20 71
6f Oleic Acid 18:1 Long 20 71
g a-Linolenic Acid 18:3 Long 10 83
8h’ Arachidic Acid 20:0 Long 20 89
o Eicosenoic Acid 20:1 Long 20 50
107° Arachidonic Acid 20:4 Long 10 50
11k’ Behenic Acid 22:0 Very long 20 77
12r Erucic Acid 22:1 Very long 20 75
13m’ Docosatetraenoic Acid 22:4 Very long 10 50
14n’ Docosahexaenoic Acid 22:6 Very long 10 80
150’ Lignoceric Acid 24:0 Very long 20 62
16p’ Nervonic Acid 24:1 Very long 20 50

For this study, we purchased commercially available C18:1 lyso-PS and C18:1 2-MAG used as
a substrate profiling study. We used C18:1 lyso-PS, C18:1 1-MAG, and C18:1 2-MAG as
substrate (all 100 pM) and assayed them against varying concentrations of WT hABHDI12
transfected HEK293T membrane lysates. We found a good linear correlation between the
enzyme concentration and substrates (Figure 2.3). We observed a good linear correlation
between the enzyme concentration and all three substrates. Based on this study we chose 20 pg
of membrane lysate. Towards this, we evaluated the relation between enzymatic rate and time
of the assay. For this study again we used the same C18:1 lyso-PS, C18:1 1-MAG, and C18:1
2-MAG as substrate (all 100 pM) and assayed them against 20 pg of WT hABHDI12
transfected HEK293T membrane lysates with different time (0-1 h) (Figure 2.3). Again, we
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observed a good linear correlation between the enzyme rate and time of the assay up to 1 h of
this lipase assay. After established the suitable condition we chose 20 pg of membrane lysate

and time 30 min. As result, we quantified the release of free fatty acids in the LC-MS

method?!.

124 12
© C18:1 lyso-PS © C18:1 lyso-PS
< C18:1 1-MAG o C18:1 1-MAG
—_ © C18:1 2-MAG c o C18:1 2-MAG
£ 8 £ g
5 £
£ £
g g
£ s 2
Q 4 e 44
4 c: _ % -
=
0 y T T y ) 0 v v y
0 10 20 30 40 50 0 20 40 60
Lysate (ug) Time (mins)

Figure 2.3. Optimization of wild-type hABHD12 lipase activity assay

Having demonstrated protocol assay conditions for enzyme kinetic studies then we have
assayed both mock and wild-type hABHD12 against the 1-MAG substrate library at different
substrate concentrations (0-400uM). We calculated the enzymatic rate for wild-type hABHD12
for a specific concentration of lipid got by subtracting the corresponding mock rate at that
concentration for that lipid and the corrected wild-type hABHDI12 enzymatic rate at different
substrate concentrations for a specific lipid was plotted and fit to a classical Michaelis-Menten
Kinetics equation. In a nutshell, we found hABHD12 prefers very-long-chain containing 1-

MAG lipids from all kinetic constants, in addition not only Vmax but also Ky, value (Table 2.3).
Based on kinetic constants for the saturated fatty acid 1-MAG lipids we have found
Vmax = C24:0 > C22:0 > C18:0 > C16:0>C14:0 > C12:0 > C10:0

Kn=0C24:0 < C22:0 < C18:0 <C16:0 <C14:0 <C12:0 <C10:0
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Table 2.3

Kinetics for the 1-MAG lipid substrates tested in vitro against recombinant

human ABHD12
Lipid Vmax Kn
species (nmol/mg protein/min) (nM)
1-MAG species

C10:0 0.14+£0.02 144 + 14
C12:0 0.16 £0.03 129 +21
C14:0 0.38 +0.04 119 £ 22
Cl16:0 32+£0.2 117 £21
C18:0 5.1+0.3 103 +19
C18:1 56+0.4 106 + 15
C18:3 54+0.3 109 + 15
C20:0 12.0+0.8 91 £11
C20:1 12.3+0.9 86+ 14
C20:4 12.6 0.9 91 £ 12
C22:0 157+1.3 72+ 12
C22:1 156+1.2 75+ 13
C22:4 15.1+0.8 78 £8
C22:6 149+14 79+9
C24:0 17.7+1.5 66 +9
C24:1 179+ 1.8 61 +£8

When we compared 1-MAG lipids for particular chain lengths we found unsaturation of 1-

MAG lipids (eg. for the C20:0, C20:1, and C20:4 group or the C22:0, C22:1, C22:4, and C22:6

group) doesn’t affect the kinetic constants of ABHDI12. From this study, we concluded that
hABHDI12 prefers VLC 1-MAG lipids (figure 2.4).
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Figure 2.4. Enzyme kinetic studies with recombinant hABHD12

After successful 1-MAG substrate profiling studies, we bought three commercially available 2-
MAG lipid substrates with increasing fatty acid chain length and have been done them against
recombinant hABHD12. Nevertheless, for 2-MAG lipids, we found that hABHD12 prefers
C20:4 > C18:1 > C16:0 from all the kinetic constants for these lipids. As we have observed
consistent with the enzyme kinetics data from 1-MAG lipid profiling substrates (Table 2.4).
We also bought three commercially available lyso-PS lipid substrates and we assayed them
against recombinant hABHD12. As only C16 and C18 fatty acid chain length lyso-PS lipids
are commercially available. However, in this case, we found that hABHD12 prefers C18:0 and
C18:1 lyso-PS lipids in comparison to C16:0 lyso-PS as a substrate. Despite this, we didn’t see
any difference in the kinetic constants C18:0 and C18:1 lyso-PS (Table 2.5). In short, we
concluded that the hABHDI12 preference order is lyso-PS > 1-MAG > 2-MAG (Figure 2.5).

18,

© C18:1 lyso-PS
15/ © C18:1 1-MAG
© C18:1 2-MAG

Rate (nmol/mg/min)

0 100 200 300 400
Substrate (uM)

Figure 2.5. Enzyme kinetic study with lipid substrates against recombinant hABHD12
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Table 2.4

Kinetics for the 2-MAG lipid substrates tested in vitro against recombinant

human ABHD12

2-MAG species

Kinetic constants for the lyso-PS lipid substrates tested in vitro against

Cl16:0 23+04 148 + 31

C18:1 3.6£0.5 129 + 24

C20:4 6.8 +£0.5 95 £ 17
Table 2.5

recombinant human ABHD12

Lyso-PS species

Cl16:0 7.5+0.7 87+ 14
C18:0 14.8+14 73 £12
Cl18:1 143 +£0.8 74 £11

In addition to this, we tested the membrane lysates from S246A ABHD12 transfected HEK293
cells, mock or wild-type ABHD12 tested against 1 MAG lipids at 100 uM and found negligible

activity S246A hABHD12 mutant against any 1-MAG lipid substrate compared with wild-type

ABHDI12 (Figure 2.6).
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Figure 2.6. Enzymatic lipase assay for membrane lysate from Mock, wild-type, and S246A
ABHDI12

2.5 Substrate Profiling Study against Endogenous ABHD12 from Mouse

Brain

After successfully enzyme kinetic study against recombinant hABHD12 then we decided to do
an assay with 1-MAG lipid substrate against endogenous mammalian ABHD12. The previous
report has shown mouse brain membrane lysate belongs to three enzymes are
monoacylglycerol lipase (MAGL), ABHD12, and ABHD6 which does hydrolysis of MAG
substrates. Fortunately, an inhibitor for both MAGL (JZL 184: MAGL inhibitor)*, and
ABHD6 (KT195: ABHD6 inhibitor)*’ are available. We treated wild-type and ABHDI12
knockout brain lysates with the inhibitors (37 °C, 1 h, 1 uM each), and these inhibitor-treated
brain membrane lysates were tested against the 1-MAG lipid substrates library. We found
endogenous ABHD12 of mouse brain exhibited the best catalytic activity for VLC- 1-MAG
lipids in the group of 1-MAG lipid substrates (Figure 2.7).
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Figure 2.7. Enzymatic assay of 1-MAG lipids with endogenous mouse brain ABHD12

2.6 Conclusion

In a nutshell to describe, we have successfully synthesized the 1-MAG lipid library and we
found recombinant hABHDI12 prefer vary long-chain 1-MAG lipid. Also endogenous
ABHDI12 of the mouse brain displayed the best catalytic activity for VLC-1-MAG lipids.

2.7 Experimental Section:

2.7.1 Synthesis and Characterization Data

General procedure (for reaction 1) - To a round-bottomed flask with the fatty acid (1.0 equiv)
were added 1, 2- isopropylidene glycerol (1.0 equiv), CH2Cl, and N,N-dimethyl-4-amino
pyridine (DMAP 0.25 equiv ) and 1-(3-dimethylamino propyl)-3-ethyl carbodiimide
hydrochloride (EDC-HCI, 1.0 equiv) were added at 0 °C. After stirring the mixture for several
hours (16 h) by monitoring reaction progress with TLC, the reaction was quenched with
saturated NaHCOj extracted three times with CH>Cl,. The combined organic layer was dried
over Na»SQs, filtrated, and concerted in vacuo. The residue was purified by column
chromatography using 5% ethyl acetate/ hexane as an eluent to afford corresponding fatty acid

ester’s.
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General procedure (for reaction 2)- To a solution of fatty acid ester (1.0 equiv) in MeOH,
Amberlyst-15 (H" form, 0.5 equiv) was added, and the whole mixture was stirred for 16 h at
room temperature. After completion of the reaction (TLC analysis), amberlyst-15 was filtered
off and the solvent of the filtrate was evaporated under reduced pressure. The residue was
purified by column chromatography using 40% ethyl acetate/ hexane as an eluent to afford

corresponding monoacylglyceride (Table 2.2).

Compound 1a’ — 16p’ were synthesized using from above procedures and analytical data has

shown below.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl decanoate (1a)

o)

O/\,/\O)J\/\/\/\/\
)(O

1a

According to general procedure 1la (49 mg, 100% yield ) as a yellowish white solid was
prepared from the corresponding Decanoic acid: 'H NMR (400 MHz, CDCl3) § 4.35—4.29 (m,
1H), 4.17 (dd, J = 4.72, 11.5 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.1, 8.4 Hz, 1H), 2.34
(t,J =7.4Hz 2H), 1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.25 (br, 12H), 0.88 (t, J =
6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl decanoate (1a’)

HO/\AOJ\/\/\/\/\

OH

1a'

According to general procedure 1a’ (27 mg, 65% yield) as a yellowish white solid was
prepared from the corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl decanoate (1a): 'H
NMR (400 MHz, CDCl3) 6 4.20 (dd, J = 4.7, 11.6 Hz, 1H), 4.14 (dd, J = 6.0, 11.6 Hz, 1H),
3.96-3.91 (m, 1H), 3.70 (dd, J = 3.6, 11.4 Hz, 1H), 3.60 (dd, J = 5.8, 11.4 Hz, 1H), 2.80 (s,
1H), 2.41 (s, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.66—1.59 (m, 2H), 1.26 (br, 12H), 0.88 (t, /= 6.6
Hz, 3H); *C NMR (100 MHz, CDCl3) § 174.5, 70.4, 65.3, 63.5, 34.3, 32.0, 29.8, 29.5, 29.4,
29.2,25.0,22.8, 14.2; HRMS-ESI: [M + H]" caled for C13H2604, 247.1904; found, 247.1897.
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(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl dodecanoate (1b)

)’I\/\/\/\/\/\
)(O

1b

According to general procedure 1b (47 mg, 100% ) as a yellowish white solid was prepared
from the corresponding dodecanoic acid: 'H NMR (400 MHz, CDCls) § 4.35-4.29 (m, 1H),
4.17 (dd, J = 4.67,11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.3, 8.4 Hz, 1H), 2.34 (t, J =
7.4 Hz, 2H), 1.66—1.59 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H), 1.29-1.26 (m, 16H), 0.88 (t, /= 6.6
Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl dodecanoate (1b’)

SN
HO” >0

OH

According to general procedure 1b’ (27 mg, 65% yield) as a yellowish white solid was
prepared from the corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl dodecanoate (1b):
H NMR (400 MHz, CDCl3) 6 4.19 (dd, J = 4.7, 11.6 Hz, 1H), 4.14 (dd, J = 6.0, 11.6 Hz,
1H), 3.96-3.91 (m, 1H ), 3.70 (dd, J = 3.8, 11.5 Hz, 1H), 3.59 (dd, J = 5.8, 11.5 Hz, 1H),
2.88 (s, 1H), 2.51 (s, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.66-1.59 (m, 2H), 1.26 (br, 16H), 0.88 (t,
J = 6.6 Hz, 3H); *C NMR (100 MHz, CDCl;) § 174.5, 70.4, 65.2, 63.5, 34.3, 32.0, 29.7,
29.6 (2C), 29.5, 29.4, 29.3, 25.0, 22.8, 14.2; HRMS-ESI: [M + H]" caled for CisH30Oa,
275.2217; found, 275.2209.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl tetradecanoate (1¢)

:)J\/\/\/\/\/\/\
/7)/\
)(

1c

According to general procedure 1¢ (44 mg, 91% yield) as a yellowish white solid was prepared
from the corresponding myristic acid: 'H NMR (400 MHz, CDCls) § 4.35-4.29 (m, 1H), 4.16
26



(dd, J = 4.6, 11.4 Hz, 1H), 4.11-4.06 (m, 2H ), 3.74 (dd, J = 6.2, 8.4 Hz, 1H), 2.34 (t,J = 7.4
Hz, 2H), 1.66—1.59 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H), 1.26—1.29 (m, 20H), 0.88 (t, J = 6.6
Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl tetradecanoate (1¢’)

HO/\/\OJ\/\/\/\/\/\/\
OH
1c'

According to general procedure 1¢’ (25 mg, 72% vyield) as a yellowish white solid was
prepared from the corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl tetradecanoate (1c):
"H NMR (400 MHz, CDCl5) & 4.21 (dd, J = 4.6, 11.6 Hz, 1H), 4.15 (dd, J = 6.0, 11.6 Hz, 1H),
3.94 (s, 1H), 3.70 (d, J = 11.3 Hz, 1H), 3.60 (d, J= 3.9 Hz, 1H), 2.56 (s, 1H), 2.35 (t, J = 7.4
Hz, 2H), 2.12 (s, 1H, 1.66—1.59 (m, 2H), 1.26 (br, 20H), 0.88 (t, J = 6.6 Hz, 3H); '3*C NMR
(100 MHz, CDCl3) 6 174.5, 70.4, 65.2, 63.5, 34.3, 32.1, 29.8, 29.8, 29.7, 29.6 (2C), 29.5, 29.4,
29.3,25.1,22.8, 14.3; HRMS-ESI: [M + H]" calcd for C17H3404, 303.2530; found, 303.2520.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl palmitate (1d)

)J\/\/\/\/\/\/\/\
)VO

1d

According to general procedure 1d (20 mg, 100% yield) as a white solid was prepared from the
corresponding palmitic acid: 'H NMR (400 MHz, CDCls) & 4.35-4.29 (m, 1H), 4.17 (dd, J =
4.7, 11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.2, 8.4 Hz, 1H), 2.34 (t, J = 7.4 Hz, 2H),
1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.25 (br, 24H), 0.88 (t, /= 6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl palmitate (1d’)

OH
1d'
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According to general procedure 1d’ (16 mg, 94% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl palmitate (1d): 'H NMR (400 MHz,
CDCls) 6 4.21 (dd, J = 4.6, 11.6 Hz, 1H), 4.15 (dd, J= 6.0, 11.6 Hz, 1H), 3.96-3.91 (m, 1H),
3.70 (dd, J = 3.7, 11.3 Hz, 1H), 3.60 (dd, J = 5.7, 11.4 Hz, 1H), 2.60 (s, 1H), 2.35 (t, /= 7.4
Hz, 2H), 2.17 (s, 1H), 1.65-1.59 (m, 2H), 1.26 (br, 24H), 0.88 (t, J = 6.6 Hz, 3H); °*C NMR
(100 MHz, CDCls) 6 174.5, 70.4, 65.3, 63.5, 34.3, 32.1, 29.8, 29.8, 29.8, 29.8, 29.7, 29.6 (20),
29.5,29.4, 29.3, 25.1, 22.8, 14.3; HRMS-ESI: [M + H]" calcd for Ci9H3304, 331.2843; found,
331.2847.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl stearate (1e)

O

:)J\/\/\/\/\/\/\/\/\
/ﬁo/\
)(

1e

According to general procedure 1e (20 mg, 100% yield) as a white solid was prepared from the
corresponding stearic acid: 'H NMR (400 MHz, CDCl;) & 4.34—4.29 (m, 1H), 4.17 (dd, J =
4.7,11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.1, 8.4 Hz, 1H), 2.34 (t, J = 7.4 Hz, 2H),
1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.25 (br, 28H), 0.88 (t, /= 6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl stearate (1e’)

Ho/\/\OJ\/\/\/\/\/\/\/\/\

OH

1e

According to general procedure 1e’ (20 mg, 71%) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl stearate (le): 'H NMR (400 MHz,
CDCl) 6 4.20 (dd, J=4.4, 11.5 Hz, 1H), 4.15 (dd, /= 6.0, 11.6 Hz, 1H), 3.94-3.92 (m, 1H),
3.70 (dd, J=3.7, 11.3 Hz, 1H), 3.60 (dd, J = 5.7, 11.4 Hz, 1H), 2.61(s, 1H), 2.35(t, J= 7.4
Hz, 2H), 2.17 (s, 1H), 1.64—1.59 (m, 2H), 1.25 (br, 28H), 0.88 (t, J = 6.6 Hz, 3H); 1*C NMR
(100 MHz, CDCl3) 8 174.5, 70.4, 65.3, 63.5, 34.3, 32.1, 29.8 (5C), 29.7, 29.6 (2C), 29.5 (2C),
29.4, 29.3, 25.1, 22.8, 14.3; HRMS-ESI: [M + H]" caled for C21H204, 359.3156; found,
359.3155.
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(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl oleate (1f)

)J\/\/\/\/W/\/
)(O

According to general procedure 1f (20 mg, 71.4% yield) as a yellowish semisolid was prepared
from the corresponding oleic acid: 'H NMR (400 MHz, CDCls) § 5.36-5.33 (m, 2H),
4.35-4.29 (m, 1H), 4.17 (dd, J = 4.6,11.5 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.2, 8.4
Hz, 1H), 2.34 (t, J= 7.4 Hz, 2H), 2.05-1.98 (m, 4H), 1.64—1.58 (m, 2H), 1.44 (s, 3H), 1.37 (s,
3H), 1.25 (br, 20H), 0.88 (t, J = 6.4 Hz, 3H).

1f

Synthesis of 2,3-Dihydroxypropyl oleate (1)

HO/\/\OJ\/\/\/\/:\/\/\/\/
OH
1f

According to general procedure 1f* (12 mg, 71% yield) as a yellowish semisolid was prepared
from the corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl oleate (1f): 'H NMR (400
MHz, CDCl3) 6 5.41-5.30 (m, 2H), 4.20 (dd, J= 6.0, 11.6 Hz, 1H), 4.14 (dd, J=6.0,11.6 Hz,
1H), 3.96—3.91 (m, 1H), 3.69 (dd, J = 3.8, 11.4 Hz, 1H), 3.59 (dd, J = 5.8, 11.4 Hz,1H), 2.69
(s, 1H), 2.35(t, J= 7.4 Hz, 2H), 2.07-1.99 (m, 4H), 1.74 (s, 1H), 1.65-1.59 (m,2H), 1.26-1.30
(m, 20H), 0.88 (t, J = 6.6 Hz, 3H); '3C NMR (100 MHz, CDCl) & 174.5, 130.2,129.8, 70.4,
65.3, 63.5, 34.3, 32.0, 29.9, 29.8, 29.7 (2C), 29.5 (2C), 29.3, 29.2, 27.3, 27.4,25.0, 22.8, 14.3;
HRMS-ESI: [M + H]" calcd for C21H4004, 357.2999; found, 357.2995.

(2,2-Dimethyl-1,3-dioxoalan-4-yl)methyl (9Z,127,157)-octadeca-9,12,15-trienoate (1g)

e I
< 1o

According to general procedure 1g (14mg, 100% yield) as a yellowish semisolid was prepared
from the corresponding a-linolenic acid: '"H NMR (400 MHz, CDCl3) § 5.43-5.27 (m, 6H),
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4.34-4.28 (m, 1H), 4.17 (dd, J = 4.6,11.5 Hz, 1H), 4.10-4.06 (m, 2H), 3.73 (dd, J= 6.3, 8.4 Hz,
1H), 2.82-2.76 (m, 4H) 2.34 (t, J = 7.4 Hz, 2H), 2.11-2.02 (m, 4H), 1.64-1.59 (m, 2H), 1.43 (s,
3H), 1.37 (s, 3H), 1.35—1.25 (m, 8H), 0.97 (t, J = 7.4 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (9Z, 12Z, 15Z)-octadeca-9,12,15-trienoate (1g’)

O

HO" >0 — T N

OH

19’

According to general procedure 1g’ (8 mg, 83% yield) as a yellowish semisolid was prepared
from the corresponding (2,2-dimethyl-1,3-dioxoalan-4-yl)methyl oleate (1g): 'H NMR (400
MHz, CDCl3) 6 5.43—-5.28 (m, 6H), 4.21 (dd, /= 6.0, 11.6 Hz, 1H), 4.15 (dd, J= 6.0, 11.6 Hz,
1H), 3.95-3.90 (m, 1H), 3.70 (dd, J = 3.8, 11.4 Hz, 1H), 3.60 (dd, J = 5.8, 11.4 Hz, 1H),
2.82-2.79 (m, 4H), 2.57 (s, 1H), 2.35 (t, J = 7.4 Hz, 2H), 2.09-2.02 (m, 4H), 1.65-1.59 (m,
2H), 1.31 (br, 8H), 0.97 (t, J = 7.5 Hz, 3H); *C NMR (100 MHz, CDCl;) § 174.4, 132.1,
130.4, 128.4, 128.4, 127.9, 127.3, 70.4, 65.3, 63.5, 34.3, 29.7, 29.3 (2C), 29.2, ,27.3, 25.8,
25.7,25.0,20.7, 14.4; HRMS-ESI: [M + H]" calcd for C21H3604, 353.2686; found, 353.2687.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl icosanoate (1h)

)J\/\/\/\/\/\/\/\/\/\
/7)/\
)(

1h

According to general procedure 1h (20 mg, 100% yield) as a white solid was prepared from the
corresponding arachidic acid: 'H NMR (400 MHz, CDCls) & 4.35-4.29 (m, 1H), 4.17 (dd, J =
.7,11.5 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.1, 8.4 Hz, 1H), 2.34 (t, J = 7.4 Hz, 2H),
1.64-1.59 (m, 2H), 1.43 (s, 3H),1.37 (s, 3H), 1.25 (br, 32H), 0.88 (t, /= 6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl icosanoate (1h’)

HO/\/\OJ\/\/\/\/\/\/\/\/\/\

OH
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According to general procedure 1h’ (16 mg, 89% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl icosanoate (1h): 'H NMR (400 MHz,
CDCl3) 6 4.21 (dd, J=4.6, 11.6 Hz, 1H), 4.15 (dd, /= 6.0, 11.6 Hz, 1H), 3.93 (s, 1H), 3.68 (d,
J=11.0 Hz, 1H), 3.60 (dd, J= 5.3, 11.2 Hz, 1H), 2.57 (s, 1H), 2.35 (t, /= 7.4 Hz, 2H), 2.17 (s,
1H), 1.63—1.59 (m, 2H), 1.25 (br, 32H), 0.88 (t, J = 6.6 Hz, 3H); *C NMR (100 MHz, CDCl5)
0 174.5, 70.4, 65.3, 63.5, 34.3, 32.1, 29.8 (9C), 29.7, 29.6, 29.5, 29.4, 29.3, 25.1, 22.8, 14.3;
HRMS-ESI: [M + H]" calcd for C23Ha604, 387.3469; found, 387.3464.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl (£)-icos-11-enoate (1i)

)J\/\/\/\/\/_\/\/\/\/
)VO

1i

According to general procedure 1i (18 mg, 67% yield) as a white solid was prepared from the
corresponding eicosenoic acid: '"H NMR (400 MHz,CDCl;) & 5.36—5.33 (m, 2H),4.35-4.29 (m,
1H), 4.17 (dd, /= 4.7,11.5 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.1, 8.4 Hz, 1H), 2.34 (t,
J =17.4 Hz, 2H), 2.03—1.99 (m, 4H), 1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.25 (br,
24H), 0.88 (t, J = 6.4 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (£)-icos-enoate (1i’)

NN e N
HO > o

OH

1i'

According to general procedure 1i’ (8 mg, 50%) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl (Z)-icos-11-enoate (1i): 'H NMR (400
MHz, CDCl3) 6 5.39-5.31 (m, 2H), 4.21 (dd, J=4.6, 11.6 Hz, 1H), 4.15 (dd, /=6.1, 11.6 Hz,
1H), 3.93 (s, 1H), 3.71-3.69 (m, 1H), 3.59 (dd, J=5.6, 11.3 Hz, 1H), 2.54 (s, 1H), 2.35 (t, J =
7.4 Hz, 2H), 2.10 (s, 1H) 2.03—1.99 (m, 4H), 1.68—1.61 (m, 2H), 1.27 (d, 24H), 0.88 (t, /= 6.6
Hz, 3H); *C NMR (100 MHz, CDCls) § 174.5, 130.1, 130.0, 70.4, 65.3, 63.5, 34.3, 32.1, 29.9,
29.7 (2C), 29.6, 29.6, 29.5 (2C), 29.4, 29.4, 29.3, 27.4 (2C), 25.1, 22.8, 14.3; HRMS-ESI: [M +
H]" caled for C23H4404, 385.3312; found, 385.3315.
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(2,2-Dimethyl-1,3-dioxalan-4-yl)methyl (57,87,11Z,14Z)-icosa-5,8,11,14-tetraenoate (1j)

ARG
)r

1j

According to general procedure 1j (9 mg, 69% yield) as a yellowish semisolid was prepared
from the corresponding arachidonic acid: 'H NMR (400 MHz, CDCl3) § 5.43—5.30 (m, 8H),
4.34-4.29 (m, 1H), 4.17 (dd, J = 4.6,11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.2, 8.4
Hz, 1H), 2.85-2.79 (m, 6H), 2.34 (t, /= 7.4 Hz, 2H), 2.17-2.03 (m, 4H), 1.75-1.68 (m, 2H),
1.41 (s, 3H), 1.37 (s, 3H), 1.23 (br, 6H), 0.88 (t, /= 6.7 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (5Z,87,11Z,14Z)-icosa-5,8,11,14-tetraenoate (1j’)

)

Ho/\/\o T T T

OH

1j'

According to general procedure 1j* (3 mg, 50% yield) as a yellowish semisolid was prepared
from the corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl (5Z,8Z,11Z,14Z)-icosa-
5,8,11,14-tetraenoate (1j): 'H NMR (400 MHz, CDCl3) § 5.44-5.30 (m, 8H), 4.21 (dd, J=6.1,
11.6 Hz, 1H), 4.15 (dd, J = 4.6, 11.6 Hz, 1H), 3.93 (m, 1H), 3.70 (dd, J = 3.6, 11.6 Hz, 1H),
3.60 (dd, J=5.7,11.4 Hz, 1H), 2.84 (dd, /= 5.4, 11.4 Hz, 6H), 2.47 (s, 1H), 2.37(t, J= 7.4 Hz,
2H), 2.17-2.01 (m, 4H), 1.76—1.69 (m, 2H), 1.62 (s, 1H), 1.25 (br, 6H), 0.89 (t, J = 6.7 Hz,
3H); *C NMR (100 MHz, CDCl) & 174.2, 130.7, 129.2, 128.9, 128.8, 128.4, 128.2, 28.0,
127.7, 70.4, 65.4, 63.5, 33.6, 31.7, 29.9, 29.5, 27.4, 26.7, 25.8 (2C), 24.9, 22.7, 14.2. HRMS-
ESI: [M + H]" caled for C23H3s04, 379.2843; found, 379.2834.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl docosanoate (1k)

0]

)J\/\/\/\/\/\/\/\/\/\/\
)VO

1k
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According to general procedure 1k (18 mg, 75% yield) as a white solid was prepared from the
corresponding behenic acid: '"H NMR (400 MHz, CDCl;) § 4.35-4.29 (m, 1H), 4.17 (dd, J =
4.7,11.6 Hz, 1H), 4.11-4.06 (m, 2H ), 3.74 (dd, /= 6.6, 8.4 Hz, 1H ), 2.34 (t, /= 7.4 Hz, 2H ),
1.69-1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.25 (br, 36H), 0.88 (t, J = 6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl docasanoate (1k’)

Ho/\/\OJ\/\/\/\/\/\/\/\/\/\/\

OH

1k’

According to general procedure 1k’ (10 mg, 77% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl docasanoate (1k): '"H NMR (400 MHz,
CDClz) 6 4.20 (dd, J=4.7, 11.6 Hz, 1H), 4.14 (dd, J=6.1, 11.6 Hz, 1H), 3.93 (d, /= 4.8 Hz,
1H), 3.70 (d, J=11.4 Hz, 1H), 3.59 (dd, J = 5.76, 11.4 Hz, 1H), 2.47 (d, J= 5.0 Hz, 1H), 2.35
(t, J = 7.4 Hz, 2H), 2.04 (s, 1H), 1.68 —1.57 (m, 2H), 1.25 (br, 36H), 0.88 (t, J = 6.6 Hz, 3H);
3C NMR (100 MHz, CDCl3) § 174.5, 70.4, 65.3, 63.5, 34.3, 32.1, 29.9 (2C), 29.8 (3C), 29.6,
29.6, 29.5 (3C), 29.4 (3C), 29.3 (3C), 25.1, 22.8, 14.3; HRMS-ESI: [M + H]" calcd for
C25H5004, 415.3782; found, 415.3781.

(2,2-Dimethyl-1,3-dicoxolan-4-yl)methyl (Z)-docos-13-enoate (11)

)J\/\/\/\/\/\/W\/
)VO

11

According to general procedure 11 (18 mg, 69% yield) as a white solid was prepared from the
corresponding erucic acid: 'H NMR (400 MHz, CDCls) § 5.39-5.31 (m, 2H), 4.34-4.29 (m,
1H), 4.17 (dd, J=4.7, 11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.2, 8.4 Hz,1H), 2.34 (t,
J =17.4 Hz, 2H), 2.04-1.96 (m, 4H), 1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.26 (br,
28H), 0.88 (t, /= 6.4 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (£)-docos-13-enoate (11)
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Ho/\/\OJ\/\/\/\/\/\/;/\/\/\/

OH

1r

According to general procedure 11’ (12 mg, 75% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxalan-4-yl)methyl (Z)-docos-13-enoate (11): "H NMR (400
MHz, CDCl3) 6 5.39-5.31 (m, 2H), 4.21 (dd, J = 4.6, 11.6 Hz, 1H), 4.15 (dd, /= 6.0,11.6 Hz,
1H), 3.96-3.91 (m, 1H), 3.70 (dd, J = 3.8, 11.4Hz, 1H), 3.60 (dd, /= 5.7, 11.4 Hz,1H), 2.58 (s,
1H), 2.35(t, J = 7.4 Hz, 2H), 2.17 (s, 1H), 2.04-1.99 (m, 4H), 1.65-1.59 (m,2H), 1.26 (br,
28H), 0.88 (t, J= 6.6 Hz, 3H); 1*C NMR (100 MHz, CDCl5) § 174.5, 130.1, 130.1, 130.0, 70.4,
65.3, 63.5, 34.3, 32.1, 29.9, 29.8, 29.7, 29.7, 29.7, 29.6, 29.5 (2C), 29.4 (2C), 29.3, 27.4 (2C),
25.1,22.8, 14.3; HRMS-ESI: [M + H]" calcd for C25H4gOs, 413.3625; found, 413.3622.

Synthesis of 2,3-Dihydroxypropyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate(1m’)

0]

HO > o - - - -

OH

1im'

According to general
procedure Im’ (3 mg, 50% vyield ) as a yellowish semisolid was prepared from the
corresponding  (2,2-dimethyl-1,3-dioxolan-4-yl)methyl (7Z,10Z,13Z,16Z)-icosa-7,10,13,17-
tetraenoate: 'H NMR (400 MHz, CDCls) § 5.38—5.33 (m, 8H), 4.21 (dd, J = 6.6, 10.7 Hz, 1H),
4.14 (dd, J=6.1, 11.6 Hz, 1H), 3.93 (s, 1H), 3.67 (d, J= 9.4 Hz, 1H), 3.60 (d, /= 6.0 Hz, 1H),
2.87-2.79 (m, 6H), 2.45 (s, 1H), 2.34 (t, J = 7.4 Hz, 2H), 2.19-2.16 (m, 1H) 2.07-2.01(m,
4H), 1.68—1.55 (m, 2H), 1.25 (br, 10H), 0.88 (t, J = 6.7 Hz, 3H); HRMS-ESI: [M + H]" calcd
for C25H4204, 407.3156; found, 407.3156.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl (47,7Z2,10Z,13Z,16Z,19Z)-docosa- 4,7,10,13,17,19-

tetraenoate (1n)

n
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According to general procedure In (6 mg, 47% yield) as a yellowish semisolid was prepared
from the corresponding docosahexaenoic acid: '"H NMR (400 MHz, CDCl3) § 5.44-5.28 (m,
12H), 4.34—4.28 (m, 1H), 4.17 (dd, J=4.6, 11.4 Hz, 1H), 4.12—4.06 (m, 2H), 3.74 (dd, J = 6.1,
8.4 Hz, 1H), 2.88—2.80 (m, 10H), 2.43—2.37 (m, 4H), 2.11-2.04 (m, 2H), 1.43 (s, 3H), 1.37 (s,
3H), 0.97 (t, J= 7.1 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (47,72,10Z,13Z,16Z,19Z)-docosa-4,7,10,13,16,19-

tetraenoate (1n’)

OH
Ho_h_o SN o

@)

1n'

According to general procedure 1n’ (4 mg, 80% yield) as a yellowish semisolid was prepared
from the corresponding (2,2-dimethyl-1,3-dioxolan-4-yl)methyl (4Z,72,10Z,13Z,162,192)-
docosa-4,7,10,13,17,19-tetraenoate (1n): 'H NMR (400 MHz, CDCL) § 5.46—5.28 (m, 12H),
4.24—4.13 (m, 2H), 3.95 (dd, J = 5.5, 9.9Hz, 1H), 3.70 (dd J = 3.9, 11.4Hz, 1H), 3.59 (dd, J =
5.7, 11.4Hz, 1H), 2.84 (dd, J=4.2,15.2 Hz, 10H), 2.46—2.33 (m, 4H), 2.11-2.06 (m, 2H), 2.04
(s, 1H), 1.63 (s, 1H), 0.99 (t, J = 7.5 Hz, 3H); *C NMR (100 MHz, CDCl) & 173.7, 132.2,
129.8, 128.7, 128.5 (2C), 128.4, 128.4, 128.2, 128.1, 128.0, 127.8, 127.2, 70.4, 65.5, 63.4,
34.2,29.9 (20), 25.8, 25.8, 25.7, 22.9, 20.7, 14.4; HRMS-ESI: [M + H]" calcd for C2sH330s4,
403.2843; found, 403.2837.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl tetracosanoate (10)

:)J\/\/\/\/\/\/\/\/\/\/\/\
OM
ﬂ/o

10

According to general procedure 1o (18 mg, 69% yield) as a white solid was prepared from the
corresponding lignoceric acid: 'H NMR (400 MHz, CDCL) & 4.34—4.29 (m, 1H), 4.17 (dd, J =
4.7,11.5 Hz, 1H), 4.11-4.06 (m, 2H), 3.73 (dd, J = 6.2, 8.4 Hz, 1H), 2.34 (t, J = 7.4 Hz, 2H),
1.66—1.59 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H), 1.25 (br, 40H), 0.88 (t, /= 6.6 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl tetracosanoate (10°)
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J\/\/\/\/\/\/\/\/\/\/\/\
HO Y o

OH

10'

According to general procedure 10’ (5 mg, 32% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxolan-4-yl)methyl tetracosanoate (1o): 'H NMR (400
MHz, CDCl3) 6 4.22 (dd, J = 4.6, 11.6 Hz, 1H), 4.14 (dd, J = 6.0, 11.6 Hz, 1H), 3.94 (s, 1H),
3.70 (d, J=8.2 Hz, 1H), 3.60 (dd, J = 5.4, 11.3 Hz, 1H), 2.50 (s, 1H), 2.35 (t, J = 7.5 Hz, 2H),
2.05 (s, 1H), 1.65-1.59 (m, 4H), 1.25 (br, 38H), 0.88 (t, J = 6.6 Hz, 3H); *C NMR (100 MHz,
CDCls) 6 174.5, 70.4, 65.3, 63.5, 34.3, 32.1, 29.9, 29.8, 29.8, 29.6 (6H), 29.5 (6H), 29.4 (2C),
29.3,25.1, 22.8, 14.3; HRMS-ESI: [M + H]" caled for C27Hs404, 443.4095; found, 443.4097.

(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl (Z)-tetracos-15-enoate (1p)

O

)J\/\/\/\/\/\/\/W
/\,O/\ : —
)V

1p

According to general procedure 1p (18 mg, 69% yield) as a white solid was prepared from the
corresponding nervonic acid: "H NMR (400 MHz, CDCI;) & 5.39—5.31 (m, 2H), 4.35—4.29 (m,
1H), 4.17 (dd, J = 4.6,11.4 Hz, 1H), 4.11-4.06 (m, 2H), 3.74 (dd, J = 6.2, 8.4 Hz, 1H), 2.34 (t,
J=17.4Hz 2H ), 2.04-1.99 (m, 4H), 1.66—1.59 (m, 2H), 1.44 (s, 3H), 1.37 (s, 3H), 1.2 (br,
32H), 0.88 (t, J = 6.4 Hz, 3H).

Synthesis of 2,3-Dihydroxypropyl (£)-tetracos-15-enoate (1p’)

HO/\/\O)J\/WWWW
OH
1p’

According to general procedure 1p’ (8 mg, 50% yield) as a white solid was prepared from the
corresponding (2,2-dimethyl-1,3-dioxolan-4-yl)methyl (Z)-tetracos-15-enoate (1p): 'H NMR
(400 MHz, CDCl) 6 5.39-5.31 (m, 2H), 4.21 (dd, J=4.6, 11.6 Hz, 1H), 4.15 (dd, /=6.0, 11.6
Hz, 1H), 3.95-3.92 (m, 1H), 3.72-3.69 (m, 1H), 3.60 (dd, J = 5.8, 11.3 Hz, 1H), 2.58 (s, 1H),
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235 (t, J = 7.4 Hz, 2H), 2.16 (s, 1H) 2.04-1.99 (m, 4H), 1.65—1.59 (m, 2H), 1.26 (br, 32H),
0.88 (t, J = 6.6 Hz, 3H); '°C NMR (100 MHz, CDCls) & 174.5, 130.0, 130.0, 70.4, 65.3, 63.5,
34.3, 32.1, 29.9, 29.8, 29.8, 29.7, 29.7, 29.7, 29.6, 29.5 (3C), 29.4 (2C), 29.3 (2C), 27.4 (20),
25.1,22.8, 14.3; HRMS-ESI: [M + H]" calcd for C27Hs204, 441.3938; found, 441.3942.
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2.8. Spectral Chart

'"H-NMR (CDCl;, 400 MHz) for Compound 1 a
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"H-NMR (CDCl3, 400 MHz) for Compound 1 p’
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CHAPTER 3

SYNTHESIS OF ME-LYSO-PS LIPIDS AND THEIR
BIOLOGICAL APPLICATIONS

Adapted with permission from: Cell Chemical Biology, 2021; 28, pp 1-11

https://doi.org/10.1016/j.chembiol.2021.01.008
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3.1 Introduction

A recent study has associated three lyso-PLs namely S1P, lyso-PA, and lyso-PS with different

M43 Lyso-PS is a

pathophysiological conditions like cancer and immunological condition
signaling lyso-PLs molecule that functions through TLR2 and GPCR receptors. As discussed
in chapter 1, lyso-PS regulates macrophage activation, mast cell degranulation, chemotactic
migration in U87 glioma cells, leukemia cell stimulation, and inhibition of lymphocyte
proliferation.

Lyso-PS are further sub-classified into sn-1 and sn-2 lyso-PS (Figure 3.1). A recent study have
suggested that sn-1 lyso-PS significantly to be more stable and abundant than sn-2 lyso-PS.

However, sn-2 lyso-PS have been found to be substantially more stable at lower PH (< 4.0)*"

47 Indeed, sn-1 and sn-2 lyso-PS showed similar levels present in various murine tissues.

L-phosphoserine Lipid-chain L-phosphoserine

O OH (0] o) OH
] |

R P (R
HO)I\./\O/ ﬁ\o/\(()\oJ\R HOJ\:/\O’ u\o/\H’\OH
H (@) = (o)
NH, OH NH, o\n/R
(0)
Lipid-chain
sn-1 lyso-PS sn-2 lyso-PS

Figure 3.1. Classification of lysophosphatidylserine lipids

During my research program, I have tried to synthesize different derivatives of lyso-PS.
However, glycerophosphoserine synthesis is extremely challenging as the initial precursor
phosphorous and some phosphorous intermediate is moisture sensitive. To the best of our
knowledge till date, there are no synthetic routes reported for the synthesis of lyso-PS
derivatives. Here, I have mentioned certain challenges which I faced during the synthesis of the

lyso-PS library.
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3.2 Synthesis Challenges in Lyso-PS Lipids

o oHi.i @
P A J\/\/\/\/\/\/\/\/W
NH, OH
lyso-PS C24:1
FGI

Figure 3.2. Retrosynthesis analysis for the synthesis of lyso-PS C24:1 lipid

In the above lyso-PS C24:1 lipid after the functional group disconnection, we would get two
parts as lipids. One is glycerophosphoserine (GPS) and another is a free fatty acid (FFA).
Although fatty acids are commercially available, the synthesis of the GPS head group can be
quite challenging, and only a few chemical synthetic methods have been developed for the
large-scale preparation of lyso-PS lipids**!. Various difficulties that are faced during the
synthesis of enantiomerically pure lyso-PSs are described below:

1) Lipophilicity of final compound

2) Combination of the leading hydrophilic and hydrophobic molecules

3) Choice of protecting group is crucial since these groups may cross-react and complicate the
synthesis.

4) The major challenge in the lyso-PS synthesis construction of chiral synthesis for this need
retention in the configuration of two chiral centers towards making the correct diastereomer.

5) To get the retention in configuration for this to require chiral synthon as a starting material.
6) Acyl group migration is another problem in selective synthesis of lyso-PS regioisomers
which can intermolecular transfer of one fatty acid moiety from one hydroxyl group to the
adjacent one.

7) Since lipids are non-UV active and hence are difficult to visualize. Therefore, they must to
either be monitored by different stains or by NMR spectroscopy

To tackle all these challenges we prefer the synthesis of MAG lipid library first followed by
lyso-PS library synthesis.

3.3 Result and Discussions

48



3.3.1. Synthesis of Lyso-PSs Lipids

As a proof of concept, we decided to synthesize a library of the naturally occurring (R)-Me-
lyso-PSs and unnatural (S)-Me-lyso-PSs with various saturated fatty acids. There are very few
lyso-PSs are commercially available, and those too, are esterified only with long-chain (LC)

fatty acids (figure 3.3).

o Linid-tail
Amino-acid ipid-tai _(COOR) Fatty Acid

) OH @) . .
I C16:0 Palmetic Acid
R

Y ~O 0~ "R C18:0 Stearic Acid
NH; OH C18:1 Oleic Acid

Figure 3.3. Commercial available long-chain lyso-PS lipid species

3.3.2 Limitation of Lyso-PS Synthesis Library

Initially, we had designed the following scheme 3.1. Unfortunately, after the coupling step, we
were not able to purify the esterified compound since this compound was unstable on silica and

the compounds were extremely polar and thus could not be purified.

o
\O)K;/\OH
HN_ O o OBn

cl HO OBn g \K ‘ J\

| Et3N, Et,0 | _P<
/LN/P\NJ\ e, )\N/P\NJ\ o N \O)K;/\O N

PPN * -0fcto0®c3omn | | 1H-Tetrazole, OWNH N
rt 30 min CH,Cl,rt, 4 h 5
Bis (diisopropylamino)
Chlorophosphine Benzyl Alchohol ég'g":zgfh HO/"’(V?\
yadvilll O
ACN, 12 h o

TBHP, rt, 3 h 7<

Isopropylidene
Alchohol

N y S N
~ AP Holpd-C (10%) _Po Amberlyst-15 ~ APs
o ; o 6 O/\‘/\OH o o o ; o 5 O/\‘/\OH 8 ’iH o 5 O/\\O/\O
XOTNH o MeOH, rt, 5h XOTNH OH MeOH, rt, 16h >( g
(0] 0 (0]
X
HO™ “CigHy | DMAP
0%Ctort16h
EDC.HCI
o) OH o
PJ
\O)K/\O H O/Y\O)kcwstsa
XOTNH OH
o]

Scheme 3.1. Synthetic route of saturated (R) Me-lyso-PSs lipid library
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After going through literature and using numerous approaches, we came up with the idea of
protecting the secondary alcohol and phosphate group and can purify the compound at this
stage. Therefore, we moved to the facile synthetic route and synthesized protected alcohol
intermediate first and followed by coupling with phosphoramide moiety. In the following
route, we could purify the esterified compound by column chromatography. Eventually, we
were able to synthesize a library of the naturally occurring (R)-Me-lyso-PSs and unnatural (5)-

Me-lyso-PSs with various saturated fatty acids.

OBn
~ J\/\ P\ J\

NHBoc )\ . 0 OBn
3 i)Tetrazole, CH,Cl,, rt, 24 h, J\/\ R)
° P
ACN, 60 °C, 12 h \O o II\O/Y\OPMP

+ Z le}
ii) TBHP, rt, 3 h, 38% NHBoc OTBS
HO/Y\OPMP (R)-5
OTBS
(R)-4 CAN, ACN:H50 (4:1),
0°C, 2h, 64%
o OBn o o) OBn
A~ P R RCOMEDCHC J b _®
0" Y T0"n Q/Y\o R = RS O/II\O/\‘/\OH
N o DMAP, CH,Cl,, H 0
NHBoc OTBS 0°Ctort, 16 h NHBoc 0TBS
(R)-8a-h (R)6

RCO,H n RCO,H n

(R)-8a, 51% -8e, 53%
" ’ 7a  C10:0 7e C18:0

- 9 -
(R)-8b, 49% (R)-8f, 50% 7b  C12:0 7 C20:0
_ 0,
(R)-8¢,51% (R)-8g, 42% 7c C140 79 (220
(R)-8d,54% (R)-8h, 46% 7d  c16:0 7h  C24:.0
H,, Pd/C,
MeOH, rt, 16 h

o)
0 OH 0
. (R
N b R T J\A
OJ\:/\O N 0" R CH,Cly rt, 3 h /Y\O R
NHBoc OTBS OH
(R)-2a-h

(R)-9a-h
(R19a,39%  (R)-9e, 65% (R)-2a,72%  (R)-2e, 76%
(R)-2b,78%  (R)-2f, 79%

(R)-9b, 54%  (R)-9f, 58%
(R)}-9¢,67% (R)-99, 63% (R)-2¢,67%  (R)-29, 79%
(R)-9d, 60%  (R)-9h, 46% (R)-2d,74%  (R)-2h, 78%

Scheme 3.2. Synthetic route of saturated (R) Me-lyso-PSs lipid library
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(0] ?Bn
IS
\oJ\ZAo .
NH20C )\ i)Tetrazole, CH,Cl,, rt, 24 h, o] ?Bn )
ACN, 60 °C, 12 h N
4 =\O)J\/\O/“ O/\/\OPMP
ii) TBHP, rt, 3 h, 40% NHBoc 5TBS
HO™ > oPMP ()5
OTBS
4 CAN, ACN:H,0 (4:1),
0°C,2h, 58%
i 98n i RCO,H, EDC.HCI 0 8N
P~ Gl
\OJJ\-/\O " O/\-/\OJJ\R - \OJJ\/\O/”\O/\()/\OH
H o) : DMAP, CH,Cly, - 0
NHBoc oTBS 0°C tort 261 NHBoc oTBS
(S)-8a-h ' (5)-6
RCO,H N RCOH n
(S)-8a,49% (S)-8e, 47% 7 7 C18:0
a C10:0 7e :
-8b, 47%  (S)-8f, 489
((28 530/" (5)-8f, 48% 76 c120 7f  C20:0
-8c, _ o,
° (989, 45% 7c 140 79 C22:0
(5)-8d,54%  (S)-8h, 47% 7d  cie0 7h C24:0
H,, Pd/C,
MeOH, t, 16 h
o)
TEA
(S) )j\ ~ J\/\ /\/\ J\
~ S EEEE— (o) u
)J\:/\O # O/\/\O R CH,Cl, it 3 h N ~0 0 R
NHBoc OTBS OH
(5)-9a-h (S)y-2a-h
(5)-9a, 50% (S)-9e 65% (S)-2a,75%  (S)-2e, 74%
(9)-9b, 58% (S)-9f, 45% (S)-2b, 67%  (S)-2f, 76%
(S)-9¢, 79% (S)-99, 75% (S)-2¢, 78% (S)-2g, 74%
(5-9d, 62% (S)-9h, 49% (5)-2d.73% (5)-2h, 81%

Scheme 3.3. Synthetic route of saturated (S) Me-lyso-PSs lipid library
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Table 3.1

(R) and (S) Methvl ester-lysophosphatidylserine (Me-lyso-PS)

0 OH . 0 0 OH 0
\o)j\i/\o/g\o/\(}\o)j\l? g o’ﬁ\o/\(is}\o)l\R
NH, OH NH, OH
(R) - Natural (S) - Unnatural
ID -(COOR) ID -(COOR)
(R)-2a C10:0 (5)-2a C10:0
(R)-2b C12:0 (S)-2b C12:0
(R)-2¢ C14:0 (8)-2¢ C14:0
(R)-2d C16:0 (8)-2d C16:0
(R)-2e C18:0 (5)-2e C18:0
(R)-2f C20:0 (S)-2f C20:0
(R)-2g C22:0 (S)-2g C22:0
(R)-2h C24:0 (5)-2h C24:0

3.4. Substrate Profiling Study against Recombinant (hABHD12) and
Endogenous Mouse Brain (mABHD12) Lysate

All substrate profile study was performed by Theja, a project student in our lab. Having
synthesized a library of the (R)- and (S)-Me-lyso-PSs (Table 3.1), we first tested whether these
lipids were substrates for ABHDI12, the mammalian lyso-PS lipase. The kinetic assay was
carried out at 8 different concentrations (0-400 um) of Me-lyso-PS. Here, we used different
(R)-Me-lyso-PS as a substrates i.e. C10:0, C12:0, C14:0, C16:0, C18:0, C20:0, C22:0 and
(C24:0. The enzymatic rate for each reaction mixture with a particular substrate concentration
was corrected by subtracting the rate of mock from wild-type rate and plotting the data to fit the
Michaelis—Menten kinetics equation (figure 3.4). To further understand the endogenous
preference of ABHD12 for (R)-Me-lyso-PS lipid substrates. We tested with ABHD12 knockout
mice which displayed an accumulation of lyso-PS in the brain due to the absence of ABHD12.
This assay was used as a control experiment to understand the ABHD12 specific lyso-PS lipase
activity. Here wild-type and ABHD12 knockout mice brain membrane lysates were incubated

with the library of (R)-Me-lyso-PS of varying chain lengths (figure 3.4)>.
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Figure 3.4. Enzyme kinetic studies with recombinant hABHD12 and endogenous mouse brain

(mABHD12) lysate with substrate Me-lyso-PS synthesized with different chain length R stands

for natural substrate a,b,c,d,e,f,g,h for fatty acid chain lengths i.e. 2a - C10:0, 2b - C12:0, 2c -
C14:0, 2d -C16:0, 2¢ - C18:0, 2f - C20:0, 2g - C22:0, 2h - C24:0.
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Table 3.2

Kinetics for the (R)-Me-Lyso-PS Lipid Substrates tested in vifro against
Recombinant Human hABHD12

Kun (nM) Vmax (nmoles/min)
(R) Me-lyso-PS C10:0 121 +£21 2.39 +0.02
(R) Me-lyso-PS C12:0 130+ 16 7.65 + 0.40
(R) Me-lyso-PS C14:0 105+7 12.31 £ 0.77
(R) Me-lyso-PS C16:0 679 15.21 £ 0.69
(R) Me-lyso-PS C18:0 46+ 6 17.24 £ 0.69
(R) Me-lyso-PS C20:0 42 +5 18.94 + 0.73
(R) Me-lyso-PS C22:0 39+4 21.89 £ 0.70
(R) Me-lyso-PS C24:0 39+4 22.85 £0.73

Based on kinetic constants for the saturated fatty acid (R)-Me-lyso PS lipids, we have found
Vmax =C24:0 = C22:0 > C18:0 > C16:0 > C14:0> C12:0 > C10:0
Kn=0C24:0 <(C22:0 <C18:0 <C16:0 < C14:0 < C12:0 < C10:0

3.5. VLC lyso-PSs elicit pro-inflammatory response through TLR2-
dependant pathway

Lyso-PS lipids consist of a library of chemically divergent molecules whose structure consists
of a fatty acid chain whose length ranges from medium to very long along with
glycerophosphoserine head group and glycerol backbone. This complexity in lyso-PS structure
has caused its commercial paucity to study its biological role in detail. Hence, in this study, we
have chemically synthesized lyso-PS with medium, long and very-long-chain saturated lyso-
PSs lipids to investigate their role in (neuro) immunological processes. In this chapter, our

research unveils the distinct role of structurally variant lyso-PSs in immune system function
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and its underlying molecular mechanism involving immune-specific cellular receptors. All
biological study were performed by Neha, a postdoctoral fellow in our lab. The study reveals
that lyso-PS exerts its signalling properties towards the activation of immune cells, such as
macrophages and mast cells, by releasing inflammatory cytokines (TNF-o and IL-6)
measurements and histamine respectively. Very-long-chain lyso-PS which was previously
found to be associated with the pathology of a neurodegenerative disorder PHARC
(Polyneuropathy, Hearing loss, Ataxia, Retinitis pigmentosa, and Cataract) signals through
TLR2 (Toll-like Receptor 2) receptors and causes neuroinflammation and microgliosis. We
proved this by using genetically engineered mice with TLR2 gene deletion where the
inflammatory effect were absent upon Lyso-PS treatment. We also measured cytokine
secretion at TNF-a and IL-6 from WT Primary peritoneal macrophages and interestingly found
that VLC lyso-PS (C22:0) and (C24:0) produced highest cytokine secretion. LPS was used as a
positive control here and it was already shown that LPS cytokine secrete through TLR4
dependant pathway (figure 3.5).
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Figure 3.5. Very long chain Lyso-PS act show increased cytokine secretion as compared to

other lyso-PS via TLR2 dependant pathway

Our further analysis also revealed the contribution of long-chain lyso-PS causing mast cell
degranulation and histamine release, which is a signal for secondary immune response (figure
3.6). Interestingly, we observed that this function was mediated by an as-of-yet unknown,
GPCR (G-protein Coupled Receptors, a class of cell surface receptors), and not TLR2. This

indicates a distinct and immune-specific role of long and very-long-chain lyso-PS. In the mice
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brain, lyso-PS is majorly regulated by a lyso-PS lipase enzyme called ABHDI12, whose

mutation causes PHARC syndrome

108 (R)-2a o i Species EC,, (nM)

| * R2p o _
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Figure 3.6. LC lyso-PSs robustly cause histamine release from primary mast cells

3.6. Conclusion

In this chapter, I have shown the synthesis of (R)- and (S)-Me-lyso-PSs lipid library and we
found that hABHDI12 strongly prefers VLC (R)-Me-lyso-PSs as substrates. Furthermore,
endogenous ABHD12 of mouse brain membrane lysates indeed displayed the best catalytic
activity for the (R)-Me-lyso-PS and we found that mABHD12 also prefers VLC (R)-Me-lyso-
PSs. We assayed against (S)-Me-lyso-PS and discovered that these were very poor substrates
against recombinant and endogenous mouse brain membrane lysates ABHD12 enzyme as well.
In our cellular carboxyl esterase metabolize study we observed that synthesized Me-lyso-PSs
got metabolized by cellular carboxylesterase to gives the corresponds to lyso-PSs. In nutshell,
the synthetic Me-lyso-PSs serve as a stable prodrug-like biological surrogate to lyso-PSs. In
addition, another study reveals that lyso-PS use as signaling molecules towards the activation
of immune cells such as macrophages and mast cell degranulation by releasing inflammatory
cytokine and histamine respectively. Interestingly, we find that VLC (R)-Me-lyso-PSs produce
the highest secretion of a pro-inflammatory cytokine through the TLR2 receptor. In simple
words, VLC lyso-PS induce neuroinflammation raises to fascinate possibility of human
degenerative PHARC disease. However, in the further biological study, we found that long-
chain lyso-PS cause mast cell degranulation and histamine release suggesting that another

cryptic receptor likely GPCR prefers LC lyso-PSs®.

56



3.7. EXPERIMENTAL SECTION
3.7.1 Synthesis and Characterization Data

A) Synthesis of Compound 3

0
- )v iy
/L S /j\ Ej OBn o) OBn
Et;N, Et,0 /L P J\ >f - \O)K;/\O/P\NJ\
TNH
o)

0°Ctort,1h /K /K Tetrazole, CH20I2 XO

rt, 5 h, 66%

Bis(diisopropylamino) 10

chlorophospine

Synthesis of Compond 3

1-(benzyloxy)-N,N,N',N'-tetraisopropylphosphanediamine (10): To a solution of
bis(diisopropylamino) chlorophosphine (3.0 g, 11.2 mmol) in dry diethyl ether (Et20O) (30 mL)
in schlenk flask, a mixture of benzyl alcohol (1.0 mL, 10.0 mmol) and triethylamine (Et3N)
(1.4 mL, 10.0 mmol) in Et>O (5 mL) was added at 0 °C under nitrogen (N2) atmosphere. The
reaction mixture was stirred for 30 min at 0 °C, then warmed to room temperature for 30 min.
The reaction mixture was diluted with cold hexane (15 mL), stirred for 10 min. The hexane
solution was then transferred into another schlenk flask by cannula and concentrated under a
nitrogen atmosphere to yield compound 10. The crude product was used as such for next step
without purification: 'H NMR (400 MHz, CDCl3) 6 7.31-7.22 (m, 5H), 4.58 (d, J = 7.3 Hz,
2H), 3.53-3.46 (m, 4H), 1.13-1.10 (m, 24H); *'P NMR (400 MHz, CDCls) § 124.2082.

Methyl O-((benzyloxy)(diisopropylamino)phosphaneyl)-/NV-(fert-butoxycarbonyl)-L-
serinate (3): The 1-(benzyloxy)-N,N,N',N'-tetraisopropylphosphanediamine i.e. compound 10
(3.2 g, 94.5 mmol) was dissolved in anhydrous CH2Cl> (25 mL) in schlenk flask and a solution
of 1 H-Tetrazole (0.8 mL, 85.9 mmol) in ~0.45 M ACN was added at room temperature. To this
solution, N-Boc-L-Serine-methyl ester (1.8 g, 85.9 mmol) was added under a nitrogen
atmosphere, in a few minutes, white solid was precipitated. The mixture was stirred for 5 h at
room temperature and then the reaction was quenched with saturated NaHCOs. The product was
extracted in CH2Cl; (3 x 50 mL) and then the combined organic layer was dried over the
anhydrous NaySOs, filtrated and concerted in vacuo. The residue was purified by neutral
alumina column chromatography (EtOAc/Hexane 10:90) to yield the compound 3 (2.8 g, 61.3
mmol, 66%, colorless oil). '"H NMR (400 MHz, CDCls) 6 7.38-7.25 (m, 5H), 5.55-5.37 (m,
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1H), 4.77-4.60 (m, 2H), 4.45-4.43 (m, 1H), 4.13-4.02 (m, 1H), 3.91-3.79 (m, 1H), 3.73-3.71
(m, 3H), 3.67-3.54 (m, 2H), 1.45-1.43 (m, 9H), 1.22-1.13 (m, 12H); '3C NMR (100 MHz,
CDCL) 6 171, 155.6, 155.5, 139.4, 139.3, 128.4, 128.4, 127.5, 127.4, 127.1, 127.0, 80.0, 79.9,
65.6, 65.6, 65.5, 66.4, 54.9, 54.8, 52.5, 52.4, 43.3,43.1, 28.4, 24.7, 24.6, 24.5; DEPT-135 NMR
(100 MHz, CDCL;) 6 128.4 (d, Jop = 4 Hz, CH), 127.4 (d, Jep = 8 Hz, CH), 127.1 (d, Jop =12
Hz, CH), 65.5 (dd, Jep = 18, 8 Hz, CH,), 64.2 (2d, Jop = 16 Hz, CH), 54.9 (t, Je, = 8 Hz, CH),
52.4 (2s, CHs), 43.2 (d, Jep = 12 Hz, CH), 28.4 (CHs), 24.7 (CHs), 24.6 (CHs), 24.5 (CHa);
HRMS-ESI: [(M + H)*-BOC] caled for C17H30N>04P, 357.1938; found, 357.1939.

B) Synthesis of Compound 4

4-methoxyphenol, (R) (R
ﬁ(BKOH DEAD, PPh3 r—(\OPMP Amberlyst-15 HO/Y/\OPMP
’ -
ox Toulene, 76°C,5 X MeOH, rt,
0 16 h, 88%
h, 94%
(R)-12
(R)-(2,2-dimethyl-1,3- (R)-11
dioxolan-4-yl)methanol TBDMSCI,
Imidazole,
DMF, rt, 24 h,
100%
HF-Pyridine R
HO OPMP TBSOMOPMP
OTBS THF, rt,
16 h, 56% oTBS
4 (R)-13
Synthesis of compound 4

(R)-4-((4-methoxyphenoxy)methyl)-2,2-dimethyl-1,3-dioxolane ((R)-11): To synthesized
compound 4 we followed previously been reported procedure!!. The commercially available
(R)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (5.0 g, 37.83 mmol) was dissolved in
anhydrous toluene, followed by triphenylphosphine (11.91 g, 45.40 mmol), and p-
methoxyphenol (14.09 g, 113.49 mmol) were added under a N> atmosphere. To the solution,
DEAD (8.57 g, 49.18 mmol) in toluene (24.6 mL) was added dropwise, and the reaction
mixture was stirred at 75 °C for 5 h. After completion the reaction, the mixture was
evaporated, and the residue was purified by silica column chromatography using 10% EtOAc
in n-hexane as an eluent to provide the desired product (R)-11 (8.5 g, 35.6 mmol, 94% yield,
colorless oil). '"H NMR (400 MHz, CDCls) 6 6.87-6.81 (m, 4H), 4.45 (quintet, J = 5.9 Hz,
1H), 4.15 (dd, J= 8.4, 6.4 Hz, 1H), 4.02 (dd, J=9.5, 5.4 Hz, 1H), 3.91-3.87 (m, 2H), 3.76 (s,
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3H), 1.46 (s, 3H), 1.40 (s, 3H); HRMS-ESIL: [M + H]" caled for C13H;5O4, 239.1283; found,
239.1281.

3-(4-methoxyphenoxy)propane-1,2-diol ((R)-12): The compound (R)-11 (8.5 g, 35.6 mmol)
was dissolved in anhydrous MeOH (37 mL), and Amberlyst-15 (11.2 g, 35.6 mmol) was added
at room temperature. The reaction mixture was stirred for 16 h at room temperature. After
completion of the reaction, amberlyst-15 was filtered off and the solvent of the filtrate was
evaporated under reduced pressure. The residue was purified by silica column chromatography
using 50% EtOAc in n-hexane as an eluent to give the desired product (R)-12 (6.2 g, 31.3
mmol, 88% yield, white solid). '"H NMR (400 MHz, CDCls) § 6.85-6.80 (m, 4H), 4.07 (sext, J
= 4.8 Hz, 1H), 4.00-3.94 (m, 2H), 3.84-3.79 (m, 1H), 3.76 (s, 3H), 3.74-3.69 (m, 1H), 3.08 (m,
1H), 2.62 (m, 1H) ; HRMS-ESI: [M + H]" caled for CioHi504, 199.0965; found, 199.0967.

(R)-5-((4-methoxyphenoxy)methyl)-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecane
((R)-13): The compound (R)-12 (6.2 g, 31.3 mmol) was dissolved in anhydrous DMF (50 mL)
followed by imidazole (6.4 g, 94 mmol) and TBSCI (11.8 g, 78.2 mmol) was sequentially
added at room temperature. The mixture was stirred for 16 h at room temperature and then the
mixture was diluted with water (30 mL) and EtoO (30 mL), and the aqueous layer was
separated and extracted three times with Et2O (15 mL x 3). The combined organic layer was
dried over Na,SO4 and the solvent was evaporated. The residue was purified by silica column
chromatography using 5% Et>O in n-hexane as an eluent to obtain the desired product (R)-13
(13.3 g, 31.1 mmol, 100% yield, colorless oil). '"H NMR (400 MHz, CDCl3) J 6.87-6.82 (m,
4H), 4.07-4.02 (m, 2H), 3.86-3.81 (m, 1H), 3.78 (s, 3H), 3.66 (d, J = 5.5 Hz, 2H), 0.92 (s,
18H), 0.12 (d, J = 4.4 Hz, 6 H), 0.09 (broad, 6H); HRMS-ESI: [M + H]" calcd for C22H4304S1>,
427.2694; found 427.2693.

(8)-2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propan-1-ol ((R)-4): The (R)-5-
((4-methoxyphenoxy)methyl)-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecane (13.3 g,
31.1 mmol) was dissolved in dry THF (70 mL). The HF-pyridine complex (70%w/w) (5.3 mL)
and pyridine (25 mL) was sequentially added at room temperature under a N> atmosphere. The
reaction mixture was stirred for 4 h at room temperature and then diluted with water (50 mL).
The desired product was extracted three times with EtOAc (50 mL x 3), and washed with brine,
dried over Na;SOg4 and evaporated. The residue was purified by silica column chromatography
using 60% Ethyl acetate in n-hexane as an eluent to provide the desired product (R)-4 (5.2 g,
16.6 mmol, 56% yield, colourless oil). 'H NMR (400 MHz, CDCls) 6 6.83 (s, 4H), 4.11-4.07

(m, 1H), 3.95-3.86 (m, 2H), 3.77 (s, 3H), 3.75-3.65 (m, 2H), 2.00 (broad, 1H), 0.92 (s, 9H),
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0.14 (s, 3H), 0.13 (s, 3H); HRMS-ESI: [M + H]" caled for CiH2904Si, 313.1830; found,
313.1837.

C) Synthesis of Compound (R)-5 & (R)-6

(6] (I)Bn
- P\ J\
\o)J\./\o N

NHBoc )\ o OBn

3 i)Tetrazole, CH,Cl,, rt, 24 h, T (R)
ACN, 60 °C, 12 h ~ )J\/\ _P_
. . - 07 o) O/Y\OPMP
ii) TBHP, rt, 3 h, 38% NHBoc OTBS
HO/Y\OPMP (R)-5
OTBS
(R)-4 CAN, ACN:H,O (4:1),

0°C,2h, 64%

(0] (I)Bn
\O)J\./\O/ﬁ\o/@\OH
(0]

NHBoc OTBS

(R)-6
Methyl O-((benzyloxy)((R)-2-((tert-butyldimethylsilyl)oxy)-3-(4-

methoxyphenoxy)propoxy)phosphoryl)-N-(tert-butoxycarbonyl)-L-serinate ((R)-5):
To synthesized compound (R)-5 and (R)-6 we followed previously been reported procedure™.
The Phosphonamidite 3 (2.2 g, 4.82 mmol) was dissolved in anhydrous CH>Cl, (2.5 ml), and
then the solution was co-evaporated with ACN three times (3 x 2.5 mL). The residue was
dissolved in anhydrous CH>Cl> (25 mL), and the solution of 1H-tetrazole in ACN (~0.45 M)
(1.1 mL, 1.2 mmol) was added at room temperature. The solution of alcohol (R)-4 (3.7 g, 11.8
mmol) in CH2Cl; (5 mL) was added dropwise under N> atmosphere, and then the mixture
stirred at room temperature for 24 h. The anhydrous ACN (30 mL) was added and then the
reaction mixture was heated to 60 °C for 12 h. The intermediate formation was confirmed by
TLC then #-butyl hydroperoxide (TBHP) solution in decane (5.0-6.0 M) (1.4 mL, 14.46 mmol)
was added dropwise and the reaction mixture was stirred at room temperature for 3 h. The
reaction mixture was diluted with 15 mL water and extracted with CH>CL (3 X 25 mL). The
combined organic layer was washed with brine solution, dried over Na;SOs, filtrated and
concentrated under reduced pressure. The crude product was purified by flash column
chromatography using MeOH/H2O (85:15) as an eluent to afford the compound (R)-5 (1.25 g,
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1.83 mmol, 38%, colourless oil). "H NMR (400 MHz, CDCl3) § 7.40-7.29 (m, 5H), 6.85-6.77
(m, 4H), 5.58-5.51(m, 1H), 5.09-5.02 (m, 2H), 4.54-4.37 (m, 2H), 4.29-4.22 (m, 1H), 4.18-4.09
(m, 2H), 4.06-3.99 (m, 1H), 3.92-3.80 (m, 2H), 3.74 (s, 3H), 3.73-3.70 (m, 3H), 1.44 (s, 9H),
0.89 (s, 9H), 0.13-0.08 (m, 6H); *'P NMR (400 MHz, CDCl3) 6 -0.41; '*C NMR (100 MHz,
CDCl) 0 169.8, 155.4, 154.2, 152.8, 135.7 (d, J.p = 7Hz), 128.9, 128.8, 128.1 (d, Je-p = 4Hz),
115.6 (2s), 114.8, 80.5, 70.0 (d, Jep= 7 Hz), 69.8 (t, J.p= 6Hz), 69.6 (d, Jo,= 6 Hz), 69.0 (t, J.-

=7 Hz), 67.7 (broad), 55.9, 54.1 (d, J.p, = 8Hz), 52.9, 28.4, 25.9, 18.3, -4.5, -4.6; DEPT-135
NMR (100 MHz, CDCl3) ¢ 128.7 (CH), 128.6 (CH), 127.9 (d, Jo,=4 Hz, CH), 115.3 (2s, CH),
114.6 (CH), 69.8 (d, Jop=9 Hz, CH), 69.6 (t, Jop = 5 Hz, CH>), 69.4 (d, Je, = 5 Hz, CH»), 68.8
(t, Jop=7 Hz, CH2), 67.5 (broad, CH), 55.7 (CH3), 53.9 (d, Je,= 7 Hz, CH), 52.7 (CH3), 28.2
(CH3), 25.7 (CHs), -4.8 (CH3), -4.9 (CHs); HRMS-ESI: [(M + H)"-BOC] calcd. for
C27H43NO9PSi, 584.2439; found, 584.2441.

Methyl O-((benzyloxy)((R)-2-((tert-butyldimethylsilyl)oxy)-3-
hydroxypropoxy)phosphoryl)-N-(tert-butoxycarbonyl)-L-serinate ((R)-6):

To the solution of PMP-protected alcohol (R)-5 (1.2 g, 1.76 mmol) in ACN: H,O (4:1) (10
mL), the Ceric Ammonium Nitrate (CAN) (2.41 g, 4.4 mmol) was added dropwise at 0 °C
under N, atmosphere. The reaction mixture was stirred for 2 h at 0 °C and then diluted with
H>O (5 mL). The whole was extracted three times with EtOAc (3 x 20 mL). The combined
organic layer was washed with brine solution, dried over Na>SQs, filtrated and concentrated
under reduced pressure. The crude product was purified by column chromatography using
EtOAc/Hexane (60:20) as an eluent to afford the desired product (R)-6 (0.648 g, 1.12 mmol,
64%, brown oil). '"H NMR (400 MHz, CDCls) § 7.36-7.29 (m, 5H), 5.64-5.45 (m, 1H), 5.06-
5.00 (m, 2H), 4.50-4.32 (m, 2H), 4.26-4.16 (m, 1H), 4.03-3.89 (m, 2H), 3.86-3.79 (m, 1H),
3.70 (2s, 3H), 3.59-3.47 (m, 2H), 2.60 (broad, 1H), 1.41 (s, 9H), 0.85 (2s, 9H), 0.05 (2s, 6H);
3P NMR (400 MHz, CDCL) 6 -0.70, -0.85; '*C NMR (100 MHz, CDCl;) J 169.8, 155.3 (2s),
135.5 (d, Jop= 6Hz), 128.8, 128.7, 128.1, 80.4, 71.2 (d, J.,= 8Hz), 69.8 (2d, J., = 5Hz), 67.9
(t, Jop=5Hz), 67.7 (2d, Jep = 5SHz), 62.9, 54.0 (d, J..p = 7THz), 52.8 (2s), 28.3, 25.8, 18.1, -4.7, -
4.8; DEPT-135 NMR (100 MHz, CDCls) ¢ 128.8 (CH), 128.7 (CH), 128.0 (CH), 71.1 (d, Jep=
7Hz, CH), 69.7 (2d, J., = 6Hz, CH»), 67.9 (t, Je, = SHz, CH>), 67.6 (2d, J..,= 6Hz, CH>), 62.9
(CH2), 53.9 (d, Jep= 8Hz, CH), 52.7 (2s, CH3), 28.3 (CH3), 25.7 (CH3), -4.8 (CH3), -4.9 (CHs);
HRMS-ESI: [(M + H)"-BOC] calcd. for C20H37NOsPSi, 478.2021; found, 478.2023.
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D) Synthesis of Compound (.5)-4

(S)s OH 4 methoxyphenol (Sk~oPmP
\ ' Amberlyst-15 (S)
S0 DEAD, PPh; o/ 5 —eor OHV > Ho S opmP
- e y 3 =
el TOU?Q%ZS °C, el 16 h, 60% OH
) o
(S)-(2,2-dimethyl-1,3- (S)-11 (S)-12
dioxolan-4-yl)methanol TBDMSCL
Imidazole,
DMF, rt, 24 h,
97%

PRGN HF-Pyridine
- S
HO™ Y “OPMP 850~ opup

OTBS THF, rt,
16 h, 56% OTBS
(S)-4 (S)-13

Synthesis of compound (S)-4

(5)-4-((4-methoxyphenoxy)methyl)-2,2-dimethyl-1,3-dioxolane ((S)-11):

To synthesized compound (S)-4 we followed the previously been reported procedure®. The
commercially available (§5)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (5.0 g, 37.83 mmol)
was dissolved in anhydrous toluene followed by triphenylphosphine (11.91 g, 45.40 mmol),
and p-methoxyphenol (14.09 g, 113.49 mmol) were added under an N, atmosphere. To the
solution, DEAD (8.57 g, 49.18 mmol) in toluene (24.6 mL) was added dropwise, and the
reaction mixture was stirred at 75 °C for 5 h. After completion of the reaction, the mixture was
evaporated, and the residue was purified by silica column chromatography using 10% EtOAc
in n-hexane as an eluent to provide the desired product (S)-11 (8.5 g, 35.6 mmol, 94% yield,
colorless oil). 'H NMR (400 MHz, CDCl3) 6 6.86-6.80 (m, 4H), 4.45 (quint, J = 5.9 Hz, 1H),
4.15 (dd, J= 8.4, 6.4 Hz, 1H), 4.01 (dd, J =9.4, 5.5 Hz, 1H), 3.90-3.86 (m, 2H), 3.75 (s, 3H),
1.46 (s, 3H), 1.40 (s, 3H); HRMS-ESI: [M ]" calcd for C13His04, 238.1205; found 238.1204.

(5)-3-(4-methoxyphenoxy)propane-1,2-diol ((:5)-12):

The compound (S)-11 (8.4 g, 35.3 mmol) was dissolved in anhydrous MeOH (36 mL), and
Amberlyst-15 (11.1 g, 35.3 mmol) was added at room temperature. The reaction mixture was
stirred for 16 h at room temperature. After completion of the reaction, amberlyst-15 was
filtered off and the solvent of the filtrate was evaporated under reduced pressure. The residue
was purified by silica column chromatography using 90% EtOAc in n-hexane as an eluent to
give the desired product ($)-12 (4.19 g, 21.2 mmol, 60% yield, white solid). 'H NMR (400

MHz, CDCls) J 6.87-6.82 (m, 4H), 4.09 (sext, J = 4.9 Hz, 1H), 4.03-3.97 (m, 2H), 3.86-3.81
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(m, 1H), 3.77 (s, 3H), 3.76-3.72 (m, 1H), 2.65 (m, 1H), 2.08 (m, 1H); HRMS-ESI: [M ]* calcd
for C10H 404, 198.0892; found, 198.0892.

(5)-5-((4-methoxyphenoxy)methyl)-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecane
((5)-13):

The compound (§)-12 (4.1 g, 20.7 mmol) was dissolved in anhydrous DMF (33 mL) followed
by imidazole (4.23 g, 62.1 mmol) and TBSCI (7.8 g, 51.8 mmol) was sequentially added at
room temperature. The mixture was stirred for 16 h at room temperature and then the mixture
was diluted with water (25 mL) and Et,O (25 mL), and the aqueous layer was separated and
extracted three times with Et2O (15 mL x 3). The combined organic layer was dried over
NaxSOs4 and the solvent was evaporated. The residue was purified by silica column
chromatography using 5% Et;0O in n-hexane as an eluent to obtain the desired product (S)-13
(8.55 g, 20.1 mmol, 97% yield, colorless oil). "H NMR (400 MHz, CDCls) § 6.87-6.81 (m,
4H), 4.06-4.02 (m, 2H), 3.84-3.80 (m, 1H), 3.77 (s, 3H), 3.65 (d, J = 5.5 Hz, 2H), 0.91 (s,
18H), 0.12-0.11 (m, 6H), 0.08 (s, 6H); HRMS-ESI: [M + H]+ calcd for C22H4304S12, 427.2694;
found 427.2692.

(5)-2-((tert-butyldimethylsilyl)oxy)-3-(4-methoxyphenoxy)propan-1-ol ((5)-4):

The (5)-5-((4-methoxyphenoxy)methyl)-2,2,3,3,8,8,9,9-octamethyl-4,7-dioxa-3,8-disiladecane
(8.5 g, 19.9 mmol) was dissolved in dry THF (45 mL). The HF-pyridine complex (70%w/w)
(3.5 mL) and pyridine (16 mL) was sequentially added at room temperature under a N>
atmosphere. The reaction mixture was stirred for 4 h at room temperature and then diluted with
water (30 mL). The desired product was extracted three times with EtOAc (30 mL x 3), and
washed with brine, dried over Na>xSO4 and evaporated. The residue was purified by silica
column chromatography using 60% EtOAc in n-hexane as an eluent to provide the desired
product ($)-4 (3.32 g, 10.7 mmol, 56% yield, colourless oil, recovered starting compound (.5)-
13, (1.1 g, 2.6 mmol, 13%). 'H NMR (400 MHz, CDCl5) ¢ 6.83 (s, 4H), 4.12-4.07 (m, 1H),
3.95-3.86 (m, 2H), 3.76 (s, 3H), 3.75-3.65 (m, 2H), 1.98 (broad, 1H), 0.91 (s, 9H), 0.14 (s, 3H),
0.12 (s, 3H); HRMS-ESI: [M + H]" caled for C16H20048Si, 313.1830; found, 313.1832.

E) Synthesis of Compound ($)-5 & (5)-6
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Methyl O-((benzyloxy)((S)-2-((tert-butyldimethylsilyl)oxy)-3-(4-

methoxyphenoxy)propoxy)phosphoryl)-/V-(tert-butoxycarbonyl)-L-serinate ((S)-5):

To synthesized compound (S)-5 and (5)-6 we followed previously been reported procedure>?

.The phosphoramidite 3 (1.0 g, 2.19 mmol) was dissolved in anhydrous CH>Cl> (1.5 ml), and
then the solution was co-evaporated with ACN three times (3 x 1.5 mL). The residue was
dissolved in anhydrous CH>Cl, (12 mL), and the solution of 1H-tetrazole in ACN (~0.45 M)
(0.5 mL, 0.55 mmol) was added at room temperature. The solution of alcohol 4 (1.68 g, 5.36
mmol) in CH>Cl (2.3 mL) was added dropwise under N, atmosphere, and then the mixture
stirred at room temperature for 24 h. The anhydrous ACN (14 mL) was added and then the
reaction mixture was heated to 60 °C for 12 h. The intermediate formation was confirmed by
TLC then tert-butyl hydroperoxide (TBHP) solution in decane (5.0-6.0 M) (0.64 mL, 6.57
mmol) was added dropwise and the reaction mixture was stirred at room temperature for 3 h.
The reaction mixture was diluted with 7.5 mL water and extracted with CH>CL (3 X 15 mL).
The combined organic layer was washed with brine solution, dried over Na>SOq, filtered and
concentrated under reduced pressure. The crude product was purified by flash column
chromatography using MeOH/H>O (95:5) as an eluent to afford the compound (S)-5 (0.6 g,
1.46 mmol, 40%, colourless oil). '"H NMR (400 MHz, CDCl3) 6 7.39-7.29 (m, 5H), 6.84-6.76
(m, 4H), 5.52-5.42 (m, 1H), 5.09-5.01 (m, 2H), 4.52-4.56 (m, 2H), 4.27-4.20 (m, 1H), 4.17-
4.07 (m, 2H), 4.04-3.97 (m, 1H), 3.90-3.78 (m, 2H), 3.75 (s, 3H), 3.72-3.70 (m, 3H), 1.43 (s,
9H), 0.88 (2s, 9H), 0.11-0.07 (m, 6H); *'P NMR (400 MHz, CDCL) § -0.40. *C NMR (100
MHz, CDCl3) 0 169.7, 155.3, 154.1, 152.7, 135.6 (d, Jop = 6Hz), 128.8, 128.7, 128.1 (d, Jep =
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3Hz), 115.4, 114.7, 80.4, 69.9 (d, Jop = 8 Hz), 69.7 (t, Jep= 6Hz), 69.5 (broad), 68.9 (d, Jep =
6Hz), 67.6 (broad), 55.8, 54.0 (d, Jp = 7Hz), 52.8, 28.4, 25.8, 18.2, -4.6, -4.7; DEPT-135
NMR (100 MHz, CDCl3) § 128.8 (CH), 128.7 (CH), 128.1 (d, Je, = 2 Hz, CH), 115.4 (CH),
114.7 (CH), 69.9 (d, Jop= 8 Hz, CH), 69.7 (t, Jep = 5 Hz, CHa), 69.5 (broad, CH,), 68.9 (d, Jep
= 6 Hz, CHa), 67.6 (broad, CHa), 55.8 (CH3), 54.0 (d, Jep= 7 Hz, CH), 52.8 (CH3), 28.4 (CHs),
25.8 (CHs), -4.7 (CHs), -4.8 (CHs); HRMS-ESI: [(M + H)*-BOC] caled for Co7H43NOoPSI,
584.2445; found, 584.2443.

Methyl O-((benzyloxy)((S)-2-((tert-butyldimethylsilyl)oxy)-3-
hydroxypropoxy)phosphoryl)-N-(tert-butoxycarbonyl)-L-serinate ((:5)-6):

To the solution of PMP protected alcohol (8)-5 (0.45 g, 0.658 mmol) in ACN: H,O (4:1) (3.8
mL), the Ceric Ammonium Nitrate (CAN) (0.9 g, 1.65 mmol) was added dropwise at 0 °C
under N> atmosphere. The reaction mixture was stirred for 1 h at 0 °C and then diluted with
H>0 (1.9 mL). The whole was extracted three times with EtOAc (3 x 20 mL). The combined
organic layer was washed with brine solution, dried over Na>SOq, filtered and concentrated
under reduced pressure. The crude product was purified by column chromatography (100-200
mesh silica gel) using EtOAc/Hexane (60:20) as an eluent to afford the desired product (5)-6
(0.220 g, 0.381 mmol, 58%, brown oil). 'H NMR (400 MHz, CDCls) 6 7.41-7.32 (m, 5H),
5.70-5.46 (m, 1H), 5.12-5.02 (m, 2H), 4.53-4.34 (m, 2H), 4.30-4.19 (m, 1H), 4.07-3.90 (m,
2H), 3.88-3.81 (m, 1H), 3.74 (2s, 3H), 3.63-3.52 (m, 2H), 2.31 (broad, 1H), 1.44 (s, 9H), 0.88
(2s, 9H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl) & -0.54, -0.81; '*C NMR (100 MHz,
CDCl) 6 169.9, 155.4, 135.6 (2d, J.p = 6 Hz), 128.9 (d, Jop = 2 Hz), 128.8 (d, Jep = 1HZ),
128.2 (d, Jop=5 Hz), 80.5, 71.1 (2d, J.p =5 Hz), 69.9 (2d, J.,=4 Hz), 67.8 (2d, Jop= 6 Hz),
67.5 (2d, Jep = 6Hz), 63.0, 54.0 (d, J.p = 7 Hz), 52.9 (2s), 28.4, 25.8, 18.2, -4.6, -4.8; DEPT-
135 NMR (100 MHz, CDCl3) 0 128.8 (d, Je, = 2Hz, CH), 128.7 (broad, CH), 128.1 (d, Jep=
Hz, CH), 71.0 (2d, J.p = 5 Hz, CH), 69.8 (2d, J.., = 5 Hz, CH»), 67.7 (2d, J., = 6Hz, CH>),
67.4 (2d, Jep= 5 Hz, CH»), 62.9 (CH»), 53.9 (d, Jep= 7 Hz, CH), 52.8 (2s, CH3), 28.3 (CH3),
25.7 (CHs), -4.7 (CH3), -4.9 (CHs); HRMS-ESI: [(M + H)"-BOC] calcd. for C20H37NOsPSi,
478.2021; found, 478.2023.

General procedure (A1) for the synthesis of compounds (R)-8a-h:
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To synthesized compound (R)-8 we followed previously been reported procedure®*>*. To a
solution of alcohol (R)-6 (1.0 equiv) and fatty acid 7 (0.9 equiv) in anhydrous CH>Cly, the 4-
Dimethylaminopyridine (DMAP 0.25 equiv) and 1-(3-dimethylamino propyl)-3-
ethylcarbodiimide hydrochloride (EDC-HCI, 0.9 equiv) were sequentially added at 0 "C. After
stirring the mixture 16 h at room temperature, the reaction was quenched with saturated
solution of NaHCO3 and extracted three times with CH2CL. The combined organic layer was
dried over Na,SOu, filtrated, and concentrated under reduced pressure at 25 “C. The residue
was purified by column chromatography (100-200 silica gel mesh) using 25-30% Ethyl

Acetate in hexane as an eluent to afford the corresponding desired product (R)-8.

(R)-8a

(0] OBn (o)

i
Meo/ﬂ\v/A\o/ﬁ\O/A\?PA\O/M\V/A\V/A\V/A\V/A\\

- (0]
NHBoc OTBS

(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl decanoate

Following the general procedure (A1), (R)-6 (80 mg, 0.138 mmol), 7a (Decanoic acid, C10:0)
(21 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0346 mmol) and
CH2CL (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane,30:70) to yield (R)-8a (52 mg, 0.0710 mmol, 51%,
colourless oil). '"H NMR (400 MHz, CDCL) 6 7.41-7.31 (m, 5H), 5.43 (m, 1H), 5.06 (dd, J =
8.7, 3.2 Hz, 2H), 4.54-4.34 (m, 2H), 4.29-4.20 (m, 1H), 4.15-4.06 (m, 1H), 4.04-3.86 (m, 4H),
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3.74 (2s, 3H), 2.29 (td, J = 7.6, 2.2 Hz, 2H), 1.61 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.36-
1.21 (m, 12H), 0.92-0.82 (m, 12H), 0.08 (2s, 6H); *'P NMR (400 MHz, CDCl;) 6 -1.08; 13C
NMR (100 MHz, CDCl3) ¢ 173.5, 169.8, 155.3, 135.8 (d, Jep = 6.0 Hz), 128.9, 128.8, 128.1
(d, Jep =2 Hz), 80.5, 69.9 (2d, Jop = 5 Hz), 69.3 (d, Jep = 8 Hz), 68.6 (t, Jop = 6HZ), 67.7 (m),
64.9, 54.2 (m), 52.8, 34.3, 32.0, 29.5, 29.4, 29.3, 28.5, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6, -4.7,
DEPT-135 NMR (100 MHz, CDClz) ¢ 128.7 (CH), 128.6 (CH), 127.9 (d, J.p = 2 Hz, CH),
69.7 (2d, Jop=5 Hz, CH»), 69.1 (d, Jep = 8 Hz, CH), 68.5 (t, Jep= 7 Hz, CH>), 67.5 (m, CH>),
64.7 (CH2), 54.1 (m, CH), 52.6 (CH3), 34.1 (CH>), 31.8 (CH>), 29.3 (CH»), 29.2 (CH>), 29.1
(CH>), 28.3 (CH3), 25.6 (CH3), 24.8 (CH»), 22.6 (CH»), 14.0 (CHz3), -4.8 (CH3), -4.9 (CH3);
MALDI (ESI-TOF) for C3sHsNO;1PSi [M+K]": calcd., 770.34; found, 770.35; [M+Na]":
calcd., 754.37; found, 754.38.

(R)-8b
0]
~ )J\/\O " O/Y\O)W
(0] OTBS
>( \[Of

(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl dodecanoate

Following the general procedure (Al), (R)-6 (70 mg, 0.121 mmol), 7b (Dodecanoic acid,
C12:0) (22 mg, 0.108 mmol), EDC-HCI (20 mg, 0.109 mmol), DMAP (3 mg, 0.0302 mmol)
and CH2Cl> (5 mL) were used. The crude mixture was purified by column chromatography
(100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-8b (45 mg, 0.0592 mmol, 49%.,
colourless oil; 'H NMR (400 MHz, CDCl3) § 7.41-7.31 (m, 5H), 5.47 (dd, J = 14.4, 8.4 Hz,
1H), 5.05 (dd, J = 8.7, 3.2 Hz, 2H), 4.53-4.35 (m, 2H), 4.27-4.18 (m, 1H), 4.13-4.04 (m, 1H),
4.02-3.85 (m, 4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.2 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.33-1.20 (m, 16H), 0.90-0.82 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz,
CDCls) 6 -1.09; *C NMR (100 MHz, CDCl3) § 173.6, 169.8, 155.3, 136.0 (d, Jop = 7 Hz),
128.9, 128.8, 128.1 (d, J.p = 2 Hz), 80.5, 69.8 (t, Jop = SHz), 69.1 (d, Jop = 8 Hz), 68.5 (t, Jep
=6 Hz), 67.7 (m), 64.8, 54.0 (d, J.., = 8 Hz), 52.9, 34.2, 32.0, 29.7, 29.6, 29.4, 29.3, 28.4, 25.8,
25.0, 22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.7
(CH), 128.1 (d, Jep = 2 Hz, CH), 69.7 (t, Jep = 5 Hz, CH2), 69.0 (d, Jo, = 8 Hz, CH), 68.4 (t, J.-
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» = 6 Hz, CHa), 67.6 (m, CHa), 64.7 (CHa), 53.9 (d, Jep = 7 Hz, CH), 52.7 (CH3), 34.1 (CHa),
31.9 (CHy), 29.6 (CHy), 29.5 (CH), 29.3 (CHy), 29.2 (CH»), 28.3 (CH3), 25.6 (CH3), 24.9
(CH>), 22.7 (CH), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C37HesNO11PSi
[M+K]" : caled., 798.38, found., 798.35, [M+Na]" : caled., 782.40; found, 782.38.

(R)-8¢
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(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl tetradecanoate

Following the general procedure (A1), (R)-6 (80 mg, 0.138 mmol), 7¢ (Myristic acid, C14:0)
(28 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0345 mmol) and
CHxCl> (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-8¢ (56 mg, 0.0711 mmol, 51%,
colourless oil). 'H NMR (400 MHz, CDCls) ¢ 7.41-7.30 (m, 5H), 5.47 (dd, J = 14.2, 8.4 Hz,
1H), 5.05 (dd, J = 8.7, 3.2 Hz, 2H), 4.53-4.36 (m, 2H), 4.28-419 (m, 1H), 4.13-4.04 (m, 1H),
4.02-3.85 (m, 4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.2 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.33-1.20 (m, 20H), 0.90-0.83 (m, 12H), 0.07 (s, 6H); *'P NMR (400 MHz,
CDCls) 6 -1.08; *C NMR (100 MHz, CDCl3) J 173.6, 169.8, 155.3, 135.6 (d, Jep = 7 Hz),
128.9, 128.8, 128.3 (d, Jep = 2 Hz), 80.4, 69.8 (t, J.p = 5 Hz), 69.1 (d, Jep = 9 Hz), 68.5 (t, Jep
=17 Hz), 67.7 (t, Jop = 4 Hz), 64.8, 54.0 (d, J.p = 7 Hz), 52.9, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5,
29.4,29.3, 28.4, 25.8, 25.0, 22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢
128.8 (CH), 128.7 (CH), 128.0 (d, Je» =2 Hz, CH), 69.7 (t, Jep = 5 Hz, CH»), 69.0 (d, Jep =9
Hz, CH), 68.4 (t, J., = 7 Hz, CH>), 67.6 (m, CH>), 64.7 (CH>), 53.9 (d, Jep = 7 Hz, CH), 52.7
(CH3), 34.1 (CH»), 31.9 (CH»), 29.7 (CH>), 29.6 (CHz), 29.5 (CH>), 29.4 (CH>), 29.3 (CH>),
29.2 (CH>), 28.3 (CHs), 25.6 (CH3), 24.5 (CH»), 22.3 (CH»), 14.1 (CHs), -4.8 (CH3), -4.9
(CH3); MALDI (ESI-TOF) for C3oH70NO1iPSi [M+K]": calcd., 826.41; found, 826.44;
[M+Na]": caled., 810.43; found, 810.44.

(R)-8d

68



~ )‘Oj\/\/\/\/\/\/\/\
)vo I o/\oCBso
>( \ﬂ/

(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zer-butyldimethylsilyl)oxy)propyl palmitate

Following the general procedure (A1), (R)-6 (80 mg, 0.138 mmol), 7d (Palmitic acid, C16:0)
(32 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0345 mmol) and
CHxCly (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to afford the desired product (R)-8d (61 mg,
0.0747 mmol, 54%, colourless oil). '"H NMR (400 MHz, CDCI3) 6 7.41-7.31 (m, 5H), 5.47
(dd, J = 14.5, 8.4 Hz, 1H), 5.05 (dd, J = 8.7, 3.2 Hz, 2H), 4.53-4.36 (m, 2H), 4.27-4.19 (m,
1H), 4.13-4.04 (m, 1H), 4.02-3.84 (m ,4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.6 Hz, 2H), 1.60
(quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.34-1.20 (m, 24H), 0.89-0.84 (m, 12H), 0.07 (2s, 6H);
3P NMR (400 MHz, CDCL) 6 -1.09; '3C NMR (100 MHz, CDCl;) J 173.4, 169.8, 155.3,
135.6 (d, Jep =5 Hz), 128.9, 128.8, 128.1 (d, Jep = 3 Hz), 80.4, 69.8 (t, Jep = 5 Hz), 69.1 (d, J.-
» =9 Hz), 68.5 (t, Jop =7 Hz), 67.7 (t, Jop =4 Hz), 64.8, 54.0 (d, Jop = 7 Hz), 52.9, 34.2, 32.0,
29.8,29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.2, -4.7, -4.8; DEPT-135 NMR
(100 MHz, CDCl3) 0 128.8 (CH), 128.7 (CH), 128.1 (d, Jep = 2 Hz, CH), 69.7 (t, Je» = 5 Hz,
CH>), 69.0 (d, Jp = 9 Hz, CH), 68.4 (t, J., = 7 Hz, CH>), 67.6 (t, Jop = 4 Hz, CH>), 64.7
(CH2), 53.9 (d, Jop = 7 Hz, CH), 52.7 (CH3), 34.1 (CH>), 31.9 (CH»), 29.7 (CH>), 29.6 (CH>),
29.5 (CH2), 29.4 (CH»), 29.3 (CH2), 29.2 (CH2), 28.3 (CHa3), 25.6 (CHs), 24.9 (CH), 22.7
(CH»), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C41H74NOPSi [M+K]":
calcd., 854.44; found, 854.44; [M+Na]": calcd., 838.46; found, 838.47.

(R)-8e
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(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl stearate

Following the general procedure (A1), (R)-6 (70 mg, 0.121 mmol), 7e (Stearic acid, C18:0) (31
mg, 0.109 mmol), EDC-HCI (20 mg, 0.109 mmol), DMAP (3 mg, 0.0209 mmol) and CH>Cl
(4 mL) were used. The crude mixture was purified by column chromatography (100-200 silica
gel mesh) (EtOAc/Hexane 30:70) to provide (R)-8e (54 mg, 0.0640 mmol, 50%, colourless
oil). '"H NMR (400 MHz, CDCl3) § 7.41-7.31 (m, 5H), 5.47 (dd, J = 14.2, 8.5 Hz, 1H), 5.06
(dd, J= 8.7, 3.2 Hz, 2H), 4.53-4.36 (m, 2H), 4.27-4.19 (m, 1H), 4.13-4.04 (m, 1H), 4.03-3.85
(m, 4H), 3.73 (2s, 3H), 2.29 (td, J=7.5, 2.4 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H),
1.33-1.20 (m, 28H), 0.89-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl;) § -1.08;
3C NMR (100 MHz, CDCl3) 6 173.6, 169.8, 155.3, 135.6 (d, J = 5 Hz), 128.9, 128.8, 128.1 (d,
Jep =2 Hz), 80.5, 69.8 (t, Je-p = 5 Hz), 69.1 (d, Jep = 8 Hz), 68.5 (t, Je-p = 7 Hz), 67.7 (t, Jep = 4
Hz), 64.8, 54.0 (d, Je, = 7 Hz), 52.9, 34.3, 32.1, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8,
25.0, 22.8, 18.2, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.7
(CH), 128.1 (d, Jep = 2 Hz, CH), 69.7 (t, Jc» = 5 Hz, CH»), 69.0 (d, Jo, = 8 Hz, CH), 68.4 (t, J.-
» =7 Hz, CH), 67.6 (t, Jp = 4 Hz, CH»), 64.7 (CH»), 53.9 (d, Je» = 7 Hz, CH), 52.7 (CH3),
34.1 (CH2), 31.9 (CH2), 29.7 (CH>), 29.6 (CH>), 29.5 (CH>), 29.4 (CH»), 29.3 (CH»), 29.2
(CH»), 28.3 (CH3), 25.6 (CH3), 24.9 (CH>), 22.7 (CH2), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3);
MALDI (ESI-TOF) for Cs3sH7sNO11PSi [M+K]": calcd., 882.47; found, 882.47; [M+Na]":
calcd., 866.49; found, 866.50.

(R)-8f
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(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl icosanoate

Following the general procedure (A1), (R)-6 (90 mg, 0.155 mmol), 7f (Arachidic acid, C20:0)
(43 mg, 0.140 mmol), EDC-HCI (27 mg, 0.140 mmol), DMAP (5 mg, 0.0388 mmol) and
CH:Cl; (5.5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 25:75) to afford (R)-8f (67 mg, 0.0768 mmol, 50%,
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colourless oil). 'TH NMR (400 MHz, CDCL) § 7.41-7.30 (m, 5H), 5.47 (dd, J = 14.4, 8.4 Hz,
1H), 5.05 (dd, J = 8.7, 3.2 Hz, 2H), 4.54-4.35 (m, 2H), 4.27-4.19 (m, 1H), 4.13-4.04 (m, 1H),
4.02-3.85 (m, 4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.4 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.33-1.20 (m, 32H), 0.90-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz,
CDCl) 6 -1.09; *C NMR (100 MHz, CDCl3) § 173.6, 169.8, 155.3, 135.6 (d, Jep = 7 Hz),
128.9, 128.8, 128.1 (d, Jop = 2Hz), 80.4, 69.8 (t, Jep = 5 Hz), 69.1 (d, Jep = 9 Hz), 68.5 (t, Jep
= THz), 67.7 (t, Jop = 5 Hz), 64.8, 54.1 (d, Jep = 7 Hz), 52.9, 34.3, 32.1, 29.8, 29.7, 29.6, 29.5,
29.4,29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢
128.8 (CH), 128.7 (CH), 128.1 (d, Jep = 2Hz, CH), 69.7 (t, Jep = 5 Hz, CH>), 69.0 (d, Jep = 8
Hz, CH), 68.4 (t, J., = 7 Hz, CH>), 67.6 (t, Je, = 4 Hz, CH>), 64.7 (CH>), 53.9 (d, Jop = 7 Hz,
CH), 52.7 (CH3), 34.1 (CH»), 31.9 (CH>), 29.7 (CH>), 29.6 (CH>), 29.5 (CH>), 29.4 (CH>), 29.3
(CH»), 29.2 (CH»), 28.3 (CH3), 25.6 (CH3), 24.9 (CH>), 22.7 (CH>), 14.1 (CH3), -4.8 (CH3), -
4.9 (CH3); MALDI (ESI-TOF) for Cs4sHg:NO11PSi [M+K]": caled., 910.50; found, 910.49;
[M+Na]": calcd., 894.52; found, 894.52.

(R)-8g

O
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(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl docosanoate

Following the general procedure (A1), (R)-6 (80 mg, 0.139 mmol), 7g (Behenic acid, C22:0)
(38 mg, 0.125 mmol), EDC-HCI (24 mg, 0.125 mmol), DMAP (4 mg, 0.0348 mmol) and
CH:Cl; (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 25:75) to yield (R)-8g (53 mg, 0.0589 mmol, 42%,
colourless oil. 'TH NMR (400 MHz, CDCl3) § 7.42-7.31 (m, 5H), 5.47 (dd, J = 14.0, 8.5 Hz,
1H), 5.06 (dd, J = 8.7, 3.2 Hz, 2H), 4.53-4.36 (m, 2H), 4.28-4.19 (m, 1H), 4.14-4.04 (m, 1H),
4.03-3.85 (m, 4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.5 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.33-1.21 (m, 36H), 0.91-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz,
CDCl) 6 -1.08; '*C NMR (100 MHz, CDCl3) § 173.6, 169.8, 155.4, 135.6 (d, Jep = 6 Hz),
128.9, 128.8, 128.1 (d, J = 2 Hz), 80.5, 69.8 (t, Jep = 5 Hz), 69.2 (d, Jep= 8 Hz), 68.5 (t, Jep =

71



7 Hz), 67.8 (t, Jop= 4 Hz), 64.8, 54.0 (d, Jep = 7 Hz), 52.9, 34.3, 32.1, 29.8, 29.6, 29.5, 29.4,
29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.3, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl;) ¢ 128.8
(CH), 128.7 (CH), 128.1 (d, Jep = 2 Hz, CH), 69.7 (t, Jep = 5 Hz, CH2), 69.0 (d, Jop = 8 Hz,
CH), 68.4 (t, Jop =7 Hz, CH»), 67.6 (t, Jop= 4 Hz, CH>), 64.7 (CH>), 53.9 (d, Je,= 7 Hz, CH),
52.8 (CH3), 34.1 (CHz), 31.9 (CH), 29.7 (CHz), 29.6 (CH>), 29.5 (CH>), 29.4 (CH>), 29.3
(CH»), 29.2 (CH»), 28.3 (CH3), 25.6 (CH3), 24.9 (CH>), 22.7 (CH>), 14.1 (CH3), -4.8 (CHa), -
4.9 (CHs); MALDI (ESI-TOF) for C47HgsNO:11PSi [M+K]": calcd., 938.53; found, 938.54;
[M+Na]": caled., 922.56; found, 922.57.

(R)-8h
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(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl tetracosanoate

Following the general procedure (A1), (R)-6 (80 mg, 0.139 mmol), 7h (Lignoceric acid,
C24:0) (46 mg, 0.125 mmol), EDC-HCI (24 mg, 0.125 mmol), DMAP (4 mg, 0.0348 mmol)
and CH2Cl> (5 mL) were used. The crude mixture was purified by column chromatography
(100-200 silica gel mesh) (EtOAc/Hexane, 25:75) to yield (R)-8h (59 mg, 0.0589 mmol, 46%,
colourless oil). 'H NMR (400 MHz, CDCl3) 6 7.41-7.30 (m, 5H), 5.47 (dd, J = 14.6, 8.4 Hz,
1H), 5.06 (dd, J = 8.7, 3.2 Hz, 2H), 4.53-4.34 (m, 2H), 4.27-4.19 (m, 1H), 4.14-4.04 (m, 1H),
4.03-3.84 (m, 4H), 3.73 (2s, 3H), 2.29 (td, J = 7.5, 2.4 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.33-1.20 (m, 40H), 0.89-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz,
CDCls) 6 -1.09; *C NMR (100 MHz, CDCl;) 6 173.6, 169.8, 155.3, 135.6 (d, Jop = 6 Hz),
128.9, 128.8, 128.1 (d, Jep= 2 Hz), 80.4, 69.8 (t, J.p=5 Hz), 69.1 (d, Jop= 8 Hz), 68.5 (t, Jep=

7 Hz), 67.7 (t, Jop= 4 Hz), 64.8, 54.1 (d, Jep = 7 Hz), 52.9, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5,
294, 29.3, 28.4, 25.8, 25.0, 22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢
128.8 (CH), 128.7 (CH), 128.01 (d, Je.p= 2 Hz, CH), 69.7 (t, Jep= 5 Hz, CH»), 69.0 (d, Jep=9
Hz, CH), 68.4 (t, Jop = 7 Hz, CH»), 67.6 (t, Jop = 4 Hz), 64.7 (CH>), 53.9 (d, Je, = 7 Hz, CH),
52.7 (CHs), 34.1 (CH), 31.9 (CH>), 29.7 (CH2), 29.6 (CH>), 29.5 (CH2), 29.4 (CH»), 29.3
(CH>), 29.2 (CH>), 28.3 (CH3), 25.6 (CH3), 24.5 (CH»), 22.7 (CH»), 14.1 (CH3), -4.8 (CH3), -
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4.9 (CHs); MALDI (ESI-TOF) for C49HooNO1PSi [M+K]": calcd., 966.57; found, 966.58;
[M+Na]": caled., 950.59; found, 950.61.

General procedure (A2) for the synthesis of compounds ($)-8a-h:

Ao g e g
0~ || S0~ oy RCOM EDCHCI \oJ\/\o”ﬁ\oA@/\oJ\R

NHBoc © oTBS DMAP, CH,Cl,

(S)-6 0°Ctort, 16 h NHBoc OTBS

(S)-8a-h
RCO,H n RCO,H n
7a C10:0 7e C18:0
7b C12.0 7f C20:0
7c C14.0 7g C22:0
7d C16:.0 7h C24:.0

To synthesized compound (S)-8 we followed previously been reported procedure’>>* To a
solution of alcohol (5)-6 (1.0 equiv) and fatty acid 7 (0.9 equiv) in anhydrous CH>Cl,, the 4-
Dimethylaminopyridine (DMAP 0.25 equiv) and 1-(3-dimethylamino propyl)-3-
ethylcarbodiimide hydrochloride (EDC-HCI, 0.9 equiv) were sequentially added at 0 "C. After
stirring the mixture 16 h at room temperature, the reaction was quenched with saturated
solution of NaHCO3 and extracted three times with CH2ClL. The combined organic layer was
dried over Na>SOs, filtrated and concentrated under reduced pressure at 25 °C. The residue was
purified by column chromatography (100-200 silica gel mesh) using 25-30% Ethyl Acetate in

hexane as an eluent to afford the corresponding desired product (S5)-8.

(5)-8a

O
O OTBS
o™
0]

(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl decanoate

Following the general procedure (A2), (5)-6 (85 mg, 0.147 mmol), 7a (Decanoic acid, C10:0)
(21 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0346 mmol) and

CH:Cl; (5 mL) were used. The crude mixture was purified by column chromatography (100-
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200 silica gel mesh) (EtOAc/Hexane,30:70) to yield (S)-8a (56 mg, 0.0683 mmol, 49%,
colourless oil). '"H NMR (400 MHz, CDCls) 6 7.41-7.30 (m, 5H), 5.46 (t, J= 9.7 Hz, 1H), 5.05
(t, J = 8.1 Hz, 2H), 4.54-4.35 (m, 2H), 4.28-4.19 (m, 1H), 4.14-4.05 (m, 1H), 4.03-3.85 (m,
4H), 3.74 (2s, 3H), 2.29 (t, J=7.5 Hz, 2H), 1.60 (t, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.32-1.20 (m,
12H), 0.89-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCL) 6 -1.05, -1.09; *C
NMR (100 MHz, CDCl3) ¢ 173.6, 169.8, 155.3, 135.6 (d, Jep = 6.0 Hz), 128.9, 128.8, 128.1
(d, Je-p = 2Hz), 80.4, 69.8 (t, Jep = 5 Hz), 69.1 (d, Jop = 9 Hz), 68.5 (m), 67.7 (t, Jep = 4Hz),
64.8, 54.1 (d, Jop =7 Hz), 52.9, 34.2, 32.0, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.1, 14.2, -
4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.6 (CH), 128.1 (d, J.p=1 Hz,
CH), 69.7 (t, Jep = 5 Hz, CH»), 69.0 (d, Je, = 8 Hz, CH), 68.4 (m, CH>), 67.6 (t, Jo» = 4 Hz,
CH»), 64.7 (CH>), 53.9 (d, Jep = 8 Hz, CH), 52.7 (CH3), 34.1 (CH»), 31.9 (CH), 29.4 (CH»),
29.3 (CH2), 29.1 (CH>), 28.3 (CH3), 25.6 (CH3), 24.9 (CH»), 22.7 (CH»), 14.1 (CH3), -4.8
(CH3), -4.9 (CH3); MALDI (ESI-TOF) for C3sHs2NO11PSi [M+K]": calcd., 770.34; found,
770.35; [M+Na]": caled., 754.37; found, 754.37.

(5)-8b

O OTBS
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(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl dodecanoate

Following the general procedure (A2), ($)-6 (90 mg, 0.155 mmol), 7b (Dodecanoic acid,
C12:0 (28 mg, 0.140 mmol), EDC-HCI (26 mg, 0.140 mmol), DMAP (4 mg, 0.0389 mmol)
and CH2Cl> (5 mL) were used. The crude mixture was purified by column chromatography
(100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (5)-8b (43 mg, 0.0566 mmol, 47%,
colourless oil). '"H NMR (400 MHz, CDCl3) 6 7.41-7.31 (m, 5H), 5.47 (t, J=9.7 Hz, 1H), 5.06
(t, J = 8.0 Hz, 2H), 4.54-4.36 (m, 2H), 4.28-4.19 (m, 1H), 4.14-4.05 (m, 1H), 4.02-3.85 (m,
4H), 3.73 (2s, 3H), 2.29 (t, J = 7.6 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.33-
1.20 (m, 16H), 0.90-0.83 (m, 12H), 0.07 (2s, 6H); 3'P NMR (400 MHz, CDCls) 6 -1.06, -1.09;
3C NMR (100 MHz, CDCl3) 6 173.6, 169.8, 155.3, 135.6 (d, Jo, = 7 Hz), 128.9, 128.8, 128.1
(d, Jep = 2 Hz), 80.5, 69.8 (t, Jop = SHz), 69.2 (d, Jop = 9 Hz), 68.5 (m), 67.7 (t, Jep = 4Hz),
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64.8, 54.1 (d, Jep = 6 Hz), 52.9, 34.3, 32.0, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8,
18.2, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCls) ¢ 128.8 (CH), 128.7 (CH), 128.0 (d,
Jep =2 Hz, CH), 69.7 (t, Jep = 5 Hz, CH2), 69.0 (d, Je» =9 Hz, CH), 68.4 (m, CH»), 67.6 (t, J.-

=4 Hz, CH>), 64.7 (CH>), 53.9 (d, Jo, = 7 Hz, CH), 52.8 (CH3), 34.1 (CH>), 31.9 (CH>), 29.6
(CH), 29.5 (CH>), 29.3 (CH»), 29.2 (CH>), 28.3 (CHz3), 25.6 (CH3), 24.9 (CH>), 22.7 (CH»),
14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C37HssNO11PSi [M+K]" : caled.,
798.38, found., 798.35, [M+Na]" : caled., 782.40; found, 782.38.

(8)-8¢
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(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl tetradecanoate
Following the general procedure (A2), ($)-6 (80 mg, 0.138 mmol), 7¢ (Myristic acid, C14:0)
(28 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0345 mmol) and
CHxCl> (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (S)-8¢ (54 mg, 0.0686 mmol, 53%,
colourless oil). 'H NMR (400 MHz, CDCls) 6 7.41-7.30 (m, 5H), 5.47 (t, J=9.7 Hz, 1H), 5.06
(t, J = 8.0 Hz, 2H), 4.54-4.35 (m, 2H), 4.28-419 (m, 1H), 4.14-4.04 (m, 1H), 4.03-3.85 (m,
4H), 3.73 (2s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.33-
1.19 (m, 20H), 0.91-0.81 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl3) 6 -1.06, -1.09;
3C NMR (100 MHz, CDCls) § 173.6, 169.8, 155.3, 135.6 (d, Jop = 7 Hz), 128.9, 128.8,
128.1(broad), 80.5, 69.8 (t, Jop = 5 Hz), 69.1 (d, Jop = 8 Hz), 68.5 (t, Jop =7 Hz), 67.7 (t, Jep =
4 Hz), 64.8, 54.1 (d, Je,, = 7 Hz), 52.9, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8,
25.0, 22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.7
(CH), 128.0 (broad, CH), 69.7 (t, Jcp» = 5 Hz, CH>), 69.0 (d, Je» = 8 Hz, CH), 68.4 (m, CH>),
67.6 (t, Jop = 4 Hz, CH»), 64.7 (CH2), 53.9 (d, Jep = 7 Hz, CH), 52.7 (CH3), 34.1 (CH»), 31.9
(CH>), 29.7 (CH2), 29.6 (CH»), 29.5 (CH>), 29.4 (CH»), 29.3 (CH>), 29.2 (CH>), 28.3 (CHa),
25.6 (CHs), 24.9 (CH>), 22.7 (CH2), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF)
for C39H70NO11PSi [M+K]" : calcd., 826.41; found, 826.43; [M+Na]": caled., 810.43; found,
810.44.
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(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl palmitate

Following the general procedure (A2), ($)-6 (80 mg, 0.138 mmol), 7d (Palmitic acid, C16:0)
(32 mg, 0.124 mmol), EDC-HCI (24 mg, 0.124 mmol), DMAP (4 mg, 0.0346 mmol) and
CHxCl> (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to afford the desired product ($)-8d (53 mg,
0.0649 mmol, 54%, colourless oil; '"H NMR (400 MHz, CDCI3) 6 7.41-7.30 (m, 5H), 5.47 (t, J
= 9.7 Hz, 1H), 5.05 (t, J = 8.1 Hz, 2H), 4.54-4.35 (m, 2H), 4.28-4.19 (m, 1H), 4.15-4.05 (m,
1H), 4.03-3.84 (m ,4H), 3.73 (2s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H),
1.44 (s, 9H), 1.35-1.19 (m, 24H), 0.91-0.82 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz,
CDCls) 6 -1.05, -1.09; '*C NMR (100 MHz, CDCl3) § 173.6, 169.8, 155.3, 135.6 (d, Jop = 5
Hz), 128.9, 128.8, 128.1 (d, J.» = 1 Hz), 80.4, 69.8 (t, J.p = 5 Hz), 69.1 (d, Jep = 9 Hz), 68.5
(m), 67.7 (t, Jop = 4 Hz), 64.8, 54.0 (d, Jop, = 7 Hz), 52.8, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5,
294, 29.3, 28.4, 25.8, 25.0, 22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢
128.8 (CH), 128.7 (CH), 128.0 (d, Jcp =2 Hz, CH), 69.7 (t, Jop = 5 Hz, CH2), 69.0 (d, Jep = 8
Hz, CH), 68.4 (m, CH»), 67.6 (t, J.p, =4 Hz, CH»), 64.7 (CH>), 53.9 (d, Jc = 7 Hz, CH), 52.7
(CH3), 34.1 (CH2), 31.9 (CH»), 29.7 (CH2), 29.6 (CH2), 29.5 (CH>), 29.4 (CH>), 29.3 (CH>),
29.2 (CH2), 28.3 (CHs), 25.6 (CH3), 24.9 (CH»), 22.7 (CH»), 14.1 (CHs), -4.8 (CH3), -4.9
(CH3); MALDI (ESI-TOF) for C4iH7aNOPSi [M+K]": calcd., 854.44; found, 854.47,
[M+Na]": calcd., 838.46; found, 838.48.

(5)-8e
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(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl stearate

Following the general procedure (A2), ($)-6 (80 mg, 0.0138 mmol), 7e (Stearic acid, C18:0)
(35 mg, 0.124 mmol), EDC-HCI (23 mg, 0.124 mmol), DMAP (3 mg, 0.0311 mmol) and
CH>Cl, (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane 30:70) to provide (S)-8e (55 mg, 0.0652 mmol, 47%,
colourless oil). '"H NMR (400 MHz, CDCls) 6 7.41-7.31 (m, 5H), 5.47 (t, J=9.7 Hz, 1H), 5.06
(t, J = 8.0 Hz, 2H), 4.54-4.34 (m, 2H), 4.28-4.19 (m, 1H), 4.14-4.04 (m, 1H), 4.03-3.85 (m,
4H), 3.73 (2s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.60 (quint, J = 6.9 Hz, 2H), 1.44 (s, 9H), 1.33-
1.18 (m, 28H), 0.90-0.83 (m, 12 H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl;) 6 -1.06, -1.09;
3C NMR (100 MHz, CDCl3) 6 173.6, 169.8, 155.3, 135.6 (d, J = 5 Hz), 128.9, 128.8, 128.1 (d,
Jep =2 Hz), 80.4, 69.8 (t, J.p = 5 Hz), 69.2 (d, Jop = 8 Hz), 68.5 (m), 67.7 (t, Jop =4 Hz), 64.8,
54.1 (d, Jep = 7 Hz), 52.9, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8,
18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCls) ¢ 128.8 (CH), 128.7 (CH), 128.0 (d,
Jep =1 Hz, CH), 69.7 (t, Jep = 5 Hz, CH2), 69.0 (d, Jc» = 9 Hz, CH), 68.4 (m, CH»), 67.6 (t, J.-
» =4 Hz, CH»), 64.7 (CH»), 53.9 (d, Jep = 7 Hz, CH), 52.7 (CH3), 34.1 (CH»), 31.9 (CH>), 29.7
(CH2), 29.6 (CH»), 29.5 (CH>), 29.4 (CH»), 29.3 (CH>), 29.2 (CH»), 28.3 (CH3), 25.6 (CH3),
249 (CHp), 22.7 (CHp), 14.1 (CHs), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for
C43H7sNO;1PSi [M+K]": caled., 882.47; found, 882.48; [M+Na]": calcd., 866.49; found,
866.50.

(5)-8f
o) OBn o)
\OJ\;AO/E\O/\;/\OJ\/\/\/\/\/\/\/\/\/\
O.__NH OTBS
Ty

(2R)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl icosanoate

Following the general procedure (A2), (5)-6 (70 mg, 0.121 mmol), 7f (Arachidic acid C20:0),
(34 mg, 0.109 mmol), EDC-HCI (20 mg, 0.109 mmol), DMAP (3 mg, 0.0303 mmol) and

CH2ClL (5 mL) were used. The crude mixture was purified by column chromatography
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(EtOAc/Hexane 25:75) to provide (S)-8f (62 mg, 0.0711 mmol, 48%, colourless oil). "H NMR
(400 MHz, CDCl3) 6 7.41-7.30 (m, 5H), 5.47 (t, J= 9.8 Hz, 1H), 5.05 (t, J = 7.9 Hz, 2H), 4.54-
4.35 (m, 2H), 4.28-4.19 (m, 1H), 4.13-4.05 (m, 1H), 4.02-3.85 (m, 4H), 3.73 (2s, 3H), 2.29 (t, J
=1.5, Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.31-1.21 (m, 32H), 0.90-0.84 (m,
12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl3) 6 -1.06, -1.10; '*C NMR (100 MHz, CDCl;)
0 173.6, 169.8, 155.3, 135.6 (d, Jop = 5 Hz), 128.9, 128.8, 128.1 (d, Je, = 1Hz), 80.5, 69.8 (t,

Jep = 5 Hz), 69.1 (d, Jop = 8 Hz), 68.5 (m), 67.7 (t, Jep = 4 Hz), 64.8, 54.0 (d, Jop = 7 Hz),

52.9,34.3, 32.1, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.1, 14.2, -4.7, -4.8;
DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.7 (CH), 128.1 (d, Jep, = 1Hz, CH), 69.7
(t, Jop = 5 Hz, CH>), 69.0 (d, Jop = 9 Hz, CH), 68.4 (m, CH>), 67.6 (t, Jo, = 4 Hz, CH>), 64.7
(CH»), 53.9 (d, Jop = 7 Hz, CH), 52.7 (CH3), 34.1 (CH>), 31.9 (CH»), 29.7 (CH>), 29.6 (CH>»),
29.5 (CH2), 29.4 (CH»), 29.3 (CH»), 29.2 (CH»), 28.3 (CHs), 25.6 (CH3), 24.9 (CH>), 22.7
(CH»), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C4sHs2NO1PSi [M+K]":
caled., 910.50; found, 910.52; [M+Na]": caled., 894.52; found, 894.53.

(S)-8g
O
O OTBS
>r ™
0]

(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zer-butyldimethylsilyl)oxy)propyl docasanoate

Following the general procedure (A2), (5)-6 (80 mg, 0.139 mmol), 7g (Behenic acid, C22:0)
(38 mg, 0.125 mmol), EDC-HCI (24 mg, 0.125 mmol), DMAP (4 mg, 0.0348 mmol) and
CH:Cl; (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 25:75) to yield ($)-8g (57 mg, 0.0633 mmol, 45%,
colourless oil). '"H NMR (400 MHz, CDCl3) 6 7.41-7.30 (m, 5H), 5.47 (t, J=9.7 Hz, 1H), 5.06
(t, J = 8.0 Hz, 2H), 4.54-4.34 (m, 2H), 4.29-4.19 (m, 1H), 4.14-4.04 (m, 1H), 4.03-3.85 (m,
4H), 3.73 (2s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.33-
1.21 (m, 36H), 0.90-0.84 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl;3) ¢ -1.06, -1.09;
3C NMR (100 MHz, CDCl3) 6 173.6, 169.8, 155.3, 135.6 (d, Jo, = 6 Hz), 128.9, 128.8, 128.1
(d, J=2 Hz), 80.5, 69.8 (t, Jop =5 Hz), 69.2 (d, J.p = 8 Hz), 68.5 (m), 67.7 (t, Jop = 4 Hz),

78



64.8, 54.1 (d, Jep= 8 Hz), 52.9, 34.3, 32.1, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0,
22.8, 18.2, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl) § 128.8 (CH), 128.7 (CH),
128.1 (d, Jep = 2 Hz, CH), 69.7 (t, Jop = 5 Hz, CHz), 69.0 (d, Jop = 9 Hz, CH), 68.4 (m, CHa),
67.6 (t, Jop = 4 Hz, CHa), 64.7 (CH2), 53.9 (d, Jep = 6 Hz, CH), 52.7 (CHs), 34.1 (CHa), 31.9
(CHa), 29.7 (CHz), 29.6 (CHa), 29.5 (CHa), 29.4 (CH,), 29.3 (CHz), 29.2 (CHa), 28.3 (CH3),
25.6 (CHs), 24.9 (CHz), 22.7 (CHa), 14.1 (CHz), -4.8 (CH3), -4.9 (CHs); MALDI (ESI-TOF)
for C47HgsNOPSi [M+K]": caled., 938.53; found, 938.55; [M+Na]": calcd., 922.56; found,
922.58.

(5)-8h

O
~ )J\/\O/ ,,\o/\/\o)J\/\/\/\/\/\/\/\/\/\/\/\
O.__NH OTBS
>

O

(25)-3-(((benzyloxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl tetracosanoate

Following the general procedure (A2), (5)-6 (90 mg, 0.156 mmol), 7h (Lignoceric acid, C24:0)
(42 mg, 0.140 mmol), EDC-HCI (27 mg, 0.140 mmol), DMAP (5 mg, 0.039 mmol) and
CHxCl (5 mL) were used. The crude mixture was purified by column chromatography (100-
200 silica gel mesh) (EtOAc/Hexane, 25:75) to yield (5)-8h (68 mg, 0.0589 mmol, 47%,
colourless oil). 'H NMR (400 MHz, CDCls) 6 7.41-7.30 (m, 5H), 5.47 (t, J= 9.8 Hz, 1H), 5.05
(t, J = 8.0 Hz, 2H), 4.54-4.35 (m, 2H), 4.28-4.18 (m, 1H), 4.14-4.05 (m, 1H), 4.02-3.85 (m,
4H), 3.73 (2s, 3H), 2.29 (t, J = 7.5 Hz, 2H), 1.60 (quint, J = 7.0 Hz, 2H), 1.44 (s, 9H), 1.33-
1.20 (m, 40H), 0.90-0.82 (m, 12H), 0.07 (2s, 6H); *'P NMR (400 MHz, CDCl;) § -1.06, -1.10;
3C NMR (100 MHz, CDCls) 6 173.6, 169.8, 155.3, 135.6 (d, Jop = 6 Hz), 128.9, 128.8, 128.1
(d, Jop=1 Hz), 80.4, 69.8 (t, Je.p =5 Hz), 69.1 (d, Jop = 9 Hz), 68.5 (m), 67.7 (t, Jop = 4 Hz),
64.8, 54.0 (d, Jep =7 Hz), 52.8, 34.2, 32.0, 29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.7, 25.0,
22.8, 18.1, 14.2, -4.7, -4.8; DEPT-135 NMR (100 MHz, CDCl3) ¢ 128.8 (CH), 128.7 (CH),
128.0 (d, Jep =1 Hz, CH), 69.7 (t, Jop= 5 Hz, CH>), 69.0 (d, J., = 8 Hz, CH), 68.4 (m, CH>),
67.6 (t, Jop =4 Hz, CH»), 64.7 (CH>), 53.9 (d, J.p, = 7 Hz, CH), 52.7 (CH3), 34.1 (CH>), 31.9
(CH>), 29.7 (CH»), 29.6 (CH»), 29.5 (CH>), 29.4 (CH»), 29.3 (CH>), 29.2 (CH>), 28.3 (CHa),
25.6 (CHs), 24.9 (CH>), 22.7 (CH2), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF)
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for Ca9HooNO1:PSi [M+K]": calcd., 966.57; found, 966.57; [M+Na]": calcd., 950.59; found,

950.60.

General procedure (B1) for the synthesis of compounds (R)-9a-h

(debenzylation):

(0] ?Bn (o)
NU PN SN
e
NHBoc oTBS

(R)-8a-h

H,, 10% Pd/C

MeOH, rt, 16 h

L
’

O OH

\OJ\/\O/ IIZII’\O/\(‘R}\

(0]

NHBoc OTBS

(i)
+

0 (I)H

NHBoc
(ii)

(R)-9a-h

(R)

\O)J\/\O/('PS\O/Y\O

OH

R

0
M

R

To synthesized compound (R)-9 we followed previously been reported procedure

52-54 A

benzyl-protected substrate (R)-8 was dissolved in dry MeOH in two necks round bottom flask.

The Pd/C (10%) was added into the solution under N> atmosphere, then the round bottom flask

was equipped with hydrogen-filled rubber bladder. The reaction mixture was stirred for the

next 12 to 16 h at room temperature. The reaction solution was filtered through a celite pad

followed by washing with methanol (3 x 10 mL). The filtrate was concentrated under reduced

pressure at 25 °C to afford the product (R)-9 which were used without further purification to

the next step. We were also observed here 30-60% TBDMS deprotection (characterized by 'H

NMR) under this condition due to solvent effect>>8,

(R)-9a

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl decanoate
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(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl decanoate

Following the general procedure (B1), (R)-8a (49 mg, 0.0669 mmol), Pd-C (25 mg), and
MeOH (5 mL) were used. The product is obtained as a mixture of (R)-9a (i) (39%, calcd. by 'H
nmr) and (ii) (61%, calcd. by 'H nmr) (30 mg, colourless oil) and used without purify to the
next step. 'H NMR (400 MHz, MeOH-ds) 6 4.37 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92 (m,
3H), 3.91-3.77 (m, 2H), 3.75 (s, 3H), 2.40-2.31 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s, 9H),
1.37-1.23 (m, 12H), 0.94-0.86 (m, 7H), 0.15-0.09 (m, 2H); *'P NMR (400 MHz, MeOH-ds) ¢ -
0.19, -0.46.

(R)-9b

0]
~ )k/\o X O/\‘/\OMV\/\
0] NH OTBS
Y ()

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl

dodecanoate

o )K/\/\/\/\/\
O _NH o8 O/Y
T T @

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl dodecanoate
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Following the general procedure (B1), (R)-8b (45 mg, 0.0592 mmol), Pd-C (23 mg), and
MeOH (4.5 mL) were used. The product is obtained as a mixture of (R)-9b (i) (54%, calcd. by
'H nmr) and (ii) (43%, calcd. by 'H nmr) (32 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-ds) J§ 4.39-4.33 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.91-3.76 (m, 2H), 3.74 (s, 3H), 2.38-2.33 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.36-1.23 (m, 16H); 0.94-0.86 (m, 8H), 0.16-0.10 (m, 3H); *'P NMR (400 MHz, MeOH-
ds) 0 0.14, -0.21.

(R)-9¢

~ )K/\O | O/\‘/\O)WV\/\
>(O\[]/NH OTBS

O (i)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl

tetradecanoate

~ J\/\/\/\/\/\/\
)vo 1 O/Y\

(ii)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl tetradecanoate

Following the general procedure (B1), (R)-8¢ (44 mg, 0.0558 mmol), Pd-C (22 mg), and
MeOH (4.4 mL) were used. The product is obtained as a mixture of (R)-9¢ (i) (67%, calcd. by
"H nmr) and (ii) (33%, calcd. by 'H nmr) (28 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-d4) J 4.39-4.33 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.91-3.76 (m, 2H), 3.74 (s, 3H), 2.41-2.29 (m, 2H), 1.62 (q, J = 6.9 Hz, 2H), 1.45 (s,
9H), 1.36-1.22 (m, 20H), 0.93-0.86 (m, 9H), 0.17-0.08 (m , 4H); *'P NMR (400 MHz, MeOH-
ds) 6 0.21, -0.15.

(R)-9d
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(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl palmitate

S
~ an &) WM
0" o) o/\c‘)fo

(i)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl palmitate

Following the general procedure (B1), (R)-8d (55 mg, 0.0674 mmol), Pd-C (28 mg), and
MeOH (5.5 mL) were used. The product is obtained as a mixture of (R)-9d (i) (60%, calcd. by
"H nmr) and (ii) (40%, calcd. by 'H nmr) (36 mg, colourless oil) and used without purify to the
next step. 'H NMR (400 MHz, MeOH-ds) § 4.40-4.33 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.90-3.76 (m, 2H), 3.75 (m, 3H), 2.39-2.30 (m, 2H), 1.62 (q, /= 7.0 Hz, 2H), 1.45 (s,
9H), 1.37-1.24 (m, 24H), 0.93-0.86 (m, 8H), 0.17-0.09 (m, 4H); 3'P NMR (400 MHz, MeOH-
d4) 0 0.27,-0.12.

(R)-9¢

\ W
>( \ﬂ/ (i)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl stearate
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(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl stearate

Following the general procedure (B1), (R)-8e (45 mg, 0.0533 mmol), Pd-C (22 mg), and
MeOH (4.5 mL) were used. The product is obtained as a mixture (R)-9e (i) (65%, calcd. by 'H
nmr) and (ii) (35%, calcd. by 'H nmr) (30 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-d4) J 4.40-4.32 (m 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.92-3.76 (m, 2H), 3.74 (s, 3H), 2.40-2.30 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.36-1.24 (m, 28H), 0.93-0.86 (m, 9H), 0.17-0.09 (m, 4H); 3'P NMR (400 MHz, MeOH-
ds) 6 0.24, -0.14.

(R)-of

~ )vo 1 O/\ﬁ

O
O)J\/\/\/\/\/\/\/\/\/\
oTBS

(i)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl icosanoate

~o )WWWM
>( \g/ (")

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl icosanoate

Following the general procedure (B1), (R)-8f (65 mg, 0.0745 mmol), Pd-C (33 mg), and

MeOH (6.5 mL) were used. The product is obtained as a mixture (R)-9f (i) (58%, calcd. by 'H
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nmr) and (ii) (42%, calcd. by '"H nmr) (49 mg, white solid) and used without purify to the next
step. 'H NMR (400 MHz, MeOH-d4) J 4.40-4.34 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92 (m,
3H), 3.91-3.76 (m, 2H), 3.75 (s, 3H), 2.38-2.27 (m, 2H), (q, J = 7.0 Hz, 2H), 1.45 (s, 9H), 1.37-
1.24 (m, 32H), 0.95-0.85 (m, 9H), 0.17-0.09 (m, 4H); 3'P NMR (400 MHz, MeOH-ds) J -0.79,
-0.93.

(R)-9g

)OJ\/\ QH i
~ /P\ (R) )WWV\/\
>(O\H/NH OTBS

I ()

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl

docasanoate

)OJ\/\ (I)H i
~ /P\ (R) )WWV\/\
>(O\H/NH OH

I 0)

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl docosanoate

Following the general procedure (B1), (R)-8g (52 mg, 0.0578 mmol), Pd-C (26 mg), and
MeOH (5.2 mL) were used. The product is obtained as a mixture (R)-9g (i) (63%, calcd. by 'H
nmr) and (ii) (37%, calcd. by 'H nmr) (35 mg, white solid) and used without purify to the next
step. '"H NMR (400 MHz, MeOH-d4) § 4.40-4.32 (m, 1H), 4.31-4.14 (m, 2H), 4.13-3.92 (m,
3H), 3.90-3.77 (m, 2H), 3.74 (s, 3H), 2.42-2.28 (m, 2H), 1.62 (q, J= 7.0 Hz, 2H), 1.45 (s, 9H),
1.37-1.21 (m, 36H), 0.96-0.84 (m, 10H), 0.18-0.07 (m, 4H); *'P NMR (400 MHz, MeOH-d4) &
-0.56.

(R)-9h
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(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-
butyldimethylsilyl)oxy)propyltetracosanoate

~o J\/\/\/\/\/\/\/\/\/\/\/\
>( \g/ (")

(2R)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl tetracosanoate

Following the general procedure (B1), (R)-8h (59 mg, 0.0589 mmol), Pd-C (30 mg), and
MeOH (5.9 mL) were used. The product is obtained as a mixture (R)-9h (i) (46%, calcd. by 'H
nmr) and (ii) (54%, calcd. by '"H nmr) (40 mg, white solid) and used without purify to the next
step. '"H NMR (400 MHz, MeOH-ds + CDCI3) 6 4.45-4.36 (m, 1H), 4.33-4.03 (m, 4H), 4.02-
3.83 (m, 3H), 3.75 (s, 3H), 2.41-2.23 (m, 2H), 1.62 (m, 2H), 1.45 (s, 9H), 1.36-1.18 (m, 40H),
0.96-0.80 (m, 9H), 0.17-0.03 (m, 3H); *'P NMR (400 MHz, MeOH-ds + CDCL) ¢ -0.50, -0.90.

General procedure (B2) for the synthesis of compounds (5)-9a-h
(debenzylation):
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(S)-9a-h

To synthesized compound (S)-9 we followed previously been reported procedure®*>*. A

benzyl-protected substrate (S)-8 was dissolved in dry MeOH in two neck round bottom flask.
The Pd/C (10%) was added into the solution under the N> atmosphere, then the round bottom
flask was equipped with hydrogen-filled rubber bladder. The reaction mixture was stirred for
the next 12 to 16 h at room temperature. The reaction solution was filtered through a celite pad
followed by washing with methanol (3 x 10 mL). The filtrate was concentrated under reduced
pressure at 25 “C to afford the product (5)-9 which were used without further purification to the
next step. We were also observed 30-60% TBDMS deprotection (characterized by 'H NMR)

under this condition due to solvent effect.

(5)-9a

0]
~ )J\/\o O/\/\O)J\/\/\/\/\
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(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl decanoate
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0] NH OH
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(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl decanoate

Following the general procedure (B2), (§)-8a (50 mg, 0.0683 mmol), Pd-C (25 mg), and
MeOH (5.0 mL) were used. The product is obtained as a mixture of (S)-9a (i) (50%, calcd. by
"H nmr) and (ii) (50%, calcd. by 'H nmr) (36 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-ds) § 4.39-4.33 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.89-3.77 (m, 2H), 3.75 (s, 3H), 2.40-2.31 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.37-1.23 (m, 12H), 0.94-0.86 (m, 8H), 0.16-0.07 (m, 3H); *'P NMR (400 MHz, MeOH-
ds) 0 0.22, -0.16.

(5)-9b

) CI)H @)
S N
\OJ\/\ ﬁ\O/\(:)/\O
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(25)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl

dodecanoate
(@] (I)H (@]
S )J\/\/\/\/\/\
\O)K;/\O/(IPS\O/\(;)/\O
OT NH OH
>( o) (i)

(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl dodecanoate

Following the general procedure (B2), ($)-8b (42 mg, 0.0553 mmol), Pd-C (21 mg), and
MeOH (4.2 mL) were used. The product is obtained as a mixture of ($)-9b (i) (58%, calcd. by
"H nmr) and (ii) (42%, calcd. by 'H nmr) (30 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-d4) J 4.39-4.33 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.89-3.76 (m, 2H), 3.74 (s, 3H), 2.39-2.30 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
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9H), 1.36-1.23 (m, 16H); 0.94-0.86 (m, 8H), 0.16-0.09 (m, 3H); *'P NMR (400 MHz, MeOH-
ds) 0 0.16, -0.21.

(8)-9¢c
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(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl

tetradecanoate
(@] QH O
S )W
\O)K;/\O’E\O/\(;)/\O
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>( 0 (ii)

(285)-3-((((S)-2-((zert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl tetradecanoate

Following the general procedure (B2), ($)-8¢ (54 mg, 0.0686 mmol), Pd-C (27 mg), and
MeOH (5.5 mL) were used. The product is obtained as a mixture of (§)-9¢ (i) (79%, calcd. by
'H nmr) and (ii) (21%, calcd. by 'H nmr) (40 mg, colourless oil) and used without purify to the
next step. 'H NMR (400 MHz, MeOH-ds) § 4.39-4.32 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.91-3.76 (m, 2H), 3.74 (s, 3H), 2.41-2.29 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.36-1.22 (m, 20H), 0.93-0.85 (m, 10H), 0.17-0.08 (m , 5H); 3'P NMR (400 MHz,
MeOH-d4) 6 0.16, -0.22.

($)-9d
(@] (I)H (@]
S NN
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(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl palmitate

(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl palmitate

Following the general procedure (B2), (5)-8d (53 mg, 0.0649 mmol), Pd-C (27 mg), and
MeOH (5.3 mL) were used. The product is obtained as a mixture of (§)-9d (i) (62%, calcd. by
"H nmr) and (ii) (38%, calcd. by 'H nmr) (38 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-d4) § 4.40-4.32 (m, 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.90-3.76 (m, 2H), 3.74 (s, 3H), 2.39-2.30 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.37-1.24 (m, 24H), 0.93-0.86 (m, 9H), 0.17-0.09 (m, 4H); 3'P NMR (400 MHz, MeOH-
ds4) 0 0.23, -0.16.

(5)-9e
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(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl stearate

O
~ )vo OMO)WWM
o OH
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O (i)

(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl stearate
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Following the general procedure (B2), (S)-8e (55 mg, 0.0652 mmol), Pd-C (28 mg), and
MeOH (5.5 mL) were used. The product is obtained as a mixture (S)-9e (i) (65%, calcd. by 'H
nmr) and (ii) (35%, calcd. by 'H nmr) (43 mg, colourless oil) and used without purify to the
next step. '"H NMR (400 MHz, MeOH-d4) J 4.40-4.32 (m 1H), 4.30-4.14 (m, 2H), 4.13-3.92
(m, 3H), 3.91-3.76 (m, 2H), 3.74 (s, 3H), 2.40-2.31 (m, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.45 (s,
9H), 1.36-1.24 (m, 28H), 0.93-0.86 (m, 9H), 0.17-0.09 (m, 4H); *'P NMR (400 MHz, MeOH-
ds) 0 0.22,-0.17.

($)-9f
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(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl icosanoate
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(25)-3-((((S)-2-((zert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl icosanoate

Following the general procedure (B2), ($)-8f (62 mg, 0.0711 mmol), Pd-C (31 mg), and MeOH
(6.2 mL) were used. The product is otained as a mixture (S)-9f (i) (60%, calcd. by '"H nmr) and
(ii) (40%, calcd. by "H nmr) (48 mg, colourless oil) and used without purify to the next step. 'H
NMR (400 MHz, CDCl3) 0 4.47 (m, 1H), 4.31-3.87 (m, 7H), 3.76 (s, 3H), 2.32-2.28 (m, 2H),
1.60-1.59 (m, 2H), 1.43 (s, 9H), 1.25 (m, 32H), 0.90-0.84 (m, 12H), 0.08 (m, 6H); *'P NMR
(400 MHz, CDCl3) 6 0.67, 0.37.

()-9g
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(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl

docasanoate
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(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl docasanoate

Following the general procedure (B2), ($)-8g (57 mg, 0.0633 mmol), Pd-C (28 mg), and
MeOH (5.5 mL) were used. The product is obtained as a mixture (S$)-9g (i) (68%, calcd. by 'H

nmr) and (ii) (32%, caled. by 'H nmr) (52 mg, colourless oil) and used without purify to the
next step. 'H NMR (400 MHz, CDCls) 6 4.47 (m, 1H), 4.30-3.97 (m, 7H), 3.76 (s, 3H), 2.32-
2.28 (m, 2H), 1.60-1.58 (m, 2H), 1.43 (s, 9H), 1.25 (m, 36H), 0.90-0.87 (m, 12H), 0.08 (m,

5H); 3'P NMR (400 MHz, CDCls) ¢ -0.88, -1.36.

(5)-%h
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(28)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl

tetracosanoate
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(285)-3-((((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)(hydroxy)phosphoryl)oxy)-2-hydroxypropyl tetracosanoate

Following the general procedure (B2), (S)-8h (68 mg, 0.0589 mmol), Pd-C (34 mg), and
MeOH (6.5 mL) were used. The product is obtained as a mixture ($)-9h (i) (65%, calcd. by 'H
nmr) and (ii) (35%, calcd. by 'H nmr) (30 mg, colourless oil) and used without purify to the
next step. 'H NMR (400 MHz, CDCls) 6 4.45 (m, 1H), 4.29-3.95 (m, 7H), 3.76 (s, 3H), 2.32-
2.28 (m, 2H), 1.60-1.58 (m, 2H), 1.43 (s, 9H), 1.25 (m, 40H), 0.94-0.87 (m, 12H), 0.08 (m,
4H); *'P NMR (400 MHz, CDCl3) 6 1.02, 0.58.

General procedure (C1) for the synthesis of compounds (R)-2a-h (TBS and ¢
BOC deprotection)

0
o)
TFA )KA L
~ )J\ > (o) || o (o) R
)vo I O/Y\O R CH,Cl,, 0 °C to /\‘/\
NHBoc OTBS i, 3to 5 h OH
(R)-9a-h (R)-2a-h

To synthesized compound (R)-2 we followed previously been reported procedure®?. The
compound (R)-9 in dry CH>Cl> was charged in two necks round bottom flask which was
equipped with N> balloon. The solution was cooled to -10 °C and then the TFA was added
dropwise. After TFA addition, the reaction temperature and stirring time was variable for
different analogues. For the starting moieties (R)-9a-d, the reaction solution were stirred at 0
°C for 1 h and then at room temperature for 4 h and got (above 90% pure compound). For the
moiety (R)-9e the reaction solution was stirred at 0 °C for 4 h and then at room temperature for
1 h and got (above 90% pure compound) . For the longer fatty acid chain length moieties (R)-
9f-h were required to stir the reaction solution at 0 °C for 5 h got (above 70% pure compound).

Once the reaction was complete, the reaction solution was concentrated under reduced pressure
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at <25 °C and then the dried residue was washed with n-Pentane: Et,O (3:1) three times, dried
under high vacuum to afford the TFA salt of the desired product i.e. (R)-2 The purity of the final
compounds (R)-2a-h was determined based on the NMR spectra, and LC-MS analysis.

(R)-2a
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl decanoate

Following the general procedure (C1), (R)-9a (30 mg), TFA (0.300 mL) and CH>Cl> (0.170
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield
desired final compound (R)-2a (21 mg, 0.0491 mmol, 72% yield relative to (R)-8a) as a white
solid: '"H NMR (400 MHz, MeOH-ds) 6 4.60 (m, 1H), 4.40-4.07 (m, 4H), 4.05-3.89 (m, 3H),
3.86 (2s, 3H), 3.79-3.64 (m, 1H), 2.36 (t, J = 7.4 Hz, 2H), 1.61 (q, J = 7.0 Hz, 2H), 1.40-1.22
(m, 12H), 0.90 (t, J = 6.8 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) § 0.44; HRMS (ESI): m/z
caled. for (Ci7H3sNOoP) [M + H]" 428.2049; found, 428.2048. Purity: > 97%.

(R)-2b
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl dodecanoate

Following the general procedure (C1), (R)-9b (32 mg), TFA (0.320 mL) and CH>Cl> (0.180
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield
desired final compound (R)-2b (21 mg, 0.0461 mmol, 78% yield relative to (R)-8b) as a white
solid: '"H NMR (400 MHz, MeOH-d4) & 4.60 (m, 1H), 4.40-4.07 (m, 4H), 4.06-3.88 (m, 3H),
3.86 (2s, 3H), 3.77-3.64 (m, 1H), 2.36 (td, J = 7.4, 3.4 Hz, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.38-
1.23 (m, 16H), 0.90 (t, J = 6.8 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) J 0.44; HRMS (ESI):
m/z caled. for (Ci19H30NOoP) [M + H]"456.2362; found, 456.2363. Purity > 95%.
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl tetradecanoate

Following the general procedure (C1), (R)-9¢ (28 mg), TFA (0.280 mL) and CH>Cl> (0.160
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield
desired final compound (R)-2¢ (20 mg, 0.0414 mmol, 67% yield relative to (R)-8¢) as a white
solid: "TH NMR (400 MHz, MeOH-d4) § 4.49-4.30 (m, 1H), 4.28-4.00 (m, 4H), 3.98-3.82 (m,
3H), 3.79 (s, 3H), 3.73-3.55 (m, 1H), 2.30 (m, 2H), 1.56 (m, 2H), 1.33-1.15 (m, 20H), 0.83 (t, J
= 6.3 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) 6 0.44; HRMS (ESI): m/z calcd. for
(C21H43NOoP) [M + H]"484.2675; found, 484.2677. Purity > 95%.

(R)-2d
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl palmitate

Following the general procedure (C1), (R)-9d (36 mg), TFA (0.360 mL) and CH>Cl> (0.210
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield
desired final compound (R)-2d (26 mg, 0.0508 mmol, 74% yield relative to (R)-8d) as a white
solid: '"H NMR (400 MHz, MeOH-ds) J 4.61(m, 1H), 4.37-4.07 (m, 4H), 4.06-3.89 (m, 3H),
3.86 (2s, 3H), 3.77-3.64 (m, 1H), 2.36 (td, J = 7.4, 2.5 Hz, 2H), 1.62 (q, /= 7.0 Hz, 2H), 1.38-
1.21 (m, 24H), 0.90 (t, J = 6.8 Hz, 3H); 3'P NMR (400 MHz, MeOH-d4) J 0.44; HRMS (ESI):
m/z calcd. for (C23Ha7NOoP) [M + H]" 512.2988; found, 512.2988. Purity > 98%.

(R)-2¢
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl stearate

Following the general procedure (C1), (R)-9e (18 mg), TFA (0.180 mL) and CH>Cl, (0.110
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 1 mL) to yield
desired final compound (R)-2e (13 mg, 0.0241 mmol, 76% yield relative to (R)-8e) as a white
solid: "H NMR (400 MHz, MeOH-ds + CDCl3) § 4.30-4.23 (m, 3H), 4.22-4.04 (m, 2H), 4.02-
3.89 (m, 2H), 3.86 (s, 3H), 3.75-3.65 (m, 1H), 2.34 (t, /= 6.6 Hz, 2H), 1.61 (m, 2H), 1.36-1.19
(m, 28H), 0.88 (m, 3H); *'P NMR (400 MHz, MeOH-d4) 6 0.44; HRMS (ESI): m/z calcd. for
(C25sHs51NOoP) [M + H]"540.3296; found, 540.3297. Purity > 98%.

(R)-2f

(l)H
P

o) o)
N N SN NN NN NG
o : O(')'O/\‘/\O
NH, OH

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl icosanoate

Following the general procedure (C1), (R)-9f (25 mg), TFA (0.200 mL) and CH>Cl, (0.350
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield
desired final compound (R)-2f (17 mg, 0.0299 mmol, 79% yield relative to (R)-8f) as a white
solid: "H NMR (400 MHz, MeOH-d4 + CDCl3) § 4.37-4.14 (m, 3H), 4.13-4.04 (m, 2H), 4.03-
3.88 (m, 2H), 3.84 (s, 3H), 3.75-3.55 (m, 1H), 2.32 (t, J= 7.3 Hz, 2H), 1.58 (m, 2H), 1.32-1.20
(m, 32H), 0.85 (t, J = 6.6 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) ¢ 0.45; HRMS (ESI): m/z
caled. for (C27HssNOoP) [M + H]" 568.3609; found, 568.3610. Purity > 95%. .

(R)-2g
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl docasanoate

Following the general procedure (C1), (R)-9g (28 mg), TFA (0.225 mL) and CH>Cl, (0.390
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield
desired final compound (R)-2g (22 mg, 0.0369 mmol, 79% yield relative to (R)-8g) as a white
solid: "TH NMR (400 MHz, MeOH-d4 + CDCls) & 4.33-4.05 (m, 5H), 4.04-3.90 (m, 2H), 3.83
(s, 3H), 3.77-3.55 (m, 1H), 2.31 (m, 2H), 1.58 (m, 2H), 1.32-1.19 (m, 36H), 0.84 (t, /= 6.3 Hz,
3H); *'P NMR (400 MHz, MeOH-ds) J 0.44; HRMS (ESI): m/z calcd. for (C20HsoNOoP) [M +
H]"596.3922; found, 596.3923. Purity > 95%.

(R)-2h
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl tetracosanoate

Following the general procedure (C1), (R)-9h (25 mg), TFA (0.200 mL) and CH>Cl> (0.350
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield
desired final compound (R)-2h (18 mg, 0.0289 mmol, 78% yield relative to (R)-8h) as a white
solid: "TH NMR (400 MHz, MeOH-d4 + CDCls) § 4.33-4.05 (m, 5H), 4.04-3.88 (m, 3H), 3.83
(s, 3H), 3.72-3.52 (m, 1H), 2.31 (m, 2H), 1.58 (m, 2H), 1.34-1.14 (m, 40H), 0.84 (m, 3H); *'P
NMR (400 MHz, MeOH-d4) ¢ 0.44; ; HRMS (ESI): m/z caled. for (C31HgsNOoP) [M + H]*
624.4235; found, 624.4236. Purity > 96%.

General procedure (C2) for the synthesis of compounds ($)-2a-h (TBS and ¢-
BOC deprotection)
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(S)-9ah (S)-2a-h

To synthesized compound (§)-2 we followed previously been reported procedure®. The
compound (5)-9 in dry CH>CL, was charged in two necks round bottom flask which was
equipped with N> balloon. The solution was cooled to -10 °C and then the TFA was added
dropwise. After TFA addition, the reaction temperature and stirring time was variable for
different analogues. For the starting moieties (5)-9a-d, the reaction solution were stirred at 0
°C for 1 h and then at room temperature for 4 h and got (above 90% pure compound). For the
moiety (5)-9e the reaction solution was stirred at 0 °C for 4 h and then at room temperature for
1 h and got (above 90% pure compound). For the longer fatty acid chain length moieties (S)-
9f-h were required to stir the reaction solution at 0 °C for 5 h and got (above 75% pure
compound). Once the reaction was complete, the reaction solution was concentrated under
reduced pressure at < 25 °C and then the dried residue was washed with n-Pentane: Et,O (3:1)
three times, dried under high vacuum to afford the TFA salt of the desired product i.e. (5)-2
The purity of the final compounds (§)-2a-h was determined based on the NMR spectra, and
LC-MS analysis.

(5)-2a
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(285)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl decanoate

Following the general procedure (C2), ($)-9a (36 mg), TFA (0.360 mL) and CH>Cl, (0.210
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2a (22 mg, 0.0515 mmol, 75% yield relative to (§)-8a) as a white
solid: 'H NMR (400 MHz, MeOH-d4) 6 4.41-4.05 (m, 4H), 4.04-3.85 (m, 4H), 3.82 (s, 3H),
3.75-3.58 (m, 1H), 2.40-2.29 (m, 2H), 1.66-1.51 (m, 2H), 1.36-1.19 (m, 12H), 0.87 (t, /= 6.4
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Hz, 3H); *'P NMR (400 MHz, MeOH-ds) ¢ 0.44; HRMS (ESI): m/z calcd. for (C17H35sNOgP)
[M + H]" 428.2049; found, 428.2048. Purity > 95%.

(5)-2b

OH

(0] (I)H @)
P 8 )J\/\/\/\/\/\
NH, C

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl dodecanoate

Following the general procedure (C2), ($)-9b (30 mg), TFA (0.300 mL) and CH>Cl, (0.170
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2b (17 mg, 0.0373 mmol, 67% yield relative to (5)-8b) as a white
solid: '"TH NMR (400 MHz, MeOH-ds) 6 4.59 (m, 1H), 4.40-4.07 (m, 4H), 4.06-3.88 (m, 3H),
3.86 (2s, 3H), 3.78-3.61 (m, 1H), 2.36 (t, /= 7.4 Hz, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.38-1.23
(m, 16H), 0.90 (t, J = 6.7 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) § 0.44; HRMS (ESI): m/z
caled. for (Ci9H3oNOoP) [M + H]" 456.2362; found, 456.2361. Purity > 98%.

(5)-2¢

@) ?H @)
P\ S )W
NH, OH

(28)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl tetradecanoate

Following the general procedure (C2), ($)-9¢ (40 mg), TFA (0.400 mL) and CH>Cl, (0.230
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield the
desired final compound ($)-2¢ (26 mg, 0.0538 mmol, 78% yield relative to ($)-8c) as a white
solid: '"H NMR (400 MHz, MeOH-d4) & 4.60 (m, 1H), 4.40-4.07 (m, 4H), 4.06-3.89 (m, 3H),
3.85 (2s, 3H), 3.76-3.65 (m, 1H), 2.36 (t, J = 7.4 Hz, 2H), 1.62 (m, 2H), 1.38-1.23 (m, 20H),
0.90 (t, J= 6.7 Hz, 3H); *'P NMR (400 MHz, MeOH-d4) ¢ 0.44; HRMS (ESI): m/z calcd. for
(C21H43NOoP) [M + H]" 484.2675; found, 484.2676. Purity > 96%.
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(5)-2d

(@] (l)H (@]
S )J\/\/\/\/\/\/\/\
\O)J\._/\O’E\O/\(;)/\O
NH, 0

OH

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl palmitate

Following the general procedure (C2), (5)-9d (38 mg), TFA (0.380 mL) and CH,Cl, (0.220 mL) were
used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield the desired final
compound (S)-2d (24 mg, 0.0469 mmol, 73% yield relative to (S)-8d) as a white solid: '"H NMR (400
MHz, MeOH-d4) 0 4.62 (m, 1H), 4.40-4.08 (m, 4H), 4.04-3.89 (m, 3H), 3.86 (2s, 3H), 3.76-3.65 (m,
1H), 2.36 (td, J = 7.4, 2.8 Hz, 2H), 1.62 (q, J = 7.0 Hz, 2H), 1.37-1.24 (m, 24H), 0.90 (t, J = 6.9 Hz,
3H); *'P NMR (400 MHz, MeOH-ds) § 0.43; HRMS (ESI): m/z calcd. for (C23H4#NOoP) [M + H]"
512.2988; found, 512.2989. Purity > 96%.

(5)-2e

o) OH 0
P< S )J\/\/\/\/\/\/\/\/\
NH, OH

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl stearate

Following the general procedure (C2), ($)-9e (43 mg), TFA (0.430 mL) and CH>Cl, (0.250
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2e (26 mg, 0.0482 mmol, 74% yield relative to (5)-8e) as a white
solid: 'H NMR (400 MHz, MeOH-ds) 6 4.61 (m, 1H), 4.37-4.07 (m, 5H), 4.06-3.88 (m, 2H),
3,86 (2s, 3H), 3.77-3.65 (m, 1H), 2.36 (td, J = 7.4, 2.5 Hz, 2H), 1.62 (q, /= 7.0 Hz, 2H), 1.37-
1.24 (m, 28H), 0.90 (t, J = 6.9 Hz, 3H); 3'P NMR (400 MHz, MeOH-d4) J 0.43; HRMS (ESI):
m/z calcd. for (C2sHsiNOoP) [M + H]" 540.3296; found, 540.3298. Purity > 98%.

(5)-2f
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O QH 0]
S J\/\/\/\/\/\/\/\/\/\
\O)K:/\O/EP)'\O/\(;)/\O
NH, OH

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl icosanoate

Following the general procedure (C2), (S)-9f (25 mg), TFA (0.200 mL) and CH>Cl, (0.350
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2f (16 mg, 0.0282 mmol, 76% yield relative to (§)-8f) as a white
solid: "H NMR (400 MHz, MeOH-ds + CDCl3) § 4.37-4.14 (m, 3H), 4.13-4.04 (m, 2H), 4.03-
3.89 (m, 2H), 3.84 (s, 3H), 3.75-3.54 (m, 1H), 2.32 (m, 2H), 1.58 (m, 2H), 1.32-1.17 (m, 32H),
0.84 (m, 3H); 3'P NMR (400 MHz, MeOH-ds) § 0.43; HRMS (ESI): m/z caled. for
(C27Hs5sNO9P) [M + H]" 568.3609; found, 568.3610. Purity > 97%.

($)-2¢g

(0] (I)H 0]
P (S) )J\/\/\/\/\/\/\/\/\/\/\
\OJ\;/\O ('5 O/\._/\O
NH, OH

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl docasanoate

Following the general procedure (C2), (5)-9g (30 mg), TFA (0.240 mL) and CH>Cl, (0.420
mL) were used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2g (21 mg, 0.0352 mmol, 74% yield relative to (S)-8g) as a white
solid: "H NMR (400 MHz, MeOH-d4 + CDCl3) § 4.36-4.15 (m, 3H), 4.14-4.04 (m, 2H), 4.03-
3.90 (m, 2H), 3.84 (s, 3H), 3.77-3.55 (m, 1H), 2.32 (t, J = 7.4Hz, 2H), 1.59 (m, 2H), 1.33-1.19
(m, 36H), 0.85 (t, J = 6.3 Hz, 3H); *'P NMR (400 MHz, MeOH-ds) ¢ 0.45; HRMS (ESI): m/z
caled. for (C290HsoNOoP) [M + H]" 596.3922; found, 596.3924. Purity > 95%.

(5)-2h
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O (l)H O
S )WVWWWVV\
\O)K;/\O’(IP)I\O/\(:)/\O
NH, OH

(25)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl tetracosanoate

Following the general procedure (C2), (S)-9h (26 mg), TFA (0.210 mL) and CH>Cl» (0.360
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield the
desired final compound (5)-2h (15 mg, 0.0240 mmol, 81% yield relative to (S)-8h) as a white
solid: "TH NMR (400 MHz, MeOH-d4 + CDCls) § 4.34-4.05 (m, 5H), 4.03-3.88 (m, 3H), 3.84
(s, 3H), 3.72-3.53 (m, 1H), 2.31 (m, 2H), 1.58 (m, 2H), 1.33-1.14 (m, 40H), 0.85 (m, 3H); *'P
NMR (400 MHz, MeOH-d4) ¢ 0.44; HRMS (ESI): m/z caled. for (C31Hs3NOoP) [M + H]"
624.4235; found, 634.4233. Purity > 97%.
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3.8 Spectral Data

'"H-NMR (CDCl;, 400 MHz) for Compound 3
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13C-NMR (CDCl;, 100 MHz) for Compound 3
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3IP_NMR (CDCl;, 400MHz) for Compound (R)-5
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DEPT-135 NMR (CDCls, 100 MHz) for compound (R)-5
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3IP_NMR (CDCl;, 400MHz) for Compound (R)-6
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DEPT-135 NMR (CDCls, 100 MHz) for Compound (R)-6

88’
S

1462~
9T'8C—

€L°T8
SL°C8
L8€S
mo.m.n.w.
8879
mmNo./.
6549
L9LY
989
1649
5969
1469
£L°69

o1
LU

€0°821
no.wﬁw
om.wﬁ

I
—nz

T T
70

T T b T T T T T T S T T X S
190 180 150 140 130 120 100 90 80
Chemical Shift (ppm)

T

20 210 200

60

110

160

170

'"H-NMR (CDCl;, 400 MHz) for Compound (S)-5

0891
1991
28'91
p-wiojoionD 674
£c
vEL
Ve
%Y
o]
st

o

L£¢L°

o

wno

-
V4

|,

Fe6's|

-

2yl

6°0)
86}

0|
eLut

FE6')

280

L6

89|

-1.0

10 05 00

T T T T T T T T T T T T T T T T T T T T T
70 65 60 55 50 45 40 35 30 25 20 15
Chemical Shift (ppm)

95 90 85 80 75

——
105

108



3C-NMR (CDCl;, 100 MHz) for Compound (S)-5
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13C-NMR (CDCl;, 100 MHz) for Compound (S)-6
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3IP_NMR (CDCl;, 400MHz) for Compound (R)-8a
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DEPT-135 NMR (CDCls, 100 MHz) for Compound (R)-8a
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-8e
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-8h
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3C-NMR (CDCl;, 100 MHz) for Compound (S)-8a
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3C-NMR (CDCl;, 100 MHz) for Compound (S)-8e
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3C-NMR (CDCl;, 100 MHz) for Compound (S)-8h
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3IP_NMR (CDCl;, 400MHz) for Intermediate (R)-9a
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SP_NMR (CDCl3, 400MHz) for Intermediate (R)-9e
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3IP_NMR (CDCl;, 400MHz) for Intermediate (R)-9h
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'"H-NMR (CDCl;, 400 MHz) for Intermediate (S)-9¢
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (R)-2a
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (R)-2e
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (R)-2h
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (S)-2a
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (S)-2e
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'"H-NMR (CDCl;, 400 MHz) of Final Compound (S)-2h
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HRMS of Compound (R)-2e

SMS 0277 IISER PUNE
SMS 0277 183 (2.904) AM2 (Ar.20000.0.556.28,0.00 LS 3): Sm (SG. 3x1.00): Cm (162:183-(1:180+165:273)) 1: TOF MS ES+
ey 5403260 1454
ALCULATED MASS
M+H)+540.3301
A
541 3257
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! . 22 2075 |
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T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
100 | 120 | 200 | 250 | 300 | 250 | 400 | 420 | 500 | S50 | 800 | 880 | 700 | 750 880 | €00 | €50 | 1000
HRMS of Compound (R)-2f
SMS 02 175 IISER PUNE
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HRMS of Compound (R)-2g

SMS 03 19 +ve IISER PUNE
SMS 03 19 +ve 52 (0.962) AM2 (Ar.20000.0.556.28,0.00,LS 3); Sm (SG, 3x1.00)

100+ 506.3018

365.2346

1400243

507.3054
397.3668
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200.1843
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181.0511

HRMS of Compound (R)-2h

SMS 03 96 -VE ISER PUNE
SMS 03 96 -VE 2 (0.069) AM2 (Ar.20000.0,554.26.0.00.LS 3); Sm (SG. 3x1.00)
00, 112985
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HRMS of Compound (5)-2f

SMS 03 94 lISER PUNE
SMS 03 84 54 (0.206) AM2 (Ar,20000.0,556.28,0.00,LS 2); Sm (SG, 3x1.00) 1: TOF MS ES+
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HRMS of Compound (5)-2g
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CHAPTER 4

SYNTHESIS OF UNSATURATED ME-LYSO-PS LIPIDS
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4.1 Introduction of Unsaturated Lyso-PS

Recently lyso-PS have emerged as an important class of lipid mediators that play a significant
role in various physiological processes such as macrophage activation, mast cell degranulation,
and the development and maturation of T regulatory cells. Lyso-PS has been found to be most
abundant in the central nervous system (NCS) and immune cells (macrophages and microglia).
Given lyso-PSs ability to influence a multitude of immunological pathways, its physiological
concentrations are tightly regulated by dedicated biosynthetic and degradative enzymes. To
date, ABHDI12 has been identified as the only degradative enzyme that metabolizes both
saturated and unsaturated lyso-PS lipids into glycerophosphoserine and free fatty acid. PHARC
subject due to loss of function mutation in ABHD12 gene have been found to be associated to
PHARC, a progressive neurodegenerative disorder. Seminal studies have shown that ABHD12
K/O mice display age dependant behavioural defects noticed in PHARC like phenotype in
which hearing loss, auditory brain steam response, and motor behaviour. The study suggested
that very-long-chain (VLC) saturated as well as unsaturated lyso-PS lipids were highly
accumulated in the ABHD12 K/O mice brain.

4.2 Classification of Fatty Acids and their Structure

Fatty Acids
[ Saturated Fatty Acid ] Unsaturat.ed L ]
. Acid
- \
Monounsaturated Fatty Polyunsaturated Fatty Acid
Acid (MUFAs) (PUFAs)
J \
o o
HOJ\/\/\/\/=\/\/\/\/ HO g4
Oleic Acid Arachidonic Acid

Figure 4.1: Classification and chemical structure of fatty acid (FAs)
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Fatty acids are divided into two general categories: 1) Saturated 2) Unsaturated. Saturated fatty
acids have no double bond in the structure. However, unsaturated fatty acids have one or more
double bonds. Only one double bond presented fatty acid is called monounsaturated fatty acid
(MUFAs) ex. Oleic acid. More than one double bond presented fatty acid is called
polyunsaturated fatty acid (PUFAs) ex. a-linoleic acid, Arachidonic acid (AA).

4.3 Biological role of Polyunsaturated Fatty Acids (PUFA)

Fatty acid is an important class of lipids and is an important constituent of the cell membrane.
Fatty acids are involved in various physiological processes and any perturbation in their
metabolism poses biomedical relevance. Polyunsaturated fatty acids have crucial role in several
biological functions such as control in inflammatory cascades, reducing oxidative stress,
presenting neuroprotection, and cardiovascular protection. and is also an important source of
energy. Of note, polyunsaturated fatty acids stimulate the activation of immune cells. Omega-3
and omega-6 polyunsaturated fatty acids are essential in humans and their role in anti-
inflammatory and immunomodulatory functions are well documented. For example linoleic
acid, omega-3 polyunsaturated fatty acid is associated with several chronic diseases such as
rheumatoid arthritis, diabetes, and neurodegenerative disease. Omega-3 PUFA is plays a
crucial role in the lower the risk in cardiovascular disease. Heart and blood vessel-related
diseases can cause a heart attack or stroke this process is called the atherosclerosis process.
Importantly, omega-3 also plays an important protective role in inflammation in the

atherosclerosis process>®,

It has been already studied the effect of omega-3 PUFA in inflammatory cytokine production.
Moreover, previous research demonstrated that increase levels of omega-3 PUFA
(eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), particularly) decrease the
circulating concentration of inflammatory cytokines such as interleukin (IL6), tumor necrosis
factor o (TNF a)°!%2. Nowadays, strong evidence from in vitro and in vivo studies supports the
biomedical importance of omega-3 PUFA that is involved in various pathologies such as,

cardiovascular, neurodegenerative, rheumatoid arthritis, diabetes disease®’.

PUFAs, as well as MUFAs, exert immunomodulatory effects on both T cell and B cell
functions. To date, as per our best knowledge, nobody has worked on unsaturated lyso-PS
library towards immune cells. Projecting forwards, the aforementioned problem we will test
our synthetic unsaturated Me-lyso-PS library in a variety of biological assays. We are

interesting to know these synthesized unsaturated Me-lyso-PS how they influence signalling
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properties towards the activation of immune cells, such as macrophages and mast cells by
secretion of pro-inflammatory cytokines and histamine release. In addition, we want to know
how the unsaturated fatty acid chain length of lyso-PSs produce intracellular cAMP, cytosolic
Ca?" flux, and ERK phosphorylation level.

4.4 Result and Discussions:

As a proof of concept, we decided to synthesize a library of the naturally occurring (R)-Me-
lyso-PSs with unsaturated fatty acids only. Not only we designed simplest synthetic route but
also we synthesized in low milligram as per cost of fatty acid and their availability. Only one
(18:1 lyso-PS) unsaturated lyso-PS lipids are commercially available these is esterified only
with long-chain (LC) fatty acids (figure 4.1). Also, VLC containing unsaturated lyso-PS lipids

is not commercially available because these are very expensive for such types of studies.

Amino-acid Lipid-tail
0 (I)H ( )O]\ (COOR) Fatty Acid
R - atty Aci
P.
HO)I\:/\O’II\O/\H/\O R . ic Aci
= o) C18:1 Oleic Acid
NH, OH

Figure 4.2: Commercial available long-chain lyso-PS lipid species

4.4.1 Limitation of Unsaturated Me-lyso-PS Library

Route A
(6] (IJH 0
_P (R)
\O)J\;/\O “\O/Y\O)J\R
A~ P R Ha, 10% Pd/C (i
2 > +
NHBoc OTBS MeOH, rt, 16 h
o) OH o)
\OJ\/\O/ﬁ\O/\(R}\OJ\R
= o}
NHBoc OH
(ii)
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In the above Route A, the unsaturated double bond along with the benzyl group will be

reduced during the hydrogenolysis reaction. We thus, choosed another route for the synthesis

of unsaturated Me-lyso-PS library.

Route B
0 OBn o) OH
P (R) Hy, 10% Pd/C i R
g r o gl > \o)J\./\o/ﬁ\o E~on

< O MeOH, rt, 16 h S o

NHBoc OoTBS NHBoc OTBS EDC.HCI
DMAP, CH,Cl,,
0°Ctort, 16 h

In the above Route B, debenzylation of the initial substrate in the presence of hydrogen gas

successfully lead to the synthesis of the desired intermediate, which upon coupling with the

acid in the presence of EDC-HCI furnished the desired final compound. However, due to the

presence of a free hydroxyl group of phosphate, the compounds were extremely polar and thus

could not be purified.

We then envisage that the incorporation of the tert-butyl group at the hydroxyl group of

phosphate will make the compounds non-polar, necessary for better purification, and on the

other hand, the debenzylation while using the benzyl protection in the previous routes can be

avoided. For the synthesis of the unsaturated Me-lyso-PS library, we followed the following

scheme (4.1).
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NH,

OJ\./\O/&PI)\O/Q?/\OJ\R

OH

(R)-20a-h

0 q‘Bu
/P\ J\
\O)J\:/\O N
NHBoc t
15 i)Tetrazole, CH,Cly, t, 24 h, 0 QBu
ACN, 60 °C, 12 h _ \O)J\/\O/ﬁ\o/\(r‘}\owp
+ - H (0]
ii) TBHP, rt, 3 h, 67% NHBoc OTBS
HO OPMP (R)-16
OTBS
(R)-4 CAN, ACN:H,0 (4:1),
0°C,2h, 84%
o) cI)‘Bu o) o} O'Bu
(R) RCO,H, EDC.HCI i R
Y 07 Y ~0"iro OH
RHBoG OTBS DMAP, CH,Cl,, H o]
0°Ctort, 16 h NHBoc OTBS
(R)-19a-h (R)-17
(R)-19a, 35% (R)-19h, 22% Rﬁ%H " ngfH "
a C16:0 C22:0
- 0, _ i o,
(R”gb’zgf (R)-191, 25% 18b C180 18 C22:1
(R)-19¢, 23% (R)-19j, 10% 18¢c C18:1 18] (224
(R)-19d, 14% (R)-19K, 8% 18d c18:3 18k C22:6
(R)-19e,29% (R)-191, 15% 18e c20:0 181 C24:0
(R-19f,25%  (R)-19m, 18% 18f  C20:1 18m C24:1
(R)-19g, 31% 189 C20:4
CH,Cly,
TFA |o°Ctort, 5h (R)-2a-h
(R)-20a, 88%  (R)-20h, 83%
0 OH o] (R1-20b,91%  (R)-19i, 52%

(R)-20c, 41%

(R)-19j, 71%
(2-22%7 ;f/% (R)-19K, 75%
-2€, ()

(( (R)-191, 67%

-2f, 79%
(/:) 2 87‘;/ (R)-19m, 47%
29, 87%

Scheme 4.1: Synthetic route of unsaturated (R)-Me-lyso-PSs
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Table 4.1

Saturated and unsaturated methyl ester-lysophosphatidylserine

(Me-lyso-PS)

0O OH 0O
NP P APCNS
§H2 © OH
(R) - Natural
ID -(COOR) ID -(COOR)

(R)-20a C16:0 (R)-20h C22:0
(R)-20b C18:0 (R)-20i C22:1
(R)-20¢ C18:1 (R)-20j C22:4
(R)-20d C18:3 (R)-20k C22:6
(R)-20e C20:0 (R)-201 C24:0
(R)-20f C20:1 (R)-20m C24:1
(R)-20g C20:4

4.5 Conclusion

For the first time, we have shown that the ABHD12 enzyme is also the principal lyso-PS lipase
that regulates mast cell biology. In this chapter, we have successfully synthesized saturated and
unsaturated (R)-Me-lyso-PSs lipid library with different route. The study presents a potential
scope to further dissect the structure-activity relationship of the lyso-PS bearing
polyunsaturated fatty acid chain. We have shown the specific contribution of lyso-PSs in the
brain and immune cell functions. However, currently, not much information is known about
it’s role in other mammalian organs. Hence, understanding the role of unsaturated Me-lyso-PS
and its underlying mechanism under various physiological or pathological conditions in

specific tissues/organs will be intriguing.

4.6 EXPERIMENTAL SECTION
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4.6.1 Synthesis and characterization Data

A) Synthesis of Compound 14

o}
. \O)K:/\OH
/L b /j\ otBu XOTNH 0 (?tBuJ\
- OH
/NK /[\‘]\ i /’\ Et3N, Et,0 /LN/P\NJ\ o ; \O)K;/\O/P\N
0°Ctort, 1h )\ /K Tetrazole, CH,Cls, XOTNH /K
(0]

rt, 5 h, 66%

Bis(diisopropylamino) 14 15
chlorophospine

Synthesis of Compond 15

1-tert-butoxy-N,N,N',N'-tetraisopropylphosphanediamine (14) : To a solution of
bis(diisopropylamino) chlorophosphine (5.0 g, 18.7 mmol) in dry diethyl ether (Et.O) (30
mL) in Schlenk flask, a mixture of benzyl alcohol (1.3 mL, 16.8 mmol) and triethylamine
(EtsN) (2.3 mL, 16.8 mmol) in Et;O (5 mL) was added at 0 °C under nitrogen (N>)
atmosphere. The reaction mixture was stirred for 30 min at 0 °C, and then warmed to room
temperature for 30 min. The reaction mixture was diluted with cold hexane (15 mL), stirred
for 10 min. The hexane solution was then transferred into another Schlenk flask by cannula
and concentrated under a nitrogen atmosphere to yield compound 15. The crude product was
used as such for next step without purification. '"H NMR (400 MHz, CDCl3) ¢ 3.61-3.50 (m,
4H), 1.32 (s, 9H), 1.19-1.14 (m, 24H), *'P NMR (400 MHz, CDCl;) 6 98.88.

B) Synthesis of Compound 15

Methyl O-((benzyloxy)(diisopropylamino) phosphaneyl)-/N-(tert-butoxycarbonyl)-L-
serinate (15): 1-tert-butoxy-N,N,N',N'-tetraisopropylphosphanediamine (14) (5.2 g, 17.0
mmol) was dissolved in anhydrous CH>Cl> (40 mL) in Schlenk flask and to this solution of
1 H-Tetrazole (1.3 mL, 30.7 mmol) in ~0.45 M ACN was added at room temperature. To this
solution, N-Boc-L-Serine-methyl ester (3.3 g, 15.3 mmol) was added under a nitrogen
atmosphere, in a few minutes, a white solid was precipitated. The whole was stirred for 5 h at
room temperature and then the reaction was quenched with saturated NaHCO3. The whole was
extracted in CH2CL (3 x 100 mL) and then the combined organic layer was dried over the
anhydrous Na»SOs, evaporated in vacuo. The residue was neutral alumina column
chromatographed (EtOAc/Hexane 10:90) to yield the compound 15 (4.3 gm, 10.1 mmol, 60
%, colorless oil). "TH NMR (400 MHz, CDCls) 6 5.67-5.61 (m, 1/2H), 5.41-5.39 (m, 1/2H),
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4.38-4.31 (m, 1H), 4.00-3.92 (m, 1H), 3.78-3.70 (m, 1H), 3.68 (2s, 3H), 3.59-3.46 (m, 2H),
1.40 (m, 9H), 1.31 (m, 9/2H), 1.26 (m, 9/2H), 1.12-1.07 (m, 12H), *'P NMR (400 MHz,
CDCl) 0 138.85, 138.72.

C) Synthesis of Compound (R)-16 & (R)-17

(0] Cl)tBUJ\
\OJ\;/\O/P\N
NHBoc
15 i)Tetrazole, CH,Cls, rt, 24 h, O OtBu R)
ACN, 60 °C, 12 h ~ Po
N > 07 o oY Topme
i) TBHP, rt, 3 h, 67% NHBoc OTBS
HO™ Y oPmP (R)-16
OTBS
(R)-4 CAN, ACN:H,0 (4:1),
0°C,2h, 84%
OtBu
~ J\/\O i O/Y\OH
NHBOC OTBS
(R)-17
Methyl O-(tert-butoxy((R)-2-((tert-butyldimethylsilyl)oxy)-3-(4-

methoxyphenoxy)propoxy)phosphoryl)-VN-(tert-butoxycarbonyl)-L-serinate ((R)-16):

To synthesis compounds (R)-16 and (R)-17, we followed previously reported procedure®. The
Phosphonamidite 15 (2.3 g, 5.44 mmol) was dissolved in anhydrous CH>Cl (5 ml), and then
the solution was co-evaporated with ACN three times (3 x 5 mL). Under nitrogen atmosphere,
the residue was dissolved in anhydrous CH>CL (25 mL), and subsequently, the solution of 1H-
tetrazole in ACN (~0.45 M) (1.4 mL, 1.3 mmol) was added at room temperature. The solution
of alcohol (R)-4 (3.0 g, 10.8 mmol) in CH2Cl> (5 mL) was added dropwise under N>
atmosphere, after a few minutes, a white solid precipitated. The mixture was stirred at room
temperature for 24 h. The anhydrous ACN (15 mL) was added and then the reaction mixture
was heated to 60°C for 12 h. The intermediate formation was confirmed by TLC then #-butyl
hydroperoxide (TBHP) solution in decane (5.0-6.0 M) (1.5 mL, 16.2 mmol) was added
dropwise and the reaction mixture was stirred for 3 h at room temperature under nitrogen
atmosphere. The reaction mixture was diluted with 15 mL water and extracted with CH2Cl> (3
X 30 mL). The combined organic layer was washed with brine solution, dried over Na>SOg,

filtrated, and concentrated under reduced pressure. The residue was column chromatographed
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(EtOAc/Hexane 40:60) to yield the compound (R)-16 (1.2 g, 1.85 mmol, 67 %, colorless oil).
"H NMR (400 MHz, CDCL) 6 6.80 (s, 4H), 5.59-5.54 (m, 1H), 4.48-4.35 (m, 2H), 4.26-4.13
(m, 2H), 4.10-4.03 (m, 1H), 4.00-3.90 (m, 2H), 3.86-3.81 (m, 1H), 3.74 (s, 3H), 3.73 (2s, 3H),
1.46 (s, 9H), 1.42 (2s, 9H), 0.88 (s, 9H), 0.11 (m, 3H), 0.09 (m, 3H); *'P NMR (400 MHz,
CDCl) 6 -5.55, -5.81, HRMS-ESI: [(M + H)"-TBS, BOC] calcd. for C20H36NO9PSi, 494.1975;
found, 494.1980.

Methyl O-((tert-butoxy)((R)-2-((tert-butyldimethylsilyl)oxy)-3-
hydroxypropoxy)phosphoryl)-N-(zert-butoxycarbonyl)-L-serinate ((R)-17):

To the solution of PMP-protected alcohol (R)-16 (1.2 g, 1.85 mmol) in ACN: H,O (4:1) (15
mL), the Ceric Ammonium Nitrate (CAN) (2.5 g, 4.6 mmol) was added dropwise at 0 °C under
N> atmosphere. The reaction mixture was stirred for 45 min at 0 °C and then diluted with H,O
(5 mL). The whole was extracted three times with EtOAc (3 x 25 mL). The combined organic
layer was washed with brine solution, dried over Na>SOs, filtrated and concentrated under
reduced pressure. The residue was column chromatographed, EtOAc/Hexane (60:40) used as
an eluent to afford the desired product (R)-17 (0.400 g, 0.736 mmol, 84 %, brown oil). 'H
NMR (400 MHz, CDCl3) 0 5.63-5.56 (m, 1H), 4.51-4.49 (m, 1H), 4.41-4.36 (m, 1H), 4.26-4.20
(m, 1H), 3.98-3.94 (m, 2H), 3.90-3.86 (m, 1H), 3.77 (2d, 3H), 3.65-3.56 (m, 3H), 2.16 (s, 1H),
1.48 (s, 9/2H), 1.47 (s, 9/2H), 1.44 (s, 9H), 0.89 (s, 9/2H), 0.88 (s, 9/2H), 0.09 (m, 6H); 'P
NMR (400 MHz, CDCl3) § -4.98, -5.36. HRMS-ESI: [(M + H)"-TBS, BOC] calcd. for
Ci13H30NOgPSi, 388.1557; found, 388.1557.

General procedure (D1) for the synthesis of compounds (R)-19a-h:

OtBu
0 OtBu 0
|
~ )J\/\O P o/\‘)/\OH RCOM. EDCHOI I b @
i g T i
NHBoc OTBS DMAP, CH,Cl,, z o
o NHBoc OTBS
0°Ctort,16 h
(R)-17 (R)-19a-h

RCO,H n RCO,H n RCOH n RCO,H n
18a cC16:0 18e C20:0 18i  C22:1 18m C24:1
18b c18:0 18f cC2011 18j C22:4
18c C181 18g C204 48k C226
18d C18:3 18h C22:0 18l C24:0
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To synthesize a compound (R)-19, we followed previously reported procedure. To a solution of
alcohol (R)-17 (1.0 equiv) and fatty acid 18 (0.9 equiv) in anhydrous CH>Cl, the 4-
Dimethylaminopyridine (DMAP 0.25 equiv) and 1-(3-dimethylamino propyl)-3-
ethylcarbodiimide hydrochloride (EDC-HCI, 0.9 equiv) were sequentially added at 0 "C. After
stirring the mixture 16 h at room temperature, the reaction was quenched with a saturated
solution of NaHCO3 and extracted three times with CH>CL. The combined organic layer was
dried over Na,SOs, filtrated, and concentrated under reduced pressure at 25 “C. The residue
was column chromatographed (100-200 silica gel mesh) using 25-30% Ethyl Acetate in hexane

as an eluent to afford the corresponding desired product (R)-19.

(R)-19a

0 >I\o 0
~ _P. B NP
o)vo 1~0” Y o

z o

O NH OTBS
>

0]

(2R)-3-(((tert-butoxy)((S)-2-((zert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propylpalmitate (Compound
(R)-19a): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18a (Palmitic
acid, C16:0) (34 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg, 0.0367
mmol) and CH>Cl, (5 mL) were used. The residue was column chromatographed (100-200
silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19a (40 mg, 0.0511 mmol, 35%,
colourless oil). "H NMR (400 MHz, CDCl;) § 5.58-5.54 (m, 1H), 4.51-4.36 (m, 2H), 4.27-4.18
(m, 1H), 4.15-4.08 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.32-2.28 (m, 2H), 1.62-1.57 (m,
2H), 1.47 (2d, 9H), 1.44 (s, 9H), 1.27-1.24 (m, 24H), 0.88-0.85 (m, 12H), 0.09 (2s, 6H); >'P
NMR (400 MHz, CDCl3) 6 -5.60, -5.81; 1*C NMR (100 MHz, CDCLs) 6 173.6, 169.9 (d, Jop =
4.7 Hz), 155.4, 84.2 (d, Jo, = 7.0 Hz), 80.4, 69.2 (2d, J., = 8.8 Hz), 68.0 (t, Jop, = 5.7 Hz), 67.3
(d, Jep = 5.5 Hz), 65.0, 54.1 (d, Jep = 7.7 Hz), 52.8, 34.2, 32.0, 29.9, 29.9, 29.8, 29.8, 29.7,
29.6, 29.5,29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6, -4.7; DEPT-135 NMR (100 MHz,
CDCh) 6 69.1 (d, Jep = 8.7 Hz, CH), 67.9 (t, Jop = 5.6 Hz, CH>), 67.2 (d, Jep= 5.4 Hz, CH>),
64.9 (CH»), 54.0 (d, Jop = 7.6 Hz, CH), 52.7 (CH3), 34.2 (CH»), 31.9 (CH>), 29.8 (CH3), 29.7
(CH3), 29.7 (2CH>»), 29.6 (CH>), 29.5 (CH>), 29.4 (CH>), 29.3 (CH»), 29.2 (CH»), 28.3 (CH3),
25.7 (CH3), 24.9 (CH»), 22.7 (CH»), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3).
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(R)-19b

0 >Lo 0
~ /IID\ )va\/\
o)vo Iegi e

z O

O NH OTBS
1T

)

(2R)-3-(((tert-butoxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl stearate (Compound
(R)-19b): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18b (Stearic
acid, C18:0) (38 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg, 0.0367
mmol) and CH2CL, (5 mL) were used. The residue was column chromatographed (100-200
silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19b (34 mg, 0.0420 mmol, 29%,
colourless oil). "H NMR (400 MHz, CDCl;) § 5.58-5.54 (m, 1H), 4.52-4.36 (m, 2H), 4.27-4.18
(m, 1H), 4.16-4.10 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.32-2.28 (m, 2H), 1.62-1.59 (m,
2H), 1.47 (2d, 9H), 1.44 (s, 9H), 1.27-1.24 (m, 28H), 0.88-0.85 (m, 12H), 0.09 (2s, 6H); 'P
NMR (400 MHz, CDCl3) 6 -5.60, -5.81; 1*C NMR (100 MHz, CDCLs) 6 173.6, 170.0 (d, Jop =
4.8 Hz), 155.4, 84.2 (d, J.p = 6.8 Hz), 80.4, 69.2 (2d, J., = 8.7 Hz), 68.0 (t, Jop = 5.8 Hz), 67.3
(d, Jep = 5.7 Hz), 65.1, 54.1 (d, Jep = 7.6 Hz), 52.8, 34.3, 32.1, 29.9, 29.9, 29.8, 29.8, 29.7,
29.6, 29.5,29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6, -4.7; DEPT-135 NMR (100 MHz,
CDCl) 0 69.1 (d, Jep = 8.5 Hz, CH), 67.9 (t, Jop = 5.6 Hz, CH>), 67.2 (d, Jep= 5.5 Hz, CH>),
64.9 (CH»), 54.0 (d, Jop = 8.0 Hz, CH), 52.7 (CH3), 34.2 (CH»), 31.9 (CH>), 29.8 (CH3), 29.7
(CH3), 29.7 (CH2), 29.6 (CH»), 29.5 (CH2), 29.4 (CH»), 29.3 (CH>), 29.2 (CH>), 28.3 (CH»),
25.7 (CH3), 24.9 (CH»), 22.7 (CH>), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF)
for C40HsoNO11PSi [M+K]": caled., 848.4; found, 848.6; [M+Na]": calcd., 832.5; found, 832.7.
(R)-19¢
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(2R)-3-(((tert-butoxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((zert-butyldimethylsilyl)oxy)propyl oleate (Compound
(R)-19¢): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18¢ (Oleic acid,
C18:1) (37 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg, 0.0367 mmol)
and CH>Cl, (5 mL) were used. The residue was column chromatographed (100-200 silica gel
mesh) (EtOAc/Hexane, 30:70) to yield (R)-19¢ (27 mg, 0.0334 mmol, 23%, colourless oil). 'H
NMR (400 MHz, CDCl3) 6 5.58-5.54 (m, 1H), 5.39-3.19 (m, 2H), 4.51-4.37 (m, 2H), 4.28-418
(m, 1H), 4.15-4.13 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.33-2.29 (m, 2H), 2.06-1.98 (m,
4H), 1.63-1.58 (m, 2H), 1.48 (2d, 9H), 1.45 (s, 9H), 1.32-1.25 (m, 20H), 0.89-0.84 (m, 12H),
0.09 (d, 6H); *'P NMR (400 MHz, CDCl;) § -5.59, -5.80; '*C NMR (100 MHz, CDCl;) §
173.6, 170.0 (d, Jep, = 4.8 Hz), 155.4, 130.1, 129.9, 84.3, 80.4, 69.2 (2d, J., = 8.7 Hz), 68.0 (t,
Jep = 5.8 Hz), 67.3 (d, Jop = 5.6 Hz), 65.1, 54.1 (d, Je, = 7.6 Hz), 52.8, 34.3, 32.0, 29.9, 29.9,
29.9, 29.7, 29.5, 29.3, 29.3, 29.2, 28.4, 27.4, 27.3, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6, -4.7,
DEPT-135 NMR (100 MHz, CDCls) ¢ 130.0 (CH), 129.7 (CH), 69.1 (d, Je» = 8.6 Hz, CH),
67.9 (t, Jep=5.9 Hz, CH>), 67.2 (d, J.p= 5.5 Hz, CH>), 64.9 (CH>), 54.0 (d, Jop= 7.6 Hz, CH),
52.7 (CHs), 34.1 (CH), 31.9 (CH>), 29.8 (CH3), 29.7 (CH3), 29.7 (CH»), 29.5 (CH»), 29.3
(CH2), 29.2 (CH»), 29.1 (CH>), 28.3 (CH3), 27.2 (d, Jep = 3.7 Hz, CH»), 25.7 (CH3), 24.9
(CH»), 22.7 (CH>), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C4H7sNO;;PSi
[M+K]": calcd., 846.4; found, 846.6; [M+Na]": calcd., 830.4; found, 830.6.

(R)-19d
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> )vo f o/\ﬁo T T
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(2R)-3-(((tert-butoxy)((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl (92, 12Z, 157)-
octadeca-9,12,15-trienoate (Compound (R)-19d): Following the general procedure (D1), (R)-
17 (70 mg, 0.128 mmol), 18d (a-Linolenic acid, C18:3) (32 mg, 0.115 mmol), EDC-HCI (22
mg, 0.115 mmol), DMAP (4 mg, 0.0320 mmol) and CH2CL> (5 mL) were used. The residue
was column chromatographed (100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-
19d (14 mg, 0.0174 mmol, 14%, colourless oil). 'H NMR (400 MHz, CDCls) 6 5.59-5.55 (m,

1H), 5.43-5.27 (m, 6H), 4.52-4.37 (m, 2H), 4.28-418 (m, 1H), 4.16-4.13 (m, 1H), 4.06-3.86 (m,
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4H), 3.77 (2s, 3H), 2.80 (¢, J = 6.4 Hz, 4H), 2.33-2.29 (m, 2H), 2.11-2.02 (m, 4H), 1.63-1.60
(m, 2H), 1.48 (2d, 9H), 1.45 (s, 9H), 1.33-1.25 (m, 8H), 0.97 (¢, J = 7.5 Hz, 3H), 0.88 (s, 9H),
0.09 (d, 6H); *'P NMR (400 MHz, CDCls) § -5.60, -5.81; '*C NMR (100 MHz, CDCl;) ¢
173.6, 170.0 (d, Jep = 4.9 Hz), 155.4, 132.1, 130.4, 128.4, 128.4, 127.9, 127.2, 84.0, 80.4, 69.2
(2d, Jep = 5.7 Hz), 68.0 (t, Jep = 5.4 Hz), 67.4 (d, J., = 3.7 Hz), 65.1, 54.1 (d, Jep = 5.5 Hz),
52.9,34.3,32.1, 29.9, 29.9, 29.9, 29.8, 29.7, 29.3, 29.3, 29.3, 28.4, 27.4, 25.8, 25.7, 25.7, 25.0,
20.7, 18.2, 14.4, -4.6, -4.7; DEPT-135 NMR (100 MHz, CDCls) ¢ 132.0 (CH), 130.3 (CH),
128.3 (CH), 128.3 (CH), 127.7 (CH), 127.1 (CH), 69.1 (d, J.,= 5.8 Hz, CH), 67.9 (t, Jop=5.5
Hz, CH»), 67.2 (d, J.p = 3.6 Hz, CH»), 64.9 (2CH>), 54.0 (d, Jep = 5.0 Hz, CH), 52.7 (CH3),
34.1 (CHz), 31.4 (CH), 30.2 (@), 29.8 (2CH3), 29.7 (CH3), 29.6 (CH2), 29.2 (CH»), 29.1
(2CH>), 28.3 (CH3), 27.2 (CH»), 25.7 (CHa3), 25.6 (CH>), 25.5 (CH>), 24.9 (CH>), 20.6 (CH>),
14.3 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C4H74NO;PSi [M+K]": calcd.,
842.4; found, 842.6; [M+Na]": calcd., 826.4; found, 826.6.

(R)-19¢
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl icosanoate
(Compound (R)-19e): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18e
(Arachidic acid, C20:0) (41 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg,
0.0367 mmol) and CH2CL, (5 mL) were used. The residue was column chromatographed (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19e (35 mg, 0.0394 mmol, 29%,
colourless oil). "H NMR (400 MHz, CDCls) 6 5.58-5.54 (m, 1H), 4.51-4.36 (m, 2H), 4.27-4.18
(m, 1H), 4.17-4.11 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.32-2.28 (m, 2H), 1.62-1.57 (m,
2H), 1.47 (2d, 9H), 1.44 (s, 9H), 1.27-1.24 (m, 32H), 0.88-0.85 (m, 12H), 0.09 (2s, 6H); >'P
NMR (400 MHz, CDCl3) ¢ -5.61, -5.82; '3C NMR (100 MHz, CDCl;) 6 173.6, 170.0 (d, Jop =
4.7 Hz), 155.4, 84.2 (d, Jo. = 7.0 Hz), 80.4, 69.2 (2d, J., = 8.7 Hz), 68.0 (t, Jep = 5.6 Hz), 67.3
(d, Jep = 5.5 Hz), 65.0, 54.1 (d, Jep = 7.8 Hz), 52.8, 34.3, 32.0, 29.9, 29.9, 29.9, 29.8, 29.8,
29.7, 29.6, 29.5, 29.4, 29.3, 28.4, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6, -4.7; DEPT-135 NMR (100

MHz, CDCL) 6 69.1 (d, Jep = 8.7 Hz, CH), 67.9 (t, Jep = 5.6 Hz, CHa), 67.2 (d, Jep = 5.4 Hz,
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CHa), 64.9 (CHa), 54.0 (d, Jep= 7.3 Hz, CH), 52.7 (CHs), 34.2 (CH,), 31.9 (CHa), 29.8 (2CH3),
29.7 (CHs), 29.7 (2CHa), 29.6 (CHa), 29.5 (CHz), 29.4 (CHz), 29.3 (CHa), 29.2 (CHa), 28.3
(CHs), 25.7 (CHz), 24.9 (CH), 22.7 (CHa), 14.1 (CH3), -4.8 (CHs), -4.9 (CHs); MALDI (ESI-
TOF) for C42HsaNO11PSi [M+K]": caled., 876.5; found, 876.6; [M+Na]": calcd., 860.5; found,
860.7.

(R)-19f
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl  (Z)-icos-11-enoate
(Compound (R)-19f): Following the general procedure (D1), (R)-17 (60 mg, 0.110 mmol), 18f
(Eicosenoic acid, C20:1) (31 mg, 0.0993 mmol), EDC-HCI (19 mg, 0.0993 mmol), DMAP (3

mg, 0.0275 mmol) and CH>Cl, (5 mL) were used. The residue was column chromatographed
(100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19f (23 mg, 0.0266 mmol, 25%,
colourless oil). "H NMR (400 MHz, CDCls) § 5.58-5.54 (m, 1H), 5.38-5.30 (m, 2H), 4.51-4.37
(m, 2H), 4.28-4.18 (m, 1H), 4.15-4.13 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.33-2.28 (m,
2H), 2.02-1.98 (m, 4H), 1.63-1.57 (m, 2H), 1.48 (2d, 9H), 1.44 (s, 9H), 1.32-1.26 (m, 24H),
0.89-0.83 (m, 12H), 0.09 (d, 6H); *'P NMR (400 MHz, CDCI3) § -5.60, -5.81; *C NMR (100
MHz, CDCl3) 0 173.6, 170.0 (d, Je» = 4.6 Hz), 155.4, 130.1, 130.0, 84.2, 80.4, 69.2 (2d, Jep =
8.6 Hz), 68.0 (t, Jop = 5.9 Hz), 67.3 (d, Jop = 5.8 Hz), 65.1, 54.1 (d, J.p = 7.4 Hz), 52.8, 34.3,
32.0, 29.9, 29.9, 29.9, 29.6, 29.6, 29.5, 29.4, 29.3, 28.4, 27.3, 25.8, 25.0, 22.8, 18.2, 14.2, -4.6,
-4.7; DEPT-135 NMR (100 MHz, CDCl3) ¢ 129.9 (CH), 129.8 (CH), 69.1 (d, Je, = 8.7 Hz,
CH), 67.9 (t, Jop= 5.5 Hz, CH»), 67.2 (d, J.p= 5.5 Hz, CH»), 64.9 (CH>), 54.0 (d, Jop= 7.4 Hz,
CH), 52.7 (CH3), 34.2 (CH»), 31.9 (CH>), 29.8 (CH3), 29.8 (CH>), 29.7 (CH3), 29.5 (CH»), 29.4
(CH>), 29.3 (CH»), 29.2 (CH»), 28.3 (CH3), 27.2 (CH»), 25.7 (CH3), 24.9 (CH>), 22.7 (CH»),
14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C4Hs,NO;PSi [M+K]": caled.,
874.5; found, 874.6; [M+Na]": calcd., 858.5; found, 858.5.

(R)-19¢g
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl (52,82,11Z7,147)-
icosa-5,8,11,14-tetraenoate (Compound (R)-19¢g): Following the general procedure (D1), (R)-
17 (80 mg, 0.147 mmol), 18¢g (Arachidonic acid, C20:4) (40 mg, 0.132 mmol), EDC-HCI (25
mg, 0.132mmol), DMAP (4 mg, 0.0367 mmol) and CH2Cl (5 mL) were used. The residue was
column chromatographed (100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19g
(35 mg, 0.0421 mmol, 31%, colourless oil). '"H NMR (400 MHz, CDCl;) & 5.58-5.54 (m, 1H),
5.42-5.29 (m, 8H), 4.52-4.32 (m, 2H), 4.28-418 (m, 1H), 4.16-4.11 (m, 1H), 4.06-3.86 (m, 4H),
3.76 (2s, 3H), 2.87-2.78 (m, 6H), 2.36-2.31 (m, 2H), 2.13-2.02 (m, 4H), 1.74-1.66 (m, 2H),
1.48 (2d, 9H), 1.44 (s, 9H), 1.39-1.24 (m, 6H), 0.93-0.83 (m, 12H), 0.09 (d, 6H); 3*'P NMR
(400 MHz, CDCl;) § -5.58, -5.79; '*C NMR (100 MHz, CDCl3) 6 173.3, 170.0 (d, Jop, = 4.8
Hz), 155.4, 130.6, 129.0, 129.0, 128.7, 128.4, 128.3, 128.0, 127.7, 84.3, 80.4, 69.2 (2d, Jop =
8.7 Hz), 68.0 (t, Jop = 5.7 Hz), 67.3 (d, Jop = 5.4 Hz), 65.1, 54.1 (d, Jop = 7.9 Hz), 52.8, 33.7,
31.6, 29.9, 29.9, 294, 28.4, 27.3, 26.7, 25.8, 25.8, 25.7, 24.9, 22.7, 18.2, 14.2, -4.6, -4.7;
DEPT-135 NMR (100 MHz, CDCl3) 0 130.5 (CH), 128.9 (CH), 128.9 (CH), 128.6 (CH), 128.2
(CH), 128.1 (CH), 127.8 (CH), 127.5 (CH), 69.1 (d, J.p = 8.7 Hz, CH), 67.9 (t, Jop= 5.4 Hz,
CH»), 67.2 (d, Jep = 5.3 Hz, CH>), 65.0 (CH>), 54.0 (d, Jop = 7.7 Hz, CH), 52.7 (CH3), 33.5
(CH2), 31.5 (CH2), 29.7 (CH3), 29.3 (CH2), 28.3 (CH3), 27.2 (CH2), 26.5 (CH>), 25.7 (CH3),
25.6 (CH>), 24.7 (CH2), 22.6 (CH>), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF)
for C42H76NO11PSi [M+K]": caled., 868.4; found, 868.5; [M+Na]": calcd., 852.4; found, 852.5.
(R)-19h
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl docosanoate
(Compound (R)-19h): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol),
18h (Behenic acid, C22:0) (44 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4

mg, 0.0367 mmol) and CH>Cl> (5 mL) were used. The residue was column chromatographed
(100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19h (27 mg, 0.0311 mmol,
22%, colourless oil). 'TH NMR (400 MHz, CDCls) J 5.58-5.54 (m, 1H), 4.52-4.37 (m, 2H),
4.28-4.18 (m, 1H), 4.16-4.11 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.33-2.28 (m, 2H),
1.63-1.59 (m, 2H), 1.48 (2d, 9H), 1.44 (s, 9H), 1.29-1.24 (m, 36H), 0.89-0.85 (m, 12H), 0.09
(2s, 6H); *'P NMR (400 MHz, CDCl3) 6 -5.61, -5.82; 3*C NMR (100 MHz, CDCl) § 173.5,
169.9 (d, Jop = 4.8 Hz), 155.3, 84.2 (d, Jop = 7.3 Hz), 80.3, 69.1 (2d, Je-, = 8.7 Hz), 67.9 (t, Jep
=5.6 Hz), 67.3 (d, Jep = 5.0 Hz), 64.9, 54.0 (d, Je, = 7.1 Hz), 52.7, 34.2, 31.9, 29.8, 29.7, 29.7,
29.6, 29.5,29.4, 29.3, 29.2, 28.3, 25.7, 24.9, 22.7, 18.0, 14.1, -4.8, -4.9; DEPT-135 NMR (100
MHz, CDCl3) ¢ 69.1 (d, Jep = 8.6 Hz, CH), 67.9 (t, J.p = 5.6 Hz, CH>), 67.2 (d, Jep= 5.2 Hz,
CH»), 64.9 (CH»), 54.0 (d, Jop= 8.2 Hz, CH), 52.7 (CH3), 34.2 (CH>), 31.9 (CH>), 29.8 (2CH3),
29.7 (CHa3), 29.7 (2CH>), 29.6 (CH>), 29.5 (CHz), 29.4 (CH>), 29.3 (CH2), 29.2 (CH»), 28.3
(CH3), 25.7 (CH3), 24.9 (CH»), 22.7 (CH>), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-
TOF) for C44HssNO;1PSi [M+K]": caled., 904.5; found, 904.7; [M+Na]": calcd., 888.5; found,
888.7.

(R)-19i
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl (Z)-docos-13-enoate
(Compound (R)-19i): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18i
(Erucic acid, C22:1) (44 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg,
0.0367 mmol) and CH>CL (5 mL) were used. The residue was column chromatographed (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19i (32 mg, 0.0370 mmol, 25%,
colourless oil). "H NMR (400 MHz, CDCls) 6 5.58-5.54 (m, 1H), 5.37-5.30 (m, 2H), 4.51-4.36

(m, 2H), 4.27-418 (m, 1H), 4.16-4.13 (m, 1H), 4.06-3.86 (m, 4H), 3.76 (2s, 3H), 2.32-2.28 (m,
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2H), 2.02-1.98 (m, 4H), 1.62-1.57 (m, 2H), 1.47 (2d, 9H), 1.44 (s, 9H), 1.31-1.25 (m, 28H),
0.88-0.85 (m, 12H), 0.09 (d, 6H); *'P NMR (400 MHz, CDCI;) J -5.61, -5.82; *C NMR (100
MHz, CDCl3) ¢ 173.6, 170.0 (d, J., = 4.8 Hz), 155.4, 130.0, 130.0, 84.3, 80.4, 69.2 (2d, Jep =
8.8 Hz), 68.0 (t, Jop = 5.8 Hz), 67.3 (d, Jop = 5.1 Hz), 65.1, 54.1 (d, Jep = 7.7 Hz), 52.8, 34.3,
32.0, 29.9, 29.9, 29.8, 29.7, 29.6, 29.6, 29.4, 29.4, 29.3, 28.4, 27.3, 25.8, 25.0, 22.8, 18.2, 14.2,
-4.6, -4.7; DEPT-135 NMR (100 MHz, CDCls) ¢ 129.9 (CH), 129.9 (CH), 69.1 (d, Jep = 8.8
Hz, CH), 67.9 (t, Jep= 5.7 Hz, CH»), 67.2 (d, Jop= 4.9 Hz, CH>), 64.9 (CH>), 54.0 (d, Je-p= 7.6
Hz, CH), 52.7 (CH3), 34.2 (CH»), 31.9 (CH»), 29.8 (CH>), 29.7 (2CH3), 29.6 (2CH>), 29.5
(2CH»), 29.3 (2CH>), 29.2 (CH>), 28.3 (CH3), 27.2 (CH>), 25.7 (CH3), 24.9 (CH>), 22.7 (CH»),
14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF) for C44HgeNO1PSi [M+K]": caled.,
902.5; found, 902.7; [M+Na]": calcd., 886.5; found, 886.8.

(R)-19j
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-

oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl (7Z,10Z,137.,16Z)-
docosa-7,10,13,16-tetraenoate (Compound (R)-19j): Following the general procedure (D1),
(R)-17 (60 mg, 0.110 mmol), 18j (Docosatetraenoic acid, C22:4) (30 mg, 0.0993 mmol),
EDC-HCI (19 mg, 0.0993 mmol), DMAP (3 mg, 0.0248 mmol) and CH»Cl (5 mL) were used.
The residue was column chromatographed (100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to
yield (R)-19j (11 mg, 0.0128 mmol, 10%, colourless oil). "H NMR (400 MHz, CDCls) § 5.58-
5.53 (m, 1H), 5.43-5.30 (m, 8H), 4.52-4.37 (m, 2H), 4.28-419 (m, 1H), 4.17-4.14 (m, 1H),
4.07-3.85 (m, 4H), 3.77 (2s, 3H), 2.85-2.79 (m, 6H), 2.35-2.30 (m, 2H), 2.07-2.03 (m, 4H),
1.67-1.63 (m, 2H), 1.48 (2d, 9H), 1.45 (s, 9H), 1.39-1.25 (m, 10H), 0.90-0.87 (m, 12H), 0.10-
0.05 (m, 6H); *'P NMR (400 MHz, CDCL) 6 -5.37, -5.58; '*C NMR (100 MHz, CDCl;) ¢
173.6, 170.0 (d, Jep = 4.6 Hz), 155.4, 130.6, 130.2, 130.1, 128.7, 128.5, 128.2, 128.1, 128.0,
127.7, 84.3, 80.4, 72.1, 69.2 (2d, J., = 5.8 Hz), 68.0, 67.4 (d, J., = 3.5 Hz), 65.1 (d, Jep = 2.3
Hz), 64.4, 54.1 (d, J.p = 4.8 Hz), 52.9, 34.2, 31.7, 29.9, 29.9, 29.9, 29.5, 29.4, 29.0, 28.4, 27.4,
27.2, 26.0, 25.9, 25.8, 25.8, 24.9, 22.7, 18.2, 14.2, -4.6, -4.7; DEPT-135 NMR (100 MHz,

CDCl;) § 130.5 (CH), 130.0 (CH), 130.0 (CH), 128.6 (CH), 128.4 (CH), 128.1 (CH), 127.9
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(CH), 127.6 (CH), 69.1 (d, Jep= 5.7 Hz, CH), 67.9 (t, Jep= 5.7 Hz, CH2), 67.2 (d, Jop= 3.6 Hz,
CHa), 65.0 (CHa), 64.2 (CH), 54.0 (d, Jep= 5.2 Hz, CH), 52.7 (CH3), 34.1 (CHa), 31.5 (CHa),
29.8 (2CHs), 29.3 (2CHa), 28.8 (CHa), 28.3 (CHs), 27.2 (CHa), 27.1 (CHa), 25.7 (CHs), 25.6
(CHa), 24.8 (CH), 22.6 (CH,), 14.1 (CH3), -4.7 (CHs), -4.9 (CH3); MALDI (ESI-TOF) for
C44HgoNO1PSi [M+K]": caled., 896.4; found, 896.5; [M+Na]": calcd., 880.5; found, 880.5.
(R)-19k
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl
472,77,102,1372.,16Z,197)-docosa-4,7,10,13,16,19-hexaenoate (Compound (R)-19Kk):

Following the general procedure (D1), (R)-17 (60 mg, 0.110 mmol), 18k (Docosahexaenoic
acid, C22:6) (30 mg, 0.0993 mmol), EDC-HCI (19 mg, 0.0993 mmol), DMAP (4 mg, 0.0275
mmol) and CH>Cl, (5 mL) were used. The residue was column chromatographed (100-200
silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19k (7 mg, 0.00820 mmol, 8%, colourless
oil). 'H NMR (400 MHz, CDCl5) 6 5.58-5.55 (m, 1H), 5.43-5.28 (m, 12H), 4.50-4.32 (m, 2H),
4.28-4.19 (m, 1H), 4.17-4.12 (m, 1H), 4.06-3.88 (m, 4H), 3.77 (2s, 3H), 2.85-2.80 (m, 10H),
2.42-2.39 (m, 4H), 2.11-2.04 (m, 2H), 1.61 (m, 2H), 1.49 (2d, 9H), 1.45 (s, 9H), 0.97 (t, J=7.5
Hz, 3H), 0.89 (m, 9H), 0.10-0.09 (m, 6H); 3'P NMR (400 MHz, CDCls) ¢ -5.58, -5.80; 1*C
NMR (100 MHz, CDCls) 0 172.9, 170.0 (d, Je» = 5.0 Hz), 155.4, 132.2, 129.6, 129.5, 128.7,
128.4, 128.2, 128.2, 128.1, 128.0, 128.0, 127.8, 127.2, 84.3, 80.4, 69.2 (2d, J., = 5.7 Hz), 68.0,
67.4 (d, Jop = 3.9 Hz), 65.2, 62.0, 54.1 (d, Jp, = 4.6 Hz), 52.9, 34.1, 29.9, 28.5, 27.6, 26.0,
26.0, 25.8, 25.8, 25.7, 25.7, 22.8, 20.7, 18.2, 14.4, -4.6, -4.7; DEPT-135 NMR (100 MHz,
CDCl) 0 132.1 (CH), 129.5 (CH), 129.4 (CH), 128.6 (CH), 128.3 (CH), 128.3 (CH), 128.3
(CH), 128.1 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 127.0 (CH), 69.1 (d, J.p = 5.9 Hz,
CH), 67.9 (t, Jop= 5.2 Hz, CH»), 67.2 (d, Jep= 2.9 Hz, CH>), 65.1 (CH»), 54.0 (d, Jep=4.7 Hz,
CH), 52.7 (CH3), 34.0 (CH»), 29.8 (CH3), 28.3 (CH3), 25.7 (CH3), 25.6 (2CH>), 25.5 (CHy),
22.6 (CH>), 14.3 (CH3), -4.8 (2CHs.

(R)-191
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(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl tetracosanoate
(Compound (R)-191): Following the general procedure (D1), (R)-17 (80 mg, 0.147 mmol), 18l
(Lignoceric acid, C24:0) (48 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol), DMAP (4 mg,
0.0367 mmol) and CH>CL, (5 mL) were used. The residue was column chromatographed (100-
200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-191 (19 mg, 0.0201 mmol, 15%,
colourless oil). "H NMR (400 MHz, CDCl;) § 5.58-5.54 (m, 1H), 4.52-4.37 (m, 2H), 4.28-4.18
(m, 1H), 4.16-4.13 (m, 1H), 4.06-3.86 (m, 4H), 3.77 (2s, 3H), 2.33-2.29 (m, 2H), 1.63-1.60 (m,
2H), 1.48 (2d, 9H), 1.45 (s, 9H), 1.30-1.25 (m, 40H), 0.89-0.86 (m, 12H), 0.09 (2s, 6H); 'P
NMR (400 MHz, CDCl3) § -5.58, -5.79; '3C NMR (100 MHz, CDCls) 6 173.7, 170.0 (d, Jop =
4.8 Hz), 155.4, 84.2, 80.4, 69.2 (2d, J.» = 8.5 Hz), 68.0 (t, Jop = 5.6 Hz), 67.3 (d, Jop = 5.4
Hz), 65.1, 54.1 (d, Jop = 7.4 Hz), 52.8, 34.3, 32.1, 29.9, 29.8, 29.8, 29.6, 29.5, 29.4, 29.3, 28.4,
25.8,25.0,22.8, 18.2, 14.3, -4.6, -4.7; DEPT-135 NMR (100 MHz, CDCl3) 6 69.1 (d, Je, = 8.7
Hz, CH), 67.9 (t, Jop= 5.8 Hz, CH»), 67.2 (d, Jep= 5.5 Hz, CH>), 64.9 (CH>), 54.0 (d, Jep= 7.5
Hz, CH), 52.7 (CH3), 34.2 (CH2), 31.9 (CH»), 29.8 (CH3), 29.7 (CH3), 29.7 (2CH»), 29.6
(CH>), 29.5 (CH»), 29.4 (CH»), 29.3 (CH2), 29.2 (CH»), 28.3 (CH3), 25.7 (CH3), 24.9 (CH»),
22.7 (CH2), 14.1 (CH3), -4.8 (CHz3), -4.9 (CH3); MALDI (ESI-TOF) for CsH92NO;1PSi
[M+K]": calcd., 932.5; found, 932.5; [M+Na]": caled., 916.6; found, 916.6.

(R)-19m

(2R)-3-((tert-butoxy((S)-2-((tert-butoxycarbonyl)amino)-3-methoxy-3-
oxopropoxy)phosphoryl)oxy)-2-((tert-butyldimethylsilyl)oxy)propyl (Z)-tetracos-15-
enoate (Compound (R)-19Kk): Following the general procedure (D1), (R)-17 (80 mg, 0.147
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mmol), 18m (Nervonic acid, C24:1) (40 mg, 0.132 mmol), EDC-HCI (25 mg, 0.132 mmol),
DMAP (4 mg, 0.0367 mmol) and CH2Cl> (5 mL) were used. The residue was column
chromatographed (100-200 silica gel mesh) (EtOAc/Hexane, 30:70) to yield (R)-19m (23 mg,
0.0246 mmol, 18%, colourless oil). '"H NMR (400 MHz, CDCls) 6 5.59-5.55 (m, 1H), 5.35-
5.33 (m, 2H), 4.51-4.37 (m, 2H), 4.28-418 (m, 1H), 4.16-4.13 (m, 1H), 4.06-3.86 (m, 4H), 3.77
(2s, 3H), 2.33-2.29 (m, 2H), 2.03-1.98 (m, 4H), 1.63-1.59 (m, 2H), 1.48 (2d, 9H), 1.45 (s, 9H),
1.33-1.25 (m, 32H), 0.89-0.86 (m, 12H), 0.09 (2s, 6H); *'P NMR (400 MHz, CDCl3) 6 -5.60, -
5.81; 3C NMR (100 MHz, CDCl) § 173.7, 170.0 (d, Jep = 5.2 Hz), 155.4, 130.0, 130.0, 84.3,
80.4, 69.2 (2d, Jo, = 8.7 Hz), 68.0 (t, Jep = 5.7 Hz), 67.4 (d, Jop = 5.2 Hz), 65.1, 54.1 (d, Jep =

7.7 Hz), 52.8, 34.3, 32.0, 29.9, 29.9, 29.9, 29.8, 29.8, 29.7, 29.7, 29.6, 29.5, 29.4, 29.3, 28.4,
27.4,25.8,25.0,22.8,18.2, 14.3, -4.6, -4.7; DEPT-135 NMR (100 MHz, CDCl3) ¢ 129.9 (CH),
129.9 (CH), 69.1 (d, Jep= 8.8 Hz, CH), 67.9 (t, Jop= 5.8 Hz, CH>), 67.2 (d, Jep= 5.5 Hz, CH>),
64.9 (CH»), 54.0 (d, Jop = 7.5 Hz, CH), 52.7 (CH3), 34.2 (CH2), 31.9 (CH>), 29.8 (CH>), 29.7
(CH3), 29.7 (CH>), 29.6 (2CH>), 29.5 (2CH>), 29.3 (CH>), 29.2 (CH»), 28.3 (CH3), 27.2 (CH»),
25.7 (CHs), 24.9 (CH2), 22.7 (CH»), 14.1 (CH3), -4.8 (CH3), -4.9 (CH3); MALDI (ESI-TOF)
for C46HooNO11PSi [M+K]": calcd., 930.5; found, 930.5; [M+Na]": caled., 914.5; found, 914.6.

General procedure (E1) for the synthesis of compounds (R)-20a-h (TBS, ¢-
Bu, and ~-BOC deprotection):

j\ﬁ By j\ TFA )Ov OH )OL
~N /P\ (R) > ,P\ (R)
(@) i (@) 6 O/Y\O R CH,Cl,, 0 °C to e} : 0 5 O/Y\O R
NHBoc oTBS rt, 3to 5 h NH, OH
(R)-19a-h (R)-20a-h

To synthesized compound (R)-20 we followed previously been reported procedure®*®*. The
compound (R)-19 in dry CH>Cl, was charged in two necks round bottom flask which was
equipped with N> balloon. The solution was cooled to -10 °C and then the TFA was added
dropwise. After TFA addition, the reaction temperature and stirring time was variable for
different analogues. For the starting moieties (R)-19a-b, the reaction solution were stirred at 0
°C for 1 h and then at room temperature for 4 h and got (above 85% pure compound). For the
moiety (R)-19c-g the reaction solution was stirred at 0 °C for 3.5 h and then at room
temperature for 1 h and got (above 90% pure compound). For the longer fatty acid chain length

moieties (R)-19h-m were required to stir the reaction solution at 0 °C for 5 h got (above 70%
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pure compound). Once the reaction was complete, the reaction solution was concentrated under
reduced pressure at < 25 °C and then the dried residue was washed with n-Pentane: Et,O (3:1)
three times, dried under high vacuum to afford the TFA salt of the desired product i.e. (R)-20
The purity of the final compounds (R)-20a-h was determined based on the NMR spectra, and HRMS

analysis.

(R)-20a

~ )WVV\/\
)vo 0 O/Y\

(2ZR)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl palmitate (Compound 20a): Following the general procedure (E1), (R)-19a
(40 mg), TFA (0.400 mL) and CH>Cl, (0.200 mL) were used. The product was washed with n-
pentane: Et;0O (4:1) (3 x 2 mL) to yield desired final compound (R)-20a (21 mg, 0.0449 mmol,
88%, white solid): "H NMR (400 MHz, MeOH-ds + CDCls) § 4.17-3.87 (m, 4H), 3.76-3.73 (m,
3H), 3.61-3.59 (2s, 3H), 3.46 (m, 1H), 2.09 (t, J = 7.1 Hz, 2H), 1.36-1.34 (m, 2H), 1.00 (brs,
24H), 0.61 (t, ] = 6.6 Hz, 3H); *'P NMR (400 MHz, MeOH-ds + CDCl3) § 4.18.

(R)-20b

~ )WVV\/\
)vo 1 O/Y\

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl stearate (Compound 20b): Following the general procedure (E1), (R)-19b (34
mg), TFA (0.340 mL) and CH>CL (0.170 mL) were used. The product was washed with n-
pentane: Et;0O (4:1) (3 x 2 mL) to yield desired final compound (R)-20b (20 mg, 0.0370 mmol,
91 %, white solid): 'H NMR (400 MHz, MeOH-ds + CDCl3) & 3.98-3.96 (m, 2H), 3.89-3.84
(m, 5H), 3.72-3.70 (2s, 3H), 3.56 (m, 1H), 2.19 (t, J = 7.4 Hz, 2H), 1.53-1.44 (m, 2H), 1.11
(brs, 28H), 0.73 (t, J = 6.6 Hz, 3H); *'P NMR (400 MHz, MeOH-ds + CDCls) § 4.05.

(R)-20c
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl oleate (Compound 20c¢): Following the general procedure (E1), (R)-19¢ (27
mg), TFA (0.270 mL) and CH2Cl, (0.160 mL) were used. The product was washed with n-
pentane: Et2O (4:1) (3 x 2 mL) to yield desired final compound (R)-20c¢ (7 mg, 0.0130 mmol,
41%, white solid): '"H NMR (400 MHz, MeOH-d4 + CDCl3) § 5.03-5.02 (m, 2H), 4.12-3.83 (m,
4H), 3.71-3.68 (m, 3H), 3.57-3.56 (2s, 3H), 3.42 (m, 1H), 2.05 (t, J = 7.2 Hz, 2H), 1.72-1.70
(m, 4H), 1.32 (m, 2H), 1.01-0.97 (m, 20H), 0.59-0.56 (m, 3H); *'P NMR (400 MHz, MeOH-d4
+ CDCl3) 6 22.11, 4.09; HRMS (ESI): m/z calcd. for (C2sHasNOoP) [M + H]"™ 538.3145; found,
538.3140.

(R)-20d

~ )W
)vo 1 O/Y\

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (9Z,12Z,15Z7)-octadeca-9,12,15-trienoate (Compound 20d): Following the
general procedure (E1), (R)-19d (14 mg), TFA (0.200 mL) and CH>ClL, (0.100 mL) were used.
The product was washed with n-pentane: Et2O (4:1) (3 x 2 mL) to yield desired final
compound (R)-20d (7 mg, 0.0131 mmol, 78%, white solid): '"H NMR (400 MHz, MeOH-ds4 +
CDCl) 6 5.22-5.08 (m, 6H), 4.03-3.93 (m, 4H), 3.80-3.78 (m, 3H), 3.67-3.66 (2s, 3H), 3.53-
3.52 (m, 1H), 2.62-2.59 (m, 4H), 2.15 (t, ] = 7.4 Hz, 2H), 1.92-1.85 (m, 4H), 1.42 (m, 2H),
1.14-1.06 (m, 8H), 0.78 (t, J = 7.5 Hz, 3H); 3'P NMR (400 MHz, MeOH-d4s + CDCl;) & 21.97,
4.26; HRMS (ESI): m/z caled. for (C2sH44NOoP) [M + H]" 534.2832; found, 534.2838.

(R)-20e

~ )W
)vo 1 O/Y
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl icosanoate (Compound 20e): Following the general procedure (E1), (R)-19e
(33 mg), TFA (0.330 mL) and CH>Cl> (0.170 mL) were used. The product was washed with n-
pentane: Et;0 (4:1) (3 x 2 mL) to yield desired final compound (R)-20e (19 mg, 0.0334 mmol,
86%, white solid): "H NMR (400 MHz, MeOH-ds + CDCls) § 3.95-3.74 (m, 4H), 3.71-3.62 (m,
3H), 3.55-3.54 (2s, 3H), 3.41 (m, 1H), 2.03 (t, ] = 7.4 Hz, 2H), 1.32-1.28 (m, 2H), 0.94 (brs,
32H), 0.56 (t, ] = 6.6 Hz, 3H); *'P NMR (400 MHz, MeOH-ds + CDCl) § 4.08.

(R)-20f

~ )vav
)vo 1 O/Y\

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (Z)-icos-11-enoate (Compound 20f): Following the general procedure (E1),
(R)-19f (23 mg), TFA (0.300 mL) and CH>Cl, (0.180 mL) were used. The product was washed
with n-pentane: Et2O (4:1) (3 x 2 mL) to yield desired final compound (R)-20f (11 mg, 0.0194
mmol, 73%, white solid): 'H NMR (400 MHz, MeOH-ds + CDCl3) § 5.18-5.10 (m, 2H), 4.07-
3.92 (m, 4H), 3.84-3.80 (m, 3H), 3.67-3.66 (2s, 3H), 3.53-3.52 (m, 1H), 2.17-2.12 (m, 2H),
1.82-1.79 (m, 4H), 1.42-1.40 (m, 2H), 1.07 (brs, 24H), 0.68 (t, ] = 6.5 Hz, 3H); 3'P NMR (400
MHz, MeOH-ds + CDCI3) § 21.81, 4.37; HRMS (ESI): m/z calcd. for (C27Hs2NOoP) [M + H]"
566.3458; found, 566.3448.

(R)-20g

~ )m
)vo ¥ O/\ﬁ

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-

hydroxypropyl (5Z,8Z,11Z,147)-icosa-5,8,11,14-tetraenoate (Compound 20g): Following
the general procedure (E1), (R)-19¢g (35 mg), TFA (0.350 mL) and CH>Cl> (0.200 mL) were
used. The product was washed with n-pentane: Et;O (4:1) (3 x 2 mL) to yield desired final
compound (R)-20g (20 mg, 0.0357 mmol, 87%, white solid): 'H NMR (400 MHz, MeOH-d4 +
CDCl) 6 5.31-5.08 (m, 8H), 4.18-3.94 (m, 4H), 3.89-3.79 (m, 3H), 3.74-3.73 (2s, 3H), 3.64
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(m, 1H), 2.73-2.68 (m, 6H), 2.25 (t, J = 7.5 Hz, 2H), 1.99-1.90 (m, 4H), 1.58-1.55 (m, 2H),
1.25-1.10 (m, 6H), 0.75 (t, J = 6.4 Hz, 3H); *'P NMR (400 MHz, MeOH-d4 + CDCl3) § 21.93,
4.46; HRMS (ESI): m/z calcd. for (C27H4sNOoP) [M + H]" 560.2988; found, 560.2972.
(R)-20h

~ )WWM
)vo X O/Y\

(2ZR)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl docasanoate (Compound 20h): Following the general procedure (E1), (R)-
19h (27 mg), TFA (0.350 mL) and CH2Cl» (0.200 mL) were used. The product was washed
with n-pentane: Et2O (4:1) (3 x 2 mL) to yield desired final compound (R)-20h (15 mg, 0.0251
mmol, 83%, white solid): '"H NMR (400 MHz, MeOH-ds + CDCl3) & 4.18-3.87 (m, 4H), 3.75-
3.72 (m, 3H), 3.61-3.59 (2s, 3H), 3.47 (m, 1H), 2.08 (t, J = 7.1 Hz, 2H), 1.35 (m, 2H), 0.99
(brs, 36H), 0.61 (t, J = 6.1 Hz, 3H); *'P NMR (400 MHz, MeOH-ds + CDCls) § 3.97.

(R)-20i

~ )Wwv
)vo 1 o/\p

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (Z)-docos-13-enoate (Compound 20i): Following the general procedure (E1),
(R)-19i (32 mg), TFA (0.350 mL) and CH2Cl> (0.200 mL) were used. The product was washed
with n-pentane: Et;0 (4:1) (3 x 2 mL) to yield desired final compound (R)-20i (11 mg, 0.0185
mmol, 52%, white solid): 'H NMR (400 MHz, MeOH-ds + CDCl3) § 5.51-5.03 (m, 2H), 4.00-
3.87 (m, 4H), 3.78-3.66 (m, 3H), 3.61-3.59 (2s, 3H), 3.46 (m, 1H), 2.08 (t, J = 7.4Hz, 3H),
1.76-1.73 (m, 4H), 1.37-1.34 (m, 2H), 1.01 (brs, 28H), 0.61 (t, ] = 6.4 Hz, 3H); 3'P NMR (400
MHz, MeOH-ds + CDCI3) & 21.82, 4.16; HRMS (ESI): m/z calcd. for (C20HseNOoP) [M + H]"
594.3771; found, 594.3770.

(R)-20j
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~ )K/\/\W\/\
)vo 1 O/\p

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (7Z,10Z,13Z,16Z)-docosa-7,10,13,16-tetraenoate =~ (Compound  20j):
Following the general procedure (E1), (R)-19j (11 mg), TFA (0.200 mL) and CH2Cl, (0.150
mL) were used. The product was washed with n-pentane: EtoO (4:1) (3 x 2 mL) to yield
desired final compound (R)-20j (5 mg, 0.0851 mmol, 71%, white solid): 'H NMR (400 MHz,
MeOH-d4 + CDCl3) 8 5.20-5.17 (m, 8H), 4.05-3.92 (m, 4H), 3.82-3.75 (m, 3H), 3.69-3.67 (2s,
3H), 3.43 (m, 1H), 2.66-2.62 (m, 6H), 2.17 (t, J = 7.4 Hz, 2H), 1.90-1.85 (m, 4H), 1.45-1.43
(m, 2H), 1.18-1.08 (m, 10H), 0.71 (t, J = 6.6 Hz, 3H); *'P NMR (400 MHz, MeOH-ds +
CDCl3) & 21.81, 4.40; HRMS (ESI): m/z calcd. for (C290HsoNOoP) [M + H]" 588.3301; found,
588.3300.

(R)-20k

~ )MVV\_/\
)vo 0 O/Y\

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (47,772,10Z2,137Z,16Z,197)-docosa-4,7,10,13,16,19-hexaenoate (Compound
20k): Following the general procedure (E1), (R)-19k (7 mg), TFA (0.200 mL) and CH>Cl»
(0.150 mL) were used. The product was washed with n-pentane: Et,O (4:1) (3 x 2 mL) to yield
desired final compound (R)-20k (3 mg, 0.0514 mmol, 75%, white solid): '"H NMR (400 MHz,
MeOH-d4 + CDCl3) 6 5.24-5.11 (m, 12H), 3.95-3.88 (m, 4H), 3.83-3.75 (m, 3H), 3.71-3.69
(2s, 3H), 3.43 (m, 1H), 2.69-2.63 (m, 10H), 2.25-2.21 (m, 4H), 1.91 (t, J = 7.5 Hz, 2H), 0.81 (t,
J = 7.5 Hz, 3H); 3'P NMR (400 MHz, MeOH-ds + CDCl3) & 21.91, 4.50; HRMS (ESI): m/z
calcd. for (C29HasNOoP) [M + H]* 584.2988; found, 584.2982.

(R)-201

~ )WWM
)vo 1 O/\ﬁ
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(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl tetracosanoate (Compound 201): Following the general procedure (E1), (R)-
191 (18 mg), TFA (0.250 mL) and CH2Cl> (0.180 mL) were used. The product was washed
with n-pentane: Et;0 (4:1) (3 x 2 mL) to yield desired final compound (R)-201 (8 mg, 0.0128
mmol, 67%, white solid): '"H NMR (400 MHz, MeOH-ds + CDCl5) § 4.06-3.94 (m, 4H), 3.85-
3.75 (m, 3H), 3.68-3.67 (2s, 3H), 3.54 (m, 1H), 2.16 (t, J = 7.4 Hz, 2H), 1.43 (m, 2H), 1.07
(brs, 40H), 0.69 (t, J = 6.5 Hz, 3H); *'P NMR (400 MHz, MeOH-ds + CDCl3) § 4.43.

(R)-20m

~ )WWVW
)vo 1 O/Y\

(2R)-3-((((S)-2-amino-3-methoxy-3-oxopropoxy)(hydroxy)phosphoryl)oxy)-2-
hydroxypropyl (Z)-tetracos-15-enoate (Compound 20m): Following the general procedure
(E1), (R)-19m (22 mg), TFA (0.300 mL) and CH>Cl> (0.150 mL) were used. The product was
washed with n-pentane: Et2O (4:1) (3 x 2 mL) to yield desired final compound (R)-20m (7 mg,
0.0112 mmol, 47%, white solid): '"H NMR (400 MHz, MeOH-d4 + CDCl) § 5.21-5.14 (m,
2H), 4.01-3.95 (m, 4H), 3.84-3.76 (m, 3H), 3.70-3.69 (2s, 3H), 3.56 (m, 1H), 2.17 (t, ] = 7.3
Hz, 3H), 1.85-1.82 (m, 4H), 1.45 (m, 2H), 1.10 (brs, 32H), 0.71 (t, J = 6.5 Hz, 3H); *'P NMR
(400 MHz, MeOH-d4 + CDCl3) & 21.95, 4.33; HRMS (ESI): m/z caled. for (C31Hs0NOoP) [M +
H]" 622.4084; found, 622.4081.
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4.7 Spectral Data

'"H-NMR (CDCl;, 400 MHz) for Compound (R)-16
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-17
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-19a
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-19b
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-19b
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13C-NMR (CDCl;, 100 MHz) for Compound (R)-19¢
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-19d
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-19d
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-19e

by

E

L

e

o

=
©voo <« o
m oo ™) maN¥AN MANQCOT—=®RQ QO R®EXNQLT TR0 NN
N R © in TYON OO OURFITN NP RA DDA B8N T o
- B DoBN VwoOANin MAANAACNNNN NS
NN | N PNy N SAEAGN J)ShEhE SRS

= — —

N N M h l

T T T T T T T T T T T
00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
Chemical Shift (ppm)

-2l

3Ip_.NMR (CDCls;, 400 MHz) for Compound (R)-19e

-5.6097|
-5.8180)|

>
~ )WAMA
)K/\ /\‘/\

Y %

T T T T T T T T T T T T T
00 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10  -20
Chemical Shift (ppm)

166



'"H-NMR (CDCl;, 400 MHz) for Compound (R)-19f
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-19f
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-19g
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-19h
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-19h
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-19i
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-19j
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-19j
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3C-NMR (CDCl;, 100 MHz) for Compound (R)-19k
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-191
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3IP_NMR (CDCl;, 400 MHz) for Compound (R)-191

8v6L°S-

¥85°S-

(o}
\ o
B

i
/‘T\
o]

>l

(o}

~
}/0 NH
o

-20

-10

190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10
Chemical Shift (ppm)

200

"H-NMR (CDCl;, 400 MHz) for Compound (R)-19m

(A4
1494
494
STy
9T’y
7y
(444
€y
Y o—

05t
15
£€'s
bE'S o

bE'S
SE's /
15

b-uniojouoiy 9z°z

19T~y

€97

861

AN

102

£0°C 7

672

67T

€T

€T

€€'T

€€z

e

e

68'€

68'€

06'€ um

16°c /F

z6cIE

X% |

v6'c

S6°€ 4

86°€ 4

86°¢ 4

66°€

00+

[AXE

v 4

£0'p °

S0
[e]
(o)

o—
8y \
ov'p ﬁ o
6V

vE'S °

600+

010+

98°0

(80

8801

68°0-

sz'T ;

92T — PN

o] =t |18

62T

€67

Sb°T

8b'T e

4 -

q .
60T 8 mm
65T - 4 868
19'8
B eo-
Gee

I G6'E
002
= 0L
w 16°€
7 66°0
Kot

=cl'l
E 180

85 80 75 70 65 60 55 50 45 40 35 30 25 20 1.5 1.0 05 00 -05 -1
Chemical Shift (ppm)

.0

177



13C-NMR (CDCl;, 100 MHz) for Compound (R)-19m
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20a
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20b
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20c
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20d
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20e
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20f
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20g

®
£

E

8

o

°

s

£

[}

O — L <+ Mo QUOUWoaRVTIITAAATMT N—=O® nomMmo O NINAOo I ™M
N MANNNG —SHQARRNNNG RRQE NGao i ANk
~ nwmwmwmwmnwn <+ < < MMM NN N A - O 0O

3 PR T LY $ 3L & P 3

~ ONT™O © o « - ] <

~ ‘@O $ & F W& N o
T T T T T T T T T T T T T T T T T T T T
40 35 30 25 20 15 10 05 00 -05 -1

).0 8.5 8.0 75 7.0 6.5 6.0 55 50 45
Chemical Shift (ppm)

3Ip_.NMR (CDCls, 400 MHz) for Compound (R)-20g

21.9304
4.4642

o ?H o
o r ) G
o ; o |l ~o o
= o)
OH

NH,

T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
Chemical Shift (ppm)




'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20h
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20i
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20j
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20k
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-201
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'"H-NMR (CDCl;, 400 MHz) for Compound (R)-20m
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