
Self-Assembly of Polymeric
Chains under a new Radially

Symmetric Potential

A thesis submitted towards partial fulfilment of
BS-MS Dual Degree Programme

by

Alex Abraham

under the guidance of

Dr. Apratim Chatterji

Associate Professor

Indian Institute of Science Education and Research
Pune

Acknowledgements

I would like thank my supervisor Dr. Apratim Chatterji for all the guidance.
I thank my family and my dear friends for their relentless support.

Abstract

Self Assembly of particles under a radially symmetric two-body potential
was studied. The new potential was designed by us with the aim of model-
ing polymeric chains. The self assembly, implemented through the off-lattice
Monte Carlo scheme, produced chain-like structures. The structures were
found to have branching, which, although remained after various attempts
to eliminate, was brought down to a minimum. The set of parameters of
potential was then optimized for maximum chain length with least branch-
ing. The clustersize distribution was analyzed and found to have exponential
distribution. As a measure to reduce branching of the chains, the system was
confined between walls and was subjected to weak constant shear stress, im-
plemented using Molecular Dynamics scheme. The response of the system
was analyzed. The variation of the branching and clustersize when the sys-
tem was sheared with walls of various degrees of attraction was studied.

Contents

1 Introduction 4

1.1 Motivation . 5

1.2 Thesis outline . 5

2 Theory 8

2.1 Polymers . 8

2.1.1 Ideal chains: Freely jointed model 8

2.1.2 Ideal chains: Worm-like chain model 9

3 Methods and Models 10

3.1 Simulation of Self-Assembly 10

3.1.1 Metropolis Algorithm 11

3.1.2 Periodic Boundary conditions and the Truncated Po-
tential . 11

3.1.3 Clustersize and Branching estimation 12

3.1.4 Validation of MC method for Self-Assembly 13

3.2 Simulation of the system under shear 14

3.2.1 Molecular Dynamics of the free particles 14

3.2.2 Confined system and shearing 17

2

3.2.3 Steady state and Measurements 18

3.3 Validation of the Molecular Dynamics 19

3.3.1 MD of non-confined system 19

3.3.2 MD of confined system 20

4 Results & Discussions 23

4.1 Self Assembly of particles: MC simulations 23

4.2 Shearing the system . 30

4.2.1 Shearing the system of particles under LJ potential . . 30

4.2.2 Shearing the system of particles under the new potential 31

4.3 Conclusion . 37

5 Future Prospects 38

References 38

A Simulation Codes 41

A.1 Off-lattice Monte-Carlo simulation of self-assembly and addi-
tional analysis . 41

A.2 Molecular Dynamics of shearing the system 52

3

Chapter 1

Introduction

In Soft Matter Physics, chain-like structures are commonplace in a variety
of systems. They keep reappearing in different phenomena involving mi-
celles, polymers, colloids etc. Indeed, there have been numerous studies over
the years through lab experiments as well as computer modeling and simu-
lations, to understand the properties and dynamics of such structures. The
computational modeling has in great deal been a successful tool in the design,
synthesis and in aiding successful applications of these materials.

Choice of model is dependent upon on the particular aspect of the con-
cerned entity we would like to explore. In the case of polymers, the ideal
chain models serve the purpose of explaining the general properties and pro-
vide insights into the physics of polymers at the macroscopic level. But when
the microscopic details of the polymers are needed to be taken into account,
one moves towards more precise models. The first successful molecular model
of their dynamic behavior was described by P. Rouse, where he provided a
spring and bead description. For the polymer dynamics in dilute solutions,
where hydrodynamic interactions are strong, the Zimm model is relevant.
There are other models which describe more features of polymers, like the
entangled polymer dynamics models. [10]

In micellar systems, we come across a variety of chain-like structures. The
wormlike micelles, which are elongated flexible self-assembled structures, are
of particular interest. Depending on their concentrations and other parame-
ters a variety of properties can be observed in them, including viscoelasticity,
shear banding transition, nematic ordering etc [3, 13, 12, 4, 2, 9]. The theories
on these structures can explain only some of the rich experimental rheological
data that has been produced over the years. At this point, the simulations

4

provide a path to understand their formation, structural features and partic-
ularly, their peculiar rheology. Such simulations belong to three categories in
general. (i) The atomistic simulations, where we have accurate and well un-
derstood force fields and which provides insights about the overall structure
of the micelles, along with fluctuations in its shape. (ii) The coarse grained
simulations, which follows from the principles of previous method but have
greater pace, due to the approximations used. (iii) Higher level models like
FENE-C and MESOWORM, where the focus is more on understanding the
rheological properties. [14]

Chain-like structures that can be observed under optical microscopy have
been reported by K. Guruswamy [6] in colloidal systems. This is a convenient
feature, since this allows us to learn in greater detail the dynamics of the
system and provides better control over the self assembly.

1.1 Motivation

The various computational methods that exist today to model a chain-like
structure, more specifically one which can model and give control over prop-
erties like semi-flexibility of the chains, have used forms of potential which
has angular dependence or 3-body interactions. As the most time consuming
part of a simulation is the estimation of these inter atomic interactions, all
these models are computationally demanding when compared to a interact-
ing potential like Lennard-Jones. In this context, we aim to design a radially
symmetric two-body potential, which would be computationally cheap to
evaluate, and can model self assembly of particle into chains, which are pos-
sibly semi flexible in nature. We try and obtain control over various polymer
properties like persistence length etc. by varying suitable parameters in the
two body potential.

1.2 Thesis outline

The two body potential that was investigated in this study is,

U(r) = ε

α((σ
r

)2p
−
(
σ

r

)p)
+ β

e−(r−r0)
η

r

 (1.1)

The peak after the potential minimum is crucial in giving rise to chain-like

5

Figure 1.1: Typical plots of the three classes of potential. Green: p = 18. Red: p = 12. Blue: p = 6.

structures (Fig. 1.1). A particle, when bonded to another particle, will be
at a distance less than the peak position. The presence of the peak makes
this new bond stable; it, in way, ”locks” the particles. Now, when a third
particle approaches to form a bond with any of these two, the presence of
the peak makes it difficult for it attach to either particle, perpendicular to
the existing bond, making it favorable only to attach from the either ends
of the dimer. Ideally, if a particle tries to make third bond, the combined
repulsion due the peak in potential of the particles around would deter it.

We focused on three classes of this potential; p = 6, p = 12 and p = 18
(Fig. 1.1). We start with a preliminary study on understanding the kind
of structures that are formed and optimizing it to produce better chains.
Then we shear the structures obtained to improve the chains and reduce
any branching. Our model belong to the iiird category where rather than
trying to include the atomistic details of the structure we are interested in,
we simply try to model the macroscopic properties of the material.

The following the general structure of the Thesis:

Chapter 2 presents a quick overview of the physics of the kind of sub-

6

stances we have tried to model.

Chapter 3 provides the details of the model we have used and the tech-
niques and schemes that were used in the study. This includes MC simulation
of the self assembly and the MD simulation of the confined system and its
shearing. The details regarding the validation of each scheme are also pro-
vided.

In Chapter 4, the results obtained are presented along with the discussions
entailing them. The results and the related discussion have been supported
with relevant analysis.

Chapter 5 provides an overview of the future directions in the study of
the model.

7

Chapter 2

Theory

2.1 Polymers

Polymers, structures formed from repeating units known a monomers, have
been widely theoretically modeled. The simplest of such models are the ideal
chains.

2.1.1 Ideal chains: Freely jointed model

The ideal chain models describe the polymer as simple connections of monomers
which has no interaction with each other when they are far apart. Consider
an ideal polymer chain with n bonds (therefore, n+1 particles) and of equal
bond length l. The angle between the bond vector of the ith and jth parti-
cles is θij. ri is the bond vector between the ith and the (i − 1)th particles.
Let ~Rn be the end-to-end vector, the sum of all n bond vectors. Now, the
mean-square end-to-end distance denoted by 〈R2〉 is,〈

R2
〉

=
〈
~Rn · ~Rn

〉
=

n∑
i=1

n∑
j=1
〈~ri · ~rj〉

= l2
n∑
i=1

n∑
j=1
〈cos(θij)〉

(2.1)

For a freely jointed chain, cos(θij) = 0 for i 6= j and 1 otherwise. Therefore,
〈R2〉 = nl2 for such a chain. But for an ideal polymer chain it would have

8

an extra factor Cn(> 1) (Flory’s Characteristic ratio) or C∞ as n tends to
infinity, which accounts for the correlations among the bond vectors.

In order keep things simple, any ideal polymer chain can be associated
with an equivalent free joint chain, which can describe many universal prop-
erties of the polymer. The equivalent freely jointed chain of a polymer will
have same mean-square end-to-end distance 〈R2〉 and the maximum end-to-
end distance Rmax as the actual polymer, but will have N effective bonds of
length b. This length is called the Kuhn length. It can be shown that,

b = C∞nl
2

Rmax

(2.2)

Now, we can see that a chain whose difference between its Kuhn length
and the actual bond length is small, will be more flexible, and vice versa.
Therefore, the Kuhn length indeed tells us a great deal about the flexibility
of the chain.

2.1.2 Ideal chains: Worm-like chain model

A special case of the free rotating chain model (where one assumes equal
probabilities for all torsion angles of bonds), is the worm− like chain model,
where we consider small bond angles. Now, if sp is the number of bonds in
a persistence segment, the scale at which the local correlations between the
bonds decay,

sp = − 1
ln(cos(θ))

∼=
2
θ

(2.3)

The persistence length is the length of this persistence segment,

lp = spl = l
2
θ2 (2.4)

l being the constant bond length. This persistence length is related to Kuhn
length b as,

b ∼= 2lp (2.5)

The major difference between the two kind of the chains that has been
mentioned is that in freely jointed model each bond of Kuhn length b is
considered to be completely stiff, whereas, in worm-like chains this stiffness
is within length scales shorter than the Kuhn length, allowing them fluctu-
ate and bend more. This difference leads to different dynamical properties.
Reference: [10].

9

Chapter 3

Methods and Models

In this chapter, we introduce the simulation models and methods used for the
various studies on the potential. The initial simulations of the self-assembly
and the resulting structures were done using the Off-Lattice Monte-Carlo
(OLMC) simulation method. Once the optimized potential was found, a
weak constant shear stress (boundary-driven) was applied on the system,
simulated using Molecular Dynamics (MD). The confining walls in this model
were modeled as a single triangular lattice of particles, interacting with the
system particles through Lennard-Jones potential. The validity of the each
system was ensured by matching several of their physical properties with
known theoretical and experimental results.

3.1 Simulation of Self-Assembly

The primary step of study was to simulate the self-assembly of particles
interacting through the potential. The off-lattice Monte-Carlo simulation
method was deployed for this. The method is suitable for a preliminary study
on the potential as the objective at this step was to make a computationally
cheap assessment of the structures produced by the potential.

In the OLMC simulation, the system (a Lx × Ly × Lz box), is filled with
certain number of particles and their positions randomly assigned, under the
condition that the distance between any two particles should be greater than
the diameter of particle. The particle volume density is a controllable variable
and the number of particles is decided accordingly. Next, the time evolution

10

of the particle system is performed as successive Monte-Carlo steps. In each
step, every particle in the system is visited exactly once and their positions
are updated using the Metropolis algorithm [8].

3.1.1 Metropolis Algorithm

In the Metropolis Algorithm, a random change in the position of the particle
is proposed. We accept it if the resulting change in the energy of system ∆E
is negative. Otherwise, the proposed change is accepted with a probability
e

∆E
kBT . In order to do this, we generate a number using a uniform random

number generator from the interval [0,1] and if the number is less than the
factor e

∆E
kBT , the change in position will be accepted.

3.1.2 Periodic Boundary conditions and the Truncated
Potential

Even though the simulation is expected to provide accurate information
about the macroscopic sample, the limitations pertaining to the present-day
computers allow us to deal with only a smaller number of degrees of freedom.
In order to overcome this limitation we have imposed periodic boundary con-
ditions (PBC) on the system. This helps us go around the problem and mimic
the presence of an infinite bulk engulfing our model system containing a few
thousand particles. The the box containing the system particles is considered
as a primitive cell which is part of a infinite periodic lattice of identical cells.
This could lead to artificial dynamics in the system (for example, if you have
a fluctuation of wavelength greater than the cell size). In order to minimize
such finite size effects, sufficiently large box (30× 30× 30) has been used.

In principle, the PBC lets any particle in the the primitive cell to interact
with infinite number of particles (including its own periodic images). But the
limited computational power means that we have to restrict the interactions
to a limited volume around the particle concerned. Also, the potential we
are dealing with (most intermolecular interaction potentials, for that mat-
ter) is a short-range interaction potential. Therefore, we can truncate all
intermolecular interactions beyond a cutoff distance.

11

Truncated Potential

In order to truncate the interactions, we define a cutoff distance rc. It is
chosen such that the error in ignoring the interactions with particles at dis-
tances larger than rc is sufficiently small. Since U(r) = 0 for r > rc, the
potential will become a discontinuous at rc. Therefore, for r < rc we define
a truncated and shifted potential,

U(r) = ε

α((σ
r

)2p
−
(
σ

r

)p)
+ β

e−(r−r0)
η

r

− U(rc) (3.1)

as the net potential used in the simulation, where,

U(rc) = ε

α((σ
rc

)2p
−
(
σ

rc

)p)
+ β

e−(rc−r0)
η

rc

 (3.2)

3.1.3 Clustersize and Branching estimation

The set of parameters for an efficient potential was found on the basis the
average chain size (or rather clustersize) and average branch number of the
configuration arises out of the self-assembly. These quantities were calculated
from the cluster sampling done during the runtime. Any group of particle
in which, each particle is within the bond length, i.e ”bonded”, with at least
one other particle of the group, is considered as a cluster. The bond length
is defined as the position of the point of energy peak in the potential. A
branch is defined as a third bond arising from a particle. Note that due to
this definition if a bond shared between two particles is the third bond for
both of them, then the number of branches counted due to that bond is two,
not one.

The system can contain all kinds of clusters other than chains. Also,
many chains could have several branches on them too. It is very difficult to
come up with a criteria to consider a cluster as a chain. Therefore, instead
of exclusively picking chains and classifying them according to their size, we
have included all kind of clusters. The number of branches were also recorded
in each sampling. We then looked for set of parameters that corresponds to
maximum clustersize but minimum number of branches, since it would imply
the the clusters in the system are predominantly chain-like.

12

The cluster sampling was done at regular intervals once the system had
reached the equilibrium. During sampling, every particle will be visited ex-
actly once. When a particle is visited we will visit all particles of the same
cluster starting from it and in the process count the number of particles,
which is nothing but the size of cluster. In the meantime, if any of those
particle is found to have more than two bonds the number of branches in
the system is incremented by one. From this data, we calculate the average
number of branches and the average cluster size, which is,

lavg =
∑
i li × ni∑
i ni

(3.3)

where ni is the number of clusters with size li per sample.

3.1.4 Validation of MC method for Self-Assembly

As an initial check of the MC scheme, self-assembly of particles interacting
through the potential of interest produced energy curves as expected for an
system in equilibrium (Fig. 3.1a).

As a further check, we looked for the features of clustersize distribution
(Fig. 3.1b). The clustersizes followed an exponential distribution, which is

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 50000 100000 150000 200000 250000

E
n
e
rg

y
 (

k
B
T

)

t (no: of MC iterations)

Potential Energy

(a)

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

lo
g
(n

i)

li (clustersize)

ρvol=0.11

(b)

Figure 3.1: (a) The energy curve for the potential of interest. The dip in potential energy is almost
unnoticeable, indicating a quick equilibration of the system. (b) Logarithmic plot of clustersize vs.
number of clusters in each size category. The log plot is clearly linear in nature. li is the clustersize and
ni is the number of clusters belonging to the size category li.

expected for a self-assembled system[7, 11].

13

3.2 Simulation of the system under shear

The study of the system of particles under the application of shear stress
required a technique that takes into account the intermolecular forces. The
obvious choice was Molecular Dynamics (MD). The technique gives a view of
the dynamics of the system of particles by simplifying the interatomic inter-
actions as classical interactions. This method is deterministic as compared
to Monte-Carlo method, which was stochastic.

3.2.1 Molecular Dynamics of the free particles

The Molecular Dynamics involves numerically solving the Newton’s equations
of motion for the system of particles and determining their trajectory in
the system. To begin with, we initialize the system with particles (number
calculated from the predefined volume density) at random positions, such
that none of them overlap any other particle, as we had done for the Monte-
Carlo simulation (see Sec. 3.1). We also initialize velocities for them such
that the system has the required initial temperature. First, we calculate
the vrms corresponding to the initial temperature T . We then assign each
velocity component a value belonging to a uniform distribution on the interval
[−vrms, vrms]. By choosing the velocities from this particular interval we are
guaranteed to get the desired temperature, which can be shown as follows.
In thermal equilibrium, the following relation holds,

v2
rms = 3kBT

m
(3.4)

Throughout the study we have set m = 1 and kB = 1 (see Sec. 3.3.2).
Therefore,

T = vrms√
3

(3.5)

Let v′ix, v′iy, v′iz be the three velocity components for the ith particle chosen
from the above mentioned interval. Then,

v′rms =
√√√√ 1
n

∑
i

(
v′ix

2 + v′iy
2 + v′iz

2
)

(3.6)

14

Now, for the uniform distributions on the interval of the kind [−x, x]
the mean is zero and therefore, the v′rms is nothing but

√
3 times standard

deviation of the distribution (as we have used 3n samples from the intervel
to calculate v′rms). Therefore,

Std.Dev. =
√

1
12 (b− a)2 for a uniform distribution in the interval [a, b]

∴ v′rms =
√

3
√

1
12 (b− a)2 where, a = −vrms, b = vrms

= vrms
(3.7)

This ensures that the temperature is T . Additionally, we shift all the
velocities such that the net linear momentum of the system is zero.

We now proceed to calculate the forces acting on every particle in the
system. In our case, the interatomic forces are dictated by the potential
through which the particles are interacting. We have,

~F (r) = −~∇U(r)

= ε

[
2pα

((
σ2p

r2p+1

)
− 0.5

(
σp

rp+1

))
+ β e

−(r−r0)
η

(
1
r2 + 1

ηr

)]
n̂

(3.8)

Once we have the forces corresponding to each particle we can start in-
tegrating the Newton’s equations of motion in order to obtain the trajectory
that describes the position and velocity for the time forward. We used the
Velocity-Verlet algorithm for this purpose [5]. Starting with the Taylor ex-
pansions of the r(t + ∆t) and r(t − ∆t), this algorithm gives the updated
position and velocity of a particle after a timestep ∆t by,

r(t+ ∆t) = r(t) + v(t)∆t+ f(t)
2m ∆t2 (3.9)

v(t+ ∆t) = v(t) + f(t+ ∆t) + f(t)
2m ∆t (3.10)

15

Once the new positions and velocities are calculated, we update these as
the current coordinates in the phase-space and repeats the above calculations
for the future time steps. As in the case of Monte-Carlo simulations, we use
Periodic Boundary conditions and the truncated and shifted potentials here
as well, for the same reasons as before (see Sec. 3.1.2). The force we use here
is truncated and shifted as well,

F (r) = ε

[
2pα

((
σ2p

r2p+1

)
− 0.5

(
σp

rp+1

))
+ β e

−(r−r0)
η

(
1
r2 + 1

ηr

)]
− F (rc)

(3.11)

where, F (rc) is the force value at the cutoff distance rc. Since we are
dealing with forces also, the form of potential used in the MD simulations
will have a extra term F (rc) r (where r is distance between the particles)
added to it, in order to have a proper shifted potential.

Thermostat

The Molecular Dynamics we are carrying out is done in isothermal conditions.
Even though we had carefully set the initial temperature at the desired value,
there is no guarantee that it will stay constant throughout. Since there is
little chance that the total initial potential energy of the system will be at
the equilibrium value, it would give out or draw in from the kinetic energy
of the system, which will lead to changes in the temperature. Therefore, it
is essential to take away or provide extra energy in order to keep the system
at constant temperature. In real experiments, the environment of the setup
usually takes care of this. In simulations, we employ a virtual thermostat
to maintain constant temperature in system. At sufficiently large but equal
intervals, the thermostat will be applied, which rescales the velocities of
particles such that the kinetic energy per particle is in agreement with desired
temperature.

Later, when we introduce shear stress to the system through confining
walls, the thermostat is to play an important role in driving the system
towards steady state and maintaining the system in it.

16

Figure 3.2: Particles arranged in triangular lattices serve as walls

3.2.2 Confined system and shearing

In order to shear the system, the system is confined between two parallel
walls, which will then be moved in opposite directions. As first step, we
introduce walls at the boundaries perpendicular to the z-axis (i.e. at the
two x-y boundaries of the box). The walls are triangular lattices of parti-
cles (Fig. 3.2), which interact with the system particles through the simple
Lennard-Jones potential,

U(r) = 4ε2

[(1
r

)12
−
(1
r

)6]
(3.12)

which, of course, will be cut off at a distance rwallc and shifted by U(rwallc).

Figure 3.3

No momentum will be trans-
ferred to the wall particles from the
free system particles; only free par-
ticles will feel the interacting forces
from walls. They have an constant
but independent motion parallel to
the system. The wall at z = 0 move
in the +x direction and the other
wall at z = lz (length of simula-
tion box along the z-axis) move in
-x direction, with constant velocity
(Fig. 3.3). This wall velocity will in-
duce shear stress in the system. The
nature of the wall (attractive, weakly attractive, repelling etc.) can be con-
trolled by varying ε2 value of the potential and the cutoff distance rwallc .

The periodic boundary conditions have to be slightly modified when we

17

introduce the walls. Since presence of walls means that the particles can no
longer move across the corresponding x-y boundaries, no periodic boundary
condition will be imposed along the z-axis. In the extremely rare situation of
a particle crossing the walls, steps will be taken to remove it from simulation
altogether, as would have happened in a real experiment.

Once the walls are setup, the simulation is initiated and the next step
is to do the required measurements on the system after reasonable time.
The phenomena we are interested in are not transient in nature. Therefore,
meaningful measurements can only be done once the system has at least
evolved past the transient period.

3.2.3 Steady state and Measurements

Shearing the system is a non-equilibrium process, since we are putting in
energy continuously. As in the case of equilibrium processes, this process
too have a transient period, where various physical quantities of the system
varies. The system then attains a steady state, where the physical quantities
of the system is no more changing with time, i.e, for a quantity of interest
w(x, t),

∂w

∂t
= 0 (3.13)

We need to make sure that the system has reached the steady state before
we start sampling data for the measurement of any quantity. The determi-
nation of the steady state in the system is based the variation in the profile
of x-component of particle velocities, along the z-axis of the system.

In order to determine this velocity profile of particles (and for several
other calculations), we divide the box into small layers (compared to lz)
along the z-direction. We then identify the particles that fall within each of
these layers and an average vx for each layer is calculated. Repeating this in
regular intervals of timesteps, a vx profile averaged over a fairly long period
of time (long enough to average out fluctuations) is obtained. A second
estimation of vx profile is done in the next same length of time in similar
fashion. These two profiles are then compared and if the variation between
two profiles is within a certain predefined error bar, we conclude that the
system has reached steady state.

18

Once the system has reached steady state, we can commence measure-
ment of the quantities we are interested in.

Temperature profiling: The temperature of each layer is calculated using
the average velocities of the layers, from the principles of Kinetic theory:
3
2kBT =

〈
1
2mv

2
〉
. Since there is flow in x-direction, we have to subtract the

flow velocity from the vx in order to obtain the thermal velocity. Therefore,
we calculate the average KE as,

〈1
2mv

2
〉

= 1
nlayer

nlayer∑
i

1
2m

(
(vx − vmean

x)2 + v2
y + v2

z

)
i

(3.14)

where nlayer is the number of particles in the concerned layer. This is
averaged over several samples in order to get a reliable temperature estimate
(see Fig. 3.6b).

Density profiling: The number of particles in each layer is counted and
the volume of one particle is then multiplied with it to get the total volume
occupied by particles. We then divide this by the total volume of the layer
(except for the end layers, where the presence of the wall particles calls for
correction in available layer volume) to obtain the volume density profile (see
Fig. 3.6a).

vx profiling: The vx profiling involves simply averaging the x-component
of the velocity of particles in a layer. Similar profiling have been done for
other components of velocity as well.

3.3 Validation of the Molecular Dynamics

3.3.1 MD of non-confined system

The simulation system developed was initially tested on Lennard-Jones par-
ticles. The simulation scheme indeed took the system to a lower energy state
as desired. The system was equilibriated and maintained at that state with
the help of the thermostat, which was called every 200 iterations (Fig. 3.4a).
Further, the energy plots for two different values of ∆ts (0.001 and 0.002)
were compared and the fluctuation in energy for ∆t = 0.002 was four times
as that of ∆t = 0.001, i.e, the fluctuations were proportional to ∆t2 which

19

-3

-2

-1

 0

 1

 2

 3

 0 0.5 1 1.5 2 2.5

E
n
e
rg

y
 (

k
B
T

)

t (τ)

Potential Energy/particle

Kinetic Energy/particle

Total Energy/particle

(a)

-0.17050

-0.17050

-0.17050

-0.17049

-0.17049

-0.17048

 0 0.5 1 1.5 2 2.5

E
n
e
rg

y
 p

e
r

p
a
rt

ic
le

 (
k

B
T

)

t (τ)

∆t=0.001
∆t=0.002

(b)

Figure 3.4: (a) Energy plot of the system at T=1 (b) Energy plot for ∆t = 0.001 and ∆t = 0.002.
The fluctuation in ∆t = 0.002 energy is four times more that of ∆t = 0.001, i.e., it is proportional to
∆t2. (Inset: Plot of total energy per particle is zoomed up. Note that the energy is constant in regular
inetervels between thermostating.)

is what is expected (see Fig. 3.4b) [5]. Also, the energy of the system stays
constant until the thermostat is applied.

3.3.2 MD of confined system

To establish the validity of the system under shear stress we had to rely on
various physical quantities other than the different energies, since we have a
non-equilibrium system in hand. Lennard-Jones particles were used as test
case. The temperature profile is even throughtout the system along the z-
axis, except near the walls. This irregularity (not shown in the figures here)
in temperature profile can be explained by the free particles crowding next

Figure 3.5: The crowded band of particles near the walls. The bluish-green dots are the walls rows (seen
from their ends) and the others are the free particles.

20

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20 25 30

ρ
v
o

l(
z
)

(p
a

rt
ic

le
 v

o
lu

m
e

 f
ra

c
ti
o

n
)

z

ε2= 0.1
ε2= 0.4
ε2= 0.7
ε2= 1.0

(a)

 0

 0.5

 1

 1.5

 2

 0 5 10 15 20 25 30

E
n

e
g

ry
 (

k
B
T

)

z

T=1

KEtot
KEx
KEy
KEz

(b)

Figure 3.6: (a) Density profile of system with walls vwall = 0.3, with various ε2. The peaks near the
walls vanishes and then dips as wall strength becomes weaker. (b) The plot of total Kinetic Energy and
the share of KE for each degree of freedom. The total KE at T=1 is 1.5 and each d.o.f has a KE share of
0.5 (hence the overlap of plots at y=0.5)

to the walls, as the potential minima of the wall particles are facilitating a
low energy laminar region parallel to the walls (Fig. 3.5).

The boundary crowding effect is more visible in the density profile, which
is otherwise even throughout (Fig. 3.6a). Also, there is a reversal in this effect
as the wall interaction strength is brought down. The system also abides to
the law of equipartition since the thermal kinetic energy is distributed equally

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

ε2=1.0

vwall= 0.5
vwall= 0.3
vwall= 0.1

vwall= 0.05

(a)

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

ε2=0.1

vwall= 0.5
vwall= 0.3

vwall= 0.05

(b)

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

vwall=0.3

ε2= 0.1
ε2= 0.4
ε2= 0.7
ε2= 1.0

(c)

Figure 3.7: (a) vx profile for ε2 = 1.0. (b) vx profile for ε2 = 0.1. A deviation (blue line) was observed
when the wall was only weakly attractive and shear rate was low. (c) The vx profiles for various ε2 when
vwall = 0.3 was applied. All the runs are 6000 LJ time units long. The units of vwall and ε2 are a/τ and
kBT , respectively.

21

in all three degrees of freedom per particle (Fig. 3.6b).

The vx profile of a set of Lennard-Jones particles under constant shearing
would be linear in the direction perpendicular the direction of shearing (z-
direction in our case) when relatively low shear rate is applied [1]. This was
replicated in our system (Fig. 3.7). Also, the slope of the profile seem to
decrease with reduction in the potential strength (i.e. the ε2 value).

A Note on units

Throughout the simulations and study, we have used reduced units for conve-
nience. Setting a as the unit of length we have scaled all lengths accordingly.
For a given kBT , T being the temperature, we then fix the unit of time as
τ , where τ =

√
mpa2/kBT , with mp = 1, kB = 1 and a = 1. Any value

a physical qauntity, including time and temperature, discussed anywhere in
this thesis have been scaled accordingly, if not mentioned otherwise.

22

Chapter 4

Results & Discussions

In this chapter, we present the results obtained on from the study of proper-
ties shown by self-assembled structures formed under the radially symmetric
two-body potential. Further in, we enlist the effects of confinement and
shearing on these structures.

4.1 Self Assembly of particles: MC simula-
tions

The preliminary study of self-assembly of the particles under the potential,

U(r) = ε

α((σ
r

)2p
−
(
σ

r

)p)
+ β

e−(r−r0)
η

r

 (4.1)

was intended to get an overview of the kind of the structures it could produce.
The MC simulation provided prima facie evidence that the potential indeed
gives rise to chain-like structures (Fig. 4.2), although with some branching.
We then optimized the potential for maximum yield of chains with minimum
branching.

The optimization study showed that set parameters of the following po-
tential maximized the chain yield while keeping the branches minimum,

U(r) = 12
5.8

((
σ

r

)36
−
(
σ

r

)18
)

+ 1.3
e−(r−1.12)

0.25

r

 (4.2)

23

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1.2 1.4 1.6 1.8 2 2.2 2.4

E
 (

k
B
T

)

r

x=1.052

x=1.176

∆E=4.307

Figure 4.1: Plot of the optimal potential (Eqn. 4.2)

The average clustersize of this is potential lavg is 2.25 and number of branches
per unit volume is 6.14 × 10−3. Note that the particle diameter σ has been
set to 1 a, i.e, one unit of length.

We looked at various features of the potential in reaching at the above
form. The difference in the energy value of the peak in the potential and
the dip, ∆E, is crucial in giving stability to the chains formed under this
potential. At the particle volume densities around 0.15, particles on aver-
age would be at a distance ≈ 1.5. Now, we want the energy peak to be

Figure 4.2: The snapshot of the final configuration
formed under the optimal potential [4.2].

scalable by a particle and be able
to form a bond, and at the same
time, we want the bonds to be sta-
ble, which would be decided by the
height of the peak from the mini-
mum of potential well. A careful
analysis showed that ∆E ≈ 4 would
be ideal.

One can see that the peak is
steeper inside the potential well,
making it difficult for a bond to
break, since even a small displace-
ment means a larger change in en-
ergy. This is not the case for a par-
ticle that is approaching the peak
from the outside the bond, where it

24

is less steep, making it relatively easier for a bond to form than to break off.
Now, if a particle approaches to form a bond with another particle which
already have two bonds emanating from it, the repulsions from the other two
particles should be strong enough to deter the new particle from creating a
third bond and thus, a branch.

Analysis of chains

 0

 2

 4

 6

 8

 10

 12

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

E
n
e
rg

y
 (

k
B
T

)

z

p
=
1
8 p=

12

p=6

Figure 4.3: Variation in the potential as the p value
varies from 6 to 12 t 18. The sharpness of the peak
increases with the increment in p. Note the variation
of interaction a particle at a given distance would
experience as this change happens.

The average branching was observed
to decrease as change the p value
(Eqn. 4.1) was changed from 6 to
12 to 18, without much loss in the
clustersize (Ref. Appendix A). The
increase in sharpness of the peak in
potential is the general change that
occurs when one make such a change
(Fig. 4.3), indicating that the sharp-
ness of the potential peak is a fa-
vorable aspect in producing better
chains. Therefore, potentials of the
class p = 18 were used further stud-
ies.

The analysis of the clustersizes
shows that their distribution is ex-
ponential (Fig. 4.6a), in agreement
with literature [11]. The particles
started to coalesce to form large
network-like structures when the densities were increased. This was marked
by the deviation from the exponential distribution (Fig. 4.6b) (Note that
the distributions shown here are of the potential [4.2]). The variation of the
average clustersize and average branching as the energy difference between
the potential energy peak and the dip varies, was also looked at(Fig. 4.7).

The following is the MC simulation data for various sets of parameters of
potential. Note that for p = 6, all final configurations were dominant with
large non-chain clusters, leading to high clustersizes.

25

r12-6 (p -value = 6)

Sl.
no.

epsil
on

alpha beta eta r0 b2 Dens
ity

Particl
es

niter Bond
lengt

h

Avg.
clust

er
size

Avg.
branc
hing

Bran
chin
g/

unit3

Box

30 40 6.6 2 0.666 1.12 0 0.2 10318 2.5 1.6 NaN 972 36 30x30x30

31 40 6.6 2 0.666 1.12 0 0.18 9286 2.5 1.6 NaN 905.2 33.5 30x30x30

32 40 6.6 2 0.666 1.12 0 0.15 7738 2.5 1.6 NaN 841.5 31.2 30x30x30

33 40 6.6 2 0.666 1.12 0 0.12 773 2.5 1.6 9 89 26.4 15x15x15

34 40 6.6 2 0.666 1.12 0 0.1 644 2.5 1.6 15.89 79.67 23.6 15x15x15

35 30 6.5 2 0.666 1.12 0 0.12 773 2.5 1.6 12.43 90.6 26.8 15x15x15

36 30 6.5 2 0.666 1.12 0 0.1 644 2.5 1.6 13.78 63 18.6 15x15x15

r36-18 (p -value = 18)

Sl.
no.

epsil
on

alpha beta eta r0 b2 Densi
ty

Partic
les

niter Bond
lengt

h

Avg.
cluste
r size

Avg.
branchi

ng

Bran
chin
g/

unit3

Box

37 12 5.8 1.3 0.25 1.12 0 0.15 7738 2.5 1.2 2.25 165.7 6.14 30x30x30

38 12 5.8 1.3 0.25 1.12 0.1 0.15 7738 2.5 1.2 2.27 170.5 6.31 30x30x30

39 12 5.8 1.3 0.25 1.12 0.5 0.15 7738 2.5 1.2 2.39 192.3 7.12 30x30x30

40 12 5.8 1.3 0.25 1.12 1 0.15 7738 2.5 1.2 2.56 220.7 8.17 30x30x30

41 12 5.8 1.3 0.25 1.12 2 0.15 7738 2.5 1.2 3.14 263.9 9.77 30x30x30

42 12 5.8 1.3 0.25 1.12 0 0.18 9286 2.5 1.2 5.58 1033.8 38.3 30x30x30

43 12 5.8 1.3 0.25 1.12 0.5 0.18 9286 2.5 1.2 6 1121.3 41.5 30x30x30

44 12 5.8 1.3 0.25 1.12 1 0.18 9286 2.5 1.2 6.34 1192.9 44.2 30x30x30

Figure 4.4: MC simulation results for p = 6 and p = 18. The final average clustersizes are large for p = 6
since majority of the self assembled structures were large highly interconnected clusters of particles.

26

r24-12 (p -value = 12)

Sl.
no.

epsil
on

alpha bet
a

eta r0 b2 Densi
ty

Partic
les

niter
(x106

)

Bond
length

Avg.
cluste
r size

Avg.
branc
hing

Branc
hing/
unit3(
x10-3)

Box

1 36 5.25 1.2 0.25 1.12 0 0.1 644 1 1.3 2.59 7.15 2.12 15x15x15

2 36 5.25 1.2 0.25 1.12 0 0.11 709 1 1.3 3.574 21.15 6.27 15x15x15

3 30 5.25 1.2 0.25 1.12 0 0.1 644 1 1.3 2.4 8.57 2.54 15x15x15

4 30 5.25 1.2 0.25 1.12 0 0.12 773 1 1.3 4.56 41.92 12.4 15x15x15

5 30 5.25 1.2 0.25 1.12 0 0.13 838 1 1.3 7.46 81.32 24.1 15x15x15

6 30 5.25 1.2 0.25 1.12 0 0.14 902 1 1.3 6.59 125.9 37.3 15x15x15

7 30 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 3.95 153.7 45.5 15x15x15

8 45 5.25 1.2 0.25 1.12 0 0.2 1289 1 1.3 1.0 181.2 53.7 15x15x15

9 40 5.25 1.2 0.25 1.12 0 0.2 1289 1 1.3 1.0 186.5 55.3 15x15x15

10 50 5.25 1.2 0.25 1.12 0 0.2 1289 1 1.3 NaN 186.4 55.2 15x15x15

11 60 5.25 1.2 0.25 1.12 0 0.2 1289 1 1.3 NaN 180.5 53.5 15x15x15

12 40 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 2.91 149.0 44.1 15x15x15

13 50 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 2.95 130.7 38.7 15x15x15

14 60 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 3.25 149.6 44.3 15x15x15

15 120 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 4.7 158.8 47.1 15x15x15

16 150 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 4.8 62.6 18.5 15x15x15

17 180 5.25 1.2 0.25 1.12 0 0.15 967 1 1.3 3.84 47 13.9 15x15x15

18 75 5.0 1.2 0.4 1.12 0 0.15 967 1 1.3 3.39 159.4 47.2 15x15x15

19 50 4.5 1.2 0.666 1.12 0 0.15 967 5 1.3 NaN 135.9 40.3 15x15x15

20 75 5.0 1.2 0.4 1.12 0 0.18 1160 1 1.3 5.02 165.3 49 15x15x15

21 50 4.5 1.2 0.666 1.12 0 0.18 1160 2.5 1.3 NaN 164 48.6 15x15x15

22 32 5.6 1.2 0.25 1.12 0 0.12 773 2 1.3 7.93 103.7 30.7 15x15x15

23 31 5.45 1.2 0.25 1.12 0 0.12 773 2 1.3 6.7 77.79 23.0 15x15x15

24 30 5.25 1.2 0.25 1.12 2 0.15 15477 2.5 1.3 4.07 2145 39.7 30x30x60

25 21.5 5.25 1.2 0.25 1.12 2 0.15 15477 2.5 1.3 3.73 2455 45.5 30x30x60

26 30 5.25 1.2 0.25 1.12 0.5 0.12 12382 2.5 1.3 4.95 771.8 14.3 30x30x60

27 30 5.25 1.2 0.25 1.12 0.5 0.15 15477 2.5 1.3 3.79 2470 45.7 30x30x60

28 30 5.25 1.2 0.25 1.12 0.5 0.18 18573 2.5 1.3 1.74 2849 52.8 30x30x60

29 30 5.25 1.2 0.25 1.12 0.5 0.2 1289 2.5 1.3 1.10 189 56 15x15x15

Figure 4.5: MC simulation data for p = 12.

27

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35 40

lo
g

(n
i)

li (clustersize)

slope=0.404

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

ln
(n

i)

li (clustersizes)

ρ= 0.12
ρ= 0.15
ρ= 0.18

(b)

Figure 4.6: (a) Log plot of clustersize distribution. The clustersize is distributed as 842.59 exp(−0.404li).
li is clustersize and ni is number of clusters of size li. ρ = 0.15. (b) Log plot of clustersize distribution
for various densities. The distribution for ρ = 0.18 shows a deviation from exponential distribution as the
particles started to coalesce and form large non-chain structures.

 45

 50

 55

 60

 65

 70

 75

 80

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

N
o
:
o
f
b
ra

n
c
h
e
s

∆E (kBT)

(a)

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

A
v
g
.
C

lu
s
te

rs
iz

e

∆E (kBT)

(b)

 0

 2

 4

 6

 8

 10

 12

 1.2 1.4 1.6 1.8 2 2.2 2.4

E
n
e
rg

y
 (

k
B
T

)

r

ε2=16.0

ε2=14.0

ε2=12.0

ε2= 8.0

ε2= 6.0

ε2= 3.0

(c)

Figure 4.7: (a) Variation in the avg. branches as the the height of the potential peak from the energy dip.
The ε2 of the eqn. 4.2 is varied to obtain potentials of different ∆E. (b) Variation of the avg. clustersize
as we change the same energy difference. (c) The plots of potentials corresponding to each of the ∆E that
has been mentioned the above plots.

Applicaton of weak bias

As a measure to possibly reduce the amount of branching, we had tried
introducing a weak unidirectional bias to help align the chains. This was ex-
pected to help reduce branching in high density systems and higher densities
are essential to obtain longer chains. The bias was introduced by adding a
relatively weak extra energy, −b2(~rij · ẑ)2, to the bonded particles, favoring

28

the bonds in a unique direction (here z). We expected that this would help
align the chains in a single direction by overcoming the hindrances, if at all
they have a tendency to align. The bonds not aligned in the bias direction
were expected to be reduced and effectively reduce the branching, especially
in system of higher densities.

 6

 6.5

 7

 7.5

 8

 8.5

 0 0.2 0.4 0.6 0.8 1

N
o
:
o
f
b
ra

n
c
h
e
s
 (

1
0

-3
/u

n
it
 v

o
lu

m
e
)

b
2

ρ=0.15

(a)

 38

 39

 40

 41

 42

 43

 44

 45

 0 0.2 0.4 0.6 0.8 1

N
o
:
o
f
b
ra

n
c
h
e
s
 (

1
0

-3
/u

n
it
 v

o
lu

m
e
)

b
2

ρ=0.18

(b)

Figure 4.8: The Average branches per unit volume vs. strength of the bias. For both densities the avg.
branch number increased with the increase in b2.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80 90 100

ln
(n

i)

li (clustersizes)

b
2
= 0.0

b
2
= 0.1

b
2
= 0.5

b
2
= 1.0

b
2
= 2.0

(a)

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

lo
g
(n

i)

li

b
2
=0.0

b
2
=0.5

b
2
=1.0

(b)

Figure 4.9: (a) The clustersize distribution deviated from the expected exponential distribution as the bias
strength was increased. This can be related to the gradual increase in the bulky structures in the system,
as seen in high density systems. (b) The networked structures were not broken down by the weak bias in
the high density system. Instead, it caused an increment, reflected in the plot as increased deviation from
the non-biased distribution.

29

The attempt didn’t help in reducing the branch number, instead it rather
increased the overall amount of bonding, which helped both branching and
chain formation (Fig. 4.8a,4.8b). For high density system, the bias increased
the clusters and the deviation from the exponential distribution also increased
(Fig. 4.9b). A possible reason for this is the following. Although we applied
the bias in favor of the bonds tending towards the z-direction, the extra
energy introduced by the bias, helped increase and better stabilize the bonds
leaning towards the direction of bias, in both the chains and the branches,
and thereby not reducing the number of branches.

4.2 Shearing the system

4.2.1 Shearing the system of particles under LJ poten-
tial

Figure 4.10

As a measure to create longer chains
and possibly, reduce branching, we
decided to shear the system of parti-
cles. Schematic diagram Fig. 4.10
illustrates the process. By induc-
ing a shear flow in the system we
expect ordering in the direction of
flow and thus, possibly obtain longer
chains. As an initial study on the
system that was setup, the shear-
ing was done to particles interact-
ing through Lennard-Jones poten-
tial. A constant temperature was maintained by applying a thermostat.
Once the MD scheme was validated, vx profiling along the axis perpen-
dicular the wall velocity was done. The shear rates applied varied from
6.67× 10−4 (vwall = 0.01) to 3.33× 10−2 (vwall = 0.5).

As expected, a linear vx profile was obtained (Fig. 4.11, 4.12), at least
for the high shear rates. The normalized vx gradient is solely dependent on
the nature of the wall that was used for shearing, i.e, the ε2 value of the
wall-particle interaction, which is in agreement with the known results. The
slip at the boundaries increased as the wall strength ε2 was decreased.

30

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

vwall=0.5

ε2= 0.1
ε2= 0.4
ε2= 0.7
ε2= 1.0

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

vwall=0.3

ε2= 0.1
ε2= 0.4
ε2= 0.7
ε2= 1.0

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

vwall=0.1

ε2= 0.4
ε2= 0.7
ε2= 1.0

Figure 4.11: The normalized velocity gradient for particular shear rates. It increases as expected, as the
wall strength ε2 is increased. The units of vwall and ε2 are a/τ and kBT , respectively.

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

ε2=1.0

vwall= 0.1
vwall= 0.3
vwall= 0.5

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

ε2=0.7

vwall= 0.1
vwall= 0.3
vwall= 0.5

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
/v

w
a
ll

z

ε2=0.4

vwall= 0.1
vwall= 0.3
vwall= 0.5

Figure 4.12: The normalized velocity gradient is same for same wall-particle interaction, i.e, ε2. The units
of vwall and ε2 are a/τ and kBT , respectively.

4.2.2 Shearing the system of particles under the new
potential

The system of particles was subjected to varying degrees of shear rate. We
used shear rates ranging from 3.33 × 10−2 to 6.67 × 10−4, with ε2 values
from 1.0 to 0.1 (attractive wall to weakly attractive wall). A thermostat was
applied every 200 iterations. We had used a time step ∆t = 0.004 for the
simulations. The system maintained constant temperature throughout the
shearing (Fig. 4.13a) and the density was even too (except, as expected, near
the walls) (Fig. 4.13b).

31

 0.9

 0.95

 1

 1.05

 1.1

 5 10 15 20 25 30

T

z

ρvol= 0.15

vwall= 0.1 ε2= 0.1
vwall= 0.1 ε2= 1.0
vwall= 0.05 ε2= 0.1
vwall= 0.05 ε2= 1.0

(a)

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 5 10 15 20 25 30

ρ
v
o

l(
z
)

(p
a
rt

ic
le

 v
o
lu

m
e
 f
ra

c
ti
o
n
)

z

ρvol=0.15

vwall= 0.1 ε2= 0.1
vwall= 0.1 ε2= 1.0
vwall= 0.05 ε2= 0.1
vwall= 0.05 ε2= 1.0

(b)

Figure 4.13: (a) The temperature profile of the system with a particle volume density 0.15. The fluctua-
tions in temperature is less than 0.3%. (b) The density profile shows the huge fluctuations near the wall
due to the attraction. This crowd of particles arranged in bands affects other properties in this region as
well, slightly, even the vx profile as well. The units of vwall and ε2 are a/τ and kBT , respectively.

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

ε2=1.0

vwall= 0.5
vwall= 0.3
vwall= 0.1

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

ε2=0.5

vwall= 0.5
vwall= 0.3
vwall= 0.1

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

ε2=0.2

vwall= 0.5
vwall= 0.3
vwall= 0.1

Figure 4.14: The normalized velocity gradient is found to be same for same wall strength ε2 irrespective
of the shear rate applied. The units of vwall and ε2 are a/τ and kBT , respectively.

The vx profiles obtained were linear (Fig. 4.14, 4.15). The normalized
velocity gradient was same for same value of ε2 indicating that the slip at
the wall-bulk boundary is determined by the nature of the wall. This slip
was large when the wall interaction was weaker. But the variation of slip
between strongly and weekly attracting walls was small as compared to that
of a standard system like Lennard-Jones, which means that the system un-
der consideration is relatively resilient to shearing. The fluctuations were
increased when lower shear rates were applied, which could be the indica-
tion of the thermal energy taking over the velocity behavior of the system
particles (Note that the average energy per particle is around 6 kBT). The

32

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

vwall=0.5

ε2= 1.0
ε2= 0.5
ε2= 0.2

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

vwall=0.3

ε2= 1.0
ε2= 0.5
ε2= 0.2

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

vwall=0.1

ε2= 1.0
ε2= 0.5
ε2= 0.2

Figure 4.15: The normalized velocity gradient increases as expected, as the wall strength ε2 is increased.
But the fact that the change in this gradient is comparatively small even as the wall is varied from strongly
attractive to weakly attractive, hints that the system is fairly resilient to shearing. The units of vwall and
ε2 are a/τ and kBT , respectively.

system responded to shear rates up to the order ∼ 10−4 (Fig. 4.16). Below
this limit, no significant shear response was observed in normal time scales
of computer simulation.

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

ε2=0.1

vwall= 0.1
vwall= 0.05
vwall= 0.01

(a)

-1

-0.5

 0

 0.5

 1

 5 10 15 20 25 30

v
x
(z

)/
v

w
a
ll

z

ε2=1.0

vwall= 0.1
vwall= 0.05
vwall= 0.01

(b)

Figure 4.16: (a) vx profile for various shear rates for ε2 = 0.1 at density 0.15. (b) vx profile for various
shear rates for ε2 = 1.0 at density 0.15. The velocity gradient slowly vanishes as the shear rates approaches
the 10−4 mark. For wall velocities of the order 0.001 the response was null even after 7000 LJ time units
(τ) of simulation. The units of vwall and ε2 are a/τ and kBT , respectively.

The system retained chain structures under shearing. But there was a
noticeable reduction in chain size in bulk, at density 0.15 (Fig. 4.17a). For
example, when a shear rate of 6.67 × 10−3 (vwall = 0.1) was applied with
wall interaction strength ε2 = 0.1, the lavg was 2.04, as opposed to the
2.25 for the same potential in an unconfined system. This small change is

33

significant considering the fact that the clustersize distribution is exponential.
At the same time, the system also showed a reduction in branching with
average branches per unit volume 4.2×10−3. Interestingly, the same changes

(a) (b)

Figure 4.17: (a) A part of the final configuration of the simulation with optimal potential under density
0.15. When compared to 4.2 a reduction in clustersize might be noticeable. (b) Final configuration
of system under same potential but at 0.18 density. There are lot of branching, but not as much as a
non-sheared system of same parameters would normally have.

in average clustersize and branching were observed in a confined but non-
sheared system. With ε2 = 0.1 and no wall velocity, a lavg = 2.03 and average
branches per unit volume = 4.2×10−3 was obtained. This indicates that the
confinement of the system of particles rather than the shear applied on them,
might be the cause of reduction in branching as well as the change in average
clustersize. Now, when the ε2 value was increased to 1.0, the lavg increased to
2.12 and average branch number to 6.75× 10−3, the later being same as the
average branches in the unconfined system. In effect, when compared to the
unconfined situation the clustersize reduced but the branching remained the
same. Therefore, confinement of the of the system not necessarily increase
the clustersize to branching ratio, from an unconfined situation.

The following shows the change in branching and average clustersize as
wall strength and also as the wall velocity varies. Both the clustersize and
branching increases as the wall velocity (i.e, shear rate) is increased.

34

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
C

lu
s
te

rs
iz

e

vwall (a/τ)

ε2=0.5

 40

 42

 44

 46

 48

 50

 52

 54

 56

 58

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N

o
:
o
f
b
ra

n
c
h
e
s

vwall (a/τ)

ε2=0.5

Figure 4.18: Variation of branching and clustersize with the wall velocity.

 2.1

 2.12

 2.14

 2.16

 2.18

 2.2

 2.22

 2.24

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
g
.
C

lu
s
te

rs
iz

e

ε2 (kBT)

vwall=0.5

 35

 40

 45

 50

 55

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
o
:
o
f
b
ra

n
c
h
e
s

ε2 (kBT)

vwall=0.5

Figure 4.19: Variation of branching and clustersize with the wall strength ε2.

Clustersize distribution and its anomalous deviation

The clustersize distribution of the confined system shows a deviation from
the usual simple exponential distribution. The occurrence of the behavior
is independent of the shear rate, rather it depends on the ε2 value, as seen
in Fig. 4.20a. The distribution for high ε2 value has slope same as that of
a weak wall until around li = 9 and then deviates and settles down with a
different exponential distribution. Looking at the structures formed on the
walls of strong attraction (Fig. 4.21), one can argue that the higher amount

35

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140

lo
g
(n

i)

li

vwall=0.1 ε2=0.1
vwall=0.1 ε2=1.0
vwall=0.0 ε2=0.1
vwall=0.0 ε2=1.0

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

lo
g
(n

i)

li

ε2=1.0

Box:20x20x20 vwall=0.1

Box:20x20x20 vwall=0.0

Box:30x30x30 vwall=0.1

Box:30x30x30 vwall=0.0

(b)

Figure 4.20: (a) The log plot of length distribution for various vwall s and ε2 s. The plot shows that there
is significant change in distribution when the ε2 is varied and almost no dependence on the wall velocity.
(b) The clustersize distributions for the of system in two different box sizes. The wall strength ε2 = 1.0.

Figure 4.21: Final configuraton of a system with ε2 = 1.0 and vwall = 0.1 The strutures grown on the
wall can be seen.

of long chains as seen in the distribution graph is due to the particles sticking
to walls and forming chains over there. The comparison of the distributions
(Fig. 4.20b) in boxes of different sizes reinforces this argument. Now, this
could as well be finite box size effect but when we look at this along with the
fact that such a deviation happens only when we have a strongly attractive
wall, there is little doubt that this deviation is nothing but an effect of the
walls. Nonethless, an explanation of the seemingly good agreement of the
deviated size distribution with the size distribution of weak wall system in
lower size regime and the sudden divergence afterwards, is still difficult.

36

The density profile shows a high concentration of particles near walls,
especially when ε2 value is large, and a different density leads to different
kind of cluster forms. The high dense region near the walls and the remaining
bulk, therefore, could have different kinetics of clustering. The kinetics near
the walls might be favoring large clusters and the bulk obviously smaller
clusters. If this was the case, it would lead to the kind of distribution as seen
above.

4.3 Conclusion

The study of the radially symmetric two-body potential concludes that the
potential has ability cause self assembly of particles to forms chains, albeit
with some branching. The clustersizes follow a exponential distribution.
An optimized set of parameters has been found which gives maximum yield
of chains with minimum branching. The confinement and shearing of the
system of particles gives rise interesting dynamics of cluster formation. The
deviation of clustersize distribution indicates a possibility of two separate
cluster formation kinetics, one close to the walls and the other in bulk, to be
happening simultaneously in the same system.

The thermal stability of the chains formed is yet to be ascertained. The
shear stress application, for example, seems to decrease bonding in the sys-
tem. We have not yet found any evidence of a shear band separation in the
system when sheared.

37

Chapter 5

Future Prospects

As the study on the two-body potential has provided evidence of self assem-
bly of particles into chains, the next obvious goal is to improve the quality of
chains obtained by reducing the branching and possibly increasing the chain
length. The viscoelastic properties of the structures formed needs a thorough
analysis. The persistence lengths and the Kuhn lengths of the chains have to
be analyzed in detail. Until now the focus has been on the self assembly in
temperature T = 1. It will be an interesting prospect to learn the dynamics
and the variations of chain length at different temperature settings. Vary-
ing the temperature during the simulation will open up new possibilities in
tailoring better chains.

We also propose a alternative scheme of interaction, in which the system
contains two kind particles. The particles of same kind interacts through
a attractive potential and the unlike ones interacts through a repulsive po-
tential. We expect formation of chains were the two kind of particles are
alternated.

38

References

[1] W. T. Ashurst and W. G. Hoover. Argon shear viscosity via a lennard-
jones potential with equilibrium and nonequilibrium molecular dynam-
ics. Phys. Rev. Lett., 31:206–208, Jul 1973.

[2] J.-F. Berret. Rheology of Wormlike Micelles : Equilibrium Properties
and Shear Banding Transition. eprint arXiv:cond-mat/0406681, June
2004.

[3] Cecile A. Dreiss. Wormlike micelles: where do we stand? recent develop-
ments, linear rheology and scattering techniques. Soft Matter, 3:956–970,
2007.

[4] M. A. Fardin, T. Divoux, M. A. Guedeau-Boudeville, I. Buchet-Maulien,
J. Browaeys, G. H. McKinley, S. Manneville, and S. Lerouge. Shear-
banding in surfactant wormlike micelles: elastic instabilities and wall
slip. Soft Matter, 8:2535–2553, 2012.

[5] Daan Frenkel and Berend Smit. Chapter 4 - molecular dynamics simula-
tions. In Daan Frenkel and Berend Smit, editors, Understanding Molec-
ular Simulation (Second Edition), pages 63 – 107. Academic Press, San
Diego, second edition edition, 2002.

[6] Guruswamy Kumaraswamy, Bipul Biswas, and Chandan Kumar Choud-
hury. Colloidal assembly by ice templating. Faraday Discuss., pages –,
2016.

[7] J. S. Marshall and W. Mc K. Palmer. The distribution of raindrops with
size. Journal of Meteorology, 5(4):165–166, 1948.

[8] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,
Augusta H. Teller, and Edward Teller. Equation of state calculations
by fast computing machines. The Journal of Chemical Physics, 21(6),
1953.

39

[9] Shaikh Mubeena and Apratim Chatterji. Hierarchical self-assembly:
Self-organized nanostructures in a nematically ordered matrix of self-
assembled polymeric chains. Phys. Rev. E, 91:032602, Mar 2015.

[10] M. Rubinstein and R.H. Colby. Polymer Physics. OUP Oxford, 2003.

[11] P. G. J. van Dongen and M. H. Ernst. Dynamic scaling in the kinetics
of clustering. Phys. Rev. Lett., 54:1396–1399, Apr 1985.

[12] Lynn M Walker. Rheology and structure of worm-like micelles. Current
Opinion in Colloid and Interface Science, 6(5âĂŞ6):451 – 456, 2001.

[13] Jiang Yang. Viscoelastic wormlike micelles and their applications. Cur-
rent Opinion in Colloid Interface Science, 7(5âĂŞ6):276 – 281, 2002.

[14] R. Zana and E.W. Kaler. Giant Micelles: Properties and Applications.
Surfactant Science. CRC Press, 2007.

40

Appendix A

Simulation Codes

A.1 Off-lattice Monte-Carlo simulation of self-
assembly and additional analysis

(Fortran 90)

!===!
! !
! off-lattice_monte-carlo !
! !
! V(r)= eps*(alpha*((sig/r)**36-(sig/r)**18)+((beta*exp(-(r-r0)/eta))/r)) !
! with bias ((rij.z)**2)*(B**2) !
!===!

!==================================parameter_module=====================================1

module olmc_para
implicit none

! model_parameters
integer,parameter :: lx=20, ly=20, lz=20
real*8 :: llx, lly, llz
real*8 :: llxby2, llyby2, llzby2
real*8 :: den= 0.15d0 !density
real*8,parameter :: eps= 24.0d0, kbt=1.0d0, sig= 1.0d0, mass= 1.0d0,tem= 1.0d0,rc= 2.5d0&

&,beta= 1.3d0, eta=0.25d0, b2= 0.0d0, eps2= 1.0d0
real*8,parameter :: alpha= 5.8d0, r0= 1.12d0, ngh_trim= 0.8d0

! epsilon, boltz. const., particle_diameter, mass, temperature, potentialrange

! simulation_variables
character(len=30) :: label= "713"

integer, parameter :: niter= 250000, iter_equil= 100000, nghupdate= 10, count_intervel=10
integer, parameter :: maxclustsize= 3000, maxboxcontent= 500, maxnghbours= 2500
integer :: npart !no: of particles

41

integer :: nbox, boxsidex, boxsidey, boxsidez !no: boxes and no: of boxes along eachedge
integer*8 :: clustersize, tot_clust, avg_clustsize, branchnum, accptd= 0, rjctd= 0
integer*8 :: tot_clust2, avg_clustsize2
integer*8, dimension(:), allocatable :: nghbours, clust_count, ifvisited, numofbonds
integer*8, dimension(:,:), allocatable :: nghlist, boxnghlist
real*8 :: vrc
real*8 :: delx, dely, delz, dist, de, pot_e, r_ngh, bond_l= 1.2d0, rij
real*8 :: min_ini_dist= 1.0d0
real*8 :: box_size= 5.0d0
real*8, parameter :: dd= 0.25d0
real*8, dimension(:), allocatable :: pos

integer :: zzz=-4271245, zzzz=65902043

! index_variables
integer :: i, j, k, m, n, temp, iter, dummy

! timer_variables
real*8 :: start, ends !start time, end time

! others
character(len=20) :: den_str
character(len=60) :: filename

real*8 :: r, init_pot, final_pot,tempx, tempy, tempz, posx, posy, posz, rc2, r_ngh2, bon&
&d_l2

end module olmc_para

!================================main_program===2
program chained
use olmc_para
implicit none
integer :: i_time
real*8 :: junk,zz1,ran1,vol

call cpu_time(start)

zz1=ran1(zzz)
junk=ran1(zzzz)

!calculating various derived parameters of the model

llx=dfloat(lx); lly=dfloat(ly); llz= dfloat(lz)
llxby2=llx/2.0d0; llyby2=lly/2.0d0; llzby2=llz/2.0d0
vol = 4.0d0*3.14d0*(sig*sig*sig/24.0d0)
npart= int(den*llx*lly*llz/vol)
vrc= eps*(alpha*((sig/rc)**36-(sig/rc)**18)+((beta*exp(-(rc-r0)/eta))/rc))
!eps2*(((sig/rc)**12-(sig/rc)**6))
r_ngh= (rc+(sqrt(((dd/2.0d0)**2)*3))*nghupdate*ngh_trim)
boxsidex= int(lx/box_size)
boxsidey= int(ly/box_size)
boxsidez= int(lz/box_size)
nbox= boxsidex*boxsidey*boxsidez
branchnum= 0
rc2= rc*rc
r_ngh2= r_ngh*r_ngh
bond_l2= bond_l*bond_l
write(den_str, ’(1F5.3)’) den

print*, ’npart:’,npart
print*, ’r_ngh:’, r_ngh

42

print*, ’nbox :’, nbox

allocate(pos(3*npart))
allocate(nghbours(npart))
allocate(nghlist(maxnghbours,npart))
allocate(ifvisited(npart))
allocate(clust_count(maxclustsize)); clust_count=0
allocate(boxnghlist(27, nbox))
allocate(numofbonds(npart))

call boxnghbours !assigns_ngbours_for_each_box
call initpos !ensemble_initialisation
call init_potential !initial_potential_calculation

!monte_carlo_steps

filename= trim(den_str)//"_E_"//trim(label)//".dat"
open (95, file=filename,status=’unknown’,form=’formatted’)

do iter= 0, niter

if(mod(iter, count_intervel)==0) write(95, ’(1I41F20.4)’) iter, pot_e/dfloat(npart)

if(mod(iter,1000)==0) print*, iter
if(mod(iter,5000)==0) call poscopy
if(mod(iter,nghupdate)==0) call update_nghlist !updates_neighbourlist
if(iter .eq. iter_equil) then

accptd=0
rjctd=0

endif
if((mod(iter, count_intervel)==0) .and. (iter>iter_equil)) call clust_counter
if(mod(iter,10000)==2000) then

call cpu_time(ends)
write(*,’(1A15,1I2,1A,1I2,1A,1I2)’), &
&’Time remaining:’, int((niter-iter)*(ends-start)/(iter*3600)), & !hours
& ’:’, mod(int((niter-iter)*(ends-start)/(iter*60)),60), & !minutes
& ’:’, mod(int((niter-iter)*(ends-start)/iter),60) !seconds

endif

call pos_update !updates_positions

enddo
close (95)

!writes_the_length_distribution_to_file

tot_clust= 0
avg_clustsize= 0
filename= trim(den_str)//"_len_distri_"//trim(label)//".dat"
open(98, file=filename, status=’unknown’, form=’formatted’)

do i= 1, 200
if (clust_count(i) .ne. 0) write(98, ’(1I41F20.4)’) i,&
&dfloat(clust_count(i))/dfloat((niter-iter_equil)/count_intervel)
avg_clustsize= avg_clustsize+ i*clust_count(i)
tot_clust= tot_clust+ clust_count(i)

enddo
close(98)

tot_clust2= 0
avg_clustsize2= 0
filename= trim(den_str)//"_len_distri2_"//trim(label)//".dat"

43

open(97, file=filename, status=’unknown’, form= ’formatted’)
do i= 4, 200

if(clust_count(i) .ne. 0) write(97, ’(1I41F20.4)’) i,&
&dfloat(clust_count(i))/dfloat((niter-iter_equil)/count_intervel)
avg_clustsize2= avg_clustsize2+ i*clust_count(i)
tot_clust2= tot_clust2+ clust_count(i)

enddo
close(97)

call poscopy !writes_final_positions_to_a_file
call cpu_time(ends)

print*, ’density : ’, den
print*, ’particles : ’, npart
print*, ’avg. cluster size : ’, dfloat(avg_clustsize)/dfloat(tot_clust)
print*, ’avg. no: of branching: ’, dfloat(branchnum)/dfloat((niter-iter_equil)/count_int&
&ervel)
print*, ’acceptance: ’, dfloat(accptd)/dfloat(accptd+rjctd)
print*, ’rejection : ’, dfloat(rjctd)/dfloat(accptd+rjctd)
print*, ’runtime: ’, int((ends-start)/60),’:’,mod((ends- start),60.0)
call writerundetails !write the results and the parameters used for the run

deallocate(pos)
deallocate(nghbours)
deallocate(nghlist)
deallocate(ifvisited)
deallocate(clust_count)
deallocate(boxnghlist)
deallocate(numofbonds)

end program chained

!========================position_initialisation_subroutine=============================3

subroutine initpos
use olmc_para
implicit none

real*8 :: ran1

open(90, file=’posi.dat’,status=’unknown’,form=’formatted’)

r = ran1(zzzz)
pos(1)= r*llx
r = ran1(zzzz)
pos(2)= r*lly
r = ran1(zzzz)
pos(3)= r*llz
write(90, ’(3F20.4)’) pos(1), pos(2), pos(3)

i= 2

do
if(i>npart) exit
dummy = 0
r = ran1(zzzz)
tempx= r*llx
r = ran1(zzzz)
tempy= r*lly
r = ran1(zzzz)
tempz= r*llz

44

do j= 1, i-1
delx= abs(tempx-pos(3*j-2))
if (delx >= llxby2) delx= llx-delx
dely= abs(tempy-pos(3*j-1))
if (dely >= llyby2) dely= lly-dely
delz= abs(tempz-pos(3*j))
if (delz >= llzby2) delz= llz-delz

dist= dsqrt((delx*delx)+(dely*dely)+(delz*delz))

if (dist<= min_ini_dist*sig) dummy=1
enddo

if(dummy==0) then
pos(3*i-2) = tempx; pos(3*i-1) = tempy; pos(3*i) = tempz
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

endif
enddo ; close(90)

end subroutine initpos

!===============================initial_energy_calculation==============================4

subroutine init_potential
use olmc_para
implicit none

pot_e =0.0d0
do i= 1, npart - 1

do j= i+1, npart
delx= abs(pos(3*i-2)-pos(3*j-2))
if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*j-1))
if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*j))
if (delz >= llzby2) delz= llz-delz

dist= (delx*delx)+(dely*dely)+(delz*delz)

if (dist <= rc2) then !checks_if_particle_is_within_in_the_range
dist= dsqrt(dist)
pot_e= pot_e + eps*(alpha*(((sig/dist)**36)-((sig/dist)**18))+&
&((beta*exp(-(dist-r0)/eta))/dist))-vrc

endif
enddo

enddo

end subroutine init_potential

!============================position_update_subroutine=================================5

subroutine pos_update
use olmc_para
implicit none
real*8 :: dx, dy, dz, ran1

do i= 1, npart

init_pot=0.0d0;final_pot=0.0d0
posx= pos(3*i-2)

45

posy= pos(3*i-1)
posz= pos(3*i)

!this loop calculates the initial potential
do j =1, nghbours(i)

k= nghlist(j,i)
delx= abs(posx -pos(3*k-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(posy -pos(3*k-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(posz -pos(3*k)); if (delz >= llxby2) delz= llz-delz

dist= (delx*delx)+(dely*dely)+(delz*delz)
if (dist<=rc2) then

dist= dsqrt(dist)
if (dist<=bond_l) then

init_pot= init_pot+ eps*(alpha*(((sig/dist)**36)-((sig/dist)**18))+((bet&
&a*exp(-(dist-r0)/eta))/dist))-&
&((delz/dist)**2)*b2-vrc

else
init_pot= init_pot+ eps*(alpha*(((sig/dist)**36)-((sig/dist)**18))+((bet&
&a*exp(-(dist-r0)/eta))/dist))-vrc

endif
endif

enddo

!random_increments
r=ran1(zzzz)
dx= (0.5d0-r)*dd
r=ran1(zzzz)
dy= (0.5d0-r)*dd
r=ran1(zzzz)
dz= (0.5d0-r)*dd

!new_positions_after_the_above_increments
tempx= posx +dx
if (tempx>llx) tempx= tempx- llx
if (tempx<=0) tempx= tempx+ llx
tempy= posy +dy
if (tempy>lly) tempy= tempy- lly
if (tempy<=0) tempy= tempy+ lly
tempz= posz +dz
if (tempz>llz) tempz= tempz- llz
if (tempz<=0) tempz= tempz+ llz

!this_loop_calculates_the_changed_potential_for_the_particle
do j =1, nghbours(i)

k= nghlist(j,i)
delx= abs(tempx-pos(3*k-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(tempy-pos(3*k-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(tempz-pos(3*k)); if (delz >= llxby2) delz= llz-delz

dist= (delx*delx)+(dely*dely)+(delz*delz)
if (dist<=rc2)then

dist= dsqrt(dist)
if (dist<=bond_l) then

final_pot= final_pot+ eps*(alpha*(((sig/dist)**36)-((sig/dist)**18))+((b&
&eta*exp(-(dist-r0)/eta))/dist))-&
&((delz/dist)**2)*b2-vrc

else
final_pot= final_pot+ eps*(alpha*(((sig/dist)**36)-((sig/dist)**18))+((b&
&eta*exp(-(dist-r0)/eta))/dist))-vrc

endif
endif

46

enddo

de= final_pot - init_pot
!acceptance_or_rejectance_of_the_new_position_w.r.t._change_in_potential
if (de< 0.0d0) then

pot_e = pot_e + de
pos(3*i-2)= tempx
pos(3*i-1)= tempy
pos(3*i)= tempz
accptd= accptd+1

else
call random_number(r)
if (r.le. exp(-de/(kbt))) then

pot_e = pot_e + de
pos(3*i-2)= tempx
pos(3*i-1)= tempy
pos(3*i)= tempz
accptd= accptd+1

else
rjctd= rjctd+1

endif
endif

enddo ! do i= 1, npart

end subroutine pos_update

!=======================assigning_neighbours_for_each_box===============================6

subroutine boxnghbours
use olmc_para
implicit none
integer :: bx, by, bz, tempbx, tempby, tempbz

do i= 1, nbox !assigning_neighbours_to_each_box
bz= (i-1)/(boxsidey*boxsidex)
by= (modulo(i-1,boxsidey*boxsidex)/boxsidex)
bx= (modulo(i-1,boxsidex))

m=0
do j= 1, 3

do k= 1, 3
do n= 1, 3

tempbx= (j-2)*1+ bx
if(tempbx .ge. boxsidex) tempbx= tempbx- boxsidex
if(tempbx .lt. 0) tempbx= tempbx+ boxsidex
tempby= (k-2)*1+ by
if(tempby .ge. boxsidey) tempby= tempby- boxsidey
if(tempby .lt. 0) tempby= tempby+ boxsidey
tempbz= (n-2)*1+ bz
if(tempbz .ge. boxsidez) tempbz= tempbz- boxsidez
if(tempbz .lt. 0) tempbz= tempbz+ boxsidez

temp = (tempbz*llx*lly/(box_size**2))+(tempby*llx/box_size)+(tempbx)+ 1
if(temp .ne. i) then

m=m+1
boxnghlist(m,i)= temp

endif
enddo

enddo
enddo

47

enddo !i= 1, nbox

end subroutine boxnghbours

!========================updating_the_neighbourlist_cells===============================7

subroutine update_nghlist
use olmc_para
implicit none
integer *8 :: tmpx, tmpy, tmpz, p, ibox, ktemp
integer *8 :: n_box_mono(nbox+2)
integer *8 :: box_mono(maxboxcontent,nbox+2)

nghlist=0
nghbours=0
n_box_mono=0
box_mono=0

do i= 1, npart
tmpx= pos(3*i-2)/box_size
tmpy= pos(3*i-1)/box_size
tmpz= pos(3*i)/box_size
temp = (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

n_box_mono(temp)= n_box_mono(temp)+ 1
if(n_box_mono(temp)>maxboxcontent) print*, "Err: The max box content exceeded!"
box_mono(n_box_mono(temp),temp)= i

enddo

do i= 1, npart
p=0
tmpx= pos(3*i-2)/box_size
tmpy= pos(3*i-1)/box_size
tmpz= pos(3*i)/box_size
temp = (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

do j= 1, n_box_mono(temp)
dummy= box_mono(j,temp)
if(dummy .ne. i) then

delx= abs(pos(3*i-2)-pos(3*dummy-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*dummy-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*dummy)); if (delz >= llxby2) delz= llz-delz
dist= (delx*delx)+(dely*dely)+(delz*delz)

if(dist<r_ngh2) then
p= p+1
if(p>maxnghbours) print*, "Err: maxnghbours exceeded!"
nghlist(p,i)= dummy

endif
endif

enddo

do j= 1, 26
ibox= boxnghlist(j,temp)
dummy= n_box_mono(ibox)
if(dummy>0) then

do k= 1, dummy
ktemp= box_mono(k,ibox)
delx= abs(pos(3*i-2)-pos(3*ktemp-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*ktemp-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*ktemp)); if (delz >= llxby2) delz= llz-delz

48

dist= (delx*delx)+(dely*dely)+(delz*delz)

if(dist<r_ngh2) then
p=p+1
if(p>maxnghbours) print*, "Err: maxnghbours exceeded!"
nghlist(p,i)= ktemp

endif
enddo

endif
enddo
nghbours(i)= p

enddo !i= 1, npart

end subroutine update_nghlist

!=======================upadating_the_neighbourlist_basic===============================8

subroutine update_nghlist_basic
use olmc_para
implicit none
integer *8 :: a, b

nghlist=0
nghbours=0
do i= 1, npart-1

do j= i+1, npart
delx= abs(pos(3*i-2)-pos(3*j-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*j-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*j)); if (delz >= llxby2) delz= llz-delz

dist= dsqrt((delx**2)+(dely**2)+(delz**2))
if(dist<r_ngh) then

nghbours(i)= nghbours(i)+1
if(nghbours(i)>maxnghbours) print*, "Err: maxnghbours exceeded!"
a= nghbours(i)
nghbours(j)= nghbours(j)+1
if(nghbours(i)>maxnghbours) print*, "Err: maxnghbours exceeded!"
b= nghbours(j)
nghlist(a,i)=j
nghlist(b,j)=i

endif
enddo

enddo

end subroutine update_nghlist_basic

!============================counting_the_clusters_and_their_size=======================9

subroutine clust_counter
use olmc_para
implicit none

ifvisited= 0
numofbonds= 0

do k= 1, npart
clustersize= 0
if(ifvisited(k) .eq. 0) then

clustersize=1
call counter(k)

endif
if(clustersize>maxclustsize) print*, "Err: maxclustsize exceeded!"

49

clust_count(clustersize)= clust_count(clustersize) +1
enddo

end subroutine clust_counter

!===========================counter==10

recursive subroutine counter(l)
use olmc_para
implicit none
integer :: l, g, h

ifvisited(l)=1

do h= 1, nghbours(l)
g= nghlist(h,l)
if(ifvisited(g) .eq. 0) then

delx= abs(pos(3*l-2)-pos(3*g-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*l-1)-pos(3*g-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*l)-pos(3*g)); if (delz >= llxby2) delz= llz-delz
dist= (delx*delx)+(dely*dely)+(delz*delz)

if(dist < bond_l2) then
clustersize= clustersize+ 1
numofbonds(l)= numofbonds(l)+1
numofbonds(g)= numofbonds(g)+1
if(numofbonds(l)>2) branchnum= branchnum+1
if(numofbonds(g)>2) branchnum= branchnum+1
call counter(g)

endif
endif

enddo

end subroutine counter

!====================writing_final_positions===11

subroutine poscopy
use olmc_para
implicit none

filename= trim(den_str)//"_"//trim(label)//".xyz"
open (91,file=filename,status=’unknown’, form=’formatted’)
write (91, ’(I5)’) npart
write (91, ’(1A7)’) ’Chained’
do i= 1, npart

if(i/10000 >= 1) then
write(91, ’(1A,1I5,3F20.4)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/1000 >= 1) then

write(91, ’(1A,1I4,3F20.4)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/100 >= 1) then

write(91, ’(1A,1I3,3F20.4)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/10 >= 1) then

write(91, ’(1A,1I2,3F20.4)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else

write(91, ’(1A,1I1,3F20.4)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
endif

endif

50

endif
endif

enddo

close (91)
end subroutine poscopy

!==================writing_run_details===12

subroutine writerundetails
use olmc_para
implicit none

filename= trim(den_str)//"_para&res_"//trim(label)//".dat"
open(80, file=filename, status=’unknown’, form=’formatted’)

write(80, ’(1A28,1F8.4)’)’density :’, den
write(80, ’(1A28,1I8)’) ’particles :’, npart
write(80, ’(1A28,1F8.2)’)’acceptance :’, dfloat(accptd)/dfloat(accptd+rjctd)
write(80, ’(1A28,1F8.2)’)’rejection :’, dfloat(rjctd)/dfloat(accptd+rjctd)
write(80, ’(1A28,1F8.2)’)’total clusters :’, dfloat(tot_clust)/dfloat((niter-it&
&er_equil)/count_intervel)
write(80, ’(1A28,1F8.2)’)’avg. cluster size :’, dfloat(avg_clustsize)/dfloat(tot_c&
&lust)
write(80, ’(1A28,1F8.2)’)’avg. no: of branching :’, dfloat(branchnum)/dfloat((niter-it&
&er_equil)/count_intervel)
write(80, ’(1A28,1F8.2)’)’total clusters2 :’, dfloat(tot_clust2)/dfloat((niter-i&
&ter_equil)/count_intervel)
write(80, ’(1A28,1F8.2)’)’avg. cluster size2 :’, dfloat(avg_clustsize2)/dfloat(tot_&
&clust2)
write(80, ’(1A36)’) ’PARAMETERS OF POTENTIAL=========>’
write(80, ’(1A28,1F8.4)’)’epsilon2 :’, eps2
write(80, ’(1A28,1F8.4)’)’epsilon :’, eps
write(80, ’(1A28,1F8.4)’)’alpha :’, alpha
write(80, ’(1A28,1F8.4)’)’beta :’, beta
write(80, ’(1A28,1F8.4)’)’eta :’, eta
write(80, ’(1A28,1F8.4)’)’r0 :’, r0
write(80, ’(1A28,1F8.4)’)’Bˆ2 :’, b2
write(80, ’(1A36)’) ’OTHERS==========================>’
write(80, ’(1A28,1I8)’) ’no: of iterations :’, niter
write(80, ’(1A28,1I8)’) ’equilibrium iteration :’, iter_equil
write(80, ’(1A28,1F8.4)’)’bond length :’, bond_l
write(80, ’(1A28,1F8.4)’)’range of potential :’, rc
write(80, ’(1A28,1F8.4)’)’max. displacement radius:’, dd/2.0d0
write(80, ’(1A28,1F8.4)’)’neighbourhood radius :’, r_ngh
write(80, ’(1A28,1F8.4)’)’minimum initial distance:’, min_ini_dist
write(80, ’(1A7,1I3,1A10,1I3,1A10,1I3)’)’ lx: ’, lx, ’ ly: ’, ly, ’ lz: ’, lz
write(80, ’(1A18,1I4,1A5,1F5.2,1A4)’)’code runtime :’, &
&int((ends-start)/60),’ min:’,mod((ends- start),60.0),’ sec’

close(80)

end subroutine writerundetails

!%%%
FUNCTION ran1(IDUM)
implicit none

! RAN1 returns a unifom random deviate on the interval [0,1]
! __
!

51

INTEGER :: IDUM
REAL*8 :: RAN2,ran1
integer,parameter :: IM1=2147483563,IM2=2147483399
integer,parameter :: IMM1=IM1-1, &
IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,IR2=3791, &

NTAB=32
integer,parameter :: NDIV=1+IMM1/NTAB
real*8,parameter :: EPS=1.2e-7,RNMX=1.-EPS,AM=1./IM1

INTEGER :: IDUM2,J,K,IV(NTAB),IY
DATA IDUM2/123456789/, iv/NTAB*0/, iy/0/
IF (IDUM.LE.0) THEN

IDUM=MAX(-IDUM,1)
IDUM2=IDUM
DO J=NTAB+8,1,-1

K=IDUM/IQ1
IDUM=IA1*(IDUM-K*IQ1)-K*IR1
IF (IDUM.LT.0) IDUM=IDUM+IM1
IF (J.LE.NTAB) IV(J)=IDUM

end do
IY=IV(1)

ENDIF
K=IDUM/IQ1
IDUM=IA1*(IDUM-K*IQ1)-K*IR1
IF (IDUM.LT.0) IDUM=IDUM+IM1
K=IDUM2/IQ2
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2
IF (IDUM2.LT.0) IDUM2=IDUM2+IM2
J=1+IY/NDIV
IY=IV(J)-IDUM2
IV(J)=IDUM
IF(IY.LT.1)IY=IY+IMM1
RAN1=MIN(AM*IY,RNMX)

END function ran1

!%%

A.2 Molecular Dynamics of shearing the sys-
tem

(Fortran 90)

!===!
! !
! Molecular Dynamics !
! !
! V(r)= eps*(alpha*((sig/r)**36-(sig/r)**18)+((beta*exp(-(r-r0)/eta))/r)) !
! with walls of lj interaction !
! !
!===!

module md_para
implicit none

52

! model_parameters
integer,parameter :: lx=20, ly=20, lz=30
real*8 :: llx, lly, llz
real*8 :: llxby2, llyby2, llzby2
real*8 :: den= 0.135d0 !density
real*8,parameter :: eps= 24.0d0, kbt= 1.0d0, sig= 1.0d0, mass= 1.0d0,tem= 0.5d0,rc=2.5d0&

&,beta= 1.3d0, eta=0.25d0, b2= 0.0d0, eps2= 1.0d0, rc_wall= 2.5d0
! If the rc_wall is being set higher than rc, then modify forceup too

real*8,parameter :: alpha= 5.8d0, r0= 1.12d0, ngh_trim= 0.8d0 !minimum of lj potential
! epsilon, boltz. const., particle_diameter, mass, temperature, potential_range etc.

! simulation_variables
character(len=20) :: label= ’744mdshear’

integer, parameter :: niter= 550000, iter_equil= 180000, nghupdate= 10,&
& count_intervel= 10, stabilise_intervel= 200,&
sample_intervel= 20, check_intervel= 90000

integer, parameter :: maxclustsize= 8000, maxboxcontent= 3000, maxnghbours= 2500
integer :: npart, nwall, nwallby2, nwallx, nwally, ntot, leaked=0, layernum
integer :: nbox, boxsidex, boxsidey, boxsidez !no: boxes and no: of boxes along each edge
integer*8 :: clustersize, tot_clust, avg_clustsize, branchnum= 0, iter_steadystate= 0
integer*8, dimension(:), allocatable :: nghbours, boxnghbournum, n_box_mono
integer*8, dimension(:), allocatable :: clust_count, ifvisited, numofbonds
integer*8, dimension(:,:), allocatable :: nghlist, boxnghlist, box_mono
real*8 :: pot_e, kin_e, tot_e
real*8 :: frc, vrc, frc_wall, vrc_wall, v0, wall_dx, vwall= 0.3d0, shearrate
real*8 :: vdev, vdev100= 20.0d0
real*8 :: sliplen, sliplen2, a, b !ax + b linear fit coefficients
real*8 :: xnwalldist, ynwalldist, ynwallcorrection, wallscalefactor= 0.8d0
real*8 :: realn, vol, delx, dely, delz, dist, r_ngh, rij, f, bond_l= 1.2d0
real*8 :: decimals= 2.0d0, exp10, layervol, endlayervol, ljruntime
real*8 :: box_size= 5.0d0, layerbin= 1.0d0 !should be a value that can divide lz

!and can a give a integer quotient,
!shouldnt be larger than box_size

real*8, parameter :: dt= 0.004d0
real*8, dimension(:), allocatable :: prev_vx, curr_vx, densityprof, temprof, temprof2, t&
&emprofx, temprofy, temprofz
real*8, dimension(:), allocatable :: pos, vel, force, oldforce, layertemp, xveloprof, xv&
&eloprof2, yveloprof, zveloprof

integer :: zzz=-4271246, zzzz=65902043

! index_variables
integer :: i, j, k, m, n, temp, iter, dummy, tmpx, tmpy, tmpz, daycount

! others
character(len=60) :: filename
character(len=10) :: den_str, daycount_str

integer :: tempmetercalls= 0, steadycalls= 0, tempmetercalls2=0
real*8 :: r, tempx, tempy, tempz, posx, posy, posz, halfdt, halfddt
real*8 :: rc2, rc_wall2, r_ngh2, bond_l2

! timer_variables
real*8 :: start, ends, endstemp !start time, end time

end module

!=======================================mainprogram======================================1

program chained2
use md_para
implicit none
real*8 :: junk,zz1,ran1

53

call cpu_time(start)
call initcalc

print*, ’npart :’, npart
print*, ’nwall :’, nwall
print*, ’ntot :’, ntot
print*, ’nbox :’, nbox
print*, ’vwall :’, vwall
print*, ’dt :’, dt
print*, ’wall_dx:’, wall_dx

allocate(pos(3*ntot))
allocate(vel(3*npart))
allocate(force(3*npart)); force=0.0d0
allocate(oldforce(3*npart))
allocate(nghbours(npart))
allocate(nghlist(maxnghbours,npart))
allocate(ifvisited(npart))
allocate(clust_count(maxclustsize)); clust_count=0
allocate(n_box_mono(nbox+2))
allocate(box_mono(maxboxcontent,nbox+2))
allocate(boxnghbournum(nbox))
allocate(boxnghlist(27,nbox))
allocate(numofbonds(npart))
allocate(layertemp(layernum+2)); layertemp=0.0d0
allocate(xveloprof(layernum+2)); xveloprof=0.0d0
allocate(xveloprof2(layernum+2)); xveloprof2=0.0d0
allocate(yveloprof(layernum+2)); yveloprof=0.0d0
allocate(zveloprof(layernum+2)); zveloprof=0.0d0
allocate(prev_vx(layernum+2)); prev_vx=0.0d0
allocate(curr_vx(layernum+2)); curr_vx=0.0d0
allocate(densityprof(layernum+2)); densityprof=0.0d0
allocate(temprof(layernum+2)); temprof=0.0d0
allocate(temprof2(layernum+2)); temprof2=0.0d0
allocate(temprofx(layernum+2)); temprofx=0.0d0
allocate(temprofy(layernum+2)); temprofy=0.0d0
allocate(temprofz(layernum+2)); temprofz=0.0d0

call boxnghbours !assigns_nghbours_for_each_box
call initpos !ensemble_initialisation
call fullforceup !calculates forces
call initvel !calculating initial velocities
print*, "Initial simulation setup done..."

!md iterations
filename= trim(den_str)//’_Elist_’//trim(label)//’.dat’
open (94, file=filename,status=’unknown’,form=’formatted’)

do iter= 0, niter
call energymeter
write(94, *) iter, dt*iter, pot_e, kin_e, tot_e

if(mod(iter,nghupdate)==0) call update_nghlist !updates_neighbourlist
if((mod(iter, sample_intervel)==0) .and. (iter.gt.iter_equil)) call tempmeter
call update !updates positions, velocities and forces

if((mod(iter-1, check_intervel)==0) .and. (iter_steadystate .gt. niter)&
& .and. (iter-1 .gt.iter_equil)) call steadystate_determiner

!checks if the system is in steady state

54

if(mod(iter, stabilise_intervel)==0) call thermostat

if(mod(iter,500)==0) print*, iter, leaked
if(mod(iter,10000)==2000) then

call cpu_time(ends)
write(*,’(1A15,1I2,1A,1I2,1A,1I2)’), &
&’Time remaining:’, int((niter-iter)*(ends-start)/(iter*3600)), & !hours
& ’:’, mod(int((niter-iter)*(ends-start)/(iter*60)),60), & !minutes
& ’:’, mod(int((niter-iter)*(ends-start)/iter),60) !seconds

endif
if(mod(iter,10000)==0) call poscopy
call cpu_time(endstemp)
if(int((endstemp-start)/(24*60*60)) .gt. daycount) then

daycount= daycount+1
write(daycount_str, ’(1I2)’) daycount
call poscopy2
call writerundetails2

endif
enddo

call energymeter
write(94, *) iter, dt*iter, pot_e, kin_e, tot_e

close (94)

do i= 1, layernum
if((i.eq.1) .or. (i.eq.layernum)) then

densityprof(i)= vol*densityprof(i)/(endlayervol*dfloat(tempmetercalls2))
else

densityprof(i)= vol*densityprof(i)/(layervol*dfloat(tempmetercalls2))
endif
xveloprof2(i)= xveloprof2(i)/dfloat(tempmetercalls2)
yveloprof(i)= yveloprof(i)/dfloat(tempmetercalls2)
zveloprof(i)= zveloprof(i)/dfloat(tempmetercalls2)
layertemp(i)= (mass*layertemp(i))/(2.0d0*dfloat(tempmetercalls2))

temprof(i)= temprof(i)*mass/(3.0d0*kbt*dfloat(tempmetercalls2))
temprof2(i)= temprof2(i)*mass/(3.0d0*kbt*dfloat(tempmetercalls2))
temprofx(i)= temprofx(i)*mass/(3.0d0*kbt*dfloat(tempmetercalls2))
temprofy(i)= temprofy(i)*mass/(3.0d0*kbt*dfloat(tempmetercalls2))
temprofz(i)= temprofz(i)*mass/(3.0d0*kbt*dfloat(tempmetercalls2))
!here kbt is boltzmns const.

enddo

call linearfitter

sliplen= dt*(vwall-((abs(xveloprof2(1))+&
&abs(xveloprof2(layernum)))/(2.0d0)))

sliplen2= 1.0d0-((vwall-b)/a) !position of vwall - point at which the linear
!fit has same value

call cpu_time(ends)
call poscopy !writes final positions to a file
call writerundetails !writes the results, data and parameters used for the run

print*, ’runtime: ’, int((ends-start)/3600),’:’,mod(int((ends-start)/60.0),60),’:’,mod((&
&ends- start),60.0)
print*, ’density: ’, den
print*, ’npart:’, npart
print*, ’nwall:’, nwall
print*, ’ntot :’, ntot
print*, ’vwall:’, vwall
print*, ’leaked:’, leaked
print*, ’sliplength:’, sliplen

55

print*, ’sliplength 2:’, sliplen2
print*, ’linear fit for xvelo:’, a, ’x + ’, b

deallocate(pos)
deallocate(vel)
deallocate(force)
deallocate(oldforce)
deallocate(nghbours)
deallocate(nghlist)
deallocate(ifvisited)
deallocate(clust_count)
deallocate(n_box_mono)
deallocate(box_mono)
deallocate(boxnghbournum)
deallocate(boxnghlist)
deallocate(numofbonds)
deallocate(layertemp)
deallocate(xveloprof)
deallocate(xveloprof2)
deallocate(yveloprof)
deallocate(zveloprof)
deallocate(prev_vx)
deallocate(curr_vx)
deallocate(densityprof)
deallocate(temprof)
deallocate(temprof2)
deallocate(temprofx)
deallocate(temprofy)
deallocate(temprofz)

end program chained2

!===============================initial_calculations====================================2

subroutine initcalc
use md_para
implicit none

llx=dfloat(lx); lly=dfloat(ly); llz= dfloat(lz) !sidelengths to dfloat
llxby2=llx/2.0d0; llyby2=lly/2.0d0; llzby2=llz/2.0d0 !half of side lengths
halfdt= 0.5d0*dt
halfddt= 0.5d0*dt*dt
rc2= rc*rc
rc_wall2= rc_wall*rc_wall
bond_l2= bond_l*bond_l

daycount=0
iter_steadystate=niter+2

wall_dx= vwall*dt
ljruntime= niter*dt
shearrate= 2.0d0*vwall/llz
exp10= 10.0d0**decimals

xnwalldist= 1.0d0*wallscalefactor
ynwalldist= (dsqrt(3.0d0)/2.0d0)*wallscalefactor
nwallx= int(llx/xnwalldist)
nwally= int(lly/ynwalldist)
if(mod(nwally,2)==1) nwally= nwally+1

56

xnwalldist= llx/dfloat(nwallx)
ynwalldist= lly/dfloat(nwally)
print*, ’nwallx: ’, nwallx, ’nwally: ’, nwally
nwallby2= nwallx*nwally
nwall= 2*nwallby2
vol = 4.0d0*3.14d0*(sig*sig*sig/24.0d0) !volume of a single particle
npart= int((den*(llx*lly*llz-nwallby2*vol))/vol) !calculating no: of particles
!-nwallby2*vol bcoz the hemispheres of nwall particles take up nwall*vol/2=nwallby2*vol
ntot= npart+nwall
realn= dfloat(npart)
v0= dsqrt(3.0d0*tem)
layernum= int(llz/layerbin)
layervol= layerbin*llx*lly
if(layerbin .le. (sig/2.0d0)) then

print*, "Boundary layers not accesible to the free particles. Modify the code!"
else

endlayervol= (layerbin*llx*lly)-(nwallby2*vol*0.5d0)
!correcting for vol occupied by the wall particles

endif

write(den_str, ’(1F5.3)’) den

frc_wall= 4.0d0*eps2*(12.0d0*((sig**12.0d0)/(rc_wall**13.0d0))-&
& (6.0d0*((sig** 6.0d0)/(rc_wall** 7.0d0))))

vrc_wall= 4.0d0*eps2*(((sig/rc_wall)**12.0d0)-((sig/rc_wall)**6.0d0))+frc_wall*rc_wall
frc= eps*(alpha*(36*((sig**36)/(rc**37))-18*((sig**18)/(rc**19)))+&

&(beta*((exp(-(rc-r0)/eta)/(eta*rc))+(exp(-(rc-r0)/eta)/(rc*rc)))))
vrc= eps*(alpha*((sig/rc)**36-(sig/rc)**18)+((beta*exp(-(rc-r0)/eta))/rc))+(frc*rc)
r_ngh= 3.5d0
r_ngh2= r_ngh*r_ngh

boxsidex= int(lx/box_size)
boxsidey= int(ly/box_size)
boxsidez= int(lz/box_size)
nbox= boxsidex*boxsidey*boxsidez

end subroutine initcalc

!========================position_initialisation_subroutine=============================3

subroutine initpos
use md_para
implicit none

real*8 :: ran1

open(90, file=’posi.dat’,status=’unknown’,form=’formatted’)

call initpos_wall_tri

r = ran1(zzzz)
pos(1)= r*llx
r = ran1(zzzz)
pos(2)= r*lly
r = ran1(zzzz)
pos(3)= r*llz
write(90, ’(3F20.4)’) pos(1), pos(2), pos(3)

i= 2

do
if(i>npart) exit

57

dummy = 0
r = ran1(zzzz)
tempx= r*llx
r = ran1(zzzz)
tempy= r*lly
r = ran1(zzzz)
tempz= r*llz

j=1
do while(j .le. ntot)

delx= abs(tempx-pos(3*j-2))
if (delx >= llxby2) delx= llx-delx
dely= abs(tempy-pos(3*j-1))
if (dely >= llyby2) dely= lly-dely
delz= abs(tempz-pos(3*j))

dist= dsqrt((delx*delx)+(dely*dely)+(delz*delz))

if (dist<= 1.2*sig) dummy=1
j= j+1
if (j==i) j= npart+1

enddo

if(dummy==0) then
pos(3*i-2) = tempx; pos(3*i-1) = tempy; pos(3*i) = tempz
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

endif
enddo ; close(90)

end subroutine initpos

!================initializes_the_wall_particles_in_square_lattice=======================4

subroutine initpos_wall_sq
use md_para
implicit none

pos=0.0d0
i=npart+1
do j= 1, nwallx

do k= 1, nwally
pos(3*i-2)= dfloat(j-1)*xnwalldist+ xnwalldist/2.0d0
pos(3*i-1)= dfloat(k-1)*ynwalldist+ ynwalldist/2.0d0
pos(3*i)= 0.000001d0
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

enddo
enddo

do j= 1, nwallx
do k= 1, nwally

pos(3*i-2)= dfloat(j-1)*xnwalldist+ xnwalldist/2.0d0
pos(3*i-1)= dfloat(k-1)*ynwalldist+ ynwalldist/2.0d0
pos(3*i)= llz- 0.000001d0
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

enddo
enddo

end subroutine initpos_wall_sq

58

!================initializes_the_wall_particles_in_triangular_lattice===================5

subroutine initpos_wall_tri
use md_para
implicit none

pos= 0.0d0
i= npart+1
do j= 1, nwallx

do k= 1, nwally
if (mod(k,2) == 0) then

pos(3*i-2)= dfloat(j-1)*(xnwalldist)+ xnwalldist- 0.000001d0
else

pos(3*i-2)= dfloat(j-1)*(xnwalldist)+ (xnwalldist/2.0d0)- 0.000001d0
endif
pos(3*i-1)= dfloat(k-1)*(ynwalldist)+ ynwalldist/2.0d0
pos(3*i)= 0.000001d0
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

enddo
enddo

do j= 1, nwallx
do k= 1, nwally

if (mod(k,2) == 0) then
pos(3*i-2)= dfloat(j-1)*(xnwalldist)+ (xnwalldist)- 0.000001d0

else
pos(3*i-2)= dfloat(j-1)*(xnwalldist)+ (xnwalldist/2.0d0)- 0.000001d0

endif
pos(3*i-1)= dfloat(k-1)*(ynwalldist)+ ynwalldist/2.0d0
pos(3*i)= llz- 0.000001d0
write(90, ’(3F20.4)’) pos(3*i-2), pos(3*i-1), pos(3*i)
i= i+1

enddo
enddo

end subroutine initpos_wall_tri

!=================================initializes_the_velocities============================6

subroutine initvel
use md_para
implicit none
real*8 :: ran1
real*8 :: xv, yv, zv, vsqr= 0.0d0
xv=0.0d0; yv=0.0d0; zv=0.0d0

do i= 1, npart
r=ran1(zzzz)
vel(3*i-2)= 2.0d0*(r-0.5d0)*v0
r=ran1(zzzz)
vel(3*i-1)= 2.0d0*(r-0.5d0)*v0
r=ran1(zzzz)
vel(3*i)= 2.0d0*(r-0.5d0)*v0
xv= xv+ vel(3*i-2)
yv= yv+ vel(3*i-1)
zv= zv+ vel(3*i)
vsqr= vsqr+vel(3*i-2)*vel(3*i-2)+vel(3*i-1)*vel(3*i-1)+vel(3*i)*vel(3*i)

enddo

xv= xv/realn; yv= yv/realn; zv= zv/realn
vsqr= 0.0d0

59

do i= 1, npart
vel(3*i-2)= vel(3*i-2)-xv
vel(3*i-1)= vel(3*i-1)-yv
vel(3*i)= vel(3*i)-zv
vsqr= vsqr+vel(3*i-2)*vel(3*i-2)+vel(3*i-1)*vel(3*i-1)+vel(3*i)*vel(3*i)

enddo

end subroutine initvel

!====================updates_positions,force_and_velocities=============================7

subroutine update
use md_para
implicit none

!updating positions

do i= 1, npart
posx= pos(3*i-2); posy= pos(3*i-1); posz= pos(3*i)

posx= posx+ (vel(3*i-2)*dt)+ (force(3*i-2)*halfddt)
posx= modulo(posx,llx)
posy= posy+ (vel(3*i-1)*dt)+ (force(3*i-1)*halfddt)
posy= modulo(posy,lly)
posz= posz+ (vel(3*i)*dt)+ (force(3*i)*halfddt)
if((posz.gt.llz) .or. (posz.lt. 0.0d0)) then

leaked= leaked+1
print*, "Particle ", i, "has been leaked out!"
pos(i:)= eoshift(pos(i:),shift=1)
vel(i:)= eoshift(vel(i:),shift=1)
force(i:)= eoshift(force(i:),shift=1)
oldforce(i:)= eoshift(oldforce(i:),shift=1)
npart= npart-1
ntot= npart+ nwall
call update_nghlist

endif
pos(3*i-2)= posx; pos(3*i-1)= posy; pos(3*i)= posz

enddo

do i= npart+1, npart+nwallby2 !z-position= 0.0
posx= pos(3*i-2)
posx= posx+ wall_dx
if(posx .ge. llx) posx= posx-llx
pos(3*i-2)= posx

enddo
do i= npart+nwallby2+1, ntot !z-position= 30.0

posx= pos(3*i-2)
posx= posx- wall_dx
if(posx .lt. 0.0d0) posx= llx+posx
pos(3*i-2)= posx

enddo

oldforce= force

call forceup !updating forces, using nghlist

vel= vel+ (oldforce+force)*halfdt !updating velocities

end subroutine update

!===========================updates_the_forces==8

60

subroutine forceup
use md_para
implicit none
real*8 ::junk3

pot_e= 0.0d0
force= 0.0d0

do i= 1, npart
do j= 1, nghbours(i)

k= nghlist(j,i)
delx= (pos(3*i-2) -pos(3*k-2))
if (abs(delx) > llxby2) delx= (-1.0d0*delx/abs(delx))*(llx-abs(delx))
dely= (pos(3*i-1) -pos(3*k-1))
if (abs(dely) > llyby2) dely= (-1.0d0*dely/abs(dely))*(lly-abs(dely))
delz= (pos(3*i) -pos(3*k))

dist= (delx*delx)+(dely*dely)+(delz*delz)
if (dist .le. rc2) then

if (k .le. npart) then
dist= dsqrt(dist)
f= eps*(alpha*(36.0d0*((sig**36.0d0)/(dist**37.0d0))-&
& 18.0d0*((sig**18.0d0)/(dist**19.0d0)))+&
& (beta*((exp(-(dist-r0)/eta)/(eta*dist))+&
& (exp(-(dist-r0)/eta)/(dist*dist)))))-frc
force(3*i-2)= force(3*i-2)+(delx/dist)*f
force(3*i-1)= force(3*i-1)+(dely/dist)*f
force(3*i)= force(3*i)+(delz/dist)*f
force(3*k-2)= force(3*k-2)-(delx/dist)*f
force(3*k-1)= force(3*k-1)-(dely/dist)*f
force(3*k)= force(3*k)-(delz/dist)*f
pot_e= pot_e + eps*(alpha*(((sig/dist)**36.0d0)-((sig/dist)**18.0d0))+&

&((beta*exp(-(dist-r0)/eta))/dist))+(frc*dist)-vrc
else

if (dist .le. rc_wall2) then
dist= dsqrt(dist)
f= 4.0d0*eps2*((12.0d0*((sig**12.0d0)/(dist**13.0d0)))-&
& (6.0d0*((sig** 6.0d0)/(dist** 7.0d0))))-frc_wall
force(3*i-2)= force(3*i-2)+(f*delx/dist)
force(3*i-1)= force(3*i-1)+(f*dely/dist)
force(3*i)= force(3*i)+(f*delz/dist)
junk3= 4.0d0*eps2*(((sig/dist)**12.0d0)-&
&((sig/dist)**6.0d0))+frc_wall*dist-vrc_wall
pot_e= pot_e+ junk3

endif
endif

endif
enddo

enddo

end subroutine forceup

!===============updates_positions,force_and_velocities,no_nghlist=======================9

subroutine fullupdate
use md_para
implicit none

!updating positions

do i= 1, npart

61

posx= pos(3*i-2); posy= pos(3*i-1); posz= pos(3*i)
posx= posx+ (vel(3*i-2)*dt)+ (force(3*i-2)*halfddt)
posx= modulo(posx,llx)
posy= posy+ (vel(3*i-1)*dt)+ (force(3*i-1)*halfddt)
posy= modulo(posy,lly)
posz= posz+ (vel(3*i)*dt)+ (force(3*i)*halfddt)
if((posz.gt.llz) .or. (posz.lt. 0.0d0)) then

leaked= leaked+1
print*, "Particle ", i, "has been leaked out!"
pos(i:)= eoshift(pos(i:),shift=1)
vel(i:)= eoshift(vel(i:),shift=1)
force(i:)= eoshift(force(i:),shift=1)
oldforce(i:)= eoshift(oldforce(i:),shift=1)
npart= npart-1
ntot= npart+ nwall
call update_nghlist

endif
pos(3*i-2)= posx; pos(3*i-1)= posy; pos(3*i)= posz

enddo
do i= npart+1, nwallby2+npart

posx= pos(3*i-2)
posx= posx+ wall_dx
posx= modulo(posx,llx)
pos(3*i-2)= posx

enddo
do i= nwallby2+npart+1, ntot

posx= pos(3*i-2)
posx= posx- wall_dx
posx= modulo(posx,llx)
pos(3*i-2)= posx

enddo

oldforce= force

call fullforceup !updating forces, with no nghlist

vel= vel+ (oldforce+force)*halfdt !updating velocities

end subroutine fullupdate

!===========================updates_the_forces,no_nghlist===============================10

subroutine fullforceup
use md_para
implicit none

pot_e= 0.0d0
force= 0.0d0

do i= 1, npart
do k= i+1, ntot

delx= (pos(3*i-2) -pos(3*k-2))
if (abs(delx) > llxby2) delx= (-1.0d0*delx/abs(delx))*(llx-abs(delx))
dely= (pos(3*i-1) -pos(3*k-1))
if (abs(dely) > llyby2) dely= (-1.0d0*dely/abs(dely))*(lly-abs(dely))
delz= (pos(3*i) -pos(3*k))

dist= (delx*delx)+(dely*dely)+(delz*delz)
if (dist .le. rc2) then

if (k .le. npart) then
dist= dsqrt(dist)
f= eps*(alpha*(36.0d0*((sig**36.0d0)/(dist**37.0d0))-&

62

& 18.0d0*((sig**18.0d0)/(dist**19.0d0)))+&
& (beta*((exp(-(dist-r0)/eta)/(eta*dist))+&
& (exp(-(dist-r0)/eta)/(dist*dist)))))-frc
force(3*i-2)= force(3*i-2)+(f*delx/dist)
force(3*i-1)= force(3*i-1)+(f*dely/dist)
force(3*i)= force(3*i)+(f*delz/dist)
force(3*k-2)= force(3*k-2)-(f*delx/dist)
force(3*k-1)= force(3*k-1)-(f*dely/dist)
force(3*k)= force(3*k)-(f*delz/dist)
pot_e= pot_e + eps*(alpha*(((sig/dist)**36.0d0)-((sig/dist)**18.0d0))+&

&((beta*exp(-(dist-r0)/eta))/dist))+(frc*dist)-vrc
else

if (dist .le. rc_wall2) then
dist= dsqrt(dist)
f= 4.0d0*eps2*((12.0d0*((sig**12.0d0)/(dist**13.0d0)))-&
& (6.0d0*((sig**6.0d0)/(dist**7.0d0))))-frc_wall
force(3*i-2)= force(3*i-2)+(f*delx/dist)
force(3*i-1)= force(3*i-1)+(f*dely/dist)
force(3*i)= force(3*i)+(f*delz/dist)
pot_e= pot_e+ 4.0d0*eps2*(((sig/dist)**12.0d0)-&
&((sig/dist)**6.0d0))+frc_wall*dist-vrc_wall

endif
endif

endif
enddo

enddo

end subroutine fullforceup

!==================================thermostat===11

subroutine thermostat
use md_para
implicit none
real*8 :: scalefactorx, scalefactor, vsqx, vsq

vsqx= 0.0d0
vsq= 0.0d0
do i= 1, npart

vsq= vsq+ (vel(3*i-1)*vel(3*i-1))+(vel(3*i)*vel(3*i))
vsqx= vsqx+ (vel(3*i-2)*vel(3*i-2))

enddo

scalefactor= dsqrt(2.0d0*realn/vsq)
scalefactorx= dsqrt(1.0d0*realn/vsqx)

do i= 1, npart
vel(3*i-2)= vel(3*i-2)*scalefactorx
vel(3*i-1)= vel(3*i-1)*scalefactor
vel(3*i)= vel(3*i)*scalefactor

enddo

end subroutine thermostat

!==============================calculates_KE,PE_and_TE=================================12

subroutine energymeter
use md_para
implicit none

kin_e= 0.0d0; tot_e= 0.0d0

63

do i= 1, npart
kin_e= kin_e + &
&0.5d0*((vel(3*i-2)*vel(3*i-2))+(vel(3*i-1)*vel(3*i-1))+(vel(3*i)*vel(3*i)))

enddo

pot_e= pot_e/realn
kin_e= kin_e/realn
tot_e= pot_e + kin_e

end subroutine energymeter

!=========================determines_the_temperature_gradient==========================13

subroutine tempmeter
use md_para
implicit none
integer :: layercount, layerpart, itemp, q
real*8 :: layerpos, uplim, lowlim, junk4
real*8 :: v2, v2c_1, v2c_2, v2c_x, v2c_y, v2c_z, vx, vy, vz, vxbar, vybar, vzbar
real*8, dimension(1:1200) :: vxpart, vypart, vzpart

layercount= 1
layerpos= layerbin/2.0d0
lowlim= 0.0d0; uplim= layerbin

do while(layerpos .lt. llz)
layerpart= 0
v2= 0.0d0; v2c_1= 0.0d0; v2c_2= 0.0d0; v2c_x= 0.d0; v2c_y= 0.0d0; v2c_z= 0.0d0
vx= 0.0d0; vy= 0.0d0; vz= 0.0d0; vxpart=0.0d0; vypart= 0.0d0; vzpart= 0.0d0
tempy= box_size/2.0d0
do while(tempy .lt. lly)
tempx= box_size/2.0d0
do while(tempx .lt. llx)
tmpx= tempx/box_size

tmpy= tempy/box_size
tmpz= layerpos/box_size
temp= (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

do i= 1, n_box_mono(temp)
itemp= box_mono(i,temp)
if(itemp .le. npart) then
if((pos(3*itemp) .lt. uplim) .and.&

&(pos(3*itemp) .ge. lowlim)) then
layerpart= layerpart+1

vx= vx+ vel(3*itemp-2)
vy= vy+ vel(3*itemp-1)
vz= vz+ vel(3*itemp)
vxpart(layerpart)= vel(3*itemp-2)
vypart(layerpart)= vel(3*itemp-1)
vzpart(layerpart)= vel(3*itemp)
junk4= ((vel(3*itemp-2)*vel(3*itemp-2))+&
&(vel(3*itemp-1)*vel(3*itemp-1))+(vel(3*itemp)*vel(3*itemp)))

v2= v2+ junk4
endif
endif
enddo
tempx= tempx+box_size

enddo
tempy= tempy+box_size
enddo
if (layerpart .ne. 0) then

vxbar= vx/dfloat(layerpart)

64

vybar= vy/dfloat(layerpart)
vzbar= vz/dfloat(layerpart)
xveloprof2(layercount)= xveloprof2(layercount)+ vxbar

xveloprof(layercount)= xveloprof(layercount)+ vxbar
yveloprof(layercount)= yveloprof(layercount)+ vybar
zveloprof(layercount)= zveloprof(layercount)+ vzbar
layertemp(layercount)= layertemp(layercount)+ (v2/dfloat(layerpart))
densityprof(layercount)= densityprof(layercount)+ (layerpart)
do i= 1, layerpart

v2c_x= v2c_x+ (vxpart(i)-curr_vx(layercount))*(vxpart(i)-curr_vx(layercount))
v2c_y= v2c_y+ (vypart(i))*(vypart(i))
v2c_z= v2c_z+ (vzpart(i))*(vzpart(i))
v2c_1=v2c_1+((vxpart(i)-curr_vx(layercount))*(vxpart(i)-curr_vx(layercount)))&

&+((vypart(i))*(vypart(i)))+&
&((vzpart(i))*(vzpart(i)))

v2c_2= v2c_2+ ((vxpart(i)-vxbar)*(vxpart(i)-vxbar))+&
&(vypart(i)*vypart(i))+ (vzpart(i)*vzpart(i))

enddo
temprof(layercount)= temprof(layercount)+ (v2c_1/dfloat(layerpart))
temprof2(layercount)= temprof2(layercount)+ (v2c_2/dfloat(layerpart))
temprofx(layercount)= temprofx(layercount)+ (v2c_x/dfloat(layerpart))
temprofy(layercount)= temprofy(layercount)+ (v2c_y/dfloat(layerpart))
temprofz(layercount)= temprofz(layercount)+ (v2c_z/dfloat(layerpart))

endif
layercount= layercount+1

layerpos= layerpos+ layerbin; lowlim= lowlim+ layerbin; uplim= uplim+ layerbin
enddo
tempmetercalls2= tempmetercalls2+ 1
tempmetercalls= tempmetercalls+ 1

end subroutine tempmeter

!======================checks_if_the_system_acheived_steady_state======================14

subroutine steadystate_determiner
use md_para
implicit none
integer:: flag
real*8 :: maxvel(1), minvel(1)

if(iter_steadystate .lt. niter) print*, "Already determined!"

flag=1
steadycalls= steadycalls+ 1
maxvel= maxloc(xveloprof)
minvel= minloc(xveloprof)
vdev= (maxvel(1)-minvel(1))*vdev100/(100.0d0*2.0d0*dfloat(tempmetercalls))

do i= 1, layernum
if(tempmetercalls .ne. 0) curr_vx(i)= xveloprof(i)/dfloat(tempmetercalls)
if(abs(prev_vx(i)-curr_vx(i)) .gt. vdev) then

flag=0
endif

enddo
xveloprof= 0.0d0
tempmetercalls= 0

filename= trim(den_str)//’_prev_curr_vx_’//trim(label)//’.dat’
open(68, file=filename, status=’unknown’, form=’formatted’)

do i= 1, layernum
write(68, ’(1I6,2F10.4)’) i, prev_vx(i), curr_vx(i)

enddo

65

close(68)

if(flag==1) then
iter_steadystate= iter
print*, "Reached steadystate at: ", iter
xveloprof2= 0.0d0; tempmetercalls2= 0;
densityprof= 0.0d0; temprof= 0.0d0; temprof2= 0.0d0
yveloprof= 0.0d0; zveloprof= 0.0d0; layertemp= 0.0d0

else
prev_vx= curr_vx

endif

end subroutine steadystate_determiner

!===================determines_the_best_linear_fit_for_the_xveloprof===================15
subroutine linearfitter
use md_para
implicit none
real*8 :: sumx, sumx2, sumxy, sumy
sumx= 0.0d0; sumx2= 0.0d0; sumxy= 0.d0 ; sumy= 0.0d0

do i= 1, layernum
sumy= sumy+xveloprof2(i)
sumxy= sumxy+(xveloprof2(i)*dfloat(i))
sumx2= sumx2+(dfloat(i)*dfloat(i))
sumx= sumx+dfloat(i)

enddo

a= (sumxy-(sumx*sumy/dfloat(layernum)))/(sumx2-(sumx*sumx/dfloat(layernum)))
b= (sumy-(a*sumx))/dfloat(layernum)

end subroutine linearfitter

!=======================assigning_neighbours_for_each_box==============================16

subroutine boxnghbours
use md_para
implicit none
integer :: bx, by, bz, tempbx, tempby, tempbz

do i= 1, nbox !assigning_neighbours_to_each_box
bz= (i-1)/(boxsidey*boxsidex)
by= (modulo(i-1,boxsidey*boxsidex)/boxsidex)
bx= (modulo(i-1,boxsidex))

m=0
do j= 1, 3

do k= 1, 3
do n= 1, 3

tempbx= (j-2)*1+ bx
if(tempbx .ge. boxsidex) tempbx= tempbx- boxsidex
if(tempbx .lt. 0) tempbx= tempbx+ boxsidex
tempby= (k-2)*1+ by
if(tempby .ge. boxsidey) tempby= tempby- boxsidey
if(tempby .lt. 0) tempby= tempby+ boxsidey
tempbz= (n-2)*1+ bz
if(tempbz .ge. boxsidez) cycle
if(tempbz .lt. 0) cycle

temp = (tempbz*llx*lly/(box_size**2))+(tempby*llx/box_size)+(tempbx)+ 1
if(temp .ne. i) then

66

m=m+1
boxnghlist(m,i)= temp

endif
enddo

enddo
enddo
boxnghbournum(i)= m

enddo !i= 1, nbox

end subroutine boxnghbours

!========================updating_the_neighbourlist_cells==============================17

subroutine update_nghlist
use md_para
implicit none
integer *8 :: p, ibox, ktemp, nmonotemp

nghlist=0
nghbours=0
n_box_mono=0
box_mono=0

do i= 1, ntot
tmpx= pos(3*i-2)/box_size
tmpy= pos(3*i-1)/box_size
tmpz= pos(3*i)/box_size
temp = (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

nmonotemp= n_box_mono(temp)
nmonotemp= nmonotemp+ 1
if(nmonotemp>maxboxcontent) print*, "Err: The max box content exceeded!", temp, i, nmonotemp
box_mono(nmonotemp,temp)= i
n_box_mono(temp)= nmonotemp

enddo

do i= 1, npart
p=0
tmpx= pos(3*i-2)/box_size
tmpy= pos(3*i-1)/box_size
tmpz= pos(3*i)/box_size
temp = (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

do j= 1, n_box_mono(temp)
dummy= box_mono(j,temp)
if(dummy .gt. i) then !all nghbr dummy less than i wud have i as nghbr

delx= abs(pos(3*i-2)-pos(3*dummy-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*dummy-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*dummy))
dist= (delx*delx)+(dely*dely)+(delz*delz)

if(dist<r_ngh2) then
p= p+1
if(p>maxnghbours) print*, "Err: maxnghbours exceeded!"
nghlist(p,i)= dummy

endif
endif

enddo

do j= 1, boxnghbournum(temp)
ibox= boxnghlist(j,temp)
dummy= n_box_mono(ibox)

67

if(dummy>0) then
do k= 1, dummy

ktemp= box_mono(k,ibox)
if(ktemp .gt. i) then

delx= abs(pos(3*i-2)-pos(3*ktemp-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*ktemp-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*ktemp))
dist= (delx*delx)+(dely*dely)+(delz*delz)

if(dist<r_ngh2) then
p=p+1
if(p>maxnghbours) print*, "Err: maxnghbours exceeded!"
nghlist(p,i)= ktemp

endif
endif

enddo
endif

enddo
nghbours(i)= p

enddo !i= 1, npart

end subroutine update_nghlist

!=======================upadating_the_neighbourlist_basic==============================18

subroutine update_nghlist_basic
use md_para
implicit none
integer *8 :: c, nmonotemp

nghlist=0
nghbours=0
n_box_mono=0
box_mono=0

do i= 1, ntot
tmpx= pos(3*i-2)/box_size
tmpy= pos(3*i-1)/box_size
tmpz= pos(3*i)/box_size
temp = (tmpz*llx*lly/(box_size*box_size))+(tmpy*llx/box_size)+tmpx+1

nmonotemp= n_box_mono(temp)
nmonotemp= nmonotemp+ 1
if(nmonotemp>maxboxcontent) print*, "Err: The max box content exceeded!", temp, i, n&
&monotemp
box_mono(nmonotemp,temp)= i
n_box_mono(temp)= nmonotemp

enddo

do i= 1, npart
c=0
do j= i+1, ntot

delx= abs(pos(3*i-2)-pos(3*j-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*i-1)-pos(3*j-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*i)-pos(3*j))

dist= (delx**2)+(dely**2)+(delz**2)
if(dist<r_ngh2) then

c= c+1
nghlist(c,i)= j

endif
enddo

68

nghbours(i)= c
enddo

end subroutine update_nghlist_basic

!============================counting_the_clusters_and_their_size======================19

subroutine clust_counter
use md_para
implicit none

ifvisited= 0
numofbonds= 0

do k= 1, npart
clustersize= 0
if(ifvisited(k) .eq. 0) then

clustersize=1
call counter(k)

endif
if(clustersize>maxclustsize) print*, "Err: maxclustsize exceeded!"
clust_count(clustersize)= clust_count(clustersize) +1

enddo

end subroutine clust_counter

!===========================counter==20

recursive subroutine counter(l)
use md_para
implicit none
integer :: l, g, h

ifvisited(l)=1

do h= 1, nghbours(l)
g= nghlist(h,l)
if(ifvisited(g) .eq. 0) then

delx= abs(pos(3*l-2)-pos(3*g-2)); if (delx >= llxby2) delx= llx-delx
dely= abs(pos(3*l-1)-pos(3*g-1)); if (dely >= llyby2) dely= lly-dely
delz= abs(pos(3*l)-pos(3*g))
dist= (delx**2)+(dely**2)+(delz**2)

if(dist < bond_l2) then
clustersize= clustersize+ 1
numofbonds(l)= numofbonds(l)+1
numofbonds(g)= numofbonds(g)+1
if(numofbonds(l)>2) branchnum= branchnum+1
if(numofbonds(g)>2) branchnum= branchnum+1
call counter(g)

endif
endif

enddo

end subroutine counter

!====================writing_final_positions===21

subroutine poscopy
use md_para
implicit none

69

filename= trim(den_str)//’_’//trim(label)//’.xyz’
open (91,file=filename,status=’unknown’, form=’formatted’)

write (91, ’(I5)’) ntot
write (91, ’(1A7)’) ’Chained’
do i= 1, npart

if(i/10000 >= 1) then
write(91, ’(1A,1I5,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/1000 >= 1) then

write(91, ’(1A,1I4,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/100 >= 1) then

write(91, ’(1A,1I3,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/10 >= 1) then

write(91, ’(1A,1I2,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else

write(91, ’(1A,1I1,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
endif

endif
endif

endif
enddo

do i= npart+1, ntot
if(i/10000 >= 1) then

write(91, ’(1A,1I5,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/1000 >= 1) then

write(91, ’(1A,1I4,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/100 >= 1) then

write(91, ’(1A,1I3,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/10 >= 1) then

write(91, ’(1A,1I2,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else

write(91, ’(1A,1I1,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
endif

endif
endif

endif
enddo

close (91)
end subroutine poscopy

!====================writing_final_positions2==21

subroutine poscopy2
use md_para
implicit none

filename= trim(den_str)//’_’//trim(label)//’_day_’//trim(daycount_str)//’.xyz’
open (91,file=filename,status=’unknown’, form=’formatted’)

write (91, ’(I5)’) ntot
write (91, ’(1A7)’) ’Chained’
do i= 1, npart

if(i/10000 >= 1) then
write(91, ’(1A,1I5,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)

70

else
if(i/1000 >= 1) then

write(91, ’(1A,1I4,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/100 >= 1) then

write(91, ’(1A,1I3,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/10 >= 1) then

write(91, ’(1A,1I2,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else

write(91, ’(1A,1I1,3F20.16)’) ’A’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
endif

endif
endif

endif
enddo

do i= npart+1, ntot
if(i/10000 >= 1) then

write(91, ’(1A,1I5,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/1000 >= 1) then

write(91, ’(1A,1I4,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/100 >= 1) then

write(91, ’(1A,1I3,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else
if(i/10 >= 1) then

write(91, ’(1A,1I2,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
else

write(91, ’(1A,1I1,3F20.16)’) ’W’, i, pos(3*i-2), pos(3*i-1), pos(3*i)
endif

endif
endif

endif
enddo

close (91)
end subroutine poscopy2

!==================writing_run_details===22

subroutine writerundetails
use md_para
implicit none

!writes the final velocity data to file
filename= trim(den_str)//’_velocities_’//trim(label)//’.dat’
open(84, file=filename, status=’unknown’, form=’formatted’)

do i= 1, npart
write(84, ’(1I5,3F20.16)’) i, vel(3*i-2), vel(3*i-1), vel(3*i)
enddo
close(85)

!writes the temperature data of layers to file
filename= trim(den_str)//’_KEgrad_’//trim(label)//’.dat’
open(85, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(85, ’(1I31F10.4)’) i, layertemp(i)
enddo
close(85)

71

!writes the avg x velocity data of layers to file
filename= trim(den_str)//’_xveloprof_’//trim(label)//’.dat’
open(86, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(86, ’(1I31F10.4)’) i, xveloprof2(i)
enddo
close(86)

!writes the avg y velocity data of layers to file
filename= trim(den_str)//’_yveloprof_’//trim(label)//’.dat’
open(87, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(87, ’(1I31F10.4)’) i, yveloprof(i)
enddo
close(87)

!writes the avg z velocity data of layers to file
filename= trim(den_str)//’_zveloprof_’//trim(label)//’.dat’
open(88, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(88, ’(1I31F10.4)’) i, zveloprof(i)
enddo
close(88)

!writes the density data of layers to file
filename= trim(den_str)//’_densityprof_’//trim(label)//’.dat’
open(89, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(89, ’(1I31F10.4)’) i, densityprof(i)
enddo
close(89)

!writes the temperature data of layers to file
filename= trim(den_str)//’_tempprof_’//trim(label)//’.dat’
open(90, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(90, ’(1I31F10.4)’) i, temprof(i)
enddo
close(90)

!writes the temperature-of-2nd-kind data of layers to file
filename= trim(den_str)//’_tempprof2_’//trim(label)//’.dat’
open(91, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(91, ’(1I31F10.4)’) i, temprof2(i)
enddo
close(91)

filename= trim(den_str)//’_para&res_’//trim(label)//’.dat’
open(80, file=filename, status=’unknown’, form=’formatted’)

write(80, ’(1A28,1F10.4)’)’density :’, den
write(80, ’(1A28,1I10)’) ’particles :’, ntot
write(80, ’(1A28,1I10)’) ’free particles :’, npart
write(80, ’(1A28,1I10)’) ’wall particles :’, nwall
write(80, ’(1A28,1F10.2)’)’avg. cluster size :’, dfloat(avg_clustsize)/dfloat(tot_&
&clust)
write(80, ’(1A28,1F10.2)’)’avg. no: of branching :’, dfloat(branchnum)/dfloat((niter-i&
&ter_equil)/count_intervel)
write(80, ’(1A28,1I10)’)’steady state reached at :’, iter_steadystate
write(80, ’(1A28,1F10.6)’)’slip length :’, sliplen
write(80, ’(1A28,1F10.6)’)’slip length 2 :’, sliplen2

72

write(80, ’(1A28,1F10.4)’)’vxprof linearfit coeff a:’, a
write(80, ’(1A28,1F10.4)’)’vxprof linearfit coeff b:’, b
write(80, ’(1A38)’) ’PARAMETERS OF POTENTIAL===========>’
write(80, ’(1A28,1F10.4)’)’epsilon :’, eps
write(80, ’(1A28,1F10.4)’)’alpha :’, alpha
write(80, ’(1A28,1F10.4)’)’beta :’, beta
write(80, ’(1A28,1F10.4)’)’eta :’, eta
write(80, ’(1A28,1F10.4)’)’r0 :’, r0
write(80, ’(1A28,1F10.4)’)’Bˆ2 :’, b2
write(80, ’(1A28,1F10.4)’)’epsilon2 :’, eps2
write(80, ’(1A28,1F10.4)’)’wall velocity :’, vwall
write(80, ’(1A38)’) ’OTHERS============================>’
write(80, ’(1A28,1I10)’) ’no: of iterations :’, niter
write(80, ’(1A28,1I10)’) ’equilibrium iteration :’, iter_equil
write(80, ’(1A28,1F10.4)’)’bond length :’, bond_l
write(80, ’(1A28,1F10.4)’)’range of potential :’, rc
write(80, ’(1A28,1F10.4)’)’range of potential_wall :’, rc_wall
write(80, ’(1A28,1F10.4)’)’timestep :’, dt
write(80, ’(1A28,1F10.4)’)’temperature :’, kbt
write(80, ’(1A28,1F10.4)’)’runtime in LJ time units:’, ljruntime
write(80, ’(1A28,1F10.4)’)’wall_dx :’, wall_dx
write(80, ’(1A28,1F10.4)’)’shear rate :’, shearrate
write(80, ’(1A28,1F10.4)’)’layerbin :’, layerbin
write(80, ’(1A28,1F10.4)’)’xvelo tolernce(v_dev %) :’, vdev100
write(80, ’(1A28,1I10)’) ’velo. sampling intervel :’, sample_intervel
write(80, ’(1A28,1I10)’) ’Steadystate check intrvl:’, check_intervel
write(80, ’(1A28,1F10.4)’)’neighbourhood radius :’, r_ngh
write(80, ’(1A7,1I3,1A11,1I3,1A11,1I3)’)’ lx: ’, lx, ’ ly: ’, ly, ’ lz: ’, lz
write(80, ’(1A20,1I4,1A5,1F5.2,1A4)’)’code runtime :’, &
&int((ends-start)/60),’ min:’,mod((ends- start),60.0),’ sec’

close(80)

end subroutine writerundetails

!==================writing_run_details2==22

subroutine writerundetails2
use md_para
implicit none

!writes the final velocity data to file
filename= trim(den_str)//’_velocities_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(84, file=filename, status=’unknown’, form=’formatted’)

do i= 1, npart
write(84, ’(1I5,3F20.16)’) i, vel(3*i-2), vel(3*i-1), vel(3*i)
enddo
close(85)

!writes the temperature data of layers to file
filename= trim(den_str)//’_KEgrad_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(85, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(85, ’(1I31F10.4)’) i, layertemp(i)
enddo
close(85)

!writes the avg x velocity data of layers to file
filename= trim(den_str)//’_xveloprof_’//trim(label)//’_day’//trim(daycount_str)//’.dat’
open(86, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(86, ’(1I31F10.4)’) i, xveloprof2(i)

73

enddo
close(86)

!writes the avg y velocity data of layers to file
filename= trim(den_str)//’_yveloprof_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(87, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(87, ’(1I31F10.4)’) i, yveloprof(i)
!iter_steadystate)/sample_intervel))
enddo
close(87)

!writes the avg z velocity data of layers to file
filename= trim(den_str)//’_zveloprof_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(88, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(88, ’(1I31F10.4)’) i, zveloprof(i)
!iter_steadystate)/sample_intervel))
enddo
close(88)

!writes the density data of layers to file
filename= trim(den_str)//’_densityprof_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(89, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(89, ’(1I31F10.4)’) i, densityprof(i)
enddo
close(89)

!writes the temperature data of layers to file
filename= trim(den_str)//’_tempprof_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(90, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(90, ’(1I31F10.4)’) i, temprof(i)
enddo
close(90)

!writes the temperature-of-2nd-kind data of layers to file
filename= trim(den_str)//’_tempprof2_’//trim(label)//’_day_’//trim(daycount_str)//’.dat’
open(91, file=filename, status=’unknown’, form=’formatted’)

do i= 1, int(llz/layerbin)
write(91, ’(1I31F10.4)’) i, temprof2(i)
enddo
close(91)

end subroutine writerundetails2

!%%%
FUNCTION ran1(IDUM)
implicit none

! RAN1 returns a unifom random deviate on the interval [0,1]
! __
!
INTEGER :: IDUM
REAL*8 :: RAN2,ran1
integer,parameter :: IM1=2147483563,IM2=2147483399
integer,parameter :: IMM1=IM1-1, &
IA1=40014,IA2=40692,IQ1=53668,IQ2=52774,IR1=12211,IR2=3791, &

NTAB=32
integer,parameter :: NDIV=1+IMM1/NTAB
real*8,parameter :: EPS=1.2e-7,RNMX=1.-EPS,AM=1./IM1

74

INTEGER :: IDUM2,J,K,IV(NTAB),IY
DATA IDUM2/123456789/, iv/NTAB*0/, iy/0/
IF (IDUM.LE.0) THEN

IDUM=MAX(-IDUM,1)
IDUM2=IDUM
DO J=NTAB+8,1,-1

K=IDUM/IQ1
IDUM=IA1*(IDUM-K*IQ1)-K*IR1
IF (IDUM.LT.0) IDUM=IDUM+IM1
IF (J.LE.NTAB) IV(J)=IDUM

end do
IY=IV(1)

ENDIF
K=IDUM/IQ1
IDUM=IA1*(IDUM-K*IQ1)-K*IR1
IF (IDUM.LT.0) IDUM=IDUM+IM1
K=IDUM2/IQ2
IDUM2=IA2*(IDUM2-K*IQ2)-K*IR2
IF (IDUM2.LT.0) IDUM2=IDUM2+IM2
J=1+IY/NDIV
IY=IV(J)-IDUM2
IV(J)=IDUM
IF(IY.LT.1)IY=IY+IMM1
RAN1=MIN(AM*IY,RNMX)

END function ran1

!%%

75

