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Abstract

The field of ultracold Rydberg atoms has made enormous progress in recent years
and emerges at the forefront to probe quantum properties of matter. Individually
controlled Rydberg atoms prove to be a versatile platform to test phenomena signif-
icant to condensed matter physics, quantum optics, atomic and molecular physics.
Systems of many-body interacting Rydberg atoms have an enormous potential to
solve long-standing problems in physics. On the other hand, the interest in two-
body Rydberg systems is motivated by applications of local quantum control and
deterministic local state preparation in a larger array. Our work pertains to ma-
nipulating the state dynamics of the two-atom system which is achieved by tuning
the atom-light couplings and detunings, both in weakly and strongly interacting
systems.

First, we investigate the effect of an offset in Rabi coupling between two Rydberg
atoms both in coherent and dissipative systems. The interplay of Rabi frequency off-
set and tunable interactions reveals fascinating features. In the strongly interacting
regime, we find a novel phenomenon of Rydberg-biased freezing where amplification
of the Rabi frequency of one atom suppresses the dynamics in the second atom. In
the weak interaction regime, we discuss the double excitation dynamics as a func-
tion of interaction for very small offsets in the Rabi frequencies. We further propose
a dynamic control over quantum correlations upon dynamic variation of the Rabi
frequency of the second atom.

In the second part of the thesis, we use time-dependent atom-laser detuning to
manipulate collective quantum states. We first consider a linear variation of the
detuning. We observe that for different values of Rydberg-Rydberg interaction, the
system can emulate different three-level Landau-Zener models such as bow-tie and
triangular Landau-Zener models. Our central result is that Landau-Zener excitation
dynamics exhibit nontrivial dependence on the initial state, the quench rate, and
the interaction strengths. We further use analytical techniques such as Adiabatic
Impulse approximation in the strongly interacting regime to capture the non-trivial
dynamics.

In the last section, we consider the application of periodic atom-laser detuning
on the pair of Rydberg atoms. We review the single two-level periodically driven

xxi



xxii ABSTRACT

atom and highlight the similarity of the final state population with the intensity
pattern obtained in an antenna array. We further use a single atom to characterize
the phenomenon of population trapping and dynamical stabilization using Floquet
quasienergies and the Inverse participation ratio. In the two atom setup, we test
the validity of the Adiabatic Impulse approximation under periodic driving.We fur-
ther explain the interesting phenomenon of a state-dependent population trapping
that emerges due to Rydberg-Rydberg interactions. We specify the regimes where
populations in experimentally significant states such as product and Bell entangled
states can be frozen for a significantly longer duration.

This thesis is a study of the manipulation of coherent dynamics of a setup of
two two-level Rydberg atoms. We achieve the above goal by tuning the atom-light
couplings and detunings, both in weakly and strongly interacting systems. Our
study shows that the minimal setup can be used to create non-trivial dynamics and
exert local control, or as an atom-interferometer. Our investigations also serve as a
building block that can be extended to multi atom setups.
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Chapter 1

Introduction

The field of ultracold atomic physics has made enormous progress since the remark-
able observation of Bose-Einstein condensate (BEC) in 1995 [1–3], and remains at
the forefront of probing quantum properties of matter. Over the last few decades,
the study of ultracold atomic systems has encompassed a wide variety of phenomena
significant to atomic, molecular, optical, condensed matter, and nuclear physics.

In the early experiments, a weakly-interacting Bose gas of alkalis (Rubidium [1],
Sodium in [2] and Li in [3]) were confined in magnetic traps and cooled down to
nanoKelvin temperatures. A feature of the magnetic trap is that the spin degrees of
freedom of the atoms remain frozen. Nevertheless, upon using an optical trap the
spin degrees of freedom were made available to probe [4] which led to the observation
of spin-textures [5] and spin domains in the spinor condensates [6]. Soon after the
observation of BEC, the possibility of realizing a Fermionic condensate was set
in motion which held the potential to closely investigate an idea central to high-
temperature superconductivity, that of BCS-BEC crossover. Facilitated by Feshbach
resonance the strength of interaction between ultracold atoms could be tuned [7, 8],
and remarkably a low-density degenerate Fermi gas was actualized [9]. The BEC-
BCS crossover in a degenerate Fermi gas was then observed from the BEC side in
[10, 11] and from the BCS side in [12, 13].

More recently, the emphasis has shifted towards strongly interacting and cor-
related systems of bosons. Significant efforts are focused on inducing strong inter-
actions within BEC which have led to the realization of dipolar condensate and
quantum ferrofluids of atoms with permanent magnetic dipole moment namely, Cr
[14, 15], Dy [16] and Er [17]. More recently, the dipolar BEC were shown to exhibit
quantum droplets whose theoretical description goes beyond the mean-field theory
[18]. The discovery has further led physicists on a quest of finding exotic supersolids
which possess superfluidity in a crystalline order [19, 20]. Another interesting plat-
form to study the interacting quantum matter is polar molecules. However, their
energy scheme is non-trivial and it poses a further challenge towards a complete
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control [21]. Another approach to induce long-range interactions within ultracold
gas is to make use of the strong van der Waals interactions between high lying,
Rydberg, states. The tunable and controllable on and off nature of Rydberg inter-
actions make Rydberg atoms very appealing to quantum simulation and quantum
information processing [22, 23]. The strong interaction properties are used to create
logic gates [24–27], study quantum many-body physics [28], correlations in Rydberg-
dressed ground states [29, 30], and makes them useful to non-linear quantum optics
[31, 32].

In this regard, optical lattice [33–35] and, the more versatile and programmable,
optical tweezer array [36–39] emerged as a toolbox that can be used to generate
strong tunable periodic potentials for ultracold atomic gases mimicking a defect-
free crystal lattice of a solid in 1D and 2D. The shape, depth, and dimensionality of
lattice are fully controllable along with the inter-particle interactions making them a
unique platform for the realization of unconventional phases of matter. In particular,
the optical tweezers, created using micron-sized focused beams, offer great flexibility
in manipulating atoms individually. Ultracold gases in optical lattices serve as ideal
systems to study a tunable version of Hubbard models [40] (with Bosons [41, 42],
repulsive fermions [43], Bose-Fermi mixtures [44]), extended Hubbard models [45],
or quantum magnetism [46] in frustrated systems of triangular [47], kagome lattices
[48] which may lead to exotic phases like quantum spin liquids [49]. Rydberg atoms
become a very promising platform to study interaction-based physics and quantum
spin models [28] when equipped with deterministic preparation of arrays by optical
tweezers, single-atom manipulation [50, 51] and detection techniques [52]. Ultracold
Rydberg atoms in optical tweezers are also used to study frustrated magnets where
they give an added advantage of longer coherence times [53, 54]. Furthermore,
exotic many-body localized phases of matter have been probed with ultracold gases
in optical lattice [55, 56], and tweezer arrays [57]. Notably, the gauge theories in
high-energy physics can also be configured by the low-energy ultracold atoms in
optical lattices [58], and by interacting ultracold Rydberg atoms in tweezer arrays
[59]. Moreover, ultracold Strontium gases in optical lattice have been used to create
the most accurate atomic clock in the world to date [60, 61] where a potential to
further enhance the precision by using tweezers exists [62]. A single site-resolved
detection of Bosons [63, 64] and Fermions [65, 66] was a crucial step in forwarding
the quantum simulation based on optical lattice and tweezer systems [67]. In recent
years, an unprecedented amount of progress has been made with ultracold Rydberg
atom arrays created using controllable optical tweezers. Most notably, quantum
simulators ranging to 256 atoms have been recently demonstrated [68–70]. A 51 atom
quantum simulator [71] brought into light the first signatures of quantum many-
body scars [72]. Such poignant experimental and theoretical discussions indicate an
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exciting age for ultracold Rydberg atom physics. Rydberg excitation dynamics is
also used to study disorder-induced many-body localization [73].

Studying physics in small systems becomes relevant at this time where physicists
can probe at the level of individual atoms. In particular, two atoms in small traps
are of fundamental interest for understanding the role of interactions in an assem-
bly of cold atoms, and for the creation of quantum gates with single-atom traps
[74]. Among open systems, the two atom dissipative systems provide a clean system
where the effects from the environment can be understood clearly whereas acquiring
such an understanding in poly-atomic systems is limited by the complexity of the
underlying Hamiltonian [75]. In the past, the two-atom systems have been useful
for validation of fundamental properties such as the measurement and control of
the Rydberg-Rydberg interactions both in van der Waals regime [76] and dipole-
dipole regime [77–79]; and controlled entanglement of neutral atoms through Ryd-
berg blockade both in Rydberg states [26, 27, 80, 81] and Rydberg-dressed ground
states [82]. In the current scenario, the two-atom system is routinely used to create
more resilient and high-fidelity entangled quantum gates [24, 26, 27, 80, 81, 83], and
as a testbed for dynamics control such as in [84] where the dynamics of collective
states is manipulated through a single atom addressing, or in [79] where freezing
of excitation dynamics is demonstrated through controlling transition frequencies.
Beyond that, the two-atom setup and can also be used for quantum optics applica-
tions such as building quantum routers [85]. Thus, studies in few-body systems can
broaden our fundamental understanding of isolated quantum systems, serve as an
ideal platform for testing new unconventional tools to bring more control and de-
sirable dynamics to the forefront, and can also shed more light on non-equilibrium
physics. Moreover, experiments on two ultracold atoms in traps are now readily
accessible and have the flexibility to tune external knobs eg. laser parameters, dis-
tance, depth of potential, etc. as well as internal knobs such as tunable interactions
which can verify the effectiveness of newly engineered Hamiltonians.

We draw a current focus on testing new techniques of quantum control on a dis-
tinctly addressable system of two-atoms. Our techniques of Hamiltonian engineering
in a two-atom setup not only uncover newer methods to control state through Rabi-
offset [86], quench [87], and periodic drive [88]; but also brings fundamental insights
into the physics of two-body systems which are the building blocks of many-body
systems.

Other qubit architectures— Current efforts to realize a quantum simulator and
computer go beyond the ultracold atoms [89]. The ultracold atom-based quantum
simulators have the advantage of scalability and identicalness of qubits and are
backed by recent studies of many-body physics in a large number of atoms. Other
quantum systems provide unique advantages and pose distinctive limitations. For
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eg., trapped ions demonstrate coherence and long lifetimes along with qubit identi-
calness but lack scalability. Nevertheless, a quantum simulator with 100s coherently
controlled trapped ions have come into existence [90]. Recently, quantum squeezed
states of light generated on a silicon chip emerged as a candidate for implement-
ing quantum algorithms that offer a quantum advantage [91]. Interacting photonic
qubits in nonlinear cavity arrays, especially those generated by Rydberg gases [92]
also create simulation possibilities [93, 94]. Among solid-state devices, one of the
most popular platforms is superconducting qubits where the fabricated qubit is fully
controllable by external voltages and magnetic fields [95]. In semiconductor-based
quantum dots, a single electronic spin serves as a qubit [96]. Despite the tremen-
dous progress in solid-state devices, [97], their central challenges lie in the variability
of different qubits and their scalability. Other platforms such as nitrogen-vacancy
centres in diamonds have the unique advantage of inter-connectivity and hold the
potential to build long-distance quantum networks but have a long way to go [98].
NMR-based qubits have also demonstrated universal control, and remain an indis-
pensable resource for quantum computation among a few qubits [99].

1.1 Ultracold Rydberg atoms

In this section, we focus on ultracold Rydberg atoms: their origin, important prop-
erties, relevance, and typical techniques used to cool, generate and detect them.
Rydberg states are named after the Swedish physicist Johannes Rydberg who in
1890 predicted the presence of higher-lying frequencies in Hydrogen atom spectra.
Subsequently, any atom having one or even more electrons in a highly excited (Ry-
dberg) electronic state is called the Rydberg atom. We, particularly, focus on alkali
Rydberg atoms where only the outermost valence electron is promoted to a state
with a large principal quantum number (n). As a result, the orbital of the outer
electron has a low overlap with the ionic core and the resultant energy structure
becomes similar to that of the Hydrogen atom. Thus, the Rydberg states are hy-
drogenic and have properties that scale with n. Larger the n, more exaggerated are
the properties. Rydberg atoms tend to have incredibly large sizes (∝ n2 ∼ µm) and
possess large dipole moments (∝ n2 ∼ kDebye) which leads to them having a re-
markably long lifetime (∝ n3 ∼ 100µs) compared to their non-excited/lowly-excited
counterparts. Furthermore, due to the loosely bound outer electron, Rydberg states
inherit extreme sensitivity to external electric fields with polarizability scaling as n7

[100]. Resultantly, Rydberg atoms are sensitive even to the electric field generated
by their nearby counterparts which essentially means that two Rydberg atoms are
strongly interacting in nature. It was, however, with the invention of laser cooling
techniques in the 1970s that it became possible to tap into the regime of energy
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scale inversion where the interaction could dominate the kinetic energy. It is indeed
the strong interactions along with long lifetimes which make Rydberg atoms an ex-
citing platform to investigate strongly correlated phenomena central to many-body
physics. The nature of Rydberg atoms’ interaction is dipole type at short distances
and van der Waals type at longer distances [23]. A more detailed derivation of the
central properties is done in Sec. 1.1.1.

We now briefly mention the experimental tools typically used in an ultracold
Rydberg atom setup. First, the ground state atoms are cooled down. A typical
setup for achieving ultracold temperature enlists a magneto-optical trap or an opti-
cal trap. Using Doppler cooling techniques, the temperature is first brought down
to microKelvins and later to nanoKelvins through evaporative cooling. The atoms
are then excited to Rydberg states. For most alkali atoms, the energies are well
described by the Quantum defect theory. The simplicity of their energy structure
makes the excited states accessible with the application of limited laser frequen-
cies. Furthermore, the commercial availability of high-power diode lasers allows for
efficient excitation to Rydberg states [101]. Due to this reason, a majority of lab-
oratories around the world study Rydberg states in heavy alkali atoms: Rubidium
and Cesium at ultracold temperatures. This is especially true of the experiments
involving individual ultracold Rydberg atoms [102]. The excitation is made to a
principal quantum number ranging as n ∼ 20 − 100. The systems of ultracold Ry-
dberg atoms are often referred to as "frozen Rydberg gases" [103, 104]. The atoms
remain stationary on the time scale of experiments (∼ µs) and typically exhibit
large atomic densities which manifest strong interactions. Lastly, the detection of
Rydberg atoms in gas is usually done by field ionization techniques which are ac-
curate up to 90% [102]. On the other hand, the atoms trapped in optical tweezers
can also be detected by negative fluorescence spectroscopy [105]. The central idea
of the latter technique is that when excited, the atoms leave the trap whereas the
ground state atoms remain trapped. Thus a zero fluorescence signal signifies loss of
the atom from the trap or, equivalently, its excitation to a Rydberg state.

1.1.1 Properties of Rydberg atoms

Up until this point, we have only mentioned the n-scaling of Rydberg atoms’ prop-
erties. In this subsection, we sketch a theoretical framework to describe it quantita-
tively. The discussion in this subsection is intended to provide a deeper knowledge
of quantum numbers, wavefunctions, dipole moments, lifetimes, etc., and helps to
understand the exact behaviour of systems of alkali Rydberg atoms.
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Energy levels—
In the semiclassical picture of alkali atoms mentioned above, the valence electron

gets excited to a Rydberg state and thus samples the effective potential of an ionic
core making it hydrogenic. The energies Enlj can be calculated using Quantum
defect theory:

Enlj = −Ry

n2
∗
, (1.1)

where n∗ = (n−δl) is the effective principal quantum number, and δl is the quantum
defect which is experimentally determined. The mass-corrected Rydberg constant
is, Ry = R∞M/(me + M), with Ry∞ = e4me

16π2ε20~2 as the Rydberg constant, and me,
M as the mass of electron and atomic mass, respectively.

Hamiltonian—
Now, we aim to solve the the 3-dimensional Schrödinger equation for the al-

kali atoms Hψnlj(r, θ, φ) = Enljψnlj(r, θ, φ). However, due to multiple charge-body
interactions, the potential experienced by the outermost electron becomes very com-
plicated. Marinescu et. al [106] proposed a simpler parametric description of the
potential as,

V (r) = Znl
r
− αc

2r4 (1− e−(r/rc)6), (1.2)

which at long range is hydrogenic (∝ 1/r), and at short range accounts for the finite
size of the core with the help of static polarizability αc and a cut-off radius rc. The
effective radial charge is given by Znl(r) = 1+(Z−1)e−a1r−r(a3 +a4r)e−a2r, where
Z is the nuclear charge of the neutral atom. Using it we describe the Hamiltonian
for the valence electron of the alkali atom as,

H = − ~2

2µ∇
2
r + L2

2µr2 + V (r) + VSO(r), (1.3)

where µ = Mme/(M + me) is the reduced mass, and r is the distance of valence
electron from the atom core. The four terms in the Hamiltonian indicate kinetic,
centrifugal, coulombic interaction, and spin-orbit coupling, respectively. The spin-
orbit interaction is VSO(r) = αL.S/(2r3), where α is the fine structure constant. Due
to the spin-orbit coupling, the eigenstates are expressed in the fine-structure basis
|nljmj〉 instead of uncoupled basis |nlml〉. The hyperfine structure is negligible for
the highly excited states and thus can be neglected.
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Figure 1.1: Radial probability density r2|R(r)|2 and (red) the expectation value 〈r〉 =
〈φn,l,m|r|φn,l,m〉 of (a) 5S1/2 (ground state) with 〈r〉 = 5.3a0 ∼ 3 Å and (b) 100S1/2 (a
Rydberg state) having 〈r〉 = 14075a0 ∼ 0.7 µm for 85Rb atom. Figures obtained using
ARC library [107].

Rydberg Atom wavefunction—

Owing to a spherically symmetric potential, the eigenfunctions in spherical coor-
dinates for the Rubidum atom can be split into radial and spherical components:
ψnlj(r, θ, φ) = Yl,ml(θ, φ)Rnl(r) in the uncoupled basis. The radial wavefunctions can
be obtained using the Schrödinger’s equation,[
− 1

2µ

(
d2

dr2 + 2
r

d
dr

)
+ l(l + 1)

2µr2 + V (r) + α

2r3F (j, l)
]
Rnlj(r) = EnlRnlj(r). (1.4)

with F (j, l) = j(j+1)− l(l+1)−3/4. The equation can be solved numerically using
Numerov’s method. It is found that 〈rα〉 ∼ n2α for α > 0 and for inverse powers
〈rα〉 ∼ n−3 [100]. The n-dependence of 〈r〉 can be seen in Fig. 1.1, where for Rb
ground state is 〈r〉 ∼ 1Å and on excitation to n = 100, the size approaches ∼ 1 µm.

Dipole matrix elements—

As the electric field only couples to the orbital angular momentum (l) of the elec-
tron, it is, therefore, necessary to transform from the fine-structure basis into the
uncoupled basis to evaluate the dipole matrix elements. The strength of coupling
between the states at fine-structure splitting, |nljmj〉 and |n′l′j′m′j〉 is given by the
dipole matrix element 〈nljmj|er|n′l′j′m′j〉. The matrix elements are evalauted using
the Wigner-Eckart theorem [108] as

〈nljmj|rq|n′l′j′m′j〉 = (−1)j−mj
 j 1 j′

−mj q m′j

 〈j||r||j′〉, (1.5)
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where q = −1, 0, 1 corresponds to σ+, π and σ− transitions. The j-reduced matrix
element further equates through a Wigner-6j symbol to the uncoupled basis

〈j||r||j′〉 = (−1)l+s+j′+1δs,s′
√

(2j + 1)(2j′ + 1)

j 1 j′

l′ s l

 〈l||r||l′〉. (1.6)

The l-reduced matrix element in the above equation are related to the radial matrix
element as

〈l||r||l′〉 = (−1)l
√

(2l + 1)(2l′ + 1)
 l 1 l

0 0 0

 〈nl|r|n′l′〉, (1.7)

where the parenthesis denote Wigner-3j symbols. The radial matrix element repre-
sents the overlap integral between the radial wavefunctions and the dipole moment

〈nl|r|n′l′〉 =
∫ ro

ri
Rn,l(r)rRn′,l′(r)r2dr. (1.8)

This integral can be evaluated by numerical integration over the wavefunctions cal-
culated above. The dipole matrix elements between neighbouring levels n ≈ n′ scale
as the orbital radius n2.

Rydberg state Lifetimes—

With the knowledge of dipole matrix elements, the radiative lifetimes of alkali atoms
can be evaluated. First, we determine the Einstein A-coefficient that defines the
spontaneous decay from |nl〉 to |n′l′〉 [100]

Anl→n′l′ = 4ω3
nn′

3c3
lmax

2l + 1 |〈nl|r|n
′l′〉|2 (1.9)

where ωnn′ is the frequency of transition, and lmax = max{l, l′}. The effective
lifetime is then given by summation over the radiative decay to lower states. At
finite temperatures, the black-body radiation (BBR) which accounts for stimulated
emission and absorption also becomes important. So, the lifetime of a Rybderg state
is given by [107]

τnl =
 ∑
nl>n′l′

Anl→n′l′ +
∑
n′l′

Anl→n′l′

e~ωnn′/kBT − 1

−1

, (1.10)

where n′l′ in the latter (BBR) term also includes states which are higher in energy.
For n� 1 and low orbital angular momentum states (s and p), the lifetime τ ∝ n3.
To give an example, the lifetime of 30S state for 85Rb is 10 µs. On the other hand,
for circular states l = n− 1, the lifetime scales as τ ∝ n5.
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1.2 Rydberg-Rydberg Interactions

The natural consequence of the large dipole moment featured by the Rydberg atoms
is the large interaction between the two of them. In fact, one of the main advantages
that Rydberg atoms offer is a tunable, anisotropic, controllable interaction. We see
this in more detail in this section. When the two atoms are separated by distance
R, the dipole-dipole interaction is given by [109],

V̂ (r) = 1
4πε0r3

(
d̂1.d̂2 − 3(d̂1.n)(d̂2.n)

)
, (1.11)

where d̂j is the electric dipole moment and n = r/R is the unit vector of distance.
A pair of atoms in |e〉 ⊗ |e〉 state couple via V̂ (r) to |e′〉 ⊗ |e′′〉 state. For simplicity,
let’s assume the atoms are initially in |ns, ns〉 state. The dominant contribution
to the interaction arises from nearby states as it has the largest dipole moment.
Thus, the coupling is effectively restricted to |np, (n − 1)p〉 state with the dipole
matrix elements, d̂1 = 〈ns|er|np〉 and d̂2 = 〈ns|er|(n− 1)p〉. In the basis {|ns, ns〉,
|np, (n− 1)p〉}, the interaction is described by the Hamiltonian

H =
 0 C3/R

3

C3/R
3 ∆

 , (1.12)

where ∆ = 2Ens − E(n−1)p − Enp is the energy difference, and the coupling is
〈ns, ns|V̂ |np, (n− 1)p〉 = C3/R

3. The dressed states’ energies are given by eigenval-
ues,

∆E± = 1
2

∆±
√

∆2 + 4
(
C3

R3

)2
 . (1.13)

At short range, C3/R
3 � ∆ and the splitting of the energy is ±C3/R

3. This
corresponds to a resonant dipole-dipole regime and the energy-shift scales as C3 ∝
d2 ∼ n4. The dressed states are maximally mixed |±〉 = 1√

2(|ns, ns〉∓|np, (n−1)p〉)
at short ranges.

At long ranges, C3/R
3 � ∆, the energy-shift of |ns, ns〉 state is of second order

1
2∆

(
C3
R3

)2
and the mixing of ns states with p states is minimal. This is known as

the van der Waals regime. The energy-shift has the form C6/R
6 where C6 = C2

3
2∆

is called the dispersion coefficient. It scales with n as C6 ∼ n11, due to scaling of
C3 ∼ d2 combined with ∆ ∼ n−3. Furthermore, the attractive/repulsive nature of
interaction is determined by the sign of ∆. The transition between these two regimes
occurs at the the van der Waals radius RvdW =

√
C6/|∆| ∼ µm. In the systems

we consider below, we assume the atom-atom separation large enough so that the
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Energy(a) Energy(b)

Figure 1.2: Schematic representation of energy levels of two atoms, each of which their
ground state coupled to Rydberg state with Rabi frequency Ω (for more details, see
Sec. 1.4.1). The energy of |rr〉 state is a function of the distance between atoms (R)
in the van der Waals regime varies as C6/R

6 . Ω is the excitation linewidth caused by
the power broadening of the light field. (a) When the separation between atoms is large,
a complete transition to |rr〉 is possible. (b) When the separation is smaller than Rb, it
leads to a ’blockade’ of |rr〉 excitation. A corroborative dynamics is shown in Fig. 1.3.

Rydberg-Rydberg interactions are of the van der Waals type.

1.3 Rydberg Blockade

One of the most significant consequences of strong interactions between the Rydberg
atoms is the ’blockade’ of another excitation in the vicinity of an already excited
atom [24, 110, 111]. An early proposal to utilize these properties in quantum in-
formation science was made by Jaksch et al., in which two neutral Rydberg atoms
were proposed to create a quantum logic gate [24]. In this approach, different atomic
states act as the qubit basis states. Soon after, the idea was extended to mesoscopic
systems by Lukin et al. where the role of each qubit was played by a superatom
[25]. A decade later, these ideas were successfully implemented in [26, 27]. In this
section, we discuss this concept in detail. Consider two two-level atoms separated
by a distance R. The ground state |g〉 and Rydberg state |r〉 of each atom is coupled
with Rabi frequency Ω. When the two atoms are in the state |rr〉, they experience
a strong interaction, and the energy of this state gets shifted by an amount given
by vdW interaction: V (R) = C6/R

6. Consequently, a laser resonant with the exci-
tation of one atom becomes out of resonance with the excitation of the other atom,
provided that the energy shift V (R) is larger than the linewidth of the excitation
(~Ω). The critical separation is called blockade radius. This is the phenomenon
of "Rydberg blockade" i.e., within the blockade regime, the excitation of one atom
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Figure 1.3: The population dynamics in |gg〉, |+〉 and |rr〉 states. (a) For V0 = 0, the
state |rr〉 gets populated via |+〉 state. (b) When V0/Ω = 10, it causes a blockade of
double excitation and results in coherent population transfer between |gg〉 and entangled
state |+〉. The oscillation frequency is enhanced to

√
2Ω.

prevents excitation of another. The radius Rb of the blockaded sphere is set by the
bandwidth of the excitation. In the case of van der Waals interaction:

Rb =
(
~Ω
C6

)1/6

. (1.14)

We schematically depict the idea in Fig. 1.2. Within this radius, the two-atom sys-
tem will oscillate between the bare ground state |gg〉 and entangled |+〉 = |gr〉+|rg〉√

2
with Rabi frequency modified by a factor of

√
2, i.e. Ωnew =

√
2Ω [111], where

Ω is the Rabi frequency for single atom. The blockade dynamics is shown in
Fig. 1.3(b) and the population dynamics is contrasted with the case of no inter-
action [Fig. 1.3(a)]. The details of the single-atom Rabi model are discussed in
Sec. 1.4.1.

The effect of the blockade is not unique to Rydberg atoms and is present and ob-
served in other quantum systems having similar strong interaction properties, such
as electrons experiencing the coulomb blockade [112], or photons in a cavity expe-
riencing a photon blockade [113]. Furthermore, atoms may experience interaction
blockade due to s-wave collisions [114]. However, these systems may not have the
same level of controllability as a Rydberg atom setup. Thus, the latter may help in
revealing similar physics native to other systems. Further use of the Rydberg block-
ade mechanism is to produce a many-body entangled state in large cold atomic
ensembles which lead to

√
N modification of collective Rabi oscillation [52]. The

same concept can be applied to create a spatially ordered structure of the Rydberg
atoms with non-overlapping blockade spheres [115]. In addition to entangled gates
[22, 116–119], it has also emerged as a useful tool in quantum state preparation such
as deterministic loading of a single-atom in an optical lattice [120], creation of spin
squeezed states of atoms [121] and scalable collective qubit states [122, 123]. Exotic
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concomitant of the Rydberg blockade effect include preparation of single-atom and
single-photon sources [120].

1.4 Quantum Dynamics

Controllable, coherent dynamics in quantum systems provide insights into the fun-
damental properties of quantum matter and unveil new computational tools to exert
local control in two-body or many-body systems. In many-body systems, the state
and correlation dynamics have been used to understand phenomena of fundamen-
tal importance. These include pre-thermalization and quantum thermalization [124,
125], investigation of different quantum phases [68], measuring entanglement entropy
in a many-body system [126, 127], understanding the critical dynamics of quantum
phase transitions in Ising model [71, 128] and in the Kibble-Zurek mechanism [129],
simulating the growth of magnetization in 2D antiferromagnets [69]. Quantum state
dynamics is also used to observe the dynamical growth of entanglement using quan-
tum state tomography [130]. Such systems are often studied through quenching the
system - a change in the Hamiltonian from H i to Hf - in an otherwise isolated quan-
tum system resulting in non-equilibrium quantum physics. Often a sudden change
of Hamiltonian is accompanied by a phase transition. The examples include dis-
ordered to ferromagnetic phase transitions in Ising models [131, 132], superfluid to
Mott insulator quantum phase transitions in ultracold gases [133], or demonstration
of quantum many-body scar states in Rydberg atom arrays [71, 72, 134]. On the
other hand, a slow change of Hamiltonian (adiabatic following) enables the creation
of entangled states such as GHZ and W states [135], or dynamical crystallization
in ultracold atoms [136]. Furthermore, a periodic change in the Hamiltonian of
Rydberg atom arrays has emerged as a robust tool used to dynamically localize ex-
citations, in addition to enhancing the regime of the blockade and creating regions
of anti-blockade [137].

Quantum dynamics in two atoms have been used to observe entangled quantum
gates [26] and collective excitations [76]. Two-atom setups have been essential to
devise methods to enhance gate fidelity [81], gate coherence [80], robustness [138];
and further allows for ultrafast control of the Rydberg states [139] and build resilient
quantum gates [83]. The study of quantum dynamics, thus, brings fundamental
insights into the physics of two-body systems which are the building blocks of many-
body systems. In the following subsections, we give an overview of the quantum
dynamics in a single two-level atom whereas the dynamics in a two-atom system
will be studied in the rest of the chapters of this thesis.
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1.4.1 Rabi Dynamics

Rabi dynamics is one of the fundamental concepts associated with two-level systems.
In this section, we give a brief overview of the same. We consider a two-level
atom coupled to a classical light field, and treat the problem under electric dipole
approximation. The two-level atom is illustrated in Fig. 1.4. The atom has a ground
state |g〉 and an excited state |r〉, and the states are coupled by an electric dipole
transition of frequency ωgr. The atom interacts with a monochromatic oscillatory
radiation field of frequency ω, which is detuned by an amount ∆ = ω − ωgr from
resonance.

Figure 1.4: A two-level atom. The two energy levels are separated by a transition with
frequency ωgr. The atom is driven by a monochromatic field of frequency ω. Two key
parameters govern the dynamics of the atom-light interaction - the detuning ∆ = ω−ωgr,
and the Rabi frequency Ω which describes the strength of the atom-field coupling.

The evolution of this system is governed by the time-dependent Schrödinger
equation (~ = 1),

i
∂Ψ(r, t)
∂t

= ĤΨ(r, t). (1.15)

The total Hamiltonian Ĥ = Ĥ0 + V̂ is composed of atomic Hamiltonian (Ĥ0) and
a perturbation due to light field (V̂ ). The electric field of the monochromatic light
field is given by Ê = ε̂E0 cos(kr− ωt). Under the electric-dipole approximation to
write the perturbation as V̂ = d̂ · Ê where d̂ is the dipole matrix element asso-
ciated with the coupled atomic states i.e. |g〉 ↔ |r〉 transition. The unperturbed
atom is described by Ĥ0 whose eigenstates are bare atomic states |g〉 and |r〉. The
time-evolved wavefunction can be expanded using the unperturbed eigenbasis as,
Ψ(r, t) = cg(t)|g〉+ ce(t)|r〉e−iωgrt.

For initial state, t = 0, cg = 1 and ce = 0, the probability for the atom to be in
the excited state |ce(t)|2 :

Pe = Ω2

Ω̄2
sin2

[
Ω̄t
2

]
(1.16)

where Ω = E0〈r|d̂ · ε̂|g〉 depends on atom-light coupling through the amplitude
of the radiation field (E0) and strength of the atomic response (dipole moment d̂),
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Figure 1.5: Time evolution of population in the ground and excited state. (a) Rabi
dynamics of a single two-level atom at resonance (∆ = 0). The population of ground state
transfers coherently to excited state and oscillate with a time-period 2π/Ω. (b) The Rabi
dynamics with detuning ∆/Ω = 1.5. A finite detuning results in an imperfect population
transfer within a Rabi cycle with a shorter time-period 2π/Ω̄. For a large enough detuning,
the population effectively remains trapped in the initial state.

and is commonly known as Rabi frequency. The term Ω̄ =
√

Ω2 + ∆2 is the effective
Rabi frequency in presence of the atom-light detuning ∆. The probability of system
to be in state |r〉 undergoes Rabi oscillations at frequency Ω̄ , as shown in Fig. 1.5.

In the case of two two-level atoms, where each atom is resonantly coupled from
ground |g〉 to a highly excited or Rydberg state |r〉 with Rabi frequency Ω, strong
interactions cause energy shift in the |rr〉 state. As a result, only one atom can
be excited to the Rydberg state if the interaction energy shift is larger than the
excitation linewidth. Within this blockade radius, the excitation to the doubly
excited state is greatly suppressed [see Sec. 1.3 for details].

In Chapter 2, we study a system of two two-level Rydberg atoms where each
atom is driven independently by distinct Rabi-frequency and investigate the effects
of an offset in the Rabi frequencies on the dynamics and quantum correlations.

1.4.2 Quench Dynamics and LZ transitions

As mentioned before, quenching drives the system out of equilibrium and enables
investigation of interesting quantum dynamics, especially when driven across the
avoided-level crossing [140]. The simplest understanding of such non-adiabatic tran-
sition comes from looking at a two-state quantum system, where a degenerate pair
of (unperturbed) energy levels ’repel’ each other to create an avoided-level crossing.
When the two (unperturbed) levels have far different energies, the electron resides
almost definitely in one of the unperturbed eigenstates. However, at degeneracy,
the electron finds itself in a superposition of the two states. If the Hamiltonian is
dynamically varied such that the system is driven across the avoided crossing, the
electron makes a dynamic non-adiabatic transition from one eigenstate to the other.
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This is called a Landau-Zener Transition (LZT). The classic example is the Landau-
Zener (LZ) model in which the Hamiltonian of a two-level system is varied linearly
in time. The probability of transition between the two eigenstates is given by the
LZ formula first shown by L. Landau, C. Zener, E. Stückelberg, and E. Majorana
[141–144] in 1932.

The two-level atom consists of a ground state |g〉 and an excited state |r〉 and
is driven by a laser field associated with a Rabi frequency Ω and a time-dependent
atom-light detuning ∆(t). Considering the atom to be frozen with negligible kinetic
energy, we can describe the system by Hamiltonian (assume ~ = 1),

Ĥ = Ω
2 σ̂x −∆(t)σ̂rr, (1.17)

where σ̂rr = |r〉〈r| is a projection operator and σ̂x = |g〉〈r|+ |r〉〈g| is the transition
operator. The off-diagonal Rabi-coupling Ω manifests as the energy gap at the
avoided-level crossing in Fig. 1.6(a).

Two sets of basis are important for considering the LZ physics: the so-called
diabatic states {|g〉, |r〉} which are the eigenstates of the unperturbed Hamiltonian
under Ω = 0, and the adiabatic basis {|φ+(t)〉, |φ−(t)〉} which is composed of the
instantaneous eigenstates of the Hamiltonian, Ĥ(t)|φ±(t)〉 = E±(t)|φ±(t)〉. The
instantaneous energies of these states are

E±(t) = ±Ω̄(t)β∓(t) (1.18)

with β±(t) = Ω̄(t)±∆(t)
2Ω̄(t) and Ω̄(t) =

√
∆(t)2 + Ω2. The variation of E±(t) with a linear

detuning is shown in Fig 1.6(a). The adiabatic and diabatic bases are connected
with each other via the time-dependent coefficients β±(t),

|φ±(t)〉 = ±
√
β±(t)|g〉+

√
β∓(t)|r〉. (1.19)

Asymptotically away from the avoided-level crossing |∆| >> Ω (β± → {1, 0}),
the adiabatic states coincide with the diabatic states [see Fig. 1.6(a)]. At the
avoided-level crossing, they are equal superposition of |g〉 and |r〉. We can write the
system state in adiabatic basis as |ψ(t)〉 = a+(t)|φ+(t)〉+ a−(t)|φ−(t)〉, where a±(t)
are the time-dependent coefficients for locating the atom in the adiabatic states
|φ±(t)〉. We obtain the state dynamics by numerically solving the corresponding
Schrödinger equation i∂/∂t|ψ(t)〉 = Ĥ|ψ(t)〉. In the Landau-Zener model, the de-
tuning is varied linearly with time ∆(t) = vt, where v is the rate of change of
detuning or the quench rate. The model is analytically solvable with the exact so-
lution obtainable in the form of Weber’s functions. In the asymptotic limit, the
detuning varies from (−∞,∞), and we get the LZ formula for transition probability
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impulse

Figure 1.6: (a) (Top) The energy values of instantaneous eigenstates (solid red/blue) and
diabatic states (dashed-black) corresponding to (Bottom) a linear change of detuning.
The energy-gap at avoided-level crossing is equal to the Rabi frequency Ω. (b) (Top)
The inverse of energy gap between adiabatic energy levels 1/(E+ − E−) is plotted whilst
(Bottom) a transition from ground (|−〉) to excited state (|+〉) occurs when subjected to
a linear quench in the detuning. The dashed-blue line is obtained from AIA model [Eq.
(1.22)] where an impulse transition is approximated at avoided-level crossing.

[141, 142].
A simplified understanding of the LZ model emerges by assuming an Adiabatic

Impulse type evolution across time. The central idea of the Adiabatic-Impulse model
is to divide the time-evolution into discrete regimes of adiabatic and non-adiabatic
or impulse evolution as demonstrated in Fig. 1.6(b) [145, 146]. In the regime of
adiabatic-evolution, the system evolves to remain in the instantaneous eigenstate
of the Hamiltonian whereas, during the impulse regime, a non-adiabatic transition
(LZT) happens. We now apply the AIA to the LZ model. The two-level system with
linear detuning and Rabi-coupling Ω is shown in Fig. 1.6(a) where the energy gap
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between the two adiabatic levels (E+ and E−) is minimum at t = 0 with value Ω,
and away from the avoided-level crossing, the gap is large. As per AIA, the system
will evolve adiabatically when (E+ − E−)2/v � 1 and non-adiabatically elsewhere.
We show these regimes in Fig. 1.6(b). Although the transition is not instantaneous
and spans over an extended duration (2t′) near the avoided-level crossing, while
implementing the Adiabatic-Impulse model, we assume t′ → 0 due to its versatility
[147]. The time-evolution across the avoided level crossing after a single sweep can,
therefore, be discretized into adiabatic and non-adiabatic matrices as

|ψ(t∞)〉 = U(t∞,+0)ĜLZU(−0, t−∞)|ψ(t−∞)〉, (1.20)

with |ψ(t)〉 = (a+(t), a−(t))T as the probability amplitude in adiabatic basis. The
adiabatic evolution far away from the avoided-level crossing governed by the unitary
evolution matrix (written in the adiabatic basis {|φ+〉, |φ−〉}),

Û(t2, t1) =
 e−iζ+ 0

0 e−iζ−


where ζ±(t2, t1) =

∫ t2
t1
dtE±(t) are the aggregated dynamical phases. In the vicinity

of avoided-level crossing, the LZ transition matrix ĜLZ governs the evolution. We
obtain it by taking an asymptotic limit in time of exact solution ψ̄(t) as,

ĜLZ =
 e−iφ̃s

√
1− PLZ −

√
PLZ√

PLZ eiφ̃s
√

1− PLZ

 (1.21)

where φ̃s = γ(ln γ − 1) + arg Γ(1 − iγ) + π
4 is the Stoke’s phase, and γ = Ω2/4v

is the adiabaticity parameter along with Γ as the gamma function. Therefore, an
atom residing in the ground state (|φ−〉) when undergoes a linear quench of detuning
makes a transition to the excited state (|φ+〉) with the probability

PLZ = exp
(
−π Ω2

2|v|

)
. (1.22)

wwhich is the well-known LZ formula. For an adiabatic transition (v → 0 or γ � 1),
the transition probability is negligible (PLZ → 0) which is in accordance with the
adiabatic approximation, whereas for a sudden quench (v → ∞ or γ � 1), the
|r〉 state is excited with a maximum probability (PLZ → 1). The exact dynamics
are more intricate as shown Fig. 1.6(b), regardless the simple Landau-Zener model
gives an accurate estimate of the final excitation probability and reveals parameter
dependence.

LZ transitions have been studied using Rydberg atoms, where the two coupled
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levels of the atom play the role of qubit states. Most studies pertain to a single atom,
such as measuring LZ transition probability [148], and populating the Rydberg levels
via multi-photon using a chirped frequency pulse across an avoided crossing [149–
151], or a selective field ionization employing LZT [152]. More recent works include
enhancement of LZ transition probability across the avoided crossing [153], and
observation of quantum beats in the ionization field upon exciting three Rydberg
sublevels in an ultracold gas [154]. In a system of two "frozen" Rydberg atoms,
the LZ interferences have been probed across Förster resonance [155] but a detailed
study of LZ transition in such a system with linear quench was not yet made.

We study Landau-Zener (LZ) dynamics in a setup of two Rydberg atoms with
time-dependent detuning comprehensively in Chapters 3 and 4.

1.4.3 Dynamical stabilization in a periodically driven two-
level atom

In this section, we give a brief overview of the dynamics of periodically driven sys-
tems. Periodically driven or Floquet systems have a long history. The periodic drive
is specified by a time-dependent Hamiltonian H(t) = H(t+T ) with a constant time
period T . The behaviour of Floquet systems is very rich, in particular, they display
counter-intuitive effects such as dynamical localization and dynamical stabilization.
One paradigmatic example in classical physics is that of Kapitza inverted pendu-
lum. In contrast to a simple gravity pendulum which oscillates about its equilibrium
position at the lowest point in its trajectory [Fig 1.7(a)], the Kapitza pendulum dis-
plays equilibrium behaviour at the highest point. The dynamical stabilization at
the inverted point is evoked by a periodic movement of the suspension point of the
pendulum [see Fig 1.7(b)]. Other examples of dynamical localization are the Fermi-
Ulam model of a particle moving between a fixed and periodically oscillating wall
[156], classical and quantum kicked rotors [157, 158].

In the quantum world, an idea closely related to the Kapitza pendulum is pop-
ulation trapping in a two-level atom coupled with light [146, 159, 160]. We briefly
discuss it here; a detailed discussion can be found in Chapter 5. Under periodic
modulation of the light frequency [see Fig. 1.8(a)], the population can be trapped
in an initial quantum state for a significant period, where the state would otherwise
evolve into the other state through Rabi oscillations. Thus, effectively, the periodic
variation suppresses the Rabi coupling between the states, as shown in Fig. 1.8(b).
Population trapping, however, crucially depends on both the modulation frequency
and amplitude. For high frequencies, at

∆0 = nω (1.23)
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Figure 1.7: Stable and unstable equilibrium positions of (a) simple normal pendulum
(b) periodically driven Kapitza or inverted pendulum. The usual position of unstable
equilibrium can be stabilized with periodic driving.

we get resonance i.e. a coherent population transfer between the ground and excited
state. However, at Jn(δ/ω) = 0, the coherent transfer halts, and the population
trapping occur. Population trapping is synonymous with dynamical stabilization if
the initial detuning is not too large. In particular, for n = 0 i.e. at the Bessel zero
roots, we get dynamical stabilization. Further details are given in chapter 5.

In quantum systems, examples of dynamical stabilization include coherent de-
struction of tunnelling (CDT) in a double-well potential [161–163] where the tun-
nelling between double well is brought to an almost complete stop when perturbed
by a monochromatic driving force. Analogous phenomena are observed in several
other physical setups, for instance, a moving charged particle may be localized with
a time-periodic electric field [164, 165], or localization of a wavepacket in a peri-
odic lattice may occur due to periodic shaking of the lattice [166–169] or due to
a modulation of the inter-particle interactions [170]. In the same vein, a temporal
modulation results in a minimized decoherence of a spin-half particle coupled to a
bath [171]. From the above examples, we conclude that periodic perturbations are
useful in exploring exciting physical phenomena in quantum few-body and many-
body systems. Combined with the tunable engineering of ultracold atoms, periodic
driving establishes itself as a flexible tool to coherently manipulate the states of
quantum systems.
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Figure 1.8: (a) Detuning is periodicaly varied across the avoided level crossing in a two-
level atom, as ∆(t) = ∆0 + δ sin(ωt) where ∆0 is the initial detuning, δ is the strength
and ω is the frequency of modulation (b) The populations of ground and excited states
for periodically varying detuning with ∆0 = 0, ω/Ω = 6.0, δ/ω = 2.404.

In Chapter 5, we study the population trapping extensively in a periodically
driven Rydberg pair. We observe that the Rydberg-Rydberg interactions lead to a
state-dependent population trapping.

1.5 Quantum Correlations

Entanglement is not only a useful resource in quantum information science and
quantum computations [172], but is often used to characterize quantum phases in
condensed matter systems [173–180], including topologically ordered ones [178, 181–
183], and spin liquids [184, 185]. Interestingly, even the elementary two-qubit sys-
tems can reveal non-trivial features such as revivals [186], decay [187] and sudden
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death of entanglement [188, 189]. There is, however, no unique measure of entangle-
ment, and quantifying and characterizing entanglement is an active area of research
[172]. The von Neumann entropy is one "good" measure to characterize a pure
state’s entanglement [190, 191]. Another disparate way to measure purely quantum
correlations is through the quantum discord [192, 193]. Quantum discord captures
non-classical correlations different from entanglement entropy. Such non-classical
correlations can allow for computational speed-up even with single qubit systems
[180, 194–196].

To quantify entanglement, we partition the bipartite quantum system equally
into subsystems A and B. If the two subsystems are uncorrelated, the state of
subsystem A does not depend on the state of subsystem B in any way. In particular,
the probability of A being in any of its states does not depend on the state of B,
and vice versa. However, if the subsystems are interacting, the quantum state of the
composite system cannot be written as a tensor product of the states of A and B
which in turn means that the states of A and B are entangled, in general. We look
both at the Von-Neumann entanglement entropy, the quantum analogue of Shannon
entropy, and quantum discord to describe the quantum correlations. Note that for
pure states, the quantum discord turns out to be equal to entanglement entropy
[197]. The Von-Neumann entanglement entropy of the subsystems is,

SA = −Tr(ρ̂A log2 ρ̂A), and SB = −Tr(ρ̂B log2 ρ̂B), (1.24)

with ρ̂A (ρ̂B) being the reduced density matrix for subsystem A (B). A reduced
density matrix can be obtained by taking partial trace over the complete density
matrix, ρ̂ = |ψ(t)〉〈ψ(t)|,

ρ̂A = −TrB(ρ̂), and ρ̂B = −TrA(ρ̂). (1.25)

Partial trace is how we describe ’the state of subsystem(s)’ when the joint quantum
state is correlated. Any outcome of a measurement on A (or B) can be determined
by the reduced density matrix ρ̂A(or ρ̂B). Nevertheless, if ρA is a pure state, the
entanglement is zero. The easiest way to calculate the von Neumann entropy SA is
by taking the trace Tr

(
Ô
)
in the eigenbasis of ρ̂A: |λ1,2〉 which has eigenvalues λ1,2.

This gives us

SA = −
2∑
i=1

λi log2 λi. (1.26)

The same is valid for SB. For a pure state of the system (Tr(ρ)2 = 1), the entropy
of the complete system is zero SAB = 0, and that of the subsystems are equal to
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each other, SA = SB.

  

Figure 1.9: Quantum Mutual Information: I = SA+SB−SAB where SA (SB) is the Von
Neumann entropy of the subsystem A (B), and SAB is the joint entropy of A and B.

Another quantity which is useful to quantify entanglement in not only pure
states (Tr(ρ)2 = 1) but also mixed states (Tr(ρ)2 < 1) is quantum discord, a mea-
sure of quantumness of correlations. Quantum discord has its roots in Quantum and
Classical Information theory. In classical Information theory, the Shannon entropy
H(p) = ∑

i pi log pi is used to quantify information in a subsystem A (or B). Corre-
lation between subsystems A and B are defined by the classical mutual information
I = HA +HB −HAB where HAB is the joint entropy of A and B. Bayes’ rule says
that the conditional entropy is HB|A = HAB−HB which is the information about B
given that we know about A. The quantum mutual information is then equivalent
to J = HB −HB|A. Although in the classical information theory I = J , the same
is not true in its quantum analogue. In Quantum Information theory, the Von Neu-
mann entropy is used to measure the information in a quantum state. The quantum
mutual information is then defined as I = SA + SB − SAB. However the quantum
version of J (B : A) = SB − SB|A, requires the knowledge of conditional entropy
SB|A which is the entropy of subsystem B after a measurement has been performed
on A. Each measurement fundamentally alters the state of the system ρAB. Every
possible outcome is one of the vectors comprising the basis of eigenvectors of the
chosen observable. The observable can be any self-adjoint operator however we focus
on projective measurement which are defined by {Π̂i

A = |i〉A〈i|A} whose probabil-
ity of outcome is pi = TrAB[(Π̂i

A ⊗ 1B)ρAB]. After each measurement the state of
subsystem B is given by ρ̂iB = TrA[(Π̂i

A ⊗ 1B)ρAB(Π̂i
A ⊗ 1B)]/pi. The conditional

entropy of the subsystem B is an average of all such outcomes weighted by proba-
bility pi, SB|A = ∑

i p
iS(ρ̂iB). As the conditional entropy is still basis dependent, the

quantum information J (B : A) is not equal to the quantum mutual information I.
However, the inequality between the two ways provides an opportunity to find basis
independent classical correlations [192]

J̃ (B : A) = max
{Π̂iA}

[
SB −

∑
i

piSB|i
]

= SB − min
{Π̂iA}

[∑
i

piS(ρ̂iB)
]

(1.27)
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by maximizing (max{Π̂iA}) across all the possible orthonormal measurement bases
{Π̂i

A} of the subsystem A. In particular, for two-level atoms the orthonormal mea-
surement bases is extensively spanned by |i〉 = cos θ|g〉 + eiφ sin θ|r〉 and |j〉 =
cos θ|g〉− eiφ sin θ|r〉, upon varying θ ∈ [−π/2, π/2], and φ ∈ [0, 2π) with Nθ and Nφ

values respectively. The minimization is performed over all possible combinations
of Nθ and Nφ values,

min
{Π̂kA}

(
SB|A

)
= min
{Nφ,Nθ}

(
piS(ρiB) + pjS(ρjB)

)
. (1.28)

which gives us SB|A = 0 and J̃ (B : A) = SB. Similarly one can obtain J̃ (A : B)
where the measurement is performed on subsystem B rather than A. The quan-
tumness of correlations can then be found by I − J̃ . The quantum discord can be
defined corresponding to both A and B as,

D(A : B) = I − J̃ (A : B), (1.29)

and D(B : A) = I − J̃ (B : A). In general, the two are not equal to each other
as they are basis-dependent. For a pure system of two interacting two-level atoms,
we get D(A : B) = SA and D(B : A) = SB. Due to the atoms being identical,
SA = SB and D(A : B) = D(B : A). In summary, the quantum conditional entropy
is eigenbasis dependent which results in a disagreement between I and J (B : A)
(or J (A : B)). The difference between these two defines quantum discord. For a
bipartite pure system described by |ψ(t)〉, the quantum discord is same as the Von
Neumann entanglement entropy, i.e., D(A : B) = D(B : A) = SA = SB [197].

However, for a dissipative system, the system is driven to a mixed state even when
initially prepared in a pure state. For a mixed state system, the discord is no longer
equal to entanglement entropy; and, in fact, since SA,B fails to distinguish between
classical and quantum correlations, it has been ruled out as a good measure of
quantum correlations [190, 198, 199]. On the other hand, quantum discord remains
a good measure. For a mixed state the conditional entropy is not symmetric for
all states [174], and therefore, in general, D(A : B) 6= D(B : A). An exception
occurs when the states are symmetric under the exchange of A and B allowing
D(A : B) = D(B : A) to hold.

In Chapter 3, we study the growth and dynamics of quantum correlations in
coherent dynamics. Furthermore, in Chapter 5, we analyze the dynamics of the
entangled bell state when the two-atom system is driven periodically.
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1.6 Issues covered in this thesis

In this thesis, we study systems of two interacting Rydberg atoms and propose
mechanisms to engineer the quantum state of the collective system in a frozen pair
of Rydberg atoms where each atom is considered to be trapped in an optical tweezer.

In chapter 2, we study the population and entanglement dynamics of two inter-
acting Rydberg atoms by varying their Rabi frequency independently by distinct
laser fields. We find a novel phenomenon that we term as Rydberg-biased freezing
where amplification of the Rabi frequency of one atom at large Rydberg-Rydberg
interaction freezes the dynamics in the second atom. Furthermore, we discuss a
double-peak structure in the doubly Rydberg state population as a function of in-
teraction for very small offsets in the Rabi frequencies. We then study the quantum
correlations in the Rydberg pair and demonstrate the control over correlations that
manifests due to attenuation of Rabi frequency of the second atom. Lastly, we look
at the dissipative dynamics in the system.

In chapter 3, we propose a time-dependent atom-laser detuning of linear varia-
tion to manipulate the final occupation probabilities of the two-atom states. This
brings new ways to control the state dynamics of the Rydberg pair which may be
useful in quantum state preparations. By varying the Rydberg-Rydberg interac-
tion strengths, the system can emulate different three-level LZ models, for instance,
bow-tie and triangular LZ models. The LZ dynamics exhibit nontrivial dependence
on the initial state, the quench rate, and the interaction strengths. We also use the
analytical technique of the Adiabatic Impulse model to reveal the web of phases
in the dynamics. We also mention the emergent SU(3) symmetry in the two-atom
setup.

In chapter 4, we study the effect of periodic atom-laser detuning on the pair
of Rydberg atoms. First, we review the single two-level periodically driven atom.
We highlight the similarity of the final state population with the intensity pattern
obtained in an antenna array. In the two atom setup, we test the validity of analytical
results of population dynamics obtained using the Adiabatic-Impulse approximation
under periodically drive. We show that when all avoided crossings are incorporated,
the dynamics is well captured by AIA. The latter may find applications in quantum
state preparation, quantum phase gates, and atom interferometry.

In chapter 5, we study the interesting phenomenon of dynamical stabilization
which is observed at certain parameter regimes when periodically driving the Ryd-
berg pair. The periodic modulation of the atom-light detuning effectively suppresses
the Rabi couplings. We characterize the phenomenon of population trapping and
dynamical localization using Floquet quasienergies and the Inverse participation ra-
tio of Floquet states. We elucidate the phenomenon of state-dependent population
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trapping which emerges due to Rydberg-Rydberg interactions. We further specify
the regimes where populations in experimentally significant states such as product
and bell entangled states can be frozen for a significantly longer duration. The be-
haviour of the entangled states is further characterized by the bipartite entanglement
entropy.



26 CHAPTER 1. INTRODUCTION



Chapter 2

Dynamics and quantum
correlations in two independently
driven Rydberg Atoms

The current chapter is an adaptation of the research article "Dynamics and quantum
correlations in two independently driven Rydberg atoms with distinct laser fields"
[86]. We study both the population and quantum correlation dynamics in a pair of
Rydberg atoms where the Rabi coupling of the atoms with laser is non-identical. The
first part of the chapter deals with coherent dynamics and in the regime of strong
interactions, we are introduced to a novel phenomenon: an amplification in the Rabi
frequency of one atom freezes the dynamics of the second atom which at the same
time is accompanied by reduced quantum correlations. We call this phenomenon
as Rydberg-biased freezing. Alongside, the weak-interaction case is also investigated
and a peculiar non-monotonic behaviour is obtained. We accompany the above
numerical results with the analytical results obtained by an effective Hamiltonian.
The later part of the chapter deals with a more realistic scenario of spontaneous
emission and we study dissipative population and quantum correlation dynamics in
the system.

2.1 Introduction

The setup of Rydberg atoms driven by identical lasers has been a usual scenario in
many of the Rydberg-based experimental studies. Of primary interest have been
studies in strongly interacting Rydberg atoms which have found applications from
quantum many-body physics to quantum information protocols. However, in recent
years, the technology has advanced in such a way that it has become possible to
probe and manipulate the Rydberg atoms individually using optical tweezers and

27
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optical microtraps [51, 84, 200] which enables further control over the system. For
instance, single atom addressing by distinct lasers has been employed to study decay
processes in individually trapped atoms [74], achieve controlled local operations
[84], entangle two different Rydberg isotopes at a nearby site [201], quantify the
imperfections in Rabi oscillations [202], control resonant dipole-dipole interaction
between Rydberg atoms [79] as well as to implement fast entangled gates between
identical Rydberg atoms [81, 203, 204]. Such technological advancements strive to
reach new regimes and discover new tools which would ultimately allow addressing
the unsolved problems in many-body physics and quantum information protocols.

We are motivated by the potential offered by distinct lasers on ultracold atoms,
and thus conduct a systematic study of the effect of applying distinct lasers on a
minimal setup of two ultracold trapped Rydberg atoms. In particular, we focus on
the case wherein the interacting atoms are driven at different Rabi frequencies. The
Rabi frequencies for the atoms can be simply tuned by illuminating the two atoms
with different light field intensities. We show that the offset in Rabi frequency could
be an experimental tool to control the state populations and quantum correlations.

We study the population and entanglement dynamics of the two-atom system.
We begin by identifying intriguing features in the state population dynamics in the
strongly interacting regime where on amplifying the Rabi frequency of one of the
Rydberg atoms the other atom freezes to its ground state. Later, we analyze the state
dynamics in the weakly interacting regime where a small Rabi-frequency offset causes
a non-monotonic behaviour at small interaction values. We further use an effective
Hamiltonian picture in different limiting cases of system parameters to capture the
physics simplistically and intuitively. We further analyze the temporal evolution
of Von-Neumann entanglement entropy or the quantum discord and demonstrate
that a Rabi-frequency offset is a viable tool to control quantum correlations in the
composite two-qubit systems. Lastly, we consider the spontaneous emission from
the Rydberg state and analyze the population dynamics, steady-state purities, and
quantum correlations.

2.2 Setup and Model

We consider two identical neutral two-level atoms with electronic ground state |g〉
and a Rydberg state |r〉. Each is strongly confined in independent optical micro-
traps separated by a distance R [see Fig. 2.1]. Both are driven by distinct but
resonant light fields having a Rabi frequency Ω for the first atom, and Ω +ω for the
second atom, where ω is the offset in Rabi-frequencies henceforth called as Rabi-
offset. The strength of Rydberg-Rydberg interaction between the excited atoms is
given by V0 = C6/R

6. In the frozen gas limit, the internal state dynamics of the
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Figure 2.1: A schematic of two Rydberg atoms trapped in distinct microtraps with a
separation of R. Each of the atoms is driven independently by different laser fields while
resonantly coupling the ground state |g〉 to the same Rydberg state |r〉.

quantum system is described by the Hamiltonian (~ = 1):

Ĥ = Ω
2

2∑
i=1

σ̂(i)
x + ω

2 σ̂
(2)
x + V0σ̂

(1)
rr σ̂

(2)
rr . (2.1)

where σ̂(i)
rr = |r(i)〉〈r(i)| is the atomic projection operator, and σ̂(2)

x = σ̂(2)
rg + σ̂(2)

gr

is the Pauli’s X operator with σ̂
(2)
ab = |a(2)〉〈b(2)| being the state transition oper-

ator corresponding to the second atom. We obtain the coherent dynamics of the
composite system by numerically solving the Schrödinger equation, i∂/∂t|ψ(t)〉 =
Ĥ|ψ(t)〉. The initial state is chosen as both atoms in their electronic ground state,
|ψ(t = 0)〉 = |gg〉. We work in the two-atom product basis {|gg〉, |gr〉, |rg〉, |rr〉}
whose energy levels alongwith their Rabi-couplings are outlined in Fig. 2.2. We also
pictorially depict that the |rr〉 state is getting populated via |gr〉 and |rg〉 states
from the initial state |gg〉.

  

Figure 2.2: The figure shows energy level scheme of composite two-atom system in
the product basis {|gg〉, |gr〉, |rg〉, |rr〉} with their associated Rabi couplings. The doubly
excited state |rr〉 is populated from ground state |gg〉 via |gr〉 and |rg〉 as shown by
curved arrows. V0 is the Rydberg-Rydberg interaction which detunes the |rr〉 state from
resonance.
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2.3 State Population Dynamics

In this section, we investigate how the Rydberg excitation dynamics change for a
non-zero Rabi-offset ω. We analyze both the temporal evolution and the long time-
averaged of occupation probability in the product basis states {|gg〉, |gr〉, |rg〉, |rr〉}
obtained after solving the system numerically. The population in each state is
given by the projection of final state |ψ(t)〉 onto it, Pαβ(t) = |〈αβ|ψ(t)〉|2 where
α, β ∈ {r, g} and the time-averaged population is P̄αβ = 1

τ

∫ τ
0 Pαβ(t)dt.

2.3.1 Populations at large interaction strengths

In the regime of strong interaction V0/Ω � 1, the doubly Rydberg |rr〉 state gets
detuned from resonance and leads to Rydberg blockade wherein the population
coherently oscillates between |gg〉 and entangled state |+〉 = (|gr〉 + |rg〉)/

√
2 [see

Sec. 1.3]. Further introducing a Rabi-offset ω breaks the symmetry between the
two atoms, and therefore not only the entangled state |+〉 lose significance but the
population among non-identical |gr〉 and |rg〉 states is controlled by the Rabi-offset
ω. Note however that, the blockade doesn’t necessarily result in the emergence of
symmetric entangled state |+〉 which happens in the special case of ω = 0. For
a finite value of ω, the second atom is driven strongly compared to the first atom
which causes an enhancement of Pgr at the cost of Prg, as shown in Fig. 2.3(a).
Interestingly when a large Rabi-offset is applied ω/Ω � 1 to strongly interacting
atoms V0/Ω � 1, the population of the weakly driven excited state Prg minimizes
indicating that the dynamics of the first atom nearly freezes to its ground state.
Subsequently, the system displays coherent Rabi oscillations between the ground
state |gg〉 state and strongly driven excited |gr〉 state whereas both Prr ≈ 0 and
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Figure 2.3: The population dynamics for strongly interacting case V0/Ω = 10 with (a)
small Rabi-offset ω/Ω = 0.5 which causes asymmetry in Pgr and Prg, (b) large Rabi-offset
ω/Ω = 5 which freezes the dynamics of state |rg〉. Prr is suppressed at strong interactions
causing Rydberg-blockade.
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Prg ≈ 0, as shown in Fig. 2.3(b). In effect, only the atom driven by an amplified
Rabi frequency gets excited and the dynamics of the other atom freezes to its ground
state [also see Fig. 2.4]. Remarkably, we can thus freeze the dynamics of one atom by
selectively amplifying the Rabi frequency of the second atom. Note that the freezing
of the first atom emerges as a combined effect of both the Rydberg blockade from
large interactions and the strong driving in the second atom, and we designate this
phenomenon as Rydberg-biased freezing.
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Figure 2.4: The time average populations as a function of ω/Ω for V0 = 25Ω, and
Ωτ = 5000. Since V0 � Ω, the numerical results (solid points) are in excellent agreement
with the analytic results (solid lines) given in Eqs. (2.7)-(2.9)

A complete variation of ω/Ω and V0/Ω is shown in the time-averaged population
plots in Fig. 2.5 which shows fascinating attributes. The regime of {ω/Ω, V0/Ω} � 1
is that of Rydberg-biased freezing where both the |gg〉 and |gr〉 states have high
occupation probabilities while the populations in |rr〉 and |rg〉 states are suppressed.
At large interactions V0 but small Rabi-offset ω, Pgr > Prg with a non-zero Prg, and
both the |gr〉 and |rg〉 states coherently oscillate with |gg〉; while the |rr〉 state
population remains minimal. We further note in Fig. 2.5(b) that the time-averaged
|rr〉 state population is minimally affected by Rabi-offset ω, except at very small
V0 and ω which we discuss in the Sec. 2.3.2. Nevertheless, for strongly interacting
atoms V0/Ω � 1, the |rr〉 state population vanishes irrespective of the Rabi-offset
ω value. As a consequence, we conclude that the condition of blockade V0 � Ω,
remains unchanged by the Rabi-offset ω. It is the lowest of the two Rabi-couplings
which determine the blockade. For small Rabi-offsets, particularly at large |V0|, P̄gr
increases at the cost of P̄rg upon increasing the Rabi-offset ω since the second atom
is more strongly driven.

2.3.2 Populations at small interaction strengths

To analyze dynamics in this regime, we first look at the exactly solvable case of non-
interacting atoms V0 = 0 having a Rabi-offset ω. In the absence of Rydberg-Rydberg
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Figure 2.5: Color density plot for long time averaged populations: (a) P̄gg, (b) P̄rr,
(c) P̄gr and (d) P̄rg plotted against V0/Ω and ω/Ω conditioned to |ψ(t = 0)〉 = |gg〉 till
time Ωτ = 5000. For stronger interactions V0/Ω and large Rabi-offset ω/Ω both P̄rr and
P̄rg are negligible, leading to Rydberg-biased freezing. Also note in (b) that the blockade
condition only gets weakly affected due to Rabi-offset ω.

interactions, population in the two-atom basis states are obtained by a product of
the populations in corresponding single-atom states i.e. Pαβ(t) = Pα(t)Pβ(t). The
single two-level atom population is well known in the Rabi-problem [see Sec. 1.4.1].
For the two-atom system having initial state |ψ(t = 0)〉 = |gg〉, we obtain

Pgg(t) = cos2 Ωt
2 cos2 (Ω + ω)t

2 , (2.2a)

Pgr(t) = cos2 Ωt
2 sin2 (Ω + ω)t

2 , (2.2b)

Prg(t) = sin2 Ωt
2 cos2 (Ω + ω)t

2 , (2.2c)

Prr(t) = sin2 Ωt
2 sin2 (Ω + ω)t

2 . (2.2d)

In the absence of a Rabi-offset the time-averaged populations are

P̄gg = P̄rr = 0.375, P̄gr = P̄rg = 0.125, for ω = 0. (2.3)
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Figure 2.6: The population dynamics for V0/Ω = 0.1 with (a) a small Rabi-offset ω/Ω =
0.1 and (b) a large Rabi-offset ω/Ω = 5.0. For small Rabi-offset, the faster oscillations
(having frequency ∼ Ω) exist between |gg〉� |rr〉, and |gr〉� |rg〉, with a small envelope
frequency (∼ ω). For the large Rabi-offset, the faster oscillations with frequency (∼ ω)
exist between the strongly coupled states |gg〉 � |gr〉, and |rg〉 � |rr〉, with a faster
envelope frequency (∼ Ω), as visible from the time-scale.

Their higher doubly-ground and doubly-excited probabilities are due to in-phase
but independent Rabi-oscillation of each atom. As soon as a non-zero Rabi-offset is
present, the atoms’ Rabi oscillations mismatch and it manifests in an equal occupa-
tion probability among the four basis states,

P̄gg = P̄rr = P̄gr = P̄rg = 0.25 for ω 6= 0. (2.4)

We further discuss the case of finite but small interactions V0 � Ω. The time-
evolution of populations for the initial state |gg〉 is shown in Fig. 2.6. Upon changing
the Rabi-offset from small to large values, key features characterizing the dynamics
change. For a small Rabi-offset, the faster oscillations exist between |gg〉� |rr〉, and
|gr〉 � |rg〉 state having frequency ∼ Ω. Additionally, the dynamics has another
smaller envelope frequency (∼ ω) during which the system goes from a predomi-
nantly {|gg〉, |rr〉} to {|gr〉, |rg〉}. On the other hand, for a large Rabi-offset the
faster oscillations with frequency (∼ ω) exist between the strongly coupled states
|gg〉 � |gr〉, and |rg〉 � |rr〉, with a faster envelope frequency (∼ Ω). A large
Rabi-offset not only governs the fast frequency but the states involved in faster os-
cillations get switched. Note however that the population in neither the |rg〉 nor |rr〉
state get suppressed at small or large Rabi-offsets for small interactions. It affirms
the notion that Rydberg-biased freezing [see Sec. 2.3.1] is a phenomenon central to
strongly interacting systems.

An intriguing feature emerges for a small Rabi-offset in the weakly interact-
ing regime. A non-monotonic behaviour in a time-averaged population of doubly
excited state P̄rr and that of excitation in second-atom P̄gr can be seen near the
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Figure 2.7: The time average populations: (a) P̄gg, (b) P̄rr, (c) P̄gr and (d) P̄rg as a
function of V0/Ω for different ω/Ω, with ∆ = δ = 0, |ψ(t = 0)〉 = |gg〉 and Ωτ = 5000. For
very small values of ω/Ω, the populations P̄rr, P̄rg and P̄gr depend non-monotonously on
|V0|.

origin of Figs. 2.5(b) and 2.5(c). To gain more insights into this behaviour, we
show explicitly the time-averaged populations as a function of V0/Ω for different
values of ω/Ω in Figs. 2.7. Without a Rabi-offset, P̄rr exhibits a Lorentzian profile
when plotted as a function of interaction strength V0. For ω = 0 and V0 6= 0, the
population gets transferred from the initial ground state |gg〉 via the symmetric
entangled state |+〉 = (|gr〉 + |rg〉)/

√
2 to the doubly Rydberg state |rr〉. Upon

increasing the interaction strength |V0|, the |rr〉 state slowly becomes off-resonant
with the light field due to interaction-induced energy-shift, and consequently a time-
averaged population in |rr〉 state P̄rr(t) decrease, resulting in a Lorentizan profile.
On the other hand, the population of entangled state P̄+ as well as that of doubly
ground state Pgg increase, saturating to 0.5 in limit of large |V0| [see Figs. 2.7]. For
a finite Rabi-offset ω 6= 0, the symmetry between atoms and hence |gr〉 and |rg〉
gets broken leading to P̄gr 6= P̄rg. As a result, the Lorentzian profile of P̄gr, P̄rg and
P̄rr gets deformed. The doubly excited state population, in particular, shows a non-
monotonic behaviour having peaks at small interaction strengths (±V p

0 ), as shown
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Figure 2.8: The half of the peak separation V P
0 in P̄rr (see inset) as a function of

ω/Ω. The dashed line is the analytical result given by Eq. (2.30) obtained for small
ω.

in Figs. 2.7(b) and 2.8. The splitting in P̄rr happens due to a competition between
the terms associated with V0 and ω in Eq. (2.1) for small values of V0 and ω. The
non-monotonic behaviour in P̄gr, P̄rg as well as split in P̄rr eventually saturates to
another Lorentizian profile with a lowered maxima value (= 0.25) at larger values
of Rabi-offsets (ω � 1).

Focusing on P̄rr, for small Rabi-offsets ω � Ω such that P̄gr ≈ P̄rg, a small |V0|
compensates for the effect from a small Rabi-offset ω, leading to the recovery of
P̄rr. However, a further increase in V0 leads to interaction-induced shift of |rr〉 state
(blockade effect) and P̄rr starts to decrease thereby giving rise to peak in average
population. The maximum value of the peak decreases with increasing ω until there
is no longer a peak. However, the separation between peaks (2V p

0 ) increases with
increasing ω first and later decreases, reaching zero. After this point, V0 can no longer
compensate for the effect of ω, see Fig. 2.8. Hence, when ω remains greater than a
certain value, the |rr〉 state population P̄rr again becomes a Lorentzian function of
V0. The separation between the peaks abide V p

0 ∝
√
ω for smaller values of ω. In

the Sec. 2.4, we use effective Hamiltonian picture derived in the limit {ω, V0} � Ω,
to explain the initial increment of P̄rr in V0 at small values of ω. Notably, the partial
splitting of |rr〉 state population P̄rr bears resemblance to the Autler-Townes effect
[205].

2.4 Effective Hamiltonians

In this section, we derive the effective Hamiltonian picture which also describes the
long-time dynamics of the two-atom system in various limits [206, 207].
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Case I: V0 � {Ω, ω} We first consider the strongly interacting regime V0 �
{Ω, ω}. Switching to a rotating frame |ψ′(t)〉 = Û |ψ(t)〉 with unitary transfor-
mation, Û = exp(iV0σ̂

1
rrσ̂

2
rrt) eliminates V0 in favor of fast oscillations associated

with the smaller energies {Ω, ω}. In this frame, the wavefunction |ψ′(t)〉 satisfies
the Schrödinger equation corresponding to the new Hamiltonian, Ĥ ′ = ÛĤÛ † +
i(dÛ/dt)Û †, where Ĥ is the same as in Eq. (2.1). Explicitly, the new Hamiltonian
is,

Ĥ ′(t) = Ω
2
[
|gg〉〈gr|+ |gg〉〈rg|+ e−iV0t(|gr〉〈rr|+ |rg〉〈rr|) + H.c.

]
+ ω

2
[
|gg〉〈gr|+ |rg〉〈rr|e−iV0t + H.c.

]
. (2.5)

As the rotated Hamiltonian is time-periodic with periodicity T = 2π/V0, it can
be expanded perturbatively in T as: Ĥ ′(t) = ∑

l Ĥ
′
le
ilT t. An effective (Floquet)

Hamiltonian can be obtained by a High Frequency expansion (HFE): Ĥeff = Ĥ0 +∑
l>0[Ĥ ′l , Ĥ ′−l]/lT +O(T−2) which gives the evolution of the system at stroboscopic

times (2πn/V0) [207]. Here Ĥ0 is the time-independent part of the Hamiltonian.
This method is identical to a Schieffer-Wolff Transformation (SWT). Alternatively
Ĥeff can be obtained using Magnus expansion where the zeroth order term is a single
time-period averaged Hamiltonian, Ĥeff = (1/T )

∫ T
0 Ĥ ′(t)dt, which is identical to

Ĥ0 [208]. With either of the above methods, we get effective Hamiltonian for the
limit V0 � {Ω, ω} as,

Ĥ
(V0)
eff = (ω + Ω)

2 σ̂1
ggσ̂

2
x + Ω

2 σ̂
1
xσ̂

2
gg. (2.6)

In obtaining the above Hamiltonian, we essentially have made a rotating wave ap-
proximation where the faster oscillating terms are removed while the zeroth-order
terms survive [145]. We note that even though we have eliminated the interaction
V0 dependent terms, the effective Hamiltonian Ĥ(V0)

eff cannot be replaced by a com-
bination of single atom Hamiltonian which means that Ĥ(V0)

eff represents a correlated
system. The two terms in Ĥ(V0)

eff [Eq. (2.6)] can be interpreted as follows: The first
term drives the second atom with Rabi-coupling Ω + ω while letting the first atom
rest in the ground state. The second term has the reverse true but it drives the first
atom with a smaller Rabi coupling Ω. This type of coupling is also called correlated
Rabi coupling [137]. An identical phenomenon in an optical lattice is the density-
assisted tunnelling of atoms [209]. Notably in Eq. (2.6), for the situation where
ω � Ω, the second term reduces to being a small perturbation with the first term
contributing primarily to the dynamics. This is exactly the dynamics we observe
in Rydberg-biased freezing [see Sec. 2.3.1]. Now we solve the Schrödinger equation
corresponding to Ĥ(V0)

eff . At large time scales, the dynamics due to Ĥ(V0)
eff and due to
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H ′(t) will coincide.

In the effective Hamiltonian picture, the |rr〉 state gets removed from the dy-
namics hence we can truncate our basis to only {|gg〉, |gr〉, |rg〉}. Here the benefit
of using this picture is clear: the Schrödinger equation is now exactly solvable. We
solve i|ψ̇′〉 = Ĥ

(V0)
eff |ψ′〉 with intial condition |ψ′(0)〉 = |ψ(0)〉 = |gg〉. The initial

condition remains unchanged in the transformed frame since at t = 0, the unitary
transformation operator is Identity Û(0) = 1. We obtain the populations as

Pgg(t) = cos2 βt (2.7)

Pgr(t) =
(

Ω + ω

2β

)2

sin2 βt (2.8)

Prg(t) =
(

Ω
2β

)2

sin2 βt, (2.9)

where β2 = [(Ω + ω)2 + Ω2] /4. It is clear from Eqs. (2.8) and (2.9) that for ω � Ω,
we get Pgr ≈ Prg, leading to P̄gr ≈ P̄rg which is in agreement with the numerical
solution obtained and shown in Figs. 2.5. For ω � Ω we can see that the Pgr gets
augmented at the cost of Prg at the a large ω while the population in |gg〉 is not
compromised. We also have Pgr(t) ≈ sin2 βt with β ≈ ω/2, which indicate Rabi
oscillations in the |gg〉 state and |gr〉 state occur with a frequency 2β ≈ ω. Addi-
tionally, note that the Rabi-oscillations in states |gg〉 and |rg〉, counterintuitively,
have an enhanced Rabi-frequency same as 2β but with a much smaller magnitude.
The time-averaged populations with the above solution are:

P̄gg = 1/2, P̄gr = [(Ω + ω)/2β]2 /2, P̄rg = (Ω/2β)2/2. (2.10)

The above analytical solutions are compared with the exact results obtained by
numerically solving the Schrödinger equation for the complete Hamiltonian given in
Eq. (2.1). Both are in very good agreement with each other within the limit V0 � Ω
[see Fig. 2.4].

Case II: ω � {Ω,V0} We now obtain the effective Hamiltonian in the limit ω �
{Ω, V0} by using a similar methodology as specified above. We move to a rotating
frame with a local unitary transformation Û = exp(iωσ̂i=2

x t/2) which acts only on
the second atom. The new Hamiltonian in the rotating frame is,

Ĥ ′ = Ω
2

2∑
i=1

σ̂ix + V0

(1− cosωt
2 σ̂1

rrσ̂
2
gg + 1 + cosωt

2 σ̂1
rrσ̂

2
rr −

sinωt
2 σ̂1

rrσ̂
2
y

)
.

(2.11)
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An effective Hamiltonian can be obtained by selecting the time-independent terms
(HFE) in Eq.(2.11) or equivalently taking a time-average of Eq.(2.11) over a time
period of T = 2π/ω (Magnus expansion). The effective Hamiltonian is,

Ĥ
(ω)
eff = Ω

2

2∑
i=1

σ̂ix + V0

2 σ̂
1
rr. (2.12)

Note here that Ĥ(ω)
eff can be seen as a sum of two Hamiltonians corresponding

to single atoms where the first atom has a detuning of V0/2 with resonance. Note
that, in the new rotating frame the Rabi couplings of both the atoms are reduced to
Ω. It is thus clear that for V0 � Ω, the excitation of the first atom is not favoured,
resulting in the phenomenon of Rydberg-biased freezing. Ĥ(ω)

eff also indicative that
the two-atom correlations will get suppressed in the large ω limit irrespective of V0

[see Sec. 2.5]. Both Cases I and Case II explain the Rydberg-biased freezing with
unique intuitions.

Case III: {V0, ω} � Ω We now finally consider the limit {V0, ω} � Ω. This limit
is particularly important in explaining the non-monotonic behaviour of P̄rr and P̄gr
near the origin of Figs 2.3(b) and 2.3(c). With a similar idea as in the above cases, we
move to a rotating frame by an application of the unitary transformation operator
Û = eiΩ(σ̂1

x+σ̂2
x)t/2. We obtain the new Hamiltonian as,

Ĥ ′ = V0

[
sin2 (Ωt/4) σ̂1

ggσ̂
2
gg + cos2 (Ωt/4) σ̂1

rrσ̂
2
rr

+ sin2 Ωt
4

( (
σ̂1
ggσ̂

2
rr + σ̂1

rrσ̂
2
gg

)
+
(
σ̂1
grσ̂

2
rg − σ̂1

grσ̂
2
gr + H.c.

) )]
+ ω

2 σ̂
2
x

+ i

2V0 sin Ωt
[
sin2 (Ωt/2) (σ̂1

ggσ̂gr + σ̂1
grσ̂

2
gg) + cos2 (Ωt/2) (σ̂1

rrσ̂
2
gr + σ̂1

grσ̂
2
rr) + H.c.

]
.

(2.13)

An effective Hamiltonian is then obtained by time-averaging Eq.(2.13) over the
period T = 2π/Ω,

Ĥ
(Ω)
eff = 3V0

8

[
σ̂1
ggσ̂

2
gg + σ̂1

rrσ̂
2
rr

]
+ V0

8

[
σ̂1
ggσ̂

2
rr + σ̂1

rrσ̂
2
gg +

(
σ̂1
grσ̂

2
rg − σ̂1

grσ̂
2
gr + H.c.

) ]
+ ω

2 σ̂
2
x.

(2.14)

Since the wavefunction transforms as |ψR(t)〉 = Û |ψ(t)〉. The Ĥ(Ω)
eff can be applied

on the transformed basis vectors Û{|gg〉, |gr〉, |rg〉, |rr〉}. Noting that the unitary
transformation Û can be written as,

Û = cos2(Ωt/2)1 + i

2 sin Ωt(σ1
x + σ2

x)− sin2(Ωt/2)σ1
xσ

2
x, (2.15)
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we find the transformed basis as

Û |gg〉 = cos2(Ωt/2)|gg〉+ i
2 sin Ωt (|gr〉+ |rg〉)− sin2(Ωt/2)|rr〉

Û |gr〉 = i
2 sin Ωt (|gg〉+ |rr〉) + cos2(Ωt/2)|gr〉 − sin2(Ωt/2)|rg〉

Û |rg〉 = i
2 sin Ωt (|gg〉+ |rr〉)− sin2(Ωt/2)|gr〉+ cos2(Ωt/2)|rg〉

Û |rr〉 = − sin2(Ωt/2)|gg〉+ i
2 sin Ωt (|gr〉+ |rg〉) + cos2(Ωt/2)|rr〉. (2.16)

Using both Eq.(2.13) and Eq.(2.16), we can estimate the time-averaged popula-
tions for small ω and V0. As an example, we verify our expectations for the case of
V0 = ω = 0. The initial state |ψ(t = 0)〉 = |gg〉 remains undisturbed in the rotating
frame |ψR(t = 0)〉 = Û |ψ(t = 0)〉 = |gg〉. Since the Ĥ(Ω)

eff = 0, the time-averaged
populations are obtained directly from Û |gg〉 upon projection in the non-rotated
basis {|gg〉, |gr〉, |rg〉, |rr〉}, P̄gg = P̄rr = 0.375, and P̄gr = P̄rg = 0.125, which is as
expected. However, when either of these parameters are non-zero: ω 6= 0 or V0 6= 0,
we first need to consider the long-time evolution using Ĥ(Ω)

eff . For the non-interacting
case V0 = 0, with a Rabi-offset ω 6= 0 we have Ĥ(Ω)

eff = (ω/2)σ̂2
x and in the rotating

frame, for initial state |gg〉 we observe

|ψR(t)〉 = cos ωt2 |gg〉 − i sin ωt2 |gr〉, (2.17)

i.e. the initial state |gg〉 makes coherent Rabi oscillations with state |gr〉. In the
laboratory frame, the population in |αβ〉 state can be obtained by simply projecting
|ψR(t)〉 along the rotated basis Û |αβ〉 where α, β ∈ {g, r}. This exercise gives us
the same result as we obtain previously in the Sec. 2.3.2. Now, we move on to the
interacting case and take V0 � Ω with ω = 0. The time-evolution with Ĥ

(Ω)
eff for

initial state |gg〉 results in

|ψR(t)〉 =
[
cos V0t

8 |gg〉+ i sin V0t

8 |rr〉
]

exp(−i3V0t/8) (2.18)

when we project on to the rotated basis states given in Eqs. (2.16) to obtain the
final population in non-rotated basis,

Pgg(t) = cos4 Ωt
2 cos2 V0t

8 + sin4 Ωt
2 sin2 V0t

8 (2.19)

Pgr(t) = Prg(t) = 1
4 sin2 Ωt (2.20)

Prr(t) = cos4 Ωt
2 sin2 V0t

8 + sin4 Ωt
2 cos2 V0t

8 . (2.21)

These results indeed match very well with the numerical solution obtained by solving
the Schrödinger equation using the Hamiltonian in Eq. (2.1) when V0 � Ω is
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Figure 2.9: The population dynamics of states (a) |gg〉, (b) |rr〉 and (c) |gr〉 from
exact numerics (solid lines) and from analytical results (dashed lines) obtained using
Eq. (2.21) for V0/Ω = 0.1.

satisfied as shown in Fig. 2.9. Finally, we consider the non-interacting case, V0 � Ω
with small Rabi-offset, ω � Ω. With the initial state as |gg〉, the unitary evolution
with H(Ω)

eff gives the final state as

|ΨR(t)〉 = e−iV0t/4 × 1
2η

[
(η (cosωt/2 + cos ηt/4)− iV0 sin ηt/4) |gg〉

−i (η sinωt/2 + 2ω sin ηt/4) |gr〉+ i (η sinωt/2− 2ω sin ηt/4) |rg〉)

− (η (cos ηt/4− cosωt/2)− iV0 sin ηt/4) |rr〉
]
, (2.22)
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and then projecting to the rotated basis states given in Eqs. (2.16) we obtain the
populations for {V0, ω} � Ω as,

Pgg(t) = 1
4

(
cos (ω+2Ω)t

2 + cos ηt
4

)2
+ V 2

0
4η2 sin2 ηt

4 (2.23)

Pgr(t) =
(

1
2 sin (ω+2Ω)t

2 + ω
η

sin ηt
4

)2
(2.24)

Prg(t) =
(

1
2 sin (ω+2Ω)t

2 − ω
η

sin ηt
4

)2
(2.25)

Prr(t) = 1
4

(
cos (ω+2Ω)t

2 − cos ηt
4

)2
+ V 2

0
4η2 sin2 ηt

4 , (2.26)

where η =
√
V 2

0 + 4ω2. The time-averaged populations are

P̄gg = P̄rr = 1/4 + V 2
0 /(8η2), (2.27)

P̄gr = P̄rg = 1/8 + ω2/(2η2). (2.28)

For ω = 0, we recover the previous results. For ω 6= 0, P̄rr is an increasing function
of V0 which concurs with the initial increase with |V0| as seen in P̄rr at small values of
ω. Furthermore, the point corresponding to the peak value V P

0 that exists at small
ω and V0 values, is plotted in Fig. 2.8. It can be estimated by the V0 value at which
P̄rr from the effective Hamiltonian Eq. (2.27) equates to the following Lorentzian
function

f(V0/Ω) = 3Ω2

8[Ω2 + (V0/νrr)2] . (2.29)

The above Lorentzian profile of P̄rr is obtained at ω = 0 whose half-width νrr is a
parameter. The plot is fitted with the exact numerics to obtain nurr. An analytical
equation of the peak value can thus be obtained as,

V p
0 =

√
2
3

√
ω
(
−2ω +

√
4ω2 + 3ν2

rrΩ2
)
. (2.30)

The above equation is plotted as a dashed green line against the exact numerical
result in Fig. 2.8. Furthermore, we plot the initial increase of peak value using
the numerics as well as from the effective Hamiltonian in Fig. 2.10 and they are in
good agreement with each other. Note that we cannot explain the further decrease
from this effective Hamiltonian picture. As V0 becomes comparable to Ω the above
effective Hamiltonian picture is not useful. Nevertheless, it is clear that within this
regime there is a competition between ω and V0 which manifests as non-monotonicity
of time-averaged populations.

The effect of ω can thus be summarized as follows: For no offset, the |rr〉 popu-
lation is coherently populated via |gr〉 and |rg〉. A non-zero value of ω breaks this
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Figure 2.10: Comparison of results from exact numerical solution (solid lines) and
the effective Hamiltonian Ĥ

(Ω)
eff (dashed line) for ω/Ω = 0.1. (a) is for the time-

averaged populations P̄gg and P̄rr and (b) is for P̄gr and P̄rg.

symmetry and thus the previously identical route become non-identical, resulting
in a decrease in time-averaged populations of P̄gg = P̄rr from 0.375 to 0.25; and an
increase in P̄gr = P̄rg from 0.125 to 0.25. At small values of ω, the decrease in time-
averaged population P̄rr due to a small Rabi-offset can be partially compensated by
a small V0 (seen as a peak in P̄rr). Moreover, in the time-evolution of population,
we observe an envelope (frequency ∼ ω) superposed with beats having frequency
Ω. At slightly larger ω (∼ Ω), both the envelope and beat frequencies are similar;
and the decrease of |rr〉 population can no longer be compensated by any value of
V0. At significantly large values of either V0 or ω, the effective Hamiltonian pictures
mentioned throughout Case I and Case II adequately describe the time-evolution of
the population as well as time-averaged dynamics.

The effect of V0 is not monotonic but dependent upon the value of ω. For small ω
values a small value of V0 affects the time-dynamics in such a way that P̄rr increases.
However, at large V0 we get the expected blockade dynamics irrespective of ω.

2.5 Entanglement Dynamics

We now look at the evolution of the quantum correlations in the two-atom sys-
tem. We partition the system equally with the first atom as subsystem A and
the second atom as subsystem B. As mentioned in the Sec.1.5, the quantum cor-
relations for a pure state system can be measured by the entanglement entropy
SA = −Tr(ρ̂A log2 ρ̂A) with ρ̂A being the reduced density matrix for subsystem A,
or equivalently by Quantum discord D(A : B).

In particular, we analyze the temporal evolution of bipartite entanglement, at
different interaction strengths and Rabi-offsets. In Fig. 2.12, we show the time
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Subsystem A Subsystem B

Figure 2.11: The first atom is subsystem A and the second atom is referred to as subsys-
tem B. When interacting, the joint system state is no longer a simple tensor product of
subsystems A and B.

evolution of SA(t) for several values of V0/Ω and ω/Ω to ascertain the effect of ω on
entanglement. Each row contains four plots for different values of V0/Ω while keeping
ω/Ω fixed and vice versa is true for the columns. Since we start with a product state
|gg〉 as the initial state, there is no quantum correlation at t = 0, SA(0) = 0. With
time, the subsystems coherently entangle and disentangle with each other leading to
oscillations in SA(t). For ω = 0, at V0 = 0, the quantum correlations are non-existent
since the atoms are non-interacting (case not shown). However, at finite values of
V0, SA(t) oscillates with time between a minimum value of zero (product state) and a
variable maximum value. Moreover, the frequency of oscillations in SA(t) increases in
proportion to V0. At sufficiently large V0 such that blockade condition is satisfied,
SA(t) oscillates perfectly between the minimum, 0, and the maximum attainable
value of 1, indicative of coherent oscillations between |gg〉 and maximally entangled
state |+〉. On increasing ω to finite values, the growth of entanglement is slowed
down for lower values of V0/Ω without much affecting the maximum attainable value,
as evidenced in the first and second column of Figs. 2.12(a)-(e). It indicates that ω
effectively reduces the effect of interaction strengths between the two atoms for small
V0 or in other words, there exists a competition between V0 and ω as we pointed out
earlier in Secs. 2.3 and 2.4. However, for larger values of V0/Ω, the maximum of
entanglement entropy decreases significantly, as shown in the third and last column
of Figs. 2.12(a)-(e). In particular, when both ω/Ω� 1 and V0/Ω� 1, the quantum
correlations get suppressed due to the phenomenon of Rydberg-biased freezing [see
the last figure in Figs. 2.12(e)].

The maximum attainable value of entanglement SA(t) is plotted with respect to
V0/Ω and ω/Ω in Fig. 2.13. We introduced a lower cutoff for V0/Ω here as the time
required to achieve the maximum correlation value becomes increasingly large for
such small values of V0, particularly at larger ω values. The above discussion on
the growth and maximum attainable entanglement allows us to present a possibility
where the quantum correlations in the bipartite system of the two atoms can be
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Figure 2.12: (a)-(e) The time evolution of the entanglement entropy SA(t) obtained
from the reduced density matrix of the first atom for different ω/Ω and V0/Ω cor-
responding to the coherent dynamics discussed in the Sec. 2.3. In this case SA is
same as the discord D. The values of ω/Ω and V0/Ω are indicated in the left and
top sides respectively.

designed and controlled through a dynamic variation of Rabi-offset while keeping
the interaction value fixed.

Now, we demonstrate how to dynamically control the entanglement using Rabi-
offset ω. For this, we consider ω to be a time-dependent function [see Fig. 2.14(a)]
which varies as follows:

ω(t)/ωmax =



0, 0 ≤ αt ≤ π/2
cos2(αt), π/2 ≤ αt ≤ π

1, π ≤ αt ≤ 2π
cos2(αt), 2π ≤ αt ≤ 5π/2

0, 5π/2 ≤ αt ≤ 3π

(2.31)
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Figure 2.13: The maximum of SA(t) as a function of ω/Ω and V0/Ω corresponding
to the coherent dynamics discussed in the Sec. 2.3. The lower cutoff of V0/Ω = 0.5
in the vertical axis is because for smaller values, the time taken to attain maximum
SA(t) becomes extremely large.

where α determines the rate of change in ω. We keep the interaction strength large
at all times so that the bipartite system is in the blockade regime. At t = 0,
we start with |gg〉 state with the correlation zero. As long as ω remains null,
we see a complete periodic oscillation of entanglement entropy between 0 and 1
corresponding to blockaded oscillation between |gg〉 and bell-entangled |+〉 state.
However, upon a dynamic change of ω to ωmax = 8.0, we see that the quantum
correlations decrease significantly. This regime corresponds to the Rydberg-biased
freezing. In Fig. 2.14(b), the population of |gg〉 state and |+〉 is shown. As expected,
in the regime of Rydberg-biased freezing the lower correlations are accompanied by
lower population in the entangled state.

Upon reducing ω(t) back to zero, the correlations again begin to build up in the
system and attain the maximum correlation of signified by SA = 1 as ω vanishes.
In Figs. 2.14(b), the value of both α and ωmax is chosen such that the maximum
correlations are completely retrieved at later times along with blockaded regime
dynamics. This can be seen in 2.14(c) where the probabilities |〈X|ψ(t)〉|2 with
|X〉 ∈ {|gg〉, |+〉} exhibit perfect Rabi oscillations at later times.

2.6 Dissipative dynamics: Steady-states and quan-
tum discord

At this point, we discuss the effect of spontaneous emission from the Rydberg state
|r〉 on the dynamics of two-atom system. Once the spontaneous emission is taken
into account, the dissipative dynamics and the steady-state correlations are analyzed
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Figure 2.14: (a) The dynamics of SA(t) when the Rabi-offset ω is varied in time with
α = 0.1Ω (see text), V0/Ω = 10 and ωmax/Ω = 8. When ω reaches the maximum,
SA(t) is significantly suppressed, and is retrieved back to the initial dynamics once
ω is brought back to zero. (b) shows the overlap of |ψ(t)〉 on the states |gg〉 and |+〉
for the dynamics shown in (a).

using the master equation for the two-particle density matrix ρ̂,

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+ L[ρ̂], (2.32)

where the Lindblad superoperator given by

L[ρ̂] =
2∑
i=1

Ĉiρ̂Ĉ
†
i −

1
2
∑
i

(
Ĉ†i Ĉiρ̂+ ρ̂Ĉ†i Ĉi

)
(2.33)

with Ĉi =
√

Γσ̂igr as the jump operator and Γ as the spontaneous decay rate of the
Rydberg state |r〉. As time progresses, the dissipative mechanism allows the system
to attain a steady-state which is characterized by ∂tρ̂ = 0. The eventual state will
not be a pure state but a mixed state since the master equation describes only
the two-atom system and not the spontaneously emitted light. Hence, even if the
two-atom system is initially prepared in a pure state, the resultant steady-state is a
mixed state. Furthermore, in this section, we only use quantum discord to quantify
the quantum correlations in the two-atom system since the entanglement entropy
does not prove to be a good measure for mixed states correlations [see Sec. 1.5
for details]. Moreover, for a mixed state, the quantum discord obtained after the
measurement on the second atom D(A : B) may not be always equal to D(B : A)
where the measurement is instead made on the first atom. In our two-atom setup
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Figure 2.15: The steady-state populations: (a) ρgg, (b) ρrr, (c) ρgr and (d) ρrg as a
function of ω/Ω and V0/Ω with Γ/Ω = 0.1.

with an initial state ρgg = 1, D(A : B) = D(B : A) only holds at ω = 0 where an
exchange symmetry exists between the atoms. Furthermore, since the initial state
is a product state (|gg〉), we get diminishing values for quantum discords at t = 0.

First, we look at the steady-state populations: ρgg, ρgr, ρrg, and ρrr as a function
of ω/Ω and V0/Ω with Γ/Ω = 0.1 for the initial state ρgg = 1 in Fig. 2.15. Two
features are directly evident from the Fig. 2.15(b): (i) the doubly excited state (ρrr)
is completely suppressed at large V0 due to the blockade, and (ii) for sufficiently
large ω the blockade criteria remains independent of ω similar to that in the coherent
dynamics. In the blockade regime with very small ω � Ω, we get ρgg ≈ 0.5 and
ρgr ≈ ρrg ≈ 0.25 at the steady-state. At sufficiently large values of V0 and ω,
both ρrr [Fig. 2.15(b)] and ρrg [Fig. 2.15(d)] approach zero and the steady-state
populations are shared among ρgg [Fig. 2.15(a)] and ρgr [Fig. 2.15(c)]. These results
are fairly consistent with the time-averaged populations in the coherent case which
leads us to conclude that the phenomenon of Rydberg-biased freezing is robust
against dissipation.

To obtain more insights into the steady-state populations, we measure the purity
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Figure 2.16: The steady-state purity of the subsystems (a) A and (b) B, and (c)
the total system (AB) as a function of ω/Ω and V0/Ω. (d) shows the purity and the
quantum discords as a function of ω/Ω for V0/Ω = 10 (blockade region). Γ/Ω = 0.1
for all figures. In (d) the solid lines are the analytical results given in A.1 and
points are from the full numerical calculations for the steady-state purity. Dashed
lines show the quantum discords. The open squares show Tr (ρ̂2

A) × Tr (ρ̂2
B) which

matches to Tr (ρ̂2
AB) at large ω values.

of the total system (two-atom system denoted by AB) and its subsystems (first
atom is subsystem A and the second atom is subsystem B) at the steady-state. The
quantity Tr (ρ̂2

AB) measures the purity of the total system, and it fulfills the bounds
1/d ≤ Tr (ρ2

AB) ≤ 1, where d is the dimension of the Hilbert space. Only for pure
states Tr (ρ2

AB) = 1 and, therefore, if Tr (ρ2
AB) < 1 the system is in a mixed state. The

lower bound for a system of two-atoms is 1/4 and it represents a maximally mixed
state. Similarly, Tr (ρ̂2

A) [Tr (ρ̂2
B)] measures the purity of the subsystem A [B]. The

maximally mixed state for the subsystems attains a value of 1/2. We plot the purity
of the total system and subsystems as a function of V0 and ω in Fig. 2.16(a)-(c). For
small values of V0(� Ω), independent of the value of ω, the total system [Tr (ρ̂2

AB) ≈
1/4] as well as the subsystems [Tr (ρ̂2

A) ≈ 1/2 and Tr (ρ̂2
B) ≈ 1/2] are completely

mixed in the steady-state. Moreover, no quantum correlations exist between the
subsystems in the steady-state, see Fig. 2.17 for the corresponding quantum discord
values. Thus, the steady-state of the system can be approximately written as a
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Figure 2.17: The steady-state quantum discords (a) D(B : A) and (b) D(A : B) as a
function of ω/Ω and V0/Ω for Γ/Ω = 0.1. For ω 6= 0 we have D(B : A) 6= D(A : B).
For ω = 0, the correlations maximally saturate at large V0 due to Blockade, and
they start to diminish as ω increases. Discords vanish in the Rydberg-biased freezing
regime where the system is described by a product state.

product state, ρ̂AB = ρ̂A ⊗ ρ̂B and consequently Tr (ρ̂2
AB) = Tr (ρ̂2

A) × Tr (ρ̂2
B). In

other words, for sufficiently small V0, the initial correlations which were build up
from the interaction between the subsystems eventually got washed out due to the
dissipation resulting in a maximally mixed state.

As V0 increases, the purity Tr (ρ̂2
AB) also increases and saturates to a value of

1/2 in the blockade region. Interestingly, the latter happens independent of the
value of ω [Fig. 2.16(c)]. It may appear that a similar mechanism is responsible for
Tr (ρ̂2

AB) ≈ 0.5 at small or large values of ω in the blockade region. However, upon
accessing Tr (ρ2

A) and Tr (ρ2
B) [Fig. 2.16(a)-(b)] along with the quantum correlations

(Fig. 2.17), we see that the subsystems are indeed ω dependent. At small values of
ω, the subsystems are correlated which is signified by {Tr (ρ2

A) ,Tr (ρ2
B)} > 0.5 as

well as by a non-zero value of quantum discord. On the other hand, at large values
of ω, the subsystems become uncorrelated (also seen in Fig. 2.17) as the subsystem
A becomes pure Tr (ρ2

A) → 1 while the subsystem B remains mixed. The latter
is the regime of Rydberg-biased freezing. We particularly look at the purities and
quantum discord as a function of ω/Ω in the blockade region (V0/Ω = 10) in Fig.
2.16(d). As mentioned before, the system purity Tr (ρ2

AB) ∼ 0.5 is independent of ω
at large V0, but the purity of the subsystems depends strongly on ω/Ω as shown in
Fig. 2.16(a)-(b). The purity in the strongly driven atom (subsystem B) decreases
as a function of ω/Ω and becomes maximally mixed at sufficiently large ω, whereas
that of the first atom (subsystem A) increases with ω and eventually becomes a pure
state at very large values of ω/Ω. Thus, the total system is in a product state for
large V0 and ω, and the purity of the system becomes Tr (ρ̂2

AB) = Tr (ρ̂2
A)× Tr (ρ̂2

B)
as shown in Fig. 2.16(d).
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Figure 2.18: (a) The populations vs time for ω/Ω = V0/Ω = 5 and Γ/Ω = 0.1. The
inset shows the same for the initial period of time. (b) shows the time evolution of
both the quantum discords, and the purity of the total system and subsystems, for
the dynamics shown in (a).

When V0 increases for sufficiently small ω, the quantum correlations survive in
the steady-state as shown in Fig. 2.17, and its magnitude increases with an increase
in V0 eventually saturating to a constant value (which is Γ-dependent) at large values
of V0(∼ 10Ω). The strong correlations at large V0 for small ω are attributed to the
Rydberg blockade [210]. The maximum quantum discord possessed by the system
at large V0 decreases with an increase in the rabi-offset ω as shown in Fig. 2.16(d),
similar to the case of the coherent dynamics discussed in the Sec. 2.5.

Since the Rydberg-biased freezing is one of the main features in our studies,
we explicitly discuss the dissipative dynamics in that regime in Fig. 2.18. In
Fig. 2.18(a) we show the time evolution of the populations [ραβ(t) with α, β ∈ {g, r}]
for ω/Ω = V0/Ω = 5 and Γ/Ω = 0.1. At shorter times we see the damped Rabi
oscillations between the populations in states |gg〉 and |gr〉 [inset of Fig 2.18(a)]
whereas the populations in states |rg〉 and |rr〉 are suppressed. Eventually, the sys-
tem reaches a steady-state with nearly equal populations between |gg〉 and |gr〉. To
simplify the picture, the negligible |rg〉 and |rr〉 populations can be ignored making
the scenario identical to a single atom (strongly driven second atom) with a sponta-
neously emitting excited state while the first atom remains in its ground state. The
coherent field pumps in the excited state (of the second atom) whereas the decay
rate causes the loss. Eventually, the excitation rate becomes equal to the decay
rate of the excited state, and a steady-state is achieved [211]. Furthermore, the
driving strength (Ω+ω) is much stronger than the decay rate Γ ensuring a maximal
mixing which results in the populations ρgg ≈ ρgr ≈ 0.5. Fig. 2.18(b) shows the
corresponding dynamics of both the quantum discord and purities as a function of
time. The purity of the first atom (subsystem A), Tr (ρ̂2

A) remains close to unity
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during the dissipative evolution; albeit it exhibits small initial fluctuations but as
the system converges to the steady-state, the purity becomes more steady at unity.
The unit value is the indication that a pure state exists. This is indeed true as the
first atom remains frozen in the ground state due to the Rydberg-biased freezing
and therefore exists in a pure state. At the same time, the purity of the second
atom (subsystem B) Tr (ρ̂2

B) decreases and eventually converges to 1/2 indicating
that it is in a completely mixed state i.e., a mixture of |g〉 and |r〉 with equal popu-
lations. As a consequence, the density matrix of the total system is not maximally
mixed, and Tr (ρ̂2

AB) converges to 1/2. The dynamics of quantum discord is shown
in Fig 2.18(b) which tell us that the correlations build up in the system during the
initial stages of time evolution owing to large interactions but eventually converge
to a small value as the system approaches steady-state due to the Rydberg-biased
freezing.

Note that, we also obtained the analytical results for steady-state density ma-
trices, the purity of the system and subsystems, see A.1, and these are in excellent
agreement with the exact numerical calculations. The comparison is made in Fig.
2.16(d).

2.7 Conclusion and outlook

In conclusion, we studied the population dynamics and quantum correlations in a
system of a pair of two-level Rydberg atoms which are envisioned as driven contin-
uously and independently by two distinct light fields. In particular, we focused on
finding the effect of a Rabi-offset corresponding to the two atoms on the excitation
dynamics and quantum correlations when the atoms are interacting with each other.
In the coherent dynamics, we identified the novel feature of Rydberg-biased freezing
in the system, wherein augmenting the driving in one atom attenuates the popu-
lation dynamics of the second atom, in the strong interaction regime. In addition
to the effect of Rydberg-biased freezing, a non-monotonic behaviour in the double
Rydberg excitation at both small Rabi-offsets and interaction strengths is observed.
We accompanied the numerical results with analytical calculations derived from
the effective Hamiltonians obtained via unitary transformations at various limits
of system parameters. These are in very good agreement with the full numerical
results. In addition, quantum discord is studied to measure quantum correlations
in the system. Furthermore, we demonstrated that the quantum correlations can
be controlled using a dynamic time-dependent Rabi-offset. We further studied the
dissipative regime where spontaneous emissions from the Rydberg states are con-
sidered. We obtain steady-state dynamics and measure the entanglement in the
mixed state via quantum discord. It is noteworthy that the Rydberg-biased freezing
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is a robust phenomenon even with dissipation. We also showed the purity of the
two-atom system as well as its subsystems at the steady-state. Our study opens up
a new avenue to control quantum states or quantum correlations in a pair of Ryd-
berg atoms or equivalently in any other coupled two-level system. A recent study
conducted in the NMR architecture corroborates our central result of the Rydberg-
biased freezing in two and three qubits [212]. They experimental demonstrate the
population attenuation of the qubit driven with lower amplitude in the strongly
interacting regime. Furthermore, their quantum discord results show that the two
qubits are uncorrelated in the regime of strong interaction and strong Rabi-offset
as predicted by our study. The above study also extends the setup to three qubits
wherein they demonstrated a local quantum control based on Rydberg-biased freez-
ing. This experimental verification supports the possibility of quantum control in an
even larger chain of qubits using a local quantum control of two qubits by varying
the Rabi-offsets [213]. As an outlook, our study in the minimal setup of two Ryd-
berg atoms can be extended to a large number of Rydberg atoms or other qubits
either in a linear chain or in different geometries. In conclusion, the Rabi-offset (in
particular, Rydberg-biased freezing) may serve as a useful tool to control local state
dynamics and quantum correlations while studying quantum many-body physics
using Rydberg atoms or equivalent systems.



Chapter 3

Landau-Zener transition dynamics
under linear quench

The current chapter is adapted from the research article "Landau-Zener transi-
tions and adiabatic impulse approximation in an array of two Rydberg atoms with
time-dependent detuning" [87]. We analyze the population dynamics of a linearly
quenched pair of interacting Rydberg atoms. The variable interaction allows the
two-atom system to emulate different three-level Landau-Zener models ranging from
bow-tie to triangular. Our results show that the population dynamics non-trivially
depend on the initial state, the rate of quench, and the interaction strengths. We
further describe the dynamics for the strongly interacting case which is most com-
monly occurring in experiments, using the analytical model of Adiabatic Impulse
Approximation.

3.1 Introduction

In the ubiquitously found two-level quantum systems, often the eigenenergy lev-
els ’repel’ each other to create an avoided-level crossing. A dynamical variation of
Hamiltonian across such avoided crossings leads to non-adiabatic transitions. In
particular, if the variation of Hamiltonian is linear, the probability of transition
between the two eigenstates is given by the Landau-Zener formula [Eq. 1.22] [141–
144]. It is commonly known as the Landau-Zener (LZ) model after the pioneering
scientists L. Landau and C. Zener. An idea closely related to the LZ model is that
of adiabatic impulse approximation (AIA). As described in the two-level system
[see Sec. 1.4.2], under the AIA the time-evolution away from the avoided crossing
is considered adiabatic where the system only acquires dynamical phases; whereas,
the evolution exactly at the avoided crossing is considered non-adiabatic or an im-
pulse transition. The adiabatic and impulse transition matrices, in this case, are

53
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found using the exactly solvable two-level LZ model. It encapsulates the underlying
SU(2) symmetry of the two-level system. The applicability of AIA, however, reaches
beyond the linearly driven LZ model [214].

The Landau-Zener model has been generalized to both multi-level systems [215–
230] and many-body setups [178, 231–238]. If driven periodically across an avoided
level crossing, the separate LZTs interfere and lead to Landau-Zener-Stückelberg
(LZS) interferometry [214]. The interference is attributed to multiple exciting phe-
nomena such as the coherent destruction of tunnelling [161], dynamical localization
in quantum transport [164], and population trapping [159, 160]. On the application
side, such interference features can be utilized to control the population in qubit
state [239–241]. Ultracold Rydberg atoms provide a platform to study multi-state
Landau-Zener models [155]. The advantage of using Rydberg atoms in an LZ study
is twofold: firstly, an LZ transition can be used to prepare the collective state of
the two-atom system. In particular, we note that the LZ transition in a pair of
Rydberg atoms is not simply explained by a single three-level model but a variety
of three-level models. The different models occur at different interaction strengths.
At small interactions, the two-atom system acts like a three-level bow-tie model and
at large interactions like a triangular model. In this study, we highlight the role of
interactions in the study of LZ physics in a Rydberg atom setup. On the flip side,
since ultracold Rydberg atoms act like a quantum simulator, various three (or four)
level LZ models occurring in other systems such as quantum dots or spins systems
can be simulated using Rydberg atoms. Furthermore, due to the resemblance of the
triangular LZ model with an interferometer [242], atom interferometry can also be
studied in Rydberg atoms-based setups.

In this chapter, we study Landau Zener transition dynamics in a system of two in-
teracting two-level Rydberg atoms. The energy space of such a system is much more
involved than that of the two-level atoms. The system has three avoided crossings,
and the separation between each pair is tunable via Rydberg-Rydberg interactions.
Due to the tunable interaction, the setup can emulate various three-level LZ models.
Furthermore, due to multiple avoided crossings present in the system, interferences
between multiple Landau-Zener transitions occur and prompt the emergence of sev-
eral distinct features in the population dynamics. The resultant interference features
can be utilized for quantum state preparation, implementation of quantum gates,
or atom interferometry. Moreover, in the limit of strong interactions, the adiabatic
impulse approximation is able to closely match the numerical results.
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3.2 Eigenspectrum of two Rydberg atoms

We consider two two-level atoms each of which is driven by a light field having Rabi
frequency Ω, and detuning ∆ from resonance. The field couples the ground state |g〉
of atom to a Rydberg state |r〉 off-resonantly. In the frozen gas limit, the atom-light
system is described by the Hamiltonian

Ĥ = −∆
2∑
i=1

σ̂irr + Ω
2

2∑
i=1

σ̂ix + V0σ̂
1
rrσ̂

2
rr, (3.1)

where σ̂rr = |r〉 〈r| and σ̂x = |g〉 〈r|+ |r〉 〈g| are projection and transition operators,
respectively; and, V0 = C6/R

6 describes the van der Waals interaction between
two Rydberg excited atoms separated by a distance R. For V0 = 0, the atoms are
decoupled, and each of them exhibit dynamics independent of the other.

As with the case of single atom, two sets of bases are important to the LZ physics
which are described below. First, the reduced diabatic basis {|gg〉 , |s〉 , |rr〉}, where
|s〉 = (|gr〉 + |rg〉)/

√
2 is the symmetric state, which form the eigenstates of the

Hamiltonian when Ω = 0. Second, the adiabatic basis {|1〉 , |2〉 , |3〉} which are the
eigenstates of system Hamiltonian Ĥ. The two bases are related as

|j〉 = 1
A

(
−V0 − 2∆− Ej

Ej
|rr〉 −

√
2 (V0 − 2∆− Ej)

Ω |s〉+ |gg〉
)
, (3.2)

where j ∈ {1, 2, 3} and A is the normalization constant. Furthermore, the adiabatic
states |j〉 approach the diabatic ones asymptotically,

lim
∆→−∞

|1〉 = |gg〉, lim
∆→∞

|1〉 = |rr〉, (3.3a)

lim
∆→±∞

|2〉 = |s〉, (3.3b)

lim
∆→−∞

|3〉 = |rr〉, lim
∆→∞

|3〉 = |gg〉. (3.3c)

For Ω = 0, the Hamiltonian becomes diagonal in the reduced diabatic basis
and the energy of these states are simply obtained as the diagonal elements of
unperturbed Hamiltonian: {0,−∆,−2∆ + V0}. On the other hand, the energies
of adiabatic states En are found by diagonalizing the Hamiltonian H. These are
obtained from the roots of cubic polynomial: f(E) = −E3 + (V0− 3∆)E2 + (V0∆−
2∆2 + Ω2)E − V0Ω2/2 + ∆Ω2 as,

En = 1
3 [V0 − 3∆ + 2|C| cos(θn/3)] , (3.4)

where n ∈ {1, 2, 3}, θn = 3 arccos(Re(C)/|C|) + λn with λn = 2(3 − n)π, and
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C =
[(
D1 −

√
D2

1 − 4D3
0

)
/2
]1/3

having D0 = V 2
0 − 3V0∆ + 3∆2 + 3Ω2, and D1 =

2V 3
0 − 9V 2

0 ∆ + 9V0∆2 − 9V0Ω2/2.
For sufficiently large V0, when plotted as a function of detuning ∆, the energies of

diabatic states exhibit three level-crossings. At the same time, the adiabatic energy
levels display three separate avoided-level crossings, [see Fig. 3.1(b)]. However, for
weakly interacting atoms V0/Ω � 1, the avoided crossings are not resolvable [see
Fig. 3.1(a)]. Note that the time axis in Fig 3.1 can be simply interpreted as ∆-axis,
as the variation of detuning is linear. Each of these avoided crossings are located at

(i)∆ = 0, (|1〉 ↔ |2〉) , (3.5a)

(ii)∆ = V0/2, (|2〉 ↔ |3〉) , (3.5b)

(iii)∆ = V0, (|1〉 ↔ |2〉) . (3.5c)

For sufficiently large V0, the energy gaps at the avoided-level crossings ∆Eα∈{0,V0/2,V0}

are shown as a function of V0 in Fig. 3.1(c). The energy gaps at the first (∆ = 0)
and third (∆ = V0) avoided level crossing are identical ∆E0 = ∆EV0 , and increase
with V0 while eventually saturating to

√
2Ω . On the other hand, the gap across

the second crossing ∆EV0/2 decreases inversely with V0, i.e., ∆EV0/2 ∼ 1/V0. The
small value of ∆EV0/2 at larger V0 is indicative of the fact that |gg〉 and |rr〉 are
not directly coupled to each other. Note that a small value of V0 congregates the
avoided-level crossings, and a sufficiently large V0 isolates them from each other.

3.3 Different LZ Models

Now we consider the process where the detuning ∆ is linearly changed with time
starting from a large negative value to a large positive value,

∆ = ∆(t) = ωgr − ωL = vt (3.6)

It can be implemented by linearly varying the frequency of the exciting light field
(ωL); or equivalently by changing the level separation (ωgr), between the ground
state |g〉 and Rydberg level |r〉, through the strength of an applied static electric
field [243]. In the diabatic basis {|gg〉 , |s〉 , |rr〉}, the system of two Rydberg atoms
describes the three-level LZ model [215, 219, 220] as,

Ĥ =


0 Ω√

2 0
Ω√
2 −vt

Ω√
2

0 Ω√
2 −2vt+ V0

 . (3.7)
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Figure 3.1: Energy eigenvalues Ej as a function of detuning (which varies linearly in time
as shown in y-axes) for (a) V0 = 0.1Ω and (b) V0 = 5Ω. The diabatic energy levels are
shown by the dashed lines. The level crossings/avoided crossings in (a) form a three-level
bow-tie model, and in (b) form a triangular LZ model. The inset in (b) shows the avoided
level crossing at V0/2. The asymptotic eigenstates at t → ±∞ are given towards the left
and right end of the energy level diagrams. (c) shows the energy gaps ∆Eα = ∆Eα/Ω at
the avoided crossings as a function of V0. The inset shows the schematic setup for the LZ
interferometer in which the first (S1) and the second (S2) crossings act as beam splitters.
At the last crossing, O mixing takes place.

As mentioned before, the system has three avoided crossings [see Eq. 3.5 and
Fig.3.1(b)]. We consider a linear sweep of detuning starting from the far left of
the first avoided crossing (∆ = 0) to the far right of the final avoided crossing
(∆ = V0) encompassing all three avoided crossings in the process.

Among the diabatic states, |s〉 couples to both |gg〉 and |rr〉; but |gg〉 and |rr〉
are not coupled to each other. Therefore, for vanishing values of interactions, the
two-atom setup converges to a three-level bow-tie model shown in Fig. 3.2(a) [215,
216, 244, 245]. The same atomic setup can also mimic a four-level bow-tie model
[Fig. 3.2(c)] if we introduce an offset in Rabi frequencies or detunings of the two



58 CHAPTER 3. LZT DYNAMICS UNDER LINEAR QUENCH

(c)(b)(a)

Figure 3.2: Multistate Landau-Zener models. (a) The three level bow-tie model, (b)
a triangular LZ model (figures adapted from [223]), and (c) a four-level bow-tie model
(figure adapted from [246]).

atoms [86, 230]. For sufficiently large V0 (blockade regime), the avoided level cross-
ings form a triangular geometry [Fig. 3.1(b)]. A triangular LZ model [Fig. 3.2(b)]
exhibit beats and step patterns in the population dynamics which are strikingly
different from the two-level LZ dynamics [222, 229]. The Hamiltonian describing
two interacting Rydberg atoms in Eq. (3.1) is also identical to an anisotropic spin-1
model [221, 222]. With the mapping of states as {|gg〉 , |s〉 , |rr〉} → {|−1〉 , |0〉 , |1〉},
we get

Ĥs =
[
∆(t)− V0

2

]
Ŝz + ΩŜx + V0

2 (Ŝz)2, (3.8)

where Ŝz and Ŝx are the spin-1 matrices which are the generators of SU(2) rota-
tion of spinors; and V0 lifts the trifold degeneracy of the unperturbed energy levels
(Ω = 0), hence called easy-axis anisotropy in spin systems. In the limit of V0 → 0
there’s no anisotropy and the three avoided-level crossings merge at the point of zero
detuning [see Fig. 3.1(a)]. The spin-1 Hamiltonian then exhibits SU(2) symmetry
in accordance to that of non-interacting single atoms [220] [also see Appendix B.1].
However, in presence of Rydberg-Rydberg interactions, the underlying symmetry
belongs to the class SU(3). The model in Eq. (3.8) therefore is non-linear for the
SU(2) generators i.e., Ŝz and Ŝx; however, the nonlinearity is removed when the
Hamiltonian is expressed in terms of the generators of SU(3) group [222]. For de-
tails of representation see Appendix B.2.1. When V0 is sufficiently large, the three
avoided crossings get isolated from one another so that each avoided crossing com-
prises only two levels with underlying symmetry of SU(2) [see Fig. B.1].

3.4 LZ dynamics for different initial states

During the time-evolution, the first avoided crossing occurs at time t1 = 0 between
the states |1〉 and |2〉, the second avoided crossing between |2〉 and |3〉 occurs at time
t2 = V0/2v, and the final one between the states |1〉 and |2〉 takes place at t3 = V0/v.
As is evident, the adiabatic state |3〉 participates in only one LZT (at t2 = V0/2v),
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whereas the states |1〉 and |2〉 are each involved in two LZTs. Furthermore, if we
scale time in the Schrödinger equation corresponding to the above Hamiltonian (
t̃ = t/

√
v ), we observe that the rescaled Hamiltonian is only a function of two

parameters: Ω/
√
v and V0/

√
v instead of three. Therefore, we can argue that the

LZ transition probabilities will show a dependence on these parameters. In the
following, we analyze the state population dynamics as a function of both v and V0

conditioned to different initial states. The initial (ti) and final (tf ) times of evolution
are chosen such that the adiabatic states coincide with the diabatic ones.

3.4.1 Initial state: |ψ(ti)〉 = |1〉

Adiabatic states

The dynamics in adiabatic states is shown in the left columns of Figs. 3.3 and 3.4
for the initial state, |ψ(ti)〉 = |1〉, and initial time of sweep ti is chosen such that
|1〉 ≈ |gg〉.

Weakly interacting atoms — For V0 � Ω due to indistinguishable avoided level
crossings, the LZT transitions occur almost simultaneously from initial state |1〉
to the states |2〉 and |3〉, as seen in Figs. 3.3(a) and (b). The population transfer
from state |1〉 is nearly complete for sufficiently large v. If v is small, although the
transition times are coincident, the transfer of population is smaller [see Fig. 3.3(a)].
The small oscillations observed in the latter case eventually settle down to a steady
value after a long time when the adiabatic states coincide with diabatic ones.

Strongly interacting atoms — For V0 � Ω, all three LZTs are resolved in the
dynamics [see Figs. 3.4(a) and (b)]. Here, the first and third transitions which
correspond to the population transfer from |1〉 to |2〉, can be seen as major dips in
P1(t) near t = 0 and t3. The rises and dips in P2(t) at t = 0, t2, and t3 reflect all
three LZT of state |2〉. A singular rise in P3 at time t2 is due to the LZT between
|2〉 and |3〉. As expected from the two-level LZ formula [Eq. 1.22], the transfer of
populations across each avoided crossing is less for small v, and more for larger v.
The final population in each state, is then estimated by a sequential application of
each LZT [see Sec. 3.5].

We look at the final populations in the steady-state Pj(tf ), as a function of v
and V0 in Fig. 3.5 drawing insights from the LZ formula. As initially, the entire
population is in state |1〉, a sweep across the avoided crossings results in a decrease
in P1 across both the first (∆ = 0) and third avoided crossing (∆ = V0). Per the LZ
formula, the transfer is proportional to the quench rate v. This results in uniformly
decreasing final population P1(tf ) in the state |1〉. On the other hand, the state |3〉
participates in only one crossing (∆ = V0/2) across which the population transfer
increases with a large quench rate v. Thus, P3(tf ) is a monotonically increasing



60 CHAPTER 3. LZT DYNAMICS UNDER LINEAR QUENCH

300

0.5

1

-2
(b)

(a)

21-1

-0.5 0 0.50

0.5

1

6-2
0

0.5

1

-6 2 10

(c)

0 1 2-1

(d)

-0.5 0.5 1.5
 0

 0.5

 1

Figure 3.3: The dynamics of populations in the adiabatic (a)-(b), and the diabatic (c)-(d)
states for the initial state |ψ(ti)〉 = |1〉 ∼ |gg〉, v = (1Ω2, 10Ω2), and V0 = 0.1Ω. The first
LZT takes-place in the vicinity of t = 0. The thin arrows show the times around which
the second (t2) and the third (t3) LZTs occur. Since the LZTs are not resolvable, so a
single arrow is shown. The dashed horizontal lines in the right column show the results
from the non-interacting model.

function of v. However, P2(tf ) is non-monotonic with respect to v. We can reason
that while there is an influx of population from P1, there is also an outflux to P3

which may result in a concave valued function.
Further non-triviality in the patterns can be better understood by looking at

the energy gap across the avoided-level crossings. For instance, we expect that at
large V0, the steady state population P3(tf ) depends only depend on v. This is
because both ∆E0 = ∆EV0 saturates to

√
2Ω at large V0 as well as ∆EV0/2 becomes

minimal (∆EV0/2 � Ω) at larger V0. As a consequence of the former, after the first
avoided crossing, P2(t) becomes independent of V0. Furthermore, the narrow gap
at the second avoided crossing allows for a swift transition from |2〉 to |3〉. Given v
adequately large, the transfer is complete while for smaller values of v, the transition
is swift but the occupation probability is less [visible from the (red) dashed-dotted
line at t2 in Fig. 3.4(a) and (b)]. As a result, the final population in |3〉 (P3(tf ))
becomes independent of V0, provided V0 is sufficiently large. Counter-intuitively, we
observe that even for smaller values of V0, the steady-state P3(tf ) is invariant with
respect to V0 [see Fig. 3.5(c)]. It is better understood in terms of the dynamics of
diabatic states (see below). On the other hand, both the states |1〉 and |2〉 take part
in two crossings and therefore the phases acquired between the crossings (which may
not be independent of V0) become relevant and result in interference patterns seen
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Figure 3.4: The dynamics of populations in the adiabatic (a)-(b) and the diabatic (c)-(d)
states for the initial state |ψ(ti)〉 = |1〉 ∼ |gg〉, v = (1Ω2, 10Ω2), and V0 = 10Ω. The first
LZT takes-place in the vicinity of t = 0. The thin arrows show the times around which
the second (t2) and the third (t3) LZTs occur. The dashed horizontal lines in the bottom
row show the results from the non-interacting model.

across both Figs. 3.5 (a) and (b).

Diabatic states

In the right columns of Fig. 3.3 and 3.4, we also show the population dynamics in
the diabatic states for the same parameters as in the left column of the respective
figures. As opposed to adiabatic states, the population in the diabatic states ex-
hibits clear oscillations (similar to Rabi oscillations) between different states. The
amplitude of these oscillations reduces with time while the frequency increases. The
amplitude damping occurs because a time-varying detuning produces dephasing in
the coherent Rabi Oscillations. On the other hand, the frequency increases because
the instantaneous effective Rabi frequency is proportional to detuning, which is
growing with time [147]. As a note, the feature of oscillations exists in the impulse
regime in the diabatic states for the two-level system as well. A detailed description
of adiabatic and impulse regimes is given in Sec. 1.4.2. Below we look at weak and
strong interaction cases separately.

Weak interaction— For small values of V0 and v (i.e., V0/
√
v � Ω/

√
v and

Ω/
√
v � 1), the amplitude of oscillation is larger [see Fig. 3.3(b)]. We reason for

it in the following manner: At a small value of V0, all three avoided crossings are
located nearby and the effective energy gap may be large compared to that between
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Figure 3.5: The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉 and (c) |3〉 ∼ |gg〉, after the
linear quench, as a function of v and V0 for the initial state |ψ(ti)〉 = |1〉, ∆(ti) = −10Ω,
and ∆(tf ) = 30Ω + 10v/Ω.

two such levels. Combined with smaller quench rates v, the system spends a long
time at the impulse regime [see Sec. 1.4.2]. As a result, the system mixes through
oscillations in the impulse regime before reaching the adiabatic regime where the
amplitude damping occurs. Moving to the steady state populations, in the adiabatic
limit (v → 0), the initial population in |gg〉 completely transfers to |rr〉 independent
of the value of V0 [see Fig. 3.5]. As v increases, there is non-zero population in both
|s〉 and |rr〉 states.

For larger quench rates Ω/
√
v � 1 in the weak interaction regime, transfer

of population from |gg〉 to both |s〉 and |rr〉 is suppressed near t ≈ 0. This is
because the system does not spend significant time near the avoided crossings, thus
the effect of interactions is negligible. In this case, we can assume the atoms to
be non-interacting and we have P3(t → ∞) = Pgg = P 2

LZ , P2(t → ∞) = Ps =
2PLZ(1 − PLZ), and P1(t → ∞) = Prr = (1 − PLZ)2 where PLZ is same as in Eq.
(1.22). Dashed horizontal lines in Fig. 3.3(c) and (d) show the results from the
non-interacting approximation and are in a good agreement with the steady state
numerical results. On the other hand, for smaller quench rates v, a finite but small
V0 instigates small corrections to the purely non-interacting results. To describe
the steady state populations in this case, we take insight from the numerical result
that Pgg(tf ) remains independent of V0 [see fig. 3.5(c)], and therefore, we simply
consider Pgg(t→∞) = P 2

LZ . Further assuming that the correction factors depend on
arguments (Ω/

√
v and V0/

√
v), we intuitively come up with the analytical solutions

as,
Ps(t→∞) ≈ 1− P 2

LZ − (1−QLZ)2, (3.9)

and Prr(t→∞) ≈ (1−QLZ)2 where

QLZ = PLZ exp
(
−πΩ2V0

4v3/2

)
. (3.10)
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Figure 3.6: (a) The final population in the adiabatic/diabatic states as a function of v
for V0 = 0.1Ω with the initial state |1〉 ∼ |gg〉. (b) The same as in (a) but as a function
of V0 for v = 2Ω2. The solid lines show exact results, and the filled squares, circles, and
triangles are the theoretical prediction for small V0 in the limit tf →∞.

These results are in an excellent agreement with the numerical results for Pj(tf ) [see
Fig. 3.6], even for reasonably large values of V0.

Strong interaction— For V0 � Ω, the three avoided crossings are well separated.
However, the dynamics observed in the diabatic states do not show signatures of all
three LZTs. The reason is that |gg〉 is not directly coupled to |rr〉 and hence does
not leave any trace of second LZT (near t2) in the dynamics [see Figs. 3.4(c) and (d)].
After the first LZT (t1 = 0), Ps increases at the cost of Pgg. For sufficiently small v,
a near complete population transfer from |gg〉 to |s〉 occurs whereas for larger v, the
transferred population is smaller. At the third LZT near t3, population transfer from
|s〉 to |rr〉 occurs. This poses an interesting scenario in the limit of V0/v � 1/Ω,
namely that the system begins in an uncorrelated state (|gg〉), becomes entangled
(|s〉) during the evolution, and eventually becomes uncorrelated again (|rr〉) state,
as seen in Fig. 3.4(c). The population, as well as the duration of stay in either of
the states, can be controlled by tuning v and V0.

Interestingly, when the LZTs are resolved, the system is identical to an atom
interferometer. Our Landau-Zener interferometer is based on the amplitude splitting
at the (avoided) crossings. It is schematically shown in the inset of Fig. 3.1(c). The
(avoided) crossings act like beam splitters [S1 and S2 in Fig. 3.1(c)] whose thickness
is governed by the energy gaps and the quench rate v. At the final crossing O, the
interference between |s〉 and |rr〉 occurs, and the final population in |gg〉 is taken as
the residue leak from the interferometer.

Previously, we have seen that P3(tf ) ∼ Pgg is independent of V0 [see Fig. 3.5(c)].
This feature was partly explained, for large V0, using the adiabatic basis. A simple
and complete picture is obtained in the diabatic states, independent of the value of
V0. We know that in the three-level picture of two-atoms, the energy of |rr〉 state is
shifted by an amount V0 while that of |gg〉 and |s〉 states remain unchanged. Since
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the |gg〉 state is only coupled to |s〉, and both states are not directly affected by V0,
it plays no role in determining the population transfer from |gg〉 to |s〉. However, V0

can affect the population transfer from the reverse channel since |s〉 is also coupled
to |rr〉. In a single sweep of detuning with complete population initially in |gg〉, the
reverse process is absent, which leaves the final population in |gg〉 independent of V0.
Similarly, as we shall see later, for initial state |rr〉, the final population P1(tf ) ∼ Prr

remains independent of the value of V0.

Adiabaticity Criteria

At this point, we comment briefly on the criteria of adiabaticity for sufficiently large
V0, which becomes state-dependent in three-level systems. The adiabaticity criteria
are determined by the energy gap at the avoided crossing, which only affects the set
of states involved in the LZT. The energy gaps at the three avoided crossings are
obtained using Eq. (3.4) as,

∆E0 = ∆EV0 = − 2√
3
|C(t1)| sin

(
θ3(t1)

3

)
,

∆EV0/2 = 2√
3
|C(t2)| sin

(
θ1(t2)

3

)
, (3.11)

with θ1 = 3 arccos(Re(C)/|C|) + π and θ3 = 3 arccos(Re(C)/|C|) where t1 = 0
and t2 = V0/2v are the time at which the first and second avoided crossings are
encountered. The above expression considerably simplifies at large V0. The energy
gap ∆E0 saturates to a maximum value

√
2Ω while the leading order term for ∆EV0/2

is 2Ω2/V0 and falls off with V0, as seen in Fig. 3.1(c).
For initial state |1〉, the maximum gap ∆E0 =

√
2Ω (same as ∆EV0) decides

the adiabatic limit. This is independent of V0. On the other hand, on choosing
the initial state as |2〉 or |3〉, the smallest gap (among the three) ∆EV0/2 ≈ 2Ω2/V0

determines the adiabatic limit. Therefore, for V0 � Ω, with the approximation that
at each avoided level crossing only two levels participate, the adiabatic theorem
requires v � 2Ω2 for the adiabatic evolution. Similarly, we need v � 2Ω4/V 2

0 for
an adiabatic evolution if the chosen initial state is |2〉 or |3〉. Note that the small
gap ∆EV0/2 at large V0 ensures almost a complete population transfer between the
states |2〉 and |3〉 unless v is negligibly small. In other words, if the initial state is
|2〉 or |3〉, an adiabatic evolution is not guaranteed for a large value of V0/

√
v.
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Figure 3.7: The dynamics of populations in the adiabatic (a)-(b) and the diabatic (c)-(d)
states for the initial state |ψ(ti)〉 = |2〉 ∼ |s〉, v = (1Ω2, 5Ω2), and V0 = 0.1Ω. The three
LZTs are not resolvable in time hence depicted by a single arrow. The dashed horizontal
lines in (c) and (d) show the results from the non-interacting model.

3.4.2 Initial state: |ψ(ti)〉 = |2〉

Adiabatic states

Weak interaction — The left panels of Figs. 3.7 show the population dynamics
in adiabatic states for the initial state |2〉 in weakly interacting case. Keeping
V0 � Ω, but with smaller v, Rydberg-Rydberg interactions introduces an offset in
the dynamics of the states |1〉 and |3〉, i.e., P1(t) 6= P3(t) [see Fig. 3.7(a)]. For small
V0 and larger v, (i.e. V0/

√
v � 1), the interaction V0 doesn’t play any role, and we

get P1(t) = P3(t) as that of the non-interacting case [see Fig. 3.7(b)].
Strong interaction—The population dynamics in adiabatic states for the strongly

interacting case is shown in the left panels of Figs. 3.8. For V0 � Ω, the population
in |2〉 first gets transferred to |1〉 near t = 0. Afterwards, any remaining population
in |2〉 gets nearly completely transferred to |3〉 at second avoided crossing owing to
a small energy gap at t2. Near t3, when the system encounters the third avoided
crossing, the state |2〉 partially gains back population from state |1〉. The transition
probability between |1〉 and |2〉 depend on v whereas there is a complete transfer to
|3〉 at the second avoided crossing for sufficiently large v.

The steady state population in the adiabatic/diabatic states as a function of
v and V0 for the initial state |2〉 is shown in Fig. 3.9. Contrary to the case with
initial state as |1〉, here P3(tf ) ∼ Pgg is a variable function of V0 [see Fig. 3.9(c)].
Furthermore, the population P3(tf ) depends non-monotonically on v. For large V0
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this feature can be explained as follows: at smaller values of v, the transition from
|2〉 is adiabatic near the first avoided crossing (to |1〉) while becomes non-adiabatic
for the second avoided crossing (to |3〉) due to the small energy gap ∆EV0/2. Hence,
the transition probability to |3〉 increases with v and thus P3(tf ). However, for large
enough values of v, the transition becomes non-adiabatic across the first avoided
crossing as well, and the transition probability to state |1〉 increases with v while that
to |3〉 saturates, in effect leading to a decrease in P3(tf ). The non-trivial patterns in
P1(tf ) and P2(tf ) are due to the interference of LZTs at different avoided crossings.

Diabatic states

Now we shift our attention to the evolution in diabatic states which are shown in
the right panels of Figs. 3.7 and 3.8. The system is initially prepared in |s〉 state.

Weak interaction — For larger values of v in the weakly interacting regime i.e. in
the limit V0/

√
v � 1, the population in |s〉 state transitions to |gg〉 and |rr〉 states

with an equal probability, as seen (red and blue dotted lines) in Fig. 3.7(d). The final
populations are similar to that obtained from the non-interacting LZ model shown
as horizontal dashed lines in Figs. 3.7(c) and 3.7(d). The exact values of population
in the non interacting case are, Pgg(t → ∞) = Prr(t → ∞) = 2PLZ(1 − PLZ) and
Ps(t → ∞) = 1 − 4PLZ(1 − PLZ). At small interactions V0 � Ω with smaller
values of v, there is a slight difference in the population distribution among |gg〉 and
|rr〉 [see Fig. 3.7(c)]. This is because, at smaller v, the system spends more time
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Figure 3.8: The dynamics of populations in the adiabatic (a)-(b) and the diabatic (c)-(d)
states for the initial state |ψ(ti)〉 = |2〉 ∼ |s〉, v = (1Ω2, 5Ω2), and V0 = 10Ω. The first
LZT takes-place in the vicinity of t = 0.
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in the impulse regime. Therefore, it experiences effects due to non-zero but small
interaction and results in a deviation from the non-interacting case. A correction
incorporates the effect of finite but small V0 at smaller v values, similar to Eq. (5.4.2),

Pgg(t→∞) ≈ 1− P 2
LZ − (1−RLZ)2, (3.12)

Prr(t→∞) ≈ 1− P 2
LZ − (1−QLZ)2, (3.13)

Ps(t→∞) = 1− Prr − Pgg (3.14)
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Figure 3.9: The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉 and (c) |3〉 ∼ |gg〉, after the
linear quench, as a function of v and V0 for the initial state |ψ(ti)〉 = |2〉, ∆(ti) = −10Ω,
and ∆(tf ) = 30Ω + 10v/Ω.

where RLZ = PLZ exp
(
− πΩ2V0

25/2v3/2

)
. These results are in excellent agreement with

the exact numerical results (not shown).
Strong interaction — For V0 � Ω, the population transfer doesn’t happen si-

multaneously. The first LZT takes place near t = 0 from |s〉 to |gg〉 as shown in
Figs. 3.8(c) and 3.8(d). There is no signature of second LZT in the dynamics at
t2 since |gg〉 state is not coupled to |rr〉 state. In the vicinity of t3, the population
gets transferred from |s〉 to |rr〉. If the sweeping rate across first avoided crossing
is sufficiently slow, the system is adiabatically brought to |gg〉, a state with no Ry-
dberg excitations. This de-excitation is in stark contrast to the dynamical creation
of excitations by adiabatically sweeping the detuning from negative to large positive
values [136, 247, 248].

3.4.3 Initial state: |ψ(ti)〉 = |3〉

With the initial state as |3〉 and V0 � Ω, the first avoided crossing is irrelevant in
the dynamics. So the first transition occurs near t2 to state |2〉 [see Figs. 3.10(a) and
3.10(b)]. Afterwards, across the third avoided crossing, transition from |2〉 to |1〉
takes place. Thus, at large values of V0 and sufficiently large v, we have P3(tf ) ∼ 0
[see Fig. 3.10(b)]. Regarding the diabatic states, the initial population is solely
in |rr〉. Since the diabatic states do not experience the second avoided crossing,
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for V0 � Ω, only the third avoided crossing is relevant, and a singular population
transfer happens to |s〉 near t3 [see Figs. 3.10(c) and 3.10(d)]. At larger values of v,
the transition between |rr〉 and |s〉 gets weaker. For V0 � Ω with large v, in steady
state we get the results for the final population using the non-interacting LZ model:
Prr ≈ P 2

LZ , Ps ≈ 2PLZ(1 − PLZ), and Pgg ≈ (1 − PLZ)2. However for smaller v, we
incorporate the effect of a finite V0 and obtain the rectified values as:

P3(tf →∞) = Pgg ≈ (1−RLZ)2, (3.15)

P2(tf →∞) = Ps ≈ 1− P 2
LZ − (1−RLZ)2 (3.16)

P1(tf →∞) = Prr ≈ P 2
LZ . (3.17)

The final population in the adiabatic/diabatic states as a function of v and V0 for the
initial state |3〉 is shown in Fig. 3.11. Comparing final populations in Fig. 3.11 with
Fig. 3.9 and Fig. 3.5, we observe that the patterns in the v−V0 plane reoccurs. The
identical patterns are (i) P3(tf ) with initial state |1〉 and P1(tf ) with initial state |3〉,
(ii)P2(tf ) with initial state |1〉 and P1(tf ) with initial state |2〉 and (iii) P3(tf ) with
initial state |2〉 and P2(tf ) with initial state |3〉. This implies that Rydberg-Rydberg
interactions do not break the symmetry completely while swapping the states in the
LZ model.
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Figure 3.10: The dynamics of population in the adiabatic (a)-(b) and diabatic (c)-(d)
states for the initial state |ψ(ti)〉 = |3〉 ∼ |rr〉 with different values of v while keeping
V0 = 10Ω. The thin arrows show the times around which the second (t2) and the third
(t3) LZTs occur.
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Figure 3.11: The final population in (a) |1〉 ∼ |rr〉, (b) |2〉 ∼ |s〉 and (c) |3〉 ∼ |gg〉, after
the linear quench, as a function of v and V0 for the initial state |ψ(ti)〉 = |2〉, ∆(ti) = −10Ω,
and ∆(tf ) = 30Ω + 10v/Ω.

Beats

Depending on the geometric size of the triangle formed by the three avoided crossings
[see Fig. 3.1(b)], the triangular LZ model exhibits beat and step patterns in the
population dynamics of the diabatic states [154, 222]. These patterns arise due to
the quantum interference of distinct LZTs. We only briefly comment on the beats
pattern in our setup. The beats pattern is observed only in the population of the
Ps(t) as shown in Fig. 3.12(a) for different initial states. Based on the calculations
in Ref. [222], we would expect a beat pattern in Ps(t) if Ω2/4v � 1 and V 2

0 /4v < 1.
The envelope frequency is approximately V0/2, and the fast oscillation frequency
changes over time as approximately vt/4.

3.5 Adiabatic Impulse approximation

In this section, we employ the adiabatic impulse approximation to analyze the dy-
namics in the three-level LZ model described in Eq. (3.7). To separate adiabatic
and non-adiabatic regimes, we require V0 � Ω [see Figs. 3.1(b) and 3.12(b)]. When
the avoided crossings are well isolated, we assume that only two adiabatic states
are involved in each avoided crossings [also see Fig B.1]. It allows us to use the
non-adiabatic matrices obtained in the two-level LZ model discussed in Sec. 1.4.2.
The validity of AIA in the three-level LZ model requires the LZT time (τLZ) to be
shorter than the duration during which the system evolves adiabatically between
two LZTs (Ta = V0/2v). Since ∆E0 = ∆EV0 > ∆EV0/2 for V0 6= 0, the upper limit
for τLZ is set by τLZ ≈ ( 1

2
√
v
)max

(
1,
√

Ω2/4v
)
. Therefore, for v > Ω2/2, we require

V 2
0 > v for AIA to be valid, whereas for v < Ω2/2, AIA is already satisfied in the
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Figure 3.12: (a) The beats in the dynamics of Ps(t) for V0 = 2Ω, v = 5Ω2, and differ-
ent initial states. (b) The instantaneous energy eigenspectrum for ∆(t) = vt for large
V0. The adiabatic and non-adiabatic regimes are marked by the operators Û1,2,3,4 and
{Ĝ1LZ , Ĝ2LZ , Ĝ3LZ}.

strong interaction regime. The adiabatic evolution matrix is given by

Ûk =


e−iζ

{k}
3 0 0

0 e−iζ
{k}
2 0

0 0 e−iζ
{k}
1

 ,

where ζ{1}j =
∫ t1
ti
dtEj, ζ{2}j =

∫ t2
t1
dtEj, ζ{3}j =

∫ t3
t2
dtEj, and ζ

{4}
j =

∫ tf
t3 dtEj are

the phases acquired between the avoided crossings. We define the non-adiabatic
transition matrix Ĝ1LZ at the impulse point t1 in the basis {|1〉, |2〉, |3〉} as,

Ĝ1LZ =


1 0 0
0

√
1− P ′LZe−iφ̃

′
s −

√
P ′LZ

0
√
P ′LZ

√
1− P ′LZeiφ̃

′
s

 (3.18)
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Figure 3.13: The final population in the adiabatic/diabatic states as a function of both
V0 and v for the initial state |1〉 (a)-(b), |2〉 (c)-(d), and |3〉 (e)-(f). For the first column,
v = 2Ω2 and for the second column, V0 = 2Ω. The solid lines show exact results, and the
filled squares, circles, and triangles are from AIA.

where P ′LZ = exp(−2πΩ′2/4v), and

φ̃′s = π/4 + arg(Γ(1− iγ′)) + γ′(ln γ′ − 1) (3.19)

with γ′ = Ω′2/4v and Ω′ = ∆E0 ∼
√

2Ω. Similarly, the transition matrix at t2 is

Ĝ2LZ =


√

1− P ′′LZe−iφ̃
′′
s −

√
P ′′LZ 0√

P ′′LZ
√

1− P ′′LZeiφ̃
′′
s 0

0 0 1

 (3.20)

with P ′′LZ = exp(−2πΩ′′2/8v) and

φ̃′′s = π/4 + arg(Γ(1− iγ′′)) + γ′′(ln γ′′ − 1) (3.21)

with γ′′ = Ω′′2/8v and Ω′′ = ∆EV0/2. We have Ĝ3LZ = Ĝ1LZ since at t3, the
LZT involves |1〉 and |2〉. The complete evolution matrix in AIA is given by
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F̂L = Û4Ĝ3LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1. The resultant population obtained from AIA
|ψ(tf )AIA〉 = F̂ |ψ(ti)〉 is compared with the exact dynamics. The final form of
state |ψ(tf )AIA〉 thus obtained can be seen as a generalized rotation in SU(3) [see
Appendix B.2.2]. The final populations obtained from AIA and numerics are plotted
as a function of v and V0, for different initial states, and shown in Fig. 3.13. They
exhibit good agreement even beyond the criteria discussed above. One reason could
be that τLZ only sets the upper limit for the transition time, and the actual duration
for transition can be much shorter than that.

As shown in Figs. 3.13(a) and 3.13(c), for a fixed v, the final population in states
|s〉 and |rr〉 exhibit oscillations as a function of V0, indicating the role of quantum
interference between the distinct LZTs. On the other hand, for a fixed V0, upon
varying v we do not observe any oscillations. It indicates that the Stokes phases
(φ̃′s and φ̃′′s) become irrelevant in the final populations if the initial state is one of
the instantaneous eigenstates. We have verified this by setting φ̃′s = φ̃′′s = 0 in the
matrices Ĝ1LZ and Ĝ2LZ , and the results are hardly affected by it. If the initial state
is not the instantaneous eigenstate, the Stokes phases become important. In that
case, we will observe oscillations in the final populations as a function of v keeping
V0 fixed. Ultimately, AIA reveals the different phases involved in the dynamics.

3.6 Summary and outlook

In summary, we analyzed the LZ dynamics in a setup of two Rydberg-atoms with
a time-dependent linear detuning. We have shown, the Rydberg-atom setup real-
izes different LZ models such as the bow-tie model and the triangular LZ model.
Since state-of-the-art Rydberg setups deal with strong Rydberg-Rydberg interac-
tions (RRIs), the triangular LZ model can be tested in these systems through chirp-
ing the frequency of laser field, which couples the ground to the Rydberg state
[149–151, 217, 249]. For two atoms (which can be easily realizable using optical
tweezers or microscopic optical traps [76]), the LZ dynamics showed a non-trivial
dependence on the initial state, the quench rate, and the interaction strength. We
discussed in detail the validity of AIA in describing the dynamics for a linear vari-
ation of detuning. Interestingly, AIA reveals detailed information about the phases
developed during the dynamics, which can be very useful for applications such as
coherent control of quantum states, implementing quantum (phase) gates [138, 250],
and atom-interferometry [251].

While implementing AIA, we rely on large RRIs for which the LZTs across each
avoided crossing include only two adiabatic states. For small interactions, it is
required to develop a multi-level AIA in which the LZTs take place among multiple
levels at the same time. Our study can be extended to three two-level atoms, for
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which it will not be so straightforward to assume AIA would work at large values
of interactions due to the complexity in the level structure.
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Chapter 4

Landau-Zener transition and
adiabatic impulse approximation
in a periodically driven pair of
Rydberg atoms

The current chapter is adapted from the research article "Landau-Zener transitions
and adiabatic impulse approximation in an array of two Rydberg atoms with time-
dependent detuning" [87]. We analyze the population dynamics of a periodically
driven single two-level atom as well as a pair of interacting Rydberg atoms, both
numerically and with adiabatic impulse approximation. In particular, the coherent
resonances instigated by periodic driving are investigated for different initial states
and driving amplitude. For the single atom case, we observe a striking similarity
in the single-atom excitation probability with that of the intensity distribution in a
uniform antenna array. For the two atom case, we show that for AIA to capture all
the resonances, the periodic modulation should incorporate all the avoided crossings
present in the system. Furthermore, AIA reveals the rich structure of phases involved
in the dynamics which could be very relevant in coherent preparation of quantum
states, implementation of entangled gates, and in Landau-Zener interferometry.

4.1 Introduction

Periodically driven quantum systems exhibit a wealth of rich dynamics that are not
accessible within stationary quantum mechanics. In the single-particle case, no-
table phenomena such as coherent destruction of tunneling [161], dynamical local-
ization [164, 252], and population trapping [159, 160] occur. Such dynamics emerge
from the interferences among multiple LZTs when the system is driven periodi-

75
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cally across an avoided crossing. The intricate interference pattern can be observed
through Landau-Zener-Stückelberg (LZS) interferometry [214] in superconducting
qubits [229, 242, 251, 253, 254], quantum dots [239, 241, 255], electronic qubits
[256–258], dopant embedded in nanowires [259], or optical waveguides [260]. There
is a growing interest in multi-particle systems where transition across multiple LZTs
acts as a robust method to control the states or are used as a quantum gate oper-
ation using quantum dots [240], and Rydberg atoms [138, 250]. Periodically driven
pair of Rydberg atoms can engineer the parameter space for Rydberg-blockade and
anti-blockades [137]. To implement periodic driving in a Rydberg chain, one can
modulate the light field which couples the ground to the Rydberg state. Another
way is to apply additional radio-frequency or microwave fields, and they provide
off-resonant couplings to other Rydberg states [261, 262]. To analyze the dynamics,
the AIA approach is very useful in the context of periodic driving [263–266]. We
have described AIA in Sec. 1.4.2 and further used it to describe the dynamics in a
linearly driven system of two-atoms in Chapter 3. In this chapter, we extend the
applicability of AIA to the periodically driven case.

We analyze the population dynamics of two-level Rubidium Rydberg atoms in
which the ground state (5S1/2) is coupled to a Rydberg state (nS1/2) with a period-
ically time-dependent detuning in a single atom and a pair of Rydberg atoms. The
dynamics are investigated with both numerics and AIA for different initial states,
driving amplitudes, and cycles of periods in both adiabatic and diabatic states.

4.2 Periodically driven single two-level atom

In this section, we review the single two-level atom under the influence of a period-
ically varying detuning in consideration with adiabatic impulse approximation. As
before, we consider the two-level atom with a ground state |g〉 and a Rydberg state
|r〉. The two-level atom is driven continuously by a light field with Rabi frequency
Ω and a periodically time-dependent detuning ∆(t) = ∆0 + δ sin(ωt). Allowing the
motional degrees of freedom to be frozen at ultracold temperatures under controlled
experimental environment, the system can be described by the Hamiltonian (~ = 1),

Ĥ(t) = Ω
2 σ̂x −∆(t)σ̂rr,

where σ̂x = σ̂gr + σ̂rg is one of the Pauli’s operator and σ̂ab = |a〉 〈b| are atomic
operators with a, b ∈ {g, r}. The two important set of bases are (a) diabatic basis
which consist of states {|g〉 , |r〉} and (b) the adiabatic basis |φ±(t)〉 which is given
in Eq. (1.19). We especially note from Eq. (1.18) that the energies of the adiabatic
levels exhibit an avoided-crossing at times when ∆(t) = 0 [also see Fig. 1.6(a)].
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0

Figure 4.1: The top panel shows the instantaneous energy eigenvalues E± and the
energy gap at avoided-crossing is Ω. The bottom panel depicts periodic time dependence
of ∆(t). Away from the avoided crossing, adiabatic evolution takes place while at the
avoided-crossing, instantaneous impulse transition occurs under the AIA.

Unlike a linear sweep where the avoided-crossing is encountered only at a single
instant, under a periodic modulation of detuning, the avoided-crossing (∆(t) = 0) is
encountered at multiple times during evolution, as shown in Fig. 4.1. Furthermore,
under suitable parameter regimes, we can employ AIA in the system i.e. away from
the avoided-crossing, we consider that an adiabatic evolution takes place in which
the system remains in the instantaneous eigenstate of the Hamiltonian; whilst in the
vicinity of avoided-crossing, the evolution is of impulse kind where a non-adiabatic
transition (LZT) occurs, as indicated in Fig. 4.2(b). From the Sec. 1.4.2, we also
know that for a single linear sweep across the avoided-crossing, transition probability
between the adiabatic levels is PLZ = exp

(
−π Ω2

2|v|

)
.

For a periodic sweep, the multiple instants at which the avoided level crossing
(∆(t) = 0) is encountered, are specified by the ordered set,

τ2n = [2nπ + sin−1 (−∆0/δ)]/ω (4.1)

τ2n+1 = [(2n+ 1)π − sin−1 (−∆0/δ)]/ω, (4.2)

where n = 0, 1, 2, ..., which are labelled in Fig 4.2(a) within one complete cycle of
periodic detuning. At these instants, the detuning can be approximated, in the
lowest order, as a linear function ∆(τn ± t) ≈ ±vt with v = ω

√
δ2 −∆2

0 through
a Taylor’s series expansion [214]. The linearity of detuning in fact makes each
impulse evolution identical to a LZT with transition probability given by Eq. (1.22)
and evolution matrix directed by Eq. (1.21). Away from the avoided-crossings,
the adiabatic evolution matrix is given by unitary operator Û(t2, t1) described in
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0

Energy

Full Cycle
(a)

(b)

Figure 4.2: (a) (Top) The periodic modulation of ∆(t) as a function of time. τj=0,1,2
indicate the instants at which the avoided crossing is encountered during one cycle. (b)
(Bottom) The instantaneous energy eigenvalues E± corresponding to the time-dependent
detuning. At the avoided crossings, t = τ2n(τ2n+1) LZT occurs and is described by the
operator ĜLZ(ĜTLZ). On either side of the avoided-crossing, an adiabatic evolution takes
place which is determined by Û1 and Û2. The shaded areas indicates the phase accumulated
(ζ±) during the adiabatic evolution.

Eq. (1.21). Note however when ∆0 6= 0, there is a disparity in phases accumulated
under adiabatic evolution to the left and right sectors of an avoided crossing and
thus the two corresponding evolution matrices become dissimilar.

4.2.1 Time-evolution under AIA

We first consider evolution over a half-cycle, in particular from ti = τ1−π/2ω to tf =
τ1+π/2ω. Considering AIA, we can write the evolution matrix as Û2(tf , τ1)ĜT

LZÛ1(τ1, ti)



4.2. PERIODICALLY DRIVEN SINGLE TWO-LEVEL ATOM 79

where we have defined the adiabatic matrices Û1 and Û2 as

Û1(τ1, ti) =
 e−iζ+(τ1,ti) 0

0 e−iζ−(τ1,ti)

 ,
Û2(τ2, τ1) =

 e−iζ+(τ1,ti) 0
0 e−iζ−(τ1,ti)

 ,
with accumulated phases ζ±(τ1, ti) =

∫ τ1
ti
dtE±(t) and ζ±(τ2, τ1) =

∫ τ2
τ1
dtE±(t). The

impulse transition at time τ1 corresponds to a negative sweep rate and consequently
the non-adiabatic evolution matrix is given by a transpose of ĜLZ ,

ĜT
LZ =

 e−iφ̃s
√

1− PLZ
√
PLZ

−
√
PLZ eiφ̃s

√
1− PLZ

 . (4.3)

The final populations, in this case, are similar to the case of a single Landau-Zener
transition and are given simply through Eq. (1.21). However, as we increase tf to
incorporate more avoided crossings during the evolution, the final population signif-
icantly diverges from the above case. As we’ll see below, the transfer probabilities
also become periodic with a maximum achievable value of unity and a minimum
value of zero. As a general remark, the order of impulse and adiabatic matrices
should be cautiously written depending on the avoided-crossing (τn), the initial (ti),
and final (tf ) times.

For the whole cycle, two LZTs actualize during the course of evolution. Upon
employing adiabatic impulse approximation, we write the complete time-evolution
operator for one time-period, assuming ∆0 > 0, starting at ti = 0 till tf = 2π/ω as,
F̂ = Û1(2π/ω, τ2)ĜLZÛ2(τ2, τ1)ĜT

LZÛ1(τ1, 0) [see Figs. 4.2(a) and 4.2(b)]. The same
can be written as a matrix in the adiabatic basis {φ−, φ+} as:

F̂ = eiφG

 g11 −g∗21

g21 g∗11

 , (4.4)

where φG = exp
(
i
∫ 2π/ω
0 ∆(t)dt/2

)
is the global phase, and adiabatic basis is given

by Eq. (1.19). The survival and transition probability amplitudes are respectively,

g11 = e−iη0(1− PLZ) + e−iη1PLZ , (4.5)

g21 = (e−iη3 − e−iη2)eiφ̃s
√

(1− PLZ)PLZ , (4.6)

where, η0 = 1
2

∫ 2π/ω

0
Ω̄dt+ 2φ̃s, η1 = 1

2

∫ 2π/ω

0
Ω̄dt−

∫ τ2

τ1
Ω̄dt,
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η2 = 1
2

∫ 2π/ω

0
Ω̄dt−

∫ 2π/ω

τ2
Ω̄dt+ 2φ̃s, η3 =

∫ τ1

0
Ω̄dt− 1

2

∫ 2π/ω

0
Ω̄dt

are the dynamically accumulated phases. It follows that if the system is initially
in the ground state, the transition probability to the excited state after a complete
cycle of Hamiltonian is,

P 1
+ = |g21|2 = 4(1− PLZ)PLZ sin2 φs, (4.7)

in which the phase φs = 1
2
∫ τ2
τ1

Ω̄dt + φ̃s is called the Stückelberg phase wherein
Ω̄(t) =

√
∆(t)2 + Ω2 and φ̃s is the Stoke’s phase defined in Eq. (1.21). The transition

probability is a periodic function of Stückelberg phase φs and may range from 0 to
a maximum value of 4(1 − PLZ)PLZ . Equivalently, we can reason that the distinct
features of one-cycle transition probability are arising due to quantum interference
between Landau-Zener transitions at τ1 and τ2. In conclusion, the accumulated
phases between the LZTs as well as the phase change during the LZTs (φ̃s) play a
crucial role in the characterization of the dynamics in a complete cycle.

The maxima and minima of Eq. (4.7) provide us the exact conditions for con-
structive or destructive interference for a single cycle. A constructive interference
occurs at φs = (n + 1/2)π leading to |g21|2 = 4(1 − PLZ)PLZ , and a destructive
interference ( |g21|2 = 0 ) occurs at φs = nπ where n = 0, 1, 2, .... Note that,
so long as the LZT time (the duration for which the LZT takes place across an
avoided crossing) is sufficiently shorter than the duration of adiabatic evolution be-
tween the two transitions, the AIA holds valid. Hence, for durations such that
τLZ < [π − 2 sin−1(−∆0/δ)]/ω, AIA gives a good approximation of the dynamics.
An upper limit for the transition duration τLZ is given by

(√
γ/Ω

)
max(1,√γ) with

γ = Ω2/4v, and therefore the validity of AIA requires δ−∆0 > Ω and δω > Ω2 [145,
146, 214]. In Fig. 4.3(a), we show the probability of transition from the ground state
to excited state after evolution for a single cycle of detuning, ti = π/2ω, tf = 5π/2ω,
for δ = 20Ω and ∆0 = 5Ω. The populations obtained under AIA are in an excellent
agreement with the exact numerical results.

In a similar fashion, we can evaluate the evolution matrix after multiple cycles
of detuning under AIA. For k cycles, we simply have k ordered full-cycle operators
and the evolution operator is F̂ k = (Û1ĜLZÛ2Ĝ

T
LZÛ1)k. In the adiabatic basis

{|φ−〉, |φ+〉} the k-cycle evolution matrix is [214],

F̂ k = eikφG

 u11 −u∗21

u21 u∗11

 , (4.8)

where the survival probability amplitude is u11 = cos kα + iIm(g11) sin kα/ sinα
while transition probability amplitude is u21 = g21 sin kα/ sinα with the angle α
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Figure 4.3: The transition probability to the excited state as a function of ω when the
atom is initially prepared in the ground state for (δ = 20Ω, ∆0 = 5Ω) at ti = π/2ω after
(a) one cycle and (b) 10 cycles. The solid line shows the exact results, and the dashed line
is the same but from AIA. In (b), the peak at ω/Ω = 2.5 corresponds to the resonance
2ω = ∆0. (c) Interference pattern obtained using AIA: the long-time averaged population
in the excited state (P̄+) as a function of ∆0/Ω and δ/Ω for ω = 0.32Ω. The density peaks
correspond to the resonances, and the solid lines mark the validity of AIA.

defined by cosα = Re(g11). Therefore, the transition probability from the ground
to the excited state after k-cycles of the periodic detuning is

P k
+ = |u21|2 = 4(1− PLZ)PLZ sin2 φs

sin2 kα

sin2 α
. (4.9)

We show the transition probabilities to the excited state after 10 cycles in Fig. 4.3(b).
We can see that AIA is able to capture the resonances (sharp distinct peaks in
4.3(b)) which become a prominent feature in the dynamics when the system is
taken through the avoided-crossing multiple times. To characterize the resonances
and anti-resonances in the system, the long-time averaged populations are often
useful. When ω � Ω, taking a time-average of dynamics is equivalent to taking an
average of occupation probabilities over a large number of cycles (k � 1) [214]. The
(cycle) averaged occupation probability in the excited state is given by,

P̄+ = 2(1− PLZ)PLZ sin2 φs√
[4(1− PLZ)PLZ sin2 φs]2 + Im(g11)2

. (4.10)

The maxima of the above equation gives criterion for a complete resonant transi-
tion between the adiabatic states allowing for both P̄+ = P̄− = 1/2. Thus, resonance
occurs when Im(g11) = −[(PLZ) sin η1 + (1 − PLZ) sin η0] = 0. In the fast passage
limit (γ � 1), PLZ ≈ 1 and the resonance criteria reduces to ∆0 = nω. The crest
at ω/Ω = 2.5 in Fig. 4.3(b) is attributed to the resonance at 2ω = ∆0. In the slow
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Figure 4.4: The excitation probability after ten cycles as a function of α for δ/Ω = 20,
∆0 = 0 and ω is varied. A given α is not associated with a unique value of ω, leading to
the scattered points, but bounded by a maximum value of sin2 kα shown by the solid line.

passage limit we don’t get a simplified expression for the resonance, but the reso-
nances can be identified from the density peaks of P̄+ [see Fig. 4.3(c)] for smaller
values of δ/Ω [267]. Note that a resonance defined by a complete transition among
adiabatic states also implies coherent Rabi oscillations between the diabatic states,
|g〉 and |r〉 [145].

4.2.2 Comparison with Multi-slit interference Pattern

We identify an interesting resemblance in the form of the Eq. (4.9) with the intensity
distribution pattern obtained by an antenna array or simply a series of N identical
uniformly spaced narrow slits separated by the same distances d. The N -slit inter-
ference pattern is of key importance in quantum mechanics due to its simplicity and
key role in revealing the wave nature of both light and electrons. For the multi-slit
array, the intensity due to multiple interference, along the direction θ is given by
[268],

I(θ) = I0
sin2(kφ/2)
sin2(φ/2) , (4.11)

where I0 is the intensity from a single slit. The angle, φ = 2πd sin θ/λ is the
phase difference between the consecutive slits where d is the spacing between the
adjacent slits, and λ is the wavelength of incident light. Furthermore, I0 is considered
a constant upon neglecting the slit widths i.e. under narrow slit approximation.
The N -slit intensity pattern takes a maximum value of N2I0 for φ = 2nπ where
n = 0, 1, 2, 3, ..., and there are k − 1 minima between two principal maxima which
are located at φ = 2π/N, 4π/N, ..., 2(N − 1)π/N . Accordingly, there are also N − 2
subsidiary maxima between two principal maxima.
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Though the form of equations Eq. (4.9) and (4.11) is similar, the two have key
differences. For instance, I0 in Eq. (4.11) is independent of the angle φ, whereas
the corresponding terms |g21|2 and α in Eq. (4.9) have common dependencies on
variables such as ω and δ. In the latter case, a little algebra reveals that the maxima
in the transition probability occur at cos kα = 0 or α = (2n + 1)π/2k, and the
minima occur at sin kα = 0 or α = nπ/k. A key difference in the probability
distribution is thus that α = 0 doesn’t correspond to a maximum for any value of k
but instead, it is a minimum. This is in sharp contrast to the antenna array intensity
distribution for which φ = 0 always represents a principal maximum irrespective of
the number of slits. Another major difference is that there are no secondary maxima
in the excitation probability and consequently, only one minimum between the two
maxima values. The corresponding probability distribution pattern obtained from
AIA is shown in Fig. 4.4, which shows excitation probability after ten cycles (k = 10)
as a function of α, for δ/Ω = 20 and ∆0 = 0 by varying ω (similar results can be
obtained if δ or ∆0 is varied). As there is no one-to-one correspondence between
α and ω, it leads to a multi-valued plot with each scattered red-dot corresponding
to different values of ω in Fig. 4.4. For a fixed α, the maximum value of P k

+ is
provided by the condition Im(g11) = 0, and we have (P k

+)MAX = sin2 kα, which is
shown by the solid green curve in Fig. 4.4. As the number of cycles (k) increases, the
number of peaks within the range (0, π) increases and as a result, each peak also gets
sharper. The number of peaks is equal to the number of cycles of the periodic drive.
For example, for k = 1, there’s only one maximum in (0, π) while for k = 10, there
are 10 maxima. These results imply that, by appropriately choosing the modulation
parameters and the number of cycles k, we can control the transition probability
in a two-level atom. In the following section, we consider the case of periodically
driven two-atoms.

4.3 Periodic modulation in two-atoms

Now, we consider the two-atom case where the system is described by the Hamilto-
nian

Ĥ = −∆(t)
2∑
i=1

σ̂irr + Ω
2

2∑
i=1

σ̂ix + V0σ̂
1
rrσ̂

2
rr, (4.12)

where V0 = C6/R
6 is the Rydberg-Rydberg vdW interaction between the atoms

separated by a distance R with C6 being the van der Waals coefficient. We consider
the detuning as periodically varying with time ∆(t) = ∆0 + δ sin(ωt) as the system
is driven across the different avoided-crossings [see Fig. 4.5]. As discussed in chapter
3 and shown in Fig. 3.1, this Hamiltonian has three types of avoided-level crossings
respectively at detunings ∆(t) = 0, ∆(t) = V0/2, and ∆(t) = V0. We take V0 � Ω so
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that the three avoided level crossings are well-isolated and we can implement AIA, as
discussed in Sec. 3.5. We further choose a large negative offset in detuning at t = 0,
i.e. ∆0 � 0 so that the adiabatic and diabatic states coincide with one another at
the initial time ti = 0. In what follows, we analyze the population dynamics for
different initial states as a function of the experimentally controllable parameters δ
and ω.

The avoided crossing at ∆(t) = 0 involves states |1〉 and |2〉, and has a periodic
occurence at times,

τ
(1)
2n = [2nπ − sin−1 (∆0/δ)]/ω, (4.13)

τ
(1)
2n+1 = [(2n+ 1)π + sin−1 (∆0/δ)]/ω, (4.14)

where n = 0, 1, 2, .... Near these avoided-crossings τ (1)
m the detuning is approximately

a linear function of time, in the zeroth order, i.e., ∆(τ (1)
m +t̃) = ∆0+δ sinω(τ (1)

m +t̃) ≈
δωt̃ cosωτ (1)

m =
(

(−1)mω
√
δ2 −∆2

0

)
t̃. Thus, we obtain the quenching rate across

the first avoided crossing, v1 = ±ω
√
δ2 −∆2

0 and a LZT matrix can be used to
describe the impulse transition. Note that, the approximation is valid as long as
t̃� 1/ω.

Similarly, the second set of avoided crossings that involves states |2〉 and |3〉)
occur when ∆(t) = V0/2 at instants

τ
(2)
2n = [2nπ + sin−1 ((V0/2−∆0)/δ)]/ω (4.15)

τ
(2)
2n+1 = [(2n+ 1)π − sin−1 ((V0/2−∆0)/δ)]/ω (4.16)

with quench rates v2 = ±ω
√
δ2 − (∆0 − V0/2)2. Further, the third set of avoided

crossings that involve states |1〉 and |2〉 again, occur when ∆(t) = V0 at times

τ
(3)
2n = [2nπ + sin−1 ((V0 −∆0)/δ)]/ω, (4.17)

τ
(3)
2n+1 = [(2n+ 1)π − sin−1 ((V0 −∆0)/δ)]/ω. (4.18)

with corresponding quench rates v3 = ±ω
√
δ2 − (∆0 − V0)2. The impulse evolution

at every avoided crossing can be obtained by suitably replacing v by v1, v2, and v3

in the LZT matrix in Eq. (3.18), Eq. (3.20) and Eq. (3.18), respectively giving us
Ĝ1LZ , Ĝ2LZ , and Ĝ3LZ . Using the quench rates, we estimate the upper limit of the
LZT durations across the avoided-crossings at τ (1)

m , and τ (3)
m as

τLZ1 = 1
2
√
|v1|

max
(

1,
√

Ω′2/4|v1|
)
,

τLZ3 = 1
2
√
|v3|

max
(

1,
√

Ω′′′2/4|v3|
)
,

(4.19)
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Energy

0

Figure 4.5: The above panel depicts the adiabatic (colored-solid lines) and diabatic
(dashed-black lines) energy levels Ej=1,2,3 plotted as a function of ∆. The energy gap at
∆(t) = 0 is ∆E0 = Ω′, at the second avoided-crossing ∆(t) = V0/2 it is ∆EV0/2 = Ω′′, and
for the third one at ∆(t) = V0 the gap is ∆EV0 = Ω′′′. In the bottom panel, the periodic
time-dependence of ∆(t) is shown. The hollow circles in the bottom panel show the
instants at which the corresponding avoided-crossing is traversed. Away from the avoided-
crossings, adiabatic evolution takes place while at the avoided-crossing, instantaneous
impulse transition takes place in the adiabatic impulse approximation.

respectively. The LZT duration for the impulse transition at τ (2)
m is extremely small

which is evident from the almost instantaneous transition from state |2〉 to |3〉 and
vice-versa as shown in Fig. 3.8(a) and 3.8(b), for large values of V0.

Note that, the periodic driving results in resonant transitions between different
diabatic states [137] as well. For instance, in the high-frequency limit (ω � Ω)
or the fast-passage limit

(
ω
√
δ2 −∆2

0 � Ω
)
, a resonant transition between |gg〉

and |s〉 occurs upon choosing nω = ∆0 where n = 0,±1,±2.... The resonance
essentially implies a coherent Rabi oscillations between the two states. Similarly,
for nω = 2∆0 − V0 resonant coherent Rabi oscillations between states |gg〉 and |rr〉
occurs, and for condition nω = ∆0 − V0, coherent oscillations between |s〉 and |rr〉
states take place. To resolve the different resonances in the dynamics, we require
sufficiently large RRIs. In the following, we analyze the population dynamics for a
large value of V0 as a function of δ and ω. Based on the value of δ, we consider three
cases: (i) δ = V0/4−∆0, (ii) δ = 3V0/4−∆0, and (iii) δ = 5V0/4−∆0.
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4.3.1 Case 1: δ = V0/4−∆0

0

(a)

Energy(b)

Figure 4.6: (a) The periodic time dependence of the detuning for δ = V0/4 −∆0. The
expected durations for adiabatic evolution are Ta and T ′a. (b) shows the corresponding
instantaneous energy eigenvalues. The instants (τ (1)

0 , τ (1)
1 , τ (1)

2 ) at which the LZTs occur
between states |1〉 and |2〉 are shown by shaded stripes. The operators Ûj and Ĝ1LZ
indicate the adiabatic regimes and the impulse points, respectively. Between the origin
and the dashed vertical line, we have one complete cycle.

In this case, we vary the detuning periodically across the first avoided crossing,
and the maximum value that ∆(t) can take is chosen such that it lies midway
between the first ∆(t) = 0 and second avoided-crossing ∆(t) = V0/2. In this case,
the state |3〉 is not part of the LZTs, and the evolution matrix for one complete
cycle can be written as,

F̂ = Û3Ĝ1TLZÛ2Ĝ1LZÛ1. (4.20)

There are three different time scales involved in the dynamics. One is the LZT
duration τLZ1 and the other two time-scales are the durations of adiabatic evolution
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Figure 4.7: The numerical results (solid lines) and that of AIA (dashed lines) for P1 after
(a) 10 and (b) 100 cycles, as a function of ω for the initial state |1〉 ∼ |gg〉, ∆0 = −15Ω,
V0 = 40Ω and δ = 25Ω. (b) shows that at longer times, AIA deviates from exact dynamics
especially, at high ω.

between two consecutive LZTs:

Ta = τ
(1)
1 − τ

(1)
0 = (π − 2 arcsin(−∆0/δ)) /ω, (4.21)

T ′a = τ
(1)
2 − τ

(1)
1 = (π + 2 arcsin(−∆0/δ)) /ω. (4.22)

as shown in Fig. 4.6(a). Keeping ∆0 < 0, we have T ′a > Ta and for the validity of
AIA we only need τLZ1 � Ta. From Eqs. (4.19) and (4.22) we deduce that the ratio
τLZ1/Ta ∝

√
ω and it is clear that for some fixed values of (δ, ∆0 ,V0), sufficiently

large values of ω may break down the AIA.

The final populations in the adiabatic state |1〉 after 10 and 100 cycles of pe-
riodic detuning, are plotted as a function of ω in Fig. 4.7, for the initial state
|ψ(t = 0)〉 = |1〉 ∼ |gg〉, and (∆0/Ω = −15, V0/Ω = 40, δ/Ω = 25). The non-
trivial oscillations observed in the final occupation probabilities are caused due to
interferences between the different LZTs [see Fig. 4.7]. For smaller cycles, the final
populations obtained under AIA are in very good agreement with that retrieved
from numerics [see Fig. 4.7(a)]. The major dip in Fig. 4.7(a) is related to the res-
onance ω = |∆0| and is well captured by the AIA. At longer periods, the results
obtained from AIA start to deviate from numerics. This is evident in Fig. 4.7(b)
where the final local minima obtained from numerics (blue-solid lines) is instead
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Figure 4.8: (a) The exact results (solid lines) for P̄1,2, and the same from the AIA
(dashed lines) over a period of 100 cycles, as a function of ω for the initial state |1〉 ∼ |gg〉,
∆0 = −15Ω, V0 = 40Ω and δ = 25Ω. The dips (peaks) in P̄1 (P̄2) indicate the resonances
at nω = |∆0|. The six resonances are seen at ω/Ω = 15, 7.5, 5, 3.75, 3, 2.5 corresponds to
n = 1, 2, 3, 4, 5, 6, respectively. (b) shows the coherent oscillation between |gg〉 and |s〉 at
the resonance ω/Ω = 7.5 and (c) shows the same between |1〉 and |2〉 states.

realized as a maximum from AIA (gray-dashed). This happens because, at longer
times, a significant population gets transferred to state |3〉 or |rr〉 but as the matrix
Ĝ1LZ does not include the transitions to |3〉, AIA cannot capture this effect thus
breaking down in the long-time limit. Fig. 4.8(a) shows the time-averaged popu-
lations, P̄j = (1/T )

∫ T
0 Pj(t)dt as a function of ω over a period of 100 cycles with

the initial state |1〉 while the other variables are kept same as in Fig. 4.7. The
resonances at nω = |∆0| are seen as troughs in P̄1 and peaks in P̄2. When the reso-
nance condition is met, coherent Rabi oscillations between diabatic states |gg〉 and
|s〉 take place [see Fig. 4.8(b)] or equivalently between the adiabatic states |1〉 and
|2〉 [Fig. 4.8(c)]. This coherent dynamics is wholly identical to that of two Rydberg
atoms under Rydberg-blockade without any periodic modulation. On following the
procedure identical to that given in the Sec. 4.2, we obtain the transition probability
to the state |2〉 after k-cycles as

P k
2 = 4(1− P ′LZ)P ′LZ sin2 φs

sin2 kα

sinα (4.23)

where the modified LZ transition probability is P ′LZ = exp(−2πΩ′2/4v1) with Ω′ =
∆E0 as the energy gap at instants τ (1)

m where ∆(τ (1)
m ) = 0. The angle α is modified

as cosα = Re ((1− P ′LZ)e−iη0 + P ′LZe
−iη1) and the new Stückelberg’s phase is φs =∫ τ (1)

1

τ
(1)
0

(E2 − E1)dt/2 + φ̃′s. The dynamical phases η0 and η1 are acquired during the
adiabatic evolution, and Stoke’s phase φ̃′s is given by Eq. (3.19) after replacing v by
v1. Note that Eq. (4.23) is identical to Eq. (4.9) obtained in the single atom case,
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Figure 4.9: (a) The exact results (solid lines) and that from AIA (dashed lines) of
P̄2 over 100 cycles, as a function of ω for the initial state |2〉 ∼ |s〉. The dips indicate
the resonances, and the five (broader) of them at ω/Ω = 15, 7.5, 5, 3.75, 3 correspond to
nω = |∆0| with n = 1, 2, 3, 4, 5, respectively. The narrow ones at ω/Ω = 18.33, 13.75, 11
correspond to nω = |∆0 − V0| with n = 3, 4, 5, respectively, which are not captured by
AIA.

and therefore, all the arguments made in the Sec. 4.2 are valid here.
For the initial state, |ψ(t = 0)〉 = |2〉 ∼ |s〉 and time-evolution till 10 cycles,

the time-averaged populations P̄1,2 are similar to that for the initial state |1〉 except
that the role of states |1〉 and |2〉 are interchanged. The most prominent resonances
appear at nω = |∆0| (results are similar to Fig. 4.8 with reversed color scheme for
|1〉 and |2〉). However for 100 cycles, the resonances at nω = ∆0 − V0, which are
much narrower than those at nω = |∆0| also emerge in the exact dynamics [see
green-solid lines in Fig. 4.9]. These narrow resonances at nω = ∆0 − V0 are not
captured by AIA. For the initial state |ψ(t = 0)〉 = |3〉 ∼ |rr〉, AIA completely fails,
as the state |3〉 is not involved in the LZT. In conclusion, in a multi-state periodically
driven system, AIA may fail to capture the resonances emerging from nearby avoided
crossings which are not incorporated in the impulse transition matrices, especially
at larger times. The important message from this discussion is that AIA may not
necessarily capture the exact dynamics unless all avoided crossings are incorporated
in the impulse transitions.

4.3.2 Case 2: δ = 3V0/4−∆0

Now, we periodically drive across the first two avoided crossings such that the max-
imum of ∆(t) comes midway between the second and third avoided crossings i.e.
max(∆(t)) = ∆0 + δ = 3V0/4 [also see Fig. 3.12(b)]. In contrast to the previous
case, all three adiabatic states are involved in the LZTs but the diabatic state |rr〉 is
excluded. There are two LZT durations: τLZ1 and τLZ2 for the impulse transitions
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0

(a)

Energy(b)

Figure 4.10: (a) The periodic time dependence of the detuning for δ = 3V0/4−∆0. The
adiabatic durations are marked by Ta1, Ta2, and T ′a1. (b) shows the instantaneous energy
eigenvalues. The instants (τ (1)

0 , τ (2)
0 , τ (2)

1 , τ (1)
1 , τ (1)

2 , τ (2)
2 ) at which the LZTs occur are

shown by shaded stripes. The Û and Ĝ operators indicate the adiabatic regimes and the
impulse points, respectively. Between the origin and the dashed vertical line, we have one
complete cycle.

at ∆(t) = 0 and ∆(t) = V0/2, respectively. The LZTs at τ (1)
2n and τ (2)

2n are charac-
terized by the transition matrices Ĝ1LZ and Ĝ2LZ with v being replaced by v1 and
v2, respectively. There are four different adiabatic intervals [see Fig. 4.10(a)], and
as far as the validity of AIA is concerned, only the shortest among them matters.
Once we fix δ = 3V0/4−∆0, the shortest adiabatic duration is given by

Ta = τ
(2)
0 − τ

(1)
0 =

[
sin−1(−[∆0 − V0/2]/δ)− sin−1(−∆0/δ)

]
/ω, (4.24)

and the validity of AIA requires Ta � τLZ1, τLZ2. Again, the latter implies that
for large values of ω, the AIA might break down. With two avoided crossings, the
evolution matrix for one complete cycle becomes [also see Fig. 4.10(b)]

F̂ = Û5Ĝ1TLZÛ4Ĝ2TLZÛ3Ĝ2LZÛ2Ĝ1LZÛ1 (4.25)



4.3. PERIODIC MODULATION IN TWO-ATOMS 91

(b)

0.0

0.35

0.7

(c)

0.0

0.4

0.8

AIA

(a)

2.5 10 14 186
0.05

0.35

0.65

2.5 10 14 186

2.5 10 14 186

Figure 4.11: The exact results (solid lines) for the time-averaged populations (P̄1,2,3)
and the same from the AIA (dashed lines) for a period of 100 cycles, as a function of ω
for ∆0 = −15Ω, V0 = 40Ω and δ = 45Ω with the initial state (a) |1〉 ∼ |gg〉, (b) |2〉 ∼ |s〉
and (c) |3〉 ∼ |rr〉. In (c) AIA completely failed to capture any resonances.

and for k-cycles it is F̂ k. Fig. 4.11 shows the time-averaged populations in the
adiabatic states as a function of ω over a period of 100 cycles for (∆0 = −15Ω,
V0 = 40Ω, δ = 45Ω), with initial states |ψ(t = 0)〉 = |1〉, |ψ(t = 0)〉 = |2〉 and
|ψ(t = 0)〉 = |3〉 in separate panels. The solid lines show the exact populations from
numerics and the dashed lines are those obtained under AIA. The troughs or peaks in
the time-averaged populations are indicative of the coherent Rabi oscillation between
the corresponding states i.e., of resonance. For the initial state |ψ(t = 0)〉 = |1〉 ∼
|gg〉 [see Fig. 4.11(a)], we observe troughs in P̄1 and P̄3 and corresponding peaks
in P̄2, which indicates resonances (between |gg〉 and |s〉) at nω = ∆0. Furthermore,
there are also another narrower set of troughs in P̄1 and corresponding narrow peaks
in P̄3 indicative of resonance (between |gg〉 and |rr〉) at nω = 2∆0 − V0. Note
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Energy(b)

(a)

0

Figure 4.12: (a) The periodic time dependence of the detuning for δ = 5V0/4−∆0 and (b)
shows the instantaneous energy eigenvalues. The adiabatic durations are marked by Ta1,
Ta2, Ta3, and T ′a1. The instants (τ

(1)
0 , τ (2)

0 , τ (3)
0 , τ (3)

1 , τ (2)
1 , τ (1)

1 , τ (1)
2 , τ (2)

2 , τ (3)
2 ) at which the

LZTs occur between different adiabatic states are shown by shaded stripes. The Û and Ĝ
operators represent the adiabatic regions and impulse points, respectively. Between the
origin and the dashed vertical line, we have one complete cycle.

that, the last resonance in the plot (ω/Ω = 17.5) which correspond to the coherent
transition between |gg〉 and |rr〉 (anti-blockades) is not captured by AIA since |rr〉
is not included in the LZT matrices involved in the AIA. Fig. 4.11(b) shows the
time-averaged populations for the initial state |ψ(t = 0)〉 = |2〉 ∼ |s〉. The broader
maxima and minima correspond to the resonance nω = ∆0 signifying transition
between |s〉 and |gg〉, and the sharper transitions at nω = ∆0 − V0 emerge due to
|s〉 and |rr〉 transition. While the former resonance is captured by AIA, the latter is
not as the |rr〉 state is not included in the AIA. On the other hand, with the initial
state |rr〉, in the numerics, we observe the resonances associated with |rr〉 ↔ |s〉 at
nω = ∆0 − V0, and |rr〉 ↔ |gg〉 transitions at nω = 2∆0 − V0. Clearly, AIA does
not capture features corresponding to the resonances which involve the state |rr〉
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for the initial state |rr〉 as seen in Fig. 4.11(c).
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Figure 4.13: The numerical results (solid lines) for the time-averaged populations (P̄1,2,3)
in the adiabatic states, and the same from the AIA (dashed lines) over a period of 100
cycles, as a function of ω for the initial state (a) |1〉, (b) |2〉 and (c) |3〉. Other parameters
are ∆0 = −15Ω, V0 = 40Ω and δ = 65Ω. In (a) the major peaks correspond to the reso-
nances nω = |∆0| (between |gg〉 and |s〉 states) and smaller ones indicate the resonances at
nω = |∆0−V0| (between |rr〉 and |s〉 states). In (b) the peaks/dips indicate the resonances
at nω = |∆0| and nω = |∆0 − V0|, with no traces on the resonances at nω = |2∆0 − V0|.
In (c) except the resonances at nω = |∆0|, other two types are seen. AIA results are in
excellent agreement with the numerics in all three cases.

4.3.3 Case 3: δ = 5V0/4−∆0

For the last case, the modulation amplitude is chosen such that the system is pe-
riodically driven across all three avoided crossings. Therefore, all three adiabatic
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and diabatic states are involved in LZTs. There are three LZT durations involved
in the dynamics: τLZ1, τLZ2, and τLZ3 for the transitions at ∆(t) = 0, ∆(t) = V0/2
and ∆(t) = V0, respectively, which are related as τLZ2 � τLZ1, τLZ3. As far as the
validity of AIA is concerned, the shortest duration of adiabatic evolution [Ta1 in Fig.
4.12(a)] should be larger than both τLZ1 and τLZ3. The evolution matrix for one
complete cycle in AIA [see Fig. 4.12(b)] is

F̂ = Û7Ĝ1TLZÛ6Ĝ2TLZÛ5Ĝ3TLZÛ4Ĝ3LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1 (4.26)

and for k-cycles, it is F̂ k. The operators, Ûj are the adiabatic evolution matrices,
and the LZT matrices Ĝ1LZ and Ĝ2LZ are provided by Eqs. (3.18) and (3.20), with
v being replaced by v1 and v2, respectively. The third LZT matrix is,

Ĝ3LZ =


1 0 0
0

√
1− P ′′′LZe−iφ̃s3 −

√
P ′′′LZ

0
√
P ′′′LZ

√
1− P ′′′LZeiφ̃s3


where P ′′′LZ = exp(−2πΩ′′′2/4v3) with Ω′′′ = ∆EV0 , φ̃s3 = π

4 + arg(Γ(1 − iγ′′′)) +
γ′′′(ln γ′′′ − 1) with γ′′′ = Ω′′′2/4v3 and v3 = ω

√
δ2 − (∆0 − V0)2. In Fig. 4.13,

we show the time-averaged populations in the adiabatic states as a function of
ω over a period of 100 cycles with (∆0 = −15Ω, V0 = 40Ω, δ = 65Ω), and for
all three initial states in different vertical panels. In Fig. 4.12(a), for the initial
state |ψ(t = 0)〉 = |1〉 ∼ |gg〉, we observe prominent broader peaks/troughs in P̄j

at resonances nω = ∆0, and smaller sharper peaks/troughs for the resonance at
nω = 2∆0 − V0. For the initial state |ψ(t = 0)〉 = |2〉 ∼ |s〉 [see Fig. 4.13(b)] we
observe peaks/troughs in P̄j corresponding to both resonances in which the state |s〉
is involved in: from |s〉 to |gg〉 at nω = ∆0 and from |s〉 to |rr〉 at nω = ∆0 − V0.
Finally, for the initial state |ψ(t = 0)〉 = |3〉 ∼ |rr〉, both the resonances in which the
state |rr〉 participates (nω = ∆0−V0 and nω = 2∆0−V0) are observed. Contrary to
the previous two cases, the AIA is able to capture all possible resonant transitions.
From the above examples, we conclude that for AIA to be successful in a periodically
driven multi-level system especially, at longer times, it is necessary to incorporate
the transition matrices across all avoided crossings. Once successful, AIA reveals
to us the web of phases involved in the dynamics which can find applications in
developing quantum technologies.

4.4 Summary and outlook

In summary, we analyzed the LZ dynamics in a setup of two Rydberg-atoms with
a periodic detuning. The periodically driven Rydberg setup, for instance, can be
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realized by frequency modulation [160]. We identified a striking similarity with the
excitation probability in a single periodically driven two-level atom to the intensity
distribution from a narrow antenna array. For two atoms, we discussed in detail
the validity of AIA in describing the dynamics for the periodic variation of detun-
ing. Interestingly, AIA reveals detailed information about the phases developed
during the dynamics, which can be very useful for applications such as coherent
control of quantum states, implementing quantum (phase) gates [138, 250], and
atom-interferometry [251]. While implementing AIA, we rely on large RRIs for
which the LZTs across each avoided crossings include only two adiabatic states. For
small interactions, it is required to develop a multi-level AIA in which the LZTs take
place among multiple levels at the same time. Our study can be extended to three
two-level atoms, for which it will not be so straightforward to assume AIA would
work at large interactions due to the complexity in the level structure.
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Chapter 5

Population trapping in a pair of
Rydberg atoms

The current chapter is adapted from the research article "Population trapping in a
pair of periodically driven Rydberg atoms" [88]. We analyze the population trapping
and dynamical stabilization in a pair of interacting Rydberg atoms whose atom-
field detuning is periodically modulated. The periodic modulation can enhance or
suppress the state population dynamics. In our setup, the dynamical stabiliza-
tion exists as a special case of population trapping. We show that the presence of
Rydberg-Rydberg interactions leads to state-dependent population trapping in a set
of experimentally relevant states such as product and maximally entangled states.

5.1 Introduction

The behaviour of periodically driven or Floquet systems is very rich, in particular,
they display counter-intuitive effects such as dynamical stabilization. A paradig-
matic example is that of Kapitza’s inverted pendulum which exhibits dynamical
stabilization at the inverted point caused by a periodic movement of the suspension
point of the pendulum [see chapter 1]. Other prominent examples of dynamical
stabilization in quantum systems are coherent destruction of tunnelling [161–163],
or localization of a wavepacket due to periodic shaking of the lattice [166–169] or
modulation of the inter-particle interactions [170], and quantum kicked rotors [157,
158].

Among many-body physics, driven Floquet systems hold a special interest in
the field of non-equilibrium quantum physics. Here, some entirely new phases can
emerge such as the π-spin glass or Floquet time crystal which do not exist in equi-
librium dynamics [269]. In interacting Bose gases, a Kapitza or a dynamically sta-
bilized state manifests in stabilizing a BEC on harmonically varying the scattering

97
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length [270] or a 2D soliton against collapse [271, 272]. Likewise, in spinor BEC
condensates, spin mixing dynamics can be frozen by modulation of spin-exchange
interaction [273] or by applying periodic microwave pulses [274, 275]. A tempo-
ral modulation leads to stabilization of a classically unstable phase (π-mode) in a
bosonic Josephson junction [276], or stable trapping of a ferromagnetic spin system
near an unstable paramagnetic configuration [277], that has no equilibrium coun-
terparts. Additionally, dynamical stabilization has been useful in controlling the
bosonic superfluid to Mott insulator quantum phase transition in an optical lattice
[168]. Periodic driving in an array of ultracold Rydberg atoms is proposed to ex-
hibit dynamical localization [137] and may be useful in the implementation of robust
quantum gates [230, 278, 279].

We study population trapping in a periodically driven two-level atom as well
as in a pair of periodically driven interacting two-level ultracold atoms, in which
the ground state is coupled to a Rydberg state. We identify a simple scheme for
locating the regimes of population trapping for any initial state, relying on driving
induced resonances and the Floquet spectrum. We also introduce the quantity
inverse participation ratio (IPR), calculated from the overlap of the initial state
with the Floquet eigenstates, as a measure of population trapping. Our work shows
that finite interactions cause (initial) state-dependent population trapping in the
periodically driven two-atom system.

5.2 Setup, Model, and Techniques

We consider an array of two Rydberg atoms each of which have a two-level scheme
consisting of an electronic ground state |g〉 and a Rydberg state |r〉. The states
are coupled via a classical light field and the corresponding atom-light detuning is
periodically changed with time t. The closed system is understood to exist in the
frozen gas limit. We obtain the time-dependent Hamiltonian (~ = 1) as,

Ĥ = −∆(t)
2∑
i=1

σ̂irr + Ω
2

2∑
i=1

σ̂ix + V0σ̂
1
rrσ̂

2
rr, (5.1)

where σ̂ab = |a〉〈b| with a, b ∈ {r, g} is the atomic operator which describes both
projection σ̂rr, and transition operators σ̂x = σ̂rg+σ̂gr. Also, Ω is the Rabi frequency
and ∆(t) = ∆0 +δ sinωt is the time-dependent detuning with modulation frequency
ω and modulation amplitude δ. The Rydberg excited atoms interact via strong van
der Waals interaction, V0 = C6/R

6, where C6 is the interaction coefficient, and R

is the separation between two Rydberg excitations [76]. The exact dynamics of the
system is obtained by numerically solving the Schrödinger equation: i∂ψ(t)/∂t =
Ĥ(t)ψ(t).
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Going forward, we are more interested in the high-frequency regime (ω � Ω)
in the system. This is motivated by the example of the Kapitza pendulum wherein
to stabilize the pendulum bob the driving should be fast compared to the natural
oscillation period. Furthermore, localization of a particle/wavepacket in a periodic
potential also requires the drive to be faster than the interaction scale. Essentially,
under a high-frequency drive, the system doesn’t absorb much energy from the
drive which culminates in the dressing of the low-energy Hamiltonian from virtual
mechanisms [206]. Motivated by the above examples, we aim to find an effective
Hamiltonian in the high-frequency regime.

5.2.1 Effective Hamiltonian

First, we move to the rotating frame of high frequency parameters |ψ′〉 = Û(t)|ψ〉,
with unitary transformation Û(t) = exp

[
if(t)∑j σ̂

j
rr + itV0σ̂

1
rrσ̂

2
rr

]
where f(t) =

(δ/ω) cosωt − ∆0t. Here |ψ′〉 and |ψ〉 is the wave function in the rotating and
laboratory frame respectively. The new Hamiltonian in the rotating frame is Ĥ ′(t) =
ÛĤÛ † − i~Û ˙̂

U † which after using the Jacobi-Anger expansion exp(±iz cosωt) =∑∞
m=−∞ Jm(z) exp(±im[ωt+ π/2]), can be written as [137]

Ĥ ′ = Ω
2

2∑
j=1

∞∑
m=−∞

imJm(α)gm(t)eiV0
∑

k 6=j σ̂
k
rrtσ̂jrg + H.c., (5.2)

where Jm(α) is the mth order Bessel function of the first kind with α = δ/ω

and gm(t) = exp[i(mω −∆0)t]. The transformation allows for removal of detun-
ing ∆(t) and interaction energy V0 terms in Eq. (5.1) in favour of oscillations in
Eq. (5.2). On a comparison of Eq. (5.2) with Eq. (5.1), we conclude that the
periodic detuning has effectively modified the Rabi coupling in this frame which in-
fluences the excitation dynamics distinctly. Upon further expansion of the operator,
e±iV0

∑
k 6=j σ̂

k
rrt = ∏

k 6=j

[
σ̂krr(e±itV0 − 1) + I

]
, with I being the identity operator, we

may rewrite the Hamiltonian in Eq. (5.2) as

Ĥ ′ = Ω
2

∞∑
m=−∞

imJm(α)
ei(mω−∆0)t

 2∑
j=1

σ̂jrg − X̂

+ X̂ ei(mω−∆0+V0)t

+ H.c., (5.3)

where the operator X̂ = σ̂1
rgσ̂

2
rr + σ̂1

rrσ̂
2
rg produces the correlated Rabi coupling [86,

137]. It underpins the processes in which the first atom gets excited only if the
second atom is already present in the excited state, and vice-versa. This correlated
Rabi excitation process resembles the density assisted inter-band tunneling [209] or
density dependent hopping of atoms [280] observed in optical lattices.

At high modulation frequencies (ω/Ω � 1), the resonant terms in Eq. (5.2)



100CHAPTER 5. POPULATION TRAPPING IN A PAIR OF RYDBERG ATOMS

will have a higher contribution towards the summation as compared to oscillatory
terms whose overall effect tends to average out in the long time dynamics. In
other words, a high frequency modulation may lead to emergence of an effective
Floquet Hamiltonian [170, 208]. We regard the zeroth-order term, at high-frequency
limit (ω � Ω), as the effective Hamiltonian which is simply the time-averaged
Hamiltonian

Heff = 1/T
∫ T

0
dt Ĥ ′(t),

where T = 2π/ω. The higher order terms scale as H(n) ∼ ω(−n) and become increas-
ingly smaller for large ω. We derive the effective Hamiltonian on a case-by-case
basis in the respective sections. Note that all the figures shown in this chapter are
obtained from numerics using the complete Hamiltonian given in Eq. (5.1). We use
the effective Hamiltonian to build physical insights for the exact results wherever
possible, especially to identify driving-induced resonances and regions of population
trapping.

5.2.2 Floquet Theory

Now, we briefly review Floquet Theory. Floquet’s theorem gives a very powerful
tool to analyze periodically driven systems which is why they are also equivalently
called Floquet systems. According to Floquet’s theorem, the evolution operator of
a periodically driven quantum system Ĥ(t) = Ĥ(t+ T ) can be written in the form

Û(t, 0) = P̂ (t)e−iĤF t (5.4)

where the Hermitian operator ĤF is referred to as Floquet Hamiltonian and P̂ (t) =
P̂ (t+ T ) is a unitary operator which has same the periodicity as that of the Hamil-
tonian [281]. Without any loss of generality, we assume that the period is defined
by T = 2π/ω. At integer multiples of time period, tn = nT , the operator P̂ (t) = 1

and the evolution operator over one period simplifies to Û(T, 0) = e−iĤFT . We can
write the set of unit eigenvalues of Û(T, 0) as eiεkT , and eigenstates as |φk(0)〉, which
gives us the spectral decomposition of unit period evolution operator

Û(T, 0) = e−iĤFT =
∑
k

e−iεkT |φk(0)〉〈φk(0)| (5.5)

where εk are called quasienergies and can be shifted by integer multiples of ω. The
Floquet modes {|φk(0)〉} form a complete and orthogonal set of square-integrable
states. Evidently, the Floquet modes are also eigenstates of Hamiltonian ĤF with
quasienergies εk as eigenvalues, i.e. ĤF = ∑

k
εk|φk(0)〉〈φk(0)|. Using Floquet mode

eigenbasis, we can write the state of system at t = 0 as |ψ(0)〉 = ∑
k
ck|φ(0)〉 where
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the time-independent co-efficient ck = 〈φ(0)|ψ(0)〉 gives the probability amplitude
of finding the system in the Floquet mode |φk(0)〉 at t = 0. Furthermore, using both
the expansion of the initial state and Eq. (5.4), a general state of the system can be
written as,

|ψ(t)〉 =
∑
k

ckexp(−iεkt)P̂ (t)|φk(0)〉 (5.6)

=
∑
k

ckexp(−iεkt)|φk(t)〉, (5.7)

where the general Floquet mode is defined as

|φk(t)〉 ≡ P̂ (t)|φk(0)〉 = exp(iεkt)Û(t, 0)|φk(0)〉 (5.8)

which inherits the periodicity of the Hamiltonian Ĥ(t). Strikingly, since the time
dependence is absorbed in the basis, the same constant ck gives the probability
for finding the system state |ψk(t)〉 in the Floquet mode |φk(t)〉 as does for initial
state in |φk(0)〉 i.e. ck remains time-independent. This means that the population
in respective Floquet modes remains preserved in a periodic Hamiltonian.

We shift our focus to the case of strongly driven systems, i.e. we concern ourselves
with the high-frequency limit of the system. In this limit, the time-period of driving
is very short while the time-scales in which system dynamics occurs is much larger.
Consequently, the time-dependent Floquet modes are periodic but with a small time-
period. Hence their temporal evolution loses significance in the long time-scales and
effectively (|φk(t)〉 ≈ |φk(0)〉) [282]. With this approximation, the system dynamics
is effectively governed by the quasienergies εk and coefficients ck,

|ψ(t)〉 ≈
∑
k

ckexp(−iεkt)|φk(0)〉. (5.9)

We now define the criteria for population trapping: |〈ψ(0)|ψ(t)〉| ≈ 1. The quasi-
energies εk and the modes {|φk(0)〉} are calculated numerically by obtaining the
eigenvalues, λk = exp(−iεkT ) of the unit period operator Û(T, 0) [282, 283]. Below
we analyze how the quasienergies εk and Floquet coefficients ck indicate population
trapping.

Quasienergies: If all the quasienergies approach degeneracy, the dynamics of the
system on this time-scale will appear to be frozen irrespective of the initial state,
resulting in state-independent population trapping. However, as we will see for two
Rydberg atoms, this is only true if the atoms are non-interacting making it a trivial
case of localization of a single two-level atom [Sec 5.3]. More interestingly, in the
two-atom system, if some quasienergies (among the 4 levels) approach degeneracy,
it leads to a state-dependent population trapping [see Fig 5.4]. Nevertheless, the



102CHAPTER 5. POPULATION TRAPPING IN A PAIR OF RYDBERG ATOMS

5 10 15 200.00

1.00

-0.41

5 10 15 20
-0.5

0.0

0.5(a)

(b)

Figure 5.1: Floquet mode properties of a driven single two-level atom with ω = 8Ω for
the case of primary resonance, ∆0 = 0 (n1 = 0). The crossings of εk in (a) and the zeros
of Π|g〉0 in (b) coincides with the zeros of J0(α). The plots (a) and (b) are the special case
of population trapping corresponding to the dynamical stabilization. The parameter α is
varied by changing δ and keeping ω constant.

crossing of quasienergies doesn’t completely characterize population trapping as soon
as more than two levels are present which is the case for two atoms.

Floquet coefficients: Irrespective of quasienergy value, if the initial state coincides
with one of the Floquet modes, the population trapping occurs. This is true for both
single and two-atoms. As a measure of overlap, we use the inverse participation ratio
(IPR) to further characterize the Rydberg excitation dynamics. We define the IPR
as,

Π|I〉N = 1∑
k p

2
k

− 1, (5.10)

where pk = |ck|2 = |〈φk(0)|ψ(0)〉|2, is the projection of the initial state |ψ(0)〉 on
the Floquet mode |φk(0)〉 for N atoms. If the initial state coincides with one of the
Floquet modes, IPR vanishes. Since, the population in Floquet mode doesn’t vary
significantly on the system time-scales, Π|I〉N = 0 indicates population trapping of the
state |I〉. In the same spirit, a smaller value of Π|I〉N indicates a slower transition from
the state |ψ(0)〉 to other states and maximum value of IPR indicates a maximum
mixing i.e. resonances.

5.3 A two-level atom (N = 1)

In this section we briefly review the population trapping in a periodically driven
single two-level atom with ground state |g〉 and excited state |r〉. The driving
is same as mentioned in Eq. (5.1). We also discuss the criteria under which the
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Figure 5.2: The IPR (Π|g〉1 ) as a function of α and ∆0 for ω = 8Ω. The pearl-stripes are
along the α axis at the resonances nω = ∆0. The local minima (Π|g〉1 = 0) along the first
stripe are the points of DS for which J0(α)=0. The parameter α is varied by changing δ
and keeping ω constant.

population trapping can be identified as dynamical stabilization. For N = 1, the
Hamiltonian in Eq. (5.2) takes the simplest form [146, 159, 160],

Ĥ ′ = Ω
2

∞∑
m=−∞

imJm(α)ei(mω−∆0)tσ̂rg + H.c., (5.11)

where α = δ/ω. In the high-frequency limit (ω � Ω), if a term satisfies the resonance
condition, n1ω = ∆0, where n1 ∈ Z it becomes the only relevant term in the
summation of Eq. (5.11). Based upon the discussion in Sec. 5.2.1, we can safely
drop the non-resonant terms in the summation, and Ĥ ′ ≈ in1 ΩJn1 (α)

2 σ̂rg + H.c.. This
is equivalent to making a second rotating-wave approximation. When the resonance
condition holds true, the population in states |g〉 and |r〉 exhibit coherent Rabi
oscillations. For exhaustiveness, if the resonance condition is not satisfied, multiple
terms have significant contribution towards the sum. At the resonances n1ω = ∆0,
the effective Rabi coupling between the states |g〉 and |r〉 is proportional to Jn1(α).
Therefore, if the parameters δ and ω are such that they correspond to the Bessel
roots [Jn1(α) = 0], the dynamics freezes. This gives rise to a state-independent
population trapping. It can be further verified by plotting the quasienergies εk as a
function of α while keeping the resonance condition satisfied. The quasienergies or
the energy gap between them oscillate as a function of α, and crossings occur at the
zeros of the Bessel function [282]. Fig. 5.1(a) and 5.1(b) show the quasienergies for
the case of ∆0 = 0 and Bessel zero function, respectively. The quasienergy crossings
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occur at the zeros of J0(α). At the crossings, the degenerate Floquet modes become
purely |g〉 and |e〉, which results in a vanishing Π|g〉1 or Π|r〉1 as seen in Fig. 5.1(b).
Since the Floquet modes do not evolve in time, the population in states |g〉 or |r〉
freezes. Note that at the crossings, an arbitrary superposition of |g〉 and |r〉 is also a
Floquet mode making the population trapping independent of the initial state. As
we show below, the latter breaks down in the presence of RRI, leading to a state-
dependent population trapping. In short, a vanishing IPR at the driving induced
resonance indicates the freezing of the initial state or population trapping.

Note that only if the initial state is dynamically unstable in the absence of peri-
odic modulation, then only the corresponding population trapping should be iden-
tified as dynamical stabilization. If n1 is a non-zero integer, in the high-frequency
limit, the resonance condition demands a large value of ∆0, for which there is hardly
any dynamics in the states |g〉 and |e〉 in the absence of periodic driving due to far
off-resonance. Therefore, population trappings for |n1| > 0 cannot be interpreted as
dynamical stabilization. The population trapping at the primary resonance (n1 = 0),
i.e., when J0(α) = 0 for ∆0 = 0, provides us the phenomenon of dynamical stabi-
lization. The results for the latter case with an initial state |I〉 = |g〉 are shown
in Figs. 5.1(a) (quasi-energies) and 5.1(b) (IPR). Note that the leading terms in
the excited state population due to m 6= n1 terms in Eq. (5.11) are proportional
to (Ω/ω)2 in the high-frequency limit, which can be ignored [146]. More extensive
results of the IPR (Π|g〉1 ) for the initial state |g〉, are given in Fig. 5.2. In the α−∆0

plane, Π|g〉1 exhibits pearl-chains along α axis at the resonances n1ω = ∆0. The local
minima along the chains provide the values of α at which population trapping takes
place [at Jn(α) = 0], and the minima along α at ∆0 = 0 are the points of dynamical
stabilization. Between the pearl-chains (along ∆0 axis), Π|g〉1 vanishes due to the
far-off-resonant driving of the atom, as discussed above. Note that for sufficiently
small ω, the crossings in Floquet energies deviate slightly from the Bessel zeros.

In summary, at the quasienergy crossings, the population dynamics freezes, and
also the IPR vanishes. We term this phenomenon at resonance as Population trap-
ping. Population trapping at the primary resonance is identified as dynamical sta-
bilization. Thus, we have a scheme to identify population trapping (including dy-
namical stabilization) of any initial state in two steps. First, identify resonances
in which the initial state is involved, and second, vary the amplitude of modula-
tion, keeping the resonance condition satisfied. The minima in IPR will indicate
population trapping/dynamical stabilization.
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5.4 Two-atom chain

In this section, we extend the above analysis of a single two-level atom to a pair of
two-level Rydberg atoms and discuss how Rydberg-Rydberg interactions influence
the phenomenon of population trapping. In particular, we are interested in the
criteria under which the product states |gg〉, |rr〉, and maximally entangled Bell
states |+〉 = (|gr〉 + |rg〉)/

√
2, and |B〉 = (|gg〉 + |rr〉)/

√
2 exhibit dynamically

stabilization.
The system Hamiltonian is given in Eq. (5.1). Since both the atoms are identi-

cally driven, the dynamics is restricted to the triplet states {|gg〉, |+〉, |rr〉} where
|+〉 is the symmetric combination of |gr〉 and |rg〉. The anti-symmetric combination
of the same is decoupled from the dynamics and thus gives trivial results. Upon
choosing the triplet set as the basis, Hamiltonian in rotated frame [see Eq. (5.3)]
can be written as,

Ĥ ′ =


0

√
2Ω1(t) 0

√
2Ω1(t) 0

√
2Ω2(t)

0
√

2Ω2(t) 0

 (5.12)

where the off-diagonal matrix elements provide the time-dependent coupling strengths
for |gg〉 ↔ |+〉 and |+〉 ↔ |rr〉 transitions as Ω1(t) and Ω2(t) respectively,

Ω1(t) = Ω
2

∞∑
m=−∞

Jm(α)ei(mω−∆0)t+imπ/2 (5.13)

Ω2(t) = Ω
2

∞∑
m=−∞

Jm(α)ei(mω−∆0+V0)t+imπ/2, (5.14)

and in general Ω1 6= Ω2. It is evident from the above expressions that multiple
resonances exist in the system. In order to duly analyze the population trapping,
we first discuss the resonances present in the periodically driven two-atom setup.

5.4.1 Resonances

At large ω, the terms in Eqs. (5.13) and (5.14) which are most relevant in the
first order correspond to n1ω = ∆0 (R1) and n2ω = ∆0 − V0 (R2). These are
the respective resonance criteria for transitions |gg〉 ↔ |+〉 and |+〉 ↔ |rr〉. As a
special case, if V0 = nω, the criteria for R1 and R2 gets satisfied simultaneously
with n1 = n2 + n. In general, however, the R1 and R2 resonances do not overlap.
For a large V0, the resonances can be well separated in the ∆0 axis [88], and so we
work within that regime for analytical predictions.

Assuming only R1 is fulfilled, keeping V0 large, the effective (time-averaged) Rabi
couplings become Ω1 ≈ ΩJn1(α)/2 for |gg〉 ↔ |+〉 transition, and Ω2 ≈ 0 for the
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Figure 5.3: Population dynamics for the resonance type R1 (n1ω = ∆0) for the initial
states (a) |I〉 = |gg〉 and (b) |I〉 = |rr〉. The same, but with the resonance type R2
(n2ω = ∆0 − V0) for the initial state (c) |I〉 = |gg〉 and (d) |I〉 = |rr〉 with ∆0 = 2Ω. In
(a) we see the Rabi oscillations between |gg〉 and |+〉 states, whereas in (b) we observe no
dynamics. Similarly, (c) shows the absence of dynamics, and the Rabi oscillations between
|+〉 and |rr〉 states is shown in (d). We took V0 = 10Ω, δ = 15Ω, and ω = 8Ω for all plots.
The value of ∆0 is taken such that n1 = 1 for (a) and (b), and for (c) and (d) we have
n2 = −1.

transition between |+〉 ↔ |rr〉. This reduces the three-level system to an effective
two-level (|gg〉 ↔ |+〉) and a decoupled isolated level (|rr〉). Hence, if the initial
state is |ψ(0)〉 = |gg〉, the system performs coherent Rabi oscillations between |gg〉
and |+〉 states [see Fig. 5.3(a) for n1 = 1], similar to the dynamics under the Rydberg
blockade. But if the initial state is chosen differently as |ψ(0)〉 = |rr〉, the dynamics
nearly halts as is shown in Fig. 5.3(b). This behaviour is expected at large V0, as the
state |rr〉 becomes far off-resonant from |+〉 making the periodic driving ineffective
in changing its dynamics. If the resonance condition for R2 is satisfied, we obtain
Ω1 ≈ 0 and Ω2 ≈ ΩJn2(α)/

√
2 which means that the |rr〉 and |+〉 states are Rabi-

coupled while the |gg〉 state is decoupled from dynamics. Consequently, we see Rabi
oscillation between |rr〉 and |+〉 for initial state |rr〉 while barely any significant
change of population in case the initial state is |gg〉. Both of the results are shown
in Figs. 5.3(c) and 5.3(d) for n2 = −1, respectively. In addition to resonances R1
and R2, there also exists a third resonance, which is given by n3ω = 2∆0−V0 (R3),
which is not directly visible from Eqs. (5.13) and (5.14), but is revealed upon using
adiabatic impulse approximation [87]. R3 corresponds to direct resonant transitions
between ground state |gg〉 and doubly-excited Rydberg state |rr〉.
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5.4.2 Dynamical stabilization of product states

In this section, we discuss the dynamical stabilization of the product states |gg〉
and |rr〉 in the high-frequency limit. The regions of dynamical stabilization will be
located across the primary resonances in each of conditions R1, R2 and R3, i.e.,
nj∈1,2,3 = 0. To identify these regimes, we vary the value of ratio α by varying
the amplitude of modulation δ while keeping ω constant. With this scheme of
parameters, we are able to scan across the Bessel roots while keeping the resonance
condition satisfied.

R1: To identify dynamical stabilization (DS), we probe the dynamics of the two-
atom system at primary resonance of R1 (∆0−n1ω = 0) which is satisfied for n1 = 0
(∆0 = 0). We use insights from effective Hamiltonian, Floquet quasienergies, and
IPR to characterize the DS.

Noninteracting case—. For the case of two non-interacting atoms (V0 = 0) the
dynamical stabilization occurs at the roots of J0(α) : α0

k, identical to the results
obtained for a single atom [see discussion in Sec. 5.3]. Furthermore, these points are
accompanied by the crossing of all quasienergy levels [dashed lines in Fig. 5.4(a)].
From Floquet expansion [also see Eq. (5.9)] we can write at the triple quasienergy
crossings,

|ψ(t)〉 ≈ e−iεt (c1|φ1(0)〉+ c2|φ2(0)〉+ c3|φ3(0)〉) . (5.15)

with |ψ(0)〉 =
3∑

k=1
ck|φk(0)〉. Hence, at these points, dynamical stabilization occurs

by virtue of triple quasienergy crossing, and is independent of the initial state. In
particular, both |gg〉 and |ee〉 state exhibit DS at the same value of α. This is the
case of state-independent dynamical stabilization, as shown in Fig. 5.4(a). Note that
the fourth quasienergy level (not shown) corresponds to the anti-symmetric state
|−〉 = (|rg〉 − |gr〉)/

√
2 which remains decoupled from the dynamics and hence is

irrelevant to the discussion. Each quasienergy [in Fig. 5.4(a)-(c)] has a color value
given by |〈gg|φn(0)〉|2.

V0 � Ω—. A non-zero but small value of V0 (V0 � Ω) partly lifts the degeneracy
of εn at the Bessel zero roots α0

k [see solid coloured lines in Fig. 5.4(a)] but still
shows a close approach. It is expected that the points of close approach, the two-
level system still exhibits dynamical localization [282]. We examine the case using
effective Hamiltonian. When R1 resonance (n1ω = ∆0) is satisfied, we can write the
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Hamiltonian in the rotated frame [Eq. (5.3)] in the high-frequency limit (ω � Ω) as

Ĥ ′ = Ω
2 i

n1Jn1(α)
 2∑
j=1

σ̂jrg + X̂(eiV0t − 1)


+ Ω
2
∑
m6=n1

imJm(α)ei(m−n1)ωt

 2∑
j=1

σ̂jrg + X̂(eiV0t − 1)
+ H.c., (5.16)

where the first term gives the resonant contribution and the second term provides
off-resonant fast oscillations. For ω � Ω the sum total in the second term become
negligible in comparison to the first term at large times. Furthermore, for V0 � Ω,
the Hamiltonian becomes periodic with T = 2π/ω, and thereby we can obtain an
effective time-independent Floquet Hamiltonian as Ĥeff ≈

∫ T
0 dtĤ ′(t) [137, 170,

206–208].

Ĥeff ≈
Ω
2 i

n1Jn1(α)
 2∑
j=1

σ̂jrg + X̂

(
eiV0T − 1
iV0T

− 1
)

+ Ω
2
∑
m6=n1

imJm(α)X̂
(

eiV0T − 1
i[(m− n1)ωV0]T − 1

)
+ H.c.. (5.17)

In leading orders of V0/ω, we obtain

Ĥ
(V0�ω)
eff ' in1ΩJn1(α)

2

2∑
j=1

σ̂jrg + in1Ω
2

iπJn1(α) +
∑
m 6=n1

im−n1Jm(α)
(m− n1)

 V0

ω
X̂

+ O
(
V 2

0 /ω
2
)

+ H.c.. (5.18)

Equation (5.18) implies that in the infinite-frequency limit (V0/ω → 0), population
trapping happens at the zeros of Bessel function (Jn1(α) = 0) irrespective of the
initial state, identical to the case of non-interacting atoms. At the primary resonance
(n1 = 0), population trapping results in a dynamical stabilization.

For non-zero but small values of V0/ω, the second term which is linear in V0/ω

also contributes to the effective Hamiltonian. Focusing on the primary resonance,
n1 = 0, we note that the third term in Eq. (5.18) vanishes exactly due to symmetry
in J±m(α). It means that at J0(α) = 0, Ĥeff ≈ 0, which implies that a dynamical
stabilization will occur for any choice of the initial state. A further analyses for the
same is made by investigating IPR values for both |gg〉 and |rr〉 state as a function
of α. Both Π|gg〉2 and Π|rr〉2 are shown in Figs. 5.4(d) and 5.4(e) respectively for
V0 = 0.2Ω with ∆0 = 0 (green dashed lines). As expected, both the values vanish
at J0(α) = 0, indicating a dynamical stabilization in both |gg〉 and |rr〉 state. Even
at secondary resonances n1 6= 0, the third term in Eq. (5.18) remains vanishingly
small at the Bessel roots αkn1 and thus adds nothing significant to the Hamiltonian.
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This term, however, may introduce a tiny shift in the value of α at which the DS
occurs from αk0 for the case of |I〉 = |rr〉.

Thus, in conclusion, for small values of V0/ω with R1 holding, as per the effective
Hamiltonian, the population trapping happens at the roots of the Bessel function
Jn1(α). This is validated by looking at IPR values of dashed lines in Fig. 5.4(d) and
Fig. 5.4(e). The avoided crossings in the quasienergy spectrum are in concurrence
with DS at αk0, which do not get significantly altered at small values of V0. However,
the condition of dynamical stabilization remains independent of initial state |gg〉
and |ee〉.

V0 � Ω—. For larger values of V0 (excluding V0 = nω where n is a non-zero
positive integer), the quasienergy spectrum neither shows an exact triple crossing or
a close approach. This means that now there is no reason to expect DS independent
of the initial state. We plot the quasienergy levels to analyze the information that
still can be extracted.

At the primary resonance n1 = 0, one of the quasienergies [topmost level in
Fig. 5.4(a) and Fig. 5.4(b)] become separated from the other two levels. At large V0,
the topmost state completely overlaps with |rr〉 for any value of α [see Fig. 5.4(b)].
Identical to the energy of |rr〉 in the blockade regime which is far off-resonant from
|+〉 state, the corresponding quasienergy is non-resonant with the other Floquet
modes. Nevertheless, the two base Floquet modes exhibit crossings among them, as
shown in Fig. 5.4(b). These levels are a superposition of the remaining |gg〉 and |+〉
states, except at the level crossings. At the crossings, one Floquet mode completely
overlaps with |gg〉 and the other one fully overlaps with |+〉 state. Therefore |gg〉 (as
well as |+〉) is dynamically stabilized. The crossings occur at the Bessel zeros αk0.
We can verify that the zeros of Bessel function Jn1(α) lead to population trapping
analytically. Let’s invoke the coupling between states |gg〉 ↔ |+〉 [Eq. (5.13)] and
|+〉 ↔ |rr〉 [Eq. (5.14)] in the rotated frame. For V0 � Ω, with n1 = 0 (excluding
V0 = nω), in the zeroth order Ω1 ≈ ΩJ0(α)/2 while Ω2 ≈ 0. The system, thus,
resembles an effective two-level crossing of |gg〉 and +〉 with coupling Ω1 whilst |ee〉
remains isolated. Therefore, the dynamical stabilization in |gg〉 takes place when
Ω1 → 0 i.e., at the zeros of J0(α), whereas any population in |ee〉 is always trapped
due to blockade. The dynamical stabilization can also be confirmed by the IPR
values of Π|gg〉2 [see Fig. 5.4(d)], which vanishes at the quasienergy crossings, αk0.
Furthermore, it can be noted that Π|gg〉2 = 1 depicts the regime of Rydberg blockade
for which we obtain an effective two-level system consisting of |gg〉 and |+〉 states.
In the blockade regime, population in the state |rr〉 is trapped even in the absence
of periodic driving, which makes Π|rr〉2 ∼ 0 independent of α [see Fig. 5.4(e) for
V0 = 5Ω].

V0 = nω —. When V0 = nω, where n is a positive integer, both R1 and R2 are
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Figure 5.4: The quasi-energy spectrum εk and IPR (Π|gg〉2 , Π|rr〉2 ) for N = 2, ∆0 = 0,
and ω = 8Ω, as a function of α for different V0. (a) shows εn for V0 = 0Ω (dashed lines),
and V0 = 0.2Ω (solid lines), and (b) and (c) show the same for V0 = 2Ω and V0 = 8Ω,
respectively. Since ∆0 = 0, in (a) and (b), the level crossings take place at the zeros of
J0(α). In (a)-(c) the color bar indicates the probability of the finding the state |gg〉 in
each of the Floquet modes. The dashed vertical lines in (c) mark J0(α) = 0, and at those
points the central Floquet mode consists purely of |gg〉 state, which indicates dynamical
stabilization. (d) and (e) show the IPR Π|gg〉2 and Π|rr〉2 , respectively. In (f), we show the
Bessel functions J0(α) (solid line) and J−1(α) (dashed line). The parameter α is varied
by changing δ and keeping ω constant.
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simultaneously satisfied. In that case, the Bessel functions Jn1(α) and Jn2=n1−n(α)
[counter refer Eqs. (5.13) and (5.14)] determine the couplings for the transitions
|gg〉 ↔ |+〉 and |+〉 ↔ |rr〉, respectively. This is truly the case of three coupled
levels as both Ω1 ≈ Ω/2Jn1(α) and Ω1 ≈ Ω/2Jn2(α) are in general non-zero. Thus,
the dynamical stabilization of |gg〉 will occur when Ω1 → 0 or when J0(α) = 0.
Similarly, population trapping in |ee〉 takes place when Ω1 → 0 or at the zeros of
J−1(α) = 0. Note, however, that both conditions cannot be satisfied together. In
Figs. 5.4(c)-5.4(e), we show the results for ∆0 = 0 with V0 = ω = 8Ω, for which
both resonances are satisfied at n1 = 0 and n2 = n1 − n = −1.

In the case of simultaneous resonance, both the quasienergies εk and the inverse
participation ratio Π|gg〉2 demonstrate qualitatively different features compared to
the relatively simpler case when only one resonance condition, either R1 or R2, is
satisfied. The first anomalous attribute is that the quasienergy spectrum εk does not
have any level crossings when plotted as a function of α [see Fig. 5.4(c)]. Despite
that, we observe dynamical stabilization of both |gg〉 at J0(α) = 0 [marked by dashed
vertical lines in Fig. 5.4(c)] and |ee〉 state at J−1(α) = 0. This is in stark contrast to
the case of a single two-level atom for which the dynamical stabilization is always
accompanied by a level crossing in the quasi-particle spectrum. To further look at
the regions of dynamical stabilization of |gg〉, we color code quasienergies with the
overlap |〈gg|φn(0)〉|2. We observe that at the values of αk0, one of the Floquet modes
[the central one in Fig. 5.4(c)] becomes completely |gg〉 state. A similar colour
profile is observed upon plotting the overlap of Floquet modes with |rr〉 state (not
shown). Interestingly, Π|gg〉2 and Π|rr〉2 exhibit both primary and secondary minima
as a function of α [see Figs. 5.4(d) and 5.4(e) for V0 = ω]. The primary minima
in Π|gg〉2 occurs when J0(α) = 0 and it coincide with the secondary minima of Π|rr〉2

(Jn2=−1(α) = 0), and vice versa. At the primary minima of Π|gg〉2 , the state |gg〉
shows DS while at the secondary minima, the system exhibits blockade dynamics
and undergoes Rabi oscillations between the states |+〉 and |rr〉. Furthermore, even
the maxima of Π|gg〉2 and Π|rr〉2 do not coincide as shown in Figs. 5.4(d) and 5.4(e)
for V0 = ω. At the maxima (Π|gg〉2 ∼ 2 or Π|rr〉2 ∼ 2), the system undergoes Rabi
oscillations between |gg〉 and |rr〉 via the intermediate state |+〉 with an effective
Rabi frequency ∝

√
J2

0 (α) + J2
−1(α). Therefore, the maximum value (Π|gg〉2 = 2) in

Fig. 5.4(d) correspond to driving-induced Rydberg anti-blockades [137, 284].

Figures 5.5(a) and 5.5(b) show Π|gg〉2 and Π|rr〉2 , respectively for a broader range
of V0 and α. In Fig. 5.5(a), we identify three different regions: (i) dynamical stabi-
lization (shown by horizontal dark regions with Π|gg〉2 ∼ 0), (ii) anti-blockade (bright
loops with Π|gg〉2 ∼ 2 around V0 = nω) and (iii) population trapping of |rr〉 (Π|gg〉2 ∼ 1
and Π|rr〉2 = 0) (red-orange backdrop) in the remaining majority of the parameter
space. In Fig. 5.5(b), the dominant regions with a small IPR value (Π|rr〉2 ∼ 0) is
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Figure 5.5: The IPR (a) Π|gg〉2 and (b) Π|rr〉2 as a function of V0 and α for N = 2, ∆0 = 0
(R1 resonance), and ω = 8Ω. The regions of Π|gg〉2 = 0 correspond to the dynamical stabi-
lization of |gg〉, those where both Π|gg〉2 ∼ 1 and Π|rr〉2 ∼ 0 indicate the population trapping
of |rr〉, and Π|gg〉2 = 2 signals the Rydberg anti-blockade in which the system exhibits Rabi
oscillations between |gg〉 and |rr〉 via the intermediate state |+〉. The intricate patterns
arise due to the competition between the Rabi-couplings for the transitions |gg〉 ↔ |+〉
[∝ Jn1(α)] and |+〉 ↔ |rr〉 [∝ Jn2(α)]. If R2 is satisfied with V0 = ∆0 instead of R1 (a) is
Π|rr〉2 and (b) is Π|gg〉2 . The parameter α is varied by changing δ and keeping ω constant.

primarily due to the Rydberg blockade of |rr〉. At resonance, Π|rr〉2 becomes non-zero
in the vicinity of V0 = nω, except when Jn2 ∼ 0 which leads to population trapping.
In the α− V0 plane, the non-trivial patterns in IPR [shown in Fig. 5.5] emerge due
to the interplay between the two Rabi-couplings corresponding to the transitions
|gg〉 ↔ |+〉 [∝ Jn1(α)] and |+〉 ↔ |rr〉 [∝ Jn2(α)].

R2: We now consider the dynamical stabilization of both |gg〉 and |rr〉 states when
R2: n2ω = ∆0 − V0 is satisfied at primary resonance i.e. n2 = 0 (∆0 = V0). For
V0 � Ω, in succession to the aforementioned discussions on R1, it can be deduced
that the dynamical stabilization of both |rr〉 and |gg〉 states is given by the condition,
J0(α) = 0. On the other hand, for V0 � Ω, we also have a large ∆0, and therefore the
state |gg〉 gets decoupled from the dynamics (except when ∆0 = V0 = nω). Similar
to R1, in this case the dynamical stabilization of |rr〉 is provided by J0(α) = 0. In the
exceptional case where ∆0 = V0 = nω, both R1 and R2 are satisfied simultaneously.
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Thus the population trapping of |gg〉 is provided by Jn(α) = 0 while the dynamical
stabilization of |rr〉 is given by J0(α) = 0, as described above. In conclusion, the
results for R2 are identical to that of R1 with ∆0 = 0, V0 = nω, except that the role
of |rr〉 and |gg〉 are interchanged. Therefore, Figs. 5.5(a) and 5.5(b) alternatively
show Π|rr〉2 and Π|gg〉2 for V0 = ∆0, respectively.

R3: Now, we consider the case of third resonance R3: n3ω = 2∆0 − V0. When R3
is satisfied, the system exhibits Rabi oscillations between |gg〉 and |rr〉 states. As
mentioned earlier, the resonance condition for R3 cannot be extracted directly from
the Hamiltonian in Eq. (5.3) or from the Rabi couplings in Eqs. (5.13) and (5.14).
Hence, the couplings do not provide us with any physical picture of how dynamical
stabilization is related to the Bessel roots. For V0 � Ω, the values of ∆0 for which
R3 gets satisfied is far away from ∆0 corresponding to R1 or R2 resonances. This
means that there is no overlap in the resonances [88]. In that case, neither |gg〉 nor
|rr〉 can be stabilized as both of the states take part in Rabi oscillations coerced by
R3 resonance. Consequently, the population in |+〉 state remains negligible, except
when ∆0 = V0 = nω.

For V0 � Ω, there is an overlap among the resonances as R1, R2, and R3 are
not well isolated. Thus all three states (|gg〉, |+〉, |rr〉) and resonances are relevant
in the dynamics. This situation leads to the population transfer between |gg〉 and
|rr〉 via the intermediate |+〉 state. For small values of both RRIs and ∆0 compared
to the driving frequency, i.e., for ∆0/ω � 1 and V0/ω � 1 the effective Hamiltonian
can be approximately obtained as,

Ĥ
(∆0�ω)
eff ' ΩJ0(α)

2

(
1− iπ∆0

ω

) 2∑
j=1

σ̂jrg+
in3Ω

2 (Jn3(α)− J0(α))
(

1 + iπ
∆0

ω

)
X̂+H.c..

(5.19)
When n3 = 0, the second term with X̂ in Eq. (5.19) vanishes, and the dynamical
stabilization of both |gg〉 and |rr〉 is provided by the zeros of J0(α). This result
has been further verified by numerical calculations of the Schrödinger equation,
using the crossings in the Floquet spectrum and IPR [see Fig. 5.6(a)]. In contrast
with R1 and R2, as V0 increases, the dynamical stabilization for R3 requires both
stronger driving frequencies (ω) and larger modulation amplitudes (α). As shown
in Fig. 5.6(a), for V0 = 0.01Ω, we get the IPR profile nearly identical to that of the
non-interacting or single atom case [see Fig. 5.1(a)], which exhibits sharp minima at
J0(α) = 0. For a fixed ω, increasing V0 makes the minima broader, and in particular,
those at small values of α stop reaching zero. It means that on increasing V0/ω, the
dynamical stabilization at small values of α gets disrupted, as seen for V0 = 0.2Ω
and V0 = 1Ω in Fig. 5.6(a). In Fig. 5.6(b), we show IPR at a sufficiently large
value of RRIs (V0 = 6Ω) and for different ω, and we see that the sharp minima with
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Figure 5.6: (a) The IPR (Π|gg〉2 ) as a function of α for ω = 30Ω for different V0 satisfying
the R3 resonance with n3 = 0, i.e., 2∆0 = V0. (b) The same as in (a), but for different ω
and V0 = 6Ω. In (c), we show the dynamics for the initial state |gg〉 assuming R1 and R3
are met (n1 = n3 = 0) at the first root of J0(α), ω = 15Ω and V0 = 6Ω. In (d), we show
the same as in (c), except that the initial state is |rr〉 and for the resonances R2 and R3,
i.e. for n2 = n3 = 0. The parameter α is varied by changing δ and keeping ω constant.

vanishing IPR have disappeared completely leaving behind the broader minima.
These results can be understood from Eqs. (5.13) and (5.14). For sufficiently large V0,
satisfying the primary resonance condition 2∆0 = V0 does not result in the selection
of a particular Bessel function in the Rabi couplings, which in turn prevents the
dynamical stabilization of the initial state. Furthermore, the oscillations saturate
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to an IPR value of 1 which implies that at strong modulation amplitudes, coherent
oscillations between |gg〉 and |rr〉 states persist.

The strong dependence of V0 on the dynamical stabilization of |gg〉 and |rr〉 under
R3 resonance, is in stark contrast to that of R1 and R2. To explicitly demonstrate
it, we plot the dynamics at the first Bessel zero of J0(α) for the three resonances
R1, R2, and R3 for sufficiently large V0 [see Figs. 5.6(c) and 5.6(d)]. In Fig. 5.6(c),
we show the dynamics for the initial state |gg〉, one case satisfying the resonance
R1 and the other case R3, and in Fig. 5.6(c), the dynamics are shown for the
initial state |rr〉 satisfying R2 and R3 in the two cases. In both figures, we observe
Rabi oscillations in the population dynamics of R3, indicating the clear absence of
dynamical stabilization at large RRI.

5.4.3 Dynamical stabilization of maximally entangled Bell
states

In the following, we consider the dynamical stabilization of entangled states, com-
monly known as Bell states. These are a set of four particular maximally entangled
states of the two-atom system

|±〉 = (|gr〉 ± |rg〉)/
√

2, (5.20)

|B1/B2〉 = (|gg〉 ± |rr〉)/
√

2. (5.21)

We analyze the dynamical stabilization of maximally entangled |+〉, |B1〉 and |B2〉
states. The |−〉 state is decoupled from the dynamics and hence trivially exhibits
stabilization. With |+〉 state as the initial state, we also inspect if the entanglement
remains preserved with time. We quantify the quantum correlations or entangle-
ment between the two atoms using bipartite Von Neumann entropy. For a detailed
discussion on quantum correlations in two atoms see Sec. 1.5. In the abridged ver-
sion, we first partition the system identically thereby labelling the two subsystems
as A and B each containing one atom. The entanglement entropy is then defined
with respect to subsystem A as SA = −Tr(ρA log2 ρA) = −∑k λk log2 λk, where ρA
is the reduced subsystem density matrix corresponding to the atom A and λk are
the eigenvalues of ρA. Since, SA = SB, it uniquely defines entanglement in the two-
atom system. Each Bell state is maximally entangled with SA = 1, and under the
condition of dynamical stabilization, we expect SA to be preserved.

|+〉 state:

Among all of the Bell states, the |+〉 state is unique as it is involved in three types
of resonances: when (i) only R1 is satisfied, (ii) only R2 holds, (iii) both of these
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Figure 5.7: (a) IPR Π|+〉2 as a function of α and V0 for ω = 8Ω and ∆0 = 0. The
parameter α is varied by changing δ and keeping ω constant. (b) The general behavior
of the dynamics of the entanglement entropy SA for Π|+〉2 = 0 (solid line), indicating
dynamical stabilization and for Π|+〉2 = 1 (dashed line).

are simultaneously satisfied.
For V0 � Ω, the resonances R1 and R2 are not entirely separable and both are

partially satisfied. This means that both the couplings Ω1 from |+〉 → |gg〉 and Ω2

from |+〉 → |rr〉 [see Eqs. (5.14)] are non zero and nearly identical to ΩJ0(α)/2.
As a result, on an average the population from |+〉 state transfers nearly equally
to both |gg〉 and |rr〉 states. Following Eq. (5.18) for V0/ω � 1, we can see that
dynamical stabilization of |+〉 occurs when J0(α) = 0. This is validated by the
apprehension that both Ω1 and Ω2 vanish at zeros of J0(α). For V0 � Ω (excluding
the case of simultaneous resonance V0 = nω), the resonances R1 and R2 are isolated
from each other. Nevertheless, the dynamical stabilization of |+〉 is still determined
by the zeros of J0(α) if either one of R1 and R2 holds true. Suppose only R1 is
satisfied with n1 = 0. This results in Ω1 ≈ ΩJ0(α)/2 and Ω2 ≈ 0. Consequently, |+〉
to |gg〉 state transition occurs which is dictated by an effective Rabi coupling of Ω1

whereas no population from |+〉 is transferred to |rr〉 state which can be attributed
to Rydberg blockade. The |+〉 state can thus be stabilized dynamically when Ω1
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vanishes i.e. at the zeros of J0(α) provided the blockade condition is satisfied. On
the other hand, the resonance condition R2 demands a large initial detuning, which
prevents a coherent population transfer from |+〉 to |gg〉 state. This helps in the
dynamical stabilization of state |+〉 at the roots of J0(α).

For simultaneous resonances at V0 = nω with n being a non-zero integer both
R1 and R2 (as well as R3) are satisfied. We examine the primary resonance of R1
with n1 = 0. The dynamical stabilization of |+〉 state requires both J0(α) = 0 and
J−n(α) = 0. The latter criteria can never be satisfied with n 6= 0, which prevents
population trapping of |+〉 at simultaneous resonances. The discussion implies that
the dynamics of an entangled state is harder to freeze than the product states |gg〉
or |rr〉. The above results are summarized in Fig. 5.7(a), in which we show the
IPR value Π|+〉2 in the plane of α and V0. The broken horizontal blue stripes in
Fig. 5.7(a) correspond to the regions of dynamical stabilization of |+〉 state. The
regions with Π|+〉2 = 1 correspond to the blockade dynamics and those with Π|gg〉2 = 2
indicate that all three states are very involved in the dynamics. For R2 resonance
and V0 = ∆0, we get the same results as above, with the only key difference being
that the regions with Π|+〉2 = 1 indicate the Rabi oscillations between |+〉 and |rr〉.
Further, the time evolution of the entanglement entropy SA for the initial state |+〉
with minimum and maximum value IPR is shown in Fig. 5.7(b). When Π|+〉2 = 0,
we see that SA freezes, which indicates that the correlation between two atoms is
preserved under the periodic drive. In the regimes where Π|+〉2 = 1, the entropy SA
undergoes coherent oscillations, and for the particular case depicted in Fig. 5.7(b),
the oscillations in SA are due to the Rabi oscillations of the entangled state |+〉 with
product state |gg〉.

|B1〉 and |B2〉 states:

To discuss the dynamical stabilization of the Bell states |B1/B2, 〉, we need to consider
all the resonances which includes either |gg〉 or |rr〉, or both. Satisfying any of these
resonances drives the system away from the |B1/B2, 〉 state. This simple-looking
state is not trivial to apprehend. We comment on the stabilization of states |B1〉
and |B2〉 in conjunction with the case where both |gg〉 and |rr〉 are primarily engaged
in resonance. The latter happens when either R3 is satisfied or both R1 and R2
are met simultaneously. As already mentioned, at the primary resonance of R3
(with 2∆0 = V0), the system exhibits Rabi oscillations between |gg〉 and |rr〉 via |+〉
except at the roots of J0(α) where both |gg〉 and |rr〉 populations come to a halt
and are dynamical stabilized.

The final state can be expanded in the triplet basis |ψ(t)〉 = cgg|gg〉 + c+|+〉 +
crr|rr〉. Accordingly, the probability of system being in product states is |〈gg|ψ(t)〉|2 =
|cgg|2 and |〈rr|ψ(t)〉|2 = |crr|2. However, for the entangled states |B1〉 and |B2〉 the
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final probabilities also depend upon the real and imaginary part of the amplitudes
cgg and crr in addition to the product state probabilities,

|〈B1|ψ(t)〉|2 = |cgg + crr|2

2 6= |cgg|
2 + |crr|2

2

= |cgg|2 + |crr|2
2 + (Re[cgg]Re[crr] + Im[cgg]Im[crr]) . (5.22)

|〈B2|ψ(t)〉|2 = |cgg − crr|2

2 6= |cgg|
2 − |crr|2

2

= |cgg|2 + |crr|2
2 − (Re[cgg]Re[crr] + Im[cgg]Im[crr]) . (5.23)

The above expressions crucially indicate that even if the states |gg〉 and |rr〉 are
dynamically stabilized (implying a constant value of |cgg|2 and |crr|2), it does not
naturally translate to a dynamical stabilization of |B1〉 or |B2〉 due to the additional
terms in Eqs. (5.22) and (5.23). As an example, the states |gg〉 and |rr〉 are dynam-
ically stabilized with small RRIs V0/ω � 1 at the roots of J0(α) which can be easily
seen from Eq. (5.19). However, the same does not imply a dynamical stabilization
of |B1〉 (or |B2〉) as shown in Fig. 5.8(a). On the other hand, satisfying R1 and R2
conditions simultaneously requires two different Bessel functions to vanish at the
same value of α which is not possible, thereby ruling out the possibility of dynami-
cal stabilization of |B1〉 or |B2〉 state. For V0 � Ω and letting ∆0 = V0/2 without
periodic driving, with |B1〉 (or |B2〉) as initial state, we obtain the population in
both |gg〉 and |rr〉 nearly 1/2, due to blockade. At the same time, the population
in |B1〉 (or |B2〉) remains maximally frozen and it acts like a stationary state in
absence of modulation [see Fig 5.8(b)]. However, a periodic driving makes |B1〉 and
|B2〉 dynamically unstable.

5.5 Experimental Parameters

Finally, we comment on the experimental setup and parameters, which can be used
to investigate our findings. We consider a Rydberg nS1/2 state of a rubidium atom.
The two atom setups are easily realizable in labs using either optical tweezers or
optical micro traps [76]. Moreover, the interaction strengths between the Rydberg
atoms can be controlled precisely by adjusting the separation between the atoms or
using external fields [76]. As we mentioned before, the periodic modulation can be
generated by applying an additional oscillating RF field, which creates sidebands in
the Rydberg state as shown in [285–288]. Further control over the sidebands, select-
ing even or odd bands, are accessible via ac or dc electric fields [285]. An alternative
way, as demonstrated in a recent experiment, an intensity-modulated off-resonance
laser is used to vary the energy of the intermediate excited state sinusoidally, in a
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Figure 5.8: Population dynamics in |B1〉 (red-dashed lines), |B2〉 (blue-solid), |gg〉 (ma-
genta dash-dotted) and |rr〉 (green-dotted) conditioned to initial state |B1〉 = (|gg〉 +
|rr〉)/

√
2, (a) with small interaction strengths V0 = 0.01Ω, ω/Ω = 8.0 and modulation am-

plitude corresponding to first Bessel root δ = 2.404ω, (b) for strong interactions, V0/Ω = 15
but without periodic modulation, δ = 0 .

two-photon transition to the Rydberg state from the ground state [289]. The lat-
ter approach is equivalent to modulating the effective light field, which couples the
ground to the Rydberg state.

For a typical experiment involving two Rubidium Rydberg atoms, we consider
the Rydberg state to be |r〉 ≡ |45S1/2〉 which is coupled from the ground state
|5S, F = 2,mF = 2〉 via the |5P, F = 3,mF = 3〉. A two-photon excitation by diode
lasers at 780 and 480nm is used for the 5S-5P-nS transition [102]. On applying a
large detuning to the intermediate 5P state, the three-level system can be reduced
to an effective two-level system with a typical Rabi frequency of Ω ∼ 1 MHz. In our
studies, we use interaction strengths V0 = 0 − 20 MHz, and modulation frequency
ω = 0−30 MHz. The typical distance between Rydberg atoms corresponding to this
interaction strength would be about 8µm or larger which is feasible in atom traps.
The suitable modulation in frequency can also be generated by the above-mentioned
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methods. As we can see, the frequency differences between neighboring states are
(E45S1/2 − E44S1/2)/~ = 92.96 GHz and (E46S1/2 − E45S1/2)/~ = 86.53 GHz, ensures
that sidebands generated by the periodic modulation do not populate the nearest
Rydberg states. The latter can also be suppressed by taking a moderately strong
intensity of the oscillating RF field [285, 288].

5.6 Summary

In summary, we have studied the Dynamical stabilization of a set of experimentally
relevant product and entangled states in a Rydberg atom pair. The presence of
Rydberg-Rydberg interactions leads to state-dependent population trapping. As we
have shown, unlike in the case of a single two-level atom, the population trapping or
dynamical stabilization in two interacting Rydberg atoms may not be accompanied
by level crossings in the Floquet spectrum. We have discussed the dynamical stabi-
lization of a few selected states, including both product and entangled Bell states.
The latter case offers a way to preserve entanglement or correlation between two
qubits for sufficiently long times, with limitations arising only from the decoherent
processes. Our analysis reveals that the driving parameters are more restricted to
stabilize the entangled states compared to the product states dynamically. The re-
sults we have discussed here on population trapping or dynamical stabilization are
valid for a pair of any interacting two-level systems.

Our studies immediately raise the question of population trapping or dynamical
stabilization in extended systems, i.e., beyond a pair of atoms. For instance, it
would be interesting to analyze how the population trapping affects the bipartite
and tripartite entanglement of W and GHZ-states in three or more atoms setup. As
the number of qubits or atoms increases, the Floquet spectrum’s complexity also
increases, making the scenario more intriguing.



Chapter 6

Summary and Outlook

Systems of many-body interacting Rydberg atoms have an enormous potential to
solve long-standing problems in physics. On the other hand, the interest in two-
body Rydberg systems is motivated by applications of local quantum control and
deterministic local state preparation in a larger array. Technological progress has
allowed for a very active research community where the experimentalists can probe
and discover exciting physics which the theorists explain with great insights. Simi-
larly, remarkable theoretical predictions may be verified with controlled experiments.
It is therefore of fundamental importance to understand the underlying physics of
such systems. We focused on the setup of two atoms which forms the basis for all
entanglement operations. In this thesis, we studied systems of two interacting Ryd-
berg atoms and propose mechanisms to engineer the quantum state of the collective
system. Our work pertains to manipulating the state dynamics of the two-atom
system which is achieved by tuning the atom-light couplings and detunings, both
in weakly and strongly interacting systems. We have probed the population dy-
namics when the atoms are applied with (i) distinct Rabi couplings (ii) a linearly
varying detuning, and (iii) a periodically varying detuning. We numerically solve
the Schrödinger equation through Trotter’s decomposition and employ analytical
techniques such as Effective Hamiltonian and Adiabatic Impulse approximation to
bring physical insights into the system dynamics.

In keeping pace with the experimental progress which allows for individual atom
addressability, we studied a system in which both the atoms are driven distinctly by
different light fields. We focused on finding the effect of a Rabi frequency offset on
the excitation dynamics and quantum correlations of two atoms. When the atoms
are strongly interacting with each other, we identified the novel feature of Rydberg-
biased freezing, where augmenting the driving in one atom attenuates the population
dynamics of the second atom. In the same regime, the quantum correlations get sig-
nificantly suppressed, based on which we propose a scheme to dynamically control
the quantum correlations. Rydberg biased freezing has since been experimentally
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observed through quantum simulation in two and three NMR spin qubits by another
group. The latter study verifies that local control of excitation can be achieved by
Rydberg-biased freezing. In our study, we also investigated the condition of Rydberg
Blockade, of double excitation, which remains unaffected by positive Rabi frequency
offsets. However, in the double excitation dynamics, an interesting non-monotonic
behaviour is observed at small Rabi-offsets and small interaction strengths. We
explained the feature using effective Hamiltonians in different limits of system pa-
rameters. To test the robustness of the above novel features in a real system, we
included a dissipation term that arises from the spontaneous emission in the Ryd-
berg state. We conclude that Rydberg-biased freezing is a robust phenomenon even
with dissipation.

The atom-light detuning is another externally controllable system parameter.
We studied two variations of time-dependent detuning: linear and periodic. The
linear detuning in combination with tunable Rydberg-Rydberg interactions allows
the two-atom system to probe various three-level Landau-Zener models. Our setup
can emulate three and four-level bow-tie models, triangular Landau-Zener models, as
well as anisotropic spin models. Such models are ubiquitously present across all fields
of physics. Particularly in quantum simulation and computing, the Landau-Zener
transitions have been proposed as an efficient mechanism to prepare the system in
deterministic quantum states, and as a method of implementation of robust quan-
tum gates. Furthermore, the three-level system has also been used as an atom in-
terferometer. In consideration of this bigger picture, we analyzed the Landau-Zener
transition dynamics in the two-atom system with a linear quench. The Landau-
Zener dynamics showed a non-trivial dependence on the initial state, the quench
rate, and the interaction strength. The nontrivial patterns are further analytically
explained at strong interactions using the Adiabatic impulse approximation. More-
over, at weak interactions corrections to the non-interacting LZ model are proposed
based on scaling arguments. The detailed information of population and phases re-
vealed by analytical models can be used in a deterministic preparation of quantum
states, as well as in atom-interferometry.

A periodic variation of detuning creates an even richer dynamics in the two-
atom system. Often, periodic driving leads to the emergence of non-trivial phases
which have no counterparts in equilibrium dynamics. For a single-atom, periodic
driving emerged as a tool to manipulate excitation dynamics. We showed that even
the simple system of a single-two level atom has still interesting unexplored fea-
tures. In particular, we identified an interesting resemblance between the excitation
probability in the periodically driven two-level atom and the intensity distribution
pattern from N-slits. Furthermore, we have studied population trapping/dynamical
stabilization in the two-level atom using three approaches (i) Floquet quasienergy
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crossings, (ii) Inverse participation ratio (IPR), and (iii) using effective Hamiltonian.
We identified IPR as a suitable indicator of population trapping.

In an array of Rydberg atoms, it has been previously shown that periodic driv-
ing leads to enhancement of blockade and emergence of antiblockade regimes. A
lot of research has been going on implementing a scheme for entangled phase gates
using periodic driving. We analyzed the population dynamics of the periodically
driven system of two Rydberg atoms using numerics and Adiabatic impulse ap-
proximation. It revealed the various resonances present in the system. We further
discussed the validity of Adiabatic impulse approximation in detail. Furthermore,
we focused specifically on population trapping in two two-level atoms for a set of
experimentally relevant states. The presence of Rydberg-Rydberg interactions leads
to state-dependent population trapping. We showed that unlike in the case of a
single two-level atom, the population trapping or dynamical stabilization in two in-
teracting Rydberg atoms may not be accompanied by level crossings in the Floquet
spectrum. We have discussed the dynamical stabilization of product and entangled
Bell states. The latter case offers a way to preserve entanglement or correlation
between two qubits for sufficiently long times, with limitations arising only from the
decoherent processes. Our analysis reveals that the driving parameters are more
restricted to stabilize the entangled states compared to the product states dynam-
ically. The results we have discussed here on population trapping or dynamical
stabilization are valid for a pair of any interacting two-level systems.

Our study of two periodically driven atoms can be extended to three or more two-
level atoms, for which it will not be so straightforward to assume AIA would work at
large interactions due to the complexity in the level structure. We also note that for
weak interactions, it is required to develop a multi-level AIA in which the LZTs take
place among multiple levels at the same time. A study of entanglement dynamics of
such systems may reveal mechanisms for a dynamical control of quantum correlation.
Moreover, population trapping in extended systems can be studied. It would be
interesting to analyze how the population trapping affects the bipartite and tripartite
entanglement of W and GHZ-states in three or more atoms setup. As the number of
qubits or atoms increases, the Floquet spectrum’s complexity also increases, making
the scenario more intriguing.
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Appendix A

Steady State Results

A.1 Analytical results for the steady state den-
sity matrices and purity of the system and
subsystems

On solving ρ̇(t) = 0, the steady state density matrix of the system is obtained as:

ρAB = 1
κ

[(
V 2

0

(
Γ2 + Ω2 + (Ω + ω)2

)
+ (Γ2 + Ω2)

(
Γ2 + (Ω + ω)2

))
|gg〉〈gg|

+
(
V 2

0 + Γ2 + Ω2
)

(Ω + ω)2 |gr〉〈gr|+ Ω2
(
V 2

0 + Γ2 + (Ω + ω)2
)
|rg〉〈rg|

+Ω2(Ω + ω)2|rr〉〈rr|+ Ω
(
V 2

0 + Γ2
)

(Ω + ω) (|gr〉〈rg|+ H.c.)

+
(
(Ω + ω)(iΓ− V0)

(
Γ2 + Ω2 − iV0Γ

)
|gg〉〈gr|+ H.c.

)
+
(
Ω(−V0 + iΓ)

(
Γ2 + (Ω + ω)2 − iV0Γ

)
|gg〉〈rg|+ H.c.

)
+ (−Γ(iV0 + Γ)Ω(Ω + ω)|gg〉〈rr|+ H.c.)

+
(
(−V0 + iΓ)Ω(Ω + ω)2|gr〉〈rr|+ H.c.

)
+
(
(iV0 + Γ)Ω2(Ω + ω)|rg〉〈rr|+ H.c.

)]
,

(A.1)

and that of subsystems are,

ρA = 1
κ

[(
V 2

0

(
Γ2 + 2ω2 + 4ωΩ + 3Ω2

)
+
(
Γ2 + Ω2

) (
Γ2 + 2(Ω + ω)2

))
|g〉〈g|

+Ω2
(
V 2

0 + Γ2 + 2(Ω + ω)2
)
|r〉〈r|

+
(
Ω
(
iV 2

0 Γ− 2V0(Ω + ω)2 + iΓ
(
Γ2 + 2(Ω + ω)2

))
|g〉〈r|+ H.c.

)]
ρB = 1

κ

[(
V 2

0

(
Γ2 + ω2 + 2ωΩ + 3Ω2

)
+
(
Γ2 + 2Ω2

) (
Γ2 + (Ω + ω)2

))
|g〉〈g|

+(Ω + ω)2
(
V 2

0 + Γ2 + 2Ω2
)
|r〉〈r| −

(
(Ω + ω) (V0 − iΓ)

(
Γ2 + 2Ω2 − iV0Γ

)
|g〉〈r|+ H.c.

)]
,

(A.2)
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where

κ = V 2
0

(
Γ2 + 2ω2 + 4Ωω + 4Ω2

)
+ (Γ2 + 2Ω2)

(
Γ2 + 2(Ω + ω)2

)
. (A.3)

The purity of the system and subsystems are obtained as:

Tr
(
ρ2

AB

)
= 1
κ2

[(
Γ4 + 4Γ2Ω2 + 2Ω4

) (
Γ4 + 4Γ2(Ω + ω)2 + 2(Ω + ω)4

)
+V 4

0

(
Γ4 + 4Γ2

(
2Ω2 + 2Ωω + ω2

)
+ 2

(
2Ω2 + 2Ωω + ω2

)2
)

+V 2
0

(
Γ6 + 4Γ4

(
2Ω2 + 2Ωω + ω2

)
+ 4Ω2(Ω + ω)2

(
2Ω2 + 2Ωω + ω2

)
+2Γ2

(
ω4 + 4ω3Ω + 11ω2Ω2 + 14ωΩ3 + 7Ω4

))]
Tr
(
ρ2

A

)
= 1
κ2

[
Ω4
(
V 2

0 + Γ2 + 2(Ω + ω)2
)2

+ 2(V 2
0 + Γ2)Ω2

((
Γ2 + 2(Ω + ω)2

)2
+ V 2

0 Γ2
)

+
(
Γ4 + 2Ω2(Ω + ω)2 + V 2

0

(
Γ2 + 2ω2 + 3Ω2

)
+ 4ΩωV 2

0 + Γ2
(
2ω2 + 3Ω2 + 4Ωω

))2
]

Tr
(
ρ2

B

)
= 1
κ2

[
(Ω + ω)4

(
V 2

0 + Γ2 + 2Ω2
)2

+ 2(V 2
0 + Γ2)(Ω + ω)2

((
Γ2 + 2Ω2

)2
+ V 2

0 Γ2
)

+
(
Γ4 + 2Ω2(Ω + ω)2 + V 2

0

(
Γ2 + ω2 + 3Ω2

)
+ 2ΩωV 2

0 + Γ2
(
ω2 + 3Ω2 + 2Ωω

))2
]
.

(A.4)

For ω = 0, the expressions for purity become:

Tr
(
ρ2

A

)
=Tr

(
ρ2

B

)
= 1
κ2

[
V4

0

(
Γ4 + 8Γ2Ω2 + 10Ω4

)
+ V2

0

(
2Γ6 + 16Γ4Ω2 + 32Γ2Ω4 + 24Ω6

)
+Γ8 + 8Γ6Ω2 + 22Γ4Ω4 + 24Γ2Ω6 + 8Ω8

]
(A.5)

Tr
(
ρ2

AB

)
= 1
κ2

[(
Γ4 + 4Γ2Ω2 + 2Ω4

)2
+ V 4

0

(
Γ4 + 8Γ2Ω2 + 8Ω4

)
+2V 2

0

(
Γ6 + 8Γ4Ω2 + 14Γ2Ω4 + 8Ω6

)]
, (A.6)

and for ω = 0, the parameter κ reduces to,

κ = V 2
0

(
Γ2 + 4Ω2

)
+
(
Γ2 + 2Ω2

)2
(A.7)



Appendix B

Underlying Group Symmetries

B.1 Two-level system and SU(2)

The underlying symmetry in the time evolution of the two-level system (TLS) is
SU(2) rotational symmetry. The evolution matrix of the two-level system falls
under the SU(2) symmetry group which comprises of all 2 × 2 unitary matrices.
In particular, the full evolution matrix of the LZ problem under AIA is given by
F̂ = U(ta,+0)ĜLZU(−0, t−a) with ta →∞. In the adiabatic basis it reads as follows

F̂ = eiφG

 √
(1− PLZ)e−i(2ζ+φ̃s) −

√
PLZ√

PLZ
√

(1− PLZ)ei(2ζ+φ̃s)

 (B.1)

= eiφG

 α1 −α∗2
α2 α∗1

 (B.2)

where φG =
∫ ta

0 ∆(t)dt and ζ =
∫ ta

0 Ω̄(t)dt is an element of the SU(2) group. The
matrix on the second equality is the most general element of set SU(2). The elements
in SU(2) have the property {α1, α2} ∈ C and |α1|2 + |α2|2 = 1. It describes a general
rotation of the state (a+, a−) by an angle θ about the axis n = (nx, ny, nz)

R(θ) = exp
(
−iσ · nθ

2

)
(B.3)

where σ are the 2 × 2 Pauli operators. Explicitly, the full matrix F̂ represents a
rotation by an angle θ = arccos[

√
1− PLZ cos

(
2ζ + φ̃s

)
] in the Bloch sphere about

the axis n =
(

0,−
√

1−PLZ sin(2ζ+φ̃s)
sin(θ/2) ,

√
PLZ

sin(θ/2)

)
.

Because of this symmetry, even repeated traversal across the avoided-crossings
can be understood as rotations in the Bloch sphere about an axis n by an amount
θ. Both values depend on the LZ transition probability and the dynamical phases
gained during the traversal.
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B.2 Three level system and SU(3)

B.2.1 SU(3)

The Lie group SU(3) is the set of all (3×3) unitary matrices with a unity determinant
whose generators are eight traceless Hermitian matrices of dimension 3, called Gell-
Mann matrices. The unitary evolution of the two-atom follows SU(3) symmetry
where the Hamiltonian is a linear combination of the Gell-Mann matrices (~Λ),

Ĥs = ~B(t) · ~Λ (B.4)

where, B(t) = (Ω/
√

2, 0,∆(t), 0, 0,Ω/
√

2, 0,
√

3∆(t)), (B.5)

and the 8 independent Gell-Mann matrices ~Λ = (λ1, · · · , λ8) are

λ1 =


0 1 0
1 0 0
0 0 0

 , λ2 =


0 −i 0
i 0 0
0 0 0

 , λ3 =


1 0 0
0 −1 0
0 0 0

 ,

λ4 =


0 0 1
0 0 0
1 0 0

 , λ5 =


0 0 −i
0 0 0
i 0 0

 , λ+ =


1 0 0
0 0 0
0 0 −1

 ,

λ6 =


0 0 0
0 0 1
0 1 0

 , λ7 =


0 0 0
0 0 −i
0 i 0

 , λ− =


0 0 0
0 1 0
0 0 −1

 ,

λ8 = 1√
3


1 0 0
0 1 0
0 0 −2

 , (B.6)

alongwith λ± = (
√

3λ8 ± λ3)/2. This describes a three-level Hamiltonian where the
diabatic energies form a triangular shape with their crossings. Furthermore, the

  

Figure B.1: Each crossing in the triangular shaped SU(3) model can be considered as a
combination of three crossings each having SU(2) symmetry.
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SU(3) algebra which can be expressed in terms of 3 SU(2) subalgebras

3× SU(2) =


~s1 = 1

2(λ1, λ2, λ3)

~s2 = 1
2(λ4, λ5, λ+)

~s3 = 1
2(λ6, λ7, λ−)

(B.7)

is representative of local SU(2) symmetry at each crossing. Thus when each crossing
is distinct, the evolution can be confined to the subspace(s) of two-level crossings
where each crossing has a SU(2) symmetry.

B.2.2 LZT matrix

The complete evolution matrix in AIA is given by F̂L = Û4Ĝ3LZÛ3Ĝ2LZÛ2Ĝ1LZÛ1.
As it is a 3 × 3 unitary matrix, it also represents a rotation in eight-dimensional
hypersphere akin to three-dimensional rotational symmetry found in two-level sys-
tems [see Sec. B.1]. Any rotation in the SU(3) group can be generated by a linear
combination of the eight Gell-mann matrices λi. Hence, the rotation of 3-spinors is
written as:

Û = exp
(
−iλ̂ · n̂θ

)
(B.8)

where n̂ is a unit vector in the eight-dimensional hyperspace. Unlike the simplified
expansion of the rotation matrix of SU(2),

exp(−iσ̂ · n̂θ) = 1 cos θ − i (σ̂ · n̂) sin θ (B.9)

where σ̂i are the 2 × 2 representation of Pauli matrices, the elementary form of an
element of rotational matrix in SU(3) is rather unapparent. Upon using Caley-
Hamilton theorem [290], an algebraic form of the element can be written as

exp(−iGθ) =

∑
k=0,1,2

(
G2 + 2√

3
G sin(φk)−

1
3 (1 + 2 cos (2φk))

) exp
(
− 2√

3iθ sin(φk)
)

1− 2 cos (2φk)
,

(B.10)

where θ is the angular rotation normalized with tr(G2) = 2 with φk = φ + 2πk/3
and φ is an angle determined by

φ = 1
3

(
arccos

(3
2
√

3det(G)
)
− π

2

)
. (B.11)
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The matrix G is a generalized traceless Hermitian matrix,

G =


a c d

c∗ b e

d∗ e∗ −a− b

 (B.12)

obtained from the generators λi, where {a, b} ∈ R and {c, d, e} ∈ C. The eight
unknowns in the above matrix can be easily written in terms of ni as a = n3 +
n8/
√

3, b = −n3 + n8/
√

3, c = n1 − in2, d = n4 − in5, e = n6 − in7. To identify a
unique rotation, we need to identify the values of the components ni and angle θ.
The most general rotation element in SU(3) is obtained by substituting the matrix
in Eq. (B.12) into Eq. (B.10),

Û =
∑

k=0,1,2
e

2iθ sinφk√
3 ×


a2+|c|2+|d|2−1−2 cos 2φk+ 2a sinφk√

3
1−2 cos 2φk

(a+b)c+de∗+ 2c sinφk√
3

1−2 cos 2φk

−bd+ce+ 2d sinφk√
3

1−2 cos 2φk
(a+b)c∗+d∗e+ 2c∗ sinφk√

3
1−2 cos 2φk

b2+|c|2+|e|2−1−2 cos 2φk+ 2b sinφk√
3

1−2 cos 2φk

−ae+c∗d+ 2e sinφk√
3

1−2 cos 2φk
−bd∗+c∗e∗+ 2d∗ sinφk√

3
1−2 cos 2φk

−ae∗+cd∗+ 2e∗ sinφk√
3

1−2 cos 2φk

(a+b)2+|d|2+|e|2−1−2 cos 2φk−
2(a+b) sinφk√

3
1−2 cos 2φk

 .
(B.13)

The above matrix can be compared with the evolution matrix given by F̂L to obtain
the values of ni and θ uniquely.
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