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Abstract
Extreme value (EV) analysis involves the estimation of the probability of events that are un-
usually large or small. EV methods have a wide range of application from modeling extreme
wave heights and water levels in hydrology, structural engineering to share price return lev-
els in finances. In case of univariate independent and identically distributed (i.i.d.) random
variables, a number of statistical models do exist in literature. However, for dependent and
non-stationary multivariate extremes the development of different statistical model remains
an ongoing area of research.
Most of my reading and work has been motivated by the application of the EV analysis in de-
signing oil and gas producing facilities, off-shore or on-shore for extreme ocean environments.
It becomes essential to model covariate effects (wave directions, seasons etc.) for the data
observed over the years in the oceans. We begin with the study of different existing mod-
els which incorporate these covariate effects such as conditional extremes model (Heffernan
and Tawn, 2004)and Non-stationary conditional extremes (NSCE) model (Raghupathi et al.
2016). However, the application of the frequentist NSCE model seems to be computationally
challenging and expensive. So, next we study a piece-wise model for a sample of peaks over
threshold which is non-stationary with respect to multidimensional co-variates, estimated
using a computationally efficient Bayesian inference. We then study the convergence diag-
nostics for the Markov Chain Monte Carlo (MCMC) procedure used in estimation of the
desired Bayesian model by application on synthetic data. Most importantly, we study the
problem of threshold estimation using the Bayesian inference in application for one covariate
(direction).
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Chapter 1

Introduction to EV Theory

This chapter is an extensive literature survey of the main advances done in extreme value
theory in last few decades. From univariate case to multivariate case this chapter introduces
the basic concepts in extreme value theory and statistical inference on extremes. Moreover
it also discusses some of the limitations of different extreme events modeling in univariate
and multivariate cases. Though we state some of the main results but the proofs for the
main results have been omitted as these are well documented elsewhere in literature.

1.1 Univariate case

Let X1, X2, ..., Xn be a sequence of random variables, independent and have a common
distribution function F . There are basically two approaches to model extreme events which
lays down the foundation or represents the cornerstone of extreme value theory. The block
maxima approach and the threshold models. The block maxima approach focuses on the
statistical behavior of

Mn = max{X1, X2, ..., Xn} (1.1)

In theory the asymptotic distribution of Mn can be described and stated by the extremal
types theorem (Fisher-Tippett-Gnedenko theorem) [1] as follows

Theorem 1. If ∃ sequences of normalizing constants {an > 0} and {bn} such that

P{(Mn − bn)/an ≤ z} → G(z) (1.2)

as n → ∞ and where G is a non-degenerate distribution function. Then, G belongs to one
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of the following families

A : G(z) = exp{−exp[−((z − b)/a)]},−∞ < z <∞; (1.3)

B : G(z) =

0, z ≤ b

exp{−((z − b)/a)−α}, z > b;
(1.4)

C : G(z) =

exp{−[((z − b)/a)α]}, z < b

1, z ≥ b;
(1.5)

where a > 0 and b are both parameters. Also, α > 0 in case of families B and C.
These three classes of distribution are known as Gumbel(A), Fréchet (B) and Weibull
(C) families. However, there is another result which provides a more complete generalization
of the asymptotic distribution of Mn and can be stated formally as

Theorem 2. If ∃ sequences of normalizing constants {an > 0} and {bn} such that

P{(Mn − bn)/an ≤ z} → G(z)

as n → ∞ and where G is a non-degenerate distribution function. Then, G belongs to the
following family

G(z) = exp{−[1 + ξ((z − µ)/σ)]−1/ξ (1.6)

and is defined on {z : 1 + ξ(z − µ)/σ > 0}, where −∞ < µ <∞, σ > 0 and −∞ < ξ <∞.

This family of distributions is called as the generalized extreme value (GEV)family
of distributions. In fact, the families of distributions described by equations 1.3, 1.4 and
1.5 as A,B and C belongs to this GEV family for different cases of parameterization of
the GEV family. When ξ > 0 Eqn.(1.6) corresponds to the Fréchet and to Weibull when
ξ < 0. Also, when the GEV family is interpreted as a limit as ξ → 0 it leads to the Gumbel
family. Motivated by Theorem 2, the GEV gives us a model for the distribution of block
maxima. The parameter estimation in this model can be done using a number of proposed
techniques but the one that stands out is the use of likelihood based techniques. It is well
established that the usual regularity conditions are violated in cases like when ξ ≤ −0.5 but
this situation is rarely encountered in application. Hence, the maximum likelihood approach
can be used to get the parameter estimates.
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However, in many cases we don’t have data in the form of block maxima and sometimes
extremes are scarce. This has led to search for characterizations of extreme values when
the data is not in the form of block maxima. In literature there are two widely known
characterizations for this. Among these two, one is based on exceedances of a high threshold
[2] whereas the other is based on the r largest order statistics behavior in a block [1], but
for small values of r.
Let X1, X2, ... be a sequence of i.i.d. random variables and define

M (k)
n = kth largest of{X1, X2, ..., Xn} (1.7)

The next important result here identifies the limiting behavior of M (k)
n , for a fixed k as

n→ ∞.

Theorem 3. If ∃ a sequence of constants {an > 0} and {bn} such that

P{(Mn − bn)/an ≤ z} → G(z)

as n→ ∞ and where G is a non-degenerate distribution function and is the GEV distribution
function given by 1.6. Then, for a fixed k,

P{(M (k)
n − bn)/an ≤ z} → Gk(z) (1.8)

on {z : 1 + ξ(z − µ)/σ > 0}, where

Gk(z) = exp{−τ(z)}
k−1∑
s=0

τ(z)s

s!
(1.9)

and
τ(z) = [1 + ξ(

z − µ

σ
]−1/ξ (1.10)

The parameters here are the ones of the limiting GEV distribution. But in case we have
a complete vector

M(r)
n = (M (1)

n , ...,M (r)
n ) (1.11)

which usually happens, there is another important result which gives us the joint density
function of the limit distribution. We will omit that result here as it is not required but can
be found in Coles S. (2001) [1].
The last result in this section gives us the main result in asymptotic model characterization
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for extremes based on exceedances of a high threshold.

Theorem 4. Let X1, X2, ... be a sequence of i.i.d. random variables with a common distri-
bution F and that Theorem 2 holds. Then, for a large enough threshold u, the distribution
function of X − u, conditional on X > u, is defined by

H(y) = 1− (1 +
ξy

σ + ξ(u− µ)
)−1/ξ (1.12)

on {y : y > 0} and {1 + ξy
σ+ξ(u−µ) > 0}

This family of distribution defined here by Eqn. 1.12 is known as the generalized
Pareto (GP) family. Also, the parameters of this distribution are uniquely determined by
the parameters of the associated generalized extreme value distribution of the block maxima.

1.2 Multivariate Case

In case of multivariate extremes, it becomes difficult to derive the asymptotic form of
the distribution of threshold exceedances and others theoretically. However, Beirlant et
al.(2004) [3] introduces us to multivariate extremes but it is the work of Heffernan and
Tawn (2004) [4] which provides us a framework for multivariate extreme value modelling
in a more flexible way. The conditional extremes model described by them can be easily
implemented and extended and is the one useful in modelling covariate effects. For spatial
extremes one can use methods related to max-stable processes. However, there are some un-
realistic assumptions which goes into these methods related to max-stable processes. So, for
a sample of values drawn from some multivariate distribution if we want to model extremes
there are four different approaches in literature. Extremal dependence models, parametric
models, max-stable models and the conditional extremes model. But, many of these models
for the multivariate extremes are easily described and applied when all the variables follow
a common marginal distribution.

1.2.1 Common marginals

Let X1, X2, ..., Xp be p random variables and {xij}n,pi=1,j=1 be a sample of n observations
on these p variables. To transform the marginals to a common marginal we use the idea of
probability integral transform (Jonathan et al. 2010) [5] and the steps as described below:
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i. We model variable xj marginally independently using an appropriate distribution Fj

(e.g.: GP for threshold exceedances).

ii. Evaluate the cumulative distribution function (CDF) F̂j(xij) for each observation xij
of the variable xj.

iii. Find the value of the argument x∗ij of the desired common marginal CDF F ∗(x∗ij)

such that
F̂j(xij) = F ∗(x∗ij) (1.13)

for all i, j and thus establishing a transformed sample {xij}n,pi=1,j=1 having a common
marginal distribution F ∗.

The typical forms for F ∗ are the standard Gumbel CDF F ∗(x) = exp(−exp(−x)) for
xε(−∞,∞), and the standard Frechet CDF F ∗(x) = exp(− 1

x
) for x > 0.

1.2.2 Types of model for multivariate extremes

As described above we have four different approaches namely extremal dependence models,
parametric models, conditional extremes model and the max-stable models. However our
main focus remains on extremal dependence and conditional extremes model.

Extremal dependence model

As described in Jonathan et al. (2013) [6], for simplicity, at first, let us consider a
bivariate random variable (X,Y ) having a common marginal distribution function. Then,
(X,Y ) is said to be asymptotically dependent if

lim
x→∞

P (X > x|Y > x) > 0 (1.14)

and asymptotically independent if

lim
x→∞

P (X > x|Y > x) = 0 (1.15)

Now, for large x, it becomes important to look at quantities like the joint survivor function
i.e.:P (X > x, Y > x) and the conditional probability P (X > x|Y > x). So, let us con-
sider a bivariate random variable (XF , YF ) where XF and YF have unit Frechet marginal
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distributions, as
P (XF ≤ f) = e−1/f , f > 0. (1.16)

In case XF and YF are independent, they are also asymptotically independent as

P (XF > f |YF > f) = P (XF > f) → 0 asf → ∞. (1.17)

However, XF and YF are asymptotically dependent in case XF = YF , as

P (XF > f |YF > f) = 1 > 0 (1.18)

Using the theory of regular variation as described in Bingham et al. (1987) [7], one can
assume that P (XF > f, YF > f) is regularly varying at ∞

lim
f→∞

P (XF > sf, YF > sf)

P (XF > f, YF > f)
= s−1/η. (1.19)

Here, −1/η, η ∈ (0, 1] is the index with which the regular variation is assumed for some fixed
s > 0. Now, transforming the variables to Gumbel (XG, YG) scale such that

P (XG < g) = exp(−e( − g)) = P (XF < eg), forg ∈ (−∞,∞) (1.20)

we have , for t > 0 and large g

P (XG > g + t, YG > g + t) = e−t/ηP (XG > g, YG > g). (1.21)

This is easy to see as Eqn. 1.19, for large values of f can be written as

P (XF > sf, YF > sf) ≈ s−1/ηP (XF > f, YF > f). (1.22)

Thus, the simple case discussed above suggests that the joint tail of a distribution is
described using the coefficient of tail dependence η, and this is the what quantifies the
extent of extremal dependence for the distribution. In general, for Gumbel margins and for
large values (x1, x2, ..., xn) ( from above and [8]), we have

P (X1 > x1 + t,X2 > x2 + t, ..., Xn > xn + t) ≈ exp(− t

η
)P (X1 > x1, X2 > x2, ..., Xn > xn)

(1.23)
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for fixed t > 0.
However, Eqn.1.23 can only be used if a suitable set (X1 > x1, X2 > x2, ..., Xn > xn) exits

for an extreme set of the form of (X1 > x1 + t,X2 > x2 + t, ..., Xn > xn + t) and we have a
method to estimate η. When η = 1 we say that the distribution is asymptotically dependent
and independent otherwise. Using Ledford and Tawn,(1996) [9], η can be estimated directly
from the sample. So, now the problem is of the threshold selection for sets (X1 > x1, X2 >

x2, ..., Xn > xn) and most of the methods for this are subjective. One also needs to be careful
in case of asymptotic independence as wrong assumptions can be problematic.

Conditional extremes model

Directly fitting the parametric multivariate EV distributions has its own limitations. One
limitation is that the exact distributional form is unknown. Also, since the samples may not
be extreme in all their components and so the direct estimation by Eqn.1.23 for extremal
dependence model (as described before) may not give us proper results. Thus there needs
to be a different approach to model such extreme events. Though there are a number of
approaches suggested in the literature but the conditional approach of Heffernan and Tawn,
(2004) [4] stands out in providing a robust model and overcoming difficulties to some extent
that the other conditional model have.

1. Conditional extremes (Heffernan and Tawn, 2004)

They present a semi-parametric approach. Based on asymptotic arguments, they derive
a parametric equation for the form for one variable conditional on a large value of another.
The choice of this statistical model is motivated by a range of theoretical results and are
important to understand.
Assumption of limit representation

Let Y = (Y1, Y2, ..., Yn)be a random variable with Gumbel marginal distributions. Since,
we are concerned about the conditional distribution, consider the conditional distribution
P (Y−i ≤ y−i|Yi = yi). As yi → ∞, let us look at the limiting distribution of these condi-
tional distributions. Now, as in univariate theory, the limiting distribution here also needs to
be non-degenerate in all the margins. Hence, let a|i(yi) and b|i(yi) be vector of normalizing
functions (constants in univariate case), defined from < → <n−1, for each given i, which can
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be chosen such that ∀z|i(fixed) and any sequence of yi values as yi → ∞,

lim
yi→∞

P [Y−i ≤ a|i(yi) + b|i(yi)z|i|Yi = yi] = G|i(z|i). (1.24)

Thus, under assumption (1.24), we have, Yi − ui and Z|i to be independent in the limit
conditionally on Y − i > ui, as ui → ∞. Also, these variables Yi − ui and Z|i have limiting
marginal distributions as exponential and G|i(z|i) respectively (see [4]).

For the marginal and dependence characteristics of G|i(z|i), let us defineG|i(z|i) to be the
conditional distribution of

Zj|i =
Yj − aj|i(yi)

bj|i(yi)
(1.25)

given Yi = yi, yi → ∞, j 6= i. Also, aj|i(yi) and bj|i(yi) are the component functions of a|i(yi)

and b|i(yi). Hence, we have, Gj|i to be the marginal distribution of G|i corresponding to Yj.
Moreover, for the elements of Y−i to be mutually conditionally independent given Yi, the
following condition needs to be satisfied

G|i(z|i) =
∏
j 6=i

Gj|i(zj|i). (1.26)

Choice of normalization functions
The main task now is how do we choose these normalization functions that has to be

used. Heffernan and Tawn, 2004 [4] uses the two different ideas to choose the appropriate
a|i(yi) and b|i(yi). First they identify the normalizing functions in terms of characteristics of
the conditional distribution of Y−i|Yi and then make the observation that the normalizing
functions as well as the limit distribution are not unique. Mathematically, if a|i(yi) and
b|i(yi) give a non-degenerate limit distribution G|i(z|i), then the normalizing functions

a∗
|i(yi) = a|i(yi) + Ab|i(yi);b∗

|i(yi) = Bb|i(yi) (1.27)

gives us the non-degenerate limit distribution as G|i(Bz|i+A). Here, A and B, with B > 0

are arbitrary vector constants. Then using the idea from Leadbetter et. al(1983) [10]
that this is a unique way when two different limits with no mass at infinity can arise and
hence the class of distribution is unique up to type. Thus, the normalizing functions a|i(yi)

and b|i(yi) can be identified up to the constants A and B. The next result in [4] forms the
base in choice of the normalizing functions.

Theorem 5. Suppose that the vector random variable Y has an absolutely continuous joint
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density. If , for a given i, the vector functions a|i(yi) and b|i(yi) > 0 satisfy the limiting
property (1.24), then the components of these vector functions corresponding to the variable
Yj, for each j 6= i , satisfy, up to type, the following properties

lim
yi→∞

[Fj|i(aj|i(yi)|yi)] = pj|i (1.28)

where pj|i is a constant in the range (0, 1). Fj|i(aj|i(yi)|yi) is the conditional distribution
function and

bj|i(yi) = hj|i(aj|i(yi)|yi)−1. (1.29)

Here, hj|i is a conditional hazard function defined as

hj|i(yj|yi) =
fj|i(yj|yi)

1− Fj|i(yj|yi)
(1.30)

and fj|i(yj|yi) is the conditional density function of Yj|Yi = yi andFj|i(yj|yi) is the conditional
distribution function of the same.

For proof refer Heffernan and Tawn, 2004(Appendix) [4]. It is then well established that
the normalizing functions are all special cases of the parametric family [4]

a|i(y) = a|iy + I(a|i=0,b|i<0)(c|i − d|ilog(y));b|i(y) = yb|i (1.31)

where, a|i,b|i, c|i,d|i are vector constants and I, an indicator function. The vector of con-
stants, for all j 6= i are

0 ≤ aj|i ≤ 1; −∞ < b|i < 1; −∞ < c|i <∞; 0 ≤ dj|i ≤ 1 (1.32)

Conditional dependence model
As described above, this is a semi-parametric model motivated by the findings of the

discussed results in the sections assumptions of limit distributions and choice of normalization
functions. The model describes the what happens to variable Y−i with large Yi and we look
at the model structure and its properties.
Let us suppose that for each i = 1, 2, ..., n there exists a high threshold uYi such that we
model

P [Y−i ≤ a|i(yi) + b|i(yi)z|i|Yi = yi] = P [Z|i < z|i|Yi = yi] = G|i(z|i) ∀yi > uYi . (1.33)
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Here, G|i is the distribution function of the standardized residual Z|i. Also, that the standard-
ized residual is independent of the random variable Yi for all Yi > uYi . Now, to characterize
the extremal dependence, we need to estimate the functions a|i(yi), b|i(yi) and G|i. Using
the parametric model described in Eqn.1.31, we can do the estimation of vector constants
a|i,b|i, c|i and d|i. For the estimation of the distribution function G|i, Heffernan and Tawn,
2004 uses a non-parametric approach as the limiting condition described by 1.24 doesn’t have
restrictions on the structure of G|i. The estimation is done using the empirical distribution
of replicates of Ẑ|i which is defined as

Ẑ|i =
Y−i − â|i(yi)

b̂|i(yi)
(1.34)

for Yi = yi > uYi and where â|i, b̂|i be the estimators of a|i and b|i respectively. Thus, we
have a multivariate dependence model which is semi-parametric regression model and is of
the form

Y−i = a|i(yi) + b|i(yi)~Z|i Yi = yi > uYi . (1.35)

Even though the model seems to be complete in itself under certain assumptions but the
problem of threshold estimation (in this case uYi) still remains the core of this model. In
particular, it becomes even difficult to estimate the threshold in application. Though there
are different techniques such as using quantile regression and then looking at the model fits
but each one of these techniques have their own limitations. The next model studied in this
chapter gives us a way to not only completely characterize conditional extremes but also
addresses the problem of threshold estimation to some extent.

2. Non-stationary conditional extremes (NSCE) [11]

Since characterizing the joint structure of extremes of environmental variables is criti-
cal to understanding the ocean environments. Sometimes it becomes necessary to model
covariates effects. For ex.: Let’s say that we are trying to model wave heights (Hs) that
occur during hurricanes and storms in the deep oceans and sea. Oil and gas producing fa-
cilities built offshore are very likely to get affected by these extreme events such as storms
and hurricanes. Covariates such as directions, seasons, etc influences these extreme events,
e.g.: wave heights are larger for storms in monsoon season in south China sea than in rest
of the year. The NSCE model described by Jonathan et. al (2014) [11] and Raghupathi et
al. (2016) [12] provides a complete characterization of the full joint non-stationary extremal
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structure for any particular values of covariates. This model uses non-crossing quantile re-
gression techniques for threshold estimation and incorporates the conditional extremes model
of Heffernan and Tawn, 2004 [4].
Consider a set of random variables X1, X2, ..., Xp and the respective multidimensional co-
variate vectors θ1, θ2, ..., θp.
Assumptions
a. Marginal extreme value behavior of Xk can be explained adequately by θk alone.
b. Pairwise extremal dependence of Xj and Xk can be explained adequately by θj ∪ θk of

covariates.
Model for threshold exceedances

For each Xk, for a given fixed value tk of θk, we look for the distribution of threshold
exceedances. Let ψ∗

k(tk) be a pre-selected quantile threshold associated with non-exceedance
probability (NEP) τ ∗k where NEP is defined as

P (Xk ≤ ψ∗
k(tk)|θk = tk) = τ ∗k (1.36)

Then, it is assumed that the threshold exceedances are GP distributed [11].

P (Xk > xk|Xk > ψ∗
k(tk), θk = tk) = (1 +

ξk(tk)
ζk(tk)

(xk − ψ∗
k(tk)))

− 1
ξ∗
k
(tk) (1.37)

where xk > ψ∗
k(tk), (1 +

ξk(tk)
ζk(tk)

(xk − ψ∗
k(tk))) > 0 and ζk(tk) > 0. Now, the estimates for the

values of the parameter functions ξk and ζk at [tik]ni=1 of covariate values can be obtained by
maximum likelihood estimation. In particular, by minimizing the negative log-likelihood [11],
in this case

lGP,k = Σn
i=1logζk(t

i
k) +

1

ξk(tik)
log(1 +

ξk(tik)
ζk(tik)

(xik − ψ∗
k(t

i
k))). (1.38)

However, the basic question here is to ask about how do we choose a threshold. Jonathan
et. al, 2014 [11], for the choice of thresholds uses a quantile regression (QR) model. In this
model, for each Xk, the quantile threshold ψk corresponding to the quantile probability τk

is estimated by minimizing the roughness penalized loss criterion, i.e.:

l∗QR,k = [τΣn
i,rik≥0|r

i
k|+ (1− τk)Σ

n
i,rik<0|r

i
k|] + λψk

Rψk
(1.39)

and the residuals rik = xik − ψk(tik). Here, Rψk
and λψk

are the parameter roughness and
roughness coefficient respectively. In this model, the value of λψk

is chosen such that it
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maximizes the predictive performance of the QR model and this is achieved by using cross-
validation techniques. Similarly, Rψk

, parameter roughness can be evaluated in closed form
for efficient estimation.
Incorporating conditional extremes model

To incorporate the Heffernan and Tawn, 2004 model for conditional extremes, we need
the random variables with standard Gumbel marginal distributions. Thus, we need to trans-
form the marginals to standard Gumbel scale. In practice, this is done using the probability
integral transform (Jonathan et al., 2010, 2014) [5] [11] and can be done for any choice of tk
of θk. The dependence model for multidimensional responses X1, X2, ..., Xp on Gumbel scale
can be expressed in terms of the set of pairwise dependence models Xj|Xk for j = 1, 2, ..., p

and k = 1, 2, ..., p. Now, as per the assumption (b) and using Heffernan and Tawn, 2004
asymptotic arguments, Jonathan et. al, 2014 [11] assumes the form of Xj|Xk, for large values
of Xk to be

(Xj|Xk = xk, θj ∪ θk = tjk) = αjk(tjk)xk + x
βjk(tjk)
k Qjk(tjk) forxk > ψk(tk). (1.40)

Here, the threshold ψk(tk) is a non-stationary threshold with respect to the covariate vector
θk and Qjk is a random variable drawn from an unknown distribution whose characteristics
vary smoothly with θj ∪ θk. αjk and βjk are parameter functions where αjk ∈ [0, 1] βjk ∈
(−∞, 1]. Now, let

Zjk = (Qjk − µjk)/σjk (1.41)

be a standardized variable such that it follows a common distribution Gjk, independent of
covariates and where σjk > 0. Then, Eqn.1.40 can be written in terms of Zjk and parameter
estimation can be done. The parameters αjk, βjk, µjk and σjk are estimated for the model
described in the same way as in conditional extremes model of Heffernan and Tawn, 2004 [4].
The distribution function Gjk is then assumed to be a standard normal distribution [11]
and the corresponding negative log-likelihood for a sample of pairs (xij, x

i
k) is derived. The

functional form as described by Jonathan et. al, 2014 for the negative log-likelihood is

lCE,jk = Σi,xik>ψ
i
k
log(σik(t

i
jk)(x

i
k)
βjk(tijk)) +

(xij − (αjk(tijk)xik + µik(t
i
jk)(x

i
k)
βjk(tijk)))2

2(σik(t
i
jk)(x

i
k)
βjk(tijk))2

(1.42)

for xik > ψk(tik).
For regulating the parameter roughness one uses the same approach as in case of model
for threshold exceedances by penalizing the negative log likelihood. Also the parameter
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roughness are evaluated similarly and the roughness coefficient are again estimated using
the cross-validation method (Jonathan et al., 2014 [11]). Residuals are inspected to confirm
the model fit and show if it is reasonable or not.
Model validation

Estimation of parameter uncertainties is carried out by using the non-parametric boot-
strap procedure by drawing bootstrap samples from the original samples. Now, to validate
the NSCE model, following procedure is followed:

1. An underlying true non-stationary bivariate extreme value model whose characteristics
are known is specified.

2. Using the true model, one or more samples of data can be simulated.
3. Then, fit an NSCE model to the simulated data.
4. Comparison of the estimates of the marginal and conditional CDF’s for arbitrary

combinations of covariats and specified return periods by simulation under the true
model and the fitted NSCE model.

1.3 Computational challenges and further study

In application, simulation studies using this NSCE model takes a lot of time and are com-
putationally expensive [13]. This computation can be made faster by avoiding bootstrapping
and cross-validation steps used in the algorithm for this model. Also, the threshold estima-
tion in this model is done using the P-splines regression approach discussed in Bollaerts et.
al, (2006) and Bollaerts, (2009). Even though this QR model can be formulated in terms
of a linear programme [11], the threshold estimation using this approach becomes difficult
in application. However, for application purposes we need a more computationally efficient
model. The Bayesian non-stationary marginal extremes model described by Randell et. al,
(2015)helps us in avoiding these difficulties to some extent. It incorporates specifying a prior
information for estimating the non-exceedance probability (NEP) on which the threshold
estimation is based. Thus we consider the Bayesian model described by Randell et. al,
(2015) and try to address the problem of non-stationary threshold estimation in application.
Chapter 2 covers the important aspect of sampling in Bayesian inference. It gives a brief
description of the methods and approaches used as sampling techniques. Chapter 3 covers
the study of threshold estimation using Bayesian inference for 1-dimensional marginal case.
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Chapter 2

Markov Chain Monte Carlo (MCMC)
sampling

As discussed later in the chapter 3, we see that the most important thing in Bayesian
inference is the posterior distribution. Often, the posterior distribution cannot be obtained
in closed form and hence the posterior of interest needs to be estimated by simulations and
this is one of the main challenges of Bayesian analysis. Algorithms like Markov Chain Monte
Carlo (MCMC) provide us a way to sample from and is widely used these days in Bayesian
statistics to sample from the posterior distribution of interest. The approach of computing
statistics of the concerned posterior with arbitrary precision given a large enough sample of
simulated draws is called Monte Carlo simulation [14]. Here we discuss two most commonly
used MCMC methods namely the Metropolis-Hastings (MH) algorithm and Gibbs sampling.
These methods are based on some important results from Markov chains theory and can be
used to sample when we don’t have the full conditionals available to us for estimation or
when we have closed form conditionals respectively. The notations used in this section are
the same as described in Letham et al.(2012) [15]

2.1 Markov chains

Let θ0, θ1, ... be a sequence of random variables with θt ∈ <d. This sequence is a discrete
state Markov chain if it satisfies the Markov property [15]

P (θt|θt−1, ..., θ1) = P (θt|θt−1). (2.1)
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In other words, conditional on θ0, θ1, ..., θt−1, θt, the next state only depends on the present
state θt−1 and not on all the past ones. Also, for a transition from θt−1 to θt, let us define
the transition kernel to be

K(θt−1, θt) = P (θt|θt−1) (2.2)

and denote the unconditional probability distribution over states at a time t as πt(θ).
Now, the unconditional probability distribution π(.) on the state space is called as invari-
ant(stationary) if the following equation is satisfied.

πK = π (2.3)

Also, K is reversible with respect to π if

K(θt−1, θt)π(θt−1) = K(θt, θt−1)π(θt) (2.4)

∀θt−1, θt. Eqn.(2.4) is what is referred to as the detailed balance equation in literature.
The next result formally states a relationship between reversibility and invariant property
of Markov chains.

Theorem 6. If a distribution π of a Markov chain is reversible then it is invariant.

However, for MCMC purposes we need all the Markov chains used to have a unique
stationary distribution and limiting distribution. It is well studied in literature that not all
Markov chains have a stationary distribution. A Markov chain can also have more than
one stationary distribution and that not all the stationary distributions are also limiting
distributions. Under conditions such as ergodic Markov chain, reversibility, etc., the sequence
of state distributions will converge to a unique distribution π(θ), the stationary distribution
[16].

2.2 Metropolis-Hastings algorithm

In principle, the target of MCMC is to construct a Markov chain whose invariant (stationary)
distribution (π(θ)) is the posterior distribution P (θ|y). In this algorithm, we start the chain
say as θ0 at time t = 1 and then specify a proposal distribution J(θ, θ∗). Next, we propose
new states from this proposal distribution and calculate the acceptance probability α based
on which we accept or reject the proposed new state. The algorithms is as follows:
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Choose a starting point 𝜃0 (random or subjective) and 

set 𝑡 = 1.  

Specify a proposal distribution say 𝐽(𝜃𝑡−1,∙) and draw 𝜃∗ 

from the proposal. So, the proposed move becomes 

from 𝜃𝑡−1 to 𝜃∗ for time 𝑡.  

𝛼(𝜃𝑡−1, 𝜃∗): = 𝑚𝑖𝑛 {
𝑃(𝜃∗|𝑦)𝐽(𝜃∗, 𝜃𝑡−1)

𝑃(𝜃𝑡−1|𝑦)𝐽(𝜃𝑡−1, 𝜃∗)
 ,1} 

Then, compute the acceptance probability say 𝛼(𝜃𝑡−1, 𝜃∗) where 

Now, with probability 𝛼(𝜃𝑡−1, 𝜃∗), accept the  𝜃𝑡−1 → 𝜃∗ 

move and set 𝜃𝑡 = 𝜃∗ and increase 𝑡 → 𝑡 + 1 or reject  𝜃∗ 

and stay at 𝜃𝑡−1 . 

Lastly, until stationary distribution and the desired number 

of iterations (draws) are reached, return to step 2 of the 

algorithm. 

1. 

2. 

3. 

4. 

5. 

Figure 2.1: The Metropolis-Hastings algorithm and its flow step by step.
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2.2.1 Convergence of M-H algorithm

The computation of the acceptance probability(α) in step 3 of the M-H algorithm requires the
computation of ratios of the posterior probabilities. This step is done in MCMC without even
worrying about the problematic normalization integral and is the key to MCMC methods.
The other basic idea used in M-H algorithm is that if the chain is simulated long enough
then eventually we will end up drawing from the posterior distribution. The next result
formally states this as a theorem. For existence of the stationary distribution, the proposal
distribution is specified such that there is a positive probability of reaching any state from
any other state.

Theorem 7. Let the proposal distribution J(θ, θ∗) be such that the chain θ0, θ1, ... produced
by M-H algorithm has a unique stationary distribution, then the stationary distribution π(.)

is posterior distribution P (θ|y).

Proof: Using Theorem 5 and Eqn.(2.4), it suffices to prove that if the posterior P (θ|y)
satisfies Eqn.(2.4) then it is in fact a stationary distribution i.e.: to show that

K(θ, θ∗)P (θ|y) = K(θ∗, θ)P (θ∗|y),∀θ, θ∗. (2.5)

Here, the transition kernel K(.) is from the M-H algorithm and is

K(θ, θ∗) = (P (proposingθ∗)× P (acceptingθ∗|θ∗was proposed)

= J(θ, θ∗)× α(θ, θ∗).
(2.6)

Now, let θ → θ∗ be any transition of states and that α ≤ 1 for this transition (WLOG), i.e.:

α(θ, θ∗) ≤ 1 ⇒ J(θ∗, θ)P (θ∗|y)
J(θ, θ∗)P (θ|y)

≤ 1 (2.7)

and
α(θ∗, θ) = 1. (2.8)
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So, the LHS of Eqn.(2.5) becomes

K(θ, θ∗)P (θ|y) = J(θ, θ∗)α(θ, θ∗)P (θ|y) [SubstitutingfromEqn.2.6]

= J(θ, θ∗)
J(θ∗, θ)P (θ∗|y)
J(θ, θ∗)P (θ|y)

P (θ|y) [FromEqn.2.7]

= J(θ∗, θ)P (θ∗|y) [Onsimplification]

= J(θ∗, θ)P (θ∗|y)α(θ∗, θ) [FromEqn.2.8]

= K(θ∗, θ)P (θ∗|y)
= RHSofEqn.2.5

(2.9)

Thus, we have the detailed balance equation satisfied by the posterior and hence the posterior
is a stationary distribution.

2.3 Gibbs’ sampling

This MCMC sampling technique is a special case M-H algorithm and is much faster. Gibbs’
sampling is only used when we have full conditional distributions available. Let θ =

[θ1, θ2, ..., θd] ∈ <d and that we can sample from the conditional distribution

P (θj|θ1, ..., θj−1, θj+1, ..., θd, y) (2.10)

even if we cannot draw from the posterior P (θ|y) directly. Then each of the posterior
variables θ1, θ2, ..., θd is updated by Gibbs’ sampler but one at a time. At each step of the
algorithm, all the posterior variables are kept constant except for one of the j ′s. This one
variable is then updated by drawing from its conditional posterior distribution as in Eqn.2.10.
Similarly, the algorithm updates each of the variables subsequently in an iterative updating
process. It is then if the algorithm draws long enough then eventually it simulate draws from
the full posterior. In this algorithm the proposal distribution is the conditional posterior
distribution. The algorithm as described below in Figure 2.2 is such that we accept every
move and the probability of accepting any new proposed move is 1 [17].This is why Gibbs’
sampling is a faster algorithm as compared to ordinary Metropolis-Hastings algorithm. The
update process for each component of θt can happen in any order and it is not necessary to
follow 1, ..., d order.
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Specify the starting value  𝜃0 = [𝜃1

0, … , 𝜃𝑑
0] and 

set 𝑡 = 1. 

For 𝑗 ∈ {1, … , 𝑑}, sample 𝜃𝑗
𝑡 from 

𝑃(𝜃𝑗|𝜃1
𝑡, … , 𝜃𝑗−1

𝑡 , 𝜃𝑗+1
𝑡−1, … , 𝜃𝑑

𝑡−1, 𝑦). 

Do the increment 𝑡 → 𝑡 + 1 and return back to 

step 2 until the stationary distribution and the 

desired number of draws both are reached 

1. 

2. 

3. 

Figure 2.2: The Gibbs’ Sampling algorithm.

2.4 Convergence diagnostics

For practical application, there are few issues which are encountered and hence one needs
to look at different convergence diagnostics to assess convergence. The two important issues
are burn-in and slow mixing of chains. It is often the case that the MCMC simulation
is started at a random starting value (as is the case in chapter 3) in the parameter space.
This sometimes leads to the problem that the starting point can indeed be far from the
high density parts of the posterior. So, the values obtained from the simulation are not the
representative of the true posterior in the early stages. So, we have a part of the chain (early
stages) which is unlikely to be in the sample from the posterior. This is what is termed as
burn-in. Often these samples are thrown away and are not used. However, in application one
has to decide based on different convergence diagnostics and decide on how many samples
are to be discarded or is to be termed as burn-in. The rest of the MCMC chain is what we
call as the stationary part, i.e.: the part where the chain is assumed to have converged.
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The other issue is the slow mixing of chains and this can happen because of the step size
specified for the algorithm being too small or too large. A very small step size would mean
a high acceptance rate and this leads to the samples (successive) moving very slowly. If the
step size specified is too large then this leads to very low acceptance rate. This is because
the proposals specified are more likely to be in the regions of very low probability density
and in turn this leads to the chain moving too slowly around the space. It can also happen
that if the starting value is chosen to be very far away from the expected true value then
the chains can get stuck and not move at all with too small or too large step size values.
Thus, the idea to look for an optimal step size such that the mixing is better and fast seems
to be a valid task. To address these issues and to validate convergence of the Markov chains
in MCMC there are a number of convergence diagnostics one can look at in Bayesian pro-
cedure [18] [19] [20] [21] [22] [23]. However, there are some of them commonly used and we
have used some of them in our analysis later in chapter 3 and they are summarized as follows:

1. Autocorrelation:- Measures correlation (dependency) among the Markov chain samples.
Correlations is measured for different lags and high correlation between long lags shows a
poor mixing and poor convergence.
2. Manhattan plots:- This is more of a visual inspection diagnostics which shows if the
chain is mixing well or if it has finished burning in (ex.: Fig.3.1 and 3.2). If the chain gets
stuck in some parts of the parameter space or if the mean or variance of the chain change
drastically with number of iterations then non-convergence is indicated.
3. Effective sample size:- This also is a measure of mixing of Markov chains as large dif-
ference between the effective sample size and the simulated sample size shows poor mixing.
4. Gelman-Rubin test:- This is a one-sided test based on the ratio test statistic. This
test uses parallel chains with dispersed initial values to test whether they all converge to the
same target distribution. Failure indicates the presence of multi-mode posterior distribution
or the need to run a longer chain i.e.: the burn-in is yet to be completed.

In the next chapter, we study the threshold estimation problem using Bayesian infer-
ence. We apply the Metropolis-Hastings algorithm to sample from the posterior for the
non-exceedance probability and study the convergence of it using some of the convergence
diagnostics stated above.
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Chapter 3

Threshold Estimation Using Bayesian
Inference

Even though the NSCE model described by Raghupathi et al. (2016) [12] and Jonathan et.
al (2014) [11] using the maximum likelihood estimation approach gives us a detailed charac-
terization of non-stationary extreme events, it is computationally very expensive for higher
dimensions. Also, the specification of the extreme value threshold is generally difficult in the
model described by Raghupathi et al. (2016) and Jonathan et. al (2014) for characterizing
storm peak significant wave height. Thus it is important to have a computationally efficient
models in order to use them for real world applications.

Bayesian inference gives us an intuitive framework for environmental applications of the
extreme value analysis. It allows incorporation of prior knowledge and a complete uncer-
tainty quantification in a single step. In literature, there are many applications of Bayesian
inference for extreme events models. Coles and Tawn (1996) [24] [25] and Coles and Tawn
(2005) [26] [27] uses Bayesian analysis for extreme rainfall data and for improved flood risk
assessment respectively. Beirlant et al. (2004) [3] considers the specification of priors for
parameters of the extreme value model. Guedes-Soares (2001) [28] uses Bayesian inference to
estimate the distributions of significant wave height. Bayesian inference has also been used
in case of extremes of wild fires as discussed by Mendes et al. (2010) [29]. More recently,
Davison et al.(2012) [30] [31] describes Bayesian hierarchical models for spatial extremes.
There are other applications discussed by some other work in the literature.

In this chapter we study a piece-wise model described by Randell et al. (2015) [32] for
sample of peaks over threshold which is non-stationary with respect to the multidimensional
covariates and estimated using Bayesian inference. This model is a computationally efficient
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in application and provides a detailed characterization of non-stationary extreme environ-
ments. Next, we study the problem of threshold estimation in application of this model to
a directional analysis of storm peak significant wave height generated synthetic data. This
is achieved by studying the convergence of the MCMC algorithm used to sample from the
posterior probability distribution for the extreme value threshold non-exceedance probability
and analyzing the negative log-likelihood.

3.1 Mixture model

As described in Randell et al. (2015) [32], theoretically and historically, the wave models
derived gives us the idea that a suitably parameterized Weibull distribution provides us with
a detailed description of the body of the distribution of wave heights, crest elevations and
storms. On the other hand, asymptotic theory for extreme values suggest that EV model is
required for describing largest threshold exceedances. Thus, the mixture model is described
as a piece wise model.

Let x be the magnitude of Hs(wave heights), then for a response x, the non-exceedances
of some threshold ψ are assumed to follow a three-parameter truncated Weibull distribution.

fTW (x|τ, α, γ) = fW (x|α, γ)
FW (ψ|α, γ, τ)

for x ∈ [ζ, ψ] (3.1)

where ζ is the non-stationary peak picking threshold used for storm peak identification before
the model estimation is done. τ is the EV threshold non-exceedance probability (NEP) which
is assumed to be stationary with respect to the covariates. Also,

fW (x|α, γ) = γ

α
(
x− ζ

α
)γ−1exp(−(

x− ζ

α
)γ)) (3.2)

and
FW (ψ|α, γ, τ) = 1− exp(−(

ψ − ζ

α
)γ)) = τ (3.3)

However, for a response x, the exceedances of some threshold ψ follows a GP distribution
i.e.: x follows a GP distribution above some EV threshold ψ.

fGP (x|τ, α, γ, σ, ξ) =
1

σ
(1 +

ξ

σ
(x− ψ))−1/(ξ−1) (3.4)
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Here, the threshold ψ is defined as a function of τ i.e.:

ζ + α(−log(1− τ))−1/γ (3.5)

and is specified such that Eqn.3.3 holds.
Now, the basic work is the estimation of all the model parameters (ρ, α, γ, σ and ξ as

well as the estimation of the threshold non-exceedance probability τ . Practically, we should
expect these model parameters to vary smoothly with respect to the directional covariates (
or higher dimensional covariates). In this model, this is achieved by expressing each of the
model parameters in terms of an appropriate basis for the domain D of covariates. Then
using the idea provided by Eilers (1998) [33] and Eilers et al. (2006) [34], the rest of the
spline parameterization work is done. In particular, the whole problem of model parameter
estimation reduces to estimation of appropriate sets of spline parameters for each of these
model parameters. However, the estimation of the threshold NEP τ still remains a critical
and elementary problem in application and rest of the model description would only go
through if we estimate the threshold NEP. To estimate τ we use our prior belief and make
the following prior specification.

The extreme threshold NEP τ is assumed to follow a beta distribution B(ατ , βτ ), with fixed
parameters. Here, ατ and βτ are the two positive shape parameters that control the shape of
the Beta distribution. The choice of Beta distribution as the prior probability distribution
of τ seems suitable because of the fact that Beta distribution is defined on the interval [0, 1].
The choice of Beta distribution parameters is done such that we have sufficient sample to
estimate the other model GP parameters in a better way and ensure a reasonable EV tail
fit. But, our focus here is to study if there is a range of parameter values for Beta or there is
a particular parameter value for which this model would suitably work in application. The
rest of our study is focused on addressing this issue.

3.2 Estimation of Non-exceedance probability

As in most of the cases, we don’t have the posterior distribution of model parameters to be
in a closed form. But, we do have different Markov Chain Monte Carlo (MCMC) algorithms
available in literature to sample from full conditionals. Thus, the posterior inference is made
with the help of MCMC sampling.

As described in section 3.1, we have the prior probability distribution for τ in the form of
Beta distribution. At each iteration of the MCMC chain, the sampling is done from the full
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conditional distribution of extreme threshold NEP τ . So, whenever the the full conditionals
are available in closed form, Gibbs sampling (Chapter 2) is used and Metropolis-Hastings
(MH)(Chapter 2) otherwise. In this case, the full conditional to be sampled from is

f(τ |y,Ω \ τ) ∝ f(y|τ,Ω \ τ)× (τ) (3.6)

but is not available in closed form. Hence, Metropolis-Hastings is used to sample from full
conditionals in application.

3.2.1 Application to synthetic 1D-case

The model described in section 3.1 was applied to a synthetic data sample (Fig. 3.1) of
around 2000 storm peaks (wave heights Hs) for directional covariate. The synthetic data

 

𝐻𝑠  

Direction 

Figure 3.1: Storm peak significant wave height Hs (in meters) on direction. The direction is
expressed in degrees (0, 360) clockwise with respect to north.

sample is chosen for application first because of the fact that the true NEP(τ) is known to
be 0.6 and then it would be easier to validate the model. In this application, the posterior
distribution of τ was estimated using MCMC, incorporating 20,000 burn-in iterations and
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200,000 subsequent iterations. Then, we studied the convergence for the MCMC algorithm
used here and later concluding the choice of beta priors for which the model works well.

Convergence study of the MCMC chains

We looked at mixing of different MCMC chains for τ by plotting the Manhattan patterns
for individual chains. The algorithm starts these chains randomly for each run by specifying a
random value sampled from beta distribution. Visual inspection of these plots (Figure 3.2)
and (Figure 3.3) for a relatively weaker beta prior B(5, 5) and a stronger prior B(55, 45)

suggest good mixing for step sizes such as 0.5, 0.6 and 0.7, etc. A chain that shows good
mixing traverses its posterior space quickly. This means that it can go from one remote region
to another of the posterior relatively quicker. In case of B(5, 5), for step sizes 0.1, 0.2 and 0.4

the chain mixing is good but for some chains are very slow or not at all. Similarly, in case
of B(55, 45), the mixing is not good for the step size 0.1 whereas the mixing improves with
increasing step sizes of 0.3, 0.5 and 0.7. Figure 3.2 also suggests that the mixing improves
for step sizes such as 0.5 and 0.6 and these seem to be the optimal step size for this MCMC
algorithm for sampling. Moreover, the choice of number of iterations (200,000) is also justified
as almost all the chains seem to have a constant mean and variance after 150,000 number of
iterations, suggesting convergence of the chain.
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Figure 3.2: [(i)-(vi)] Manhattan pattern plots of τ values for B(5, 5) prior showing variation
in mixing of the MCMC chains for increasing values of step sizes (PrpStp at the top of
the figures). Itr denotes the number of iterations of each MCMC run and Tau denotes the
posterior values of τ . The different colors denotes a different bootstrap for a given step size.
Plots suggest that step size 0.5 seems to perform the best in this case.
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Figure 3.3: [(i)-(iv)] Manhattan pattern plots of τ values for B(55, 45) prior showing variation
in mixing of the MCMC chains for increasing values of step sizes (PrpStp at the top of the
figures). Itr denotes the number of iterations of each MCMC run and Tau denotes the
posterior values of τ . The different colors denotes a different bootstrap for a given step size.
Step size 0.5 also performs well in this case as suggested by the plot.
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On the other hand, some chains seem to be stuck with very low values of τ and this could
be because of the fact that the chains are started randomly at any point. If the starting
point is randomly chosen to be very small or near zero then the condition of chains getting
stuck and not moving at all might arise. However, chains starting from low values but not
very near to zero eventually stabilizes and tries to reach the true value of 0.6 given sufficient
number of iterations for step size values of 0.5, 0.6 and 0.7. We don’t pick the step size
to be 0.6 or 0.7 in this case because of the fact that we don’t want the chains to traverse
its posterior space very quickly or in some cases go out of the posterior space. In order to
correctly assess the convergence, we also look at the auto-correlation between the draws of
the Markov chain and is discussed in the next section. Now, with the choice of number of
iterations and step size made we need to estimate the non-exceedance probability (NEP) τ
such that the extreme threshold estimation is done. In particular, the choice of NEP then
reduces to the choice of prior incorporated for τ . In this case, the choice of parameter values
ατ and βτ for the beta prior based on which we get the posterior inference.

Choice of beta priors

The values for the beta parameters ατ and βτ for specifying prior beta probability distri-
bution must be chosen such that the posterior distribution gives us the estimate of τ very
close to the true known value. The other important question to answer is if there is one
such value of beta parameters or a range of values of beta parameters for which the Bayesian
inference would work. Here, since the posterior distribution of τ is estimated, we try to see
if for a specified set of beta priors, the mode of the τ estimates approach the true value of
0.6 (Synthetic case) or not. In other words, whether the algorithm is trying to learn from
the model or not. So, we looked at different diagnostics and statistics such as the tau trace
plots, auto-correlation plots, sample negative log-likelihood estimated using Bayesian for a
range of beta parameter values. The posterior distribution of sample negative log-likelihood
is estimated for a range of pre-specified values of τ .

First, we start our analysis by looking the diagnostics and statistics described above for
different, relatively strong beta priors. In this case, we choose B(40, 60), B(45, 55), B(50, 50),
B(55, 45), B(60, 40),B(65,35), B(70,30), B(75, 25), B(80, 20), B(85, 15) andB(90, 10) (Figure
3.4). Naturally, then comes in the second experiment where we have the specification of beta
priors as a range of weak priors. In this case, we choose B(4, 6), B(4.5, 5.5), B(5, 5),
B(5.5, 4.5), B(6, 4),B(6.5,3.5), B(7,3), B(7.5,2.5), B(8,2), B(8.5,1.5) andB(9, 1) (Figure
3.5). We then draw our conclusions based on these two experiments.
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Figure 3.4: (a) The figure consists of Tau trace plot (top-left), Negative log-likelihood
plot (top-right), the prior and posterior distributions plot (bottom-right) and the Auto-
correlation plot (bottom-left) for B(40, 60) prior. NLL denotes the negative log-likelihood
and ACF denotes the auto-correlation function. Similar plots for other strong priors in
(b),(c),(d),(e),(f),(g),(h),(i) and (j)
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(b) For B(45, 55) prior probability.
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(c) For B(50, 50) prior probability.
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(d) For B(55, 45) prior probability.
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(e) For B(60, 40) prior probability.
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(f) For B(65, 35) prior probability.
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(g) For B(70, 30) prior probability.
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(h) For B(75, 25) prior probability.
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(i) For B(80, 20) prior probability.
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(j) For B(85, 15) prior probability.
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3.2.2 Discussion and Conclusions

As in Figure 3.4 (a) and Figure 3.4 (b), we see that the for ατ = 40 and 45 and βτ = 60

and 55, the τ -trace plots perform badly and the posterior has not moved at all. However, in
case of B(50, 50), B(55, 45), B(60, 40), B(65, 35) and B(70, 30), the τ -trace plot (where ever
started) ( Figure 3.4 (c), (d), (e), (f) and (g))approaches the true value of the synthetic
data NEP, i.e.: 0.6 and the mode of the posterior distribution of τ moves closer and closer
to the true value (green line in prior and posterior plot). This shows that for choice of
these priors for τ the model works well and the algorithm does fine. On the contrary, if we
specify even stronger priors such as B(75, 25), B(80, 20), B(85, 25) and B(90, 10) (Figure
3.4 (h), (i) and (j)) the τ -trace plot moves away form the true value of 0.6. This shows
that specifying a too strong of a prior for τ lets the algorithm no degrees of freedom and
that it does not learn from the model. In fact, the strong priors lead to bias and seems to
dominate the algorithm. Thus, the idea to specify relatively weaker priors.

In case of weaker priors, Figure 3.5 shows that the mode of the posterior distribution
of τ is close to the true value of 0.6 except for B(4, 6) (Figure 3.5 (a)). If we look at the
τ -trace plots in Figure 3.5, all of them reach the true value. Some of them take longer
than others but eventually the trace plots seem to be stationary around close to the true
value. Figure 3.5 (h),(i),(j) gives us the best result in this case suggesting that a range of
Beta priors B(7.5, 2.5), B(8, 2) and B(8.5, 1.5) works well. Also, plotting the sample negative
log-likelihood values ((Figure 3.6 (a)) and (Figure 3.6 (b))), estimated using Bayesian
inference assuming known pre-specified extreme value threshold NEP τ gives us another way
of looking at the same. The pre-specified NEP is estimated using the mean of the beta prior.
We have, for the synthetic data sample used here, there is evidence that any τ value ranging
from 0.5 to 0.75 should be preferred and that they will provide somewhat better fit than
others. Though it is not clear from Figure 3.6 that τ values in the range above 0.75 should
not be used directly. But as per the diagnostics discussed above in the section of choice of
beta priors, it is evident that too strong a prior will not work. However, it must be kept in
mind that in specifying the beta prior distribution, one must have sufficient sample to be
able to estimate the GP tail parameters reasonably and keep τ sufficiently large such that
fitting an extreme value model to the tail of the given data is somewhat reasonable. Now
that we have an appropriate idea about the extreme threshold non-exceedance probability
(τ) in this case, the threshold estimation becomes easy here as the threshold is a function
of τ ( Eqn. 3.5). The NEP range of 0.5 to 0.75 seems to be the optimal range here for the
threshold estimation.
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Figure 3.4: (a) The figure consists of (in clockwise sense) Tau trace plot, Negative log-
likelihood plot, the prior and posterior distributions plot and the Auto-correlation plot for
B(4, 6) prior. NLL denotes the negative log-likelihood and ACF denotes the auto-correlation
function. Similar plots for other strong priors in (b),(c),(d),(e),(f),(g),(h),(i) and (j)
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(b) For B(4.5, 5.5) prior probability.
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(c) For B(5, 5) prior probability.
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(d) For B(5.5, 4.5) prior probability.

41



0 0.5 1 1.5 2

Iterations #105

0

0.2

0.4

0.6

0.8

1

Ta
u

0 0.5 1 1.5 2

lag #105

-0.4

-0.2

0

0.2

0.4

0.6

0.8

AC
F

ACF

0 0.2 0.4 0.6 0.8 1

=

0

2

4

6

8

f(=
)

Posterior
Prior
True

0 0.5 1 1.5 2

iterations #105

-500

-450

-400

-350

-300
NLL

(e) For B(6, 4) prior probability.
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(f) For B(6.5, 3.5) prior probability.
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(g) For B(7, 3) prior probability.
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(h) For B(7.5, 2.5) prior probability.
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(i) For B(8, 2) prior probability.
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(j) For B(8.5, 1.5) prior probability.
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Figure 3.5: Box-plot of posterior distribution of sample negative log-likelihood, esti-
mated using Bayesian inference assuming known pre-specified extreme threshold NEP
τ = 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 for weaker priors (a) relatively strong
beta priors (b). NLL represents the sample negative log-likelihood.
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3.3 Way Forward

Currently, a number of improvements and extensions of this approach are in consideration.
Since the Bayesian approach to threshold estimation doesn’t incorporate techniques like
cross-validation and a lot of bootstrapping, this Bayesian model for non-stationary marginal
extremes is computationally less demanding than the frequentist maximum likelihood infer-
ence model. Also, to use P-splines regression in case of NSCE model for threshold estimation
needs us to estimate different spline roughness penalties which is computationally more de-
manding. So, we plan to extend this idea of threshold estimation using Bayesian inference
to model higher dimensional covariates. We currently are incorporating seasons as a new
covariate and is trying to estimate extreme threshold when we have two different covariates.
Later, this approach can be extended to n-dimensions in application depending upon the
complexity and computational cost.
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