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III. Abstract 

 

Altered insulin-glucose relationship is the focus of type 2 diabetes 

pathophysiology and treatment. Despite decades of research on the cause and 

mechanisms of the disorder, there are many inconsistencies and gaps in the 

knowledge. I have explored these inconsistencies in detail and highlighted the 

need to re-examine the insulin-glucose relationship. The focus of this thesis is the 

difference in the glucose-insulin relationship in the steady state (fasting) versus 

the perturbed state (post meal/post glucose load). These distinct relationships 

between glucose and insulin in the two states led to the question of distinct causal 

roles of insulin in glucose homeostasis in the two states. This distinction in 

inferring the causality between homeostatic variables (not only glucose and 

insulin, but others as well) in these two states has not been made earlier.  

 

In homeostatic systems, causality in a steady state can be qualitatively different 

from that in a perturbed state. On a broader scale there is a need to differentiate 

driver causality from navigator causality. A driver is essential for reaching a 

destination but may not have any role in deciding the destination. A navigator on 

the other hand has a role in deciding the destination and the path but may not be 

able to drive the system to the destination. The failure to differentiate between 

types of causalities is likely to have resulted into many misinterpretations in 

physiology and bio-medicine.  

 

I have used multiple approaches to address these differences in the insulin-glucose 

relationship in two states. With these approaches, I have critically re-examined the 

causal role of insulin in glucose homeostasis. The approaches used are:  

1. Systematic review of literature and meta-analysis of experiments in which 

the insulin levels or insulin action has been altered. I have compared the 

effect of this alteration on the steady and perturbed state glucose with the 

help of four separate meta-analyses. 

2. Making differential predictions from alternative homeostasis models of 

glucose homeostasis and testing them in human epidemiological data.   
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3. Differentiating between steady state and post-meal state glucose levels in 

streptozotocin-treated rats in primary experiments 

 

The results of the three approaches converge on the common inference, namely 

the role of insulin in determining steady state glucose is different than its role in 

determining the perturbed state glucose. I have then delineated the causal relations 

between fasting glucose, fasting insulin and insulin resistance using a novel 

statistical method developed in our lab. Using these results, I also make a case for 

the concept of driver and navigator causation with the example of insulin and 

glucose.  The different approaches lead to the conclusion that although insulin 

action hastens the return to a steady state after a glucose load, there is no evidence 

that insulin action determines the steady state level of glucose. Thus, insulin 

appears to be a driver but not a navigator for steady state glucose level. The 

insulin-glucose example suggests that we may have to carefully re-examine causal 

inferences from perturbation experiments and set up revised norms for 

experimental design for causal inference for any homeostatic systems, or for any 

homeostatic variables. Thus, this study could be one more piece of evidence 

which will stimulate research to look for factors and therapies other than insulin to 

control and manage type 2 diabetes.  

 

Since I am suggesting a new relationship between insulin-glucose, rather a new 

role of insulin in the glucose dynamics, I also revisited the evolutionary theories 

behind the causes of type 2 diabetes. The new understanding of insulin-glucose 

relationship has many implications to the hypotheses about evolutionary origins of 

type 2 diabetes. It makes the case for obesity centred hypotheses substantially 

weak and strengthens the behaviour and reproduction-centred hypotheses. Thus, 

this work could be the basis for developing new behaviour-oriented therapies to 

control type 2 diabetes and the related complications.  
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IV. Synopsis 

 

Type 2 diabetes mellitus (T2DM) is a leading (direct or indirect) cause of death.  

The global burden on the health systems due to T2DM has also increased 

drastically over the last decade. The focus of T2DM, and in turn the rationale of 

treatment, is the altered relationship between insulin and glucose. The role of 

insulin in glucose homeostasis has been studied in detail for a long time now. 

Despite decades on research on the cause and pathophysiology of the disorder, 

there are many inconsistencies and lacunae. I have explored these inconsistencies 

in detail and highlighted the need to re-examine the insulin-glucose relationship.  

 

While re-examining this relationship, I focussed on the differences in the 

relationship between insulin-glucose in the steady state (fasting) versus the 

perturbed state (post meal/post glucose load). These distinct relationships between 

glucose and insulin in the two states led to the question of distinct causal roles of 

insulin in glucose homeostasis in the two states. This distinction in inferring the 

causality between homeostasis variables (not only glucose and insulin, but others 

as well) in these two states has not been made earlier. I have thus tried to shine a 

light on the methods or processes of inferring causal relations in bio-medicine 

using the example of glucose and insulin.  

 

Inferring causality from experimental intervention or perturbation is perceived to 

be a more sound approach than inferring causation from cross-sectional 

correlation. I try to show here, that there could be logical fallacies even in 

interventional inference. In homeostatic systems, causality in a steady state can be 

qualitatively distinct from that in a perturbed state. On a broader scale, there is a 

need to differentiate driver causality from navigator causality. A driver is essential 

for reaching a particular destination but may not have any role in deciding the 

destination. A navigator on the other hand has a role in deciding the destination 

and the path but may not be able to drive the system to the destination. The failure 

to differentiate between these types of causalities is likely to have resulted into 

many misinterpretations and gaps in the understanding in physiology and bio-

medicine. I have tried to illustrate this by critically re-examining a specific case of 
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the causal role of insulin in glucose homeostasis using multiple approaches in a 

comprehensive manner.  

 

The first approach is a systematic review of literature and meta-analysis of 

experiments in which the insulin levels or insulin action has been altered. The 

effect of this alteration on the steady and perturbed state glucose is compared with 

the help of four separate meta-analyses. In the second approach, I make 

differential predictions from alternative homeostasis models of glucose 

homeostasis and test them in human epidemiological data. In the next approach, I 

differentiate between steady state and post-meal state glucose levels in 

streptozotocin-treated rats in primary experiments.  

 

The results of these three approaches have converged on the common inference, 

namely the role of insulin in determining steady state glucose is drastically 

different than its role in determining the perturbed state glucose. This leads to a 

fundamental question of determining causality in homeostatic variables in the 

steady state. I will then try to delineate the causal relations between fasting 

glucose, fasting insulin and insulin resistance using a novel statistical method 

developed in our lab. Here, I also make a case for the concept of driver and 

navigator causation with the example of insulin and glucose. I will also give 

examples to try and apply this concept in a broader sense.  

 

All these approaches converge on the inference that there is a significant 

difference in the insulin-glucose relationship in the steady state as compared to 

that in the perturbed state. Although insulin action hastens the return to a steady 

state after a glucose load, there is no evidence that insulin action determines the 

steady state level of glucose. Insulin, unlike the popular belief in medicine, 

appears to be a driver but not a navigator for steady state glucose level. It is quite 

likely therefore that the current line of clinical action in the field of type 2 

diabetes has limited success largely because it is based on a misinterpretation of 

insulin-glucose relationship. The insulin-glucose example suggests that we may 

have to carefully re-examine causal inferences from perturbation experiments and 

set up revised norms for experimental design for causal inference for any 

homeostatic systems, or for any homeostatic variables. Thus, this study could be 
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one more piece of evidence which will stimulate research to look for factors and 

therapies other than insulin to control and manage type 2 diabetes.  

 

Since I am suggesting a new relationship between insulin-glucose, rather a new 

role of insulin in the glucose dynamics, I also revisited the evolutionary theories 

behind the causes of type 2 diabetes. The new understanding of insulin-glucose 

relationship has many implications to the hypotheses about evolutionary origins of 

type 2 diabetes. It makes the case for obesity centred hypotheses substantially 

weak and strengthens the behaviour and reproduction-centred hypotheses. Thus, 

this work could be the basis for developing new behaviour-oriented therapies to 

control type 2 diabetes and the related complications.  
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Chapter 1: Introduction  

 

1.1 Diabetes mellitus 

The strongest motivation to study glucose physiology is its dysregulation. 

Chronically elevated levels of glucose result in diabetes mellitus (DM), popularly 

called diabetes. Globally, 425 million adults are estimated to have diabetes 

currently compared to 108 million in 1980 (IDF Atlas, 8th Edition, WHO Report 

on Diabetes 2016). Around 72.9 million Indians suffer from diabetes (IDF Atlas, 

8th Edition). Diabetes places a large financial burden on individuals due to the cost 

of medications and hospitalization arising from the complications of diabetes. 

Around 5% to 20% of the total health expenditure of majority of the countries are 

spent on diabetes and related complications (IDF Atlas, 8th Edition).  

 

1.1.1 Diagnostic criteria of diabetes  

Raised blood sugar level is the diagnostic criteria for diabetes mellitus. According 

to the current guidelines by the American Diabetes Association (ADA), diabetes 

may be diagnosed based on the levels of glycated haemoglobin (HbA1c) or 

glucose in the blood. A person is said to be diabetic if the  

1. Plasma HbA1c ≥ 6.5% OR 

2. Fasting plasma glucose is ≥ 126 mg/dL (7 mmol/L) OR 

3. The 2-hour post-prandial glucose is ≥ 200 mg/dL (11.1 mmol/L) in an oral 

glucose tolerance test (OGTT) OR 

4. Random plasma glucose ≥ 200 mg/dl (11.1 mmol/dL) in a patient showing 

classic symptoms of hypoglycaemia or hyperglycaemia  

 

The reasons for the chronic rise in sugar are believed to be either that the body 

cannot produce enough insulin (absolute insulin insufficiency) or cannot use the 

available insulin effectively (relative insulin insufficiency). 

 

1.1.2 Classification of diabetes  

Although diabetes is a group of complex and heterogenous symptoms, attempts 

have been made to classify the different types. Currently there are four main 
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categories (Canivell and Gomis, 2014).  

 

Type 1 diabetes mellitus (T1DM): Approximately 5-10% of the total cases suffer 

from this type. It is characterised by an auto-immune destruction of β-cells which 

leads to near complete insulin insufficiency (Epstein, Atkinson and Maclaren, 

1994). Patients with T1DM are completely dependent on insulin therapy for their 

survival. Although auto-immune destruction is the major cause for insulin 

insufficiency, some idiopathic forms of T1DM are also present. (Poretsky, 2010) 

 

Type 2 diabetes mellitus (T2DM): This type accounts for almost 90% of the cases 

of diabetes. Insulin resistance and β-cell dysfunction are believed to the two 

hallmarks of T2DM which result into metabolic alterations. Hyperinsulinemia in 

the earlier stages, followed by a fasting hyperglycaemia are the typical marks of 

T2DM (Poretsky, 2010)  

 

Gestational diabetes mellitus (GDM): In GDM, women with no history of 

diabetes develop a high blood sugar during pregnancy. It accounts for 7% of all 

the pregnancies and increases the risk of development of diabetes even after the 

delivery (Poretsky, 2010).  

 

Other specific types: There are other types of diabetes which account for only a 

minor proportion of all the cases. Maturity Onset Diabetes of the Young (MODY) 

is a cluster of monogenic disorders in which a genetic mutation causes 

hyperglycaemia by affecting glucose sensing or insulin secretion, but insulin 

action is not affected (DeFronzo et al., 2015).  

 

1.2 Prevalent theories about pathophysiology of T2DM 

The classical theory of T2DM which has been the mainstream thinking in this 

field was developed in the 1970s and 1980s. Considering recent evidence, many 

of the assumptions of this theory are challenged. Before examining the challenges, 

I will outline the classical line of thinking, that has been the backbone of clinical 

practice today.  

T2DM was earlier called as the non-insulin dependent form of diabetes and 

T1DM was known as the insulin dependent form of diabetes. This classification 
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or nomenclature stems from the inherent dysfunction of insulin in T2DM as 

opposed to the low levels of insulin in T1DM.  Insulin resistance and β-cell 

dysfunction are the two main causes for the relative insulin insufficiency and the 

pathophysiology of T2DM (DeFronzo, 1988; Kudva and Butler, 1997). The 

mainstream thinking that dominated the T2DM field comprises three causal steps 

namely obesity causes insulin resistance, β-cells compensate for insulin resistance 

by producing more insulin and insufficient compensation by β-cells leads to 

hyperglycaemia (Figure 1). Hyperglycaemia is believed to be the main cause of 

all the complications seen in the T2DM patients. I will discuss each of these steps 

in detail.  

 

 

Figure 1: Infographic showing the current classical theory to explain the pathophysiology of type 

2 diabetes mellitus. 

 

1.2.1 Causes of insulin resistance  

Lack or decrease of insulin action despite normal or increased production of 

insulin is termed as insulin resistance. It is a pathological state in which insulin-

dependent cells show an inappropriate response to the insulin hormone (Samuel 

and Shulman, 2016). Although insulin resistance was first defined in 1966, the 

concept became widespread after the 1988 Banting lecture given by Reaven 

(Reaven, 1995). Insulin resistance is a consistent finding in T2DM and may be 
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present for a long time before the onset of the actual disease. A variety of risk 

factors are associated with insulin resistance and a myriad of molecular 

mechanisms have been implicated to cause insulin resistance. Obesity (Fujioka et 

al., 1987), genetics (Morris et al., 2012; Scott et al., 2017), fat distribution 

(Larsson et al., 1984; Després et al., 1988), lifestyle (Hamburg et al., 2007), 

oxidative stress and inflammation (Keane et al., 2015), pain (Greisen et al., 2001; 

Zhai et al., 2016), sarcopenia (Srikanthan, Hevener and Karlamangla, 2010; 

Cleasby, Jamieson and Atherton, 2016), muscle soreness (Kirwan et al., 1992) are 

some of the factors associated with insulin resistance. All these factors are not 

independent of each other and there are positive and negative feedback 

mechanisms which link these factors with insulin resistance. Insulin resistance has 

been studied in different tissues. Muscle, liver and adipocytes are the tissues 

which have been studied the most to find out their contributions to the T2DM 

pathophysiology.  

 

Over the last few years, around 127 different sites in the human genome linked to 

propensity of obesity have been identified using GWAS studies (Alonso et al., 

2016; Castillo, Orlando and Garver, 2017). However the genes identified using 

the GWAS studies can explain only 10-15% of the variance in insulin resistance 

and the clinical applications of these findings are still limited (Alonso et al., 2016, 

Vidwans and Watve 2017, Watve, 2013. A more recent line of work is to study 

the interaction between the genetics and the environmental factors to study the 

propensity and progression of obesity, type 2 diabetes and other metabolic 

disorders. The most frequently studied environmental factors include diet and 

nutrition and lifestyle parameters like exercise and sleep. Epigenetic factors are 

now being explored as the link or the mechanism through which the genetic and 

environmental factors could interact to regulate the risk or propensity of metabolic 

disorders (Pillon et al., 2021). It is however quite difficult to study the causal 

nature of any of this factor due to confounding effect of the other factors in the 

system and there are various ways in which efforts have been made to try and 

delineate the causal effects of such factors (Pillon et al., 2021).  
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1.2.2 Compensatory hyperinsulinemia 

According to the classical line of thinking, in the initial stages of insulin 

resistance, the β-cells start secreting insulin in a higher amount to compensate for 

the insulin resistance. Hence increased level of insulin in the plasma is also 

considered to be an indication of insulin resistance. This is known as 

compensatory hyperinsulinemia (DeFronzo et al., 2015). The increased insulin 

secretion by the β-cells is believed to be due to an increased β-cell mass (Pick et 

al., 1998). Another postulated reason for high levels of insulin is a change in the 

sensitivity of the β-cells to glucose, due to which glucose-stimulated insulin 

secretion increases. This is attributed to a change in the dynamics of the enzyme 

hexokinase (Cockburn et al., 1997). As insulin resistance progresses, there is 

progressive degeneration of the β-cell mass as well as function due to exhaustion 

because of the compensatory response (DeFronzo et al., 2015). Along with this 

‘exhaustion’, the increased levels of glucose also cause decrease in the β-cell mass 

and/or function. Glucotoxicity and lipotoxicity are the two terms which describe 

this effect of glucose and lipids on the β-cell dysfunction as diabetes sets in 

(Poitout and Robertson, 2002). 

 

1.2.3 Causes of β-cell dysfunction 

Both β-cell dysfunction and insulin resistance are implicated as the major causes 

of type 2 diabetes mellitus. They are not independent of each other. The amount 

of insulin produced by the β-cells is a result of a variety of factors like β-cell 

mass, integrity of the β-cell structure and control of insulin secretion by nutrient 

and hormonal signals. A variety of causes have been attributed to β-cell 

dysfunction which manifests as reduced β-cell mass, reduced glucose stimulated 

insulin response and integrity of β-cell structure (Cerf 2013).  

 

β-cell mass: The β-cell mass that is increased in the prediabetic state, decreases 

with advancement of T2DM. The factors implicated in β-cell death are 

inflammatory cytokines (Lin et al., 2012; Cerf, 2013) oxidative stress (Simmons, 

2007; Fu, Gilbert and Liu, 2014) endoplasmic reticulum (ER) stress (Kaneto et 

al., 2001; Hotamisligil, 2010), autophagy (Lee, Giordano and Zhang, 2012), 

amyloid formation (Zraika et al., 2009) and gluco-lipotoxicity (Evans et al., 2003; 

Cnop et al., 2005; Lenzen, 2008). All these factors are interlinked and enhance or 
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inhibit each other’s actions making it difficult to segregate the exact role of each 

individual factor on the β-cell mass.  

 

β-cell secretion: Despite the β-cell mass being optimal, the insulin levels can be 

reduced. There are many factors which influence the glucose-stimulated secretion 

of insulin from the islets which may or may not depend on obesity. Some of them 

are incretins (Vilsbøll and Holst, 2004), uncoupling protein-2 (Chan et al., 2004), 

ER stress (Hasnain, Prins and McGuckin, 2016), inflammation (Fizelova et al., 

2017), autonomic nervous system (Campfield and Smith, 1980).  

 

1.2.4  Fasting and post-prandial hyperglycaemia 

The diagnostic criteria of T2DM are based on the blood glucose levels at two 

different timepoints during the day:  

1. Fasting (no caloric intake for at least 8 hours): If the fasting glucose levels 

are above 126mg/dl, the person is said to be diabetic.  

2. Post-prandial (after 2 hours following ingestion of 75g glucose load): If 

the post-prandial glucose levels are above 200mg/dl, the person is said to be 

diabetic (IDF Atlas, 8th Edition). 

 

If either of these two readings are above the prescribed level, the person is said to 

be diabetic and some form of treatment regimen for control of hyperglycaemia is 

recommended. A more detailed description of the glucose dynamics is captured 

by the Oral Glucose Tolerance Test (OGTT). An OGTT records the disposal of 

glucose after ingestion of a 75g bolus of glucose. After a fast of 8 hours, blood is 

withdrawn for insulin and glucose measurement. The subject is then given a 

glucose bolus of 75g after which blood is drawn at intervals of about 15 to 30 

minutes up to 2 hours. Both insulin and glucose levels are measured at these time 

points. The nature of the curve of insulin and glucose values against time 

represents the different patterns of glucose homeostasis and alterations in these 

curves are valuable tools to understand the glucose dysregulation which occurs 

during diabetes (Holt et al., 2010; Watve, 2013).  In T2DM, fasting, post-prandial 

or both glucose levels could be higher than normal and there are specific 

physiological processes associated with these two glucose levels. Additionally, a 

third parameter is used to monitor the blood glucose level: glycated haemoglobin 
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(abbreviated as HbA1c). HbA1c is used to as a measure of the previous two to 

three-month average blood sugar level and essentially incorporates both fasting 

and post-meal glucose levels. HbA1c along with fasting and post-prandial glucose 

levels is used to set glycaemic targets during treatments (WHO Report on 

diabetes, 2016) 

 

1.2.5 Complications due to hyperglycaemia 

The complications due to hyperglycaemia are multiple and have been classified 

into two main types: microvascular and macrovascular. The main microvascular 

complications include retinopathy, pathology in the renal glomerulus and 

peripheral neuropathies (Holt et al., 2010; DeFronzo et al., 2015). Macrovascular 

complications mainly comprise of the cardiovascular complications and diabetic 

foot (Holt et al., 2010; Watve, 2013; DeFronzo et al., 2015).  Prolonged exposure 

to high glucose levels is believed to be the main cause of all microvascular 

complications UKPDS 33, 1998; UKPDS 38, 2008). Although all the cells in the 

body of a diabetic are exposed to high levels of glucose, only some kinds of cells 

show the effects of hyperglycaemia. This can be attributed to the differences in 

the tissue specific glucose transporters and their differences in their modulation in 

response to the extracellular glucose concentrations (Giardino, Edelstein and 

Brownlee, 1996; Holt et al., 2010).  

 

1.2.6 Treatment regimens in practice 

Different strategies have been used to treat or control diabetes. Majority of these 

strategies aim at controlling the blood glucose levels in the hope that the 

complications which arise due to hyperglycaemia will be kept in check. These 

treatment regimens/strategies are based on the prevalent theories about the 

pathophysiology of diabetes. These treatment regimens can be classified into four 

broad categories.  

a. Exercise and diet  

b. Oral anti-hyperglycaemic agents  

c. Insulin treatment and  

d. Surgical options 

 

I will highlight each of this category in detail below.  
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a. Exercise and diet  

The first line of treatment for hyperglycaemia is exercise and/or modification in 

the diet (Kirwan, Sacks and Niewoudt, 2017). Low calorie diets which result in 

weight loss have been effective in treating T2DM and can result in remission in 

some cases as well (Lean et al., 2018; Lean, 2019). Exercise improves insulin 

sensitivity, and this effect could be independent of the weight. It has been shown 

that insulin function improves without any loss in weight (Kirwan, Sacks and 

Niewoudt, 2017; Zanuso et al., 2017). However, both diet and exercise have 

issues with long term compliance and are generally combined with some anti-

hyperglycaemic agents in the long run.  

 

b. Oral anti-hyperglycaemic agents  

Exercise and diet aim to improve the functioning of insulin and thus reduce the 

blood sugar levels. Anti-hyperglycaemic agents have a similar aim, though the 

way in which this is achieved could be different. Anti-hyperglycaemic agents 

could act in one of the following ways:  

 

i. Increase insulin production  

ii. Increase insulin sensitivity of tissues  

iii. Decrease endogenous glucose production  

iv. Reduce/delay glucose uptake from the intestine  

v. Increase the excretion of glucose from the kidneys   

 

Based on these modes of actions, different molecules currently in use as oral 

antihyperglycemic agents are given in table 1.  

 

Table 1: Brief Summary of the oral antihyperglycemic agents currently in use. Adapted from 

Cheng & Fantus, 2005; Inzucchi, 2002. 

Name of the 

chemical/pharmaceutical 

family  

Brief mode of action  Efficacy in terms 

of reduction of 

HbA1c % 

Sulfonylureas Increase insulin secretion 1.0-1.5 

Non-sulfonylureas Increase insulin secretion  0.5-1.5 

Thiozolidinediones 

 

Increase insulin sensitivity 

and reduce release of FFAs 

1.0-1.5 
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Biguanides  

 

Decrease hepatic glucose 

production and enhance 

glucose uptake by muscles  

1.0-1.5 

α-Glucosidase Inhibitors  

 

Delay intestinal carbohydrate 

absorption  

0.5-1.0 

Intestinal Lipase 

Inhibitors  

Decrease energy intake  0.3-0.9 

 

A recent addition to the set of oral-antihyperglycemic agents is that of SGLT2 

inhibitors. These molecules inhibit the sodium glucose cotransporter 2 in the 

kidney to reduce the reabsorption of glucose by the kidneys (Inzucchi et al., 

2015). Although a multitude of options of pharmaceuticals are present most of 

them have inherent side effects and in their efficacy reduces in the long-term 

(Inzucchi, 2002; Cheng and Fantus, 2005; DeFronzo, Eldor and Bdul-Ghani, 

2013).  

 

c. Insulin treatment  

It is estimated that 50% people suffering from T2DM require insulin injections at 

some timepoint in their life (Mayfield and White, 2004). Doctors recommend 

insulin therapy when the glucose lowering regimens stop working and the HbA1c 

levels are persistently above 7.5%. Insulin is generally administered by 

subcutaneous injections, but insulin pumps are also available which modulate the 

doses based on the food intake. An insulin regimen can also be given in 

combination with an oral-antihyperglycemic agent. The dose and frequency of 

insulin is adjusted by the clinician based on the fasting, post-prandial and HbA1c 

levels of the patients and the intended glycaemic targets of the therapy (DeFronzo 

et al., 2015). However, there are some side effects of insulin treatment. Main side 

effects are: 

1. Severe hypoglycaemia: The two trials Action to Control Cardiovascular Risk in 

Diabetes (ACCORD) and Veterans Affair Diabetes Trial (VADT) report that the 

incidence of severe hypoglycaemia increased after intensive glycaemic control 

using insulin (Duckworth et al., 2009; Skyler et al., 2009; Bonds et al., 2010). 

UKPDS also shows 160% increase in hypoglycaemic events in the insulin 

treatment group (UKPDS 33, 1998; UKPDS 38, 2008)  
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2. Increased mitogenic activity: Although we focus on the glucose lowering action 

of insulin, it has a variety of other roles in normal physiology. One of its 

important functions is that of mitogenesis. Hence treatment with exogenous 

insulin might increase risk for certain types of cancers (Lebovitz, 2011).  

 

d. Surgery for treatment of T2DM 

One of the recent additions in the treatment regimen of T2DM is metabolic 

surgery. Metabolic surgery-based treatment is broadly defined as gastrointestinal 

modifications with an intent to reduce obesity and diabetes. Multiple randomised 

clinical trials have shown success in use of metabolic surgeries in the treatment of 

T2DM (Gloy et al., 2013; Cummings and Rubino, 2018). Gloy et al 2013 report 

that bariatric surgery led to an increased weight loss and greater remission rates of 

T2D and a general improvement in the quality of life as compared to non-surgical 

treatment options in case of obese patients (Gloy et al., 2013). However, it has 

also been shown that the positive effects of metabolic surgery in reducing glucose 

levels could be independent of the actual weight loss (Thaler and Cummings, 

2009).  

 

1.3 Problems with the current thinking about T2DM 

The mainstream thinking that has dominated the field comprises of three causal 

steps namely obesity causes insulin resistance, β-cells compensate for insulin 

resistance by producing more insulin and insufficient compensation by β-cells 

leads to hyperglycaemia. However, one also finds several discordant notes in 

literature. I will now focus on the inconsistencies or the points which remain 

unexplained by the classical thinking about the pathophysiology of T2DM (Figure 

2).  
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Figure 2: Infographic showing the inconsistencies and unanswered questions in the current picture 

explaining the pathophysiology of type 2 diabetes mellitus  
 

1.3.1 Causes of insulin resistance  

Obesity has been implicated as one of the main reasons for insulin resistance 

according to the mainstream thinking about T2DM (Fujioka et al., 1987; Reaven, 

1995; Samuel and Shulman, 2016). However, recent trend in diabetes research is 

questioning the arrow of causation between obesity and insulin resistance. If the 

statistics are seen which describe the association between obesity and insulin 

resistance, a weak correlation is seen between insulin resistance and obesity. 

Vidwans and Watve review the association between HOMA-IR and measures of 

obesity. They report that the mode of the R2 values of the correlation beten 

HOMA-IR and obesity measures (BMI/WHR/leptin concentration) is between 0 

and 0.1, and median around 0.15 which indicates that in majority of the studies 

obesity can explain only 10 to 15 % of variance in insulin resistance (Vidwans 

and Watve, 2017). Increasing numbers of non-obese, insulin resistant diabetics 

also point to other reasons for insulin resistance apart from obesity (Ruderman et 

al., 1998; Conus et al., 2004; Succurro et al., 2008). This is true especially in 

India (Zheng et al., 2011; George, Jacob and Fogelfeld, 2017). Secondly, not all 

obese people are diabetic (Succurro et al., 2008; Virtue and Vidal-Puig, 2008). As 

I have already mentioned above, there are many causes for insulin resistance apart 

from obesity (Després et al., 1988; Hamburg et al., 2007; Keane et al., 2015; 
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Cleasby, Jamieson and Atherton, 2016) which have not been studied in as much 

details in the pathophysiology of T2DM. Free fatty acids and circulating lipids are 

implicated in the mechanism of the cause of insulin resistance due to obesity. But 

the classical hypotheses such as Randle hypothesis have failed to get experimental 

support (An et al., 2004; Cozzone et al., 2006; Monetti et al., 2007; Hue and 

Taegtmeyer, 2009). Thus, a look at other possible mechanisms for insulin 

resistance apart from obesity in greater details is needed 

 

1.3.2 Hyperinsulinemia: Compensatory or primary?  

The next important point in the classical theory of T2DM pathophysiology is that 

of compensatory hyperinsulinemia. β-cells are said to produce more insulin after 

insulin resistance sets in to try and keep the insulin functioning normal (Monnier, 

Lapinski and Colette, 2003; DeFronzo et al., 2015). Certainly, there is an 

association between increased levels of insulin and insulin resistance, but the 

direction of causality is not that clear as there are only a few studies which look at 

the time course. In the studies which do look at the time course, it is seen that the 

first detectable change is a slight hypoglycaemia indicating that hyperinsulinemia 

sets in first (Neel, 1962; Dubuc, 1976, 1981; Le Stunff and Bougneres, 1994; 

Franckhauser et al., 2002). The question of the order of occurrence of insulin 

resistance and hyperinsulinemia has been critically addressed before in a few 

studies (Shanik et al., 2008). There are different aspects of this question which I 

will elaborate below pointwise.  

 

1.3.2.1 Insulinomas 

There are natural scenarios where insulin overproduction takes place or in some 

cases, such conditions have been induced experimentally. Insulin is produced 

excessively in case of pancreatic tumours. In such cases the overproduction of 

insulin is normally accompanied by insulin resistance and upon removal of the 

tumour, the insulin sensitivity increases again (Nankervis et al., 1985; Pontiroli, 

Alberetto and Pozza, 1992; Sawicki et al., 1992; Del Prato et al., 1993; Leonetti et 

al., 1993; Liu et al., 2000). Thus, in case of insulin producing tumours, it is seen 

that hyperinsulinemia is primary whereas insulin resistance seems to respond to 

and compensate for the altered insulin levels.  
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1.3.2.2 Insulin receptor knock-outs (IRKOs) 

Let us now have a look at the reverse scenario where insulin resistance is the 

primary event. This has been done experimentally by knocking out the insulin 

receptors in specific tissues. In the Muscle insulin receptor knock-out (MIRKO) 

mice, the insulin receptor in the muscle tissue is knocked out making it insulin 

resistant. Even when the muscle tissue is insulin resistant, the insulin levels in 

these mice remain normal (Kim et al., 2000). A whole-body insulin receptor 

knock-out does become hyperinsulinemic (Terauchi and Kadowaki, 2002). Liver 

insulin receptor knock-out (LIRKO) mice do show hyperinsulinemia, but they 

also show hyperglycaemia. Thus, the increased insulin levels could be a result of 

the increased glucose levels (Kadowaki, 2000). Thus, it is difficult to conclusively 

say that insulin resistance results in compensatory hyperinsulinemia unless it is 

accompanied by an increased level of glucose in the blood. Thus, the 

normoglycemic hyperinsulinemic insulin resistant state cannot be explained solely 

using the compensatory hyperinsulinemia theory (Watve, 2013).  

 

1.3.2.3 Hyperinsulinemia and insulin resistance: the mechanisms  

To resolve the question, what comes first hyperinsulinemia or insulin resistance, a 

closer look is needed, at the mechanisms given in the literature for either direction 

of the arrow. First, I will focus on the mechanism by which insulin resistance 

leads to increased insulin levels which is a postulate of the classical theory of 

T2DM pathophysiology. The pancreas or the β-cells need to “know/measure” the 

insulin resistance to give a compensatory response to the insulin resistance. 

According to the current model, the increased insulin resistance results in 

hyperglycaemia which results in an increased secretion of insulin by the β-cells. 

Thus, the mechanism of insulin resistance to hyperinsulinemia is via blood 

glucose. There is no other suggested mechanism by which this takes place. 

However, this mechanism does not explain the hypoglycaemia which is seen in 

the early phases of T2DM. In the early stages, hyperinsulinemia and 

hypoglycaemia are present at the same time. Thus, the insulin levels in this stage 

are not a result of the increased blood glucose levels. But there is no other 

mechanism suggested for this increased insulin (Holt et al., 2010; Watve, 2013; 

DeFronzo et al., 2015).  
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On the other hand, there are several mechanisms and evidence which explain how 

increased insulin could lead to a decrease in insulin sensitivity.  

1. Insulin itself can change the responsiveness of its target tissue or cell and can 

downregulate its receptors (Shanik et al., 2008; Watve, 2013) 

2. Transgenic hyperinsulinemia: Mice were transfected stably with extra copies 

of the insulin gene to achieve basal insulin levels which were two or four-fold 

higher than normal. Despite having these high insulin levels, the mice had 

normal weight and normal fasting glucose but higher post-feeding glucose 

levels. Thus, insulin resistance was a result of increased insulin levels and this 

was mediated by lower binding of the insulin receptor as well as 

hypertriglyceridemia (Marbán and Roth, 1996; Shanik et al., 2008).  

3. The mTOR/S6K1 pathway acts as a built-in negative feedback loop to 

regulate insulin action. Insulin signalling pathway activates mTOR which in 

turn activates S6K1 signalling downstream. This results in reduced binding of 

the insulin receptor (Zick, 2005). Thus, there is an automatic reduction in the 

insulin response in case of increased insulin signalling (Watve, 2013). 

4. Amylin is synthesized, packaged, and secreted simultaneously with insulin in 

the β-cells. If insulin secretion increases, amylin levels also increase. It has 

been demonstrated by several different researchers that amylin induces 

insulin resistance (Molina et al., 1990; Sowa et al., 1990; Frontoni et al., 

1991; Tabata et al., 1992; Ye et al., 2001; Dominici et al., 2014). 

5. Another mechanism by which insulin induces insulin resistance is via the 

protein Klotho (Chen et al., 2007). Insulin secretion stimulates the release of 

the soluble protein Klotho and it is known that Klotho induces insulin 

resistance (Kurosu, 2005; Bartke, 2006).  

6. Increased levels of insulin induce the secretion of serotonin in the brain and a 

long-term increase in serotonin signalling is known to bring on insulin 

resistance (Fernstrom and Wurtman, 1971; Luo, Luo and Cincotta, 1999). 

7. Insulin is known to induce lipogenesis (Hua et al., 2016; Titchenell et al., 

2016) and increased levels of free fatty acids (FFAs) and triglycerides are 

known to induce insulin resistance (Boden, 1997; Shi et al., 2006).  

 

Multiple demonstrated mechanisms explain the causal direction from 

hyperinsulinemia to insulin resistance. However, there is no clear demonstrated 
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mechanism which explains how insulin resistance leads to compensatory 

hyperinsulinemia in the absence of hyperglycaemia. And if hyperinsulinemia 

precedes insulin resistance, what exactly is the cause of β-cell dysfunction? 

According to the classical thinking, the “compensation” response of β-cells is the 

main cause implicated in the dysfunction of the β-cells.  

 

1.3.3 β-cell exhaustion and insulin insufficiency leading to hyperglycaemia 

According to the classical thinking about the T2DM pathophysiology, the 

“exhaustion” of β-cells due to overproduction of insulin during compensatory 

hyperinsulinemia causes β-cell dysfunction (Weir and Bonner-Weir, 2004; Holt et 

al., 2010; DeFronzo et al., 2015). In T2DM, reduction of β-cell mass is evident 

especially in the later stages. A 20-50% loss in the β-cell mass in diabetic subjects 

as compared to control subjects is demonstrated (Clark et al., 1990; Porte and 

Kahn, 2001; Butler et al., 2003). These numbers are reported using post-mortem 

studies of both diabetic and control subjects. Thus, a substantial portion of the β-

cell mass survives even after years of diabetes. The points which show some 

inconsistencies and require a critical look are  

i. Is exhaustion the main reason for this reduction in β-cell mass? 

ii. How much reduction in insulin does this reduced β-cell mass cause?  

iii. Are insulin resistance and β-cell dysfunction necessary and sufficient for 

hyperglycaemia? 

 

i.There is no evidence that individual β-cells secrete more than normal amounts of 

insulin in a hyperinsulinemic state. Increased insulin secretion in a prediabetic 

state is achieved by increased β-cell number rather than increased secretion by 

individual cells (Hardikar et al., 2015). If cells are not overworking, there is no 

reason to get exhausted.  Chronic overuse of any organ in any body leading to its 

degradation or dysfunction independent of ageing is not that common. 

Exhaustion/overuse as a reason for degradation has been applied predominantly to 

pancreas and no other organ in the body (Watve, 2013). It has been sufficiently 

demonstrated that only hyperinsulinemia, independent of hyperglycaemia is not 

sufficient to cause a reduction in the β-cell mass (Kadowaki, 2000; Watve, 2013). 

Apart from overuse, there are many other reasons which lead to reduction in β-cell 

mass. They are ER stress (Kaneto et al., 2001; Hotamisligil, 2010), oxidative 
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stress (Simmons, 2007; Fu, Gilbert and Liu, 2014), gluco-lipotoxicity (Evans et 

al., 2003; Cnop et al., 2005; Lenzen, 2008) and amyloid toxicity. The relative 

importance of these mechanisms is not known. At present there is no clarity on 

what causes the loss in number or function of β-cells. 

 

ii. The second question which needs to be addressed, is how much the destruction of 

β-cells in diabetes is and how much is the insulin production reduced. The 

capacity of pancreas far exceeds than what is needed for normal functioning. 

Some experiments have demonstrated that as far as 85% of pancreas mass needs 

to be reduced to see hyperglycaemia (Clark et al., 2001). It has also been shown 

that β-cells have some capacity for regeneration (Bernard et al., 1998). Post-

mortem studies on human diabetic subjects have shown that even in overt 

diabetics the β-cell destruction is not complete and about 20-50% of the β-cell 

mass remains even after decades of diabetes (Clark et al., 2001; Deng et al., 

2004). Thus, reduction in β-cell number is not sufficient to explain the relative 

insulin insufficiency. Alternative reasoning is required to explain reduced 

“compensation”. 

 

iii. It needs to be examined critically whether a combination of insulin resistance and 

β-cell dysfunction is necessary and sufficient to cause fasting and post-prandial 

hyperglycaemia. This can be tested in normoglycemic hyperinsulinemic insulin 

resistant systems. If the insulin production in such a system is suppressed, then 

according to the classical thinking, sugar levels should increase. And in turn it can 

be said that insulin resistance and β-cell dysfunction/insulin insufficiency are 

enough to explain hyperglycaemia. Such experiments have been performed. It has 

been demonstrated in obese Zucker rats that suppression of insulin using 

diazoxide actually results in reduction of the fasting glucose levels due to an 

increase in insulin sensitivity (Schreuder et al., 2005; Alemzadeh et al., 2008). 

Insulin suppression by protein deprivation resulted in decreased levels of insulin, 

but this was accompanied by reduced glucose as well, indicating that reduced 

insulin leads to increased insulin sensitivity (Schteingart et al., 1979). Another set 

of experiments cast a doubt on the sufficiency of insulin resistance and β-cell 

dysfunction to cause hyperglycaemia. These are the experiments about insulin 

receptor knock-outs (IRKOs). In most of these experiments, whenever the tissue 
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specific insulin receptors have been knocked out, the surprising result is that the 

sugar levels remain normal (Kadowaki, 2000; Michael et al., 2000).  

 

1.3.4 Ineffectiveness of the treatment strategies  

In the earlier sections, I have shown that there are some inconsistencies in the 

classical thinking about T2DM which need to be addressed. Additionally, I would 

now like to focus on the treatment regimens in practice based on the classical 

insulin centric thinking. Looking at the treatment effectiveness is important 

because the clinicians’ main aim is that of treatment of the disease despite any 

inconsistencies in the basic science behind it. The effectiveness of treatment of 

any disease or disorder can be best judged by having a look at the randomised 

clinical trials performed for that disease. Most of the clinical trials aim at 

controlling the glucose levels with the aim of preventing or delaying the 

complications caused due to increased sugar levels. They compare different 

methods of achieving this glycaemic control, based on different aspects of the 

physiology of glucose and insulin signalling. With increasing attempts to control 

the glucose levels, the glycaemic control actually becomes worse (Holman et al., 

2008) and only normalizing blood glucose is not enough to prevent the 

complications of diabetes (UKPDS 33, 1998). In the UKPDS trial it was seen that 

in the long term, any method of glucose control could achieve the glycaemic goal 

of HbA1c less than 7% only in about 25% of the subjects. This goal could be 

achieved by 42% subjects on insulin, 24% on sulphonylurea, 13% on metformin 

and 8% on dietary therapy. Thus, even if the insulin therapy shows the better 

results amongst the four different kinds of treatment, the success rate is less than 

50% in the long run (UKPDS 33, 1998). In the UKPDS trial, intensive control of 

glucose using insulin therapy showed positive effects on diabetes related events, 

but the diabetes related mortality or all-cause mortality did not improve as 

compared to the other groups (Nathan, 1998).  

 

A few other trials such as ACCORD (Skyler et al., 2009; Bonds et al., 2010) or 

NICE (The NICE-SUGAR Study Investigators, 2009) reported higher mortality in 

the tight glucose control group than the relaxed control group. Summing across 

trials currently there is no evidence that the insulin-glucose cantered treatment has 

a consistent beneficial effect in arresting diabetic complications. Thus, there is a 
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need to revisit the classical theory to come up with better or more effective 

treatment strategies.  

 

1.3.5 Need to look beyond insulin? 

To come up with alternative and better treatment regimens, we need to look beyond 

insulin. This trend has been on the rise in the past few years in both the research 

and the clinical community with many new drug targets and regimens in practice 

like the SGLT-2 receptors (Inzucchi et al., 2015) and metabolic surgeries (Gloy et 

al., 2013) as treatment options. Apart from this, there are several other molecules 

or pathways which affect glucose homeostasis some of which are dependent on 

insulin while some are independent. Whether and to what extent these 

molecules/pathways contribute to T2DM is not clearly known. At a very early stage 

of diabetes research, Claude Bernard demonstrated that damage to medulla 

oblongata caused severe hyperglycaemia and therefore thought that brain was the 

main centre for regulation of blood glucose (Bernard, 1879; Schwartz, 2005). After 

the discovery of insulin, the focus shifted to peripheral mechanisms and the role of 

brain was largely forgotten. Today the interest in the role of CNS in glucose 

regulation is revived considerably but it is not clear to what extent the CNS 

contributes to hyperglycaemia in T2DM. It is known that sympathetic stimulation 

increases liver glucose production whereas parasympathetic stimulation increases 

β-cell proliferation and insulin secretion (Nonogaki, 2000). There is evidence for a 

number of other molecules and metabolites being involved in the regulation of 

glucose which are dependent or independent of insulin like brain-derived 

neurotrophic factor (BDNF), which controls the hepatic glucose production 

independent of insulin (Meek et al., 2013). Kulkarni et al 2017 describe a network 

model of T2DM in which they give a comprehensive list of all inter organ signals 

which contribute to the pathophysiology of T2DM (Kulkarni, Sharda and Watve, 

2017). Their model identified close to 70 different molecules and behaviours which 

were altered during T2DM and could potentially serve as therapy targets (Kulkarni, 

Sharda and Watve, 2017). Thus, there is a growing need to look beyond insulin as 

a therapy in type 2 diabetes mellitus.  

 

1.4 Why is T2DM irreversible? 

There are three possible reasons why any disease or disease state is irreversible:  



32 
 

(a) Is there any pathophysiological mechanism that is irreversible? If insulin 

resistance and β-cell loss are central to T2DM, both are demonstrably 

reversible processes. Therefore, the classical theory does not explain why 

T2DM is not reversible.  

(b) We do not have the technology to reverse the pathophysiological change: 

All types of treatment to increase insulin sensitivity, increase insulin 

secretion, exogenous insulin with more and more sophisticated devices have 

been used in the treatment. But these treatments may at the most keep 

hyperglycaemia in check for some time. Even this aim is not achieved 

consistently in the long run (UKPDS 33, 1998). So, although technology 

doesn’t seem to have left any stone unturned, a cure for T2DM is still far 

from sight. The only claims for T2DM reversal are based on extreme diet 

and lifestyle interventions (Lean et al., 2018) whose mechanism of action 

has not been elucidated. T2DM reversal has not been achieved by insulin 

sensitizing drugs and/or insulin supplementation.  

(c) The third possibility is that our current interpretation/theorization of the 

pathophysiology of T2DM is wrong or inadequate. We have failed to 

identify certain mechanisms central to the pathophysiology, or the classical 

hypothesis is wrong. Given the inadequacy of (a) and (b), we should be 

open to this possibility. My aim in this thesis is to examine this possibility 

using multiple approaches.  

 

1.5 Evolutionary medicine  

The rationale of this thesis is to re-examine the insulin-glucose relationship with 

an aim to come up new basis for clinical implications. Another important aspect 

of disease research is to look at the cause of the disease from an evolutionary 

perspective. Research related to pathophysiology of any disease is based on the 

“how” question regarding the anatomy and physiology of the human body. 

Evolution addresses the “why” question. A combined understanding of how and 

why of a disease is likely to increase the precision and effectiveness of its 

treatment. Evolutionary medicine (EM) tries to explain vulnerability to a disease 

along with differences in vulnerabilities in the population. 

EM has received serious criticism on many points. The point stated most 

frequently and probably the most important is that EM fails to provide insights 
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relevant in clinical practice (Cournoyea, 2010). The adaptationist view of EM is 

also criticised often. The evidence required to support adaptive argument is almost 

always circumstantial/ inferential and hence the argument must be considered 

hypothetical (Gluckman, Hanson and Spencer, 2005). Many EM theories are 

based on the mismatch between ancestral and the present-day environment. 

Claims about ancestral conditions are speculative and there are limitations in 

making inferences about them. Without the use of rigor for hypothesis building 

and efforts in making and testing differential predictions, evolutionary medicine 

remains at the line between science and philosophy (Cournoyea, 2010). Thus, a 

rigorous theoretical and empirically testable approach needs to be employed while 

looking at diseases from the evolutionary point of view. With this need in mind, 

set of criteria was developed to be expected from an evolutionary theory for any 

human disease and outlined an approach to evaluate alternative evolutionary 

hypotheses using this set (Watve and Diwekar-Joshi, 2016). After re-examining 

the insulin-glucose relationship, I will return to EM and examine the implications 

of the new understanding about insulin-glucose relationship.  

 

1.6 Aims of the thesis 

Insulin and absolute or relative insufficiency is believed to be the central cause of 

hyperglycaemia in T2DM. A plethora of molecules other than insulin are known 

to influence the glucose homeostasis (Kulkarni, Sharda and Watve, 2017). Insulin 

treatment to regulate the glucose levels tightly is seen to effective on a short-term 

basis. This treatment however fails in the long run (Holman et al., 2008). There 

are also many points unexplained by the classical insulin centric theory. Hence, I 

aim to critically re-examine the role of insulin in glucose homeostasis using 

multiple approaches which are complementary to each other.  

(i) systematic review and meta-analysis of tissue specific insulin receptor 

knock-out experiments,  

(ii) systematic review and meta-analysis of insulin suppression and insulin 

enhancement experiments,  

(iii) epidemiological data,  

(iv) differentiating steady state and post-meal state glucose levels in 

streptozotocin treated rats in primary experiments, and  

(v) inferring causality from steady state correlations 
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After revisiting the insulin-glucose relationship or re-examining the role of insulin 

in the glucose homeostasis, I would like to explore this from the evolutionary 

point of view as well.  

 

1.7 Arrangement of the thesis   

With the aims of the thesis mentioned above, and the approaches outlined in the 

earlier section, this is the arrangement of the thesis in brief:  

 

Chapter 1: Introduction 

Introduction to the classical theory to explain the pathophysiology of type 2 

diabetes mellitus, and the discrepancies in the classical theory leading to the need 

of critical re-examination of the insulin-glucose relationship. 

Chapter 2: Does impairment of insulin signalling affect steady state glucose? A 

meta-analyses approach 

Using meta-analyses from experiments from published literature, I will 

demonstrate in this chapter that increasing or decreasing insulin or insulin action 

in vivo does not alter the steady state glucose, but it alters the perturbed state.   

 

Chapter 3: Theoretical, mathematical, and statistical considerations  

In this chapter, I will explore possible explanations for the consistent results of the 

meta-analyses, namely the failure of experimental insulin signal impairment to 

alter steady state glucose level. I will also make differential predictions from 

alternative homeostasis models that and test them in human epidemiological data.  

 

Chapter 4: Does impairment of insulin signalling affect steady state glucose? 

The streptozotocin (STZ) model  

In this chapter, I will summarise the primary experiments performed on Sprague 

Dawley rats. Suppression of insulin using Streptozotocin alters the steady state 

glucose, but not the perturbed state glucose. This concurs with the result of the 

meta-analyses and the statistical analyses of the epidemiological data.  

 

Chapter 5: Fasting glucose and fasting insulin and insulin resistance: inferring 

causal relations 
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In the earlier chapters, I have established that the relationship between insulin and 

glucose is different in the steady state versus the perturbed state. Impairment of 

the insulin function/signalling does lead to a change in the glucose levels in the 

fasting state, but only in the post-meal or perturbed state. But this change is 

significant only in the perturbed/post-meal state. This leads to a broader question 

of finding out the causality in the steady state versus the perturbed state. Using a 

novel statistical and theoretical method developed in our lab, I will delineate the 

relationship between fasting glucose, fasting insulin and insulin resistance.  

I will then highlight the role of insulin as a driver, but not a navigator in glucose 

regulation. The main clinical implication of this is that we need to focus on other 

potential navigators of glucose which could prove to be alternate or 

supplementary therapy targets to insulin. I also expand on this driver-navigator 

causation concept on a broader sense in homeostasis. 

Chapter 6: Implications for evolutionary medicine  

In the earlier chapters, I re-examined the insulin-glucose relationship with a view 

of distinguishing between the relationship in the steady state versus the perturbed 

state. After having gained certain insights into it, I will then examine the 

implications of this new understanding about insulin-glucose relationship from an 

evolutionary point of view.  

 

Chapter 7: Conclusions and outlook  

I will summarise the conclusions of each chapter and discuss the implications of 

these conclusions on current understanding of type 2 diabetes. I will also give a 

brief outlook about how can these lines of work be taken further.  
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Chapter 2: Does impairment of insulin signalling affect 

steady state glucose? A meta-analyses approach  

 

2.1 Introduction 

2.1.1: A brief history of insulin: Why is insulin considered to be the central and 

practically the only mechanism of glucose regulation? 

Claud Bernard demonstrated that damage to medulla oblongata results in 

hyperglycaemia (Bernard, 1879). This was one of the first and major 

breakthroughs in understanding the regulation of glucose. The second major 

advancement was the demonstration by von Mering and Minkowski that removal 

of the pancreas resulted in hyperglycaemia (Mering and Minkowski, 1890) and 

further that pancreatic extracts resulted in lowering of plasma glucose. The active 

chemical from pancreas was eventually purified and called as insulin (Karamitsos, 

2011). The discovery and success of insulin in treating diabetes was astounding. 

Hence insulin became the modal molecule in glucose homeostasis and the role of 

brain and other mechanisms were practically forgotten. The prevalent type of 

diabetes then was what we would label as T1DM today which is characterised by 

an almost complete destruction of pancreatic β-cells. For T2DM like patients, diet 

therapy was the main mode of treatment and insulin was administered for patients 

who could not follow the diet or had severe hyperglycaemia (Maria Rotella, Pala 

and Mannucci, 2013)  The insulin in use initially was short acting and of bovine 

or porcine origin, and the compliance to it was also poor, which resulted in a lot of 

fluctuations in the glucose. In 1950, the Neutral Protamine Hagedorn (NPH) 

insulin was developed and instantly became the favoured treatment for diabetes. 

The first oral anti hyperglycaemic agent Tolbutamide (a sulfonylurea) was used 

for the first time in 1957. For the first 34 years, insulin was the drug of choice 

regardless of the type of diabetes (Maria Rotella, Pala and Mannucci, 2013).  

 

The distinction between type 1 and 2 developed over the next five decades along 

with the realization that insulin levels may be normal or even raised in T2DM and 

that a substantial proportion of β-cells survives lifelong (Clark et al., 1990; Porte 

and Kahn, 2001; Butler et al., 2003). However, by now the research about glucose 

homeostasis was so insulin-centric, that the inability of normal or raised levels of 
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insulin to keep plasma glucose normal was labelled as “insulin resistance”. This 

was done without looking at alternative possibilities and the concept got wide 

uncritical acceptance. Although insulin resistance as a phenomenon is well 

established and its molecular mechanisms elucidated with substantial details, the 

question whether altered insulin signalling is solely responsible for fasting 

hyperglycaemia of T2DM or other insulin independent mechanisms play a 

significant role is not clearly answered.   

 

There are many evidences which lead us to re-examine the role of insulin in 

glucose regulation in relation to T2DM  (Corkey, 2012; Pories and Dohm, 2012; 

Watve, 2013). Exogenous insulin and other insulin-centred lines of treatment 

provide short term glucose control but have failed to reduce complications and all-

cause mortality in T2DM (Meinert et al., 1970; UK Prospective Diabetes Study 

Group, 1998a, 1998b, 1998c; King, Peacock and Donnelly, 2001; ACCORD, 

2008). In the long run the normalization of glucose also gets difficult in majority 

of cases (UK Prospective Diabetes Study Group, 1998a, 1998b). A number of 

mechanisms are known to influence glucose dynamics, partially or completely 

independent of insulin signalling, including autonomic signals (Nonogaki, 2000; 

Schwartz, 2005), glucocorticoids (Goldstein et al., 1993; Gathercole and Stewart, 

2010; Di Dalmazi et al., 2012; Kuo et al., 2015), insulin independent glucose 

transporters (Carruthers et al., 2009) and certain other hormones and growth 

factors (Clemmons, 2004; Jansen et al., 2006; Messmer-Blust et al., 2012; Suh et 

al., 2014). Analysis of multi-organ signalling network models have also raised 

doubts about the central role of insulin and insulin resistance in T2D (Kulkarni, 

Sharda and Watve, 2017).  

 

2.1.2 Why is it necessary to differentiate between steady state effects and 

perturbed state effects? 

The diagnosis of glucose is done based on the two different glucose readings 

taken either at the fasting state or after a meal/post-prandial state (IDF Diabetes 

Atlas, 8th Edition, 2017). The fasting state is generally accepted to be a steady 

state for glucose concentration for several reasons. In a given healthy individual 

the fasting glucose levels are stable in time (Lerner and Porte, 1972; Halter et al., 

1985). The post-prandial peak of glucose and insulin returns to the fasting level 
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within a few hours and remains stable over a long time. The fasting state is 

considered and modelled as a steady state by the homeostasis model of assessment 

(HOMA) which is a widely used model based on negative feedback loops that 

give rise to a steady state dynamics for glucose and insulin (Turner et al., 1979; 

Matthews et al., 1985). The steady state predictions arising from the model were 

tested against the fasting glucose values in normal and diabetic subjects (Turner et 

al., 1979; Matthews et al., 1985). The negative feedback loops are assumed to 

work through insulin and therefore insulin is taken as a determinant of steady state 

glucose level. The fasting glucose levels of non-diabetic people are generally 

between 70-110mg/dl and the glucose levels begin to rise as early as 10 minutes 

after a meal and come back to this level after around 2 hours after the meal (Enzo 

Bonora et al., 2001; DeFronzo et al., 2015).  

 

The post-meal/post-prandial glucose is also the non-steady state glucose or the 

perturbed state glucose. The peak value of glucose attained after any meal is 

determined by a variety of factors like the timing, composition, and amount of the 

meal. In a healthy person, the post-prandial glucose levels do not cross 140mg/dl 

and return to the pre-meal levels in about 2-3 hours. In T2DM, the time at which 

the peak glucose level is attained, as well as the magnitude of this peak is altered 

(Enzo Bonora et al., 2001; DeFronzo et al., 2015).  

 

The individual or differential contributions of fasting and post-meal glucose to 

that of HbA1c have been studied. Data from different cohorts of T1DM and 

T2DM patients have been studied and the overall conclusion is that the fasting 

glucose levels are better correlated with HbA1c as compared to the post-meal 

levels (Enzo Bonora et al., 2001). People have recently begun to study the 

individual contributions of fasting versus post-meal glucose on the 

hyperglycaemia related complications of diabetes. Although most clinical trials 

have glycaemic aims determined by the HbA1c levels or the fasting glucose 

levels, only in the case of gestational diabetes the post-prandial glucose levels are 

targeted specifically with the aim of reducing the complications. (Enzo Bonora et 

al., 2001). Monneir et al have studied the relative contributions of fasting and 

post-prandial glucose to the overall hyperglycaemia in T2DM patients who were 

on anti-hyperglycaemic treatments other than insulin and acarbose (Monnier, 
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Lapinski and Colette, 2003). Their results indicate that there is a gradient in the 

relative contributions of the fasting and post-prandial glucose levels when the 

patients shift from moderate to high hyperglycaemia. The changes or deviations in 

the post-prandial glucose levels contribute predominantly in subjects with 

moderate T2DM whereas the relative contribution of fasting glucose levels 

increases as the diabetes aggravates (Monnier, Lapinski and Colette, 2003). Thus, 

there are differences in the patterns of the fasting and post prandial 

hyperglycaemia in T2DM patients. The relative contribution of insulin to these 

two different levels of glucose also could be different and different physiological 

mechanisms could be playing a role in controlling these two levels of glucose. We 

would like to study the difference in the glucose and insulin relationship in these 

two different states to shed some more light on the causal factors of 

hyperglycaemia.  

 

2.1.3 The approach taken in this chapter 

We aim to re-examine the glucose and insulin relationship in steady state versus 

the perturbed state. To examine the relationship between two variables (glucose 

and insulin in this case) we searched the literature for four different scenarios:  

1. Continuous increase in the glucose levels and its effect on insulin level 

2. Continuous increase in the insulin levels/insulin action and its effect on 

glucose level 

3. Continuous decrease in the glucose levels and its effect on insulin levels 

4. Continuous decrease in the insulin levels/insulin action and its effect on 

glucose levels 

A plethora of such experiments already exists in literature. These experiments had 

different aims and did not explore the differences in the steady state and perturbed 

state relationships in glucose and insulin. So, we aimed to re-examine the existing 

data with a new aim.  I will discuss all the four scenarios in details below.  

1. Continuous increase in the glucose levels and its effect on insulin levels 

Jetton et al (Jetton et al., 2008) infused intra venous glucose (20% glucose w/v) 

continuously for 4 days in rats. Insulin levels increased significantly at days 1 and 

2 after the infusion but came back to normal by day 3 and 4 even as the infusion 

continued. Infusion with a higher concentration of glucose (up to 35%) also 

yielded similar results (Steil et al., 2001). This demonstrates that whenever there 
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is an external input perturbation of the glucose level, there an altered insulin level 

in response. But if the glucose input is maintained constant and allowed to reach a 

steady state, insulin returns to the pre-perturbation level. This line of experiments 

appears to be limited in literature.  

 

 

Figure 1: Effects of chronically increased glucose on the steady state: Plasma glucose (A) and 

insulin (B) levels of 20% continuous glucose-infused rats. A: Glucose levels were elevated at day 

1 and 2 after infusion but decreased and returned close to normal on day 3 and remained so 

through further infusion. B: A 4-fold increase in plasma insulin was seen at day 1 in the glucose-

infusion group but were normalized after day 2; n=12 (saline control) and n=16 (20% Glucose 

Infusion) *p<0.001. Figure reproduced from data by (Jetton et al., 2008).  

 

2. Continuous increase in the insulin levels/insulin action and its effect on 

glucose levels 

Studies show insulin infusion experiments on a short time frame. Since we wanted 

to explore the effect of a sustained insulin increase, the model we chose was that 

of insulin degrading enzyme knockouts or inhibitors. An interplay between insulin 

secretion and insulin breakdown maintains the level of insulin in plasma. Plasma 



50 
 

insulin has a half-life of 4 to 9 minutes (Tomasi et al., 1967; Hulse, Ralat and 

Wei-Jen, 2009). Insulin is degraded predominantly by the insulin degrading 

enzyme (IDE) (Shen et al., 2006; Hulse, Ralat and Wei-Jen, 2009). Inhibition of 

IDE has been considered as a therapeutic option for type 2 diabetes (Costes and 

Butler, 2014; Maianti et al., 2014). We performed a systematic literature review to 

find out experiments performed in which IDE was inhibited and an oral glucose 

tolerance test (OGTT) performed. We wanted to see the differential effect of 

increase in insulin levels (due to the inhibition of IDE) on the steady state and 

perturbed state glucose. OGTT, by design, shows the steady state (fasting) and 

perturbed state (post glucose loading) of glucose and insulin. The methods and 

results used to analyse the differential effect of insulin increase on glucose levels 

has been explained in detail in the methods and results section of this chapter 

below.  

 

3. Continuous decrease in the glucose levels and its effect on insulin level 

Even though this is a theoretically possible scenario, this has not been performed 

in human/animal models because sustained hypoglycaemia is often fatal. I did not 

find experiments that show the effect of sustained lower glucose level on insulin 

dynamics.  

 

4. Continuous decrease in the insulin levels/insulin action and its effect on 

glucose level 

This is the most relevant scenario physiologically as insulin levels and/or action 

reduce in T1D as well as in T2D to some extent. The absolute insulin levels 

reduce in T1D whereas the insulin action and/or insulin levels are reduced in T2D. 

This chapter explores this scenario in detail with the help of three meta-analyses 

(please refer to the methods and results section below). We chose three different 

approaches used in the literature to supress insulin/insulin action.  

(i) Insulin receptor knock-outs (IRKO): Tissue specific knockouts of the 

insulin receptor (Kitamura, Kahn and Accili, 2003) which result in 

downregulation of the insulin action. The absolute levels of insulin may or may 

not be affected. These data exclusively consist of experiments in rodent models.  

(ii) Diazoxide (DZX): Diazoxide is a potassium channel activator which 

causes reduction in β-cell insulin secretion by keeping the cells in a 
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hyperpolarized state by opening the channel (Panten et al., 1989). It has been used 

as a drug to modulate insulin secretion for research and therapeutic purposes 

(Doyle, 2003).  

(iii) Octreotide (OCT): Octreotide is a somatostatin analogue which inhibits 

the secretion of insulin and growth hormone. It has been used to reduce insulin 

secretion in vitro and in vivo (Lamberts et al., 1996). 

Streptozotocin (STZ) is a commonly used treatment in rodent models for 

destroying β-cells and thereby preventing insulin production. But I have not 

considered STZ in this chapter since it will be dealt with in greater details using 

primary experiments in the next chapter.  

 

2.2 Methods 

2.2.1 Meta-analyses: Search strategy  

We performed four separate meta-analyses to see the differential effect of insulin 

increase or suppression on the steady state (fasting) and perturbed state (post 

glucose bolus) glucose. The four meta-analyses were as follows:  

1. Insulin degrading enzyme  

2. Insulin receptor knockouts 

3. Insulin suppression by diazoxide 

4. Insulin suppression by octreotide 

 

The details of all the meta-analyses are given in the table 1 below and the Prisma 

flowcharts can be found in the Appendix. Inhibition of the IDE was chosen as the 

model of insulin increase (Scenario 2). After the systematic search and screening, 

the data from 6 different studies was used for the meta-analysis.  There are 

different ways of suppressing insulin or insulin action (scenario 4) and we chose 

three of them in human or rodent models. The three methods were (i) insulin 

receptor knock-outs (ii) diazoxide (iii) octreotide. Details of the methods of the 

meta-analyses are given in table 1. After the primary and secondary screening, 16, 

8 and 14 papers were used for data extraction and analyses respectively for the 

three methods.  All the meta-analyses were registered on the PROSPERO 

database and the details can be found in table 1.  



52 
 

Table 1: Details of the meta-analyses used to study the action of insulin modulation on steady state and perturbed state glucose.  

Meta-analysis → 

Task performed ↓ 

Insulin degrading 

enzyme (IDE) 

inhibition/knockout 

(Scenario 2) 

Insulin receptor knock-outs 

(IRKOs)  

(Scenario 4) 

Suppression of insulin 

using Diazoxide (DZX) 

(Scenario 4) 

Suppression of insulin 

using Octreotide (OCT)  

(Scenario 4) 

Key word used for 

the first search on 

the Pubmed data-

base  

“insulin degrading 

enzyme” 

“insulin receptor knockout” “diazoxide and diabetes”; 

“insulin suppression” 

“octreotide and diabetes”; 

“insulin suppression” 

Number of hits in 

the first search  

1179 78 1043 1202 

Inclusion criteria 

for primary 

screening 

Study showing 

experiments with 

IDE inhibition and 

OGTT 

Study showing experiments 

with IRKOs and OGTT  

Study showing stable 

insulin suppression using 

diazoxide and an OGTT 

after insulin suppression. 

Study showing stable 

insulin suppression using 

octreotide and an OGTT 

after insulin suppression. 

Number of papers 

shortlisted after 

primary screening  

33 36 239 289 

Inclusion criteria 

for secondary 

screening 

Study showing 

experiments with 

IDE inhibition, 

included fasting and 

post glucose bolus 

readings of control 

and IDE inhibition 

Study showing similar methods 

of making the IRKO; included 

fasting and post glucose bolus 

readings of the control and 

IRKO 

Study showing 

similarities in the 

concentration of DZX 

used; and included 

fasting and post glucose 

bolus readings of the 

control and DZX subjects 

Study showing 

similarities in the 

concentration of OCT 

used; and included 

fasting and post glucose 

bolus readings of the 

control and OCT subjects 



53 
 

Papers shortlisted 

after secondary 

screening; used for 

data extraction 

6 16 6 (human studies) 

2 (rodent studies) 

14 (human studies) 

Studies used in the 

final meta-analysis 

(rodent model) 

(Farris et al., 2003; 

Abdul-Hay et al., 

2011; Maianti et al., 

2014; Deprez-

Poulain et al., 2015; 

Durham et al., 2015; 

Villa-Pérez et al., 

2018) 

(Brüning et al., 1998; Lauro et 

al., 1998; Wojtaszewski et al., 

1999; Mauvais-Jarvis et al., 

2000; Dodson Michael et al., 

2000; Guerra et al., 2001; 

Blüher et al., 2002; Otani, 2003; 

Cohen et al., 2004; Okada et al., 

2007; Ealey et al., 2008; 

Escribano et al., 2009; 

Kawamori et al., 2009; Haas et 

al., 2012; Softic et al., 2016; 

Sakaguchi et al., 2017) 

(Leahy, Bumbalo and 

Chen, 1994; Matsuda et 

al., 2002) 

None 

Studies used in the 

final meta-analyses 

(human studies)   

None None (Wigand and Blackard, 

1979; Schreuder et al., 

2005; Due et al., 2007; 

van Boekel et al., 2008; 

Ramanathan, Arbeláez 

and Cryer, 2011; Brauner 

et al., 2016) 

(Williams et al., 1986, 

1988; Davies et al., 1986; 

Johnston et al., 1986; 

Candrina, Gussago and 

Giustina, 1988; Giustina 

et al., 1991; Piaditis et 

al., 1996; Savage, 

Mohamed-Ali and 

Williams, 1998; Marfella, 

Nappo and Angelis, 
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2000; Ronchi et al., 

2002; Parkinson et al., 

2002; Lustig et al., 2003; 

Breckenridge et al., 

2007; Madsen et al., 

2011) 

PROSPERO ID CRD42019140619 CRD42019132379 CRD42020141688 CRD42020141464 
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2.2.2 Data extraction from the shortlisted papers 

The glucose and insulin values were extracted from the shortlisted papers using a 

freeware called WebPlot digitizer (https://automeris.io/WebPlotDigitizer). The 

reliability of the WebPlotDigitier has been studied by using comparative methods 

(Burda et al., 2017; Drevon, Fursa and Malcolm, 2017). The software has been 

used previously for the extraction of data for meta analyses (Koren et al., 2019; 

Neale et al., 2019), just like we have used it. The values were extracted from 

graphs, tables, or texts. 

  

2.2.3 Statistics used in the meta-analyses:  

The data from the OGTT was extracted from all the shortlisted papers for the  

three meta-analyses. The steady state and perturbed state values of glucose (with 

the 95% confidence intervals) of the controls and insulin modification were 

extracted from the papers. The glucose values of the treated (T) group (insulin 

modification) were compared with that of the untreated/control (C) group. The 

number of T>C and T<C were counted using the absolute values of the means of 

the glucose of the treated and the control as well as the 95% CI of the means. In 

case of the 95% CI comparison, T >C if the lower 95% CI of the T was greater 

than the upper 95%CI of C. Similarly, T<C if the upper 95%CI of T was less than 

the lower 95% CI of C. The frequency of T>C and T<C was compared using a 

chi-square test. We chose this non-parametric approach to analyse the meta-

analyses data since the pooling of data was done across studies where the age, 

weight class of animals, day/time of the reading differed. Use of non-parametric 

tests for meta-analysis has been recommended as it does not assume homogeneity 

of conditions or when you are not sure about the normality of the distributions 

(Hedges and Olkin, 1984; Kitchen, 2009) 

 

2.3 Results 

2.3.1 Effect of increase in insulin on steady state and perturbed state glucose: 

Meta-analysis of inhibition of IDE  

The model of choice for a sustained increase in insulin levels is by knocking out 

or inhibiting the insulin degrading enzyme (IDE). We shortlisted 6 papers which 

performed chemical inhibition or knock-out of the IDE which had a total of 18 

studies. All 18 studies have the fasting (time 0) and post glucose bolus time 120 

https://automeris.io/WebPlotDigitizer
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minutes readings, but not all of them have the intermittent readings. We compared 

the glucose values of the treated (T) which was IDE inhibition/KO and control (C) 

at every time point (table 3). The number of T>C and T<C were counted using the 

absolute values of the means of the glucose of the treated and the control as well 

as the 95% CI of the means. In case of the 95% CI comparison, T >C if the lower 

95% CI of the T was greater than the upper 95%CI of C. Similarly, T<C if the 

upper 95%CI of T was less than the lower 95% CI of C. The frequency of T>C 

and T<C was compared using a chi-square test. In case of IDE suppression, the 

expectation is that the glucose values of the treated should be smaller than that of 

the control as a decrease in IDE results in the increase in insulin values. However, 

we see no significant decrease in the treated as compared to the control. The 

treated and the control show very similar glucose levels in the fasting state and the 

difference is not significant in any of the later time points either (Table 3 and 

figure 2). The actual curve of the OGTT of the treated and the control also show a 

remarkably similar trend except one experiment. In the study (Maianti et al., 

2014) the diet induced obese mice when treated with the chemical inhibitor of the 

IDE, show a completely different trend as compared to the control or the lean 

mice treated with the inhibitor. The post-bolus glucose values in this case do not 

return to the fasting values after 120 minutes. This is also very surprising, since 

IDE inhibition is expected to increase the insulin levels, and in turn the glucose 

levels should reduce (figure 3).  
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Table 2: Details of the 6 studies used in the IDE inhibition meta-analysis. All studies were carried out on mouse models.  

Sr. 

No.  

Reference  Method used to inhibit IDE  Fasting duration 

before the GTT 

Glucose concentration/ 

mode of glucose 

infusion used in GTT  

Sample size  

1 Villa Perez et al 

2018 

Liver specific IDE knock-out 16 hours 2g/kg dextrose given i.p. n= 9 to 13 for each 

group 

2 Deprez-Poulain 

et al 2018  

Inhibition of catalytic site of 

IDE using the inhibitor 

BDM44768  

6 hours  1.5g/kg glucose for 

IPGTT and 2 or 3g/kg 

glucose for OGTT 

n= 4 to 7 for each group 

3 Durham et al 

2015  

Inhibition of IDE using an N-

terminal exosite (NTE)  

Overnight  2g/kg dextrose given 

orally  

n=6 for each group 

4 Maianti et al 

2014 

Inhibition of IDE using a 

non-catalytic site binding 

inhibitor  

14 hours  1.5g/kg glucose for 

IPGTT and 3g/kg 

glucose for OGTT 

n=5 to 7 for each group 

5 Abdul Hay et al 

2010 

IDE-KO created by Cre-lox 

recombination 

6 to 9 hours  1g/kg dextrose given i.p.  n=10 to 12 for each 

group 

6 Farris et al 2003  IDE-/- mice created by gene 

trapping method 

Overnight 2g/kg dextrose given i.p. n=6 (IDE-/-) 

n=4 (Control) 
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Figure 2: Glucose levels for control (black squares) and IDE-inhibition (red squares) models at 

steady and perturbed state. X-axis represents the glucose level and the Y-axis represents 

experiments from different studies from the shortlisted papers in which control and IDE-inhibition 

were compared using an OGTT. IDE-inhibition glucose levels are normalized to that of the control 

and the difference is expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% 

CI.  Steady state is represented by the fasting glucose (A) and the perturbed state is represented by 

different time points (B to F) post glucose load when the readings are taken: (B) 15 minutes (C) 30 

minutes (D) 60 minutes (E) 90 minutes and (F) 120 minutes.  
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Figure 3: GTT curves of all Control (A) and IDE inhibition (B) models from all the studies from 

the meta-analysis. Each curve represents the glucose values from the GTT of each study. The SEs 

for the control curves ranged from 2 to 12% and that of the IDE inhibition ranged from 3 to 21%.  

 

Table 3: Comparison between steady state (fasting) and perturbed state (post glucose load) of 

control (C) and IDE suppression/treated (T).  

Time 

point  

Total 

studies 

T>C T<C p using 

chi 

square 

T > C 

individually  

significant 

based on 

95% CI 

T < C 

individually  

significant 

based on 

95% CI 

Fasting  18 12 6 0.157 0 1 

15 min 14 7 7 0.999 3 5 

30 min 18 10 8 0.637 5 2 

60 min  18 11 7 0.346 5 1 

90 min 16 13 3 0.012* 4 0 

120 min  18 15 2 0.002* 2 1 

 

2.3.2 Effect of decrease in insulin signalling on steady state and perturbed 

state glucose: Meta-analysis of insulin receptor knock-out 

We use four different tissue specific knockouts for the analysis. Liver insulin 

receptor knockout (LIRKO), Muscle insulin receptor knockout (MIRKO), 

fat/adipose insulin receptor knockout (FIRKO) and β-cell insulin receptor 

knockout (βIRKO). We shortlisted 16 papers (table 4) which had IRKOs in rodent 

models with a total of 46 studies. All studies included the glucose readings at time 
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0 (fasting) and at time 120 minutes. The intermittent time point glucose values 

were not present in all the studies. A generalized trend in the total picture collated 

over all the IRKOs seen in the meta-analysis is that along the GTT curve, a 

significantly higher glucose level is seen in the knock-outs/treated as compared to 

the controls (figure 4). This trend is seen particularly and consistently at 30, 60 

and 120 minutes (figure 4). However, the fasting glucose level is not significantly 

different in the meta-analysis (figure 4). In some studies, fasting glucose is 

significantly greater in the knock-outs than the controls, however in some other 

studies it is significantly lower as well. In 29 out of 46 studies there is no 

significant difference between the knock-outs/treated and control in the fasting 

state (Table 2). This trend was seen consistently in MIRKO (figure 6), LIRKO 

(figure 7) and βIRKO (figure 8). Only in FIRKO (figure 5) there were more 

studies showing higher fasting glucose in the knock-outs than in the controls 

(Guerra et al., 2001; Softic et al., 2016; Sakaguchi et al., 2017), but when 

compared using the non-parametric chi-square test, this trend was not significant. 

In FIRKO, the 30, 60 and 120 minute glucose was not significantly different in 

the knock-outs than the controls. The inconsistencies in the FIRKO fasting 

glucose levels could be a result of the differences in the duration of fasting used 

for the GTTs. Although the glucose levels in the control are lower than the 

FIRKO/BATIRKO in the fasting conditions, there could be possible reasons for 

that. For example, in the study Sakaguchi et al., 2017, fasting for the GTT was 

carried out only for 6 hours as against 16 hours/overnight in other studies. 

Secondly, one of the knock-outs in this study is a double knock-out of insulin 

receptor and the insulin-like growth factor 1 receptor which could be a possible 

reason for the higher glucose levels in the fasting condition. In case of the Guerra 

et al., 2001; Softic et al., 2016, the animals have been fasted overnight for the 

GTT. The tests have been performed on FIRKO and WT of different ages. The 

impairment of glucose tolerance increases with age, though this also is not seen 

consistently across all the studies. In the case of Blüher et al. (2002), the fasting 

duration for the GTT is 16 h, highest in all the studies and in this case the treated 

glucose levels in the fasting condition are equal to or lower than that of the 

controls. In the LIRKO knock-outs in none of the studies the fasting sugar is 

significantly higher than the controls. This contradicts the classical belief that 
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liver insulin resistance is mainly responsible for fasting hyperglycaemia in T2DM 

(Johnson et al., 1972; Bock et al., 2007).    
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Table 4: Details of the 16 studies used in the IRKO meta-analysis 

Sr. 

No.  

Reference  Type of IRKO Method 

used to 

make the 

knock-out 

Fasting 

duration 

before the 

GTT 

Glucose 

concentration/ 

mode of glucose 

infusion used in 

GTT  

Sample size  

1 Sakaguchi et al 

2017 

inducible-DKO IR and IGF-

IR, BATIRKO 

Cre-lox 

lines 

6 hours 2g/kg dextrose 

given orally  

Control n=13,                  

IRKO, n=12 

2 Softic et al 2016 FIRKO (12 weeks old)  Cre-lox 

lines  

Overnight Random fed  n=12 to 30 for each 

group                                                    

FIRKO (52 weeks old male 

mice) 

n=5 to 6 for each 

group 

3 Haas et al 2012 LIRKO Cre-lox 

lines  

Overnight 1g/kg dextrose 

given i.p. 

n=3 to 5 for each 

group 

4 Kawamori et al 

2009 

  

αIRKO (2,5, 12-month-old 

mice) fed/fasted 

Cre-lox 

lines 

16 hours Random fed  n=6 to 8 for each 

group 

αIRKO (2,5 month old mice 

) GTT 

16 hours 1g/kg dextrose 

given i.p. 

n=3 to 12 for each 

group 

5 Escribano et al 

2009 

inducible LIRKO Cre-lox 

lines 

16 hours  2g/kg dextrose i.p. n=10 to 20 for each 

group 

6 Ealey et al 2008 MIRKO Cre-lox 

lines 

Overnight 2g/kg dextrose i.p. n=7 to 13 for each 

group 



63 
 

7 Okada et al 

2007 

βIRKO, LIRKO and 

βIRKO-LIRKO (4-5 weeks 

old male mice) 

Cre-lox 

lines 

Overnight 2g/kg dextrose i.p. n=8 for each group 

βIRKO (20 weeks old, male 

mice; chow and HFD) 

n=9 to 16 for each 

group 

8 Cohen et al 

2004 

LIRKO (2 month old mice)  Cre-lox 

lines 

16 hours  2g/kg dextrose i.p. n=17 for control                                

n=25 for LIRKO 

9 Otani et al 2004 βIRKO-Non-diabetic (ND) Cre-loxP 

system  

4 hours 2g/kg dextrose i.p. n= 35 for control, 

n=28 for βIRKO(ND)  

βIRKO-Diabetic (D) n=10 for βIRKO(D) 

10 Blueher et al 

2002 

FIRKO (2 month and 10 

month old mice) 

Cre-loxP 

system  

16 hours  2g/kg dextrose i.p. n=8 for each group 

11 Guerra et al 

2001  

BATIRKO (3, 6 and 9 

month old male and female 

mice) 

Cre-loxP 

system  

Overnight  2g/kg dextrose i.p. n=10 to 20 for each 

group 

12 Lauro et al 1998 Insulin receptor (Ins R) and 

Ins R K1030 mutatnt 

Cre-loxP 

system,  

Overnight  2g/kg dextrose i.p. n=8 for each group 

13 Mauvais-Jarvis 

et al 2000 

MIRKO, βIRKO and 

βIRKO-MIRKO (2 and 6 

month old mice  

Cre-loxP 

system  

Overnight  2g/kg dextrose i.p. n=28 to 32 for each 

group 

14 Micheal et al 

2000 

LIRKO (2 and 6 month old 

mice)  

Cre-loxP 

system  

16 hours  2g/kg dextrose i.p. n=8 for each group 
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15 Wojtaszewski et 

al 1999 

MIRKO Cre-loxP 

system  

Overnight  2g/kg dextrose i.p. n= 7 to 8 for each 

group 

16 Bruening et al 

1998 

MIRKO Cre-loxP 

system  

Overnight  2g/kg dextrose i.p. n=8 for each group 



65 
 

Table 5: Comparison between steady state (fasting) and perturbed state (post glucose load) glucose between control (C) and treated/IRKOs (T).  

Time point  Total studies T>C T<C p using chi 

square 

T > C individually  

significant based on 

95% CI 

T < C individually  

significant based on 

95% CI 

ALL IRKOs       

Fasting  46 25 20 0.454 13 4 

15 min 14 7 7 0.999 4 2 

30 min  40 36 4 <0.0001* 22 1 

60 min  40 36 4 <0.0001* 24 1 

120 min  46 37 9 <0.0001* 24 2 

FIRKO       

Fasting  12 9 3 0.083 9 1 

15 min  3 1 2 0.566 1 1 

30 min  9 7 2 0.095 6 1 

60 min 9 7 2 0.095 5 1 

120 min  12 9 3 0.83 7 2 

MIRKO       

Fasting 10 3 7 0.205 0 2 

15 min 6 3 3 0.999 1 0 

30 min 10 9 1 0.011* 3 0 

60 min  10 9 1 0.011* 3 0 

120 min  10 6 4 0.527 3 0 

LIRKO       

Fasting 9 4 5 0.739 0 0 
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15 min 1 1 0 N.A. 0 0 

30 min 9 9 0 .003* 6 0 

60 min  9 9 0 .003* 7 0 

90 min  9 9 0 .003* 5 0 

120 min  9 7 2 0.094 4 0 

βIRKO       

Fasting 8 6 2 0.157 4 0 

15 min 2 2 0 0.157 2 0 

30 min 8 7 1 0.033* 6 0 

60 min  8 7 1 0.033* 7 0 

90 min  4 4 0 0.046* 4 0 

120 min  8 8 0 0.0046* 7 0 
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Figure 4: Glucose levels for control (black squares) and IRKO (red squares) at steady state and 

perturbed state. The X-axis represents the glucose level and the Y-axis represents experiments 

from different studies from the shortlisted papers in which control and IRKO were compared using 

an OGTT. IRKO glucose levels are normalized to that of the control and the difference is 

expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% CI.  Steady state is 

represented by the fasting glucose (A) and the perturbed state is represented by different time 

points post glucose load when the readings are taken: (B) 15 minutes (C) 30 minutes (D) 60 

minutes (E) 90 minutes and (F) 120 minutes.  
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Figure 5: Glucose levels for control (black squares) and FIRKO (red squares) at steady state and 

perturbed state. The X-axis represents the glucose level and the Y-axis represents experiments 

from different studies from the shortlisted papers in which control and FIRKO were compared 

using an OGTT. FIRKO glucose levels are normalized to that of the control and the difference is 

expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% CI.  Steady state is 

represented by the fasting glucose (A) and the perturbed state is represented by different time 

points post glucose load when the readings are taken: (B) 15 minutes (C) 30 minutes (D) 60 

minutes and (E) 120 minutes. 
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Figure 6: Glucose levels for control (black squares) and MIRKO (red squares) at steady state and 

perturbed state. The X-axis represents the glucose level and the Y-axis represents experiments 

from different studies from the shortlisted papers in which control and MIRKO were compared 

using an OGTT. MIRKO glucose levels are normalized to that of the control and the difference is 

expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% CI.  Steady state is 

represented by the fasting glucose (A) and the perturbed state is represented by different time 

points post glucose load when the readings are taken: (B) 15 minutes (C) 30 minutes (D) 60 

minutes (E) 90 minutes and (F) 120 minutes.  
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Figure 7: Glucose levels for control (black squares) and LIRKO (red squares) at steady state and 

perturbed state. The X-axis represents the glucose level and the Y-axis represents experiments 

from different studies from the shortlisted papers in which control and LIRKO were compared 

using an OGTT. LIRKO glucose levels are normalized to that of the control and the difference is 

expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% CI.  Steady state is 

represented by the fasting glucose (A) and the perturbed state is represented by different time 

points post glucose load when the readings are taken: (B) 15 minutes (C) 30 minutes (D) 60 

minutes (E) 90 minutes and (F) 120 minutes.  
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Figure 8: Glucose levels for control (black squares) and βIRKO (red squares) at steady state and 

perturbed state. The X-axis represents the glucose level and the Y-axis represents experiments 

from different studies from the shortlisted papers in which control and βIRKO were compared 

using an OGTT. βIRKO glucose levels are normalized to that of the control and the difference is 

expressed with ± 95% CI. Glucose levels of control are expressed as 0 ± 95% CI.  Steady state is 

represented by the fasting glucose (A) and the perturbed state is represented by different time 

points post glucose load when the readings are taken: (B) 15 minutes (C) 30 minutes (D) 60 

minutes (E) 90 minutes and (F) 120 minutes. 

 

2.3.3 Effect of decrease in insulin on steady state and perturbed state glucose 

2.3.3.1 Meta-analysis of inhibition of insulin using Diazoxide and Octreotide 

After studying the effects of increase in glucose, increase in insulin, decrease in 

insulin action on steady state glucose, we wanted to study the effect of decrease in 

the absolute levels of insulin on steady state glucose levels. A variety of methods 

have been used to supress the insulin in vivo. These studies have predominantly 

been done on rodents. A few molecules however have been used on human 

subjects as well. Diazoxide and Octreotide have been used in human subjects as 
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well to suppress insulin in cases of pancreatic or pituitary tumors which result in 

the over expression of insulin and/or growth hormone Doyle 2003; Lamberts et al. 

1996; Panten et al. 1989). We performed two separate meta-analyses to study the 

effect of insulin suppression on steady and perturbed state glucose values (table 

1).  

 

Meta-analysis for treatment with Diazoxide  

We shortlisted 8 papers for insulin suppression with DZX out of which 6 papers 

included human studies while 2 papers included studies on rodent models (table1). 

The 8 papers had 16 separate groups in which control and treated glucose values 

could be compared. The expectation is that on suppression of insulin, the glucose 

levels should be elevated. The fasting glucose levels in the control and the treated 

group however did not differ significantly (figure 9 and table 6). At the time point 

of 30 minutes, there was a significant increase in the glucose levels of the treated 

versus the control (table 6).  
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Figure 9: Glucose levels for control (black squares) and treatment with DZX (red squares) models 

at steady and perturbed state. The X-axis represents the glucose level and the Y-axis represents 

experiments from different studies from the shortlisted papers in which control and treated were 

compared using an OGTT. Glucose levels after treatment with DZX are normalized to that of the 

control and the difference is expressed with ± 95% CI. Glucose levels of control are expressed as 0 

± 95% CI.  Steady state is represented by the fasting glucose (A) and the perturbed state is 

represented by different time points post glucose load when the readings are taken: (B) 15 minutes 

(C) 30 minutes (D) 60 minutes (E) 90 minutes and (F) 120 minutes. 
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Table 6: Comparison between steady state (fasting) and perturbed state (post glucose load) of 

control (C) and insulin suppression or treated (T).   

Time Total 

studies 

T>C  T<C p using 

chi 

square 

T > C 

individually  

significant 

based on 

95% CI 

T < C 

individually  

significant 

based on 

95% CI 

Diazoxide treatment 

Fasting  14 10  3 0.052 0 5 

15 min 7 6  1 0.059 1 1 

30 min  12 10  2 0.021* 2 1 

60 min  13 9  4 0.166 4 2 

90 min  3 3  0 0.083 2 0 

120 min  14 10  3 0.052 6 1 

Octreotide treatment 

Fasting 15 6  7 0.781 0 0 

30 min  14 4  10 0.108 0 2 

60 min  14 4  10 0.108 2 1 

90 min  13 5  8 0.405 1 0 

120 min  15 7  8 0.797 1 1 

 

Meta-analysis for treatment with Octreotide:  

We shortlisted 14 papers for the meta-analysis of Octreotide treatment for insulin 

suppression. All the papers included human studies and there were 15 separate 

groups where the control and treated glucose values could be compared at 

different time points. Octreotide is a known somatostatin analogue and it is known 

to suppress the insulin and/or growth hormone secretion (Lamberts et al., 1996). 

Therefore, t is expected that the glucose levels should increase on treatment with 

Octreotide. There was no significant difference between the treated and control at 

any time point (figure 10 and table 6).  
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Figure 10: Glucose levels for control (black squares) and treatment with OCT (red squares) 

models at steady and perturbed state. The X-axis represents the glucose levels and the Y-axis 

represents experiments from different studies from the shortlisted papers in which control and 

treated were compared using an OGTT. Glucose levels after treatment with OCT are normalized to 

that of the control and the difference is expressed with ± 95% CI. Glucose levels of control are 

expressed as 0 ± 95% CI.  Steady state is represented by the fasting glucose (A) and the perturbed 

state is represented by different time points post glucose load when the readings are taken: (B) 30 

minutes (C) 60 minutes (D) 90 minutes and (E) 120 minutes. 

 

2.3.3.2 Suppression of insulin by protein deprivation  

Another method for insulin suppression is dietary protein deprivation. This 

method has been performed in experimentally in rodents. This also led to a 

decrease in plasma insulin levels; however fasting glucose levels did not increase 

(Schteingart et al., 1979).   
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2.3.3.3 Suppression of insulin by siRNA 

Transgenic mice for insulin-siRNA along with IDE overexpression, showed 

decreased levels of insulin. Again, the fasting glucose levels remained normal 

while there was a change in glucose tolerance curve (figure 11) (Hwang et al., 

2007) 

 

Figure 11: Fasting glucose levels in both the siRNA treated and untreated group remain unaltered 

in male (A) and female (B) mice. 15 minutes after the glucose injection, the treated mice show 

higher glucose levels relative to the untreated mice and this effect is seen throughout till 120 

minutes. Figure reproduced without permission from data by (Hwang et al., 2007).  

 

2.3.3.4 Suppression of insulin by partial gene ablation:  

In rodents, there are two insulin genes Ins1 and Ins2 (Duvillie et al., 1997). A 

double knock-out of both the genes results in death, but ablation of either of the 

genes does not alter the glucose tolerance significantly suggesting redundancy 

(Mehran et al., 2012). There are studies in which one gene is completely knocked 

out and the other one is a heterozygote (Mehran et al., 2012; Templeman, Clee and 

Johnson, 2015; Dionne et al., 2016; Templeman et al., 2017; Page et al., 2019). 

Reduced insulin gene dosage did not consistently result into fasting hyperglycaemia 

in these studies although it offered protection against some of the effects of 

hyperinsulinemia.  
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2.4 Conclusion  

Using systematic literature review and meta-analyses approach we have tried to 

see the effect of change in one variable (either glucose or insulin) on the steady 

state and perturbed levels of the other (insulin or glucose respectively). Increase in 

glucose can result in an immediate increase in the insulin level, however sustained 

increased in glucose input results in the insulin levels coming back to normal as 

shown by Jetton et al 2008 and Steil et al 2001.  

 

When the insulin levels are increased in a sustained manner, the expectation 

according to the classical theories of glucose homeostasis are that glucose levels 

will go down due to the increased insulin level. This however is not seen as 

evident by the insulin degrading enzyme meta-analysis. This meta-analysis 

focussed on studies in which the IDE was knocked down/inhibited in a sustained 

manner. The results of this meta-analysis indicate that the glucose levels in the 

fasting or the steady state remain unaltered. At all the time points during the 

OGTT, the number of experiments in which the glucose of the treated (IDE 

inhibited) exceeds that of control are more than those in which the glucose of 

treated is less than that of the control. This is quite contrary to what is expected. 

The difference between the glucose levels of the treated and control are different 

only in the perturbed state (90 or 120 minutes after ingestion of glucose in the 

GTT) but not in the fasting/steady state (table 2).  

 

The focus of this study however was to see the effect of reduced insulin levels or 

reduced insulin action on the steady state and perturbed state glucose levels since 

this scenario is the most relevant to T2DM. This was analysed using three 

different meta-analyses. The first meta-analysis focused on the knockouts of 

tissue specific insulin receptors in rodent models. The glucose levels at steady 

state and perturbed state of the treated (IRKO) and the wild-type/control were 

compared here. This meta-analysis clearly focussed on the tissue specific 

knockouts of the insulin receptors. It can be seen from the analysis that 

irrespective of the specific tissue in which the insulin receptor was knocked out, 

the perturbed state glucose (post-feeding) is affected but not the steady state 

(fasting), with the fat insulin receptor knockouts being the only exception.  
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Different fasting intervals have been used across the studies compared. A wide 

range of 4 to 16 hours has been used, which could be a possible problem in 

comparing fasting glucose across different studies. No study clearly reported how 

much time is required to reach a steady state in a knock-out. In 10 studies, which 

had the fasting time was reported as 16 hours, none had fasting sugar significantly 

different for controls. In the 13 experiments in which the fasting glucose was 

high, the fasting duration was either between 4 to 12 hours or it was not precisely 

reported. Therefore, it is possible that in some of the experiments, glucose steady 

state was not yet achieved at the time point defined as fasting. This bias increases 

the probability that higher fasting glucose is reported for the knock-outs. 

However, since we do not see a significant difference in the meta-analysis, the 

inference that IRKO does not alter fasting glucose is unlikely to be a result of the 

bias. In fact, any possible correction to the bias might nullify the apparent residual 

difference. Therefore, despite some inconsistency across studies, a robust 

generalization is that IRKOs have significantly increased plasma glucose over 

controls at 30 to 120 minutes post-glucose load, but they do not appear to affect 

steady state fasting glucose. 

 

The next two meta-analyses focussed on looking at the effect of insulin 

suppression on the glucose levels in the steady state and the perturbed state. 

Individually, each meta-analysis consisted of studies in which insulin was 

suppressed using diazoxide and octreotide, respectively. In both the meta-

analyses, the expectation according to the prevalent theory is that since insulin is 

suppressed, the glucose levels should increase in the treated animals/subjects. 

However, it is seen that there is no significant effect of the suppression of insulin, 

especially on the fasting or steady state glucose. In case of the perturbed 

state/post-meal glucose as well, there is no significant change in the glucose level 

despite the treatment with diazoxide or octreotide.  

 

Even though IRKO and DZX/OCT act to reduce insulin action or insulin levels, 

there is a fundamental difference in the way they work. IRKO or insulin receptor 

knock-outs are made by knocking out the insulin receptor using Cre-lox 

recombination whereas DZX and OCT are chemicals which act in different ways 

to reduce insulin action. In case of DZX and OCT, these are chemical molecules 
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which reduce the insulin action, but they do not do it in a specific manner. 

Whereas in case of IRKO, the action of the insulin receptor and in turn the 

downstream signalling of insulin is reduced to a greater extent. This difference in 

the mode of action could explain the results that in IRKO the plasma glucose 

levels at 30 to 120 minutes post-load glucose are higher without affecting the 

steady state values as compared to that in DZX and OCT. The overall 

insulin/insulin action lowering effect of DZX and OCT is lower than that of 

IRKO. These could be the possible explanations from this observation.  

 

Thus, alteration in the insulin levels/insulin signalling has a significant and 

consistent effect on the perturbed state glucose level but there is no consistent 

effect on the steady state glucose level across studies.  
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Chapter 3: Theoretical, mathematical, and statistical considerations  

 

3.1 Introduction  

In the earlier chapter I have established the differences in the effect of insulin on 

the steady state and perturbed state glucose using meta-analyses. In this chapter I 

would like to focus on the theoretical foundations of the insulin-glucose 

relationship. The unexpected yet consistent result of all the meta-analyses is that 

impairment of the insulin signal fails to alter steady state glucose level. The 

possible explanations for this result will be explored in this chapter. 

Simultaneously, differential predictions from alternative models of glucose 

homeostasis will also be made that can be tested in human epidemiological data. 

These predictions will then be tested using epidemiological data to examine 

whether the relationship between glucose and insulin in fasting/steady state is the 

same as that in the post-meal/perturbed state. The work described in this chapter 

has been published as parts of two papers Chawla et al 2018 and Diwekar-Joshi 

and Watve 2020.  

 

Mathematical models of glucose homeostasis assume the fasting steady state to be 

a balance between glucose consumption and liver glucose production. These 

models predict that the regression and correlation parameters between insulin and 

glucose would be similar although the range of values will be different. We test 

the actual correlation and regression parameters in three individual data sets 

which include glucose and insulin values from fasting and post-glucose load from 

normal and diabetic human subjects.  

 

3.2 Methods and Results 

3.2.1 Models for glucose homeostasis 

Fasting glucose is used interchangeably as steady state glucose for several 

reasons. In a healthy person, the fasting blood glucose levels are stable in time 

(Lerner and Porte, 1972; Halter et al., 1985). After a perturbation like intake of 

food, both insulin and glucose go up and then return to the fasting level in a few 

hours and then remain stable. The most widely used model to explain the function 

of insulin, the HOMA, uses the fasting state of glucose and insulin as steady states 
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and suggests methods to calculate insulin resistance based on that (Turner et al., 

1979; Matthews et al., 1985). Insulin is taken as a determining factor of the steady 

state glucose levels and the action of insulin is assumed to be through negative 

feedback loops. Many models of glucose homeostasis work on this assumption. 

There are a few non-steady state models as well (Palumbo et al., 2013).  

 

As we have seen from chapter 2, the relationship between glucose and insulin is 

significantly different in the steady state and the perturbed state and hence we can 

ask a critical question in glucose homeostasis: Is the steady state/fasting glucose 

level a consequential result of the balance between glucose production and 

glucose utilization rates (consequential steady state CSS) or whether there is a 

target glucose level that is maintained by sensing and correcting any changes in it 

(targeted steady state TSS).  

 

I will use the level in a water tank as an analogy to demonstrate the difference 

between the two (figure 1). If a water tank has an inlet tap filling in water at a 

constant rate and has an outlet at the bottom through which water goes out 

proportionate to the pressure of the water column, a steady state is reached 

invariably. The steady state level is decided by the rate of water flowing in and the 

size of the outlet. This is a CSS which will change with any change in the 

size/capacity of the inlet or outlet. In contrast to CSS, in a TSS there is a desired 

or set or targeted water level. Sensors are placed above and below the desired 

level such that when the level goes below the lower sensor the input is switched 

on or its rate increased and/or output switched off or its rate decreased.  
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Figure 1: Consequential steady state (A) and Targeted steady state (B) models of homeostasis 

shown with a tank water level analogy. In CSS, a change in size of inlet or outlet, analogous to 

insulin sensitivity can change the steady state level. In a TSS model, a change in the inlet or outlet 

will alter the time required to reach a steady state but will not change the steady state level itself.  

 

If we compare the water tank with glucose homeostasis, we can see that in a 

fasting state, hepatic glucose production is analogous to the input to the tank and 

uptake of glucose by the tissues is analogous to the size of the outlet. Both these 

processes are a function of insulin signalling. Most mathematical models of 

glucose regulation assume CSS (Tomasi et al., 1967; Turner et al., 1979; 

Matthews et al., 1985; Bergman, 1989, 2005; Makroglou, Li and Kuang, 2006, 

Palumbo et al., 2013).  

 

We would like to examine critically which model: CSS or TSS describes glucose 

homeostasis more aptly. If TSS model is more relevant, insulin resistance and 

relative insulin deficiency will not lead to a changed steady state in the glucose. 

The time required for reaching the steady state after perturbation might change, 

even though the steady state level per se might now. If CSS model is relevant, 

insulin resistance or reduced insulin levels are likely to change fasting glucose 

levels. As seen in chapter 2, the meta-analyses show that IRKOs or insulin 

suppression experiments do not alter fasting steady state. This lack of change of 

steady state and the delay in reaching the steady state indicates that TSS is more 

relevant as a model to describe glucose homeostasis.  

 

For the TSS model to work, there must be mechanisms of sensing any departure 

from the ‘targeted’ steady state. Such mechanisms are not known in peripheral 

system, but glucose sensing neurons are certainly known to be present in the 
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brain. Therefore, if TSS is a more appropriate model, the CNS mechanisms are 

likely to be central to glucose homeostasis, particularly in determining the steady 

state levels; whereas insulin signalling would determine the rate at which a steady 

state is reached after perturbation.  

 

3.2.2 Making testable predictions from the models  

We now try to make testable predictions of TSS and CSS models. We first look at 

the situation in a healthy individual with normal glucose regulation. 

 

3.2.2.1 Exercise and glucose regulation 

Increased glucose utilization would decrease fasting or steady state glucose levels 

by the CSS model but not by the TSS model. We can test this prediction. 

Experiments on human subjects have shown that prolonged exercise does not 

reduce plasma glucose, in fact it might increase (Coggan, 1991). To match with 

experimental data, CSS models of glucose dynamics during exercise need to 

include additional terms which involve central mechanisms. Possible central 

mechanisms include parasympathetic and sympathetic control of hepatic glucose 

production in response to exercise (Roy and Parker, 2006). This CSS model is 

closer to a TSS model. If TSS model describes glucose homeostasis more 

appropriately, reduced insulin signalling is not expected to change steady state 

glucose but only alter the time course to reach a steady state.  

 

3.2.2.2 Attaining an hyperinsulinemic normoglycemic state  

The CSS and TSS models have differences in the mechanism of attaining a 

hyperinsulinemic normoglycemic prediabetic state. By the classical CSS based 

pathway, the primary event is the obesity induced insulin resistance. Insulin 

resistance causes reduced glucose uptake, and the increased blood glucose triggers 

a compensatory insulin response. This increased insulin response or 

hyperinsulinemia compensates for insulin resistance and thus the fasting glucose 

levels remain normal. Chawla et al 2018 have given an in-depth analysis of the 

model. They matched the predictions of this model with empirical data to refute 

this model (Chawla et al., 2018). This refutation is not surprising as one can 

intuitively see that once the increased insulin levels normalize glucose, there is no 

reason why insulin levels continue to remain high. Hence, a steady state with 
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hyperinsulinemia and normal glucose levels is impossible by the CSS model but it 

does exist in prediabetic subjects.  

 

Testable prediction of CSS model 

If a “compensatory” insulin response is mediated by glucose, one would expect a 

positive correlation between fasting glucose (FG) and fasting insulin (FI) and no 

correlation between insulin resistance and β cell responsiveness.  

 

Testable prediction of TSS model 

On the other hand, a compensatory response is possible in either way by the TSS 

model. Primary insulin resistance may increase the glucose levels transiently. 

When the glucose sensing mechanisms detect a change, a compensatory response 

comes into effect, which will remain operational due to hysteresis unless glucose 

levels reach the lower margin of normal level. By this mechanism, a 

hyperinsulinemic normoglycemic state is possible. Alternatively, primary 

hyperinsulinemia (Garvey, Olefsky and Marshall, 1986; Weyer et al., 2000; 

Shanik et al., 2008; Corkey, 2012) can also be compensated by increased insulin 

resistance by hitting the lower level of sensing which would trigger compensatory 

insulin resistance. Even in this case a hyperinsulinemic normoglycemic state is 

possible. Both glucose sensing neurons and neuronal regulation of insulin release 

and liver glucose production are well known.  

 

In the compensatory response mediated by TSS pathways there need not be a 

correlation between fasting insulin and fasting glucose, but insulin resistance and 

β-cell response would be correlated.  

 

3.2.2.3 Testable predictions from a generalized CSS model  

A variety of models are present in literature to try and explain glucose dynamics. 

We use a generalized minimal CSS model using the following assumptions.  

1. The blood glucose level G increases by two processes (i) absorption from 

gut and (ii) glucose production by the liver.  

2. Gut absorption Gt to be independent of standing blood glucose as well as 

insulin 
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3. Liver glucose production has a maximum rate L which has two feedback 

inhibitors namely direct feedback inhibition by glucose and that by 

standing insulin which depends upon the insulin sensitivity of liver.  

4. Glucose is cleared from blood via two mechanisms (i) insulin independent 

and (ii) insulin dependent. 

5. The blood insulin I is a balance between insulin release by pancreatic β-

cells, the rate being a function of plasma glucose and a rate of insulin 

degradation which is directly proportional to standing plasma insulin level. 

6. We assume all relationships to be linear and use the model framework of 

Chawla et al 2018 (Chawla et al., 2018).  

 

The equations:  

     Equation 1 

       Equation. 2 

 

Where:  

: Plasma glucose  

Gt: Gut glucose  

L: Maximum rate of liver glucose production 

: Plasma insulin 

K1: Rate constant for glucose uptake by tissues as well as direct feedback inhibition 

of liver glucose production 

K2: Rate constant for insulin mediated inhibition of liver glucose production as well 

as insulin mediated glucose uptake, 

ISENS: Insulin sensitivity which is assumed to be unity normally and decreases with 

insulin resistance.  

K3:  Rate constant for glucose stimulated insulin secretion.  

d: Rate of insulin clearance 

 

We use simulations with normally distributed errors to study how the correlation 

between plasma glucose and insulin is affected by the parameters as well as by the 

standard deviation of errors. We use the errors additively or multiplicatively. For 
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simulations using additive errors, we add normally distributed error terms e1 and e2 

to both the equations. 

   Equation. 3 

 

      Equation. 4 

 

For simulations using multiplicative error, we give normal distributions to K1, K2, 

K3 and ISENS. Realistic ranges for the parameters are taken from (Chawla et al., 

2018). Simulations show that if we use an additive error model, and if the 

parameters of glucose insulin relationship are the same, the regression-correlation 

parameters for the insulin-glucose relationship are not significantly different 

during fasting/steady state (Gt=0) and at any time post-meal (Gt> 0). The only 

difference is in the range of glucose and insulin distribution (figure 2) 

 

Figure 2: The glucose insulin scatter in a fasting steady state (blue circles) and in a post-meal 

arbitrary but constant time interval (red circles) in an additive error model. A sample result is 

shown in which K1=0.1, K2=0.9, ISENS is randomized between 0.1 and 1 and K3=0.015 and d=0.15. 

The error standard deviations are 15 and 1 respectively.  

 

In simulations with multiplicative errors, the post-meal insulin-glucose correlation 

was weaker than the fasting steady state correlation (figure 3). This is the likely 

result of the errors increasing in proportion to larger values of glucose and insulin, 

and due to the addition of the variable (gut absorption) to the model.  
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Figure 3: The glucose insulin scatter in a fasting steady state (red squares) and at a post-meal 

arbitrary but constant time point (blue diamonds) in a multiplicative error model. A sample result 

is shown in which the mean (standard deviations) of the parameters were K1=0.1 (0.02), K2=0.9 

(0.5), ISENS is randomized between 0.1 and 1 K3=0.0015 (0.0002) and d =0.15 (0.005). In all the 

simulations the correlation coefficient and regression slopes of the post-meal scatters were less 

than or equal to the corresponding fasting parameters. This contrasts the epidemiological patterns 

in which the fasting correlations are substantially weaker than the post-meal correlations. 

 

Over a wide range of parameters, the slopes of lines and correlation coefficients 

changed. The generalization that R2 as well as the regression slope of the fasting 

scatter was less than or equal to that of the post-meal condition remained constant 

and robust. In some parameter space, that is when the variability in insulin 

response was substantially greater than the variability in insulin resistance, the 

correlation between glucose and insulin was negative. But again, the fasting 

correlation was equal or stronger than the post-meal correlation.  

 

Thus, a generalization can be made that if the model parameters remain the same, 

the glucose insulin correlation in steady state is stronger or equal to the post-meal 

correlation. Logically and intuitively sound, this generalization is unlikely to be 

specific to any form of equations based on the assumptions of the CSS class of 

models.  

 

 

 

 

y = 0.0168x + 12.778
R² = 0.0202

y = 0.0445x + 6.1236
R² = 0.1662

0

10

20

30

40

0 100 200 300 400
Glucose (mg/dl)

In
s
u
lin

 (
µ

IU
/m

l)



95 
 

Testable predictions  

According to the CSS model, the R2 and the slope of regression between glucose 

and insulin for post-meal (perturbed) scatters are weaker or equal than that for the 

fasting (steady state).  

 

With a TSS model there should not be a correlation in fasting glucose (FG) and 

fasting insulin (FI). On impairment of insulin signalling, the time required to 

attain a steady state can be substantially longer, overnight fasting may not ensure 

a steady state in all individuals. Fasting hyperglycaemia in T2DM can have two 

alternative (but not mutually exclusive) causes. Either it represents the failure to 

reach a steady state in the specified fasting period, or it is because of mechanisms 

other than reduced insulin action. In population data, if some individuals have 

reached a steady state but a few others haven’t we would expect a correlation in 

FG and FI but significantly weaker than the post-meal correlation.  

 

3.2.3 Data sets used to test the predictions   

The three data sets used here come from two different studies: (i) Coronary Risk 

of Insulin Sensitivity in Indian Subjects (CRISIS) study, Pune, India (Yajnik et 

al., 2007) and (ii) Newcastle Heart Project (NHP), UK (Bhopal et al., 1999). Data 

from the NHP is divided into two groups as the subjects belong to different 

ethnicities namely European white and south Asian. We have analysed the two 

groups separately, since there are differences in the tendency to develop metabolic 

syndrome depending on the ethnicity (Bhopal, 2013; Gujral et al., 2013). Hence 

testing of prediction of the models with the data has been done independently for 

the three data sets. All the studies are population surveys that include non-diabetic 

(fasting glucose values less than 110mg/dl) and diabetic individuals (fasting 

glucose values above 110 mg/dl) subjects. The clinical history, morphometric 

parameters, glucose, and insulin during fasting and oral glucose tolerance test 

(OGTT) of the subjects were recorded. In the analysis, we included only the non-

diabetic groups in which the homeostatic mechanism can be assumed to be intact 

and therefore any hypothesis about it can be tested. Most of the individuals in the 

diabetic group would be under different drug regime affecting insulin-glucose 

dynamics in different ways and therefore we exclude that group for the analysis.  
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3.2.4 Statistics  

Linear regression and correlation were used to compare the insulin-glucose 

relationship in steady state (fasting) versus perturbed state (post glucose load) in 

the three data sets. The regression and correlation between the derived parameters 

of HOMA-IR and HOMA-β were also used to test the predictions of the models.  

 

3.2.5 Results 

In all the three data sets there was weak (R2 range 0.017 to 0.057) yet significant 

correlation between fasting glucose (FG) and fasting insulin (FI). Contrary to the 

prediction of the CSS model, the post-meal insulin-glucose correlation was 

stronger (R2 range 0.28 to 0.34) and the slope of the regression much steeper than 

in the fasting state. The correlation between HOMA-IR and HOMA-β is strong 

(R2 range 0.20 to 0.83) as predicted by the TSS model and not by the CSS model.  

The HOMA-IR HOMA-β correlation, as well as the difference between the 

regression correlation parameters between fasting and post-meal data were 

compatible with predictions of the TSS model. However, although weak, there is 

significant correlation between FG and FI unlike what may be expected by a 

steady state TSS model. This incompatibility is not sufficient to falsify the TSS 

model as the failure of a small proportion of individuals to reach a steady state at 

overnight fasting could explain the weak correlation. It is also likely that the 

assumption of fasting may not be true for the entire sample. Even if a small 

number of individuals do not comply with the overnight fasting instructions, a 

positive correlation could be seen. This possibility is extremely difficult to 

exclude in human data. 
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Figure 4: The Fasting Glucose-Fasting Insulin (A to C), Post-meal Glucose-Post-meal Insulin (D 

to F) scatter plots in non-diabetic subjects. The FG-FI correlation is weak as compared to post-

meal correlation.  
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Table 1: Correlation and regression parameters for the insulin-glucose relationship in steady and perturbed states in the normal and diabetic subjects 

   Steady state (fasting)  Perturbed state  

(2 hours post glucose bolus) 

Parameter → 

Data set ↓ 

 R-squared (variance 

explained) 

p value Slope (95% CI 

bounds) 

 R-squared (variance 

explained) 

p value Slope  

(95% CI bounds) 

Normal fasting glucose (NFG) subjects  

CRISIS   

(N=522) 

 0.0570 (5.7%) <0.0001* 0.1178 (0.0765 to 

0.1591) 

 0.3018 (30.18%) <0.0001* 1.2563 (1.0917 to 

1.4209) 

NHP-South 

Asian (N=310) 

 0.0172 (1.72%) 0.021* 0.1818 (0.0279 to 

0.3356) 

 0.344 (34.4%) <0.0001* 1.7347 (1.4661 to 

2.0033) 

NHP-European 

(N=574) 

 0.0548 (5.48%) <0.0001* 0.1988 (0.131 to 

0.2666) 

 0.2844 (28.44%) <0.0001* 0.8314 (0.7231 to 

0.9397) 

Impaired fasting glucose (IFG) subjects 

CRISIS   

(N=42) 

 0.007 

(0.7 %) 

0.940 0.012  

(-0.035 to 0.059) 

 0.002 (0.2%) 0.836 0.033  

(-0.214 to 0.280) 

NHP-South 

Asian (N=143) 

 0.0001 

(0.01%) 

0.907 0.002  

(-0.032 to 0.036) 

 0.015 (1.5%) 0.285 -0.09  

(-0.211 to 0.031) 

NHP-European 

(N=174) 

 0.0000(0%) 0.937 -0.001  

(-0.033 to 0.031) 

 0.039 (3.9%) 0.009* 0.172 (0.043 to 

0.3) 

NFG and IFG combined  

CRISIS   

(N=564) 

 0.044 (4.4%) <0.0001* 0.056  

(0.034 to 0.078) 

 0.124 (12.4%) <0.0001* 0.515 

 (0.402 to 0.629) 

NHP-South 

Asian (N=453) 

 0.016 (1.6%) 0.006* 0.041  

(0.012 to 0.070) 

 0.025 (2.5%) 0.0007* 0.183  

(0.078 to 0.288) 

NHP-European 

(N=748) 

 0.022 (2.2%) 0.00004* 0.045 (0.024 to 

0.066) 

 0.150 (15%) <0.0001* 0.413 (0.342 to 

0.484) 
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The insulin-glucose correlation pattern is substantially altered in the IGF data 

(table 1). However, most individuals in the IGF group were under treatment, the 

drug regime of every individual being widely different. The drugs are likely to 

produce substantial noise in the data. Therefore, any inferences from this group 

are unlikely to be useful in testing the CSS versus TSS predictions.  

 

The support of TSS model over CSS model in epidemiological data is important 

because it accounts for the failure of impairment of insulin signalling to alter 

fasting glucose but alter the nature of the glucose tolerance curve and delay the 

return to the steady state level.  

 

 

Figure 5: HOMA-IR and HOMA-β relationship based on alternative pathophysiological models 

The blue scatter area represents the NFG group and the orange scatter area represents the IFG 

group.  

 

In a different approach, the HOMA-IR, HOMA-β scatter can be used to test 

alternative pathophysiological models (figure 5).  

(i) In the classical view, obesity induced insulin resistance is primary, and the 

compensatory insulin response is mediated by glucose stimulated insulin 

response. However, the β-cell responsiveness is not assumed to increase. If this is 

true, and if we assume that HOMA-IR is a faithful measure of insulin resistance 
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and HOMA- β a faithful measure of β-cell response, then in the NFG group, there 

should be no correlation between HOMA-IR and HOMA β. The IFG group 

should lie to the right of the NFG group since high insulin resistance is the 

primary and necessary condition for IFG. The IFG range may extend downwards 

on the HOMA β axis as in type 1 pattern of figure 5.  

(ii) If, on the other hand, we assume that β-cell response also increases in 

response to insulin resistance, then we expect a positive correlation between 

HOMA-IR, HOMA β in the NFG group. In this case the IFG group should still lie 

only at higher values of HOMA-IR compared to the NFG group but lower on the 

HOMA β axis as in type 2 pattern of figure 5  

(iii) Alternatively, we may assume that the fasting sugar is independent of 

insulin action and therefore HOMA-IR and HOMA β do not really reflect on 

insulin action and β-cell response, respectively. In that case we expect that 

HOMA-IR, HOMA β will be positively correlated simply because they have a 

common numerator term in their calculation. If glucose increases independent of 

insulin, HOMA-IR will increase and HOMA β decrease simply because of the 

formula for calculating the two indices. In such a case IFG would lie to the right 

and lower position as compared to NFG throughout the NFG range, as depicted in 

type 3 patters of figure 5. Here it is not necessary that IFG is seen only at high 

values of HOMA-IR.  

 

 

Figure 6: HOMA-IR-HOMA-β scatters in the three data sets. A: CRISIS, B: NHP-SA and C: 

NHP-Eur.  

 

Using the same three data sources as above, we see that in all the three the type 3 

pattern is followed by the distributions of NFG and IFG in the HOMA-IR, HOMA 

β scatter (figure 6). This pattern further supports the hypothesis that change in 

fasting sugar is independent of insulin and insulin resistance and HOMA-IR, 
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HOMA β do not really represent insulin resistance and β cell responsivity as 

classically assumed (Chawla et al 2018).  

 

3.3 Conclusion 

In short from multiple predictions, the classical CSS based model fails to get its 

predictions supported by human epidemiological data. The data are more 

compatible with the alternative hypothesis that fasting glucose is not decided by 

insulin action. Glucose regulation follows a TSS model, where the target is set by 

mechanisms independent of insulin.  
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Chapter 4: Does impairment of insulin signalling affect steady state 

glucose? The streptozotocin (STZ) model  

 

4.1 Introduction  

Streptozotocin (STZ) induced β-cell destruction is a popular model of rodent 

hyperglycaemia (Szkudelski, 2001; Akbarzadeh et al., 2007; Zhang et al., 2008). 

STZ is believed to act by specifically destroying the insulin producing β-cells of 

the pancreatic islets (Szkudelski, 2001). The STZ model has been considered a 

strong support to the idea that disruption of insulin signalling is the sole or main 

cause of glucose dysregulation. Therefore, it is necessary to examine the strength 

of this evidence, vis a vis alternative possible interpretation. A low dose of STZ 

that destroys a substantial population of β-cells but does not lead to total 

destruction of their population is often perceived as a model for T2DM whereas a 

high dose of STZ that destroys the β-cell population almost entirely is perceived 

as a model of T1DM (Gajdosík et al., 1999; Zhang et al., 2008). We searched 

literature to look for studies that carefully differentiated between steady state 

glucose from post-load glucose in STZ models but surprisingly did not find any 

studies that make this distinction clearly. Therefore, we could not perform meta-

analysis like the other glucose and insulin modulation methods described in the 

chapter 2. 

 

There are certain other paradoxes associated with STZ experiments too. By the 

classical belief, STZ destroys the β-cells and this is said to be the reason for long 

term hyperglycaemia in the treated animals. However, some studies show that β-

cell population regenerates quite rapidly in the STZ treated animals (Wang, 

Bouwens and Klöppel, 1996; Movassat and Portha, 1999). In general, the β-cells 

have good reproductive capacity of regeneration as well as neogenesis (Levine 

and Itkin-Ansari, 2008; Porat et al., 2011). The regenerated cells have also been 

shown to stain normally for insulin content (Cano et al., 2008). However, despite 

revival of the β-cells with normal insulin content, hyperglycaemia continues. This 

paradox has not been addressed satisfactorily, and it raises the possibility that the 

long-lasting hyperglycaemia after STZ treatment is not because of destruction of 
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β-cells alone but due to some other effect of the STZ treatment underappreciated 

so far.  

 

The critical questions asked in this study were:  

(i) What are the insulin levels in STZ animals showing hyperglycaemia? 

Does STZ lead to absence or significantly reduced levels of insulin and does that 

adequately explain the hyperglycaemia observed?  

(ii) Does STZ treatment affect both steady state and perturbed state glucose in 

a similar way? If reduced insulin response to glucose is the main cause of 

hyperglycaemia, then the increase in fasting and post load glucose is expected to 

be similar as predicted by the model in the last chapter. The regression-correlation 

between glucose and insulin in the fasting versus post-meal state should have 

similar parameters despite a different range. If they are affected in significantly 

different ways, additional or alternative explanation is required.  

(iii) Is the effect of STZ treatment on SS and PS glucose levels explained by 

inadequate insulin? If yes, how much variance is glucose in explained by insulin 

within and between treatments? 

(iv) Since some experiments show that the β-cells can regenerate after STZ 

treatment (Wang, Bouwens and Klöppel, 1996; Movassat and Portha, 1999), we 

wanted test whether the hyperglycaemic effect is reduced by giving more time for 

regeneration of cells.  

 

To answer these questions, we designed and conducted experiments to 

differentially study the steady state and perturbed state glucose levels in rats 

treated with STZ. We performed two different experiments to see the differential 

effect of STZ on the SS and PS glucose. In the first experiment we tested the 

effect of STZ treatment over a period of 12 days starting at day 4. However, to 

consider the possibility that β cell regeneration may have been completed before 

day 4, in the second experiment we also tried to see the effect of the STZ 

treatment at days 2, 4 and 6. Additionally, we monitored the dynamics of plasma 

glucose post-feeding to see the time taken to reach a steady state. The work done 

described in this chapter has been published as a part of this paper (Diwekar-Joshi 

and Watve, 2020).  
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4.2 Experimental methods 

4.2.1 Animal model and conditions 

Approval by the Ethics Committee 

The experiments performed on Sprague Dawley (SD) rats were approved by the 

Institutional Animal Ethics Committee at IISER, Pune (Protocol Number 

IISER/IAEC/2016-02/006). Refer to the Appendix for the approval certificate. 

This committee is constituted by the Committee for the Purpose of Control and 

Supervision of Experiments on Animals (CPCSEA), Govt. of India.  

Housing of the animals 

The SD rats were housed at a temperature of 23±2°C with a 12-hour light/dark 

cycle and standard rat chow (Altromin rat/mice maintenance diet) and water 

available ad libitum. The bedding of the cages was changed every three days till 

the rats were of a suitable weight for the experiment. The bedding was changed 

daily after injection of STZ for the duration of the experiment. There were no 

extra measures taken for the enrichment of the animals.  

Euthanasia 

At the end of the of glucose and insulin readings for the duration of the 

experiments (either 6 days or 12 days), the animals were euthanized with an intra-

peritoneal (IP) injection of thiopentone (100-120mg/kg body weight). 

 

4.2.2 STZ treatment for insulin suppression 

Male, SD rats weighing 180-200grams were injected intra-peritoneal (IP) with 

STZ at a dose of either 50mg/kg or 70mg/kg body weight. The STZ was dissolved 

in Citrate Buffer (Citric Acid: 0.1M and Sodium Citrate: 0.1M). Injection of 

citrate buffer (CB) alone was used as control.  

 

4.2.3 Steady state and perturbed state glucose and insulin in a 12 day follow up  

Figure 1 gives the schematic representation of the experimental procedure 

followed. Three days after the STZ injection, the rats were fasted for 16 hours; 

after which fasting glucose was measured. The rats were then given 40 grams of 

Standard chow. Three hours after the food was given, the post-feeding glucose 

was measured. The food was weighed again after five hours and removed to start 

the 16-hour fasting for the next day. This protocol was repeated for 12 days and 
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body weight, food weight and glucose readings were taken daily. 12 animals per 

group were used for this experiment. 

Sampling for glucose estimation:  

Fasting and 3 hours post feeding glucose was measured using a handheld Accu-

Chek Glucometer in this experiment. This measurement required about 0.5-1µl of 

blood which was withdrawn using the tail prick method. Since the volume of 

blood required for this test was small, this sampling was carried out every day. 

Hence, we had the fasting and post-feeding glucose readings for all the animals on 

all the 12 days (figure 1) 

Sampling for insulin estimation: 

On the days four, 8 and 12, 500µl to 1ml blood was drawn from the retro-orbital 

sinus from the rats for the measurement of insulin using isoflurane for 

anaesthesia. (figure 1). Insulin was measured Rat-Insulin ELISA kit from 

Thermo-Fischer according to the manufacturer’s instructions. To minimize the 

stress of repeated blood collection, blood was not drawn at the fasting and post 

feeding time-points from the same animal. Thus, half the number of rats were 

anaesthetised, and blood was drawn from them at the fasting time point on the 

days four, 8 and 12 and the remaining at the post-feeding time point. So, we had 

half the number (6 animals per condition) of insulin readings for the fasting and 

post-feeding condition on the days four, 8 and 12 as compared to the glucose 

readings from all the animals (12 per condition) for all the 12 days.  

 

 

Figure 1: Schematic representation of the experimental protocol followed to test the effect of 

insulin suppression on steady and perturbed state of glucose.  
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4.2.4 Time required to reach a steady state 

According to the published literature, fasting durations ranged from four hours to 

20 hours. We selected 16 hours as the duration of fasting based on review of 

literature (Reed et al., 2000; Zhang et al., 2008; Nowland, Hugunin and Rogers, 

2011; Arindkar et al., 2012). In another experiment, we wanted to test if the 

assumption that fasting glucose is steady state glucose is correct, i.e., whether a 

steady state is reached in 16 hours. The food was removed from the STZ and 

Control animals after overnight ad libitum availability and glucose readings were 

taken after 3 hours, 6 hours, 9 hours, 12 hours and 16 hours. After a recovery of 

three days, glucose levels were measured directly at 16 hours after removing the 

food. 8 STZ treated animals and 10 Control animals were used for this 

experiment. 

 

4.2.5 Short term effect of STZ on steady and perturbed state of glucose  

We also performed one more experiment in which we tried to have a look at the 

short term or immediate effect of STZ suppression on glucose and insulin. In the 

earlier experiment (figure 1) we started measuring the effect of STZ on glucose on 

the fourth day after STZ injection since by a commonly followed norm, a three- 

day stabilisation period after the injection is given before starting fasting protocol. 

The first insulin measurement was done on the fourth day after starting the fasting 

protocol. Along with the long-term or delayed effects of STZ, we also wanted to 

see the short-term effects on the levels of steady state glucose and insulin after the 

STZ treatment. In this experiment, we started the fasting protocol on the second 

day after the STZ treatments and took the readings on day four and day six as 

well.  The fasting duration, method of feeding and weighing of food was identical 

to the first experiment. Figure 2 shows the timeline and protocol for this 

experiment.  
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Figure 2: Schematic representation of the experimental protocol followed to test the short-term 

effect of insulin suppression on steady and perturbed state of glucose.  

 

4.2.6 Statistical analysis  

Glucose and insulin levels of the control and the STZ treated rats were compared 

using a non-parametric Mann-Whitney U test. Since individual responses to STZ 

treatment are highly variable and the resultant distribution is likely to be skewed 

with the possibility of outliers, non-parametric statistics was considered more 

appropriate for comparison. In addition to these tests, the correlation between 

glucose and insulin in the steady state (fasting) and perturbed state (post-feeding) 

was also compared using the Pearson’s correlation coefficient (r), but was also 

backed by non-parametric Spearman’s ranked correlations. For some of the 

questions, such as whether insulin and glucose in the same animal at a given time 

are correlated, data from both experiments and the three treatment groups was 

analysed separately as well as after pooling.  

 

4.3 Results  

4.3.1 Effect of STZ treatment on body weight and food intake  

In all the three groups, the body weight increased over the span of 12 days (figure 

3). There was no significant difference in the body weights of the three groups to 

begin with and the increase in the body weight in each group across 12 days was 

also not significant, although there was a weak but consistent trend of lower body 

weights in the STZ treated animals. It has been reported in literature that STZ 

treatment results in an increased food intake (Hebden et al., 1986; Gelling et al., 
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2004). We also measured the food intake of the three groups across the 12 days of 

the experiment (figure 4). There is no significant difference in the morning (3 

hours after taking the fasting glucose reading)/afternoon (5 hours after taking the 

post-feeding glucose reading) or the total (morning + afternoon) food intake of the 

three groups.   

 

 

Figure 3: Effect of STZ treatment on the body weight of the SD rats. Results expressed as the 

mean ± SD for each group. The sample sizes are as follows for the three groups: N=14 for Control, 

N=12 for STZ-50 and N=9 for STZ-70.  

 

 

Figure 4: Effect of STZ treatment on A: Morning food intake, B: Afternoon food intake and C: 

Total food intake of the SD rats. Results expressed as mean ± SD for each group. The sample sizes 

are as follows for the three groups: N=14 for Control, N=12 for STZ-50 and N=9 for STZ-70.  

 

4.3.2 Differential effect of STZ injection on fasting and post-feeding glucose 

levels  

We used the STZ treatment to induce hyperglycaemia in SD rats. We used two 

different doses of STZ namely 50mg/kg and 70mg/kg. These doses were decided 

based on the review of literature and had been used earlier to induce a T2D-like 
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hyperglycaemia in rats (Gajdosík et al., 1999; Freitas et al., 2015). We performed 

three different experiments on the STZ treated SD rats to answer different 

questions. The starting condition of the animals, the mode of injection of the STZ 

and the measurement of glucose levels after the injection was however carried out 

in similar manner. This enabled us to pool the data from all the experiments in the 

context of certain questions. The pattern seen in the pooled data are that an STZ 

dose of 70mg/dl or even 50mg/dl resulted in an increased post-feeding glucose (> 

200mg/dl) in almost all rats. The effect of the STZ treatment on the fasting 

glucose levels of the rats was not the same as that on the post-feeding levels. If we 

look at the distribution of the glucose levels in the STZ treated rats (figure 3), we 

see that the mode of the distribution in case of the fasting glucose values is within 

the normal range for treatments with 50 and 70mg/kg body weight whereas the 

mode for post-feeding is in the higher than normal range (>200mg/dl). As 

expected, the mode for the 70mg/kg STZ treatment is higher than that of 50mg/kg 

treatment.  

Also, the distribution appears to be bi-modal for the fasting glucose values. The 

fasting glucose of a significant proportion of STZ rats remained normal 

(<140mg/dl) in spite of having high post-feeding levels of glucose (table 1). In 

case of treatment with 50mg/kg STZ, 17 out of 23 rats had normal fasting glucose 

and increased post-feeding glucose levels and only 6 out of the 23 (26.09%) had 

increased fasting glucose levels. In 70 mg/Kg treatment there was a greater 

proportion of rats with IFG 9 out of 22 (40%). Still in both groups majority of 

animals had normal fasting glucose but increased post feeding glucose. Figure 4 

shows the scatters of the post-feeding glucose levels against the fasting glucose 

levels of the STZ treated rats. Almost all of the STZ treated rats have high post-

feeding glucose, but the fasting glucose levels of the STZ-treated rats fall into two 

distinct groups with an apparent gap in between (figure 3 and 4). 
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Figure 5: Distribution of the glucose values at fasting and post-feeding conditions after STZ 

treatment. (A) and (B) represent treatment with 50mg/kg body weight of STZ (n=23)at the fasting 

and post-feeding time-points respectively whereas (C) and (D) represent treatment with 70mg/kg 

(n=22) fasting and post-feeding time-points respectively.  

 

Table 1: Effect of the STZ dose on the fasting and post-feeding glucose values of SD rats.  

Category STZ 50mg/kg body 

weight  

STZ 70mg/kg body 

weight 

High fasting glucose/High 

post-feeding glucose  

6 (26.09%) 9(40.91%) 

Normal-fasting glucose/High 

post-feeding glucose 

17 (73.91%) 13(59.09%) 

Total sample size (n) 23 22 

 

 

Figure 6: Post-feeding glucose versus fasting glucose of SD rats treated with (A) Control injected 

with only citrate buffer (B) 50mg/kg body weight of STZ and (C) 70mg/kg body weight of STZ. 

Black circles represent the rats with normal fasting glucose and orange circles represent the rats 

with high fasting glucose.  

 

In short, pooled across experiments, the effect of STZ treatment in both the doses 

was very clearly and consistently seen in the post feeding glucose levels, but the 
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effect on fasting glucose was highly variable across individuals and a substantial 

fraction of individuals did not show fasting glucose levels higher than normal. 

 

4.3.3 Fasting and post-feeding glucose in 12-day follow up after insulin 

suppression by STZ treatment  

To see the consistency of glucose dysregulation over time in the same individual, 

we followed up marked individuals for 12 days. The three groups were as earlier 

i.e. 

(i) Control: Intra-peritoneal injection of only Citrate Buffer 

(ii) STZ-50: Intra-peritoneal injection of STZ at a dose of 50mg/kg body 

weight of the rat  

(iii) STZ-70: Intra-peritoneal injection of STZ at a dose of 70mg/kg body 

weight of the rat 

 

After a stabilization period of three days after the STZ treatment, the glucose in 

16 hour fasting and post-feeding conditions was monitored over a period of 12 

days. The duration of fasting was chosen as 16 hours based on earlier studies 

(Nowland, Hugunin and Rogers, 2011). In the rodent studies shortlisted in the 

IRKO meta-analysis, we have seen that the 30% of the studies that have used 16 

hours as the fasting duration were least likely to show increased fasting glucose.  

We performed pair wise Mann Whitney U tests between Control and STZ-50 

glucose values at the fasting and post-feeding time points. Similar procedure was 

followed for that of the STZ-70 group as well. Table 2 and figure 7 shows that the 

difference in the glucose levels between the treated and control was highly 

significant during the post-feeding time point for both STZ-50 and 70 on all the 

12 days. In the case of STZ-50 treatment, the difference between fasting sugar in 

the control and treated was not significant on any of the 12 days. In 4 of the 12 

days the mean in the STZ-50 group was lower than the control group. This means 

that the failure to get significance was not due to inadequate sample size alone. In 

the case of the higher dose of STZ-70, it was seen that the fasting glucose was 

significantly higher on 6 out of the 12 days. However, unlike STZ-50, the mean 

and median glucose was always higher than the control.  
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Table 2: p-values of the pair wise Mann-Whitney U tests between the glucose levels of control 

and treated rats. * represent the p < 0.05.  

Time point → Fasting  Post-feeding  

Difference 

between → 

Day ↓ 

Control 

(N=14) and 

STZ-50 

(N=12) 

Control 

(N=14) and 

STZ-70 (N=9) 

Control 

(N=14) and 

STZ-50 

(N=12) 

Control 

(N=14) and 

STZ-70 

(N=9) 

1  0.2187 0.00022* 0.0088* 0.00105* 

2 0.69654 0.09492 0.0012* 0.00094* 

3  0.22628 0.06724 0.00044* 0.00024* 

4 0.30302  0.101 0.00084* 0.0006* 

5  0.35238 0.0278* 0.00168* 0.00075* 

6 0.93624 0.03486* 0.00032* 0.00016* 

7 0.5552 0.23014  0.00062* 0.00075* 

8 0.3843  0.0278* 0.00056* 0.00017* 

9 0.1543 0.07186 0.0007* 0.00117* 

10  0.50286 0.07186  0.00142* 0.0018* 

11  0.32708  0.01684* 0.00014* 0.00059* 

12 0.15854 0.03236* 0.00132* 0.00025* 

 

 

Figure 7: Effect of the STZ treatment on the (A) Fasting and (B) Post-feeding glucose levels in 

Control, STZ-50 and STZ-70 SD rats. The glucose values are mean ± SE for each group with the 

sample sizes for the three groups: N=14 for Control, N=12 for STZ-50 and N=9 for STZ-70.  

 

However, if we look at the fasting glucose of the same animal over the 12 days, 

we see that with only one exception, no individual consistently showed a higher-

than-normal fasting glucose on all the days even in the STZ-70 group. In contrast, 

the animals that showed higher post feeding glucose, remained higher than normal 

consistently on all days.   
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Figure 8: Fasting(A) and post-feeding (B) glucose of each individual animal over the span of 12 

days.  

 

The 12 day follow up experiments reveals that the effect of STZ is consistent in 

the expected direction on the post feeding glucose level but is inconsistent and 

highly variable across individuals as well as across time for the same individual. 

The glucose levels do not show any time trend over the 12 days tested. Since β 

cell population is known to recover by regeneration, we would expect a gradual 

progress towards normalcy of glucose levels, which is not seen over the 12 days. 

Since the hyperglycemia following STZ treatment is assumed to be due to lack of 
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insulin producing cells and thereby absolute deficiency of insulin, we estimated 

insulin on selected samples as follows.  

 

4.3.4 Fasting and post-feeding insulin after STZ treatment  

We measured the insulin levels of the control and treated rats at the two time 

points fasting and post-feeding just as we did in case of the glucose measurement. 

However, insulin measurement needs at least 500µl of blood and we need to 

anesthetize the animal to obtain this blood. The retro-orbital sinus was chosen as 

the site of blood withdrawal. We did not draw blood at the fasting and post-

feeding time-point from the same animal as the anaesthesia given during the blood 

withdrawal for the fasting time-point would have influenced the food 

intake/behaviour as well as metabolism on the post-feeding time-point. So, we 

used half the rats in each group for blood withdrawal at the fasting time-point and 

half at the post-feeding time point. Additionally, we could not draw blood for 

insulin on all 12 days like that for glucose because of the effects of the 

anaesthesia. So, the blood withdrawal was done on the days 4, 8 and 12 of the 

experiment. The blood withdrawn was separated immediately into serum and the 

serum was stored at -80°C. Insulin levels were measured using the Rat-insulin 

ELISA kit (Thermo-Fisher) as per the manufacturer’s instructions. The samples 

were run in duplicates and the samples where the single values differed more than 

10% from the mean were not used for further analysis. We analysed the difference 

between the insulin levels of the control and treated at the fasting and post-feeding 

time-points. Treatment with neither of the doses of STZ showed a significant 

change in the insulin levels in the fasting state, but the post feeding insulin levels 

of STZ animals was lower than the controls (figure 9). 

 

STZ treatment at both doses increased the variance between fasting insulin levels 

of individuals but the means were not significantly reduced as compared to the 

controls. For STZ-50, the mean fasting insulin was actually greater than the 

control, although not significantly. This means that the failure to detect 

significance was not due to small sample size alone. The direction of change is 

also not as expected. In the post-feeding data, however, the mean levels of insulin 

were consistently lower than the control. Particularly in STZ 70 post-meal insulin 

was clearly deficient as compared to control on all the three sampling days.  
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Figure 9: Effect of STZ treatment on the insulin levels of SD rats. Insulin levels were measured at 

fasting (A) and 3 hours post-feeding (B) on the days 4,8 and 12 of the 12 day follow-up 

experiment. The insulin values are mean ± SE for each group with the sample size of 3 to 6 for 

each group.  

 

It is quite likely that the failure to get significant difference between groups is a 

result of high within group variance, particularly within the STZ treated groups. 

So, we pooled the readings of the three groups (days 4,8 and 12) and used scatter 

plots to see whether and to what extent variance in insulin explains the variance in 

glucose. (figure 10). 

 

Figure 10: Glucose and insulin scatter in the 12-day follow up experiment. (A) Correlation in the 

fasting condition and (B) Correlation in the post-feeding condition. See parameters in table 3. 
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Table 3: Coefficients of determination (R-squared) and correlation coefficients (r) of the insulin-

glucose scatters for the 12 day follow up experiment. The correlations within control and treatment 

groups are consistently negative, although not significant. The lack of significance may be because 

of small sample size. However, the variance in glucose explained by insulin is always small. 

Pooled over all treatments, in the fasting condition insulin-glucose correlation is not significant 

and the variance in glucose explained by insulin is only 4.6%. However, post feeding the 

correlation was significant with 48.5 % variance in glucose being explained by insulin.   

Condition → 

Group ↓ 

Fasting Post-feeding 

R-squared  r R-squared  r 

Control 0.01254 -0.11198, n=14 

p=0.703 

0.13788 -0.37133, n=18 

p=0.13 

STZ-50 0.06961 -0.26384, n=9 

p=0.494 

0.056697 -0.23811, n=16 

p=0.374 

STZ-70 0.216469 -0.46526, n=9 

p=0.207 

0.005724 0.07566, n=9 

p=0.8479 

Control+STZ-

50+STZ-70 

0.046 - 0.214,  n=32 

p = 0.239 

0.235  

 

-0.485, n=43 

p = 0.001 

 

If the difference in glucose levels were mainly caused by the difference in insulin, 

we would have expected a negative correlation between glucose and insulin in the 

data pooled over the three treatment groups. We see such a significant correlation 

for the post-feeding levels but not for the fasting levels. This is because there is a 

large overlap in the insulin levels of the control and STZ treated groups in fasting 

condition. Only two animals in the control group have higher fasting insulin than 

the STZ groups. This means it is not true that after destruction of the β cells by 

STZ, insulin is not produced at all. Although we did not histologically test the 

regeneration of β cells, fasting insulin appears to have normalized indicating 

adequate level of regeneration. Nevertheless, the insulin response to feeding 

appears to be still deficient in the STZ groups.  

 

4.3.5 Effect of the duration of fasting 

In the meta-analyses reported in the earlier chapter we have seen that the duration 

of fasting used in rodent experiments was highly variable ranging from 4 hours to 

up to 24 hours. Most studies reported using 16 hours as the duration of fasting 

before conducting an oral glucose tolerance test. This variability poses a problem 

as the exact time when the steady state is reached is not known. We performed an 

experiment to see how much time was required to reach a steady state of glucose 

after removal of food. We removed the food from the STZ and Control animals 
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after overnight ad libitum availability and measured the glucose after 3 hours, 6 

hours, 9 hours, 12 hours and16 hours after food removal. After a recovery of three 

days, we repeated the experiment but measured glucose directly at 16 hours after 

removing the food. Nine STZ-50 animals and 10 Control animals were used for 

this experiment. 

 

 

Figure 11: Time course of glucose on 16 hours fasting. The grey band represents the upper and 

lower bounds of 95%CI of the control group with the mean glucose values represented by filled 

circles. Filled squares represent individuals from the STZ group that showed a monotonic decrease 

in glucose levels. In three animals the glucose levels reduced at or below the control levels and in 

two others they showed a continued monotonic decrease but did not reach the normal level in 16 

hours. Filled triangles with dotted lines represent the individual time courses of the three STZ 

treated rats which showed some indications of stabilizing at a steady state above the normal. 

 

A close look at the time course of fasting in the two groups revealed that in 4 out 

of 9 STZ animals the glucose levels reached the normal range but with substantial 

delay as compared to control animals (figure 11). Animals that showed delay in 

returning to steady state did not show a higher steady state glucose level. In two 

more animals the levels did not reach the normal range till 16 hours, but a 

monotonic decrease continued throughout the period, indicating that their blood 

glucose may not have reached a steady state in 16 hours. Only in 3 animals the 

16-hour glucose was higher than the control range with some indications of 

stabilizing at a higher level.  

It is possible that the stress of repeated sampling might have caused some 

metabolic disturbance leading to a higher glucose level in some of the animals. 

When after a gap of few days the same animals were subject to a similar 
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experiment but were sampled only once after 16 hours, there glucose levels were 

lower than the repeated sampling experiment (figure 12).  

 

 

Figure 12: 16-hour glucose in the repeated sampling experiment versus single sampling after 16 

hours. Most animals show a lower level if sampled only once.  

 

This experiment showed that there is certainly a variable lag in reaching the 

steady state in the STZ treated animals. The delay in returning to steady state 

seems to be independent of the steady state level. Although 3 animals appeared to 

have reached a higher steady state, in this experiment, we have seen earlier in the 

12 day follow up experiment that no single animal showed consistently higher 

fasting glucose on all the 12 days (figure 8). Therefore, although a delay can 

certainly be inferred with confidence, evidence is not sufficient to conclude that 

STZ treated animals show a consistent higher steady state glucose.  

 

4.3.6 The 2 to 6 day experiment  

The effect of STZ treatment on the fasting or steady state glucose and the post-

feeding or perturbed state glucose was apparent in the 12 day follow up 

experiment. In the 12 day follow up experiment performed earlier; we started the 

fasting protocol after a three-day stabilising period after giving the STZ injection. 

We wanted to check if the β-cells actually recovered even before this three day 

period and that is the reason why we see the normal levels of the fasting glucose 

levels. In short, we wanted to see if we can capture the effect of β-cell 

regeneration in a shorter time frame. The design of this experiment was similar to 
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that of the first experiment except that the fasting protocol was started 

immediately one day after the STZ treatment (figure 2). The fasting protocol was 

followed and the glucose and insulin were measured on the days two, four and six 

after the STZ injections. In this set up, the fasting and post-feeding insulin was 

measured on the same animal, taking the risk of subjecting the animal to a greater 

stress, but in tern one source of variability was reduced.  
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Effect on glucose levels  

 

Figure 13: Time course of glucose and insulin on 2, 4 and 6 days of STZ treatment. A. Fasting 

glucose B. Post feeding glucose C. Fasting insulin and D. Post feeding insulin. There is a weak 

trend of decreasing glucose and improvement in insulin between day 2 and day 6, which is 

compatible with the expectation of improving glucose control by regeneration of β cells. Except 

for post-meal glucose, in STZ-70, the trends are not significant.   

 

Table 4: p-values of the pair wise Mann-Whitney U tests between the glucose levels of the control 

and treated rats. * represent the p-values < 0.05. Sample size for each group is between 3 to 10.  

Time point → Fasting  Post-feeding  

Difference  

between → 

Day ↓ 

Control 

and STZ-

50 

Control 

and STZ-

70 

Control 

and STZ-

50 

Control and 

STZ-70 

2 0.62414 0.14156 0.01878* 0.0784 

4 0.9442 0.3757 0.0932 0.133- 

6 0.5926 0.30942 0.5927 0.7702 

 

The fasting glucose did not differ from the control on any of the days (table 4). 

But we see a weak time trend in this experiment (figure 13) in the post-meal 

glucose which was significantly greater than control on day 2 for STZ-50 and 

marginally significant for STZ-70. On days 4 and 6 the post-meal glucose was 

higher than the control, but the difference was no more significant. This trend is 

compatible with the expectation of regeneration of β cells in 3-4 days after STZ 
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treatment (Movassat & Portha, 1999; Wang et al., 1996) but the trend is too weak 

to conclude either way. On the other hand, we did not observe an increase in 

fasting or post feeding insulin levels during this time. Therefore, these data do not 

clearly reflect on the possibility of β cell regeneration between 2 to 6 days.  

In this experiment, in data pooled over the three days (figure 14), the insulin 

levels of the STZ treated animals overlapped considerably with those of the 

control animals. Although some animals in STZ 50 and 70 group showed high 

post feeding glucose, their insulin levels were not significantly lower than 

controls.  

 

 

Figure 14: Insulin glucose scatters pooled across days two, four and six for Control (black 

circles), STZ-50 (blue circles) and STZ-70 (red circles) in the fasting (A) and post-feeding (B) 

conditions.   

 

4.3.7 Insulin-glucose correlation in data pooled over all experiments:  

Individual animals show substantial variability in the effects of STZ. However, if 

the main mechanism behind STZ induced hyperglycaemia is β-cell damage and 

thereby insulin suppression, we would expect a negative correlation between 

glucose and insulin across the board. We pooled the data from the 12 day follow 

up and the 2,4,6 day follow up experiments. In the control as well as two 

treatment groups the correlations are consistently negative although not all are 

individually significant. When pooled across the board, fasting glucose and 

insulin were not significantly correlated with each other, but post-feeding glucose 

and insulin were significantly negatively correlated. Overall, the variance in 

glucose explained by insulin was small.  
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Table 5: Coefficient of determination (R-squared) values for the correlation between glucose and 

insulin of the control and treated rats in the pooled data from short-term and long-term 

experiments.  

Condition → 

Group ↓ 

Fasting  Post-feeding  

R-squared r R-squared r 

Control 0.001912 

 

0.0437, n=24 

p=0.8393 

0.32173* -0.5672, n=27 

p=0.002 

STZ-50 0.014023 

 

-0.1184, n=16 

p=0.6633 

0.05418 -0.23276, n=21 

p=0.31 

STZ-70 0.291223* 

 

-0.540, n=19 

p=0.0172 

0.08915 -0.2986, n=17 

p=0.245 

Control+STZ-

50+STZ-70 

0.048 -0.219, n=59 

p=0.096 

0.152 -0.39, n=65 

p=0.0013 

 

 

Figure 15: Insulin glucose scatters pooled across long-term and short-term experiments. STZ-50 

(blue circles) and STZ-70 (red circles) in the fasting (A) and post-feeding (B) conditions.   

 

4.4 Discussion  

Streptozotocin (STZ) is a widely used model of rodent diabetes and the 

mainstream belief is that it acts by specifically destroying insulin producing β cell 

population. It was believed earlier that the β-cell population, once destroyed, does 

not regenerate. Regeneration capacity of β-cells having been demonstrated clearly 

after STZ treatment; a paradox arose. The prior belief that the STZ treated animals 

show lifelong insulin deficiency and that explains their persistent hyperglycaemia 

is seriously under doubt.  

 

STZ has been shown to induce certain other physiological changes in the body 

along with β-cell destruction. Particularly relevant is the down-regulation of 

growth factors such as FGF21 by STZ (Omar et al., 2014; Kim et al., 2015) and 

reduction in glut-1 expression in the brain (Chapter 12, Watve, 2013). The claim 
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that intra cerebroventricular single injection of FGF1 normalizes sugar levels in 

STZ model of diabetes, along with other rodent diabetes models (Scarlett et al., 

2016) has raised many new possibilities. On this background, it is necessary to 

reexamine the classical belief that STZ acts by at least partly irreversible 

destruction of β cells alone.  

 

In this context our experiments do not clearly falsify the β-cell centered 

hypothesis of STZ action but certainly expose some anomalies and raises 

important questions. In the earlier chapter, we demonstrated that if the insulin 

signalling machinery is impaired by some method, the change of this impairment 

is consistently evident on the post-feeding glucose levels but not on the fasting 

glucose levels. We have now demonstrated even in the STZ model, that change in 

fasting glucose and change in post feeding glucose do not show the same patterns.   

The treatment with STZ affects the fasting and post-feeding levels of glucose in a 

different manner. Firstly, we see that after an injection of STZ, most the rats still 

continue to show normal levels of fasting glucose even though they show high 

levels of the post-feeding glucose (figure 3 and table 1). This effect is expectedly 

more profound in STZ-50 as compared to STZ-70. Though even in STZ-70, a 

significant number of rats continue to show normal fasting glucose levels. Further, 

the animals that showed higher fasting glucose on a given day did not necessarily 

show the same on all days, which post feeding glucose was more consistently 

high.  

 

By an insulin resistance-based CSS model of glucose homeostasis that we saw in 

the last chapter, if the insulin-glucose relationship parameters in the fasting and 

post feeding state are the same, the insulin-glucose correlation and regression 

should show comparable parameters. This we did not see in human 

epidemiological data, and we do not see it in the STZ experiment as well. It would 

be interesting to see whether the alternative actions of STZ such as its effect on 

growth factor signalling and glut-1 expression can explain the patterns 

inadequately explained by the β-cell destruction alone. But this exploration is 

beyond the scope of this thesis.  
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Chapter 5: Fasting glucose and fasting insulin and insulin 

resistance: inferring causal relations 

 

5.1 Introduction  

In the chapters 2, 3 and 4 we have established that the relationship between 

insulin and glucose is different in the steady state versus the perturbed state. 

Impairment of the insulin function/signalling does lead to a change in the glucose 

levels. But this change is significant only in the perturbed/post-meal state. The 

three approaches used in the earlier chapters consistently show that impairment of 

insulin signalling does not affect the steady state represented by the fasting 

glucose levels. This leads to a broader question of finding out the causality in the 

steady state versus the perturbed state. To begin with, inferring causality in 

biology and medicine is a difficult area with philosophical as well as 

methodological issues. Causality can be inferred using correlations in 

longitudinal/times series data or cross-sectional data. There have been many 

debated instances of inferring causality from correlations in biomedicine (Baker, 

2008; Gerber and Offit, 2009; Ratzan, 2010) There have been many attempts to 

develop sound methods to address questions of causal inference from correlation 

data which include Hill criteria (Hill, 1965), path analysis (Niles, 1923; Wright, 

1934, 1960; Meehl and Waller, 2002), the use of instrumental variables 

(Greenland, 2000), Granger causality (Granger, 1969), Rubin causal model 

(Rosenbaum and Rubin, 1983), or additive noise models (Peters, Janzing and 

Scholkopf, 2011).  

 

In a massive team effort, our lab developed a novel set of methods to infer causal 

pathways reliably from cross-sectional correlations, provided there were three or 

more inter-correlated variables measured over the same individuals in a 

population. The team developed a set of general predictions and showed that 

different causal pathways make different predictions along these paths, using 

which hypothetical causal pathways can be rejected or accepted. I will elaborate 

on this in the section 5.1.  

In experimental biology causal inferences are made from perturbation 

experiments. As a general principle, if a perturbation in X changes Y, X is said to 
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have a causal effect on Y. However, this is not as straightforward as it appears and 

there are many logical traps in such inferences. I will elaborate on this in the 

section 5.2.  

We are fortunate that we have both types of data to infer causal relationships 

between glucose and insulin and I will discuss both in this chapter to see whether 

they converge on the inferences. This work has been published partly in the paper 

by Chawla et al 2018 from our lab and partly in the paper Diwekar-Joshi and 

Watve, 2020.  

 

5.2 Inferring causality from steady state correlations: a novel approach  

In the team effort from our lab, we established certain novel methods to infer 

causal pathways from steady state correlations (Chawla et al 2018). To state in 

brief, these methods use the following lines of pathway predictions.  

If A, B and C are the three inter-correlated variables, the causal linkages between 

the three can be inferred based on,  

1. Whether 𝑟𝐴𝐶
2  can be estimated from the product of 𝑟𝐴𝐵

2 and 𝑟𝐵𝐶
2 . For some 

pathways 𝑟2
𝐴𝐶 = 𝑟2

𝐴𝐵.𝑟
2

𝐵𝐶 for some pathways 𝑟2
𝐴𝐶 <  𝑟2

𝐴𝐵.𝑟
2

𝐵𝐶  and   𝑟2
𝐴𝐶 >

𝑟2
𝐴𝐵.𝑟

2
𝐵𝐶 for other pathways.  

2. Whether slope 𝑀𝑐𝑎can be estimated from the product of the slopes 𝑀𝑏𝑎and 

𝑀𝑐𝑏, the three possibilities here being like those mentioned in 1. 

3. Whether the residuals of the regression of B on A (𝐸𝑏𝑎) are correlated with 

those of C on B(𝐸𝑐𝑏): The errors or residuals in a regression are assumed to be 

random independent errors. However, if there are loops, convergent or confounding 

elements in a pathway, 𝐸𝑏𝑎and 𝐸𝑐𝑏 do not remain independent. Based on the nature 

of dependence between 𝐸𝑏𝑎and 𝐸𝑐𝑏, presence of, and possible nature of the loops 

and convergence can be inferred. 

4. a. Whether correction for A improves or reduces the correlation of B with 

C, i.e. whether 𝑟𝐸𝑏𝑎𝐶
2  is greater or lesser than 𝑟𝐵𝐶

2 .  

b. Whether the extent to which 𝑟𝐸𝑏𝑎𝐶
2 is greater or lesser than 𝑟𝐵𝐶

2 can be 

predicted by 𝑟𝐴𝐵
2 . 
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5.2.1 Applying the method to the example of fasting glucose, fasting insulin and 

insulin resistance  

After developing rigorous statistical methods for hypothetical pathway testing, we 

used these methods to analyse the relationship between steady state plasma 

insulin, plasma glucose and insulin resistance. My role in this teamwork was in 

applying the methods developed by my colleagues to the epidemiological data 

from the sources described in chapter 3. Based on the novel principles and 

methods, the classical genesis of an insulin resistant, hyperinsulinemic 

normoglycemic state was examined and it got rejected by the analysis. The details 

of this work are published (Chawla et al., 2018). I will only include a small part of 

this analysis here.  

 

5.2.1.1 The possible pathways  

We can use FG, FI and HOMA-IR as the three variables and test the classical 

pathway(s) against a null model in which FG and FI do not affect each other and 

HOMA-IR is only a derived variable. 

 

Figure 1: Possible pathways between insulin resistance, FG and FI: a) A simplified single feedback 

pathway that approximates the negative feedback pathway. b) A null model assuming FG and FI to 

be independent and HOMA-IR, a derived construct. c) An improvised null model with an external 

causal factor influencing FG and FI. d) The classically perceived pathway with dual feedback from 

glucose and insulin. (Already published in Chawla et al 2018) 
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We compared the regression-correlational predictions of the following possible 

alternative pathways. The classical pathway is depicted in figure 1a in which 

insulin resistance is primary, it reduces glucose disposal rate thereby increases 

FG. The rise in FG induces a rise in insulin. The insulin in turn suppresses glucose 

level. Pathway 1b assumes that FG and FI are independent of each other and 

HOMA-IR is only a derived variable. This can be considered as a null hypothesis 

to test 1a. In fact, for testing the classical pathway, a null hypothesis should have 

been necessary but has not been considered so far. Pathway 1c is a refinement of 

1b in which FG and FI can be affected by something else such as autonomic 

signals and HOMA-IR is only a derived variable. In both 1b and 1c, HOMA-IR 

does not represent insulin resistance. In 1d, liver glucose production is the focal 

variable which is under dual feedback control from glucose and insulin and the 

feedback from insulin is affected by insulin resistance.  

 

5.2.1.2 Testing these pathways analytically and using simulations 

Since from experimental literature we have estimates of realistic parameters in 

these pathways, we can use them analytically or in simulations to test alternative 

causal pathways. The parameters taken from literature are as follows. 

 

Table 1: Real life values of the parameters used in the simulations. These values have been 

obtained from the estimates published in literature.  

Symbol Description of the parameter Estimated mean value 

used (units) 

𝑑  Rate constant for insulin degradation  0.15/min 

𝑘3 Rate constant for glucose-stimulated insulin 

secretion 

0.08µIU/mg/min 

𝐿 liver glucose production independent of 

insulin 

20 mg/dl/min 

𝑘1 Rate constant for glucose feedback   0.5 

𝑘2 Rate constant for insulin feedback   2 

 

𝒅 (Insulin degradation rate):  

The half-life of insulin has been determined experimentally in various model 

systems ranging from isolated cells to humans. To calculate the rate constant for 

insulin degradation, we used the half-life of insulin estimated as 5 to 6 minutes 

(Tomasi et al., 1966; Matthews et al., 1985).  

𝒌𝟑 (Rate constant for glucose-stimulated insulin secretion):  
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The value for this parameter was calculated based on experiments on isolated 

human pancreatic islets which show glucose-stimulated insulin secretion 

(Marchetti et al., 1994; Chirieac et al., 2000; Westerlund and Bergsten, 2001). 

Insulin secretion was measured in this study after exposing the islet cells to 

different concentrations of glucose. The mean value of 0.08 was used for this 

parameter (Marchetti et al., 1994). Similar studies have also been performed in rat 

islets (Westerlund and Bergsten, 2001) and in vivo as well (Chirieac et al., 2000). 

It is known that in humans, insulin secretion is stimulated by glucose above a 

threshold estimated to be 63mg/dl. Therefore, the index HOMA-β has a 

denominator as glucose concentration above the threshold. 

 

𝑳 (Rate constant for liver glucose production independent of insulin):  

The net hepatic glucose production has been measured using a variety of tracer 

techniques and is reported to be around 10-15mg/dl (Shulman et al., 1990; 

Rothman et al., 1991). Absence of insulin signalling, such as during extreme 

hypoglycaemia results in a 25-30% increase in hepatic glucose production (Chu et 

al., 1997; Moore, Connolly and Cherrington, 1998). Hence the value of 𝐿 used in 

the simulations was 20mg/dl.  

 

Insulin sensitivity: 

Since no genuine measure of insulin sensitivity independent of insulin and 

glucose measurement is available, we assume the normal healthy insulin 

sensitivity to be unity. At the normal level of insulin sensitivity, the reduction in 

liver glucose production mentioned above is brought about by a fasting insulin 

level of 5 to 10 µIU. The rate constant K2 for insulin feedback can be calculated 

from this to range between 0.5 and 1. Given these estimates the constant for 

glucose feedback K1 needed to give the normal fasting value of insulin was 

calculated as 0.15 to 0.2.  

 

Tissue glucose uptake: 

To countercheck our estimates of K1 and K2, we calculated the normal glucose 

uptake by tissues based on these parameters, which ranges between 15 to 20 

mg/dl/min. Fludeoxyglucose (FDG)-Positron emission tomography (PET) 

scanning has been used to measure the glucose uptake in specific muscles. Based 
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on these results, the average whole body muscle glucose uptake is close to 18 

mg/dl (Nuutila et al., 2000; Hällsten et al., 2002; Fujimoto et al., 2003). These 

estimates match well.  

Thus, we can use a set of parameters that closely approximate the real-life values. 

However, it needs to be realized that many of the inferences drawn from the 

prediction signatures are independent of the actual parameters used. Therefore, 

even if some of the parameter estimates used are biased or unrealistic, it is not a 

serious threat to the conclusions. 

We use the equations in chapter 3 again here and test the predicted regression-

correlation parameters against epidemiological data from the same sources as in 

chapter 3.  

 

5.2.1.3 Testing the predictions against data 

We tested the predictions from the pathways shown in the figure 1 against the 

human data. The details of the datasets have already been given in Chapter 3. The 

same datasets were used for this section as well. Assuming classical pathway and 

faithful indices: The following predictions of the classical pathway depicted in 

figure 1d are testable using the following approaches:  

 

Approach 1:  

1. HOMA-IR, FG and FI should be positively correlated to each other. This 

prediction is true in all the data sets. The correlations between FG and FI however 

are weak. In terms of the variance explained (range 1.7 to 5.7 %) FG and FI are 

poorly related (Chapter 3). The glucose homeostasis model expects a positive 

correlation between FG and FI. It is important to note this, since in the classical 

thinking, a prediabetic state is characterized by increased insulin but normal glucose 

levels. If the compensatory insulin response is mediated through glucose, it is 

impossible to have a raised FI without a proportionate rise in FG. In the pathway 

predictions, a positive correlation between FG and FI is expected independent of 

the feedback loop. However, the classical thinking tries to explain a 

hyperinsulinemic normoglycemic state achieved through this pathway. The poor 

correlation between FG and FI, and a large coefficient of variation in FI compared 

to FG indicates that a normoglycemic hyperinsulinemic state may indeed be 

achieved, but whether the classical pathway offers a sound explanation for this state 
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is the question. In an insulin resistant state, the level of FI seems to increase by 

about 10-fold the normal. However, the difference between the lower and upper 

limit of glucose in a pre-diabetic state is less than 1.5-fold. To achieve a tenfold 

increase in the effect resulting from a 1.5 fold increase in the causal variable, the 

slope needs to be of the order of 7 to 8. However, in the data, the regression slope 

ranges between 0.11 and 0.19 (Table 1, chapter 3). Therefore, the variance in FI is 

unlikely to be caused by variance in glucose following insulin resistance. Therefore, 

we need to conclude that most of the variation in FI appears to be random error (or 

some due to some factor other than glucose) and not a compensatory rise in response 

to FG. From equations 3 and 4 of chapter 3, steady state FG and FI can be derived 

as 

𝐹𝐺 =
𝑑. (𝐿 + 𝑒1) − 𝐼𝑆𝐸𝑁𝑆. 𝐾2. 𝑒2

𝐾1. 𝑑 + 𝐼𝑆𝐸𝑁𝑆. 𝐾2. 𝐾3
 

𝐹𝐼 =
𝐾3. 𝐹𝐺 + 𝑒2

𝑑
 

2. Based on the steady state equations, the slope of the regression of FI on FG 

should be K3/d. Empirical estimates for values of K3 and d are available from 

literature (table 1) and hence this prediction can be tested. The empirical estimates 

are K3 = 0.08 µIU.mg/min and d = 0.15/min respectively, and thereby the expected 

slope is 0.533. In all data sets, regression slopes are significantly smaller than the 

slopes predicted from the empirical estimates 0.11 to 0.19. Thus, apart from a 

mismatch between the slope required to cause the observed variation in FI and 

actual slopes, the slopes expected from the empirical estimates of parameters and 

those obtained in regression also do not match. The latter mismatch by itself may 

not be sufficient to reject the pathway since a large measurement error in the X 

variable, i.e.,FG can lead to underestimation of regression slope, but this 

explanation implies that a substantial part of variation in glucose is independent of 

insulin resistance, and is akin to random error with respect to the hypothetical causal 

pathway.  

3. HOMA-β in our assumption represents K3. However, K3 is a constant in 

our model, and although it may have some variability in the population, it is 

uncorrelated with the three variables of concern. Therefore, HOMA-β should show 

no significant correlation with FG, FI and HOMA-IR. However, in all the data sets 

HOMA-β is significantly positively correlated with FI, but negatively correlated 
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with FG and positively correlated with HOMA-IR. This is substantial mismatch 

with the classical model. 

4. In a negative feedback pathway 𝒓𝑨𝑪
𝟐 > 𝒓𝑨𝑩

𝟐 . 𝒓𝑩𝑪
𝟐 . Qualitatively this 

inequality is true for HOMA-IR, FG and FI in the data. However, simulations show 

that there is overfitting of the inequality. 𝑟𝐴𝐶
2  in all the datasets and are substantially 

higher than the distribution obtained in the simulations (figure 2). The correlation 

between FI and HOMA-IR is far greater than that predicted by the simulations, 

leading to an overfitting rejection.  

Thus, if we assume the two HOMA indices to faithfully represent insulin resistance 

and β-cell response respectively, then classical pathway needs to be rejected owing 

to mismatches with many of its predictions. 

 

Figure 2: Frequency distribution of correlation coefficients in simulations of the classical pathway 

leading to prediabetic state: Bars represent the distribution of Pearson’s correlations obtained in 

10000 runs of simulations. The arrows indicate Pearson’s correlations in the datasets of empirical 

data. The distribution generated by simulations matches well with the real-life correlations for true 

IR-FG (grey bars and arrows), FG-FI (red bars and arrows), and the product of the two (purple bars 

and arrows). The correlation between true IR and FI is greater than the product as predicted by the 

pathway (green bars, we do not have empirical estimates of these correlations) but the correlation 

between HOMA-IR and FI (blue bars and arrows) is substantially greater than the predicted leading 
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to an overfitting rejection. This indicates that either HOMA-IR as currently calculated is 

substantially different from true insulin resistance or the pathway get rejected based on this 

prediction. 

Approach 2: Effects of deriving HOMA-IR and HOMA-β from FG and FI:  

HOMA-IR and HOMA-β are not measured independently but are derived from FG 

and FI measurements. Some correlations will hence follow from the derivations 

themselves. The overfitting anomaly seen above could be explained as an artefact 

of the calculation of HOMA-IR. However, other anomalies do remain unexplained. 

We assume here that the classical pathway is true and therefore, FI is a linear 

function of FG. If FI is represented as m.FG + e, HOMA-IR will be correlated to 

FG2. Similarly, HOMA-β should be represented as m.FG/(FG – 63)+e. Under 

normal physiological range, FG > 63 and therefore HOMA-β is a decreasing 

function of FG. As a result, both FI and HOMA-IR should be negatively correlated 

to HOMA-β. Simulations of the pathway results in a negative correlation between 

HOMA-IR and HOMA-β till the errors are small to moderate. These expectations 

do not match the empirical data, in which FI and HOMA-IR have significant 

positive correlations with HOMA-β. Thus, accepting the classical pathway with 

some allowance for artefacts coming out of the derived variables is not sufficient to 

explain the empirical correlations. 

 

Approach 3:  

Testing the predictions of the null model: If FG and FI are independent of each 

other and have some variance around a mean, HOMA-IR is expected to be 

positively correlated with both since it is a product of the two. FI should be 

positively correlated with HOMA-β, but FG should be negatively correlated with 

HOMA-β. In the HOMA-IR- HOMA-β relationship, FI is in the numerator of both. 

FG is in the numerator of HOMA-IR but in the denominator of HOMA-β. 

Nevertheless, since the coefficient of variation of FI is substantially greater than 

that of FG, FI is expected to dominate the relationship and result in a positive 

correlation between HOMA-IR and HOMA- β. All these predictions are observed 

in the data. The mismatch of the null model with the data is that it assumes FG and 

FI to be independent and uncorrelated. In the three sets of data, there is a significant 

but weak correlation between the two. The r2 ranges from 0.017 to 0.057, and thus 

not more than 6 % of variance is explained by the relationship.  
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We need to examine now to what extent HOMA-IR faithfully represents the true 

insulin resistance because if it does, the classical pathway certainly gets rejected. 

This can be examined in the simulations since the true insulin resistance is an input 

variable and HOMA-IR can be calculated as an outcome of the simulations. We see 

that HOMA-IR is correlated well with true insulin resistance when both e1 and e2 

are close to zero (figure 3). As the errors increase, the correlation becomes weaker. 

In the data, we do not have access to e1 and e2 but since the FG-FI correlation also 

becomes weaker with e2, we can look at how HOMA-IR represents true insulin 

resistance at different levels of FG-FI correlation. It can be seen that as FG-FI 

correlation becomes weak, HOMA-IR correlation with the true insulin resistance 

also becomes weak (figure 3), but this relationship is affected by e1. When e1 is 

close to zero, i.e. almost all the variation in FG is explained by variation in true 

insulin resistance, even at low FG-FI correlation, HOMA-IR represents true insulin 

resistance fairly well, their correlation ranging between 0.58 and 0.7.  

 

Figure 3: The reliability of HOMA-IR as an index of true insulin resistance: The pathway 

simulations were carried out at a standard deviation of e1=1 (blue dots) and 10 (red dots).  

 

The FG-FI correlation weakens with increase in e2 which also affects the correlation 

between true IR and HOMA-IR. HOMA-IR is a reliable indicator of insulin 

resistance when e1 is small, but at large e1 it is a poor indicator as suggested by a 

weak correlation with true insulin resistance. 
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On the other hand, if we assume e1 to be large i.e. most of the variation in FG is due 

to random error or effects independent of insulin action, HOMA-IR is poorly 

correlated with true insulin resistance, the correlation coefficient declining to 0.2. 

Thus, if we assume that the variance in FG is mainly caused by insulin resistance, 

then we must reject the classical pathway leading to hyperinsulinemia. 

Alternatively, it is likely that the classical pathway is true, but HOMA-IR does not 

represent true insulin resistance and that most of the variation in FG is not caused 

by insulin resistance. The substantially lower than expected slope of the FG-FI 

regression suggests large random errors in FG making the second interpretation 

more likely. In any case the classical pathway and the faithfulness of HOMA indices 

cannot be simultaneously true, and we must reject at least one of them.  

 

Results of the alternative approaches to analyse the classical pathway and the null 

model converge on the inference that the null model is rejected only based on a 

weak but significant correlation between FG and FI. But the weak correlation in FG 

and FI is not adequately explained by the classical pathway owing to multiple 

mismatches and rejection of many of its predictions. The pathway rejection may be 

partially saved by saying that HOMA-IR and HOMA- β are not good indicators of 

insulin resistance and β-cell response and that we do not have access to true insulin 

resistance to test the predictions. However, the FG-FI regression slope also has a 

large mismatch with expectations derived from the variance in FI as well as from 

empirical estimates of K3 and d. Therefore, it seems more likely that FG and FI are 

related by causes other than the classical pathway, and HOMA-IR and HOMA- β 

are derived artificial constructs that do not represent any real-life phenomena.  

 

There are several real-life interpretations of the pathway in figure 1c. Autonomic 

inputs from the nervous system are known to affect both insulin secretion and liver 

glucose production, which might be represented by the common cause arrows of 

figure 1c. Alternatively, a small error in data collection can also result in the 

observed FG-FI correlation. The fasting sampling is done by instructing the subjects 

to have no food or drink after the last evening meal. However, if even a small 

proportion of subjects happen to consume bed tea an hour or two before sampling, 

their glucose as well as insulin levels could be slightly elevated simultaneously. 

This can result in a weak positive correlation between FG and FI in the data. Since 
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the fasting state is based on the honesty of the subjects and there is no independent 

monitoring, this source of error cannot be ignored. Thus, there are more than one 

possible reason for external factors causing a weak correlation between FG and FI, 

and the correlation is not sufficient to support the classical pathway in the presence 

of multiple other mismatches. 

 

5.3 Inferring causality from interventional experiments  

In classical experimental physiology, interventions or perturbations are believed 

to be reliable indicators of causation and there is little debate about it. If the 

experimenter perturbs A and finds a significant effect on B after following all 

fundamental principles of experimental design, the change in A is inferred to be 

causal to the change in B. However, there are many subtleties in drawing a causal 

inference from experimental interventions that have not yet attracted sufficient 

philosophical as well as methodological attention among experimental biologists. 

One such thinking trap is that in homeostatic systems the nature of causality in a 

perturbed state can be qualitatively different from that in equilibrium or steady 

state and the failure to distinguish between the two may have substantially misled 

biomedical research.  

 

5.3.1 The role of growth rates in Lotka-Volterra competition models 

A well worked out theoretical model that can be used to distinguish clearly 

between perturbed and steady state causation is the Lotka-Volterra (LV) 

competition model. This model describes the dynamics for interspecific 

competition (Gotelli, 2008). The growth of two interacting populations is 

modelled using logistic equations for both the populations. The changes in 

populations depend on the individual growth rates and the carrying capacities of 

the two populations (equations 1 and 2). Additional parameters are the 

competition coefficients α and β which represent the effects of the two species on 

each other. Thus, the carrying capacities K1, K2 and the competition coefficients α 

and β determine the equilibrium population (equations 3 and 4) (Gotelli, 2008).  

 𝑑𝑁1

𝑑𝑡
=  𝑟1. 𝑁1 (

𝐾1−𝑁1−𝛼.𝑁2

𝐾1
)     Equation 1  

 𝑑𝑁2

𝑑𝑡
=  𝑟2. 𝑁2 (

𝐾2−𝑁2−𝛽.𝑁1

𝐾2
)     Equation 2 
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𝑁̌1 =  
𝐾1−𝛼.𝐾2

1− 𝛼.𝛽
       Equation 3  

𝑁̌2 =  
𝐾2−𝛽.𝐾1

1− 𝛼.𝛽
       Equation 4 

 

where, 

N1and N2 are the population sizes of the two competing species respectively, 𝑁̌1 

and 𝑁̌2 representing steady state populations. 

r1 and r2 are the growth rates 

K1 and K2 are the carrying capacities  

α is the competition coefficient which shows the effect of population 2 on 

population 1 

β is the competition coefficient which shows the effect of population 1 on 

population 2 

 

Figure 4: Simulated population dynamics of two competing species A (black lines) and B (grey 

lines) at different growth rates. Solid lines represent high growth rates reaching the equilibrium 

faster whereas dotted lines represent slow growth rates reaching the equilibrium more slowly. In 

both cases species A has slower growth rate but greater carrying capacity than species B. At time 

T1 the populations are in proportion to their growth rates but at T2, approaching equilibrium, 

growth rates become increasingly irrelevant in determining population sizes. Thus, growth rates 

are important determinants of population size in a perturbed state but not at a steady state. 

 

If, in an experiment, we start at a non-equilibrium state, and observe at time T1 

(figure 4), the standing populations would be inferred as a function of intrinsic 

growth rates 𝑟1 and 𝑟2. But if observed at time T2, the inference would be 

different. The intrinsic growth rates of both the competing populations do not 

determine the equilibrium populations of the two species. The magnitude of r 

determines the time taken by the population to reach the equilibrium or steady 

state (figure 4). The role of growth rates in population dynamics is well 
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recognized and is demonstrable in a perturbed state but it needs to be realized that 

it has no role in determining the steady state populations. Nevertheless, existence 

of non-zero positive growth rates is essential for attaining the equilibrium or 

returning to it if perturbed. If either or both the growth rates are made zero, the 

system will never attain back a stable equilibrium coexistence. Thus, the two 

growth rates are causal for attaining equilibrium, but they have no causal role in 

deciding the position of the equilibrium point. Thus, we need to distinguish 

between the driver cause and the navigator cause. Driver causality is a process 

that takes a homoeostatic system to an equilibrium point but may not have any 

role in deciding the attributes of the equilibrium. Navigator causality refers to the 

processes that determine the location of the equilibrium point and lead the driver 

there, but in the absence of the driver, may not be able to take the system to the 

steady state. 

 

5.3.2 Driver and navigator in a homeostatic system  

For a homeostatic system, the distinction between perturbed state and steady state 

causality is practically equivalent to driver and navigator causality. However, the 

driver-navigator distinction can be applied, in principle, to non-homeostatic 

systems as well and therefore is a broader concept.  

This has relevance to experimental physiology. If knocking out a certain gene, 

protein or function disables homeostatic control, it does not provide us any clue as 

to whether it has a driver or navigator function. The experiment does not 

necessarily demonstrate that the gene, protein or function determines the steady 

state levels of the controlled variable. Since distinction between driver and 

navigator causality has not been explicitly made in experimental physiology, 

currently there are no norms or methods to resolve between the two types of 

causations. We use this distinction below to re-examine the role of insulin in 

glucose homeostasis and show that the failure to distinguish between driver and 

navigator causality has led to a fundamentally flawed understanding of glucose 

homeostasis and type 2 diabetes.  
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5.3.3 Why is insulin believed to regulate fasting blood sugar: a burden of 

history? 

After the classical demonstration by Claud Bernard that damage to medulla 

oblongata causes hyperglycaemia (Bernard, 1879), the second major breakthrough 

was the demonstration by von Mering and Minkowski that pancreatectomy 

resulted in hyperglycaemia (Mering and Minkowski, 1890) and further that 

pancreatic extracts resulted in lowering of plasma glucose. The active principle 

eventually purified became known as insulin (Karamitsos, 2011). The discovery 

and success of insulin in treating diabetes was so overwhelming that insulin 

became the key molecule in glucose homeostasis and the role of brain and other 

mechanisms were practically forgotten. It should be noted that the prevalent type 

of diabetes then was what we would call type 1 diabetes (T1D) today in which 

there is almost complete destruction of pancreatic β-cells. The distinction between 

type 1 and 2 developed gradually over the next five decades along with the 

realization that insulin levels may be normal or raised in type 2 diabetes (T2D) 

and that a substantial population of β-cells survives lifelong (Clark et al., 1990; 

Porte and Kahn, 2001; Butler et al., 2003). However, by now the thinking about 

glucose homeostasis was so insulin-cantered, that the inability of normal or raised 

levels of insulin to keep plasma glucose normal was labelled as “insulin 

resistance” (Reaven, 1988) without adequately examining and eliminating 

alternative possibilities and the concept got wide uncritical acceptance. Although 

insulin receptor and downstream functions are known to be highly variable at the 

cellular level, the question whether altered insulin signalling is solely or mainly 

responsible for fasting hyperglycaemia of T2D, or other insulin independent 

mechanisms play a significant role is not clearly answered.   

 

5.3.4 Do we need to look beyond insulin? 

There are multiple reasons to doubt and re-examine the role of insulin in glucose 

regulation in relation to T2D  (Corkey, 2012; Pories and Dohm, 2012; Watve, 

2013). Exogenous insulin and other insulin-centered lines of treatment have 

largely failed to reduce diabetic complications and mortality in T2D although 

short term glucose lowering may be achieved (Meinert et al., 1970; UKPDS 24; 

UKPDS 33; UKPDS 38; King, Peacock and Donnelly, 2001; ACCORD, 2008). In 

the long run even the glucose normalization goal is not achieved in majority of 
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cases (UKPDS 33; UKPDS 38). A number of mechanisms are known to influence 

glucose dynamics, partially or completely independent of insulin signalling, 

including autonomic signals (Nonogaki, 2000; Schwartz, 2005), glucocorticoids 

(Goldstein et al., 1993; Gathercole and Stewart, 2010; Di Dalmazi et al., 2012; 

Kuo et al., 2015), insulin independent glucose transporters (Carruthers et al., 

2009) and certain other hormones and growth factors (Clemmons, 2004; Jansen et 

al., 2006; Messmer-Blust et al., 2012; Suh et al., 2014). Analysis of multi-organ 

signalling network models have also raised doubts about the central role of insulin 

and insulin resistance in T2D (Kulkarni, Sharda and Watve, 2017).  

 

The definitions as well as clinical measures of insulin resistance are such that the 

effects of all other mechanisms are accounted for under the name of “insulin 

resistance”. For example, the HOMA-IR index is calculated as a product of fasting 

glucose and fasting insulin (Turner et al., 1979; Matthews et al., 1985). The belief 

that this product reflects insulin resistance is necessarily based on the assumption 

that insulin signalling alone quantitatively determines glucose level in a fasting 

steady state. The assumption has seldom been critically examined. If any other 

mechanisms are contributing to impaired fasting glucose, they will be included in 

the HOMA-IR index going by the way it is calculated and would be labelled as 

insulin resistance. This amounts to a circular logic. Insulin resistance is 

hypothesized to be responsible for the failure of insulin to control fasting glucose, 

and insulin resistance is measured as the inability of insulin to control fasting 

glucose. This makes the insulin resistance concept unfalsifiable from clinical data. 

We therefore need alternative and multiple approaches to test the concept.  

 

5.3.5 A new view at the insulin-glucose relationship 

In chapters 2,3 and 4 we examined the long-held belief that altered insulin 

signalling is responsible for deciding fasting glucose level using multiple 

approaches. 

(1) Systematic review of experiments involving tissue specific insulin receptor 

knock-outs (IRKOs)  

(2) Systematic review of experiments to chronically raise or lower insulin levels  

(3) Primary experiments on streptozotocin (STZ) induced hyperglycaemia in rats, 

that differentiate between steady (fasting) and perturbed (post-feeding) state 
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(4) Examining the insulin resistance hypothesis for being mathematically possible 

and theoretically sound  

(5) Analysis of insulin-glucose relationship in steady state versus post-meal 

perturbed state in human epidemiological data for testing the predictions of 

mathematical models.  

The first three approaches have the advantage of using specific molecular 

interventions where the target is precisely known. For the analyses we chose 

mechanisms of insulin level/action modification which have been used extensively 

and have been reproduced by multiple labs world over. The possible disadvantage 

is that they are mostly animal experiments and doubts are expressed about whether 

the results are directly relevant to humans (Akhtar, 2015; Ali et al., 2018; Bracken, 

2009). However, some of the experiments reported are human and they converge 

with the inferences of the animal experiments. In the last two approaches, human 

epidemiological data are used in which the experimental molecular precision is not 

expected, but we test certain specific predictions of the insulin resistance 

hypotheses using novel analytical approaches and examine whether they converge 

on similar inferences. The convergence of human and animal data is important to 

reach robust conclusions.  

The experimental approaches examined in chapters 2, and 4 fail to support the 

classical belief about glucose insulin relationship. The insulin receptor knock-out 

experiments and insulin suppression or enhancement experiments converge to 

show that alteration in insulin levels or insulin sensitivity does not change the 

steady state glucose levels. Evidence that it changes the shape of the glucose 

curve after food intake or glucose loading is more convincing in spite of some 

inconsistency across different experiments. Typically return to the steady state is 

delayed by impaired insulin signalling but the steady state glucose level remains 

unchanged. Convergence of experiments using other means of causing specific 

alterations in insulin action strengthens the inference. 

Several mathematical models attempt to capture the dynamics of glucose 

homeostasis. A good model should be able to explain all the empirical results 

summed up here. The inability of insulin receptor knockouts, insulin suppression 

and insulin enhancement experiments to alter steady state glucose levels, the 

difference in the regression correlation parameters between insulin and glucose in 

the steady versus perturbed state, the extremely weak correlation between fasting 
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glucose and fasting insulin, but very strong correlation between HOMA-IR and 

HOMA-β, the hyperinsulinemic-normoglycemic prediabetic state and the 

phenomenon of impaired glucose tolerance but normal fasting glucose. Reviewing 

models of glucose homeostasis is beyond the scope of this paper, but we outline 

here what a good model of glucose homeostasis needs to explain. In our 

observation, all existing models explain only some of the empirical findings. We 

suggest here that this inability is because of a common baseline assumption of all 

models that insulin signalling determines the glucose level in the fasting as well as 

post feeding conditions.  It should be possible to construct such a model, if we 

realize that insulin affects glucose only in the post feeding but not in fasting 

conditions.  

It is difficult to defend the classical assumptions about insulin-glucose 

relationship against the multiple convergent lines of evidence. Although results of 

these experiments have been there in the published literature for about two 

decades, these results were mostly explained away giving different excuses for 

different sets of experiments. The possible lines of defence would include 

difference between homeostatic mechanisms in rodents and humans or the 

possibility of non-linear nature of insulin-glucose relationship. The evidence 

reviewed here comes from rodents as well as humans and the glucose insulin 

scatters do not show any clear indication of non-linearity. Further it would be 

prudent to avoid making inferences based on dietary or other complex 

interventions since they can have multiple mechanisms of action. Specific genetic 

or molecular interventions are more revealing with respect to the underlying 

mechanisms since we can be more confident about their specificity of action. 

Therefore, our inference that insulin action does not influence fasting glucose 

levels is the most straightforward and parsimonious inference. Any other 

explanations will have to be supported by giving evidence for the assumptions 

made in those explanations.  

The failure of experimental alteration in insulin signalling to alter steady state 

glucose raises two distinct possibilities about fasting hyperglycaemia in T2D. One 

is that fasting hyperglycaemia in T2D is a result of processes independent of 

insulin signalling such as autonomic signalling or other insulin independent 

mechanisms. The sympathetic tone is known to be altered in metabolic syndrome 

(Thorp and Schlaich, 2015) and increased sensitivity of liver to sympathetic signal 
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is likely to be mainly responsible to fasting hyperglycaemia (Bruce et al., 1992). 

The other possibility is that with impaired insulin signalling overnight fasting is 

not sufficient to reach a steady state, therefore fasting hyperglycaemia in T2D is a 

non-steady state phenomenon in type 2 diabetes. The considerably weaker but still 

significant correlation between glucose and insulin in fasting as compared to post 

glucose load data suggests that both the factors are likely to be operational 

differentially in different individuals.  

In either case certain fundamental concepts in our understanding of T2D need to 

be revised. First, the definition and measurement of insulin resistance using steady 

state glucose and insulin levels needs to be questioned. Most commonly used 

indices of insulin resistance are based on the assumption that insulin signalling 

decides the fasting steady state glucose levels, although non-equilibrium methods 

of assessing insulin resistance have been described (Patarrão et al., 2012). In the 

classical view other mechanisms of glucose regulation are assumed to be absent or 

non-significant. If increased sympathetic signalling increases liver glucose 

production, HOMA-IR will still account it as “insulin resistance”. The same is 

true about insulin resistance measured by hyperinsulinemic euglycemic clamp. 

The way insulin resistance is measured at the clinical level eliminates the chance 

of separately accounting for other mechanisms of glucose regulation. Even when 

experiments show that certain agents affect glucose dynamics independent of 

insulin action, they are typically labelled as “insulin sensitizing” agents (Hossain 

et al., 2018). As a result, the belief that insulin is the only mechanism of glucose 

regulation relevant to T2D is artificially strengthened. There is a subtle circularity 

in the working definition of insulin resistance. Insulin resistance is blamed for the 

failure of normal or elevated levels of insulin to regulate glucose. To test this 

hypothesis, we should have an independent definition and measure of insulin 

resistance. Only then we can test whether and to what extent insulin resistance can 

alter glucose dynamics.   However, clinically insulin resistance is measured by the 

inability of insulin to regulate glucose. Such a measure cannot be used to test the 

hypothesis that insulin resistance leads to the failure of insulin to regulate glucose. 

The unfalsifiability of the insulin resistance hypothesis arising out of this 

circularity has halted any attempts towards realistic assessments of the true causes 

of fasting hyperglycaemia in type 2 diabetes. In the molecular approach to induce 

insulin resistance, we have an independent definition and causality for insulin 
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resistance and therefore such experiments are free from circularity of definition. 

The results of such experiments reviewed here are therefore more revealing and 

reliable. Since all of them converge to show that altering insulin signalling does 

not alter steady state glucose levels, the insulin resistance and inadequate 

compensation hypothesis for steady state hyperglycaemia stands clearly rejected.  

The question can be turned upside down to examine whether steady state glucose 

level determines steady state insulin. If glucose is infused with a constant rate 

over a long time, insulin levels will come back to the baseline levels if glucose is 

not a determinant of fasting insulin. If it is, then insulin levels will stabilize at a 

new heightened steady state level. Jetton et al. (2008) infused intra venous glucose 

(20% glucose w/v) continuously for 4 days in rats (figure 5). Both glucose and 

insulin levels increased significantly after the infusion.  However, later both 

glucose and insulin levels came back to normal even as the infusion continued. 

Increase in the concentration of the infused glucose (up to 35%) also yielded 

similar results (Steil et al., 2001). Thus, immediately on perturbation, glucose 

affected insulin levels, however after allowing sufficient time to regain steady 

state, the infused glucose had no significant effect on insulin levels. This 

demonstrates that even glucose does not hold a causal relationship with insulin in 

a steady state whereas glucose level perturbation is certainly known to stimulate 

insulin response. 
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Figure 5: Insulin and glucose levels after a sustained infusion of 20%w/v glucose for 4 days. 

Figure reproduced from Jetton et al 2008 without permission.  

 

The interpretation of this phenomenon needs to be done at a broader philosophical 

level. We point out here with specific reference to homeostatic systems that the 

nature of causality in a perturbed state can be qualitatively different from causality 

in steady state. There is a simple analogue to perturbed state versus steady state 

causality in one of the basic models of mathematical biology. In the classical 

model of logistic growth, the intrinsic growth rate r decides the rate at which a 

population can change when away from the carrying capacity K (Gotelli, 2008). 

However, the carrying capacity itself may be independent of the growth rate. A 

non-zero positive r is required to reach the steady state at K but r does not 

determine the steady state level. It is a function of K alone. Reducing r leads to 

delay in achieving a steady state but the steady state remains at the same position. 

The evidence reviewed here indicates that insulin action is analogous to r of 

logistic model. It is required to reach a steady state, but it does not determine the 

location of the steady state.  
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The inability to distinguish between steady state causality and perturbed state 

causality may have substantially misled biomedical research at times, T2D 

certainly being an important example. This poses an important philosophical as 

well as methodological problem in experimental physiology. Many systems in 

physiology have homeostatic steady states and we use experimental approaches to 

reveal them. However, most experiments are perturbation experiments, and we 

may be making the mistake of applying the demonstrated perturbed state causality 

to understand steady state systems. The apparent paradox can be resolved only by 

carefully designing and interpreting experiments. If a perturbation is momentary 

or transient, the results obtained would certainly reflect perturbed state causality 

but may not reflect steady state causality. On the other hand, sustained 

perturbations held constant for sufficiently long to allow the system to regain a 

steady state are necessary to establish steady state causality. If upon sustainably 

altering a causal factor the effect variable returns to the same steady state, it 

reflects only perturbed state and not steady state causality. If, on the other hand, 

sustained alteration in the causal factor results into an altered steady state, it 

indicates steady state causality.   

Viewed from a slightly different and more generalized angle that goes beyond 

homeostatic systems, we can differentiate between two types of causalities. In 

driver causality the causal factor is necessary to reach a destination but does not 

decide the destination. In navigator causality the causal factor is crucial in 

determining the destination but may not be sufficient to take the system there. The 

evidence reviewed above indicates that insulin is a driver but not a navigator of 

glucose homeostasis. A non-zero level of insulin is required for reaching a 

homeostatic steady state. In type 1 diabetes, the almost complete absence of 

insulin prevents glucose homeostasis. In type 2 diabetes there are non-zero insulin 

levels and therefore, a steady state is possible, but insulin itself plays little role in 

deciding the steady state glucose level. It is more likely that neuronal and other 

hormonal-metabolic factors affect the steady state glucose in T2D.  

Certain kinds of experimental interventions are unable to distinguish between 

driver versus navigator causality. Knocking out a driver or a navigator will disable 

the journey to the destination. Therefore, complete knockout of a cause may not 

distinguish between driver and navigator causality. On the other hand, 

experiments quantitatively altering the level of the causal factor while keeping it 
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non-zero and observing the effect for sufficiently long duration, can help us 

differentiate between drivers and navigators. A sub-normal driver will delay the 

time to destination but will not change the destination. On the other hand, 

changing the navigator may or may not alter the time, but will alter the position of 

the destination. The history of insulin research is that early experiments such as 

total pancreatectomy demonstrated the necessary role of insulin in glucose 

homeostasis but the distinction between driver or navigator causality was not even 

conceptually perceived. So, it was assumed that insulin does both the roles. Now 

in the presence of multiple experiments showing the precise role of insulin, we 

need to revive our concepts of causality. At a broader scale the insulin example 

warrants care in making inferences in experimental physiology, in the absence of 

which our understanding of the physiology of homeostatic systems can be 

seriously flawed.
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Chapter 6: Implications for evolutionary medicine 

 

6.1 Introduction  

The laboratory environment and the research group in which I worked are 

primarily evolutionary biologists, evolutionary medicine (EM) being one of the 

major interests. My seniors and colleagues published several papers, articles, and 

books on the evolutionary aspects of type 2 diabetes. However, during this work it 

was realized that the current perception of pathophysiology of T2DM has a few 

fundamental problems. Unless we have a clearer picture of the underlying 

physiology and the disease, the evolutionary interpretations will remain weak and 

unsupported. This realization led to fundamental work in the pathophysiology, 

namely the fundamental relationship between glucose and insulin.  

 

In the earlier chapters, I re-examined the insulin-glucose relationship with a view 

of distinguishing between the relationship in the steady state versus the perturbed 

state. Now having obtained certain insights into it, it is natural to return to EM and 

examine the implications of the new understanding about insulin-glucose 

relationship. Some part of this following work is published as a paper on the 

evolutionary origins of type 2 diabetes (Watve and Diwekar-Joshi, 2016).  

 

6.2 Evolutionary medicine  

Evolutionary medicine has a long history, but there are disputes about its 

implications in clinical practice (Cournoyea, 2010). Evolutionary hypotheses 

about human anatomy such as skeletal effects of bipedalism, trade-offs associated 

with a large brain theorised for a long time. Physiological phenomena like the 

fight or flight response were described in the 1930s (Cannon, 1934) and quickly 

became widely accepted. However, attempts to organize evolutionary thinking in 

physiology and medicine do not date back to more than a few decades (Williams 

and Nesse, 1991; Nesse, 2001).  

 

The foundation of medicine is based on the “how” question regarding the anatomy 

and physiology of the human body. Evolution addresses the “why” question. A 

combined understanding of how and why of a disease is likely to boost the 
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precision and effectiveness of its treatment. EM tries to explain vulnerability to a 

disease along with differences in vulnerabilities in the population. In the past EM 

has given us following conceptual insights in infectious diseases: evolution of 

virulence (Read, 1994) and evolution of antibiotic resistance (Nesse, 2001; Read 

and Huijben, 2009). The contribution if EM to non-infectious diseases is 

peripheral and its clinical implications debated.  

 

EM has received serious criticism on several grounds. The most stated and the 

most important is that EM fails to provide insights relevant in clinical practice 

(Cournoyea, 2010). The adaptationist view of EM is also a focus of criticism. The 

evidence for any adaptive argument is almost always circumstantial/ inferential 

and hence the argument must be considered hypothetical (Gluckman, Hanson and 

Spencer, 2005). Many EM theories are based on the mismatch between ancestral 

and the current environment. Claims about ancestral conditions are speculative 

and there are limitations in visualizing them. Without adequate use of rigorous 

norms for hypothesis building and adequate efforts in making and testing 

differential predictions, evolutionary medicine remains at the blurred line between 

science and philosophy (Cournoyea, 2010). The kind of scientific rigor seen in 

evolutionary literature in the fields of social behaviour, sexual selection or 

molecular phylogeny for example, needs to be employed in EM.  

 

We developed a set of criteria to be expected from an evolutionary theory for any 

human disease and outlined an approach to evaluate alternative evolutionary 

hypotheses using this set (Watve and Diwekar-Joshi, 2016). Such a relative 

evaluation approach is only occasionally used in EM (Corbett and Morin-

Papunen, 2013). The analysis in the earlier chapters have refuted the classical 

theory of glucose regulation by insulin (more specifically in the steady state) 

which has implications for the evolutionary hypotheses for T2DM which we will 

discuss here. 

 

6.3 Brief history of evolutionary theories about T2DM 

6.3.1 Thrifty gene hypothesis  

James Neel tried to come up with an evolutionary explanation for the diabetic 

genotype (Neel, 1962). He postulated that diabetes was a single recessive or 
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incompletely recessive Mendelian trait. Neel looked at the frequency of 

occurrence of diabetes and asked the question if it was a genetic disorder 

comparable to thalassemia or haemophilia. But diabetes was more frequent and 

increasing at a high rate. This led him to seek an adaptive or ‘advantage driven’ 

explanation for diabetes. By this time, the association between obesity and 

diabetes was well established. Neel postulated that “the overweight individual of 

40 or 50 with mild diabetes is not so much diabetic because he is obese as he is 

obese because he is of a particular (diabetic) genotype”. (What he refers to as 

“mild diabetes” is today’s type 2 diabetes.) He stated that a “thrifty gene” was 

responsible for storage of fat in nutrient rich or “feast” conditions and allowed 

reutilization during starvation or “famine” conditions.  Neel defined thriftiness as 

“being extremely efficient in intake and/or utilization of food” (Neel, 1962). Neel 

had a clear hypothesis for the mechanism of thrift which was based on the finding 

that prediabetics have higher levels of insulin. Since insulin is known to be 

lipogenic (Moustaïd, Jones and Taylor, 1996) high levels of insulin would lead to 

higher fat storage. Thus, in Neel’s view rise in insulin levels was primary and 

obesity a secondary effect of that. Since the concept of insulin resistance was yet 

to be widely known then, he believed that an “anti-insulin activity” balanced the 

hyperinsulinemia. In due course of time excessive anti-insulin activity resulted 

into diabetes. 

 

Although Neel is commonly credited as the father of thrifty gene hypothesis, 

Neel’s concept of thrifty gene was substantially different than the currently 

prevalent thrifty gene concept. During 1970s and 80s the centre of thinking 

shifted to insulin resistance which turned the thinking upside down. Now obesity 

was thought to be primary which increased insulin resistance and 

hyperinsulinemia was a compensatory response (Matthews et al., 1985; Turner et 

al., 2007). In this view, Neel’s idea of hyperinsulinemia as the mechanism of 

thrift was destroyed. But this was not replaced by any clearly spelt out alternative 

mechanism.  Neel believed obesity to be a by-product of a diabetic tendency 

whereas the current view projects obesity as causal to insulin resistance and in-

turn diabetes.  
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6.3.2 Thrifty phenotype hypothesis 

Although Neel’s thrifty gene hypothesis was largely accepted, no such “thrifty 

gene” was discovered. On the other hand, Hales and Barker (1991) demonstrated 

the association between reduced growth in early life with impaired glucose 

tolerance/T2DM and related disorders in later life (Hales et al., 1991). This led to 

the concept of ‘thrifty phenotype’ (Hales et al., 1991; Hales and Barker, 1992; 

Barker, 1998; Drake and Walker, 2004). This statistical association between 

impaired uterine development and late life metabolic disorders has been 

interpreted in two ways namely development constraints and developmental 

programming.  

 

In the developmental constraints view, unfavourable conditions during 

development lead to lifetime deficiencies for example in size and function of β-

cells (Barker, 1998). In the alternative view of developmental programming, 

under-nourishing conditions during development are taken as cues to predict life-

time nutritional limitations and the body is said to be programmed for a thrifty 

metabolism in anticipation (Gluckman, Hanson and Spencer, 2005).  

 

6.3.3 Criticism of the thrifty phenotype hypothesis  

The concepts of thrifty genotype and thrifty phenotype have been reviewed 

elaborately in recent times (Wells, 2003; Speakman, 2008; Baig et al., 2011; 

Watve, 2013). Some of the critics of thrift have admired Neel’s vision (Watve, 

2013). Neel’s speculations were ahead of his time and had far-reaching vision 

Although the concept of insulin resistance was not yet common, Neel perceived it 

and called it ‘anti-insulin activity’. Contrary to present day mainstream thinking, 

Neel perceived that hyperinsulinemia precedes the “anti-insulin activity”. He also 

clearly rejected the notion of ‘β-cell exhaustion’ being the reason for β-cell 

dysfunction (Neel, 1962). I will now discuss the main grounds on which the 

thrifty gene and thrifty phenotype hypotheses are criticized are as follows. 

 

1. Questioning ancestral feast and famine 

Fluctuations in food availability due to famines is the fundamental assumption of 

the thrift hypotheses. We know little about ancestral human conditions and 

whatever evidence we have, does not support the frequent famine assumption 
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(Speakman, 2008). Chronic starvation was more predominant after the beginning 

of agriculture as compared to the hunter-gatherer stage (Sahlins, 1974). If the 

history of major famines began after the emergence of agriculture, whether this 

period is sufficient for the evolution of thrift is questionable. Some communities 

adopted agriculture very recently (or not yet) but they also showed high 

propensity to obesity, T2DM and hypertension on adopting modern urban lifestyle 

(O’Dea, 1991).  

 

2. Can it explain population variability in proneness to obesity and T2DM?  

If thrift was adaptive, why isn’t everybody thrifty? Human populations have large 

variation in the propensity to become diabetic or obese. Neel believed that 

polymorphism exists because of heterozygote advantage to a thrifty allele. This 

argument was based on the Mendelian inheritance of diabetes which was believed 

at that time. Neither Mendelian inheritance nor heterozygote advantage for a 

thrifty allele was proven. But Neel was aware that the variability needs an 

explanation. The later versions of thrift have not always cared to explain the 

variability. If thrift was adaptive to everyone, the observed variance is unlikely to 

arise from stable polymorphism. Transient polymorphism is likely if the selection 

is recent but there is no clarity about the time course of selection for thrifty gene. 

Genome wide association studies (GWAS) have identified a large number of loci 

and mutants associated with obesity. However, they together explain only about 

2-5% of population variance in obesity parameters (Mutch and Clément, 2006; 

McCarthy and Zeggini, 2009; Li et al., 2010; Kilpeläinen et al., 2011) (Rankinen 

et al., 2006; Scott et al., 2007; Sladek et al., 2007; Thorleifsson et al., 2009).  

If many genes determine the propensity to obesity or diabetes with each one 

having a small effect, independent segregation of alleles at each locus will give an 

averaging effect reducing population variance. Therefore, the population 

variability observed is unlikely to be genetic. The failure to detect any locus with 

a large population effect undermines any genetic theory and one needs to rely 

more on phenotypic causes of population variability. The thrifty phenotype 

hypothesis explains the variance at a phenotypic level depending upon early 

developmental history. The evidence that early life history affects life-time 

metabolism and health is strong and consistent across studies but whether it is 

sufficient to account for population variability has not been examined. Although 



160 
 

there is a strong correlation between low birth weight and the likelihood of 

obesity and T2DM in later ages, majority of adults with T2DM are not born with a 

lower birth weight (McCance et al., 1994; Boyko, 2000). Thus, the diabetic 

tendency explained by the thrifty phenotype appears to be limited.  

 

3. Do obese individuals survive starvation/famine better?  

If the thrifty hypotheses are true, obese people are expected to have a better 

chance of survival during famines or low nutrient periods.  Evidence suggests that 

there are no significant differences in the survival of lean or obese individuals 

during famines (Speakman, 2008). Moreover, there is an association between 

obesity and reduction in fecundity (Gesink Law, Maclehose and Longnecker, 

2006; Sallmen et al., 2006; Ramlau-Hansen et al., 2007) (Yilmaz et al., 2009). 

Thus, the advantage of being obese must be higher than the reproductive cost it 

incurs, and this has not yet been shown quantitatively.  Evidence for thrifty 

programming is equally weak. In baboons, offspring born small performed worse 

in a subsequent famine contrary to the thrifty programming hypothesis (Johnson, 

1987; Virgin and Sapolsky, 1997; Lea et al., 2015). The same pattern is also 

visible in human data (Hayward, Rickard and Lummaa, 2013).  

 

4. Human physiology does not compare with animals evolved for feast and 

famine 

Migratory birds or hibernating animals accumulate large amounts of fat before 

migration or hibernation. Both the processes of fat accumulation as well as 

breakdown are highly efficient in these animals due to fine-tuning of metabolic 

pathways (Weber, 2009; Guglielmo, 2010). Humans are not well-adapted to 

utilization of fat during starvation. On facing starvation proteins are broken down 

much before depletion of fat stores in humans, unlike migratory birds (Pasquet et 

al., 1992; Pond, 1998). Thus, humans do not seem to be adapted to efficient 

storage and reutilization of fats. The difference between the physiology of obese 

versus lean individuals appears to be in the inability to utilize stored fat during 

starvation rather than more efficient storage of fat (Pasquet et al., 1992; Pond, 

1998). Interestingly this tendency has been called ‘spend thrift’(Reinhardt et al., 

2015). in contrast with classical ‘thrift’. It is hard to perceive how the inability to 

utilize stored fat would be selected for by feast and famine.  
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5. Conditions for evolution of lifetime programming 

The thrifty phenotype or foetal-programming hypothesis suggests that there is 

lifetime programming based on the intrauterine conditions. There are two possible 

advantages of thrifty programming for an individual under developmental 

constraints (i) short term survival advantage in the foetal and early infant stages 

and (ii) a lifetime predictive, adaptive advantage. Lifelong rigid programming for 

a short-term advantage is difficult to explain since the body shows substantial age-

related plasticity in different endocrine, metabolic and genetic pathways. The 

conditions under which lifetime programming can evolve have been examined 

recently (Baig et al., 2011; Nettle, Frankenhuis and Rickard, 2013; Bateson, 

Gluckman and Hanson, 2014; Nettle and Bateson, 2015). A threshold predictive 

correlation between birth time and lifetime conditions is required for such a 

programming mechanism to evolve. Such predictive correlation is certainly not 

seen in climatic causes of variability in food availability (Baig et al., 2011). If 

there are other causes of correlation they have not been explicitly stated and 

examined. Even a short-term advantage, if any, has also not been conclusively 

demonstrated so far. Hence, predictive adaptive programming is currently little 

more than speculation. 

 

6. Multiple organ involvement not coherently explained 

Insulin resistant and/or obese individuals show a variety of system level changes 

which have effects on diverse bodily functions including wound healing, 

ovulation, spermatogenesis, sexual behaviour, angiogenesis, innate immunity, 

tissue architecture, iron metabolism, memory and other cognitive brain functions, 

anxiety, aggression and related behaviours (Watve, 2013). The classical thrifty 

hypotheses focus only on energy homeostasis and offer no explanations for the 

changes that are not directly relevant to it. Changes in immunity are explained 

only weakly by stating that infectious diseases could accompany famines and 

hence, along with thrift, inflammation could have been facilitated (Fernández-

Real and Ricart, 1999; Fernández-Real and Pickup, 2008). However, there is no 

evidence that the inflammatory tendency associated with insulin resistance offers 

any advantage in fighting infections. There are very little attempts to offer 

ultimate level explanations for the other associated systemic alterations. 
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7. What is the mechanism of thrift?  

Neel clearly stated that high insulin production was the mechanism of thrift. After 

the picture was turned upside down with insulin resistance on the central stage, 

this mechanism did not seem logical. However, no alternative mechanism was 

proposed with sufficient clarity. Even today any clear physiological mechanism of 

achieving thrift is not on the horizon despite many false alarms.  

 

It is also necessary to be clear about the two or more functional components of 

thrift. It can refer to higher intake of food or reduced expenditure of energy or 

both. It also matters whether the reduced expenditure of energy is specific to feast 

conditions or continues during famine as well. There is little clarity about this, and 

these components are used interchangeably according to convenience of the 

argument.  

 

In response to the realized inadequacy of the thrifty hypotheses there appear to be 

two lines of developments. One is to refine the thrift hypothesis or suggest new 

versions of the thrift hypothesis that seem to escape at least some of the 

inadequacies or flaws. The other is to suggest alternative hypotheses for the 

evolution of obesity and insulin resistance independent of thrift.  

 

6.3.4 Refined versions of thrift 

1. Thrift could have evolved as a response to subacute nutrient conditions 

and not for the extreme feast and famine conditions. At subacute stress, selection 

for survival may be weak, but the selection for fecundity might be at work 

(Prentice, Hennig and Fulford, 2008; Stipp, 2011). This assumption might actually 

bypass the criticism about the actual frequencies and intensities of famines faced.  

 

2. Wells argued that foetal programming confers more advantage to the 

mother than the foetus (Wells, 2003; Wells, 2007). Optimization of the maternal 

inputs per foetus is the main advantage gained by the mother by limiting the 

nutrients. If the nutrition conditions are limiting, thrift might improve the survival 

chances of the subsequent foetus by increasing the provisions available with the 

mother herself. The offspring also adapt to this maternal strategy and thus thrift is 

beneficial to both. According to this model, there is no implicit requirement of 
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particular conditions during birth other than dependence of mother. It does not 

require a birth-time-life-time correlation. However, it still does not explain the 

need for lifetime programming. Also, this explanation assumes thrift to mean 

reduced energy requirement. If thrift means increased food intake, this hypothesis 

does not work. This exemplifies why we need better clarity about which form of 

thrift we are talking about (Wells, 2003; Wells, 2007).  

 

3. Thrift may be manifested in several other forms affecting several other 

body processes apart from energy intake and expenditure. “There is more to fat 

than thrift and there is more to thrift than fat”- from Wells (Wells, 2012) sets the 

stage for other possible forms of thrift namely differential energy allocation, 

altered growth rate, altered reproductive strategies or immune function. This is an 

attempt to modify the concept of thrift to make it more accommodative. This can 

potentially explain the multi-system involvement in obesity and metabolic 

syndrome. However this direction is likely to make the original concept of thrift 

no more identifiable. It is likely to be a multi-dimensional adaptation to a set of 

environmental and social challenges apart from nutritional challenges alone. This 

set of adaptation is no more captured by the word ‘thrift’ alone. It may be an 

adaptive response by the mother not only to her nutritional status but to her social 

position, predatory pressures, parasite loads and other factors affecting health and 

reproductive strategies. 

 

All these and more such refined hypotheses are intelligent attempts to deal with 

the inadequacies of the classical versions of thrift hypotheses. However, 

refinement can handle all the issues. There are however alternatives to thrift in 

litareture.  

 

6.3.5 Alternatives to thrift 

a. According to Speakman (Speakman, 2008) genetic drift rather than 

selection is responsible for spreading the obesity genes. Freedom from predation 

at some stage of human evolution released the selective pressure against obesity 

and hence the obesity genes could drift. It is a matter of chance that some of them 

became common in the population. 
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b. Corbett et al postulated (Corbett, McMichael and Prentice, 2009) that the 

genotype leading to obese, diabetic, and PCOS-prone individuals today had the 

advantage of better fertility in famine conditions. The insulin-sensitive or “non-

thrifty” genotype has better fertility under conditions of food abundance. As result 

with increasing food security in modern times the original insulin resistant 

genotype is being replaced by insulin sensitive one. What we see today is perhaps 

transient polymorphism (Corbett and Morin-Papunen, 2013).  

c. Slow versus fast life histories: A “grow fast die young” type of life history 

(Stipp, 2011) is likely to be implicated by intrauterine conditions. After 

intrauterine growth retardation, if an individual undergoes rapid compensatory 

growth in early childhood, the mechanisms involved in facilitating early growth 

might become detrimental later. Insulin is a growth factor and high levels of 

insulin may be needed to facilitate early growth. Many of the pathways and 

molecules implicated in early growth including mTOR and AMPK have a role in 

the pathogenesis of T2DM too (Stipp, 2011).  

d. Behavioural switch hypothesis: There can be more than one alternative 

strategy to cope with an environmental or social challenge. For example, the 

response to a conspecific competitor can be either aggressive or befriending and 

accordingly the hormonal responses differ (Rosati and Hare, 2012, 2013) The 

behavioural switch hypothesis depends upon two interconnected behavioural 

strategies namely hawk versus dove (aggressive versus socially manipulative) in 

social competition and r versus K (large number of offspring with little investment 

in each versus fewer ones with greater investment in each) in reproduction.  

Aggression anticipates injuries and extrinsic death. Hence, aggressive individuals 

need to invest more in reproduction than in longevity. There is a trade-off between 

fecundity and lifespan too. Typically, aggressive individuals are more insulin 

sensitive and have lower levels of insulin, cortisol and cholesterol (Golomb, 

Stattin and Mednick, 2000; Hillbrand et al., 2005; Zhang, 2005; Watve, 2013). All 

the key molecules involved in T2DM including insulin, leptin, cholesterol, 

cortisol have demonstrable cognitive and behavioural functions (Belsare et al., 

2010; Watve, 2013). Therefore, according to the hypothesis individuals with dove 

or diplomat tendencies and/or limited reproductive capacity/opportunities become 

insulin resistant and store more lipids to increase the lifespan. Over 70 molecular 

signals and pathways connect behaviour with metabolism and immunity 
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(Kulkarni, Sharda and Watve, 2017). A physically aggressive lifestyle is more 

injury prone and therefore the immune challenges of the body are different from 

those of an aggression avoider. Developmental constraints predispose the 

individual to certain behavioural and reproductive strategies and therefore the 

metabolism is programmed to suit the strategy adopted (Watve, 2013). The 

behavioural switch hypothesis further says that food intake regulation pathways 

have evolved for optimizing foraging strategies in presence of predator or other 

foraging risks. When feeding is detached from foraging and foraging is detached 

from risks, the regulation pathways fail to work setting the stage for susceptibility 

to obesogenic environment. 

 

A further spinoff of the behavioural switch hypothesis is the behavioural 

deficiency or “vitaction” deficiency hypothesis. According to this hypothesis 

human physiology is fine-tuned to a set of behaviours typical of a hunter-gatherer 

lifestyle. Human behaviours are extensively linked to neuroendocrine pathways. 

The expression and levels of many growth factors, hormones, neuropeptides, and 

other signals is behaviour dependent. As a result, certain behaviours are essential 

for normal metabolism and physiology. These behaviours, comparable to essential 

amino acids or vitamins, are called “vitactions” (Watve et al unpublished).  

 

A chronic deficiency of behaviours such as risk (related to foraging), physical 

aggression, adventure, rapid nerve-muscle coordination leads to the deficiency of 

certain neuronal pathways and expression of some signal molecules (Watve, 

2013; Baig et al., 2019). This deficiency reflects on to a network of metabolic 

changes (Kulkarni, Sharda and Watve, 2017). Of particular importance is the 

deficiency of growth factors and angiogenic factors that lead to impaired vascular 

endothelial function. Impaired vascular function is responsible for reduced 

circulation and nutrient supply to the brain. The brain in turn responds by 

compensatory increase in blood pressure, blood sugar etc.  

 

We also have some non-adaptive interpretations of the intrauterine effects. The 

developmental constraints hypothesis is non-adaptive. In addition, there is a 

reverse causation interpretation of the association of birth weight and later life 

metabolic states. It proposes that having an insulin resistant genotype increases 
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the chances of surviving intrauterine undernourishment (Nair, Nair and Chacko, 

2009). Therefore, low birth weight may not be causal to insulin resistance but will 

show a statistical association. This is non-programming interpretation of the 

association but depends on the assumption that insulin resistance helps in survival 

under nutrient limitations. It is necessary for evolutionary interpretations to 

compare their merits against non-adaptive or non-evolutionary interpretations as 

well. 

 

6.4 Expectations from an evolutionary hypothesis 

Now we have several alternative hypotheses, and the relative merits of these 

hypotheses can be evaluated. A logical way to evaluate the alternative hypotheses 

is to first delineate our expectations from an evolutionary hypothesis. Having done 

so we can examine which of the hypotheses fulfils most or all of the expectations 

listed below.  

 

1. Explain polymorphism/ individual propensity: The hypothesis should be 

able to explain the population variability in propensity to obesity and/or T2DM. 

This needs to be done at two stages- a. the hypothesis should in principle allow 

polymorphism or phenotypic variability and b. it should quantitatively account for 

the polymorphisms observed in the population.  

2. Explain intrauterine effects: Since the evidence for intrauterine and trans-

generational effects is robust and consistent across studies, the hypothesis should 

adequately account for these effects. 

3. Account for poor performance of GWAS: The hypothesis should explain 

why GWAS poorly explains obesity or T2DM. Currently the variance explained 

by all the known hits is tiny and more genomic data are unlikely to improve the 

picture substantially. 

4. Account for non-monotonic relationships: The relationship of adiposity 

with insulin resistance is non-monotonic. Lipoatrophy is associated with high 

insulin resistance (Pardini et al., 1998) and so is high adiposity. Similarly, fertility 

association with obesity is inverted U shaped, fertility going down at low (Frisch, 

1987) as well as high adiposity (Nguyen et al., 2007; Polotsky et al., 2010). The 

evolutionary hypothesis should take into account this non-monotonicity. Most 
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hypotheses talk about only one arm of the U shape according to convenience of 

the argument. 

5. Make testable predictions across species: Insulin resistance is not uniquely 

human. It is detected in some non-human primates and dolphins without any 

obesogenic intervention (Kaufman and Vermeulen, 2005; Lord, Bond and 

Thompson, 2009; Venn-Watson, 2014). Therefore, a sound evolutionary 

hypothesis could not be human specific. It has to account for observed patterns of 

naturally occurring variation in insulin resistance in other animal species too. 

Although we have limited access to ancestral human ecology, we have a wide 

variety of animal species adapted to a variety of nutritional and other ecological 

conditions. Therefore, it should be possible to test any hypothesis by cross species 

correlations. For example, the feast and famine hypotheses can be tested in 

species that hibernate or undertake long distance migrations in which they do not 

feed. Although such data are difficult to obtain and analyse, we can at least make 

differential testable predictions from all the extant hypotheses that can potentially 

be tested with non-human species. An exercise of making such predictions itself 

can bring better clarity in thinking. A good example of this is the association of 

insulin signalling with longevity. Across a wide variety of species impairment of 

insulin signalling increases lifespan (Kaletsky and Murphy, 2010). But in humans, 

insulin resistance is associated with a series of disorders. This apparent 

contradiction warrants caution if any hypothesis presumes insulin resistance as a 

mechanism of early aging. 

6. Explain the positive association between obesity, and insulin resistance: 

Most hypotheses stop at explaining obesity and assume that the further chain of 

events is inevitable. Obesity is assumed to inevitably lead to insulin resistance and 

the cascade of changes that follow. However, for a good evolutionary hypothesis 

it is necessary to explain why obesity leads to insulin resistance, whether this 

association is true across species or is restricted to humans, rodents and a few 

other mammals. The inevitability of insulin resistance following obesity is 

debatable because the mechanism by which fat induces insulin resistance is not 

clear. A variety of hypotheses have been floated but each of them has either failed 

to gain experimental support or has faced one or more flaws or paradoxes (Watve, 

2013) In different species of mammals, the association between diet obesity and 

insulin resistance has taken different shapes and different causal relations (Ojha 
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and Watve, 2018). Therefore, the classical assumption that obesity leads to insulin 

resistance stands on shaky grounds and needs serious rethinking on both 

proximate and ultimate levels.  

7. Answer fundamental questions: It is well known that insulin plays an 

important role in nutrient uptake by certain tissues but not others. Asking a 

question “why” at this level is necessary for EM. Why do some cells need an 

external signal to pick up nutrients from the supply line while others don’t? Why 

are there so many different glucose transporters in the body, some being insulin 

dependent and others independent? Unless an evolutionary hypothesis addresses 

such fundamental questions, t cannot be said to be sufficiently “evolutionary”. 

8. Proximate-ultimate complementarity: For a healthy biological theory one 

needs to have a logical and complete picture at the ultimate level and one at the 

proximate level which should complement each other. Most hypotheses appear to 

perform surreptitious skipping between proximate and ultimate levels. For 

example, a hypothesis may stop at explaining obesity at ultimate level of 

explanation and then say the rest follows because there are proximate mechanisms 

by which obesity induces insulin resistance, inflammation and so on. All the 

components of metabolic syndrome including fat accumulation, fat distribution, 

chronic systemic inflammation, insulin resistance, β-cell function, alterations in 

cognition and behaviour, fertility and reproduction related changes, cholesterol 

metabolism, atherosclerosis, altered bone remodelling, vascular functions and 

wound healing mechanisms need to be explained separately and coherently at the 

ultimate level, separately and empirically at the proximate level in such a way that 

the two levels complement each other. Most of the evolutionary hypotheses today 

stop applying ultimate reasoning at a convenient stage leaving the rest to 

proximate mechanisms. It is possible that there is some inevitability in proximate 

mechanisms. Ultimate explanations are not needed for inevitable processes, but in 

such cases the inevitability needs to be demonstrated at a fundamental level. 

9. Suggest better clinical practices for prevention, control and reversal: If EM 

does not add useful insights into clinical practice it remains a luxurious 

intellectual exercise. A useful evolutionary hypothesis should be able to suggest 

improvements in the approaches to prevent, control or treat a disease. To call it a 

contribution of evolutionary hypothesis it is necessary that the suggestion is 

different from what pathophysiological theories would visualize in the absence of 
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evolutionary hypotheses. These suggestions need to be testable and should 

undergo randomized clinical trials. Only after going through the acid test of RCT 

an evolutionary hypothesis can be said to be complete and clinically useful.  

10. Weigh the paradoxes, flaws and contradictory evidence about insulin 

resistance with logical coherence: We have seen in the earlier chapters that the 

classical picture of glucose regulation by insulin and the theory of insulin 

resistance faces several challenges. This means that the target of evolutionary 

explanation is itself changing. If what we want to explain undergoes a change then 

it is imperative that how we explain it would also change. Any evolutionary 

hypothesis needs to integrate all the new evidence and the changing picture and 

accommodate it in a coherent way. 

 

6.5 Paradoxes in the pathophysiology of T2DM itself which need to be 

accommodated by an evolutionary hypothesis 

The mainstream thinking that has dominated the field comprises four causal steps 

namely (i) obesity causes insulin resistance, (ii) β-cells compensate for insulin 

resistance by producing more insulin (iii) insufficient compensation by 

dysfunctional β-cells leads to hyperglycaemia and (iv) chronic hyperglycaemia 

leads to complications of diabetes.  Although this is still the mainstream thinking, 

one also finds several discordant notes in literature in the form of paradoxes, 

inadequacies, and contradicting evidence. Some examples of the conflicting issues 

are as follows. 

 

6.5.1 The causal role of obesity 

Although fat is generally assumed to be causal to insulin resistance several 

findings have challenged this assumption. Classes of individuals that are obese but 

metabolically normal exist and their estimated prevalence among obese can be up 

to 51 % (Rezende et al., 2014). Thin and insulin resistant individuals are also 

common (Teixeira et al., 2015). Some animal models of obesity such as 

transgenic mice overexpressing PEPCK in adipose tissue accumulate large 

amounts of fat but do not become insulin resistant (Franckhauser et al., 2002). 

Adenovirus induced obesity is paradoxically accompanied by increased insulin 

sensitivity (Pasarica et al., 2006). Fat accumulation in MIRKO mice is clearly a 

consequence rather than cause of muscle insulin resistance (Kim et al., 2000). All 
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these examples demonstrate that the association of adiposity with insulin 

resistance is not necessarily causal and inevitable. There must be specific reasons 

why obesity is associated with insulin resistance in humans. The reasons and the 

direction of causality need to be elucidated at both proximate and ultimate levels. 

Regarding the mechanism(s) by which adiposity induces insulin resistance there 

are a large number of contradictions and paradoxes (Watve, 2013). The classical 

Randle hypothesis was refuted by experiments (Bajaj et al., 2007; Turner et al., 

2007). The adipokines hypothesis is flawed by the fact that adipose tissue 

produces both pro and anti-inflammatory adipokines which have both insulin 

sensitizing and insulin resistance action. The intra-muscular-triglyceride 

hypothesis is contradicted by the finding that athletes have high IMTGs but they 

are insulin sensitive (van Loon, 2004). The topmost paradox is that in the gold 

standard of measurement of insulin resistance, the hyperinsulinemic clamp 

technique, infusion of insulin rapidly depletes free fatty acids and the 

measurement of insulin resistance is done after FFA depletion. Therefore, this 

insulin resistance is unlikely to be caused by standing levels of FFAs (Watve, 

2013). Thus, the central assumption of many evolutionary hypotheses that obesity 

is causal to insulin resistance stands on very slippery grounds. Currently it is 

neither substantiated nor refuted. Making such an assumption the basis of an 

evolutionary theory is like raising a building on a weak foundation. 

 

6.5.2 Hyperinsulinemia first  

A number of researchers have pointed out that hyperinsulinemia appears before 

insulin resistance and therefore it may not be a compensatory response to insulin 

resistance (Dubuc, 1976, 1981; Garvey, Olefsky and Marshall, 1986; Weyer et al., 

2000). We have seen in chapters 2 to 5 that the classical concepts of insulin 

resistance and the relationship between fasting glucose and fasting insulin stand 

seriously challenged. This challenge undermines the foundation of HOMA-IR as a 

measure of insulin resistance and all arguments based on this assumption.  

Currently there is no answer to this question how a normoglycemic 

hyperinsulinemic state is achieved. A possible and evidence-based solution to the 

paradox is that hyperinsulinemia is primary and leads to compensatory insulin 

resistance (Ratzmann, Ruhnke and Kohnert, 1983; Teuscher et al., 1987; Lustig et 

al., 2003, 2004; Lustig, 2006; Shanik et al., 2008). The suggestion and the 
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evidence that hyperinsulinemia precedes insulin resistance is concordant with 

Neel’s thrift but conflicts with modern thrift. If hyperinsulinemia is not a 

compensatory response to insulin resistance, it is illogical to assume that 

inadequate compensation leads to hyperglycaemia. 

 

6.5.3 Compensatory hyperinsulinemia 

It is classically believed that β-cells need to secrete excess insulin during the 

compensatory response leading to exhaustion or stress which leads to β-cell 

dysfunction. However, whether individual ß-cells produce excess insulin has 

rarely been tested. In the hyperinsulinemic state there is substantial rise in the β-

cell population and some recent experiments show that insulin gene transcription 

levels in individual β-cells in the hyperinsulinemic state is lower than that in the 

healthy state (Hardikar et al., 2015. Therefore, the classical belief of β-cell 

exhaustion or stress of overwork is not supported by evidence. This is compatible 

with Neel’s rejection of the β-cell exhaustion idea. But in that case alternative 

mechanisms for β-cell dysfunction need to be sought.  

 

6.5.4 Complications of diabetes 

Doubts are raised on the classical faith that chronically increased levels of glucose 

lead to the complications of diabetes. Many studies have shown that early signs of 

complications arise prior to hyperglycaemia (Miller et al., 1999; Leeson et al., 

2001; Carnethon et al., 2003; Meigs, 2004; Ribeiro et al., 2008). On the other 

hand, normalizing glucose did not reduce the rate of complications or mortality in 

many large-scale clinical trials (Shaughnessy, 2003; The NICE-SUGAR Study 

Investigators, 2009; Bonds et al., 2010). In fact, mortality rates increased on 

normalizing glucose in some studies (The NICE-SUGAR Study Investigators, 

2009; Bonds et al., 2010). This casts serious doubts on whether hyperglycaemia is 

central to the pathophysiology of T2DM or is just one of the outcomes of a 

complex process. 

 

6.6 Conclusion: Need of a new evolutionary hypothesis 

These are a few of the existing debatable issues about the current perspective 

about the pathophysiology of T2DM. An evolutionary hypothesis cannot decline 

the responsibility of resolving these apparent paradoxes. At the minimum it is at 
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least necessary to be aware of these paradoxes and be open for the emergence of a 

different picture. 

 

We know today that not only the levels of glucose and insulin are altered in 

T2DM but the levels of several dozen other molecules are altered (Watve, 2013; 

Kulkarni, Sharda and Watve, 2017). Apart from the burden of history, there are no 

other grounds to assume that glucose and insulin are central to all the observed 

changes. It is likely that glucose and insulin are only two of the players in the 

complex network of changes. Causal pathways in the complex correlational 

network are yet to be established clearly. We also know that a number of signals 

affect liver glucose production independent of insulin. Right from the days of 

Claude Bernard, the brain is known to play an important role in glucose 

homeostasis and the role of nervous system in T2DM is highlighted by many 

studies from time to time (Bernard et al., 1998; Obici et al., 2002; Pickup and 

Williams, 2002; Schwartz, 2005; Carey, Kehlenbrink and Hawkins, 2013).  

 

On this background it is necessary that an evolutionary hypothesis explains why 

brain and so many other signals are involved in regulating glucose. Signals 

coming from a variety of tissues and organs appear to form a complex network. 

Why didn’t the different homeostatic systems evolve to be modular and 

independent of each other? Why did a complex network evolve? Why did a cross 

talk between reproduction, muscle power, cognitive functions and glucose 

homeostasis evolve? Why a molecule like insulin plays so many apparently 

unrelated roles in the body including cognition, behaviour, ovulation, protein 

synthesis, cell growth factor etc.? A good evolutionary hypothesis needs to take 

into account the bigger and more complex picture of T2DM. So far most 

evolutionary hypotheses of T2DM are too naïve to do so mainly because they 

have set the classical naïve picture of T2DM as their target of explanation. 

After having set the goals for an evolutionary hypothesis of T2DM, we can 

discuss with examples how they can be applied to evaluate different hypotheses. 

Currently it may not be possible to test every hypothesis on every issue since most 

of the hypotheses are not explored enough to see whether they fulfil every 

expectation. But the discussion below can direct thinking in the right direction so 
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that the proponents as well as followers of every hypothesis attempt to develop 

the respective hypothesis towards meeting the expectations.  

 

6.6.1 Population variability 

We have discussed above the limitations of the thrift family of hypotheses in 

explaining population variability. Stable polymorphism is possible under certain 

conditions including heterozygote advantage, co-evolutionary arms race, negative 

frequency dependent selection or rock-paper-scissor like dynamics. Thrifty gene 

does not fit into any of the conditions needed for stable polymorphism. The drifty 

gene hypothesis and fertility selection hypothesis also fails to explain stable 

polymorphism. A transient polymorphism may be possible in principle but these 

hypotheses do not make any quantitative predictions about polymorphism that can 

be quantitatively tested with empirical data.  

 

The thrifty phenotype and behavioural switch hypotheses do not explain the 

population variance based on genetic polymorphism. Thrifty phenotype assumes 

the developmental history to shape individual propensity. The behavioural switch 

is compatible with genetic polymorphism, developmental history, trans-

generational effects, social ranking as well as individual choice as a source of 

population variance. Negative frequency dependence of the hawk and dove game 

is central to the hypothesis but it may act through genetic or phenotypic 

mechanisms. We have seen that genome studies explain only a tiny part of 

population variability which exposes the inadequacy of all genetic hypotheses. 

This may give an indirect advantage to the phenotypic hypotheses. But none of 

the phenotypic hypotheses have so far attempted to make quantitative predictions 

about population variance.  

 

6.6.2 Intrauterine effects 

None of the genetic hypotheses account for the intrauterine and trans-generational 

effects, whereas the phenotypic hypotheses do. The thrifty phenotype hypothesis 

actually originates from explaining intrauterine effects. However, it suffers from 

conceptual ambiguity. There are two possible interpretations of developmental 

effects namely developmental constraints and developmental programming. 

Developmental constraints assumes that undernourishment during intrauterine life 
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permanently affects tissues such as pancreatic islets which makes the individual 

more susceptible to develop β cell dysfunction in later life (Hales and Barker, 

2001). The evidence for developmental constraints on ß-cells is contradictory 

since many studies have shown that individual born after intra uterine growth 

retardation have a larger β cell number at birth (Chakravarthy et al., 2008). The 

developmental programming hypothesis assumes that there is predictive adaptive 

programming (PAP) of metabolism. PAP is under criticism on several grounds 

(Bogin, Silva and Rios, 2007; Wells, 2007; Rickard and Lummaa, 2007; Baig et 

al., 2011) the main problem is in examining conditions that can lead to evolution 

of PAP and the demonstration that these conditions were faced by human 

ancestors to evolve predictive adaptive thrift. Evidence in baboons as well as 

humans contradicts PAP in favour of developmental constraints (Hayward, 

Rickard and Lummaa, 2013; Lea et al., 2015). Currently we are unable to resolve 

between the two alternative views. The behavioural switch hypothesis relies on 

developmental programming, but the programming is not for thrift. The 

programming is for anticipated social position and optimum behavioural strategy. 

Since a positive correlation between mother’s and offspring’s social position is 

demonstrated (Dewsbury, 1990; Holekamp and Smale, 1991; East et al., 2009). a 

PAP can evolve in principle as a social adaptation. 

 

6.6.3 Insulin-glucose relationship:  

While the prevalent belief is that insulin action affects fasting glucose and insulin 

resistance alters this relationship, we have seen that this assumption stands 

seriously challenged. It has been facing challenges in various forms over the past 

few years (Corkey, 2012; Pories and Dohm, 2012). For example, there is 

increasing evidence for the ‘hyperinsulinemia first’ viewpoint (Ratzmann, Ruhnke 

and Kohnert, 1983; Teuscher et al., 1987; Lustig et al., 2003, 2004; Lustig, 2006; 

Shanik et al., 2008). Although there is more evidence in favour of this view, it is 

not yet the mainstream view. Neel’s thrift, fast life history (Stipp, 2011). and 

behavioural switch hypotheses (Watve, 2013) subscribe to hyperinsulinemia first 

hypothesis whereas others depend upon insulin resistance first. Now since we 

have shown with rigor that the concepts of compensatory hyperinsulinemia and 

insulin regulated fasting glucose are not supported, evolutionary hypotheses 

critically dependent on it can be eliminated.  
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Of particular interest is the behavioural switch hypothesis since it depends upon 

the cognitive and behavioural role of insulin. This hypothesis proposes that when 

the brain needs more insulin, it upregulates β cell-population and thereby plasma 

insulin through parasympathetic signals. Parallel to this brain also directly 

regulates fasting glucose by autonomic inputs to the liver. This is compatible with 

the model 1c (figure 1, Chapter 5) in which there is a shared input to FG as well 

as FI but the two do not affect each other directly in the fasting steady state. 

 

6.6.4 Obesity-IR association:  

A related ambiguity is whether obesity induces IR or the other way round or both 

are correlated due to a common causal pathway. Neel argued that the ‘diabetic 

tendency’ (that can be possibly interpreted as hyperinsulinemia) was responsible 

for obesity. After turning the concept upside down, the later versions of thrift 

believe that obesity induces insulin resistance. In either case the association is not 

strong and in meta-analysis obesity parameters explain only about 15% of insulin 

resistance, if we accept HOMA-IR as the measure (Vidwans and Watve, 2017). 

The behavioural switch hypothesis suggests that both might originate 

independently, triggered by the behavioural strategies adopted by an individual 

(Watve, 2013; Baig et al., 2019). which may explain why the correlation is 

consistent but weak in terms of variance explained. 

 

6.6.5 Causes of β-cell dysfunction: 

Since there is no evidence for β-cell overwork or exhaustion, one needs to look 

for alternative causes of β-cell dysfunction. Oxidative stress is a candidate, but 

there are inconsistencies with the timeline. Increased glucose is blamed for 

increased oxidative stress, but glucose level is unlikely to increase without β-cell 

dysfunction. The behavioural switch hypothesis suggests an alternative, in which 

sympathetic suppression of release of insulin vesicles from β-cells leads to 

increased retention time of insulin accompanied by amylin. The increased 

retention time of amylin increases the probability of amyloid formation resulting 

in increased β-cell damage (Watve, Bodas and Diwekar, 2014). These two 

alternative hypotheses increased oxidative stress and increased retention time 

induced amyloid damage make diametrically opposite testable predictions about 

β-cell population dynamics. The oxidative damage mechanism gives rise to a 
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positive feedback vicious cycle. If hyperglycaemia induced oxidative stress leads 

to β-cell dysfunction, insulin secretion will be further inadequate leading to 

further dysregulation of glucose increasing oxidative stress further. When such a 

cycle begins, it will end in complete destruction of β-cells. On the other hand, the 

sympathetic suppression hypothesis leads to a negative feedback cycle leading to 

limited destruction of β-cells. The hypothesized mechanism is that inadequate 

glucose supply to brain activates the sympathetic nerves to suppress insulin 

vesicle release increasing the retention time of insulin-amylin and thereby 

inducing amyloidogenesis. Amyloidogenesis kills some of the β-cells resulting 

into reduced insulin and increased glucose, the increased plasma glucose supplies 

more glucose to brain which normalizes sympathetic response and arrests the β-

cell damage process. By this hypothesis β-cell damage will never be complete in 

T2DM. Post-mortem examinations of long-standing type 2 diabetic patients have 

shown that a substantial β-cell mass is conserved even after decades of diabetes 

(Clark et al., 1990; Porte and Kahn, 2001; Butler et al., 2003). This favours the 

behavioural switch hypothesis but an in-depth probe on β-cell dynamics is needed 

to resolve between the two opposite predictions of different hypotheses. 

 

6.6.6 System level effects 

Most evolutionary hypotheses do not attempt to explain the complex cross talk 

amongst different systems of the body and the brain involved in T2DM. Most 

treat the involvement of other organs as an inevitable side effect of altered glucose 

homeostasis. However, apart from the burden of history there is no other evidence 

to ensure that their role in T2DM is only consequential and not causal.  The only 

possible exception is the behavioural switch hypothesis which expects alterations 

in multiple systems independent of glucose homeostasis. 

 

6.6.7 Compatible with complex T2DM picture  

Many evolutionary hypotheses including later versions of thrifty gene, drifty gene, 

thrifty phenotype, assume a central role of obesity. Exceptions are Neel’s thrift, 

behavioural switch, and fertility selection hypotheses. As the awareness about the 

multi-organ involvement and cross talk in T2DM is increasing, there are more 

attempts to explain the complexity. However, most evolutionary hypotheses are 

yet far away from reaching this goal.  
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6.6.8 Suggests change in clinical practice and randomized clinical trials 

 “The epistemic yardstick of clinical importance is the possibility of causal 

intervention.” (Cournoyea, 2010). Possible clinical or epidemiological useful 

suggestions are made by the thrifty phenotype and behavioural switch hypotheses. 

Thrifty phenotype hypothesis suggests that improvement of maternal nutrition 

would be necessary and sufficient to reduce prevalence of T2DM across a 

generation. This prediction is certainly testable but would take a long time to see 

results. The behavioural switch hypothesis states that specifically designed 

behavioural interventions should be able to prevent and perhaps reverse T2DM. 

This prediction is certainly testable using a carefully designed clinical trial but has 

not been tested yet. 

 

It is not exceedingly difficult to realize that almost all the hypotheses are quite 

primitive and have not made sufficient attempts to work towards these goals. 

Table 1 summarizes the status of the different hypotheses as perceived today. It is 

possible that some of the hypotheses have the potential to explain more than what 

they did when they were proposed. It is necessary for the proponents of the 

hypotheses as well as others interested in evolutionary insights that we attempt to 

progress in this direction. While doing so we are likely to reject certain 

hypotheses based on poor performance scores on the multiple expectation scale. 

But this process itself is likely to lead us to resolve between hypotheses and 

narrow down on the most appropriate one(s). The process should culminate in 

finding a theory that highlights the root cause of the disorder and accordingly 

suggest a line of treatment that targets the root causes rather than the symptoms.  
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Table 1: A format for comparative evaluation of different evolutionary hypotheses for type-2 diabetes: A complete evaluation may not be possible currently 

since a number of hypotheses have not been explored sufficiently to see whether they fulfil the expectations. The signs represent current perceptions about the 

hypotheses compared. ‘+’ indicates that the hypothesis explains the point satisfactorily, ‘-’ indicates that the hypothesis fails to explain the point and ‘?’ indicates 

that the possibility is not yet explored or is debated (Watve and Diwekar-Joshi, 2016) 

Evolutionary hypothesis → Thrifty gene 

(Neel’s) 

Thrifty 

gene later 

Thrifty 

phenotype 

Refine

d thrift 

Drifty 

gene 

Fertility 

selection 

Behavioural 

switch Points explained by the 

evolutionary hypothesis ↓ 

Polymorphism/variability - - + + -+ + + 

Intra-uterine effects - - + + - + + 

Independence of FG-FI - - - - ? + + 

Hyperinsulinemia first + - - - ? - + 

GWAS limited success - - + + - - + 

Ultimate cause for Obesity-IR 

association 

- - - - - - + 

Non-monotonic associations of 

obesity 

? ? ? ? ? ? ? 

Differential tissue insulin 

dependence 

? ? ? ? ? ? + 

β-cell amyloid and persistence +- +- +- +- +- +- + 

System level effects ? ? ? ? ? ? + 

Proximate ultimate 

complementarity 

? ? ? ? ? ? + 

Resolve paradoxes in T2DM 

pathophysiology 

+- - - - - - + 

Suggests change in clinical 

practices 

- - + ? - ? + 

Randomised Clinical Trial  - - Possible - - - Possible 
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6.7 Inter-compatibility and combination of hypotheses 

No single hypothesis explains the evolution of propensity to obesity and T2DM. 

More than one hypothesis must be considered simultaneously to account for the 

underlying pathophysiology. To do so, we need to analyse the inter-compatibility 

of the different hypotheses. For example, developmental programming and 

behavioural strategies have some compatibility with each other in the context of 

intra uterine or trans-generational effects. Neel’s thrift and later versions of thrift 

are not compatible in the context of mechanism and time course of development 

of the insulin resistant state. Only compatible hypotheses can be combined to give 

logically coherent explanations. Therefore, a detailed context specific 

compatibility analysis needs to be an important intrinsic part of the development 

of evolutionary theory of T2DM. But this step is possible only after the primary 

evaluation step described above. After eliminating the ones that get rejected by 

the analysis, the remaining ones can be tested for inter-compatibility and it can be 

asked whether a combination of them fulfils the expectations better than one. 

 

Collectively, the obesity cantered hypotheses for the origin of T2DM perform 

poorly on this matrix. Hypotheses that presume reproductive and behavioural 

origins of the condition certainly look more promising. But we need to wait until 

all the alternative hypotheses are explored in sufficient depth to see whether they 

fulfil the predictions which are unexplored or untested at present.  

 

6.8 Importance of evolutionary biology in medicine 

Through this piece of work, we have shown the gaps and inadequacies in the 

evolutionary hypotheses of T2DM. There are, however, strong reasons to believe 

that evolutionary logic, if appropriately used, will give important insights into 

medicine in general and T2DM and other life-style related disorders. Evolutionary 

biologists have the right capabilities needed to overcome these problems. They are 

trained rigorously in quantitative thinking and have theoretical and mathematical 

knowledge and ability to join dots and make synthesis from disjointed findings. 

Importantly, they can differentially handle proximate and ultimate causation. 

Unfortunately, so far these strengths have not been adequately used in EM, 

particularly in the context of T2DM. If the theoretical rigor seen in many other 
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fields of evolutionary biology is brought into evolutionary medicine that is likely 

to bring a fundamental and useful revolution in medicine.  
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Chapter 7: Conclusions and Outlook  

 

7.1 Conclusions 

The main motivation of studying the insulin-glucose relationship was its 

dysregulation leading to T2DM which is a substantial burden on the health 

systems all over the world. There are several inconsistencies, flaws, and 

anomalies in the research about the pathophysiology and treatment of T2DM. A 

critical rethinking of fundamentals is necessary, and new studies related to this are 

coming up from several groups all over the world. With this in mind, we set out to 

critically re-examine the insulin-glucose relationship using multiple approaches 

which complement each other.  

 

In the first approach, I looked at the literature for experiments in which insulin or 

insulin action has been increased or suppressed in a sustained manner. I conducted 

a systematic review of the literature in four different meta-analyses (Chapter 2). A 

meta-analysis of the literature in which the insulin degrading enzyme is inhibited, 

shows that the increase in insulin via this inhibition affects the post-meal glucose, 

but not the fasting glucose. Similarly, the IRKO, DZX and OCT meta-analyses 

look at the glucose levels after inhibition of insulin action or suppression of the 

insulin level. The results of these analyses also converged on the result that the 

alterations of insulin levels lead to a significant change in the GTT curve, but not 

the fasting glucose level. Thus, a change in insulin alters the perturbed state of 

glucose substantially more than it alters the steady state. 

 

The next approach looked at the epidemiological data. If the parameters of 

glucose-insulin interaction are the same, the regression-correlation parameters 

between glucose and insulin should also remain the same in fasting versus post-

meal conditions, although the range will be different. In epidemiological data, it 

was seen that the fasting correlation is substantially weaker than the post-meal 

correlation (Chapter 3). The regression slopes also differ indicating that the 

mechanisms that decide the fasting levels of glucose and insulin, and the ones that 

decide post-meal levels would be qualitatively and/or quantitatively different.  
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The STZ experiments (the third approach) agree with the epidemiological data in 

that the fasting and post-meal patterns are significantly different. Overall insulin 

explains glucose levels very poorly in fasting data, but much better in post-meal 

data (Chapter 4). The assumption that STZ acts specifically by β-cell destruction 

and has no other mechanism of action leaves many questions unanswered. 

Therefore, other possible mechanisms of action of STZ on glucose need to be 

explored. 

 

In an attempt to infer causality from cross sectional data using the novel methods 

developed by Chawla et al (2018), the classical pathway for regulation of fasting 

glucose fails to get support. On the other hand, the null model that FG and FI do 

not affect each other but may have a common input such as autonomous nervous 

system is not rejected (Chapter 5).  

 

Interpreting all experimental and epidemiological data together led to a 

convergent inference that, insulin has no role in determining steady state glucose 

level, but it can enhance the rate of return to a steady state after a perturbation. We 

make a fundamental distinction in causal relationships by showing that causation 

in a perturbed state can be distinct and different than causation is a steady state in 

homeostatic systems. On a more general scale, driver cause is one which takes a 

system to a state but does decide the attributes of that state. A navigator cause 

influences the attributes of the state, although it may not be sufficient to take the 

system to that state (figure 1). We outline the methodological norms for 

differentiating the two types of causalities (Chapter 5). By these norms, insulin is 

a driver for fasting glucose but not a navigator.  
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Figure 1: Distinct actions of a driver and a navigator on the steady and perturbed states of a 

homeostatic variable. In panels A and B, the solid line represents the normal levels of a 

homeostatic variable. The time points T1, T2 and T3 represent the perturbed state whereas the 

time point T4 represents the steady state of the variable. Panel A represents the action of a driver 

on the variable. The effect of the driver causes changes of the peak of the variable in the perturbed 

state, the steady state levels however remain the same, even though there is a delay in reaching the 

steady state levels. Panel B represent the action of a navigator on the variable. The effect of a 

navigator is that it changes the steady state level of the variable along with the perturbed state.  
 

In this work, we have come up with a new understanding of insulin-glucose 

relationship. This novel view of the insulin-glucose relationship many 

implications to the hypotheses about evolutionary origins of type 2 diabetes. This 

new view substantially weakens the case for the obesity centred hypotheses. We 

have explored the criteria for the development of a sound theory for the 

evolutionary origins of a diseases with the specific example of type 2 diabetes. 
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This new relationship between insulin and glucose strengthens the behaviour and 

reproduction centred hypotheses to explain the evolutionary origin for type 2 

diabetes.  

 

7.2 Outlook  

After revisiting the insulin-glucose relationship and highlighting the difference 

between this relationship at the steady state and perturbed state, the next steps 

would be to find the causal factors in the steady state. We highlight the role of 

insulin as a driver and not a navigator in the determination of steady state or 

fasting glucose. The next line of work world be to decipher the putative drivers 

which could determine the levels of fasting glucose.  

 

The potential drivers and navigators which could regulate glucose apart from 

insulin have always been studied right from the time when Claude Bernard 

showed that damage to  Medulla causes hyperglycaemia (Bernard, 1879). Like 

insulin, a variety of molecules and behaviours or actions have been associated 

with or implicated in glucose homeostasis over the years. The key is to try and 

identify if these factors act as a driver or navigator. To do this, effect of each 

factor on the steady state and perturbed state glucose must be known. Then and 

only then can we be sure if the factor is a driver or a navigator or even both. The 

best point to start to look for potential drivers and navigators would be to start 

with the molecules or behaviours identified to affect the insulin action in a steady 

state. Kulkarni et al 2017 have identified over 70 different molecules which affect 

insulin, insulin action and/or glucose levels in type 2 diabetes (Kulkarni, Sharda 

and Watve, 2017) using a network model. Moreover, they have also identified 

some key nodes in the network which take the system from an insulin resistant 

state to an insulin sensitive state. These key nodes could be checked for a 

driver/navigator function using a similar mode of study which has been used in 

the thesis. these are the molecules from the list of their key nodes that we could 

start with: testosterone, dopamine, oestrogen, osteocalcin, melatonin, ghrelin and 

adiponectin. (Kulkarni, Sharda and Watve, 2017). We could use a similar meta-

analysis approach initially to assess if each of these factors act as a driver or 

navigator on glucose.  

 



192 
 

In this project, we have tried to delineate the causal relations between fasting 

glucose, fasting insulin and insulin resistance using the methods developed in our 

lab (Chawla et al, 2018). The same method could be employed to look at the 

relationship between fasting glucose and other putative drivers, provided steady 

state values are available for such variables. Kulkarni, Sharda and Watve 2017 

have showed with an inter-organ signalling network model that several nodes 

which result in insulin sensitivity when perturbed sustainably. This list could be 

the first step/starting point for searching published literature for data sets with the 

steady state values for the variables identified as putative drivers. Thus, the final 

aim should be to find the putative drivers or combination of such drivers which 

are responsible for the fasting or steady state glucose levels. These could in turn 

suggest novel prevention and treatment approaches towards T2DM.  
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Appendix  

I.) PRISMA 2009 Flow Diagram: 

Insulin Degrading Enzyme (IDE) inhibition meta-analysis  
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For more information, visit www.prisma-statement.org. 
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II.) PRISMA 2009 Flow Diagram:  

Insulin Receptor Knock-out (IRKO) meta-analysis 
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III.) PRISMA 2009 Flow Diagram: 

Diazoxide (DZX) meta-analysis 
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IV.) PRISMA 2009 Flow Diagram:  

Octreotide (OCT) meta-analysis 
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