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ABSTRACT

In this thesis we use the asymptotic symmetries of 3D (super)gravity theories to explore

the dual theories.

Using the Chern-Simons formulation of (2+1)D gravity we have constructed a two

dimensional theory dual to 3D asymptotically flat supergravity in presence of two su-

percharges with(out) internal R symmetry. In both cases, the dual theory is a chiral

Wess-Zumino-Witten type model. We then explore the symmetries of the dual theory

and find the most generic, so far unknown, quantum N = 2 superBMS3 symmetry under

which this is invariant. We have also commented on the phase space description of the

duals.

Next, we use similar techniques to understand the dual dynamics of 3D asymptotically

de-Sitter supergravity. We write down the Chern-Simons description of the bulk theory

using OSp(1|2,C) as the gauge group. Next we describe the holographic screen of 3D

de-Sitter and impose our boundary conditions. We finally end up with a super-Liouville

theory at the boundary as the holographic dual of the bulk supergravity theory.

Finally we use conformal field theory techniques to write a Matrix model partition

function with BMS3 constraints. We start from the free field realisation of the algebra in

terms of a twisted β − γ system and solve the constraints through it. We end up with

an eigenvalue representation of this partition function. Since BMS3 is the asymptotic

symmetry algebra of the pure gravity in 3D flat background, we expect this partition

function to illuminate our understanding of 3D holography. We comment on qualitative

properties of this partition function.
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Chapter 1

Asymptotic Symmetries and

Holography

1.1 Asymptotic symmetries in gauge and gravity theories

Ever since Emily Noether discovered the relation between symmetries and conserved

quantities, it has become one of the central themes of modern physics.

It was discovered long back that there exist non-trivial enhanced symmetries at the

asymptotic region of spacetime for gravitational theories. For asymptotically flat space-

times, Bondi, Metzner, Van der Burg and Sachs found that the boundary symmetry alge-

bra was not Poincaré algebra but rather an infinite dimensional algebra (later named BMS

algebra) which contained Poincaré algebra as its subgroup. Recently, similar symmetry

enhancement has also been found for gauge theories as well. These enhanced symmetries

or asymptotic symmetries have physical consequences and constrains the scattering ma-

trices of these theories. For instance, the ward identity of these symmetries is related to

soft theorems that constrain the S matrices’ infrared behavior.

Gauge theories have local degrees of freedom that arise from making the global sym-

metry of the system a function of spacetime points. To relate this system with its original

counterpart, we identify the states that differ by gauge transformations to be the same

physical state. Thus, it was expected that the gauged system’s final symmetry would be

the same as the initial global symmetry algebra. It turns out not to be the case. There

are essentially two types of gauge transformations one can perform. Trivial gauge trans-

formations are those that fall off fast enough at large distances. On the other hand, large
1



Chapter 1. Asymptotic Symmetries and Holography

gauge transformations are those allowed transformations that are non-zero at the bound-

ary of the spacetime. The latter one is not just the redundancy of description; instead, it

affects the physical state of the system. Thus the asymptotic symmetry group is described

as the quotient of all allowed gauge transformations by trivial gauge symmetries.

Because the asymptotic symmetries are defined at the boundary of spacetime, they

are heavily influenced by the boundary conditions imposed on the fields. For example,

the original BMS group was recently enhanced to extended BMS group by realising that

the original boundary conditions can be relaxed to allow for analytic singularities at the

null boundary of the spacetime. Thus it is important to mention the boundary conditions

along with the Lagrangian of the theory while describing asymptotic symmetries. From

the point of view of quantum field theories this makes sense. Since, the Hilbert Space of

a QFT is determined not only by the Lagrangian of the theory but also the boundary

conditions imposed on the fields.

In this thesis, we will firstly study asymptotic symmetries of supergravity theories in

(2+1) dimensions. Using the Chern-Simons formulation of gravity, we will first specify

the boundary conditions for such theories and then study the classical holographic dual

theories. These holographic duals will possess the asymptotic symmetry algebra of the

supergravity theory as its gauge symmetry. We will study these systems in asymptotically

flat and de-Sitter spacetimes. In the next part, we consider AdS space time and study

a possible implication of asymptotic symmetry. We analyse classical scattering in 4D

AdS-Schwarzschild spacetimes and study the soft gravitational radiation. We comment

on the relation between this soft radiation and asymptotic symmetries of AdS4.

1.2 Gravity in (2+1) dimensions

In Einstein’s theory of gravity, the dynamical field that governs the nature of gravitational

force is the metric. In other theories of gravity, for instance in supergravity, along with

metric, we also have other dynamical fields like gravitini etc. In 4D, it can be shown from

Einstein’s field equations that perturbations in gravitational field propagate as spin-2

massless excitations (gravitational waves). These excitations have two local degrees of

freedom encoded in their polarisation. This situation is quite different in the case of 2+1

dimensional theories.

A simple calculation shows, that in a D dimensional theory of gravity, the metric which
2



1.3. Supergravity in (2+1) dimensions

is a symmetric D × D matrix has D(D+1)
2 independent components. Now, Einstein’s

field equations are Gµν = 8πGTµν and conservation of Stress-tensor puts D number of

constraints ∇µTµν = 0 ⇒ ∇µGµν = 0. Also, locally, one can change the co-ordinates

xµ → xµ + ξµ(x), which means another D number of components can be fixed. Hence,

the physical degrees of freedom is given by

D(D + 1)
2 −D −D = D(D − 3)

2 . (1.2.1)

Putting D = 4 we get that there are 2 local degrees of freedom. Now, if we put D = 3,

we see that the above formula gives zero. This implies that pure gravity does not possess

any local d.o.f. in (2+1) dimensions.

This inference can also be reached more formally [1]. In (2+1) dimensions, the Riemann

curvature tensor can be decomposed in terms of the Ricci tensor and the Ricci scalar

only as the Weyl tensor vanishes identically. We may write

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1
2(gµρgνσ − gµσgνρ)R (1.2.2)

Putting this expression in Einstein’s equation we get

Rµν = 2Λgµν (1.2.3)

which implies constant curvature. That means, given the cosmological constant, the

local structure of spacetime is fixed. In particular, gravitational waves, which are local

excitations of the metric, are disallowed in (2+1) D.

1.3 Supergravity in (2+1) dimensions

In order to consider Supergravity, we add the action of gravitino field with pure Einstein-

Hilbert action. The gravitino field ψµα is spin-3/2 field and it’s action reads:

Isug = −1
2

∫
d3x
√
gεµνρψ̄µDνψρ (1.3.4)

It can be shown that even after adding the gravitino part, the action does not possess

any local degrees of freedom. The equation of motion for ψµ reads εµνρ∂νψρ = 0 which

implies a general solution ψµ = ∂µφ. But local SUSY suggests that ψ has the symmetry
3



Chapter 1. Asymptotic Symmetries and Holography

δψµ = ∂µε, where ε is the SUSY parameter. This can be used to completely gauge away

the field φ. Hence, on shell, the gravitino field contains no local degree of freedom in 2+1

dimensions.

The theory described above is a minimal supergravity theory. But in principle ex-

tended supergravity theories can also be discussed in 2+1 dimensions. These theories

have more than one gravitino fields and also have auxillary fields in them. A similar

counting of degrees of freedom shows that even extended SUGRA theories do not contain

any local physical degrees of freedom.

But this in no way means that gravity is trivial in this setting. Even without any

local excitations there are topological degrees of freedom. These arises from considering

geometries which are locally isometric but have different topological structures associ-

ated with them. Another non-triviality arises from considering the boundary conditions.

When we have a manifold with boundaries, the behaviour of fields at the boundary is an

extra condition that we impose. It can be shown that in (2+1) dimensions, with proper

boundary conditions, infinite degrees of freedom may reside at the boundary.

These subtleties make gravity at lower dimensions interesting. Since, all the degrees of

freedom (apart from the topological ones) in this system resides at the boundary, the

ideas of holography seems natural in this setting. In fact the works of [2] were a precur-

sor to AdS/CFT proposal by Maldacena [3]. Now, we will see that it is related to another

non-dynamical theory in 2+1D, the Chern-Simons(CS) theory. We will also briefly dis-

cuss how the asymptotic phase space of gravity translates into the CS language and how

the gauge symmetries of the theory becomes large diffeomorphism of gravity.

1.4 Vielbein and Spin Connection

In order to connect the theory of gravity with CS theory, we will use the vielbein formalism

of gravity. In Einstein’s gravity, the dynamical variable is the metric of spacetime gµν(x).

The metric is diffeomorphism covariant. We define a flat metric at every point through

the following formula:

gµν(x) = eaµ(x)ηabebν(x) (1.4.5)

Thus the dynamical information of the metric is now encoded in the functions eµa called

the vielbeins. The indices {µ, ν, ...} denote the curved space index whereas the indices
4



1.5. Brief Introduction to Chern-Simons theory

{a, b, ..} denote the tangent space index. These new quantitites eaµ are invertible every-

where and hence have non-zero determinant. Vielbeins can also be used to interchange

curved and tangent indices. This is particularly useful while doing QFT in curved space-

time since fields are usually defined according to their trasnformation properties in flat

spacetime. Vielbeins are not unique for a given metric. We can perform a local Lorentz

transformation in the tangent space which will transform the vielbeins but not the space-

time metric.

Vielbeins are also used for defining a basis for one forms. We can define the 1-form

ea = eaµdx
µ which transforms like a vector under local lorentz transformations. Then a

co-vector A can be expanded as A = Aµdx
µ = Aae

a where Aa = Aµe
µ
a .

A related concept is that of spin connections. To motivate it, notice that the 2-form dea

does not transform like a Lorentz vector under local transformations. To make a locally

Lorentz covariant quantity we may define T a = dea +ωab e
b. Deamnding T a transforms in

the correct way, i.e. T a → Λa
bT

b we get the following transformation property for ω:

ω → Λ−1(d+ ω)Λ (1.4.6)

where we have suppressed the indices. The components of the quantity ωab are called

spin connections. Essentially, in the vielbein formalism, the vielbeins eaµ play the role of

a metric and ωabµ play the role of Christoffel symbols. We can write the Einstein-Hilbert

action in vielbein formalism. In 3D, the action looks like:

SEH =
∫
εabc[ea ∧Rbc − Λ

3 e
a ∧ eb ∧ ec] (1.4.7)

with the curvature tensor defined as Rbc = 1
2

(
∂µω

bc
ν − ∂νωbcµ + [ωbaµ, ωacν ]

)
dxµ ∧ dxν . A

plus point of writing the action in this form is that now it looks like the action of a gauge

theory. This fact is true for 3D gravity as we will see below.

1.5 Brief Introduction to Chern-Simons theory

Before discussing the relation between gravity and Chern-Simons(CS) theory let us briefly

recall some basic features of Chern-Simons gauge theory. It is a topological field theory
5



Chapter 1. Asymptotic Symmetries and Holography

and the action is given by:

SCS[A] = κ

2

∫
M
Tr(A ∧ dA+ 2

3A ∧ A ∧ A) (1.5.8)

Where A = Aµdx
µ is the 1 form gauge field for some gauge group G. The field strength

dA is defined in a similar way dA = ∂µAνdx
µ ∧ dxν . The trace in the action is over the

generators {T a} of the Lie algebra. Thus the action does not have any metric dependence,

so the theory is explicitly metric independent or topological.

To see the gauge invariance of the theory, we can transform the gauge field by A →

G−1AG+G−1dG and observe that the action transforms as

δSCS = Tr
[
κ

2

∫
M
d[dGG−1A]

]
(1.5.9)

which certainly vanishes locally. But this also highlights one important aspect. On a

manifold with boundary, the gauge transformation of the field A has non-trivial effects

at the boundary. As we know, these boundary terms play important role in defining

Noether Charges and we will see its implications in asymptotic symmetries.

Another important characteristic of the CS theory is its equations of motion. Varying

the action with respect to the field A we get,

F ≡ dA+ A ∧ A = 0 (1.5.10)

This shows that the field strength vanishes at every point and thus the solution is pure

gauge A = G−1dG. This also means that no local excitations exist for this theory, quite

similar to 3D gravity. All these results will be extremely crucial when we relate the CS

theory with gravity.

1.6 From Chern-Simons to (super)gravity

The relation between CS theory and pure gravity in 2+1 dimensions was discovered in [4]

for negative cosmological constant and later expanded by Witten [5].

To show the equivalence of these actions we start from (1.4.7) and interpret the fields

ea and ωab as gauge fields. Since we are interpreting gravity as a gauge theory, it is

natural to assume that the local isometries of the theory of gravity will construct the
6



1.6. From Chern-Simons to (super)gravity

gauge group. Hence, for zero cosmological constant case, the gauge group would be

ISO(2, 1) and similarly for Λ < 0 the gauge group would be SO(2, 2) and for Λ > 0 it’s

SO(3, 1).

But we need to be careful. If we expand the "kinetic" term of the CS action with

A = AaTa, we get

Skin =
∫
M
Aa ∧ dAb Tr[TaTb] (1.6.11)

Thus in order to ensure that every component of the gauge field has a kinetic piece, we

need the matrix Tr[TaTb] to be non-degenerate. This plays the role of metric in the

Lie Algebra vector space and the existence of such an invertible metric is crucial for

this formalism to work. Fortunately, for each of the algebras mentioned above, such a

non-degenerate bilinear form exists.

Let us see the example of Λ = 0 case first. For this the symmetry generators are the

translations Pa and the Lorentz generators Jab. But in 3D, we can write dual generators

for Lorentz transformations Ja = 1
2ε
abcJbc, which puts them in the equal footing as Pa.

This allows us to consider the most generic bilinear of the form,

W = aPaP
a + bJaJ

b + cPaJ
b (1.6.12)

Demanding it to be a quadratic casimir gives the solution a = c = 0; b 6= 0 or a = b =

0; c 6= 0. The second one is non-degenerate and hence can be used to construct our

theory of gravity. From their structure it is quite natural to interpret the vielbeins as the

generators associated with translation and spin connections as the generators of Lorentz

transformation. Hence we choose our gauge field as

A = eaPa + ωaJa (1.6.13)

where ωa = εabcωbc and see that we get (1.4.7) from (1.5.8). To reach the final step we

need to take Tr[PaJb] = δab, this normalisation factor is fixed by demanding the resulting

action be equivalent to Einstein-Hilbert action.

For non-zero Λ, there are two ways of approaching. The isometry algebra can be
7



Chapter 1. Asymptotic Symmetries and Holography

written as

[Pa, Pb] = ΛεabcJ c [Ja, Jb] = εabcJ
c [Pa, Jb] = εabcP

c (1.6.14)

and proceeding as above, with a similar bilinear form, we get EH action with the cosmo-

logical constant. The extra term is generated by the last piece of CS action because the

term A ∧ A ∧ A ∼ A ∧ [A,A] and the commutator now contains an extra piece due to

non-zero Λ.

Interestingly, there is one other option for the case of non-zero Λ. The first Casimir

that we discarded for flat case actually becomes non-degenerate in the presence of a

cosmological constant. In this case, this becomes Tr[PaPb] = λδab, T r[JaJb] = δab and

gives rise to an action, that is different from 1.4.7. We will not persue this further here.

To extend the above discussion to supergravity is natural. We must now take the cor-

responding supergroup as the gauge group of the CS theory. The Chern-Simons field now

will also contain a component along the supercharges. The co-efficient of this component

will be gravitini field. For extended supergravity theories additional characteristics will

occur, we mention them in the relevant chapters later.

1.7 Diffeomorphism and Gauge symmetries in CS formalism

Since we can write the Einstein-Hilbert action (1.4.7) in Chern-Simons language, we

expect that the diffeomorphism invariance of the gravity action manifests as gauge in-

variance in this formalism. As we will see below, this is indeed true [5].

Indeed one can show that a generic ISO(2, 1) gauge transformation parametrized by

the element λ = EaPa + ΩaJa, act on the gauge field as

δAµ = −Dµλ = −(∂µλ+ [Aµ, λ]). (1.7.15)

In terms of the gravity fields (eaµ, ωaµ) the gauge transformation reads:

δeaµ = −∂µEa − εabceµbΩc − εabcωµbEc (1.7.16)

δωaµ = −∂µΩa − εabcωµbΩc (1.7.17)

which are the expected local Lorentz transformations generated by Ωa and local diffeo-
8



1.8. Asymptotic Phase space and symmetries

morphism transformations generated by Ea. Recall that under a generic diffeomorphism

transformation xµ → xµ + V µ, the fields (eaµ, ωaµ) transforms as

δ̃eaµ = V ν(∂νeaµ − ∂µeaν) + ∂µ(V νeaν), δ̃ωaµ = V ν(∂νωaµ − ∂µωaν) + ∂µ(V νωaν). (1.7.18)

Thus for Ea = eaµV
µ and turning off the local Lorentz transformation, we can show that

the difference between (1.7.16) and (1.7.18) is:

δ̃eaµ − δeaµ = V ν(Dνe
a
µ −Dµe

a
ν)− εabcV νωνbeµc . (1.7.19)

The 1st term of the RHS of the above equation, the torsion, vanishes on-shell, while the

2nd term can be identified with a local Lorentz transformation with parameter Ωa = ωaµV
µ

[6]. Thus we see that, on-shell, gauge transformation of Chern Simons theory is identical

to local Lorentz and diffeomorphism transformation of 3D Gravity.

1.8 Asymptotic Phase space and symmetries

Now that we have a relation between the action of CS theory and (super)gravity theories,

we can ask how to study the asymptotic symmetries of gravity theories in CS formalism.

Since, there are no local excitations in 3D gravity, all the dynamics are confined in the

boundary. This makes the study of asymptotic phase space of this theory extremely

crucial.

Generally, the asymptotic phase space is defined by putting boundary conditions on

the components of the metric. These conditions are not unique but they should be chosen

in a way that they allow for all physically interesting metrics satify them. But on the

other hand, they should not be too loose to allow for systems with unphysical behaviours.

We now review a particular set of conditions in asymptotically flat spacetime and explain

how to study asymptotic symmetries using CS theory.

In 3D, the oldest set of boundary conditions on the metric was given by Brown and

Henneaux [2] for asymptotically AdS3 spacetimes. The flat limit of these conditions were

studied by Barnich et al [7, 8]. They take the 3D analogue of BMS ansatz

ds2 = e2β V

r
du2 − 2e2βdudr + r2(dφ− Udu)2 (1.8.20)

9



Chapter 1. Asymptotic Symmetries and Holography

which was originally put forward in 4 dimensions [9]. The fall off conditions are then

specified as the large u behaviour of the functions V, β, U all of which are at this point

arbitrary function of the co-ordinates {u, r, φ}. The chosen fall-off are

V

r
= O(1); β = O(1/r); U = O(1/r2) (1.8.21)

Deamnding that these also satisfy Einstein’s equation gives the form of the asymptotic

metric for our case

ds2 =Mdu2 − 2dudr + 2Ndudφ+ r2dφ2 (1.8.22)

WhereM,N are two arbitrary functions of {u, φ} that span the asymptotic phase space.

Then the asymptotic symmetries would be the infinitesimal transformations that keep

the above form of the metric unchanged. Thus we solve for the asymptotic killing vector

field ξ that satisfies

Lξgrr = 0 Lξgrφ = 0 Lξgφφ = 0

Lξgur = o(1/r) Lξguu = o(1) Lξguφ = o(1) (1.8.23)

This vector field equipped with a modified Lie bracket gives the BMS3 algebra.

The above computation can be equivalently done in CS formalism. In this case the

conditions on the metric components need to be translated into boundary conditions for

the field A. For this we need to find out the vielbeins and spin connections associated

with the asymptotic metric (1.8.22). But Chern-Simons theory is a gauge theory and

hence we need to impose an extra condition on A to fix the gauge. Inspired by WZW

model, [10] chose the gauge ∂φAr = 0. This implies that the field A can be expanded as

A = h−1dh+h−1ah where h contains all the r dependence and a is just a function of u, φ

co-ordinates. Thus we can write the boundary conditions just in terms of a which looks

like:

a = (M2 du+ N2 dφ)P0 + duP1 + M2 dφJ0 + dφJ1 (1.8.24)

To find the asymptotic symmetries, we need to find the gauge transformations that leave

the form of the field A at the boundary as above. Under a gauge transformation the field

A transforms like

δA = dλ+ [A, λ] (1.8.25)
10
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putting the above form into this equation yields the correct form of λ. The conserved

charge corresponding to these transformations can be found following

δQ[λ] =
∫
Tr[λ, δAφ] (1.8.26)

The Poisson bracket associated with this charge δλ1Q[λ2] = {Q[λ1], Q[λ2]} gives again

the BMS3 algebra. This equivanlence is more than just a formal one. It helps us use the

machinery of gauge theories [11] to explore the gravity systems. As we will see in this

thesis, this also helps us find classical holographic duals for (super)gravity theories.

Although, the above example shows the asymptotic symmetry analysis of pure gravity

theory, for supergravity, its very similar. Here along with the metric, we also need to

specify the boundary conditions for the gravitini fields and other fields appearing in

extended supergravity theories. One consistent way of doing it is to start with the

bosonic configuration (which must definitely be included in asymptotic phase space) and

then act on it by the exact symmetries of the full supergravity theory. This in principle

produces the most generic field A consistent with the boundary conditions of the bosonic

sector.

1.9 A brief Review of literature

In this section we present a lightning review of the works done in (super-)gravity in

(2+1)D. This will help put this work in the broader context and also hint at the possible

roads that lay open for future research in lower dimensional gravity.

In [12, 13] the authors discussed solutions of Einstein’s equations with particle source

in (2+1)D with zero and non-zero cosmological constants, respectively. They found

that the presence of particles imply conical singularities at their position and there’s

a limit on the total mass supported by the spacetime. Following these [14] wrote down

exact non-perturbative scattering amplitudes which were shown to be analogous with

Aharonov-Bohm effect in gauge theories [15].

A new direction of research started with the seminal work of Brown and Henneaux [2].

They studied the asymptotic symmetries of pure gravity system with negative cosmolog-

ical constant and found that the symmetry algebra enhances to Virasoro algebra at the

boundary. Since Virasoro algebra is also the symmetry algebra of 2D CFTs, this work in-

dicated a close connection between gravity in 3D with a gauge theory at lower dimension.
11
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In this sense, [2] was precursor to AdS/CFT and holography in general. More interest-

ingly, they studied only the classical charges and their Poisson brackets but the resulting

algebra was centrally extended and the central charge was related to AdS radius.

Almost at the same time a new formalism for studying gravity at (2+1)D was devel-

oped in [4,5]. These works showed that Einstein’s gravity action in 2+1D can be rewritten

as a Chern-Simons theory with a suitable gauge group. This was the first realisation of

gravity as a gauge theory where the vielbeins and spin connections acted as gauge fields.

This gave a new handle on gravitational problems as they can now be recast as a problem

in CS gauge theory and studied. In particular, the asymptotic symmetries of gravity can

now be studied by studying the large gauge trasformations in gauge theory [16].

One of the most fascinating discoveries in these context was [17, 18] which showed

that Black holes exist in (2+1)D with negative cosmological constant. Since we have

already mentioned that all solutions of pure gravity in (2+1)D has constant curvature

everywhere, it was unexpected that a solution analogous to black holes would be found

there. In fact these BTZ black holes are smooth manifolds and at r=0 they possess a

‘causal singularity’ rather than a curvature singularity. Geometrically these solutions are

quotients of global AdS3 spacetime with discrete subgroups of it’s isometry group. This

discovery showed that the phase space of gravity is extremely rich and non-trivial in 2+1

D. Later [19] calculated the microscopic entropy for these Black holes and showed that

it follows Bekenstein-Hawking area law.

The main focus of this thesis is asymptotic dynamics in 2+1 dimensional gravity

which started from the works of [16]. Starting from the boundary conditions of [2]

they used the Chern-Simons formalism and showed that the dynamics is described by

a Liouville theory. This connection uses the reduction of Chern-Simons theory to Wess-

Zumino-Witten (WZW) theory under suitable boundary conditions [20,21]. Then further

imposing constraints it reduced to Liouville action. This connection was further persued

and quickly generalised to the case of supergravity [22,23]. In [10], the author showed the

connection between global charges in Chern-Simons theory and the asymptotic symmetry

group of AdS3 using the methods of [24].

The Brown-Henneaux boundary conditions are by no means unique, many different

sets of boundary conditions were proposed subsequently, for example [25, 26]. All these

were shown to be special cases of a most generic set of boundary conditions [27]. The
12
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interpretation of these conditions as asymptotic charges are of extreme physical interest.

Most of the above work are early development in the area of (2+1) dimensional gravity

and are naturally restricted to negative cosmological constant case. It was already known

that an infinite dimensional algebra sits at the boundary of 3+1 dimensional flat spaces

[9, 28]. The problem of asymptotic symmetry of 2+1 D flat space was first considered

in [29]. They started with the asymptotic algebra of [30] and chalked out the phase space

of allowed metrics. They also found the central charge of the extended charge algebra

and analogues of BTZ black holes were cosmological horizons [7]. These ideas extended

the realm of AdS/CFT to a newer field of holography, namely Flat space holography (or

BMS/CFT correspondence) [31].

The dual theory of pure gravity in the case for flat spaces turned out to be a flat limit

of Liouville theory [32]. The dynamics for minimal supergravity was discussed in [33]. It

was also realised that the cosmological horizons can also be endowed with ‘soft hairs’ by

means of boundary conditions there [34].

One of the most exciting direction of research in three dimensional gravity is to com-

pute the exact partition function of pure gravity including quantum corrections. Taking

into account all the known contributions [35], such a computation [36,37] revealed caveats.

There are negative densities of states and the spectrum seems to be continuous but finite.

The resolution of these problems is yet to be determined and some newer proposals are

being actively persued [38,39].

We end our short and lightning review of the literature here. Of course this review

mainly focused on the works directly related to the content of this thesis and mentioned

only a few other avenues in the vast field of 2+1 dimensional gravity. There are lots

and lots of interesting work that has been going on and that sheds new lights into the

properties of gravity in lower dimensions. This review was just an attempt to motivate

the works of this thesis.
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Chapter 2

Some Properties of constrained

WZW models

2.1 Wess-Zumino-Novikov-Witten Model

The gauge theory that we are going to relate our 3D (super)gravity theory to is a partic-

ular type of non-linear sigma model (NLSM) called Wess-Zumino-Novikov-Witten Model

(or WZW model).

A general NLSM generically has fields that map the spacetime to a target manifold.

The fields of the theory act as co-ordinates of the target manifold. In particular we can

choose a 2D flat space (with co-ordinates xµ) and choose the target space to be the group

manifold of some (semisimple) Lie group G. The action of NLSM then takes the form,

Sσ =
∫
dxµTr[∂µg∂µg−1] (2.1.1)

where it is evident that the Tr of the generators plays the role of the target space metric.

For the above theory to be a 2D CFT, we expect that there will be a holomorphic and

anti-holomorphic conserved current, in line with the holomorphic factorization of 2D

CFTs. It turns out not to be the case. The current jµ = g−1∂µg, can be factorized but

those are not separately conserved.

To remedy the situation, it is required to add a 3D term to the above action. This

new action is the WZW action

SWZW = Sσ + κ

3

∫
V
Tr[G−1dG, (G−1dG)2] (2.1.2)
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where G is the extension of the field g to the 3D manifold V , which is bounded by the

compactification of the 2D space where the NLSM was defined. But we immediately see

a potential ambiguity, since a compact 2D surface can be the boundary of two different

3D bulks. It can be shown, that if we choose κ above to be integer, then this ambiguity

can be eliminated at the level of partition function of the theory.

This new theory has two conserved currents which are given by

J(z) = ∂zgg
−1 J̄(z̄) = g−1∂z̄g (2.1.3)

The existence of these separate currents also implies that the general solution of the field

g can be written as

g(z, z̄) = f(z)f̄(z̄). (2.1.4)

2.2 Sugawara Construction

The currents above (2.1.3) can be expanded in the lie algebra basis as

J(z) =
∑
a

Ja(z)ta (2.2.5)

where {ta} are the generators. On the other hand, the fields are also spin 1 primaries

and hence admits a Laurent series expansion. Thus,

Ja(z) =
∑
n

z−n−1Jan. (2.2.6)

By studying the transformation properties of J(z) it can be shown that the above modes

Jan satisfy the commutation relation of the sort

[Jan, J bm] = fabc J
c
n+m + κngabδn+m. (2.2.7)

This is an affine Lie algebra of level k and it’s called the current algebra of the theory.

gab appearing in the central term is a bilinear form related to the metric of the gauge

group. The structure constant appearing in the above commutators are the ones of the

lie algebra G.

Provided that the theory has currents of conformal weight 1, we can construct the

stress-tensor of the theory through Sugawara Construction. A generic Lie algebra can
16
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support a Sugawara construction, provided that the algebra has an invariant, invertible

metric [40]. Since, this is also the requirement for the CS action to have (super)gravity

correspondence, our cases of interest falls under this category.

If we assume that the Lie algebra [T a, T b] = fabc T
c has a invariant bilinear Ωab which

is symmetric and invertible, it must satisfy

fabc Ωcd + fadc Ωcb = 0; ΩabΩbc = δac . (2.2.8)

The associativity properties of (2.2.7) requires that the metric gab also satisfies such a

property, thus gab = aΩab, a being an arbitrary constant.

Once we have these, the prescription of Sugawara construction suggests that we write

our stress tensor as a quadratic sum

T (z) = κab : Ja(z)J b(z) : . (2.2.9)

To determine the matrix κ, we demand that the currents Ja(z) are conformal primaries

of weight 1. This fixes the OPE of the current with the above stress tensor as

T (z)Ja(w) ∼ Ja(w)
(z − w)2 + ∂Ja(w)

(z − w) . (2.2.10)

This OPE leads to two constraint equations

faebκbc + facbκbe = 0

2kκcbgba + κbdf
ab
e f

ed
c = 0. (2.2.11)

Solving these yields κab = lΩab, l being an arbitrary number. The constant a now is fixed

in terms of l as a = 1/(2kl).

Thus we see that the bilinears of current formed by a contraction with the metric,

gives the stress tensor of the theory. This idea will be crucial in recovering the stress

tensor of the holographic dual of our theory and proving that the theory is invariant

under the asymptotic symmetry group of bulk (super)gravity theory.
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2.3 Constrained dynamical systems

The main feature of a gauge theory is the existence of constraints. In a gauge theory

formulation, by definition, there are more degrees of freedom than the physical system.

Hence, some of the degrees of freedom of the theory are related to others by the means

of constraint relations.

To understand how constraints work, let’s start with the Lagrangian formulation of clas-

sical mechanics. Here the equation of motion takes the following form:

d

dt
( ∂L
∂q̇n

)− ∂L
∂qn

= 0 (2.3.12)

Where L(qn, q̇n) is the Lagrangian and {qn, q̇n} are the generalised positions and velocities

respectively, which depend on the time parameter t. Writing the above equation in terms

of derivatives of qns and q̇ns only we get [11]:

q̈m( ∂2L
∂q̇m∂q̇n

) + q̇m( ∂2L
∂qm∂q̇n

)− ∂L
∂qn

= 0 (2.3.13)

Thus it is obvious from the above equation that if we want to find the acceleration of

the particle uniquely in terms of the (generalised) position and velocity of the particle,

then the matrix ( ∂2L
∂q̇m∂q̇n

) ≡ M must be invertible. The cases where it fails to do so, the

accelerations are no longer uniquely determined.

The matrix M also appears in the Hamiltonian formulation of classical mechanics. We

define the momentum of a particle by the relation pn = ∂L
∂q̇n

. Thus if we want to write

the velocities uniquely as a function of position and momentum of the particle, we end

up demanding again that the matrix M is invertible.

When M is non-invertible, we understand that all the the velocities (or momentum) of

the system are not independent. There exists some relations between them and thus the

actual degrees of freedom are less than the ones we started with. These are the systems

that have gauge degrees of freedom.

We will be working in Hamiltonian formalism where the phase space is spanned by {qn, pn}

variables (n ∈ 1, ...N). Since in a gauge system all these are not independent, there exists
18
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some relations between them of the form:

φa(q, p) = 0 (2.3.14)

where a ∈ 1, ...M and M < N . These equations then define a (2N −M) dimensional

submanifold in the phase space, known as the primary constraint surface. Since, all

physical quantities must respect the constraints, they must be defined only in this surface.

Thus, for example, the Hamiltonian can be extended arbitrarily outside of this surface by

a transformation H → H + ca(p, q)φa. Using this property, we can write an improve our

Hamiltonian so that the Legendre transformation matrix M defined above is invertible.

The new Hamiltonian is defined as

Hnew = Hcan + uaφa (2.3.15)

where Hcan is the canonical Hamiltonian defined by the usual Legendre transformation of

the Lagrangian. The ua variables are Lagrange multipliers that impose the constraints.

With this Hamiltonian the equations of motion now looks like:

Ȧ = {A,Hnew}PB = {A,H}PB + ua{A, φa}PB (2.3.16)

where A(q,p) is some physical variable and the Poisson bracket is defined as usual.

Now an obvious requirement of consistency is that the constraints should be preserved in

the time evolution. So, if we choose one of the constraints φa as the variable A in (2.3.16)

we must get:

φ̇a = 0 =⇒ {φa, H}PB + ub{φa, φb}PB = 0 (2.3.17)

In principle this demand can put additional constraints between the variables (q, p).

These are called Secondary Constraints as they are consequences of equations of motion

unlike the original (primary) constraints. We must keep on checking whether all the

constraints(both primary and secondary) in our theory satisfy φ̇a = 0 and if not, we must

add new constraints that come from the resulting e.o.m. Doing so, we’ll finally end up

with a full set of constraints.
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2.3.1 First and Second class Constraints

The set of constraints are fundamentally classified into two categories: First and Second

class constraints. As we’ll see below, first class constraints ’generate’ gauge transforma-

tions while the second class constraints ’arise’ from gauge fixation.

In general the first class functions are those that commute with all the constraints. By

commute, we mean that the Poisson bracket with the constraints are zero on the con-

straint surface. We consider primary constraints that are First class1. Now for a given

function A, the dynamics is governed by (2.3.16) where φa are now first class constraints.

But the new Hamiltonian depends on the Lagrange multipliers {ua} and choice of differ-

ent {ua} should not alter the final physical state of the system. Using (2.3.15 and 2.3.16),

the difference can be written as

δA = {A, uadiffφa} (2.3.18)

where {udiff} are the difference between two sets of transformation parameters. The

above equation clearly indicates that the first class constraints generate a transformation

δA that’s not physical, i.e. a gauge transformation. It can be shown that the Poisson

bracket of two such primary first class constraint also gives rise to gauge transformation.

On the other hand second class constraints are different and they have non-vanishing

Poisson brackets with other constraints

{φa, φb} = Mab (2.3.19)

. It can be shown that transformations generated by them can take the state of the

system outside of the constraint surface. They have no physical significance. It is often

thought of as arising from the gauge fixation of some underlying first class constraint.

Dirac [42] realised that in order to accommodate the second class constraints, the Hamil-

tonian formalism needed some modifications. He introduced Dirac Brackets which are

generalisations of Poisson Brackets as

{f, g}DB = {f, g}PB − {f, φa}Mab{g, φb} (2.3.20)

1Secondary First class constraints are little subtle. See for instance, [41]
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where Mab is the inverse of the matrix in (2.3.19). It can be shown that Dirac Brackets

satisfy all the properties of Poisson Bracket such as anti-symmetry and Jacobi identity.

Additionally, the Dirac bracket of any physical quantity with constraints is zero.

In the next chapter we will see how these concepts play important role in analysing

the holographic dual WZW theory. We will need to define the operators of the theory in

a way that respects the constraints imposed on them.
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Chapter 3

N = 2 Super-BMS3 invariant

holographic dual theory

3.1 Introduction and Summary

Our discussions in the previous chapter concludes that in the absence of a cosmological

constant, all solutions of pure gravity are locally isomorphic to Minkowski spacetime ηµν .

This feature does not make 3D gravity trivial as a large variety of gravitational solutions

exists whenever global topological structures are considered. If the global topology con-

sists of non-contractible cycles, the global solution differs from ηµν ( [1] and references

there in). It is known that 3D gravity solutions with non-trivial topology correspond to

stress-energy tensors of a two dimensional theory. These two dimensional theories are

usually referred as dual theory. The existence of a dual is more evident in the Chern-

Simons formulation of 3D gravity [4, 6]. The dual theory, in general a (chiral) Wess-

Zumino-Witten model [43](that we shall introduce in the next paragraph), is defined on

a closed spatial section and is obtained by solving the constraints in the Chern-Simons

theory [21, 44, 45]. In particular ordinary asymptotically flat 3D gravity can be under-

stood as a ISO(2, 1) Chern-Simons gauge theory with flat boundary condition at null

infinity where the Chern-Simons level k is identified with Newton’s constant. Here the

spatial section is a plane and the choice of boundary conditions is crucial in determining

the dual theory.

It is well known that a generic Chern-Simons theory (with a compact gauge group

G) in presence of a boundary reduces to a Wess-Zumino-Witten (WZW) model [43] at
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the boundary. The WZW model is constructed by adding a non-linear sigma model (of

matrix valued field g) in two dimensions Σ with a three-dimensional WZW term Γ[G]

that lives in V , such that Σ is the boundary of V and G is the extension of the element

g to V [46]:

IWZW = 1
4a2

∫
Σ
〈∂µg, ∂µ(g−1)〉+ κΓ[G], Γ[G] = 1

3

∫
V
〈G−1dG, (G−1dG)2〉, (3.1.1)

where a and κ are two constants. Although the model contains an explicit three dimen-

sional part, its variation is two dimensional. Thus WZW model describes the dynamics

of two dimensional fields g. Such reductions have been mostly performed for asymptot-

ically AdS 3D gravity [16, 23, 47–53]. Reduction of ISO(2, 1) Chern-Simons to WZW

model was first studied in [54]. But we shall follow the route taken in [55], where the

dual WZW model has been constructed for flat ordinary 3D gravity. In this chapter other

than ISO(2, 1) gauge algebra, the boundary conditions suitable for flat asymptotics at

null infinity have been applied for the gauge field. As a result, the dual WZW model,

after gauge fixing , shows invariance under infinite dimensional quantum BMS3 algebra,

the asymptotic symmetry of flat 3D gravity.

In this chapter we shall use this construction for finding the dual of 3D asymptotically

flat Supergravity theories with two supercharges. We reported these results in [56]. Simi-

lar analysis has been done earlier for minimal supersymmetric extension of gravity in [57].

The two supercharges may rotate among themselves if an internalR−symmetry is present.

In our study both the scenarios, absence and presence of the internal R−symmetry, are

considered. The resultant dual for both cases corresponds to a richer chiral WZW model

at the boundary. We further study the symmetries of these duals. Imposing the con-

straints coming from appropriate boundary conditions at null infinity, we find that the

dual theory is invariant under most generic quantum N = 2 SuperBMS3 symmetry. In

presence of an R symmetry, the N = 2 SuperBMS3 algebra has three different kinds of

central extensions and is so far not reported in the literature. The phase space descrip-

tion can be found by a Hamiltonian reduction of the models and are expected to be a

generalised Liouville type theory [58].

The motivation behind our construction goes as follows : the dual theory for 3D

asymptotically flat (super)gravity at null infinity is important to establish its connection

with the corresponding AdS3 results [59]. The presence of internal R− charges gives a
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wide handle on the system. They are also crucial for the study of flat space holography in

three dimensions. Most importantly these dual theories can be treated as a toy model for

cosmological scenarios [60] due to the existence of time-dependent cosmological solutions

that were found in [61].

Throughout the chapter, we are concerned with 3D supergravity. The chapter is

organised as follows: in section 3.2 we present the two different kinds of N = 2 Su-

perPoincaré algebras and their invariant bilinears. We briefly mention the 3D N = 2

Supergravity theory and its asymptotic symmetry in section 3.3. Section 3.4 contains

essential details about construction of a 2D dual theory of 3D flat gravity. In section

3.5 we present the dual theory, i.e. N = 2 SuperPoincaré chiral WZW model. Later

in sections 3.6 and 3.7 we study symmetries of this model. In section 3.8 we present a

new N = 2 SuperBMS3 algebra. The results require some heavy computations and to

maintain a correct flow we have presented only the important steps in the chapter. The

details have been presented in six appendices that are referred at the relevant junctions

in the main text.

3.2 N = 2 SuperPoincaré algebra and Invariant Bilinears

In this chapter, we are interested in finding a two dimensional theory dual to N = 2

Supergravity. As we shall see in details in later sections, to reach to our goal, we need

to begin with N = 2 SuperPoincaré algebras, i.e. supersymmetric extension of Poincaré

algebra with two supercharges. In this section, we shall present two distinct versions of

this algebra and the invariant bilinears associated with them. These will be the building

blocks of our construction.

3.2.1 Two distinct N = 2 SuperPoincaré algebras

There are two different versions of N = 2 SuperPoincaré algebras known in the literature

[59]. First one given as ,

[Ja, Jb] = εabcJ
c, [Ja,Q1,2

α ] = 1
2(Γa)βαQ

1,2
β , (3.2.2)

[Ja, Pb] = εabcP
c, [Pa,Q1,2

α ] = 0

[Pa, Pb] = 0, {Qiα,Q
j
β} = −1

2(CΓ)aαβPaδij,
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Here Ja, Pa(a = 0, 1, 2) are the Poincare generators and Qiα are two distinct i = 1, 2 two

component α = +1,−1 spinors which play the role of the two fermionic generators of the

algebra. The above algebra (3.2.2) is known as N = (1, 1) SuperPoincaré algebra. The

other algebra is richer and it looks as ,

[Ja, Jb] = εabcJ
c [Ja, Pb] = εabcP

c (3.2.3)

[Ja, Qi
α] = 1

2(Γa)βαQi
β [Qi

α, T ] = εijQj
α

{Qi
α, Q

j
β} = −1

2δ
ij(CΓa)αβPa + Cαβε

ijZ.

As in the previous case, Ja, Pa are Poincare generators and Qi
α are two fermionic genera-

tors and various indices are running over same values. The important difference compared

to the last case is that the two fermionic generators transform under a spinor represen-

tation of an internal R-symmetry generator T . As shown in [59], the above algebra is

interesting due to the presence of a central term Z. This is known as N = (2, 0) Su-

perPoincaré algebra. Our conventions are presented in A. In this chapter, we shall work

with both these algebras. For the first one (3.2.2), our results are a trivial extension

of [33], whereas for the second one (3.2.3), we get new physics , as we shall present in

next sections.

3.2.2 Most Generic Non-degenerate Invariant Bilinears

In the context of the present chapter, an algebra is physically interesting when one can

define a non-degenerate invariant bilinear or the quadratic Casimir for it. In the context

of both the N = 2 SuperPoincaré algebras that we have written in the last section, the

bilinears exist. Below we present the detailed computation for N = (2, 0) case.

For computing the bilinear, we begin with the most general quadratic combination of the

generators as,

C2 = aηabPaPb + bηabJaJb + cηabPaJb + diC
αβQi

αQ
i
β + eCαβεijQi

αQ
j
β + fTZ + gTT + hZZ,

where a, b, c, di, e, f, g, h are constants that we need to determine. For it to be a Casimir,

it must commute with every generators of the algebra. An explicit computation shows

that commutators of C2 with Qi, Jc, Pc do not vanish while others are identically zero.
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Equating the four non vanishing ones to zero we get ,

b = e = g = 0, c = d1 = d2.

This shows that the coefficients are fixed up to an overall factor and we fix it1 by choosing

c = 1. This procedure does not put any constraint on the coefficients a and h. Thus their

values can be taken to be arbitrary.

In this chapter, we wish to write down Supergravity theories invariant under N = (2, 0)

and N = (1, 1) SuperPoincaré algebra. For that purpose, we need to compute the

supertrace elements between various generators. The supertrace elements can be thought

of as the elements of the inverse metric in the space of algebra. Thus, taking inverse we

get the supertrace elements as,

< Ja, Pb >= ηab < Ja, Jb >= µηab < QI
α, Q

J
β >= δIJCαβ < T,Z >= −1 < T, T >= µ̄.

The arbitrariness in coefficients a and h manifests itself in arbitrariness of supertraces

in 〈Ja, Jb〉 and 〈T, T 〉 which are related by a = 1
µ
, h = 1

µ̄
. One point to notice that,

even for either or both of µ = µ̄ = 0, the supertrace matrix is non degenerate and hence

will give us a valid theory, as the one considered in [61]2 On the contrary we can not set

the off diagonal elements in the first and last two blocks to zero as that will make the

determinant of this matrix vanishing and hence it will be degenerate.

For the N = (1, 1) case, we do not have the internal generators T, Z and thus redoing

the whole calculation for only the remaining generators we get ,

< Ja, Pb >= ηab < Ja, Jb >= µηab < QI
α, Q

J
β >= δIJCαβ.

We shall use these supertraces in the next section.

1It can be fixed by demanding that the bosonic Chern-Simons action reduces rightly to Einstein-
Hilbert action, as we shall see in the next section.

2In [62], both of µ = µ̄ were considered to be identical, but as it is clear from above analysis they are
independent.
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3.3 3-dimensional N = 2 Supergravity and its asymptotic sym-

metry

In this section, we shall study some aspects of 3-dimensional supergravity theories invari-

ant under the above two symmetry algebras (3.2.2) and (3.2.3). As described in introduc-

tion (Sec. 1.6) 3-dimensional (super)gravity theories can be formulated as Chern-Simons

theories with suitable gauge groups.

For our purpose, we shall consider the gauge groups to be N = (1, 1) and N = (2, 0)

SuperPoincaré groups. The 3-manifold will be flat with null boundary and we shall iden-

tify the level k with Newton’s constant as k = 1
4G . For N = (1, 1), the basis elements

{Ta} are Ja, Pa,Qiα, satisfying algebra (3.2.2) and for N = (2, 0), the basis elements {Ta}

are Ja, Pa, Qi
α, T, Z satisfying algebra (3.2.3). The Chern-Simons field A in each case is

expanded in the basis as follows:

A(1,1) = eaPa + ω̂aJa + ψαi Qiα (3.3.4)

A(2,0) = eaPa + ω̂aJa + ψαi Q
i
α +BT + CZ (3.3.5)

Using the supertrace elements as obtained in the last section we get the corresponding

supergravity actions and they are respectively given as,

I(1,1)
µ,γ = k

4π

∫
[2eaR̂a + µL(ω̂a)− Ψ̄i

β∇Ψβ
i ] (3.3.6)

and

I
(2,0)
µ,,µ̄,γ = k

4π

∫
[2eaR̂a + µL(ω̂a)− Ψ̄i

β∇Ψβ
i − 2BdC + µ̄BdB] (3.3.7)

where ω̂a = ωa + γea, for some constant γ and Ψ̄i
β is the Majorana conjugate gravitino

. The curvature two form R̂a, Lorentz Chern-Simons three form La and the covariant

derivative of the gravitino appearing in (3.3.7) are respectively defined as,

R̂a =dω̂a + 1
2εabcω̂

bω̂c

La =ω̂adω̂a + 1
3ε

abcω̂aω̂bω̂c (3.3.8)

∇Ψβ
i =dΨβ

i + 1
2 ω̂

aΨδ
i (Γa)

β
δ +BΨβ

j ε
ij.
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It was first noticed in [63] that the shift in the spin connection is needed in order to for-

mulate a general class of theories which are invariant under local lorentz transformations

and gives linear equations of motion for the fields ea and ωa. It is worth mentioning

that N = 2 supergravity as discussed in [61] is recovered by setting µ = µ̄ = γ = 0.

Action (3.3.6) is recovered from action (3.3.7) when we set the internal symmetry field

parameters B,C to zero. This aspect holds true for all computations and final results

of this chapter. Thus for the rest of the chapter, to describe our results, we shall work

in details for N = (2, 0) group and the corresponding supergravity action (3.3.7). For

completion, we shall also present the results for N = (1, 1) case side by side. Appendix

A(Part 3) contains computational details for this case.

3.3.1 N = 2 Super-BMS3 Algebra

It is well known by now that both pure gravity and supergravity theories enjoy an infinite

dimensional symmetry enhancement at null infinity (see [61,64,65] for N = 2 case). The

asymptotic symmetry group is N = 2 Super-BMS3 group, which is an extension of BMS3

with supercharges. To get to this symmetry algebra in the Chern-Simons formulation of

gravity, we need to find out a proper fall off (at null infinity) condition on the Chern-

Simons gauge field. The equation of motion(1.5.10) implies that locally the solutions

of a Chern-Simons field are pure gauge A = G−1dG, where G is a local group element.

Writing the equation of motions in terms of the field parameters of (3.3.7), we get

dω̂ + ω̂2 = 0, (de)γσ + [ω̂, e]γσ + 1
4[Ψγ

i Ψ̄i
σ −

1
2Ψ̄i

βΨβ
i δ

γ
σ] = 0 (3.3.9)

dΨβ
i + (ω̂Ψi)β +BΨβ

j ε
ji = 0, dC = 1

2ε
ijΨα

i Ψβ
jCαβ, dB = 0 (3.3.10)

Where the first two equations were written after contracting the original equations with
1
2(Γa) and defining ω̂ = 1

2 ω̂
aΓa and e = 1

2e
aΓa. The solution to these equations can be

found with a bit of algebra. The ω̂ and B equations easily solve as,

ω̂ = Λ−1dΛ B = dB̃. (3.3.11)

Coming to the spinor equations, as they are coupled, we use Jordan Decomposition

method to decouple them. Defining new variables as G1 = 1
2(Ψ1− iΨ2) and G2 = 1

2(Ψ1 +
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iΨ2) we get the new equations to be:

dG1 + iBG1 + ω̂G1 = 0, dG2 − iBG2 + ω̂G2 = 0, (3.3.12)

whose solutions are given as,

G1 = e−iB̃Λ−1dη1, G2 = eiB̃Λ−1dη2. (3.3.13)

Thus the R−symmetry parameter field acts like a phase to the fermions. Using above

results the rest of the equations of motion can be solved to give,

C =− i(η̄1αdη
α
2 − η̄2αdη

α
1 + dC̃) (3.3.14)

e =− Λ−1[12(η1 ¯dη2 + 1
2dη̄2η1I) + 1

2(η2 ¯dη1 + 1
2dη̄1η2I) + db]Λ. (3.3.15)

Notice that in both of the above expressions of C and e, the phase factors cancel among

themselves. Here Λ is an arbitrary SL(2, R) group element of unit determinant. B,C are

SL(2, R) scalars, ηi, i = 1, 2 are Grassmann-valued SL(2, R) spinors and b is a traceless

2× 2 matrix. All these are local functions of three space time coordinates u, φ, r. Imple-

menting the radial gauge condition, the above solutions of various field parameters can

be further decomposed as3,

Λ = λ(u, φ)ζ(u, r)

B̃ = a(u, φ) + ã(u, r), C̃ = c(u, φ) + c̃(u, r) + d̄2λd̃1 − d̄1λd̃2

η1 = eia(λd̃1(u, r) + d1(u, φ)), η2 = e−ia(λd̃2(u, r) + d2(u, φ)) (3.3.16)

b = λE(u, r)λ−1 − 1
2(d1

¯̃d2λ
−1 + λd̃2d1I)−

1
2(d2

¯̃d1λ
−1 + λd̃1d2I) + F (u, φ),

where ζ̇(u, r0) = ˙̃a(u, r0) = ˙̃c(u, r0) = ˙̃d1(u, r0) = ˙̃d2(u, r0) = Ḟ (u, r0) = 0. At the

boundary, these are neither functions of r nor of u and must not have any dynamics. Here

we see that, even onshell, the system contains arbitrary local functions λ, F, a, c, d1, d2 of

time u (and φ). This is a common feature of a gauge theory (like for example Chern-

3the decomposition can be obtained as, ∂φBr = 0 ⇒ B̃ = a(u, φ) + ã(u, r) and for ∂φωr = 0 ⇒ Λ =
λ(u, φ)ζ(u, r). Similarly, for the fermionic fields, demanding ∂φG1

r = 0 we find:
∂φ[e−iB̃Λ−1∂rη1] = 0⇒ e−ia∂r(λ−1η1) = d̃1(u, r) (where r − dependence ofΛ is captured in d̃1)
⇒ η1 = eia(λd̃1(u, r) + d1(u, φ)). Similarly we can find for other fields.
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3.3. 3-dimensional N = 2 Supergravity and its asymptotic symmetry

Simons theory) that the boundary conditions and equations of motion do not uniquely fix

the time (u) evolution of all dynamical variable. Rather a general solution of equations

of motion contains arbitrary functions of time as residual degrees of freedom of the gauge

system. We are looking for the theory that determines the dynamics of these residual

degrees λ, F, a, c, d1, d2.

Finally for N = 2 supergravity, as proposed in [61], the asymptotic fall of condition

on the r−independent part of the gauge field gauge field looks like

a =
√

2[J1 + π

k
(P − 4π

k
Z2)J0 + π

k
(J + 2π

k
τZ)P0 −

π

k
ψiQ

i
+ −

2π
k
ZT − 2π

k
τZ]dφ

(3.3.17)

+ [
√

2P1 + 8π
k
ZZ + π

k
(P − 4π

k
Z2)P0]du,

where various fields P ,J ,Z, τ, ψi are functions of u, φ only. These are the residual de-

gree of freedoms and will be in correspondence to λ, F, a, c, d1, d2 as introduced above in

(3.3.16). A technical point to note is , although 3D spacetimes can have a non trivial

boundary we will not consider the holonomy terms in the following. Consequently the

resulting action principle at the boundary only captures the asymptotic symmetries of

the original gravitational theory. Computing the conserved charges [66], it can be shown

that the asymptotic symmetry of this system is given as,

[Mn, Jm] = (n−m)Mn+m + n3k δn+m,0, [Jn, Jm] = (n−m)Jn+m (3.3.18)

[Mn, Rm] = −4mSn+m, [Jn, Rm] = −mRn+m, [Jn, Sm] = −mSn+m (3.3.19)

[Rn, Sm] = n k δn+m,0, (3.3.20)

[Jn,Gim] =
(
n

2 −m
)
Gin+m, (i = 1, 2) (3.3.21)

[Rn,G1
m] = G1

n+m, [Rn,G2
m] = −G2

n+m (3.3.22)

{G1
n,G2

m} = Mn+m + 2kn2δn+m,0 + (n−m)Sn+m (3.3.23)

This is the quantum symmetry algebra of N = (2, 0) theory as given in [61] presented in

a diagonal basis for fermionic generators.
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Figure 3.1: 3D Flat Space co-ordinates on a penrose diagram. The null boundary is
spanned by {u, φ} co-ordinates.

3.4 The Boundary Theory

We are interested in constructing the two dimensional field theory that governs the dy-

namics of the 3D residual gauge degrees of freedom. We shall regard this as the dual

theory to 3D asymptotically flat N = 2 supergravity and in this section, we shall briefly

sketch this construction. Since we are interested in supergravity theories on a 3D mani-

fold with a boundary, we need to add suitable boundary terms to the supergravity action

to ensure validity of variational principle. An alternate way to look at the scenario comes

from the Chern-Simons formulation of gravity. Presence of a boundary implies a non triv-

ial fall-off conditions on the gauge fields as given in (3.3.17). Hence a boundary term is

required to add to the action in order to make solutions with the prescribed asymptotic to

be a true extrema of the action under the variational principle. For this purpose, we split

the constraints coming from the boundary gauge field into two parts : (a) constraints that

relate the u and φ components of the gauge field and (b) constraints that various fields of

the u component of the gauge field have to satisfy. It has been shown long back (in the

context of asymptotically AdS theories) in [21,44,45] that pure Chern-Simons theory on

a manifold with a boundary is equivalent to a 2-dimensional chiral Wess-Zumino-Witten
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theory living on that boundary under conditions analogous to (a). In general, decom-

posing the gauge field A(u, φ, r) in time and space components as A = duAu + Ã, the

Hamiltonian form of the Chern-Simons action(1.5.8) can be written as,

IH [A] = − k

4π

∫
〈Ã, ˙̃Adu〉+ 2〈duAu, d̃Ã+ Ã2〉, (3.4.24)

upto total derivatives4. Since the fields and their derivatives do not go to zero at the

boundary, for a well defined variational principle to work, we need to add − k
2πdud̃〈Au, δÃ〉

to the Hamiltonian action. Thus the complete 2D dual theory that contains all dynamical

d.o.fs of 3D gravity is governed by

I = IH [A]− k

2π

∫
dud̃〈Au, δÃ〉r=r0 . (3.4.25)

Furthermore expressing Ã = G−1d̃G for some group element G(u, r, φ), the above action

can be written as,

IWZW = k

4π

∫
∂M

dudφ〈G−1∂φG,G
−1∂uG〉 −

k

2π

∫
∂M

dud̃〈G−1∂uG, δG
−1d̃G〉+ k

4πΓ[G]

(3.4.26)

where Γ[G] is the three dimensional Wess-Zumino term introduced in (3.1.1).

The above action has an explicit 2D part and a 3D part Γ(G). But the variation of

this action purely lives in 2 dimensions spanned by u, φ (See Figure 3.1). The action

(3.4.26) reduces to the so called chiral Wess-Zumino-Witten model that is dual to a 3D

Chern-Simons theory with a boundary. In the subsequent sections, we shall construct

such a Wess-Zumino-Witten model and study its symmetry properties. As we shall see,

after incorporating the radial gauge fixing conditions, the dynamics will only depend on

two dimensional fields.

3.5 N = 2 SuperPoincaré Wess-Zumino-Witten model

Following the prescription outlined in the last section, we first write down (a) type of

constraints on the asymptotic gauge field (3.3.17), relating its u and φ components as ,

eau = ωaφ, ωau = 0, ψ±Iu = 0, Bu = 0, − 4Bφ = Cu. (3.5.27)

4look at appendix A (Part 2) for details.
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The u component of the gauge field (3.3.17) is further constrained and we shall come back

to this point later. Under these constraints (3.5.27) the surface term at the boundary

looks like:

Isurf = − k

2π

∫
dud̃〈Au, δÃ〉r0→∞ = − k

4π

∫
∂M

dudφ[ωaφωaφ + 4B2
φ]r0→∞, (3.5.28)

where the φ− total derivative has been set to zero. Using the field parameters as defined

in (3.3.7) and the supertrace elements the total action (3.4.26) can be expressed as:

I(2,0) = k

4π

[ ∫
dudφ [ eaφωau + ωaφeau + µωaφωau + ψ̄uiαψ

α
iφ

−BφCu − CφBu − ωaφωaφ − 4BφBφ + µ̄BφBu ]r0→∞

+ 1
6

∫
[3εabceaωbωc + µεabcω

aωbωc + 3
2ω

a(CΓa)αβΨα
i ψ

β
i + 3Bψαi ψ

β
j Cαβε

ij]
]

(3.5.29)

As has been discussed in section 3.3, in an onshell gauge systems, there are left over

residual degrees of freedom. To get the theory (action) that describes the dynamics of

these degrees of freedom, we first evaluate the above action on the solutions of equations

of motions obtained in section 3.3 as:

I(2,0) = k

4π

[ ∫
dudφTr[2µΛ−1Λ′Λ−1Λ̇− 2(η̄1

′η̇2 + η̄2
′η̇1) + 2i ˙̃B(η̄1η2 − η̄2η1)− 2(Λ−1Λ′)2 − 4(B̃′)2

− 4Λ̇Λ−1(1
2(η1η̄

′
2 + η̄2η

′
1I) + 1

2(η2η̄
′
1 + η̄1η

′
2I) + b′) + 2i ˙̃BC̃ ′ + µ̄B̃′ ˜̇B] + 2µ

3

∫
Tr[(dΛΛ−1)3]

]
(3.5.30)

Let us briefly mention the origin of various terms appearing in (3.5.30). The terms

in (3.5.29) proportional to µ, µ̄ directly reduces to their counterpart in (3.5.30) onshell

whereas the term 3Bψαi ψ
β
j Cαβε

ij gives rise to a 2D piece which added with the three

other boundary pieces −BφCu − CφBu − 4BφBφ gives the terms 2i ˙̃B(η̄1αη
α′
2 − η̄2αη

α′
1 )−

4(B̃′)2+2i ˙̃BC̃ ′. In a similar way, the bulk terms 3εabceaωbωc onshell gives a 2D piece which

clubbed with boundary terms eaφωau + ωaφeau gives −4Λ̇Λ−1(1
2(η1η̄

′
2 + η̄2η

′
1I) + 1

2(η2η̄
′
1 +

η̄1η
′
2I) + b′). Finally 3

2ω
a(CΓa)αβΨα

i ψ
β
i just vanishes onshell up to total derivatives. The

terms proportional to I in (3.5.30) actually give zero contributions.

Further using the gauge decomposed forms of the solutions as in (3.3.16) and neglect-
34



3.5. N = 2 SuperPoincaré Wess-Zumino-Witten model

ing total derivatives in u, φ, the above action rightly simplifies to,

I(2,0) = k

4π

{∫
dudφTr[2µλ−1λ′λ−1λ̇− 2(d̄1

′
ḋ2 + d̄2

′
ḋ1)− 2ia′(d̄1ḋ2 − d̄2ḋ1 + λ̇λ−1(d2d̄1 − d1d̄2))

− 4(a′)2 − 2λ̇λ−1(d1d̄
′
2 + d2d̄

′
1 + 2F ′)− 2(λ−1λ′)2 + 2iȧc′ + µ̄a′ȧ]

+ 2µ
3

∫
Tr[(dΛΛ−1)3]

}
, (3.5.31)

It is interesting to note that the dependence on ζ, ã, c̃, d̃1, d̃2, E drops from the two di-

mensional part of the last expression. One can easily check that the variation of action

(3.5.31) is purely two dimensional 5. This is the chiral Wess-Zumino-Witten (WZW)

model dual to 3D asymptotically flat N = (2, 0) Supergravity and is one of the main

results of this chapter. Similarly the chiral WZW model dual to 3D asymptotically flat

N = (1, 1) Supergravity takes the following form,

I(1,1) = k

2π

{∫
dudφTr[2λ̇λ−1α′ + 1

2

2∑
i=1

λ̇λ−1νiνi
′ − (λ′λ−1)2 + µλ′λ−1λ̇λ−1 − 1

2

2∑
i=1

ν̇
i
νi
′ ]

+ µ

3

∫
Tr(dΛΛ−1)3

}
, (3.5.32)

where various fields are defined in the appendix A (Part 3).

To further analyse the dynamics of the above two dimensional theory (3.5.31), let us

first write down the equations of motion of various fields. They are given as,

eom ofF : (λ̇λ−1)′ = 0 (3.5.33)

eom ofc : (ȧ)′ = 0 (3.5.34)

eom ofd1 : ˙̄
d′2 + d̄′2(λ̇λ−1)− ia′( ˙̄d2 + d̄2λ̇λ

−1) = 0 (3.5.35)

eom ofd2 : ˙̄
d′1 + d̄′1(λ̇λ−1) + ia′( ˙̄d1 + d̄1λ̇λ

−1) = 0 (3.5.36)

eom ofa : ċ′ − (d̄1ḋ2 − d̄2ḋ1 + λ̇λ−1(d2d̄1 − d1d̄2))′ + 4ia′′ = 0 (3.5.37)

eom ofλ : ˙̂α− (λ̇λ−1)α̂ + α̂(λ̇λ−1) + 2(λ′λ−1)′ = 0 (3.5.38)

where we have defined α̂ = 2F ′+d2(d̄1
′+ ia′d̄1)+d1(d̄2

′− ia′d̄2). The above equations
5In particular the variation of the last 3D term is given as

1
3
δ
∫
Tr[(dΛΛ−1)3]

δλαβ
= [(λ−1)′λ̇λ−1 − (λ−1)·λ′λ−1]βα
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are simplified versions of original equations of motion, where for simplifying one equation

we have iteratively used other ones. For example, in the last equation the µ term drops

off with a careful calculation and use of the first equation Similarly,we have used the c

eom in deriving the final eom of a. This eliminates the µ̄ dependent piece . Thus we see

that the final forms of eom do not contain any of the unfixed supertrace elements µ or

µ̄. Hence the solutions of these fields will also be independent of these parameters. The

generic solutions of these equations are given as,

λ = τ(u)κ(φ) (3.5.39)

a = a1(u) + a2(φ) (3.5.40)

d1 = e−ia2τ(ζ(1)
1 (u) + ζ

(1)
2 (φ)) (3.5.41)

d2 = eia2τ(ζ(2)
1 (u) + ζ

(2)
2 (φ)) (3.5.42)

c = ζ̄2
(1)
ζ

(2)
1 − ζ̄2

(2)
ζ

(1)
1 + c1(u) + c2(φ)− 4iua′2 (3.5.43)

F = τ [aF (φ) + δF (u)− uκ′κ−1 − 1
2(ζ(2)

1 ζ̄2
(1) + ζ

(1)
1 ζ̄2

(2))]τ−1 (3.5.44)

where they further decompose into individual functions of u and φ. As it turns out, this

chiral WZW model is invariant under rich symmetries. In the next subsection, we shall

study these symmetries and their consequences.

3.6 Symmetries of The Chiral WZW Model

3.6.1 Global Symmetry

The Chiral WZW model (3.5.30) that we derived in the last section in invariant under a

set of global symmetries. Various fields enjoy a coordinate u, φ dependent transformation
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under these symmetries and they are given as,

a→ a+ A(φ); c→ c− 4iuA′; d1 → e−iAd1; d2 → eiAd2

c→ c+ C(φ)

λ→ λθ−1(φ); F → F + uλ(θ−1θ′)λ−1

F → F + λN(φ)λ−1

d1 → d1 + λD1(φ); c→ c+ D̄1(φ)λ−1d2; F → F − 1
2d2D̄1(φ)λ−1

d2 → d2 + λD2(φ); c→ c− D̄2(φ)λ−1d1; F → F − 1
2d1D̄2(φ)λ−1

In each of the above expressions, the fields that are not written remain unchanged under

that corresponding symmetry transformation. Thus, we find that there are six finite

symmetry transformations, generated by scalar parameters A(φ), C(φ), matrix valued

parameters θ(φ), N(φ) and spinor parameters D1(φ), D2(φ).

One possible way to get to these symmetry transformations is to look for the sym-

metries of the solutions given in (3.5.39)6. We have presented relevant details of the

computations in appendix A (Part 4). Once we obtain these transformations, they can

be proved to be symmetries of the action as well.

Next we look for the Noether currents corresponding to the above symmetries. For

this purpose, we need the infinitesimal versions of the above symmetry transformations

that are as follows,

δAa = A(φ); δAc = −4iuA′; δAd1 = −iAd1; δAd2 = iAd2 (3.6.45)

δCc = C(φ) (3.6.46)

δθλ = −λΘ(φ); δθF = +uλΘ′λ−1 (3.6.47)

δNF = λN(φ)λ−1 (3.6.48)

δD1d1 = λD1(φ); δD1c = D̄1(φ)λ−1d2; δD1F = −1
2d2D̄1(φ)λ−1 (3.6.49)

δD2d2 = λD2(φ); δD2c = −D̄2(φ)λ−1d1; δD2F = −1
2d1D̄2(φ)λ−1. (3.6.50)

Here we have used same A(φ), C(φ), N(φ), D1(φ), D2(φ) as infinitesimal transformation

parameters and Θ(φ) is the infinitesimal parameter for θ transformation as θ(φ) = I +

6We are thankful to Prof. Glenn Barnich for clarifying this point to us.
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Θ(φ). For a theory S[φi] =
∫
L(φi, ∂µφi), the Noether current associated to a global

symmetry generated by parameter ε is given as,

J µ
ε = δL

δ(∂µφi)
δεφi −Kµ

ε , ∂µK
µ
ε = δεL.

The current is conserved i.e. ∂µJ µ
ε = 0 onshell. From this definition there is a clear

ambiguity in the identification of current, as

Jµε ∼ J µ
ε + ∂νS

[µν]
ε + T µε , (3.6.51)

where S[µν]
ε is any antisymmetric tensor in its indices and T µε is a possible vector that

is onshell divergenceless. Both the currents will generate the same symmetry for the

system. Below we present the currents corresponding to above symmetries (3.6.45),

JµA = δµ0
k

4πTr[2µ̄a
′ + 2ic′ − 8ua′′ + 2i(d̄2

′
d1 − d̄1

′
d2 − ia′(d̄2d1 + d̄1d2))]A = δµ0 [(−QA)(−A)]

JµC = δµ0
k

4πTr[2ia
′C] = δµ0 [QC(−iC)], QC = −ka

′

2π
JµΘ = δµ0

k

2πTr[{λ
−1α̂λ+ 2u(λ−1λ′)′ − µλ−1λ′}θ] = δµ0 2Tr[QJ

aΘa]

JµN = δµ0
k

4πTr[−4λ−1λ′N ] = δµ0 2Tr[QP
a (−Na)] (3.6.52)

JµD2 = δµ0 (−k
π

)Tr[(d̄1
′
λ+ ia′d̄1λ)D2] = Tr[QG2

α Dα
2 ]

JµD1 = δµ0 (−k
π

)Tr[(d̄2
′
λ− ia′d̄2λ)D1] = Tr[QG1

α Dα
1 ],

where N(φ) and Θ(φ) are infinitesimal SL(2,R) matrices which can be further expanded

in the basis of Γ matrices as N(φ) = Na(φ)Γa and Θ(φ) = Θa(φ)Γa. The details of the

above computations can be found in appendix A (Part 4). Here we have chosen S[µν]
ε , T µε

for certain transformations, as we want the current to be non zero only along the time

u component. This way we directly get the canonical generators of the corresponding

transformation. From these currents, one can find the corresponding current algebra using

the usual procedure [66]. Alternate way to get to the same algebra is, in Hamiltonian

formalism, the computation of the Dirac bracket algebra of the canonical generators of

the symmetries using the relation below,

δε2J
0
ε1 = {J0

ε1 , J
0
ε2}DB
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The Dirac brackets calculated are given below:

{
QP
a (φ), QP

b (φ′)
}
DB

=
{
QP
a (φ), QA(φ′)

}
DB

=
{
QP
a (φ), QC(φ′)

}
DB

= 0{
QP
a (φ), QG1

α (φ′)
}
DB

=
{
QP
a (φ), QG2

α (φ′)
}
DB

= 0{
QP
a (φ), QJ

b (φ′)
}
DB

=
{
QJ
a (φ), QP

b (φ′)
}
DB

= εabcQ
P
c (φ)δ(φ− φ′)− k

2πηab∂φδ(φ− φ
′){

QJ
a (φ), QJ

b (φ′)
}
DB

= εabcQ
J
c (φ)δ(φ− φ′) + µ

k

2πηab∂φδ(φ− φ
′){

QJ
a (φ), QA(φ′)

}
DB

=
{
QJ
a (φ), QC(φ′)

}
DB

= 0 (3.6.53){
QG1
α (φ), QJ

a (φ′)
}
DB

= −1
2(Γa)βαQG1

β (φ)δ(φ− φ′){
QG2
α (φ), QJ

a (φ′)
}
DB

= −1
2(Γa)βαQG2

β (φ)δ(φ− φ′){
QC(φ), QC(φ′)

}
DB

=
{
QC(φ), QG1

α (φ′)
}
DB

=
{
QC(φ), QG2

α (φ′)
}
DB

= 0{
QC(φ), QA(φ′)

}
DB

= k

2π∂φδ(φ− φ
′),

{
QA(φ), QA(φ′)

}
DB

= k

2π µ̄∂φδ(φ− φ
′){

QG1
α (φ), QA(φ′)

}
DB

= −iQG1
α (φ)δ(φ− φ′),

{
QG2
α (φ), QA(φ′)

}
DB

= iQG2
α (φ)δ(φ− φ′){

QG1
α (φ), QG2

β (φ′)
}
DB

= −(CΓa)αβQP
a δ(φ− φ′)−

k

π
Cαβ∂φδ(φ− φ′) + ia′

k

π
Cαβδ(φ− φ′),

here we have used k
π
Cαβ(λ−1λ′)βγ = (CΓa)αγTr[Γa(λ−1λ′)]. This is the same affine ex-

tended N = (2, 0) SuperPoincaré algebra after a change of basis for the fermionic gener-

ators as,

Q1
α(φ) = 1

2(QG1
α (φ) +QG2

α (φ)), Q2
α(φ) = 1

2i(Q
G1
α (φ)−QG2

α (φ)).

In this new basis the fermionic Dirac Brackets take the form:

{Q1
α(φ), Q2

β(φ′)}DB = − k

2πa
′(φ)Cαβδ′(φ− φ′)

{QI
α(φ), QI

β(φ′)}DB = −1
2(CΓa)αβQP

a (φ)δ(φ− φ′)− k

2πCαβδ
′(φ− φ′)

{Q1
α(φ), QA(φ′)}DB = Q2

α(φ)δ(φ− φ′), {Q2
α(φ), QA(φ′)}DB = −Q1

α(φ)δ(φ− φ′){
QJ
a (φ), Q1

α(φ′)
}
DB

= 1
2(Γa)βαQ1

β(φ)δ(φ− φ′),
{
QJ
a (φ), Q2

α(φ′)
}
DB

= 1
2(Γa)βαQ2

β(φ)δ(φ− φ′).

The above modified Dirac brackets along with bosonic ones in (3.6.53) reproduce the

exact affine extended N = (2, 0) SuperPoincaré algebra that we started with in (3.2.3).

Thus, we see that the global symmetry of the chiral WZW theory is exactly same as
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that of the dual 3D Supergravity. Similarly for N = (1, 1) case we get following affine

extension,

{QP
a (φ), QP

a (φ′)}DB = 0

{QP
a (φ), QJ

b (φ′)}DB = εabcQ
P
c (φ)δ(φ− φ′)− k

2πηabδ
′(φ− φ′)

{QP
a (φ), Qi

α(φ′)}DB = 0 (i = 1, 2)

{QJ
a (φ), Jb(φ′)}DB = εabcQ

J
c δ(φ− φ′) + µk

2π ηabδ
′(φ− φ′)

{QJ
a (φ), Qi

α(φ′)}DB = 1
2(QiΓa)α(φ)δ(φ− φ′) (i = 1, 2)

{Qi
α(φ), Qj

β(φ′)}DB = δij[−1
2(CΓa)αβQP

a (φ)δ(φ− φ′)− k

2πCαβδ
′(φ− φ′)]

The explicit derivation of various canonical generators for N = (1, 1) case has been

provided in appendix A (Part 3).

3.6.2 Gauge Symmetry

Other than the above global symmetry, the chairal WZW model (3.5.30) is also invariant

under a gauge symmetry. The gauge transformations of various fields can be obtained

from the Polyakov-Wiegmann identities and for an arbitrary gauge transformation pa-

rameter Σ(u), the transformations are given as follows :

λ(u)→ Σ(u)λ, di(u)→ Σ(u)di(u) F (u)→ Σ(u)FΣ(u)−1, (3.6.54)

while a(u), c(u) remains invariant. This makes the dynamics of this system constrained

and we need to take into account its implications in defining the conserved charges of the

theory. We shall come back to this issue in the next section.

3.7 Enhanced Symmetries of N = 2 SuperPoincaréWess-Zumino-

Witten theory

In order to get an infinite dimensional mode algebra from the above current algebra

usual conformal field theory techniques of [67] can be used after a slight modification.

We implement the modified Sugawara construction following [57] to get the stress-tensor.

In this case, we are looking for four bosonic generators and two fermionic generators.
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These can be achieved by defining the followings:

H = π

k
QP
aQ

P
a + 4π

k
QCQC

J = −µπ
k
QP
aQ

P
a − 2π

k
QJ
aQ

P
a + π

k
CαβQ

G1
α QG2

β + 2π
k
QAQC − µ̄π

k
QCQC (3.7.55)

G1 = π

k
(QP

2 Q
G1
+ +

√
2QP

0 Q
G1
− ) + 2iπ

k
QG1

+ QC ,

G2 = π

k
(QP

2 Q
G2
+ +

√
2QP

0 Q
G2
− )− 2iπ

k
QG1

+ QC

along with QA and QC defined in the last section. Here H, J are both weight two bosonic

generators and J corresponds to the stress-tensor. QA, QC are two weight one bosonic

generators and G1,G2 are two weight 3/2 fermionic generators. The values of the relative

coefficients in the bilinear of currents are fixed by demanding that the Dirac brack-

ets of stress mode J with other bosonic generators should be proportional to them i.e.

{J(φ), Q(φ′)} ∼ Q(φ) for each current mode Q(φ). We refer the readers to appendix A

(Part 5) for computational details.

There is a subtle point to note here. The chiral WZW model that we are studying

is a gauge theory. Thus, in the usual Hamiltonian formulation, we must study it as

a constrained system. The constraints arise from the imposed boundary (asymptotic)

value of the radial gauge fixed Chern-Simons field, a = g−1dg, as given in (3.3.17). We

have already taken into account part of the constraints (type (a)) for constructing the

corresponding WZW model. The remaining constraints(type (b)) on the gauge field

parameters are

ω̂1
φ =
√

2; ω2
φ = 0; ψ1+

φ = ψ2+
φ = 0; e1

φ = e2
φ = 0.

These conditions, that need to be imposed only at the boundary, manifest themselves

through constraints on the fields of the WZW model (3.5.31). This is because, at the

boundary we can as well identify the onshell CS gauge field parameters ω̂, ψ1, ψ2, e of

(3.3.11),(3.3.13),(3.3.14) with the WZW fields λ, d1, d2, α̂ of (3.3.16)7. Thus the con-

7at the boundary, the non dynamical functions (of u, r) can get absorbed into the WZW fields.
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straints on fields are:

(λ−1λ′)1 =
√

2 (λ−1λ′)2 = 0

(λ−1d′1 + ia′λ−1d1)− = (λ−1d′2 − ia′λ−1d2)− = 0

(λ−1 α̂

2λ)1 = (λ−1 α̂

2λ)2 = 0.

The above constraints can as well be expressed in terms of the canonical generators of

(3.6.52)as,

QP
0 =
√

2 k2π , QP
2 = 0

QJ
0 = −

√
2µk2π , QJ

2 = 0 (3.7.56)

Q1
1+ = 0, Q2

+ = 0

Let us denote the above constraints as {Φl}, l = 1, · · · 6 respectively as presented above.

They collectively define the constrained hypersurface. It can be easily verified that,

four out of these six constraints, denoted as {γp} = {Φ1,Φ3,Φ4,Φ6}, p = 1, · · · 4 have a

vanishing Dirac brackets with all of {Φl} on the constrained hypersurface 8. Thus {γp}

are the firstclass constraints and they generate the gauge symmetry that we presented

in subsection 3.6.2. We know that in a constrained system, one needs to usually modify

the canonical generators (conserved charges) such that they commute with the first class

constraints on the constraint hypersurface (defined by first class ones) as otherwise they

are not gauge invariant (and hence are not physical observable). The charges defined

in(3.7.55) fail to satisfy this property, as we have shown in appendix A (Part 5). Thus

we need to further modify them using (3.6.51), such that the resultant charges are true

observables of the theory. The required minimal shifts in generators that achieve the

above requirements are given by:

H = H + ∂φQ
P
2 ; J = J − ∂φQJ

2 ; ĜI = GI + ∂φQ
I
+

Finally we compute the Dirac brackets of these new gauge invariant canonical generators

8{φ2, φ4} = {QP2 , QJ2 } 6= 0, as there is a central term.
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and they are given as9,

{J (φ),J (φ′)}DB = (J (φ) + J (φ′))∂φδ(φ− φ′)− µ
k

2π∂
3
φδ(φ− φ′)

{H(φ),J (φ′)}DB = (H(φ) +H(φ′))∂φδ(φ− φ′)−
k

2π∂
3
φδ(φ− φ′)

{H̃(φ), H̃(φ′)}DB = 0, {H(φ), QA(φ′)}DB = 4QC(φ)∂φδ(φ− φ′)

{J (φ), QA(φ′)}DB = QA(φ)∂φδ(φ− φ′), {J (φ), QC(φ′)}DB = QC(φ)∂φδ(φ− φ′)

{J (φ), QA(φ′)}DB = QA(φ)∂φδ(φ− φ′) (3.7.57){
QC(φ), QA(φ′)

}
DB

= k

2π∂φδ(φ− φ
′),

{
QA(φ), QA(φ′)

}
DB

= k

2π µ̄∂φδ(φ− φ
′)

{J (φ), Ĝi(φ′)}DB = (Ĝi(φ) + 1
2 Ĝ

i(φ′))∂φδ(φ− φ′), (i = 1, 2)

{H(φ), Ĝi(φ′)}DB = 0, (i = 1, 2)

{Ĝ1(φ), QA(φ′)}DB = −iĜ1(φ)δ(φ− φ′), {Ĝ2(φ), QA(φ′)}DB = iĜ2(φ)δ(φ− φ′)

{Ĝ1(φ), Ĝ2(φ′)}DB = H(φ)δ(φ− φ′)− k

π
∂2
φδ(φ− φ′)− 2i(QC(φ) +QC(φ′))δ′(φ− φ′)

The above Dirac brackets are expected to be the ones of the physical observablesH,J , Ĝi, QA, QC

of the reduced two dimensional Super Liouville theory that is classically equivalent to the

3D Supergravity. Such a structure was found in a subsequent paper [58].

Let us also present the enhanced symmetry for the N = (1, 1) case here :

{H(φ),H(φ′)}DB = 0

{H(φ),J (φ′)}DB = (H(φ) +H(φ′))δ′(φ− φ′)− k

2π∂
3δ(φ− φ′)

{H(φ),Gi(φ′)}DB = 0 (3.7.58)

{J (φ), J̃ (φ′)}DB = (J (φ) + J (φ′))δ′(φ− φ′)− µk

2π ∂
3δ(φ− φ′)

{J (φ), G̃i(φ′)}DB = (G̃i(φ) + 1
2 G̃

i(φ′))δ′(φ− φ′)

{G̃i(φ), G̃i(φ′)}DB = δij(H̃(φ)δ(φ− φ′)− k

2π∂
2δ(φ− φ′)).

Here the physical observables H,J , G̃i of the reduced two dimensional Super Liouville

theory is dynamically equivalent to a 3D Supergravity with two supercharges but without

any internal R-symmetry.

9look at appendix A (Part 6)
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3.8 A new N = 2 SuperBMS3 algebra

Finally we write the quantum algebra that corresponds to the above Dirac brackets

(3.7.58) and (3.7.57). For this purpose, we define The modes of the above fields as.

Mn = 1
2π

∫
dφeinφH(φ), Jn = 1

2π

∫
dφeinφJ (φ),

G1,2
n = 1

2π

∫
dφeinφĜ1,2(φ), G̃1,2

n = 1
2π

∫
dφeinφG̃1,2(φ),

Rn = 1
2π

∫
dφeinφQA(φ), Sn = 1

2π

∫
dφeinφQC(φ).

We further use the identification for bosonic and fermionic commutator brackets respec-

tively as

i{, }DB → [, ] {, }DB → {, }.

The non zero brackets of the algebra corresponding to (3.7.57) looks as,

[Mn, Jm] = (n−m)Mn+m + n3k δn+m,0, [Jn, Jm] = (n−m)Jn+m + n3µ k δn+m,0

[Mn, Rm] = −4mSn+m, [Jn, Rm] = −mRn+m, [Jn, Sm] = −mSn+m

[Rn, Sm] = n k δn+m,0, [Rn, Rm] = n µ̄ k δn+m,0

[Jn,Gim] =
(
n

2 −m
)
Gin+m, (i = 1, 2) (3.8.59)

[Rn,G1
m] = G1

n+m, [Rn,G2
m] = −G2

n+m

{G1
n,G2

m} = Mn+m + 2kn2δn+m,0 + (n−m)Sn+m

This is a a new SuperBMS3 algebra, so far not identified in the literature. Here the

central term for [Jn, Jm] and [Rn, Rm] are independent of each other. The closest one

that was formulated in [62, 65] has both these central terms identical and the other one

obtained in [61] has zero central extension for both commutators. It is just that the most

generic boundary conditions for N = 2 theory was not considered before. In our work, we

used the most general supertrace elements for the isometry algebra of the bulk and also

used relaxed boundary condition consistent with flat space. Hence, the algebra we get is

bigger than the ones previously discussed in the literature. When we say that the new

algebra cannot be arrived from contraction, we mean the following: Starting from N = 2

supergravity theory in AdS3 we cannot contract and end up at theN = (2, 0) super-BMS3
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algebra. Of course, it is possible to start from a theory with higher supersymmetry (say

N = 4 supergravity in AdS3) and use contraction to reach this algebra. We see that the

2D dual theory constructed in (3.5.31) has a richer quantum symmetry.

A similar analysis form (3.7.58) reproduces the N = 2 SuperBMS3 algebra that was

introduced in [68].
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Chapter 4

Supergravity in dS3 and holographic

dual

4.1 Structure of de-Sitter3 spacetime

4.2 dS/CFT and holographic dual

Starting from the works of Brown and Henneaux [2] and taking a flat limit of the AdS3

spacetime, the boundary symmetry algebra of asymptotically flat spaces was found [7,29].

It was the (2+1)D analogue of BMS algebra originally discovered in [9, 28]. Subsequent

work showed a flat limit of Liouville theory describes the dynamics of these spacetimes

[32]. The work in both AdS3 and Flat spacetimes were extended to supergravity theories

[23, 56, 57, 61, 64, 69–72]. Because of its strong resemblance to the negative cosmological

constant case, a BMS/CFT conjecture has recently been put forward in the same spirit

[31,73–75].

Strominger proposed the initial dS/CFT correspondence [76] as a natural generalisa-

tion of AdS/CFT to positive cosmological constant case. Even in the original work, a

big question centred on where the holographic dual should reside. A direct analytic ex-

tension of AdS/CFT ideas would suggest that the dual theory lives both in the past(I−)

and future boundary(I+) of dS [77,78]. The reason for the worry is that de-Sitter space

has cosmological horizons, which means any static observer, for example, is not able to

access the whole space-time (See Figure 4.1). Another related problem with de-Sitter

spacetime is that with enough matter present, a spacetime which is de-Sitter in the far

past, may collapse in finite time and have no future dS-like structure at all. Thus if the
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Figure 4.1: Penrose diagram for de Sitter space. For a static observer at the south
pole, the blue region is the causal past and the yellow region is the causal future. The
overlapping region is the causal diamond for the observer.

holographic dual theory has part of it described on the future boundary, that theory will

become meaningless.

By an antipodal matching condition between I+ and I− Strominger was able to show

that the holographic description only at one of these is enough. Many other “screens”

for the dual were also proposed. But the situation, like many other problems, greatly

simplifies in (2+1)D as was shown in [79]. They showed that due to the property of radial

gauge choice, it is possible to bring the holographic dual theory in the static patch of

the observer itself. Although in principle this enables us to write a consistent boundary

theory at any radial slice, it is more natural to impose the boundary conditions to a slice

close to the horizon.

In this chapter, we generalize the above construction to minimal supergravity in a dS3

background while working in Eddington-Finkelstein coordinate. We extend the idea of

“asymptotically dS spacetime” to supergravity by giving consistent falloffs for gravitinis.

This extends the asymptotic symmetry group, which now lies in the radial slice discussed

above. Then, using hamiltonian reduction, we write the classical holographic dual for

this supergravity theory which turns out to be a Euclidean super-Liouville theory at the

boundary.
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4.3. de Sitter algebra and it’s supersymmetrization

This chapter is organized as follows: In section 2 we briefly review the minimal super-

algebra that has de-Sitter symmetry group as the bosonic subgroup. We write this algebra

in a suitable basis and discuss it’s supertraces which is essential to write the CS theory

corresponding to supergravity. In section 3, we find out the fall-off of metric and gravitini

fields and calculate the asymptotic symmetry algebra. Finally in section 4, we use the

constraints coming from the boundary conditions to write a 2D dual for the theory.

4.3 de Sitter algebra and it’s supersymmetrization

In a generic dimension d, the symmetry algebra of de Sitter space is given by so(d, 1). In

order to have a supersymmetric extension of this algebra, we must find a superalgebra

whose bosonic subalgebra is of the form so(d, 1) ⊕ g. For d = 3, we can use the homo-

morphism so(3, 1) ∼ sl2(C) in order to find the superalgebra. In his work Nahm [80]

classified all such algebras. In particular the superalgebra OSp(N |2,C) has the bosonic

subgroup sl2(C)×so(N). Hence using the algebra OSp(1|2,C) we can construct minimal

de Sitter supergravity theory in (2+1)D.

The algebra OSp(1|2,C) in a particular basis looks like [81]:

[Ja, J b] = εabcJc; [P a, J b] = εabcPc; [P a, P b] = −λεabcJc

[Ja, Uα] = −(σa)βαUβ [Ja, Vα] = −(σa)βαVβ [P a, Uα] =
√
λ(σa)βαVβ [P a, Vα] = −

√
λ(σa)βαUβ

{Uα, Uβ} = 2(σaεαβ)Pa {Vα, Vβ} = −2(σaεαβ)Pa {Uα, Vβ} = 2
√
λ(σaεαβ)Ja

It has six bosonic generators {Pa, Ja} with a = {0, 1, 2} and four fermionic generators

{Uα, Vα} where α = {−,+}. The λ parameter appearing in the algebra is inversely pro-

portional to radius of de Sitter space and λ → 0 limit gives N = (1, 1) super-Poincaré

algebra as discussed, for example, in [56].

But in the above basis, the implementation of boundary conditions is difficult. It will be

much more convenient for us to go to a new basis which will make the sl2(C) structure

of the algebra apparent. To do so, we define the following new combinations:

J±a = 1
2(Ja ±

i√
λ
Pa), Qα = 1

2λ1/4 (Uα − iVα), Q̄α = 1
2λ1/4 (Uα + iVα).
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Chapter 4. Supergravity in dS3 and holographic dual

In this new basis the algebra looks like:

[J+
a , J

+
b ] = εcabJ

+
c , [J+

a , Qα] = −(σa)βαQβ, {Qα, Qβ} = −i(σaεαβ)J+
a ,

[J−a , J−b ] = εcabJ
−
c , [J−a , Q̄α] = −(σa)βαQ̄−β , {Q̄α, Q̄β} = i(σaεαβ)J−a ,

[J+
a , J

−
b ] = 0, [J+

a , Q̄α] = [J−a , Qα] = 0, {Qα, Q̄β} = 0. (4.3.1)

In our conventions ε012 = 1 and the tangent space metric is given by ηab =



0 1 0

1 0 0

0 0 1


.

The σa matrices satisfy [σa, σb] = εabcσc.

In the basis (4.3.1), we can define invariant bilinears of the algebra. In general, this

will be a one-parameter family but the parameter will be fixed by demanding that the

bosonic part of the CS action reduces to Einstein gravity action. The nonzero supertraces

are given by:

〈J+
a , J

+
b 〉 = ηab, 〈Qα, Qβ〉 = iCαβ, 〈J−a , J−b 〉 = ηαβ, 〈Q̄α, Q̄β〉 = −iCαβ. (4.3.2)

It must be mentioned that the algebra above actually admits one more invariant bilin-

ear which corresponds to an independent set of supertraces. But this choice does not

correspond to a nondegenerate metric as λ→ 0.

4.4 Writing the supergravity action

In the above basis we can expand the CS gauge field as:

A = (ωa + i
√
λea)J+

a + λ1/4(ψα + iχα)Qα

Ā = (ωa − i
√
λea)J−a + λ1/4(ψα − iχα)Q̄α (4.4.3)
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4.5. Asymptotic symmetry of dS Supergravity

Then the Einstein action can be written as a sum of CS actions of A and Ā.

SEH = −iSκ[A] + iSκ[Ā] (4.4.4)

where Sκ[A] is the Chern-Simons action given by:

Sκ[A] = κ

2

∫
M

〈
A ∧ dA+ 2

3A ∧ A ∧ A
〉

In terms of the component fields the equations of motion become

dec + ε c
ab e

aωb + (σcε)αβ(ψαψβ − χαχβ) = 0

dωc + 1
2ε

c
ab (ωaωb − λeaeb) + 2

√
λψαχβ(σcε)αβ = 0

dψβ − ωaψα(σa)βα −
√
λeaχα(σa)βα = 0

dχβ − ωaχα(σa)βα +
√
λeaψα(σa)βα = 0 (4.4.5)

this we present here just for completeness. For λ→ 0 limit these equations get decoupled

and a generic solution is possible [56].

4.5 Asymptotic symmetry of dS Supergravity

Since gravity is topological in (2+1)D, the boundary conditions play a pivotal role in

determining it’s behaviour. These conditions give the action a proper variation and also

introduce boundary degrees of freedom. So our main goal is to define consistent boundary

conditions for dS supergravity and then analyze the asymptotic symmetry algebra that

accompanies it.

4.5.1 Falloff for field A and Ā

We want to translate the boundary condition from the language of the metric and gravitini

field to the gauge field A and Ā. Let us briefly review (following [79]) the phase space of

asymptotically dS spacetimes and then extend it to supergravity.
51



Chapter 4. Supergravity in dS3 and holographic dual

In Eddington-Finkelstein coordinates, the fall-off for metric is given by

ds2 =
(
r2

l2
+ 8GM(u, φ)

)
du2 − 2du dr + 8GJ (u, φ)du dφ+ r2dφ2. (4.5.6)

Putting this into Einstein’s equations yields ∂uJ = ∂φM and ∂uM = − 1
l2
∂φJ . Now we

do a coordinate transformation t± = u ± ilφ and in this new coordinate, the equations

take the form: ∂+(M + i
l
J ) = 0 and ∂−(M− i

l
J ) = 0. Hence the fields above can be

expanded as

M = L+(t+) + L−(t−) J = il(L+(t+)− L−(t−)) (4.5.7)

Now we may calculate the vielbeins and spin connections from the above metric. Our

tangent space metric is given under (4.3.1) and in that basis the gauge fields take the

form:

abos = (i
l
J+

1 + i8G
l
L−(t−)J+

0 )dt−

ābos = (−i
l
J−1 −

i

l
8GL+(t+)J−0 )dt+ (4.5.8)

where we have already taken out the radial dependence from both A and Ā using the

relation abos = k−1(r)(d + Abos)k(r). Since we’ll work in a constant r slice, this reduced

form abos and ābos are going to be our dynamical inputs. Also notice that our form is a

bit different from that of [79] because of the difference in conventions.

Having found out the fall off for the bosonic part, we want to extend it to the full

supergravity field [22]. The bosonic part contains the information of the physical met-

rics that should be included in the theory. In order to find the appropriate boundary

conditions for the fermionic fields as well, we take abos and ābos and act the whole dS

supergroup on it. This generates new terms in the boundary and the full field looks like:

a = (i
l
J+

1 + i8G
l
L−(t−)J+

0 + 8G
l
r−(t−)Q−)dt−

ā = (−i
l
J−1 −

i

l
8GL+(t+)J−0 + 8G

l
r̄−(t+)Q̄−)dt+ (4.5.9)
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The functions appearing in the expression 4.5.9 are assumed to have a smooth behaviour

at the boundary. Of these, the functions r− and r̄− are Grassmann valued. The rest are

scalar.

The boundary condition on these fields can be divided into two categories. Namely,

(1) At+ = 0 and Āt− = 0

(2a) aJ2 = aQ+ = 0; aJ1 = i
l

(2b) āJ2 = āQ+ = 0; āJ1 = − i
l

We’ll shortly see that these boundary conditions will reduce the boundary dual the-

ory first to a WZW action and then finally to a Liouville type theory.

But before that we’ll analyse the asymptotic symmetry algebra that leaves these condi-

tions invariant.

4.5.2 Asymptotic symmetry algebra

In order to obtain the asymptotic algebra we find the variation of the fields that keeps

the above structure intact. The generic variation of the field is given by:

δaφ = d λ+ [aφ, λ] (4.5.10)

where λ is the gauge transformation parameter. We expand it in terms of our generators

as:

λ = ξaJ+
a + θαQα

and then use our asymptotic field expression (4.5.9) to find the variations in (4.5.10).

Matching the coefficients on both sides, we see that not all parameters are independent

and are be related by:

ξ2 = −(ξ1)′

ξ0 = −(ξ1)′′ + 8GL−ξ1 + 4Gr−θ+

θ− =
√

2(θ+)′ − i 8Gr−ξ1 (4.5.11)
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Chapter 4. Supergravity in dS3 and holographic dual

Thus the only independent parameters are ξ1 and θ+. Next, we will write the variations

of the fields appearing in the expression (4.5.9). In terms of independent parameters

these are given by:

δL− = − 1
8G(ξ1)′′′ + 2L−(ξ1)′ + L′−(ξ1) + 3

2r
−(θ+)′ + 1

2(r−)′θ+ (4.5.12)

δr− = i

√
2

8G (θ+)′′ + 3
2r
−(ξ1)′ + (r−)′ξ1 − i 1√

2
L−θ+ (4.5.13)

Now we can construct the conserved charge associated with the variations that preserve

the boundary condition [24]. In CS language this charge is given by:

δQ = κ

2π

∫
〈λ, δaφ〉 (4.5.14)

where the above integration is performed over a constant r slice. With our boundary

condition the expression reduces to

Q =
∫

(ξ1L− + θ+r−) (4.5.15)

where the equivalence between the CS level and Newton’s constant was used. With this

charge the asymptotic symmetry algebra can be written as:

{Q[λ1], Q[λ2]}PB = δλ2Q[λ1]

With this and the variations of fields given above, the algebra becomes:

{L(θ),L(θ′)} = 1
8Gδ

′′′(θ − θ′)− (L(θ) + L(θ′))δ′(θ − θ′)

{L(θ), r−(θ′)} = −(r−(θ) + 1
2r
−(θ′))δ′(θ − θ′) (4.5.16)

{r−(θ), r−(θ′)} = − i√
2
L(θ)δ(θ − θ′) +

√
2i

8G δ′′(θ − θ′)
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4.5. Asymptotic symmetry of dS Supergravity

In the barred sector, the story runs in parallel. The parameter relations are given by:

ξ̄2 = −(ξ̄1)′

ξ0 = −(ξ̄1)′′ + 8GL+ξ
1 + 4Gr̄−θ̄+

θ̄− =
√

2(θ̄+)′ + i 8Gr̄−ξ̄1

and with these, the variation of fields become:

δL+ = − 1
8G(ξ̄1)′′′ + 2L+(ξ̄1)′ + L′+(ξ̄1) + 3

2 r̄
−(θ̄+)′ + 1

2(r̄−)′θ̄+ (4.5.17)

δr̄− = −i
√

2
8G (θ̄+)′′ + 3

2 r̄
−(ξ̄1)′ + (r̄−)′ξ̄1 + i

1√
2
L+θ

+ (4.5.18)

These then produce the asymptotic algebra of the barred sector. The classical poisson

brackets are given by:

{L̄(θ), L̄(θ′)} = − 1
8Gδ

′′′(θ − θ′)− (L̄(θ) + L̄(θ′))δ′(θ − θ′) (4.5.19)

{L̄(θ), r̄−(θ′)} = −(r̄−(θ) + 1
2 r̄
−(θ′))δ′(θ − θ′) (4.5.20)

{r̄−(θ), r̄−(θ′)} = + i√
2
L(θ)δ(θ − θ′)−

√
2i

8G δ′′(θ − θ′) (4.5.21)

The results presented above are in terms of Poisson Brackets. To write the quantum

algebra we first express the fields in terms of their modes. The left and right movers are

identified differently

L(θ) =
∞∑
−∞

einθLn and L̄(θ) =
∞∑
−∞

e−inθL̄n.

This identification of modes takes care of the relative minus signs between the bosonic

part of the barred and unbarred algebra.

Next, we need to quantise. While converting the Poisson brackets to commutators in the

dS case. This factor ensures that the central term in the Virasoro commutator matches

with the bosonic result in [79].
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Chapter 4. Supergravity in dS3 and holographic dual

4.6 Dual theory at the boundary

Now that we have analysed the asymptotic algebra, we want to write a classical dual of

the supergravity theory we are considering at the boundary of the spacetime. Now, since

we are working on the static patch of the dS spacetime, the boundary in this case will be

an r = const. hypersurface as r →∞ in Eddington-Finkelstein coordinates.

Using a hamiltonian reduction of the CS theory at the bulk, we will first write a dual

WZW type theory at the boundary. This procedure uses the constraint (1) mentioned

earlier. Since this constraint essentially is same for pure gravity and supergravity, this

procedure goes through in exactly the same way. But we present it here anyway.

4.6.1 Dual WZW model at boundary

To see how the Chern-Simons action gives rise to super-WZW theory at the boundary we

employ the techniques discussed in [79]. In fact since the first constraint takes the same

form in pure gravity and supergravity, the reduction is exactly the same. Generically, the

relations between these two theories were discussed in [21].

To illustrate this let us expand the CS theory explicitly in terms of our coordinates.

Sκ[A] = κ

2

∫
M
dr du dφ〈Ar(Ȧφ − A′u)− Au(∂rAφ − ∂φAr) + Aφ(∂rAu − Ȧr) + 2Au[Aφ, Ar]〉

(4.6.22)

Where the dots are derivatives w.r.t u and dashes are derivatives w.r.t φ variables. Now

integrating by parts and taking the φ boundary terms to be zero because of periodicity

the above action upto trivial boundary terms reduces to

Sκ[A] = κ

2

∫
M
dr du dφ〈ArȦφ − AφȦr + 2AuFφr〉 (4.6.23)

The field strength above is defined as Fφr = ∂φAr−∂rAφ+[Aφ, Ar]. Now we can compute

the variation of the above action. We see that apart from the terms proportional to

equations of motion (F = 0) we also get boundary terms proportional to fields. These

come from the commutator in the last term.

Sκ[A] =
∫
M
δ(A)(E.O.M) + κ

∫
∂M

du dφ〈AuδAφ〉 (4.6.24)

56



4.6. Dual theory at the boundary

At this point we can use our first set of boundary conditions At+ = 0 at r → ∞. This

implies that at the boundary Au = Aφ. Thus the correct action must be supplemented

with an additional boundary term to have a well defined variational principle. The action

takes the form:

Sκ[A] = κ

2

∫
M

〈
A ∧ dA+ 2

3A ∧ A ∧ A
〉

+ κ

2

∫
∂M

du dφ〈A2
φ〉

Now similarly the barred Chern-Simons theory will also be supplemented with a boundary

term. The final action takes the form:

SIEH = SEH + i
κ

2

∫
∂M

du dφ〈A2
φ + Ā2

φ〉 (4.6.25)

where SIEH is our notation for improved Einstein-Hilbert action, whose variation gives

us the correct equations of motion with our boundary conditions. SEH is given by [4.4.4].

Since the field strength of the CS action is trivial the fields A and Ā can be expanded

as pure gauge

A = H−1dH Ā = H̄−1dH̄ (4.6.26)

where H, H̄ ∈ SL(2,C). It’s important to understand that the boundary mentioned in

the above action isn’t the conformal boundary of de-Sitter but rather the boundary of

the static patch where we want to see the dual boundary theory. The authors of [79]

have shown that the idea of asymptotic symmetry can be extended to anywhere inside

the bulk in the case of (2+1)D pure gravity. It seems natural to put the boundary at the

boundary of causal diamond of the static observer.

We impose the radial gauge onH, H̄ as we’ve done for the field A earlier. This decomposes

the field into H = h(u, φ) k(r) where all the r dependence is now encapsulated in k. We

do a similar gauge choice for the barred sector H̄ = h̄ k̄.

With this decomposition the unbarred part of the action (alongwith it’s corresponding

boundary term) reduces to,

Sκ[A] = κ

2

[∫
∂M
〈h−1∂φhh

−1∂+h〉+ 1
3

∫
M
〈(H−1dH)3〉

]
(4.6.27)
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where ∂+ = ∂u− i
l
∂φ. This is a chiral WZW model. The barred part reduces similarly to

a WZW model of opposite chirality (with ∂− = ∂u + i
l
∂φ)

Sκ[Ā] = κ

2

[∫
∂M
〈h̄−1∂φh̄ h̄

−1∂−h̄〉+ 1
3

∫
M
〈(H̄−1dH̄)3〉

]
(4.6.28)

To finally reduce these into a non-chiral WZW model, we define

G = H−1H̄ and g = h−1h̄ (4.6.29)

With this identification, the combination of the barred and unbarred CS theory boils

down to a non-chiral WZW model:

Sκ[A] = κ

2

[∫
∂M
〈g−1∂−g g

−1∂+g〉+ 1
3

∫
M
〈(G−1dG)3〉

]
(4.6.30)

In the next section, we will impose the rest of the constraints on this action and reduce

this boundary dual to a Liouville theory.

4.6.2 Super-Liouville action at the boundary

Now that we’ve used the first set of boundary conditions to reduce the dual holographic

theory at the boundary into a WZW model [4.6.30], we want to implement the second

set of constraints.

To do so, we closely follow the construction of [82] and expand do gauss decomposition of

the elements of the supergroup close to identity. A generic element then can be written

as:

g = G+G0G−

where,

G+ = exp(xΓ1 + ψ+Q
+)

G− = exp(yΓ0 + ψ−Q
−) (4.6.31)

G0 = exp(φΓ2)
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4.6. Dual theory at the boundary

In general the fields x, y, ψ±, φ will be functions of (r, u, θ) but due to our gauge choice

at the boundary the r dependence is absent. With this form of of the element, we can

now calculate the currents of the WZW theory. The theory has 2 independent currents

given by:

J = g−1dg J̄ = −dg g−1 (4.6.32)

Now since in the previous section we’ve seen that g = h−1h̄ we can substitute this in the

above expression and get:

J = ā− g−1 a g J̄ = a− g ā g−1 (4.6.33)

Here we use the first set of constraints once again and we see that

J+ = ā+ − g−1 a+ g

= ā+

as a+ = 0. Similarly for the barred sector J̄− = a−. Thus the constraints on the fields can

be directly imposed on the components of currents of the theory as well. Using (4.6.31)

we now expand the current J in terms of the unbarred basis. We get

J+ =[eφ(∂+x)− i√
2
eφ(∂+ψ+)ψ+]J+

1

+ [−eφ(∂+x)y + i√
2
yeφ(∂+ψ+)ψ+ −

i

2e
φ/2(∂+ψ+)ψ− + ∂+φ]J+

2

+ [(∂+y)− (∂+φ)y − i

2e
φ/2y(∂+ψ+)ψ− + i√

2
(∂+ψ−)ψ−]J+

0

+ [− 1√
2
eφ(∂+x)ψ− + eφ/2(∂+ψ+) + i

2e
φ(∂+ψ+)ψ+ψ−]Q+

+ [12e
φ(∂+x)ψ− + 1√

2
eφ/2y(∂+ψ+) + i

2
√

2
eφy(∂+ψ+)ψ+ψ− + 1

2(∂+φ)ψ− + (∂+ψ−)]Q−

(4.6.34)
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In this expression, using the constraints above we find following relations:

eφ(∂+x)− i√
2
eφ(∂+ψ+)ψ+ = i

l

y = − l2e
φ/2(∂+ψ+)ψ− − il(∂+φ)

ψ− = −i
√

2leφ/2(∂+ψ+)

Similarly, we expand the J̄ current in barred basis and get the expression:

J̄− =− [eφ(∂−y)]J−1

+ [−eφx(∂−y)− i

2e
φ/2(∂−ψ−)ψ+ + ∂−φ]J−2

− [(∂−x)− (∂−φ)x− i

2e
φ/2x(∂−ψ−)ψ+]J−0

− [ 1√
2
eφ(∂−y)ψ+ + eφ/2(∂−ψ−)]Q̄+

− [(∂−ψ+)− 1√
2
eφ/2x(∂−ψ−)− 1

2e
φx(∂−y)ψ+ + 1

2(∂+φ)ψ−]Q̄− (4.6.35)

Then imposing the constraints here gives:

eφ(∂−y) = i

l

x = −il(∂−φ)− l

2e
φ/2(∂−ψ−)ψ+

ψ+ = i
√

2leφ/2(∂−ψ−) (4.6.36)

Thus we see that in the theory the fields x and y can be completely substituted by the

fields φ, ψ+, ψ− and the final action of the constrained theory will be written in terms of

these.

Now after substituting these [4.6.35,4.6.36] into the original action improved with the

boundary term, we get the Super-Liouville action at the boundary:

SE = κ
∫
∂bulk

[2(∂+φ)(∂−φ) + 1
l2

(e2φ + 1√
2
eφψ+ψ−)

+ ψ+∂−ψ+ + ψ−∂+ψ−]dx+ dx− (4.6.37)

This can be treated as the classical boundary dual of the bulk supergravity theory. This

theory is the supersymmetrized version of the theory found in [79].
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Chapter 5

A Matrix Model with BMS3

Constraints

5.1 Introduction

Although we are far from understanding the complete picture of quantum gravity, matrix

models have proven to be very successful in the study of 2D quantum gravity [83, 84].

A one-dimensional Hermitian matrix model in the double-scaling limit describes a two-

dimensional string theory which can be interpreted as a Liouville theory coupled to c =

1 matter [85]. This connection generated a huge interest in other possible relations

between gravity theories and matrix models. The 2D quantum gravity models are usually

formulated as conformal field theories, therefore, one natural direction is to look for a

CFT formulation of matrix models [86]. The connection between random matrix models

and conformal field theory (CFT) is bilateral. While matrix model techniques can be

useful for computing certain correlators in a conformal field theory, in some cases, the

techniques of CFT might be useful for solving matrix models.

A matrix model possesses an infinite number of symmetries, which gives rise to a

recursive relation between correlation functions through Loop equations [87]. The exis-

tence of infinite symmetries points to a possible integrability structure, which has been

extensively explored in the literature [88–91]. The partition function of matrix models

is known to play the role of tau-function of some integrable systems. Their underlying

integrability structure makes them exactly solvable and thus, an extremely important

tool in the study of lower-dimensional quantum field theories.
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The loop equations can be reformulated in terms of linear differential constraints on

the partition function, where the differential operators satisfy an infinite dimensional

algebra [92–95]. The most famous example is that of Hermitian one matrix model for

which the operators are known to satisfy the Virasoro algebra. The matrix model parti-

tion function can then be described as a solution to Virasoro-constraints. It is possible to

invert this relation and start from the Virasoro algebra (in fact any infinite dimensional

algebra) to write a corresponding matrix model partition function. A systematic ap-

proach was developed in [86,96] (see [97] for review). Their approach gives a formulation

of matrix models in terms of conformal field theory, where the constraints imposed on

the partition function are translated to conditions imposed on the correlators of a CFT.

Our case of interest in this chapter, is the BMS3 algebra that arises as the asymptotic

symmetry algebra of (2+1)-dimensional flat space-times [7, 31]. We have already estab-

lished its extreme importance in understanding the behaviour of these algebras from the

context of flat space holography [31]. While this serves as an example of the method de-

veloped in [86], our bigger motivation is to look for a possible connection between matrix

models and higher-dimensional gravity theories. Given the success of matrix models in

the study of 2D gravity, we believe that a framework for higher-dimensional theories in

terms of matrix models might be useful. A matrix model possessing BMS3 invariance in

it’s partition function may help us explore the integrability structure that underlines it.

We start with a set of linear differential constraints, which we refer to as BMS3-constraints.

Assuming that those constraints describe the loop equations of a matrix model, we use

the free field realisation of BMS3 to write down a solution for those loop equations. The

contents of this paper are organised as follows: In section 5.2, we review the formulation

of loop equations for Hermitian one matrix model as Virasoro-constraints. In section 5.3,

we discuss the method of [86], to compute a matrix model partition function as a solution

to a set of infinite constraints. In section 5.3, we discuss about the BMS3 algebra and

its free field realisation. Finally, in section 5.4, we present our computations of a matrix

model partition function which satisfies BMS3 constraints. These results were reported

in [98]
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5.2 Loop equations

Loop equations are an infinite set of recursion relations among the correlation functions

of a matrix model that follow from the invariance of the matrix integral under a change

of integration variables [87].

5.2.1 The Hermitian one matrix model : Virasoro constraints

Consider an ensemble E of N×N Hermitian matrices, H ∈ E. Invariance of the partition

function

Z =
∫
E
dHe−TrV (H), (5.2.1)

under an infinitesimal change of integration variables H → H + εHn leads to the first

loop equation,
n−1∑
k=0
〈trHktrHn−k−1〉 − 〈trHnV ′(H)〉 = 0. (5.2.2)

Higher loop equations can be obtained by considering more general change of variables,

or equivalently, from

∑
i,j

∫
dH

∂

∂Hij

(
(Hµ1)ijtrHµ2 · · · trHµne−trV (H)

)
= 0. (5.2.3)

The case n = 1 with µ1 = k, corresponds to (5.2.2). In general,

µ1−1∑
l=0
〈trH ltrHµ1−l−1

n∏
i=2

trHµi〉+
n∑
j=2

µj〈trHµ1+µj−1
n∏
i=2
i 6=j

trHµi〉

= 〈trV ′(H)Hµ1
n∏
i=2

trHµi〉.

(5.2.4)

The exact loop equations are difficult to solve for finite N . However, in the large-N

limit, these can be efficiently used to compute correlation functions, order by order in

1/N expansion [99]. They also admit a topological expansion and can be formulated as

topological recursion relations among the correlation functions [100,101].

The Hermitian matrices can be diagonalized as

H → UΛU †, (5.2.5)

where U are unitary matrices, and Λ = diag(λ1, · · · , λN) is a diagonal matrix. The
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eigenvalues λi are real. In the eigenvalue basis, the matrix model reduces to an eigenvalue

integral,

Z =
∫ N∏

i=1
dλi

∏
1≤i<j≤N

(λi − λj)2eV ({λi}), (5.2.6)

with a normalization factor which depends on the volume of U(N). The integral measure,

dH remains invariant under the change of basis (5.2.5), and the most general form of

potential V (H) consistent with this invariance is

V (H) = −
∞∑
k=0

tkH
k. (5.2.7)

Thus, (5.2.5) acts as gauge symmetry on the matrix model partition function having the

potential (5.2.7). The correlators can be obtained as derivatives of the partition function,

with respect to the parameters tk,

〈trHµ1 · · · trHµn〉 =
∫
dH e

∑∞
k=0 tktrHk trHµ1 · · · trHµn

= ∂n

∂tµ1 · · · ∂tµn
Z.

(5.2.8)

This relation can be used to rewrite loop equations as linear differential constraints,

LnZ = 0 for n ≥ −1, (5.2.9)

where

Ln =
∞∑
k=0

ktk
∂

∂tn+k
+

n∑
k=0

∂

∂tk

∂

∂tn−k
. (5.2.10)

The operators Ln satisfy a closed algebra,

[Ln, Lm] = (n−m)Ln+m, (5.2.11)

which is similar to the Virasoro algebra, except that n,m ≥ −1. Therefore, it is referred

to as “discrete Virasoro algebra". The constraints (5.2.9) along with

∂

∂t0
Z = NZ, (5.2.12)

are called the Virasoro constraints. The matrix model partition function is given by a

solution of these infinite set of constraint equations.
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Virasoro algebra is well-known to be the symmetry algebra of a two-dimensional

conformal field theory. Therefore, a formulation of matrix model partition function as

a solution to Virasoro constraints points to a connection between Hermitian one matrix

model and 2d CFT, which we discuss in the next section.

5.3 From Infinite Dimensional Algebras to Matrix Models

In [86], a systematic approach was developed to construct solutions of Virasoro and

W-constraints [92], using the methods of conformal field theory. The approach can be

generalised to other set of constraints, provided, there exists a free field realisation of the

algebra satisfied by the corresponding differential operators.

The idea is to identify the operators, Ln with the modes of stress tensor, Tn of a conformal

field theory. The solution to differential constraints is then obtained as a correlator in

the CFT, and the annihilation of that correlator by Ln is translated to the annihilation

of vacuum state by Tn. Thus, finding an integral expression of the partition function

essentially involves two main steps:

(i) Finding a t-dependent “Hamiltonian" operator that relates Ln with the modes of

stress tensor of a CFT. The identification is expressed through

Ln〈N |eH(t) = 〈N |eH(t)Tn. (5.3.13)

where 〈N | is a charged vacuum state of the theory.

(ii) Finding states |G〉 in the CFT, which are annihilated by Tn, n ≥ −1,

Tn|G〉 = 0. (5.3.14)

Once we find H(t) and |G〉, the solution is given by

Z = 〈N |eH(t)|G〉. (5.3.15)

The construction of operator H(t) is somewhat ad hoc. This Hamiltonian operator, in

general, does not have any relation to the CFT Hamiltonian, since there is no obligation

for a CFT Hamiltonian to satisfy such a relation. However, the state |G〉 is well-known.

It is given by the action of an operator G which commutes with the stress tensor, on the
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uncharged vacuum state,

|G〉 = G|0〉, (5.3.16)

where

[Tn, G] = 0, n ≥ −1. (5.3.17)

Any function of the screening charges satisfy such a commutation relation. In a CFT,

screening charges are operators with non-zero “charge" under the conserved current but

zero conformal dimension. Thus, adding them to a correlation function will not change

their conformal behaviour, however, it will change their total charge.

To get this operator, we first need a dimension-1 primary field in our theory (say ψ with

hψ = 1). Then define a non-local operator, A as

A =
∮
dzψ(z) (5.3.18)

One can show [Tn, A] =
∮
dz ∂(zn+1ψ(z)) = 0. Thus, the operator has zero conformal

dimension.

5.3.1 CFT formulation of Hermitian one matrix model

A free field realisation of the Virasoro algebra is given in terms of a free bosonic CFT.

To find a solution of the Virasoro constraints, we only need to consider the holomorphic

part of the theory. The mode expansion of the scalar field is given by

φ(z) = φ0 + π0 log z +
∑
k 6=0

J−k
k
zk, (5.3.19)

where the modes satisfy

[Jn, Jm] = nδn+m,0 , [φ0, π0] = 1. (5.3.20)

The stress tensor of the theory,

T (z) = 1
2[∂φ(z)]2 (5.3.21)
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admits a mode expansion

T (z) =
∑
n∈Z

Tnz
−n−2, with Tn =

∑
k>0

J−kJk+n + 1
2
∑

a+b=n
a,b≥0

JaJb. (5.3.22)

In order to relate the above Tn with Ln given in (5.2.10), we first define vacuum states,

π0|0〉 = 0, Jk|0〉 = 0, k > 0

〈N |π0 = N〈N |, 〈N |J−k = 0, k > 0.
(5.3.23)

It follows from (5.3.22) and (5.3.23) that

Tn|0〉 = 0, n ≥ −1. (5.3.24)

One can check that (5.3.13) holds for (5.3.22) and (5.2.10) with

H(t) = 1√
2
∑
k>0

tkJk = 1√
2

∮
U(z)J(z), (5.3.25)

where

U(z) =
∑
k>0

tkz
k, J(z) = ∂φ(z). (5.3.26)

The next step is to find a state |G〉, annihilated by the stress tensor. In a scalar field

theory, the screening charges are defined as

Q± =
∮

: e±
√

2φ : (5.3.27)

with charges +1 and −1, respectively. Any function of these charges satisfy (5.3.17), but

the correlator (5.3.15) is non-zero only when the charge conservation condition is satisfied

i.e. |G〉 carries the same charge as 〈N |. Therefore, if we choose Q+ to construct |G〉,

only a term with QN
+ will contribute, irrespective of the form of the function G(Q+). For

example, we can take, G(Q+) = eQ+ , a solution to Virasoro constraints is then given by

Z = 1
N !〈N |e

H(t)(Q+)N |0〉,

= 1
N !〈N | : e

1√
2

∮
C0

U(z)J(z) :
N∏
i=1

∮
Ci
dzi : e

√
2φ(zi) : |0〉 (5.3.28)
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This correlator can be evaluated using the identity

〈: eA1 :: eA2 : .... : eAn :〉 = exp
n∑
i<j

〈AiAj〉 (5.3.29)

and the OPE of scalar fields,

φ(z)φ(z′) = log(z − z′). (5.3.30)

Finally, we get

Z = 1
N !

N∏
i=

∮
Ci
dzi e

U(zi)
∏

1≤i<j≤N
(zi − zj)2, (5.3.31)

which is same as the eigenvalue integral representation (5.2.6) of Hermitian one matrix

model (5.2.1).

Another way to look at the connection between Hermitian one matrix model and free

bosonic CFT, is to define a field [93]

Φ(z) = 1√
2
∑
k≥0

tkz
k −
√

2tr log
( 1
z −H

)
, (5.3.32)

such that the following contour integral, where C encloses all the eigenvalues (λ1, · · ·λN)

of H but not the point z,

∮
C

dz′

2πi
1

z − z′
〈T(z′)〉 = 0, where T(z) = 1

2[∂φ(z)]2, (5.3.33)

gives the loop equation

〈
∑
i,j

1
z − λi

1
z − λj

+
N∑
i=1

1
z − λi

∑
k≥0

ktkλ
k−1
i 〉 = 0 (5.3.34)

This equation is just a reformulation of (5.2.2) in terms of eigenvalues, with the potential

given by (5.2.7). (5.2.8) allows one to represent (5.3.32) as

φ(z) = 1√
2
∑
k>0

tkz
k +
√

2N log z −
√

2
∑
k≥0

z−k

k

∂

∂tk
. (5.3.35)

Thus, { ∂
∂tk
, tk} can be thought of as creation and annihilation operators in the mode

expansion of a scalar field (5.3.19). It can be checked that the modes of the stress tensor
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evaluated using (5.3.35) are given by (5.2.10).

5.3.2 Conformal multi-matrix models

Having formulated the loop equations of Hermitian one matrix model as Virasoro con-

straints, one think of a generalisation to other set of constraints. There exists a class of

constraints called the W-constraints, whose solutions correspond to multi-matrix models.

For example, the solution of Wr+1-constraints,

W (a)
n Z = 0, n ≥ 1− a, a = 2, · · · r + 1, (5.3.36)

where W (a)
n satisfy Wr+1-algebra, is given by an r-matrix integral [Mironov,Morozov,...],

with r being the rank of the algebra. The conformal field theory techniques applied to

solve the Virasoro constraints can be easily generalised to the case ofW -constraints. The

associated CFT is that of r free scalar fields. For r = 2 (SL(3) algebra), the differential

operators are given by

W 2
n =

∞∑
k=0

(
ktk

∂

∂tk+n
+ kt̄k

∂

∂t̄k+n

)
+

∑
a+b=n

(
∂2

∂ta∂tb
+ ∂2

∂t̄a∂t̄b

)
(5.3.37)

W 3
n =

∑
k,l>0

(
ktk ltl

∂

∂tk+l+n
− kt̄k lt̄l

∂

∂tk+l+n
− 2kltk t̄l

∂

∂t̄k+l+n

)

+2
∑
k>0

∑
a+b=n+k

(
ktk

∂2

∂ta∂tb
− ktk

∂2

∂t̄a∂t̄b
− 2kt̄k

∂2

∂ta∂t̄b

)

+4
3

∑
a+b+c=n

(
∂3

∂ta∂tb∂tc
− ∂3

∂ta∂t̄b∂t̄c

)
,

(5.3.38)

and the solution to W3-constraints is a two-matrix model,

Z = 1
N1!N2!

N1∏
i=1

∫
dxie

U(xi)
N2∏
j=1

∫
dyje

Ũ(yj)4(x)4(y)4(x, y). (5.3.39)

Here, 4(x) = ∏
1≤i<j≤N1(xi − xj) (similarly for y) is the Vandermonde factor and

4(x, y) = 4(x)4(y)
∏
i,j

(xi − yj). (5.3.40)

A solution (5.3.15) can be constructed for any algebra of constraints, provided, the

following three conditions are fulfilled:
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• The algebra admits a free field realisation.

• One can find a vacuum annihilated by relevant generators in the corresponding field

theory.

• One can find a free field representation of the screening charges.

In this paper, we adopt this construction for the case of BMS3 algebra, which is the

asymptotic symmetry algebra of 3D flat spacetimes.

5.3.3 Free field realisation of BMS3

BMS3 algebra is spanned by two spin-2 fields, Tn and Mn and their commutators are

given by

[Tn, Tm] = (n−m)Tn+m + c1

12n(n2 − 1)δn+m,0,

[Tn,Mm] = (n−m)Mn+m + c2

12n(n2 − 1)δn+m,0, (5.3.41)

[Mn,Mm] = 0.

As it turns out, there exists a free field realisation of this algebra in terms of the β − γ

bosonic ghost CFT. It was shown [102] that a twisted ghost system with spin (2,-1) of

the fields, respectively, can realise the above algebra (5.3.41).

The bosonic β−γ system ( see [103] ) generically has a field β with spin λ and γ with

spin 1− λ and they satisfy the following OPE,

γ(z)β(w) ∼ β(w)γ(z) ∼ 1
(z − w) , (5.3.42)

while the OPE among the fields with themselves vanishes. Our interest lies in the case

where λ = 2. For this system, the holomorphic parts of the primary fields can be expanded

as

β(z) =
∑
n∈Z

βnz
−n−2, γ(z) =

∑
n∈Z

γnz
−n+1, (5.3.43)

The stress tensor of the theory,

T (z) = −λ : β(z)∂zγ : +(1− λ) : γ(z)∂zβ : (5.3.44)

= −2 : β(z)∂zγ : − : γ(z)∂zβ : (for λ = 2), (5.3.45)
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has the mode expansion

T (z) =
∑
n∈Z

Tnz
−n−2, (5.3.46)

with

Tn =
∞∑
m=0

(2n+m)β−mγm+n +
∞∑
m=0

(n−m)γ−mβm+n + 1
2
∑

a+b=n
a,b≥0

(2a+ b)βaγb (5.3.47)

From the OPE (5.3.42), it is clear that the above stress tensor satisfies the following

expansions:

T (z)T (w) ∼ 1
2

26
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
(z − w) (5.3.48)

T (z)β(w) ∼ 2β(w)
(z − w)2 + ∂β(w)

(z − w) (5.3.49)

This suggests that the modes of T (z) and β(z) satisfy an algebra that is almost like BMS3

except that the central charges are different. The central charges of BMS3 (5.3.41) are

arbitrary, whereas in this system c1 = 26 and c2 = 0. To get around this problem, [102]

twisted the above stress tensor with

T (z)→ T (z)− a∂3γ (5.3.50)

This twist introduces an arbitrary central charge of 12a in the OPE of T (z) with β(z).

So now we may say that the modes of the stress tensor gives the Tn generator whereas

the modes of the field β acts as Mn. Of course, the c1 central charge is still fixed to be

26. But we can change that by coupling this system with arbitrary chiral matter whose

stress tensor has some non-zero central charge. We ignore this extra complication for now

as whatever we derive with the twisted β − γ system described above would go through

even in that case.

5.4 A BMS3 invariant Matrix Model

We impose an infinite set of differential constraints

Ba
nZ = 0, n ≥ −1, a = 1, 2. (5.4.51)
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such that the operators Ba
n satisfy BMS3 algebra (5.3.41). The explicit form of these

operators is given in (5.4.53) and (5.4.54). We call these constraints the BMS3-constraints,

and claim that a solution of (5.4.51) gives a BMS3 invariant matrix model partition

function. The constraints (5.4.51) should describe the loop equations of that matrix

model.

5.4.1 Loop equations

In order to define the differential operators corresponding to Loop equations, we first

observe that the OPE (5.3.42) gives the following relation between the modes:

[γn, βm] = δn+m,0, (5.4.52)

while the rest of the commutators vanish. Thus, the pair {γk, β−k} behaves like creation

and annihilation operators of a simple harmonic oscillator (SHO) and can be equated

with { ∂
∂tk
, tk} for k > 0. A similar set of equivalence can be made for k < 0 modes, with

another set of SHOs { ∂
∂t̄k
, t̄k}.

Thus, the differential operators of relevance become

B1
n ≡ Ln =

∞∑
m=0

(2n+m)tm
∂

∂tm+n
+
∞∑
m=0

(m− n)t̄m
∂

∂t̄m+n

+ 1
2
∑

a+b=n
a,b≥0

(2a+ b) ∂

∂ta

∂

∂t̄b
, (5.4.53)

B2
n ≡Mn = ∂

∂t̄n
, n > 0, Mn = t−n, n < 0, (5.4.54)

which satisfy

[Ln, Lm] = (n−m)Ln+m,

[Ln,Mm] = (n−m)Mn+m,

[Mn,Mm] = 0. (5.4.55)

This is the classical version of BMS3 algebra. The matrix model partition function is

obtained as a solution to the constraints

LnZN = 0, and MnZN = 0 for n ≥ −1, (5.4.56)
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where the suffix N of the partition function indicates the charge of the vacuum under the

U(1) current of the system,

j(z) = − : γβ : (5.4.57)

The rest of this paper is devoted to finding a solution to (5.4.56). To solve the above

constraints, we will use our knowledge of the free field realisation of the algebra. Our

objective would be to translate the constraints in terms of a CFT correlator in the β − γ

model.

5.4.2 The ‘Hamiltonian’ function

The procedure to find the partition function that satisfies (5.4.56) involves two vital

steps [97]. Firstly, we find a “Hamiltonian" operator that relates the differential operators

with the modes of the operators of our CFT.

This relation is expressed in terms of the following expressions:

Ln〈N |eH(t,t̄) = 〈N |eH(t,t̄)Tn, and Mn〈N |eH(t,t̄) = 〈N |eH(t,t̄)βn. (5.4.58)

The state 〈N | is a vacuum of the theory which is charged.

We propose the following operator:

H(t, t̄) =
∑
k>1

tkγk +
∑
k≥−1

t̄kβk (5.4.59)

Using (5.4.53), we have

Ln〈N |eH(t,t̄) = 〈N |
 ∞∑
p=0

(2n+ p)tpγn+p +
∞∑
p=0

(p− n)t̄pβn+p + 1
2

∑
a+b=n;a,b≥0

γaβb

 ,
(5.4.60)

whereas to work out the RHS of (5.4.58), we make use of the BCH formula

eXY = Y eX + [X, Y ], (5.4.61)

and also use the fact that the vacuum state 〈N | is annihilated by the modes β−k, γ−k for

k > 0. It can be easily shown that the first equation of (5.4.58) is satisfied.

We also need to check the second equality in (5.4.58). This is relatively easy to check
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since the LHS gives

Mn〈N |eH(t,t̄) = 〈N |βneH(t,t̄). (5.4.62)

This result is also obtained from RHS quite straightforwardly as βn commutes with the

Hamiltonian for n > 0 and hence, our choice of Hamiltonian function is justified.

5.4.3 Screening Charges

To complete our analysis, we now require a ket state |G〉 such that

Tn|G〉 = 0 Mn|G〉 = 0 (5.4.63)

If such a state is found, then we may claim that the full partition function of the theory

is given by

ZN = 〈N |eH(t,t̄)|G〉, (5.4.64)

which from the properties of (5.4.58) and (5.4.63) satisfies all our constraints.

Generic states, which commute with all positive modes of stress tensor (first equation

of (5.4.63)) are generated by Screening Operators. Unfortunately, for a β − γ system of

spin (2,-1) we don’t have a spin 1 primary at hand. Hence, the construction of these

operators isn’t straightforward. For this we need to take an indirect route which we chalk

out below.

For a generic bosonic β−γ system of dimension (λ, 1−λ) the system has a background

charge (1−2λ), which implies that our system has a background charge −3. The presence

of a background charge makes the U(1) symmetry anomalous and the current (5.4.57) is

no longer a primary of the theory.

To get a better handle in the theory, we fermionize the theory [103]. We take a free scalar

field, φ which satisfies the OPE

φ(z)φ(w) ∼ ln(z − w), (5.4.65)

and two fermionic fields, η and ξ such that η(z) and ∂ξ(z) are primary fields of dimension

one. Their OPE is given by

η(z)ξ(w) ∼ 1
(z − w) . (5.4.66)
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Then in terms of these fields, we can write

β(z) = e−φ(z)∂ξ, γ(z) = eφ(z)η(z). (5.4.67)

This map gives us incredible advantage. Since, we know that free scalar fields have Vertex

operators

Vα(z, z̄) = ei
√

2αφ(z,z̄), (5.4.68)

which are primary operators with dimension1 α2. Hence, we can construct dimension

one primaries now, which in turn gives us our screening charges. Of course we also have

fermionic primaries in our theory. It turns out the relevant screening charges in this new

theory are

Q1 =
∮
e−φ(z), Q2 =

∮
e−2φ(z), (5.4.69)

as Tn and Mn both commute with them2. It also implies that we can take any function

of these charges acting on vacuum as our state |G〉.

5.4.4 The matrix model partition function

If we choose G to be an exponential function, then we realise that charge conservation

of CFT correlators demand that only the N-th term of the exponential operator would

survive. Thus, the final partition function is given by

ZN = 〈N |eH(t,t̄)|G〉,

= 1
N1!N2!〈N |e

H(t,t̄)(Q1)N1(Q2)N2|0〉, with N1 +N2 = N.

To evaluate the above integral, we first write our Hamiltonian in terms of fields,

H(t, t̄) =
∑
k>1

tkγk +
∑
k≥−1

t̄βk = −
∮
V (z)∂γ(z)−

∮
U(z)∂β(z), (5.4.70)

where

V (z) =
∑
k>1

tk
zk−1

k − 1 , U(z) =
∑
k≥−1

t̄k
zk+2

k + 2 . (5.4.71)

1In absence of a background charge. Otherwise hVα = α2 − 2α0α
2This is the reason we couldn’t use the fermionic screening operators. Mn doesn’t commute with

them.
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Thus, in terms of fields our partition function becomes

ZN = 1
N1!N2!〈N | : e

−
∮
V (z)∂γ(z)−

∮
U(z)∂β(z) :

N1∏
i=1

∮
Ci
dxi : e−φ(xi) :

N2∏
j=1

∮
Cj
dyj : e−2φ(yj) : |0〉

We’ll also need the OPE relations between the original fields and the new fields, which

are

∂β(z)φ(z′) ∼ β(z′)
z − z′

, (5.4.72)

∂γ(z)φ(z′) ∼ − γ(z′)
z − z′

. (5.4.73)

Finally, to evaluate the correlator, we use the identity of exponentiated operators (5.3.29).

Using these we get

ZN = 1
N1!(N −N1)!

N1∏
i=1

∮
Ci
dxi e

X(xi)
(N−N1)∏
j=1

∮
Cj
dyj e

Y (yj) 1
4(x)44(y)42(x, y) , (5.4.74)

where

X(xi) = V (xi)γ(xi)− U(xi)β(xi), Y (yj) = V (yj)γ(yj)− U(yj)β(yj) (5.4.75)

4(x) =
N1∏
i<k

(xi − xk), 4(y) =
N2∏
j<k

(yj − yk), 4(x, y) =
∏
i,j

(xi − yj) (5.4.76)

This is our final result. It shows that the BMS3 constraints give rise to a two-matrix

model partition function written in terms of their eigenvalues. It may be interpreted as

an orthogonal matrix model and a quaternionic Hermitian model interacting through the

measure of the partition function.
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Chapter 6

Outlook and Future Directions

In Chapter 3 and 4, we have found the dual field theory to the supergravity theory in 3D

bulk. First we looked at asymptotically flat spacetimes in N = 2 Supergravity. We have

constructed the duals for both N = (1, 1) and N = (2, 0) cases. The physical observables

dual to 3D graviton (and other supergravity fields) belong to a super Liouville like theory.

We found that for N = (2, 0) case the dual theory enjoys an infinite dimensional most

generic N = 2 quantum SuperBMS3 symmetry that so far was not known. The symmetry

is a truncated version of N = 4 SuperBMS3 that we developed in [68]. One of the

interesting results here was the non-trivial central extensions for [Jn, Jm] and [Rn, Rm]

commutators. These can not be derived from the AdS3 case by taking a flat space limit

and hence is unique to flat space itself.

Next, we discussed the boundary behaviour of minimal supergravity theory in (2+1)D

with Λ > 0. We found how the asymptotic symmetries can be extended to the static

patch for this supergravity model and again ended up in a Liouville type theory. For a

Lorentzian signature de-Sitter space, the holographic dual is an Euclidean CFT, which

we found here as well. To analyze the symmetries of this dual super-Liouville theory is

something we want to persue in the future. Our understanding is that the currents of

this theory can be used to do a Sugawara construction which reproduces the asymptotic

symmetry algebra of the bulk dS spacetime.

The dual theories that we wrote down are not complete quantum holographic duals

of the gravity theory in the bulk. They are to be thought of as effective descriptions of

the bulk gravity at asymptotic boundaries. But since symmetries play a major role in

constraining the gravitational data, it is expected that analysing these duals may lead to
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understanding of 3D gravity observables.

Earlier in [68, 102] a free field realisation of SuperBMS3 algebras was presented. It

would be interesting to see how the theory constructed in this paper are related to those.

Another technically challenging problem would be to extend the above analysis for N = 4

[72,104] and N = 8 [71,105] Supergravity theories. With that, we shall have a complete

zoo of all 2D duals of all possible 3D Supergravities.

Another interesting problem to study is the quantum corrections to the asymptotic

algebras and the dual theory. For instance the work [106] found non-trivial corrections

to the central charges of the boundary algebra. It would be interesting to see these

corrections for the boundary theory presented here as well. The problem of considering

non trivial holonomies of the bulk gravity theory is also interesting.

In Chapter 5, we have found a matrix model partition function with BMS3 con-

straints. The BMS3 constraints are imposed through loop equations which suggests it

might also be possible to formulate a topological recursion relation. There has been some

recent works trying to understand the possible connections between BMS3 algebras and

integrability [107]. We believe further investigation of this partition function will shed

some light over this. BMS3 algebra is also linked with flat limits of Liouville theory [32]

and it would be interesting to understand the connection between this 2D gauge theory

and our resulting matrix model. We would also like to understand the links between the

correlation functions in the Matrix model and BMS3 invariant correlation functions of

the boundary gauge theory.

Another possible direction would be to understand Super-BMS3 algebra in terms of matrix

models [33, 56, 61, 71]. They appear as the asymptotic symmetry group of Supergravity

theories in 3D flat spacetimes. The non-trivial features resulting from fermionic con-

straints on a Matrix model partition function would be interesting to study. The free

field realisations required for this construction were discussed in [68].
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Appendix A

Details of Calculations

Part 1: Conventions and Identities

In this paper, we have mostly followed the conventions of [57]. The tangent space metric
ηab, a = 0, 1, 2 is flat and off-diagonal, given as

ηab =



0 1 0

1 0 0

0 0 1


The space time coordinates are u, φ, r with positive orientation in the bulk being dudφdr.
Accordingly the Levi-Civita symbol is chosen such that ε012 = 1.
The three dimensional Dirac matrices satisfy usual commutation relation {Γa,Γb} = 2ηab
. They also satisfy following useful identities:

ΓaΓb = εabcΓc + ηabI, (Γa)αβ(Γa)γδ = 2δαδ δ
γ
β − δαβ δ

γ
δ .

The explicit form of the Dirac matrices are chosen as,

Γ0 =
√

2

 0 1

0 0

 , Γ1 =
√

2

 0 0

1 0

 , Γ2 =

 1 0

0 −1

 . (A.0.1)

All spinors in this work are Majorana and our convention for the majorana conjugate of
the fermions are different from [57] and is given as,

ψαi = ψβi Cβα, Cαβ = εαβ = Cαβ =

 0 1

−1 0

 .

Here i = 1, 2 is the internal index and Cαβ is the charge conjugation matrix that satisfies

CT = −C, CΓaC−1 = −(Γa)T , CαβCβγ = −δαγ
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Appendix A. Details of Calculations

For any traceless 2× 2 matrix A, it can be shown that CαβAβγ = (CΓa)αγTr[ΓaA].
For computing the gauged action the three dimensional Fierz relation is useful and is
given as

ζη̄ = −1
2 η̄ ζ 1−

1
2(η̄Γaζ)Γa , (A.0.2)

Other useful identities are:

ψ̄Γa η = η̄ Γa ψ , ψ̄Γa ε = −ε̄Γa ψ , (A.0.3)
where ψ, η are Grassmannian one-forms, while ε is a Grassmann parameter.

Part 2: Hamiltonian form of the CS action

In this appendix, we shall present the details of the Hamiltonian action and the bound-
ary term corresponding to a Chern-Simons theory on a 3 manifold with boundary. We
decompose the gauge field A(u, φ, r) as A = duAu + Ã. Thus we give a preference to
the time like u direction and other two directions are treated together. The reasoning
behind this decomposition is: in variational principle, in general we can not through out
the variations of derivatives of gauge fields along the spacelike directions. Next we can
decompose the field strength. Using A = du Au + Ã and d = du ∂u + d̃, we get

dA = du ˙̃A+ d̃ duAu + d̃Ã (A.0.4)

Therefore

< A, dA >

=< (du Au + Ã), (du ˙̃A+ d̃ duAu + d̃Ã) >

=< du Au, d̃Ã > + < Ã, du ˙̃A > + < Ã, d̃duAu >

=< Ã, du ˙̃A > +2 < du Au, d̃Ã > +total derivative term

where we have used

d̃ < Ã, duAu > =< d̃Ã, duAu > − < Ã, d̃duAu >

=<, duAu, d̃Ã > − < Ã, d̃duAu >

using cyclic invariance of trace in the last step.
Also we have, (A ∧ A) = (duAu ∧ Ã+ Ã ∧ duAu + Ã ∧ Ã). Therefore

< A3 > =< (du Au + Ã) ∧ (duAu ∧ Ã+ Ã ∧ duAu + Ã ∧ Ã) >
=< duAu ∧ Ã ∧ Ã > + < Ã ∧ duAu ∧ Ã > + < Ã ∧ Ã ∧ duAu >
= 3 < duAu ∧ Ã ∧ Ã >

Now collecting all the terms and putting in the CS action we get,

IH [A] = k

4π

∫
< Ã, du ˙̃A > +2 < duAu, d̃Ã+ Ã2 > (A.0.5)
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Finally we present construction of the boundary term. Variation of the above Hamiltonian
form of the Chern-Simons action (A.0.5)s is given by

δIH [A] = k

4π

∫
δ〈Ã, ˙̃Adu〉+ 2〈duδAu, d̃Ã+ Ã2〉+ 2〈duAu, d̃δÃ+ δÃ2〉 (A.0.6)

δ〈Ã, ˙̃Adu〉 = dudφdr Tr[−δAr∂uAφ + δAφ∂uAr − Ar∂u(δAφ) + Aφ∂u(δAr)]
d̃Ã = dφdr(∂rAφ − ∂φAr), Ã2 = dφdr(AφAr − ArAφ), d̃Ã+ Ã2 = dφdrFrφ

Substituting all these expressions in (A.0.6), we get

δIH [A] = k

4π

∫
dudφdrTr[−δAr∂uAφ + δAφ∂uAr − Ar∂u(δAφ) + Aφ∂u(δAr)]

+ k

2π

∫
dudφdrTr[Au∂r(δAφ)− Au∂φ(δAr) + Au(δAφAr + AφδAr − δArAφ − ArδAφ)]

+ k

2π

∫
dudφdrTr[δAuFrφ] (A.0.7)

The colored terms can be manipulated to write them as a total derivative plus another
term. The total derivative terms from all the blue terms can be integrated out to give zero
at the boundary (as the variation of fields are zero at the boundary). The red colored term
gives a non-zero term at the boundary r = r0 (marked green in the following expression).
All other terms combine to give the following variation of the action:

δIH [A] = k

2π

∫
dudφdrTr[δAuFrφ] + k

2π

∫
dudφdrTr[δAφFur] + k

2π

∫
dudφdrTr[δArFφu]

+ k

2π

∫
dudφdrTr[∂r(AuδAφ)]− k

2π

∫
dudφdrTr[∂φ(AuδAr)] (A.0.8)

The boundary term can be rewritten in form notation as − k
2π
∫
dud̃〈Au, δÃ〉 as,

− k

2π

∫
dud̃〈Au, δÃ〉 = k

2π

∫
dudφdrTr[∂r(AuδAφ)− ∂φ(AuδAr)] (A.0.9)

Apart from the boundary term, δIH [A] = 0 =⇒ Frφ = 0, Fur = 0, Fφu = 0 which means

F = dA+ A2 = 0

Part 3: Details of the Computations for Dual WZW theory of
N = (1, 1) Supergravity

In this appendix, we shall briefly present an independent computation for the N = (1, 1)
case. This is a simpler version of N = (2, 0) case as we do not have any internal symmetry
generators T, Z. But in calculations, the exact behaviour of fields (their overall signs)
differ from the N = (2, 0) case and also the basis of fermionic generators are different.
Thus although the final result is mere a truncation of the N = (2, 0) one. The action is
given in (3.3.6). We begin with eoms as, Equations of motion:
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de+ [ω̂, e] = 1
4

2∑
i=1

(ψiψi − 1
2ψ

i
ψiI), dω̂ + ω̂2 = 0 (A.0.10)

Dψαi = −1
2γe

a(Γa)αβψβi, (i = 1, 2) (A.0.11)

Solutions to equations of motion:

ω̂ = Λ−1dΛ, Λ ∈ SL(2,R) (A.0.12)
ψi = Λ−1dηi (i = 1, 2) (A.0.13)

e = Λ−1(1
4

2∑
i=1

ηidηi + 1
8

2∑
i=1

dηiηiI + db)Λ (A.0.14)

Asymptotic form of the r-independent part of the gauge field in radial gauge:

A = (M2 du+ N2 dφ)P0 + duP1 + M2 dφJ0 + dφJ1 +
2∑
i=1

ψi

21/4Q
i
+ (A.0.15)

Functional form of the solutions in radial gauge:

Λ = λ(u, φ)ξ(u, r) (A.0.16)
ηiα = νiα(u, φ) + λ(u, φ)ρiα(u, r) (A.0.17)

b = α(u, φ)− 1
4

2∑
i=1

νi(u, φ)ρi(u, r)λ−1(u, φ)− 1
8

2∑
i=1

ρi(u, r)λ−1(u, φ)νi(u, φ)I(A.0.18)

+λ(u, φ)β(u, r)λ−1(u, φ)

Constraints on the asymptotic gauge field components:

ωaφ = eau, ωau = 0, ψi+u = 0 = ψi−u (A.0.19)

Surface term at the boundary:

− k

2π

∫
dud̃〈Au, δÃ〉 = − k

4π

∫
dudφωaφωaφ|r=r0 (A.0.20)

Action in terms of gauge field components:

I = k

4π [
∫
dudφ(eaφωau + ωaφeau + µωaφωaφ −

2∑
i=1

ψ
i

αuψ
αi
φ )|r=r0 (A.0.21)

+1
6

∫
(3εabceaωbωc + µεabcωaωbωc +

2∑
i=1

3
2ω

a(CΓa)αβψαiψβi)]

Action on the solutions of equations of motion:

I = k

2π (
∫
dudφTr[2Λ̇Λ−1(−1

4

2∑
i=1

ηiηi
′+b′)−(Λ′Λ−1)2+µΛ′Λ−1Λ̇Λ−1−1

2

2∑
i=1

ηi
′
η̇
i]r=r0+µ3

∫
Tr(dΛΛ−1)3)

(A.0.22)
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Action after using gauge decomposed forms of the solutions:

I[λ, α, ν1, ν2] = k
2π (
∫
dudφ[2λ̇λ−1α′ + 1

2
∑2
i=1 λ̇λ

−1νiνi
′ − (λ′λ−1)2 + µλ′λ−1λ̇λ−1 − 1

2
∑2
i=1 ν̇

i
νi
′ ]

+µ
3
∫
Tr(dΛΛ−1)3) (A.0.23)

Equations of motion:

(λ̇λ−1)′ = 0 (A.0.24)
ν̇
i′ + νi

′
λ̇λ−1 = 0 (A.0.25)

α̇′ + α′λ̇λ−1 − λ̇λ−1α′ + 1
4

2∑
i=1

ν̇iνi
′ + 1

4

2∑
i=1

λ̇λ−1νiνi
′ − ∂φ(λ′λ−1) = 0 (A.0.26)

Generic solutions of the equations of motion:

λ = τ(u)κ(φ) (A.0.27)
νi = τ(ζ i1(u) + ζ i2(φ)) (A.0.28)

α = τ(a(φ) + δ(u) + uκ′κ−1 − 1
4

2∑
i=1

ζ i1ζ
i

2)τ−1 (A.0.29)

Symmetries of the solutions:

α −→ α + λΣ(φ)λ−1 (A.0.30)
λ −→ λΘ−1(φ); α −→ α− uλΘ−1Θ′λ−1 (A.0.31)

νi −→ νi + λΥi(φ) (i=1 or 2); α −→ α− 1
4ν

iΥi
λ−1 (A.0.32)

Infinitesimal version of the symmetries:

δσα = λσ(φ)λ−1 (A.0.33)
δθλ = −λθ(δθλ−1 = θλ−1); δθα = −uλθ′λ−1 (A.0.34)

δγν
1 = λγ1; δγα = −1

4ν
1γ1λ−1 (A.0.35)

δγν
2 = λγ2; δγα = −1

4ν
2γ2λ−1 (A.0.36)

Currents corresponding to the above symmetries:

Jµσ = δµ0 (k
π

)Tr[σλ−1λ′] = 2δµ0σaPa (A.0.37)

Jµθ = −k
π
δµ0Tr[θ(λ−1α′λ− u(λ−1λ′)′ + 1

4

2∑
i=1

λ−1νiνi
′
λ)] = 2δµ0 θaJa (A.0.38)

Jµγi = k

2πδ
µ
0Tr[γiνi

′
λ] = δµ0Q

i
αγ

iα (i = 1, 2, i not summed over) (A.0.39)

where σ and θ being SL(2,R) matrices are expanded in the basis of Γ matrices.
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Dirac brackets:

{Pa(φ), Pa(φ′)} = 0 (A.0.40)

{Pa(φ), Jb(φ′)} = εabcP
c(φ)δ(φ− φ′)− k

2πηabδ
′(φ− φ′) (A.0.41)

{Pa(φ), Qi
α(φ′)} = 0 (i = 1, 2) (A.0.42)

{Ja(φ), Jb(φ′)} = εabcJ
cδ(φ− φ′) + µk

2π ηabδ
′(φ− φ′) (A.0.43)

{Ja(φ), Qi
α(φ′)} = 1

2(QiΓa)α(φ)δ(φ− φ′) (i = 1, 2) (A.0.44)

{Qi
α(φ), Qj

β(φ′)} = δij[−1
2(CΓa)αβPa(φ)δ(φ− φ′)− k

2πCαβδ
′(φ− φ′)] (A.0.45)

Bilinears for Sugawara construction:

H = π

k
P aPa, P = −2π

k
JaPa+µH+π

k

2∑
i=1

Qi
αC

αβQi
β, Gi = 23/4π

k
(P2Q

i
++
√

2P0Q
i
−) (i = 1, 2)

(A.0.46)
Remaining constraints on the gauge field:

ω1
φ = 1, e1

φ = e2
φ = 0, ψ1−

φ = ψ2−
φ = 0 (A.0.47)

Constraints on the fields:

[λ−1dλ]1 = 1, [λ−1(1
4

2∑
i=1

νiνi
′ + 1

8

2∑
i=1

νi
′
νiI + α′)λ]1 = 0, [λ−1νi

′ ]− = 0

In terms of components of currents,

P0(φ) = k

2π , J0(φ) = −µk2π , Q1
+ = Q2

+ = 0 (A.0.48)

Shifted bilinears:

H̃ = H + ∂φP2, P̃ = P − ∂φJ2, G̃i = Gi + 23/4∂φQ
i
+ (A.0.49)

Poisson brackets:

{H̃(φ), H̃(φ′)} = 0 (A.0.50)

{H̃(φ), P̃(φ′)} = (H̃(φ) + H̃(φ′))δ′(φ− φ′)− k

2π∂
3δ(φ− φ′) (A.0.51)

{H̃(φ), G̃i(φ′)} = 0 (A.0.52)

{P̃(φ), P̃(φ′)} = (P̃(φ) + P̃(φ′))δ′(φ− φ′)− µk

2π ∂
3δ(φ− φ′) (A.0.53)

{P̃(φ), G̃i(φ′)} = (G̃i(φ) + 1
2 G̃

i(φ′))δ′(φ− φ′) (A.0.54)

{G̃i(φ), G̃i(φ′)} = δij(H̃(φ)δ(φ− φ′)− k

2π∂
2δ(φ− φ′)) (A.0.55)
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Part 4: Currents corresponding to Global symmetries of WZW
theory

Here we present a procedure to get the φ dependent symmetries of the solutions with one
example. Let us look at the solution of λ:

λ = τ(u)κ(φ).

Multiplying the solution by an arbitrary φ dependent SL(2, C) field θ−1 from right is
still a symmetry of the solution. In this new solution κ is modified as κθ. Since κ
appears in the solution of F , that solution also needs to be transformed accordingly. The
κ dependent term in F is ∼ −uτκ′κ−1τ−1. This for κ → κθ this piece transforms as
−uτ(κθ−1)′(κθ−1)−1τ−1 = −uτκ′κ−1τ−1 + uλ(θ−1θ′)λ−1. Thus the field F changes as
F → F + uλ(θ−1θ′)λ−1. A similar analysis for all possible symmetries of the solutions
yields the transformations presented in the first equation of section 3.6.1. One can then
easily derive the infinitesimal versions presented in (3.6.45).Below we present some details
of the current computations.

Noether current associated to a global symmetry generated by parameter ε is given
as,

J µ
ε = δL

δ(∂µφi)
δεφi −Kµ

ε , ∂µK
µ
ε = δεL. (A.0.56)

Another useful way to get the current is to use

∂µJ µ
ε =

(
δL

δ(∂µφi)
− δL
δφi

)
δεφi. (A.0.57)

We shall write the current such that it only has non-zero component in the u−direction.
For finding currents corresponding to C and N transformations, (A.0.57) is useful and
that directly gives us JµC , J

µ
N of (3.6.52). For the other four currents we need to use either

of (A.0.56), (A.0.57) and improvement terms S[µν]
ε , T µε .

First we look at the fermionic currents. For these, we do not require improvement
and (A.0.56) directly gives us currents in u−direction. In particular the for JµD1 , we get

Ku = (− k

2π )Tr[(d̄2
′
λ− ia′d̄2λ)D1], Kφ = k

2πTr[λD1
˙̄d2 + iȧλD1d2].

Finally for JµD1 we need to take contribution from δL
δ(∂µφi)δεφi piece, that cancels the Kφ

part and adds an equal contribution as Ku in the final expression. Similarly we get JµD2 .
For the current due to A transformation, direct evaluation with (A.0.56) gives

J u = k

4π [(µ̄a′+2ic′+2i(d̄2
′
d1−d̄1

′
d2−ia′(d̄2d1+d̄1d2)))A−µ̄aA′+8ua′A′],J φ = k

4π (µ̄ȧA−8a′A).

Here the fermion terms are traced among themselves. To get the final current in u−direction,
we need to add

S
[µν]
A = − k

4πε
µν(8ua′A− µ̄aA), εuφ = 1, T µA = δµφu

k

4π ȧ
′.

taking these improvement terms into account we finally get JµA as given in (3.6.52).
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Finally for Θ transformation, using (A.0.57) we get

J u = k

2πTr[{λ
−1α̂λ+ µλ−1λ′}θ − 2u(λ−1λ′)θ′], J φ = k

2πTr[θλ
−1λ′]

. Adding the required improvements terms are

S
[µν]
Θ = k

2πε
µνTr[uΘλ−1λ′], T µΘ = δµφu

k

2πTr[Θ(λ−1λ′)·],

we finally get the expression for JµΘ as given in (3.6.52).

Part 5: Some important Dirac Brackets

In this appendix, we provide the nontrivial Dirac brackets between various currents and
current bilinears that are required for the results presented in the draft.

The non-trivial Dirac brackets of Sugawara modes with currents are given by:{
H(φ), QJ

a (φ′)
}

= −QP
a (φ)δ′(φ− φ′) (A.0.58){

H(φ), QA(φ′)
}

= 4QC(φ)δ′(φ− φ′) (A.0.59){
P (φ), QJ

a (φ′)
}

= QJ
a (φ)δ′(φ− φ′) (A.0.60){

P (φ), QP
a (φ′)

}
= QP

a (φ)δ′(φ− φ′) (A.0.61){
P (φ), QG1

γ (φ′)
}

= QG1
γ (φ)δ′(φ− φ′) (A.0.62){

P (φ), QG2
γ (φ′)

}
= QG2

γ (φ)δ′(φ− φ′) (A.0.63){
P (φ), QA(φ′)

}
= QA(φ)δ′(φ− φ′) (A.0.64){

P (φ), QC(φ′)
}

= QC(φ)δ′(φ− φ′) (A.0.65){
G1(φ), QG2

+ (φ′)
}

=
√

2π
k
QP

0
k

π
δ′(φ− φ′) (A.0.66){

G1(φ), QG2
− (φ′)

}
= H(φ)δ(φ− φ′)−QP

2 (φ)δ′(φ− φ′)− 2iQC(φ)δ′(φ− φ′) (A.0.67)
{G1(φ), QA(φ)} = −iG1(φ)δ(φ− φ′) (A.0.68)
{G2(φ), QA(φ)} = iG2(φ)δ(φ− φ′) (A.0.69)

With above equations we can try to calculate the PBs between different modes of stress
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tensor. For example:

{H(φ), P (φ′)} =
{
H(φ), (−2π

k
)QJ

aQ
P
a

}
= (−2π

k
)[
{
H(φ), QJ

a (φ′)
}
QP
a (φ′) +QJ

a (φ′)
{
H(φ), QP

a (φ′)
}
QP
a (φ′)]

= 2π
k
QP
a (φ)QP

a (φ′)∂φδ(φ− φ′)

= π

k
QP
a (φ)∂φ[QP

a (φ′)δ(φ− φ′)]− π

k
∂φ′ [QP

a (φ)δ(φ− φ′)]QP
a (φ′)

= π

k
QP
a (φ)∂φ[QP

a (φ)δ(φ− φ′)]− π

k
∂φ′ [QP

a (φ′)δ(φ− φ′)]QP
a (φ′)

= π

k
QP
a (φ)QP

a (φ)∂φδ(φ− φ′)−
π

k
∂φ′δ(φ− φ′)QP

a (φ′)QP
a (φ′)

= (H(φ) +H(φ′))∂φδ(φ− φ′)

The Dirac Brackets of the above modes among themselves are given by:

{H(φ), H(φ′)} = 0 (A.0.70)
{H(φ), P (φ′)} = (H(φ) +H(φ′))∂φδ(φ− φ′) (A.0.71)
{P (φ), P (φ′)} = (P (φ) + P (φ′))∂φδ(φ− φ′) (A.0.72)
{P (φ),GI(φ′)} = (GI(φ) + GI(φ′))∂φδ(φ− φ′) (A.0.73)
{H(φ), QA(φ′)} = 4QC(φ)∂φδ(φ− φ′) (A.0.74)

{QC(φ), QA(φ′)} = k

2π∂φδ(φ− φ
′) (A.0.75)

{P (φ), QC(φ′)} = QC(φ)∂φδ(φ− φ′) (A.0.76)
{P (φ), QA(φ′)} = QA(φ)∂φδ(φ− φ′) (A.0.77)
{G1(φ), QA(φ)} = −iG1(φ)δ(φ− φ′) (A.0.78)
{G2(φ), QA(φ)} = iG2(φ)δ(φ− φ′) (A.0.79)

(A.0.80)

The modes of Stress tensor as defined by above Sugawara construction do not commute
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with the First class constraints. In fact,

{H(φ), QP
0 (φ′)} = 0

{H(φ), QJ
0 (φ′)} = −QP

0 (φ)δ′(φ− φ′) = −
√

2 k2πδ
′(φ− φ′)

{H(φ), QG1
+ (φ′)} = {H(φ), QG2

+ (φ′)} = 0

{P (φ), QP
0 (φ′)} = QP

0 (φ)δ′(φ− φ′) =
√

2 k2πδ
′(φ− φ′)

{P (φ), QJ
0 (φ′)} = QJ

0 (φ)δ′(φ− φ′) =
√

2µk4π δ
′(φ− φ′)

{P (φ), QG1,2
+ (φ′)} = Q

G1,2
+ (φ)δ′(φ− φ′) = 0

{G1,2
α (φ), QP

0 (φ′)} = 0
{G1,2

α (φ), QJ
0 (φ′)} = QP

0 (φ)Q1,2
+ (φ)δ(φ− φ′){

G1(φ), QG2
+ (φ′)

}
=
√

2π
k
QP

0
k

π
δ′(φ− φ′) = k

π
δ′(φ− φ′)

{QA(φ), QG1
+ (φ′)} = iQG1

+ (φ)δ(φ− φ′) = 0
{QA(φ), QG2

+ (φ′)} = −iQG2
+ (φ)δ(φ− φ′) = 0

Part 6: An example of Super BMS3 current commutation

In this appendix we shall present how the shifted fermionic currents Ĝ1(φ), Ĝ2(φ′) closes to
right SuperBMS3 structure under anti-commutation. With these shifts the Dirac bracket
becomes:

{Ĝ1(φ), Ĝ2(φ′)} ={G1(φ) + ∂φQ
G1
+ (φ),G2(φ′) + ∂φ′Q

G2
+ (φ′)}

={G1(φ), π
k

(QP
2 Q

G2
+ +

√
2QP

0 Q
G2
− + 2iQCQG2

+ )}+ ∂φ{QG1
+ (φ),G2(φ′)}

+ ∂φ′{G1(φ), QG2
+ (φ′)}+ ∂φ′∂φ{QG1

+ (φ), QG2
+ (φ′)}

Now we can look at the RHS term by term. The first DB gives:

{G1(φ), π
k

(QP
2 Q

G2
+ +

√
2QP

0 Q
G2
− + 2iQCQG2

+ )(φ′)}

=π
k
QP

2 (φ′){G1(φ), QG2
+ (φ′)}+ π

k

√
2QP

0 (φ′){G1(φ), QG2
− (φ′)}+ 2iπ

k
{G1(φ), QG2

+ (φ′)}

Using the fact that we are on the constrained surface defined by (3.7.56), we see that the
first term above is 0 since QP

2 (φ) = 0 on the surface. The last two terms combine to give:

{G1(φ), π
k

(QP
2 Q

G2
+ +

√
2QP

0 Q
G2
− + 2iQCQG2

+ )(φ′)} = H(φ)δ(φ− φ′)− 2i(QC(φ) +QC(φ′))δ′(φ− φ′)

Where we also needed to use QP
2 (φ)∂φδ(φ− φ′) = −∂φQP

2 (φ)δ(φ− φ′) on the constrained
surface.

Similarly the last rest of the terms of the first DB combine to give:

∂φ{QG1
+ (φ),G2(φ′)}+ ∂φ′{G1(φ), QG2

+ (φ′)}+ ∂φ′∂φ{QG1
+ (φ), QG2

+ (φ′)} = −k
π
∂2
φδ(φ− φ′)
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Thus we finally get:

{Ĝ1(φ), Ĝ2(φ′)}DB = H(φ)δ(φ− φ′)− k

π
∂2
φδ(φ− φ′)− 2i(QC(φ) +QC(φ′))δ′(φ− φ′)

Similar computations can be performed with other shifted currents to get the final
Dirac brackets. [12]
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