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Abstract

This thesis is dedicated to studying field theories and has three parts. The
first two parts are on aspects of non-relativistic field theories. By taking
2 classical field theories namely, Landau’s theory of superfluidity and Yang
Mills theories whose relativistic versions are very well known, we study fea-
tures of non relativistic versions of theories. Importantly, we use 2 different
ways to approach the problem of studying the non relativistic field theory of
a known relativistic field theory.

In case of fluids, we follow the procedure of [I] by studying fluids in
one higher dimension in a space time carrying a null killing vector. The non
relativistic physics is arrived at by doing a null reduction along this direction.
In case of Yang Mills theories, we arrive at the non relativistic equations of
motion by sending the speed of light ¢ to infinity in consistent ways. We find
that we can do this in more than one way.

The third part of this thesis is on studying certain aspect of black holes
in string theory, particularly on the construction of supergravity solutions
which could be microstates of certain black holes. We do this by reviewing
the works of [2] and [3] and study topics in string theory from [4] and [5].
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Chapter 1

Null Fluids and Relativistic
Fluids

Fluid dynamics is a very well studied field theory. Our aim in Chapter [T} is
to re derive the ideal order non relativistic fluid constitutive relations and
obtain constraints on the fluid constitutive relations. We would be doing
this by treating relativistic fluid dynamics as an effective field theory and
demanding the existence and local postivity of an entropy current and by
contraining the form of an Equilibrium Partition function following [I] and
[6]. We would then review the procedure outlined in [7] of obtaining the
constitutive relations of non relativistic fluid dynamics by constructing a
non relativistic system on null backgrounds, with the null direction being a
killing direction for the fluid variables. We will then pose our problem of
writing the constitutive relations for non relativistic superfluids by applying
the equilibrium partition function method and positivity of entropy current
on null fluids and discuss the approach we are taking.

1.1 Some notation for relativistic fluid dynam-
ics

The fluid variables are the velocity field u*, temperature T'(z) and chemical
potential p(x). The fluid velocity is normalised to u*u, = —1 The fluid
equations of motion are

v, " = Fh], (1.1)

V,Jh =0 (1.2)
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General forms of current are:

™ = (p+ P)utu” + Pn*” + T (1.3)

diss

JH = qut + J

diss

(1.4)

1.2 Equilibrium Partition function for relativis-
tic fluids

In this section, we will look at the constrains put by an equilibrium parti-
tion function on fluids based on the discussions in [I]. The existence of an
equilibrium partition function for fluids in a curved background with electric
sources and the form it takes due to symmetries puts stringent constraints
on fluid constitutive relations. The physical requirements we will demanding
on our system will be:

1. The fluid background is slowly varying and admits an equilibrium so-
lution.

2. We can write down a partition function for the system

3. The stress energy current and charge current can be derived by varying
the partition function

Our aim will be to show how these physical requirements let us write down:

1. The correct ideal order constitutive relations

2. Relations between 1st order correction coefficients to the stress energy
and charge current.

1.2.1 Setup and ideal order equations

We begin by writing the most general background metric which has a timelike
killing vector (we can physically motivate this by anticipating that there is a
time-like direction in which our equilibrium configuration does not change).

We take our d + 1 dimensional back ground metric with & being the d
spatial coordinates and 0; being the time like killing direction to be:

ds? = —e 2@ (dt? — a;(F)dz")? + gijda'dz’ (1.5)
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The background gauge field in the system is given by:

We want to constrain the form the partition function on this background.
We will do this assuming that we working in a background with weakly
varying curvature and a temperature field 7'(x) such that at any point, we
have a well defined local temperature T'(x) ie. each point is in local thermal
equilibrium. By weakly varying, we mean that at each point 7'(z) admits
derivative corrections.

T(f) = T()G_a +

The generic form of the partition function of a system with a Hamitonian
H at temperature T is

_H
Z =Tre To
For our case, we can write the generic form of the partition function as

InZ = /dxd\/ﬁpj(,f) (1.7)

where P(Z) is an unknown function which we will later identify to be the local
pressure function of the fluid. This approach relies on the fact this form of
the partition can be constrained by symmetries: diffeomorphism invariance,
U(1) gauge symmetry of the background gauge field, Kaluza Klein invariance
(defined in ((L.8)).

As a result, as we will see, the ideal order fluid constitutive relations are
determined and identified with known results using thermodynamic identi-
ties. More importantly, this constrains the form of derivative corrections
admissible to the partition function.

The metric is invariant under the Kaluza Klein transformations, which
represent moving along the:

t—t+ ¢(@),x — (1.8)

Under these transformations, as in usual Kaluza Klein transformations, we
find that the 0i component of the metric transforms like a U(1) gauge trans-
formation if we look at coordinate transformations of the metric.

We can construct Kaluza Klein invariant combinations of vectors by figuring
out how general vectors transform, for eg. V; — V; — 9,0V, but V* is invari-
ant. This tells us that gijVi = V,—a;Vy is invariant. We use such an invariant
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made form the A source, ie. we define A, = A; — a; 49 and Ay = Ay. We
will write the Partition function as a function A; instead of A;.

We will now talk about how to extract physically meaningful quantities

from the Partition function.
To get the currents 7" and J* which are defined via

58 = / Vgdr (TS g,, + JUSA) (1.10)

It is clear that that, diffeomorphism invariance and gauge invariance give the
current conservation equations.
For our case,

W = / dx®™ (T8 g,, + JH6A,) (1.11)

Putting our field theory a temperature 7 by compactifying the euclidean
time direction,

oW = /\/—gdaz:dTl (T“”égw, + J“éAM) (1.12)
0
ie,
oW
T, = —2T059W (1.13)
ow
Ju = ToéA“ (1.14)

Our partition function ¥V is a generic functional of the background fields
WIe?, a;, Ao, Ai, o, 9]

Using the form of the metric and U(1) source and writing these in terms
of A; and A, instead of A4, using chain rule, we get the above equations in
terms of components:

ow
Too = —2Tpe* — 1.1
00 0€ 5o ( 5)
4 ow ow
ow
ow
20
J() = —2T06 @ (]_]_8)



)4%

J =T 1.19
Y54, (1.19)
Let’s recall the general form of T/, and J%,_,
T = (p + P)u'u” + Pn™” (1.20)
JW = qu” (1.21)

Here p and P are independent and have not yet been identified as thermo-
dynamic quantities. We will now show that this matching the above (([1.20]))
and ((1.21))) to the results for 7" and J* from the partition function, gives
us relations between p and P and lets us identify u* = ¢77(1,0,0,0) as the
equilibrium fluid velocity.

We also have to evaluate the partition function at the equilibrium config-
uration. It has to be a scalar, invariant under Kaluza Klein transformations,
and as we are looking at ideal order equilibrium configuration, not involve
derivatives of background or fluid variables. This constrains it to be of the
form:

W = /\/_ P(Tye 7, Age™) (1.22)

Now we will do the matching. To ease calculations, we relabel variables
e Ty = a and e Ay = b From ((1.15)))-((1.19)), applied to ((1.20))and
((1.21))), we get

TV = Pg" (1.23)

To get this expression, we used the identity d(y/—g) = %\/—gg’“’égw,
and the rest of the expressions are:

Too = €* (P — ad, P — b9, P) (1.24)

J' = e 70,P (1.25)

The expressions for Ty and J* are 0 as the equilibrium partition function is
not a function of A; or a;.

The expression for J* tells us that u* = e¢77(1,0,0,0). The expression for

T implies P = P ie. the function P in the partition function is indeed the
pressure function. The expression for Tqq tells us that p = —P+a0, P+ b0, P

1.2.2 1st order corrections

Here we will outline the strategy to compute first order corrections to con-
stitutive relations by the equilibrium partition function.
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. Find out the admissible terms we can add to the partition function
made of 1 derivatives and which are gauge invariant and diffeomorphism
invariant. They are the Chern Simons like terms of the form:

2
% AdA+T7° ada+T°202/Ada (1.26)

. Apply ((1.15))) to ((L.19)) to the first order corrected partition function

. . uv o
with above corrected terms to get expressions for 77, and J}, .

. List all terms that can involve fluid or background variables and carry
one derivative, such that they do not vanish at the equilibrium value
of the variables. Linear combinations of such tensor variables add to

77" and vectors add to Ji_,

. Add linear combinations from these variables to fluid variables u*, T'(z)
and p(z) to get 1 derivative corrections to u#, T'(z) and p(z). Substi-
tute these into expressions for T*” and J* and absorb the corrections

. uv iz
coming from here to T,  and JJ,_ .

. Match components of 7" and J}. . coming from (2) and (4). This
constrains the allowed terms which were added arbitrarily in (2) and

gives dependence of terms with each.



1.3 Entropy current for relativistic fluids

Now, we would like to approach the problem of determining fluid constitutive
relations again, but from a completely different starting point. Here we will
follow the discussions in the non-superfluid part of the paper [8]. Superfluids
can also be dealt with using entropy current, which is the major question
answered in the paper, but we will not venture into those discussions for
now.

To constrain fluid dynamics in an arbitrary curved background, we start
with physical assumption that there exists a local entropy current J&. The
second law of thermodynamics says that the entropy of any infinitesimal
region of the fluid must increase with time, ie.

8,8 >0 (1.27)

This requirement not only fixes the form 7" at ideal order but also
constrains the derivative corrections possible.

™ = (p+ P)u*u” + Pn"” (1.28)

The general form of 7" including derivative corrections is:
" = (p+ P)utu” + Pn* + T, (1.29)
To find constrains on the form of 7% . the general principle is to add

all possible derivative corrections, made from fluid data which are consistent
with Lorentz invariance and keep only those terms which are consistent with
(11.27)).

1.3.1 Ideal order

Let us do a first ideal order check on weather imposing as discussed
above is consistent with what is known at ideal order. The fluid variables are
ut(x),T'(x) and px) At ideal order, the only possibility to make a Lorentz
covariant entropy current without derivatives of fluid data is:

J§ = sut (1.30)
where s is the local entropy density. Using the thermodynamic relations,
p+ P =sT+ uq (1.31)
and
dP = sdT + qdu (1.32)

we see that (((1.27))) holds. We can consider this as a non trivial consistency
check of our principle of ((1.27)) with known thermodynamics relations.
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1.3.2 Field redefinition invariance in fluids

We have in section [I.3] outlined our strategy to look at how the positivity of
entropy current constrains the form of 7#”. We now add a final ingredient.

Our fluid variables u*,T'(x) and p(z) describe the fluid at some equilib-
rium configuration, and at each x we can redefine them such that we stay in
the same equilibrium configuration. An obvious subset of these transforma-
tions would be changing the reference frame of the fluid ie. u#* — u* 4 du*.
So, we have the freedom to change v*, T'(z) and p(z) in such a way that 7"
and J* don’t change.

Lets look at the local transformation:

T(z) — T'(z) = T(z) + 6T () (1.33)

p(z) — p'(x) = p(x) + dpu(x) (1.34)
u'(x) — ut(z) = ut(x) + du*(z) (1.35)

/—\ ’ N

These are 6 transformations. Ensuring the normalisation of u* stays
—1 makes them 5. So, we have 5 extra local transformations. These 5
transformations give physically equivalent 7" and J*

As we are interested in looking at the terms which contribute to T and

Jhi s, we can either fix this invariance by imposing 5 conditions on 7% and
B : : wo "

Jyies- For example, imposing 7)., = 0 fixes 4 and J},  u, fixes 1 of these

transformations.

Another way we could approach dealing with this redefinition invariance
is, we must add only those combinations of terms to 70 an J4. which are
field redefinition invariant.

These combinations can be easily found by looking at what the transfor-
mations (([1.33)) do to the general form of the T+".

As TH* doesn’t change, under field redefinitions,

0Ty = (u'ou” + u”out)(p + P) + utu’dP + n*dP (1.36)

diss

6J%,

diss

= (utdq + qou") (1.37)

To construct field redefinition invariant quantities, the trick we use is to
construct quantities which are manifestly invariant under

ut(z) — vt (z) = u"(x) + du(x)

by looking at vectors and tensors projected perpendicular to u*. This is
easily done by projecting vectors and tensors perpendicular to u* using the
projection tensor

P = + utu”
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For example the invariant tensor is easy to write as in this case projecting
perpendicular to u*:

1
PLPSTG — 5P Pog Ty, (1.38)

To construct vectors, we need to first project perpendicular to u* and then

ensure invariance under the rest of the transformations of ((1.33))), eg:

5(PrTSP

diss

ug = —(P + p)ou”

and
O(P Jgiss) = qout

lets us write the invariant vector as

ngc(lliss + PLH(PgT(Zfsu,B) (139)

And the invariant scalar can be written as a combination of projected
vectors.

§(PasTS = 3dP) (1.40)
6 (uqusT?) = dp (1.41)
d(uaJ*) = —dq (1.42)
So the invariant scalar is:
1 oP oP
—(PosT?) — ——(uqugT™?) + =—(ugJ" 1.43
5 (Pas ™) = G (s T™) + (o) (143

Now that have these invariants built out of fluid and background data,
our job is almost done. The divergence of the entropy current must be frame
invariant. A proof of this is in [9]. As a result, the d,J§ must re arrange itself
in the form of frame invariant scalars made from 7)., and J%,  expanded in
a basis of one derivative scalar, vector and tensor data.

1. Independent scalar: d,u*

2. Independent vectors:E,, = F*wu,,B,, = e,wa/gu”F"‘B and Vi, = B _

T
Puuau<%)

3. Independent tensor: o = L PF*PY(V qug + Vgt — PagViu)
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Divergence of the entropy current gives,

ut 1 N oP N oP “
s = —VMT(g(PaﬁT 7) - a—p(uauﬁT )+ a—q(uaJ )
1
VP 5 (PAT )+ o (PLPTEE, — 5P PasTi)
v diss loja (144)

For the expression to always be positive, we must have, the terms in the
bracket to make positive squares with the terms outside upto multiplicative
constants and these are the 3 sets of constraints on T and J*
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1.4 Non relativistic fluid dynamics from null
fluids

So far, we have reviewed relativistic fluids and techniques which tell us their
structure from basic physical principles. We can use these tools to study
non relativistic fluids, by setting up a map between the non relativistic fluid
theory and a higher dimensional theory "null fluid" theory, by applying these
techniques to the "null fluid" theory and then mapping the results back to
the non relativistic theory. This section is a review of the paper [7], where
these ideas are put forth concretely. We will stress on the process building
a map from a relativistic theory to non relativistic theory as this is done
differently from a parametric ¢ — oo limit on the equations of motion as is
done in chapter 3 for Yang Mills theories.

There are other approaches to deal with non relativistic fluids in the
literature. Newton Cartan formulation of non relativistic curved spaces is
used in [10] [II]. We will comment on how these approaches differ from the
one taken here but give the same results.

1.4.1 Galilean algebra as a subgroup of a one higher
dimensional Poincare algebra

Lets see how we can embed the Galilean group in a one higher dimensional
Poincare group.

We will look at a theory, with d spatial directions, a t coordinate and an
x~ coordinate, with metric:

ds® = —2dz~dt + dz.dx (1.45)

The (d+1) dimensional Galilean algebra sits as a subgroup within this algebra
with all its generators commuting with d_ The formal way to show this is
to write the d+2 dimensional Poincare algebra, perform a change of basis
on the generators due to the metric being of the form ((|1.45])) instead of the
usual Minkowski, and see that 0_ commutes with all the generators and the
rest of the generators form the Galilean algebra.

We will show this in a slightly more intuitive manner, following the dis-
cussion in [7]. The Klein Gordon equation in the (d+2) dimensional space is
given by:

(—20_0; + (0;)*) =0 (1.46)
Lets say the 0_ operator is -im’ where m is the mass. Then the Klein Gordon
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equation becomes:
(2imd; + (9;)*) =0 (1.47)

which is the free Schrodinger equation. We know that the symmetry algebra
of this equation is the Schrodinger algebra which has as a subalgebra the
Galilean algebra along with a central extension which is the mass operator.

So, ((L.46)) and ((1.47)) indicate that if we look at a d + 2 dimensional
theory on a background with metric[I.45 the d+ 1 dimensional theory is non
relativistic ie. has Schrodinger algebra symmetry. This is true if the mass
operator, 0_ commutes with all other operators in the d 4+ 2 dimensional
theory.

Hence, we can make the following statement: Theories on this background
in d+ 2 dim which have the symmetry:

oM — oM 4 M, T) (1.48)
where x™ is (x~,t,2"), have Galilean symmetry in d + 1 dim.

So we can study Galilean theories in (d+1) space time dimensions by
building them in d+42 dimensions such that they the symmetry ((1.48))) and
then compactifying the x~ direction.

We will be building Galilean fluids based on this general principle. We will
write the theory for fluids such that is has this symmetry in d+2 dimensions
(this is also referred to as a null fluid and the back ground a null background).
We will then see that we can apply all the machinery we have reviewed in
the previous sections on null fluids and constrain the form of the Partition
function to get constrains on the constitutive relations. Dimensional reduc-

tion of these relations will let us get constrains on the constitutive relations
of Galilean fluids.

1.4.2 Building fluids with null isometry

So, the flat d + 2 dimensional background on which we should build our
theory is

ds® = —2dx~dt + dx.dx

Turning on =~ independent fluctuations on this background gives

ds® = —2e~?(dt + a;dx")(dx_ — Bydt — Bida') + g;;da’dx? (1.49)

We can also turn on a background gauge field,
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A = Ayt + Adx’ (1.50)

So, the background fields for a potential Galilean fluid theory which
woulld act as sources will be: [¢, B, B, gij, ai, Ar, Ail.

We now need to define more precisely what we mean by null curved
backgrounds as in the previous section we had only spoken about null flat
backgrounds.

For a d42 dimensional theory, we define a null background as having a null
vector VM9, such that: 6y GMN = L£,GMN =0 and §y Ay = Ly Ay =0
and V does not change under covariant transport ie. Vi,V = 0. We also
take the component of A along V' to be —Ay.

Given a null background defined above, we need to define null fluids on
this background. To do so we take 3 steps:

1. We first define the fluid theory we are looking at by defining the back-
ground fields, the metric GMY and the background U(1) gauge field
A

2. We then define the symmetries of the theory, parametrised by the in-
finitesimal parameters & = £y, A and how they act on the back-
ground fields ie. 0:Gyy = LGyn (diffeomorphisms) and §e Ay =
O (O + ENN) + VO v Ay (gauge transformations on curved back-
grounds).

3. Null fluids are those for which [d¢, dy] = 0. This is the analog of the
statement in flat space that 0_ commutes with all other generators

1.4.3 Setting up Equilibrium and the equilibrium Par-
tition function

To have an equilibrium direction in the theory we should have a timelike
§ = K. We can fix a basis V = 0_,A(y) = 0 and K = 0;, A\(x) = 0. In this
basis,
0 —e? —e%a;
Gun = —e ¢ e*¢Bt €7¢(Bi + ai) (151)
—€_¢&j €_¢(BZ' + Cli) Gij + aiBje_¢’
Here too, we can get 7MY by assuming the existence of an equilibrium
partition function and varying it with respect to sources as we did in (1.2},
variation of the Partition function has the general form,
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oW = /dl’M\/ —G(%TMN(SGMN + JM5AM) (1.52)

We now have to compactify the ™~ direction whose radius of compactifi-
cation is called R as well as the euclidean time direction whose radius is 3.
Defining 9 = B~ The equilibrium temperature is ¥y = Je? just like in sec-

tion ([L.2)) because we are looking at the first term in a derivative expansion
of the temperature field. We will not repeat the discussions of section (|1.2)),
except that the partition function now a functional of 3 background scalars
instead of 2 and the

Some redefinitions of the scalars are required: wgy = % and 1y = Af and
we can write the partition function as:

A |
5W:/dl‘l\/§19<§TMN(5G]uN‘l—JM(s,A]\/[) (153)

As before, we work with Kaluza Klein invariant combinations of the gauge
fields by defining: A; = A; — a;A; and B; = B; — a;5;.

working out variations by using the explicit forms of the metric and gauge
field gives us the following equations to determine the 7MY and JM

;9: _ g:v (1.54)

. g—g (1.55)

g—f _ _g (1.56)

T, —¢0327W0 - B?—Z) (1.57)
g_i _ ‘;ZV _ tg_Z (1.58)
J = (;7”: (1.59)

1‘;_; _ ng (1.60)

These equations will be very useful for us later while calculating the
currents for a null superfluid.
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1.4.4 Light cone reduction

Null decomposition All the quantities calculated till now have been
quantities on Mg s, the d 4+ 2 dimensional manifold on which the null fluid
is defined. We need to dimensionally reduce the V' direction to get physi-
cal quantities in terms of coordinates on My, ;. This is a subtle procedure
because the decomposition of space with a null direction cannot be done
uniquely. A null vector is transverse to itself, so we cannot do the conven-
tional decomposition as a vector X transverse directions. To do this, we need
to introduce a time-like vector (which will correspond to the time direction)
T = T™9,. Now, we can define a direction orthogonal to V using this T
(by a Gram-Schmidt orthogonalisation) as:

_ —1 TRTRYVM
Vi = g - o)
TNVy 2T5Vy
Using this definition, we can see that I_/(% is null and orthogonal to V.
This lets decompose the metric into these 2 directions and the transverse
direction.

— (M
GMN = PN — oy Ny (1.61)
My is spanned by 1, PN where 1) is a vector in Mg,,. This is
the decomposition My,o = S‘l/ X Ry x My, We will now show how Milne

transformations (which arise in Newton Cartan structures) also arise via this
procedure of decomposing the metric.

Newton Cartan structures from null decomposition We will now
show that Newton Cartan structures arise if we pick a basis for the null
decomposition described above. V = d_ and the coordinates as ™ = x~, 2.

M 1
=)
0
o= ]
M UMBL
Vir) = [ Uull



= -1
Vi) = [B 1

m

0 0
P(T)JWN |:0 pw/:| (162)
We see that given that n*v, =1, v*p,, = 0, n,p" = 0, p*’p,, + n*v, = o
the definition of ‘7((T]\)4 is satisfied and from the last relation, PM" can be seen
to be the transverse metric.

This is what is called a Newton Cartan structure [cite Kristen Jensen|. We
have shown that it arises by picking a basis in our Null background. It can
also be constructed independently, without reference to null back grounds
|cite Kristen Jensen|. This construction consists of splitting a degenerate
space time metric g"” (as the metric generates in the non relativistic limit)
into closed one form n, which defines the local time direction and the trans-
verse spatial metric p*” such that n,p"” = 0 and g"¥ = n#n” + p"”

We will now show an important advantage of constructing theories on null
backgrounds compared to working with Newton Cartan structures. While
studying non relativistic theories on Newton Cartan manifolds, Milne trans-
formations are demanded as symmetries of the theory [cite Jenen|. In case
of theories on null backgrounds, they arise as properties of the null back-
ground itself, and hence theories on this background are automatically Milne
invariant.

We will first show how the arise in null background theories. Null theories
have a symmetry in the definition of the T field. Under the transformation:

™ — M — TNV (1.63)
where MV, =0,
_ _ - 1- )
V) — Vuer) + M+ E@DQVM (1.64)
PN — P+ 2V MpN) 4 g2y My N (1.65)

These transformations written in the Newton Cartan basis are given by:

e (1.66)

_ 1 -
B, — B, + v, — §nu¢2 (1.67)
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Puv — Puv — 271(#1;1/) + n#nIﬂEQ (168)

which are the Milne boosts in Newton Cartan structures [Jensen].

These Milne boosts can be introduced without reference to null back-
grounds as a freedom in adding a vector along the transverse directions to
v*.  This non uniqueness corresponds to the choice of different reference
frames we have in Galilean physics.

Reduction of currents on null backgrounds Now that we have the
null background metric, we want to look at the reduction of the currents
TMN and JM. This would let study the variation of the partition function
with these reduced currents and make contact with non relativistic fluids.

We can decompose ie. look at components along linearly independent
directions of the currents 7%V and J" on M = Sj, x R} x M{; as:

M T =N (M N . N

TMN = pVIVE + 2600 VOV + 25MVE) + 25V 4+ MY 4 gy M YN

JM =gV + 5+ oV (1.69)

0 and €' are not physically important terms as the variation of the current
will give VoV = 0 via the null condition.

The scalars p, €;,; and g will be interpreted as mass density, energy density

and charge density, the vectors j/, j¥, ji as mass current, energy current and

charge current and t"” as the stress energy tensor.
We can now reduce the variation of the partition function:

oW = /\/ —Gd$d+2(TMN(5GMN + JM(S.AM) (170)

now becomes (using the decomposition of the currents and the null back-
ground):
W = [ VG el + 34)5Vaa + 0V + ) 6Via(1.7)
M 1 = .
+(p" Viry + 5t )Py + (aVig) + 4y )0.Awu]
This variation in the Newton Cartan basis is:
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W = / V=Gdz™? (00" + jE)0ny, + (o0 + )88, (1.72)

1 .
+(pfv” + 575“”)51)#1/ + (qv** + jb)0A,

Now that we have the variation of the partition function, the ward iden-
tities corresponding to the symmetries of the reduced theory can be found

.
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1.5 Null superfluids

Relativstic superfluids

Superfluids we will study will be on the same background as the charged
fluids we were studying except that they break the U(1) gauge symmetry.
The equilibrium partition function technique can be used to constrain the
constitutive relations of relativistic superfluids upto first order in derivative
expansion. We will outline some of the notation and setup outlined there.

The condensed scalar ¢ develops a vacuum expectation value which leads
to spontaneous symmetry breaking. It gives us a one parameter set of back-
ground equilibrium configurations. If ¢ is the phase of the scalar condensate,
under a gauge transformation: A4; — A; + d;a, ¢ — ¢ + «.

The gauge invariant combination of these is:

& =0ip+ A (1.73)

We also define £, = Ay We must also construct Kaluza Klein invariant com-
binations of £ to use in the equilibrium partition function, as discussed in
the ordinary fluid case. ¢; = & — a; A

X =—¢&

The equilibrium partition function, W,y can be written down and its
form constrained.

Construction of null superfluids

We would now like to discuss some aspects of the problem we are currently
working on using the techniques reviewed in the previous sections. As these
calculations are ongoing, we will outline them here for now.

We follow the following steps:

e We assume the existence of a partition function on the null background
and let it depend on the super-fluid y = & where z; is the superfluid
velocity.

e We vary the partition function as is done in [1.54] evaluating it at ideal
order and get expressions for values of TM¥ and JM.

e We match this expression with the most general 7" and J™ we can
construct at ideal order which is compatible with positivity of entropy
current.
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Chapter 2
Gallilean Yang Mills Theories

Having looked at fluid dynamics and a method of studying non relativistic
fluid dynamics, we will in this chapter look at a different classical relativistic
field theory again, and study it’s non relativistic dynamics. Yang Mills is
a very important theory to study because it governs the Standard Model.
In this chapter, we will look at the non relativistic limit of free Yang Mills
theory, and study the symmetries of its equations of motion. We will also
look at some general properties of (Galilean Conformal Field Theories and
study how they arise as limits of relativistic theories. We will be presenting
some of the results and discussions of [12].

2.1 Galilean Conformal Field Theories

The Galilean Conformal Algebra (GCA) is the Inounu Wigner contraction
of the conformal algebra. The Inounu Wigner method parametrically con-
tracts the generators of an algebra, to give a new algebra. The most common
example of an Inounu Wigner contraction is the contraction of the Poincare
algebra to give the Galilean algebra. The GCA arises as a contraction of the
conformal group [I3], as the contraction parameter here becomes the speed
of light ¢, and we get the GCA as ¢ — oo. This is implemented by work-
ing in units in which ¢ is 1 and implenting the contraction on space time as
r — ex and t — ¢ with e = £ — 0. The upside of this approach is,
we can write down the representation of the algebra on fields, and take the

space-time contraction immediately.

The conformal group generators represented on fields are :

P,=0,,K,=—-2v,2,0" —2"2,0,), M, = — (2,0, — x,0,) ,D = —2"0,2.1)

s P uy
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where P, is the momentum generator, K, is the special conformal trans-
formation generator, M, is the boost and rotation generator and D is the
Dilatation generator.

xT

Contracting the algebra by taking ¢ = £ — 0 gives us the GCA. The
interesting observation [13] is that about the finite-GCA algebra, can be
written as:

[L(n), L(m)] _ (n . m) L(n+m), [L(n)7 M(m)] _ (n . m) M-(ner)

[Jij7 Jn] = 5k[iJj]l - 5l[iJj]k7 [L(n)v Jij] =0, [Mz‘(n)v ij] = M[(kn)dj]z"
where L0 = H D K and M"Y = P, B, K, .H,D and K are the
Galilean hamiltonian, Dilatation and scalar special conformal transforma-
tion. P;, B; and K; represent momentum, Galilean boost and vector special
conformal transformation. J;; is the rotation generator. And here the algebra
continues to hold for —1 > n and n > 1. So we get an infinite dimensional

algebra even though the algebra we contracted is infinite dimensional only
in d=2.

The interesting result we have in [12] is that Galilean Yang Mills Theory is
invariant under (2.2)) and moreover arises as a representation of the algebra
when we label it with D and J;; as Casimirs.

2.2 Different non relativistic limits of Yang Mills

Let us look at the transformation law for 4-vectors:

Uy = U — &uz (2.3)
c

w, = u; — ﬂuo (2.4)
c

Where we have put v to 1 (ie. ignored terms of order (v/c?))
We take non relativistic limits by sending ¢ — co or equivalently calling
1/c =€ and € — 0 So this is just,

Uy = Uy — €V (2.5)
u; = u; — €Vl (2.6)
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It is clear that unless ug or w; scale as uy — €ug or u; — €uy, taking € to
0 gives us a trivial transformation in and ie. take non relativistic
limit of the Lorentz transformations.

As as example, lets look at uy = ¢t and u; = x;, Taking the non relativistic
limit forces us to take u; = ex; gives us the usual Galilean transformation of

coordinates.
ty = to (2.7)

61’; = €r; — EUitO (28)

If we are looking at Yang Mills with an SU (V) gauge group, we will have
N? — 1 gauge fields Af.. Each of these is a 4-vector, so according to our
discussion above, A% and A¢ components of each of the N? — 1 gauge fields
will scale in 1 of 2 ways described above to have consistent Galilean limit.

For concreteness, we look at the possible non relativistic limits we can
have with the gauge group being SU(2), ie, 3 gauge fields:

Magnetic limit

Af — €Aj A} — A
Ap — €Al A? — A
Ay — €A} AP — AP

Skewed limit 1

Af — €A} Al — A}
A(Q) — EA(Q) A? — A?
AS — A3 AP — eA?

Skewed limit 2

Ay — €A A — A}
Af — A2 A? — eA?
Ad — A3 AP — A

Electric limit

Ay — A} Al — €A;
A3 — A2 A? — €A?
Ad — A} AP — eA?
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2.3 Conclusion and Discussion

We demonstrated how there is more than one consistent way of looking at the
non relativistic limit of Yang Mills theory woth gauge group SU(2). In the
paper [12], the authors show how to generalise this to SU(N). Furthermore,
we can look at the equations of motion in each of these possible limits.
It turns out that the equations of motion in all possible limits for general
SU(N) gauge fields, are invariant under the infinite dimensional GCA. This
is an interesting result because more symmetry constrains the theory much
more. The expectation is that this large amount of symmetry in NV = 4
supersymmetric Yang Mills will give us an integrable subsector of the gauge-
gravity correspondence. Studying non relativistic Yang Mills is small step in
this direction.
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Chapter 3

Black holes and fundamental
strings

3.1 Introduction

The work of Bekenstein and Hawking showed that black holes have entropy
and that this entropy is proportional to the area of the horizon. Since then,
there has been a programme to explain the microscopic origin of this entropy,
ie. to reproduce this entropy from an explicit counting of microstates of the

black hole.

Recently, the fuzzball programme has included an attempt to construct
smooth horizonless solutions of supergravity to account for the microscopic
structure of black holes, see [14] and references within. A programme [15] [16]
and references, has been used to construct all possible horizonless solutions
of supergravity with the same mass and charges as certain black holes and
attempt to calculate the entropy coming from these microstates to see if they
can account for the complete entropy of these black holes.

We will in this chapter, try to understand, via a specific example, how
these microstate solutions are constructed. We also have another motivation
to pick the particular example of solution we want to construct.

States carrying momentum and winding in a system of & NS5-branes
wrapping 7% x S in Type II string theory have a black hole description when
the branes are coincident. But when the branes are separated, it has recently
been argued in [I7] that the system undergoes a black hole/string transition
and the elliptic genus and the entropy change discontinuously. In light of
this, we construct smooth, horizonless supergravity solutions corresponding
to fundamental strings carrying momentum and winding in the background
of the separated NS5-branes. These are not microstates of the black hole by
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the above argument, but they have the same global charges as the black hole.
This would demonstrate that identifying microstates purely via supergravity
constructions can be misleading.

The plan of the chapter is to first review how to couple strings to low
energy effective actions in string theory. This is followed by reviewing Dab-
holkar and Harvey’s [2] construction of the fundamental string solution and
their subsequent paper on oscillating fundamental strings [3] and some dis-
cussions on Vashaspati and Garfinkle’s solution generating mechanism of
putting oscillations on static fundamental string solutions [I8]. Following
the methods in these discussions, we will write try to write the metric for an
oscillating fundamental string in NS5 background.

3.2 Low Energy Effective Theory

We know that the perturbative spectrum of bosonic strings at level one
consists of a tachyon and at level 2 consists of massless representations of
SO(D —2). The massless fields are a scalar field (dilaton), a symmetric rank
2 tensor (G,,) and an antisymmetric rank 2 tensor (B,,).

A natural question to ask is what would be the motion of strings in a
background given by these fields. While answering this question, we are
looking at an effective theory because we are only looking at how strings
propagate and back-react with a background made of massless excitations.

Our notion of back-reacting is that we’re looking at motion of the string
in a curved background instead of a flat background and we let the string
source these background fields.

L

/ d*0\/99"" G (X) 0, X0, X

 dwod
where X, are target space coordinates and g,,, is the world sheet metric. A
theory governed by this Lagrangian is called a non-linear sigma model.

A natural question to ask at this point, is how is G, which we seemingly
put in by hand, the same as the G, coming from the perturbative spectrum
of the string we referred to earlier. To see this, we follow the discussion in
Tong [4]. We look at the weak field expansion of G, = 0, + Iy

Let’s compute the partition function Z for a string in this background.

Z = / DX Dge =V

V2
7 = /DXDge_SP(l V-Gt
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where
Sp = /d%\/ggm“amxuanxv

is the flat space Polyakov action and where V' is given by

V:

d? "Ry (X)) O X0, XY
o [ VAT ()

Now as a gravitational perturbation, h,, has a propagating wave solution
of the form &,,e’"X where ¢, is the polarisation tensor. So in effect for weak
fields we’re doing a path integral

Yy / d?o\/9 e 0, X 10, X

which lets us identify it as a vertex operator insertion for gravitons with the
polarization given by ¢,,,. We can make sense of this by realising that we can
make the identification:

/d20\/§9mn : amXan)_(@(iP'X) = (20" + 0" )0 >

Here, we had only coupled the string to the background metric. We
can couple the string to the antisymmetric 2 tensor B,, which arises as a
part of the massless perturbative spectrum. We do so in a way which keeps
reparametrisation invariance and Weyl invariance on the world sheet.

1

Yte

S

/ (O XHO" XY G (X) + €™M0y X O™ XY B, (X))

The 2 form B, is gauge invariant under B,, — B, +9,C, —9,C,, and
it is useful to introduce the 3 form H = dB.

3.3 Strings wrapping S*

We will now describe the motivation given by [2] to study a low energy
macroscopic string solution to these equations. We consider a string on R? x
S1 where the radius R of S! is large compared to the string scale. We will take
this as an opportunity to study some features of the perturbative spectrum
of closed bosonic strings wrapping around S* following the discussion in [5].

The perturbative spectrum of such a string consists of a tower of states la-
belled by the winding number n and the quantized momentum in the compact
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direction m/R. The quantization of the momentum is a frequently encoun-
tered effect in field theory upon compactification of a dimension. Here we
argue that €™ (where p is the momentum operator) must leave the state
invariant which implies p = m/R.

The winding number is a stringy effect which arises because there may
exist an integer n such that

X(o+27m)=X(0)+2nRn

which means the string comes back to itself after winding the compact direc-
tion n times. World sheet momentum p comes from the energy momentum
tensor by Noether’s procedure,

P= 2o

/ dz0X — 20X
Change in = going around the string comes from,
2rRn = /dzE)X + 20X

On expanding in terms of oscillator modes,

e . -m—1
0X(2) = —iy/ 5} Zamz

0X(2) = —iVa2) @z ™!

only the 0 mode contribution survive,

NE

2rRn = 27 —(ao — d@)

1 _
p= 2—0/(040 + )

Inverting these linear equations gives,
[ 2 [2 (m n nRk
—Qn = — N N [
o ° br o \R o
/2 12 {m nR
—Qan = — N _
o br o \ R o
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We see that ayg # ag in the compact directions due to the winding n. For
the non compact directions, &g = ag So, the mass shell condition becomes:
, n® wR* 2 _
m” = o5+ (o) +O/(N+N 2)
This gives us the spectrum of arbitrary left moving and right moving oscil-
lations in the bosonic case.

[2] argue that when right moving oscillations are in the ground state but
there are an arbitrary number of left moving oscillations subject to the mass
shell condition, half the supersymmetry is broken and we get a %BPS state.

The number of supersymmetries broken by a state if it is a BPS state,
is a quantity that would not change if we went to the low energy regime.
So, it makes sense to look for half BPS objects in the low energy effective
theory which would correspond to the fundamental string solution we are
looking for. Also, BPS objects are usually solitonic objects, for example
BPS monopoles in gauge theories [ref].

We also find that the fundamental string has an ADM mass 3", where n
corresponds to the winding number of the corresponding perturbative state.
We will perform the ADM momentum calculation (which is similar in spirit)
for the oscillating string in Section [ref|. They are localized objects whose
mass varies inversely with the string coupling. So we are probing a non-
perturbative regime of our theory.

3.4 Fundamental string solution

We will now closely follow the discussion in the paper [2]. The aim of the
section is to study a macroscopic string wound around S* on R? x S* in the
presence fields G, B,,,, ¢. The Lagrangian for the massless fields is

1 1
— = 2 —2044)H2
=R 9 (09) _126

We motivated how strings couple to the background in the previous section.
Following this, the Lagrangian for the string is:

Lo / P\ /GG" G (X) O X PO, X" + ™0, X109, X" B,

Yt

The low energy effective theory of strings propagating in this background Lg
is given by:
L=Lg+ L,

31



We do not show how the Lagrangian Lpg for the fields in the low energy
limit is arrived at. The method is similar to the Kaluza Klein reduction
of pure Einstein gravity to give the electromagnetic Lagrangian coupled to
gravity and a dilaton field [5].

The equations of motion from varying the fields are:

V(e HMP) — / Poe™d, X 0, X S(x — X (0)) (3.1)

1
R™ +2VHVY ¢ — ZH“””H;’U = / d*o\/99"" 0, X 0, X 5(x — X (0)) (3.2)

4V23p — 4(Vo)? + R — 1—121{2 =0 (3.3)

The equations of motion form varying the string coordinates are:

Vg™V X") = T8 0, XY8, X 4™ + HI 9, X 0, X ™  (3.4)

We will use this string equation of motion to good effect while finding the
net force on a test string in Sec [ref].

3.4.1 Ansatz

In [], a very simple ansatz dependent on only one function was proposed for
these equations of motion. We have already seen why we should expect such
a solitonic solution in Sec [ref]. The ansatz is

ds® = —e*(dt* — (do")?) + dz.dF (3.5)

Buv = _(62¢ - 1) (36)

The Einstein equation for this ansatz gives,

92 (e™2%) = —:—;517(3[; — X(0)) (3.7)

which gives(for D > 4),
Q

—2¢ __
e _1+7’D—4

2
where ) = Q’“D”S.
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No force condition

We are claiming that the fundamental string solution is a % BPS object.
A characteristic feature of BPS objects is that there is no net force between
them. For example, in case of magnetic monopoles, the electric and magnetic
forces exactly balance each other when two monopoles are placed near each
other. We will now show that the net force on a static test string is 0
following the discussion of [2]. Let us look at a stationary test fundamental
string placed at a fixed distance from the origin parallel to the fundamental
string located at the origin. The field due to the fundamental string will be
given by the metric in Eq. and working in the string frame ensures
that the gravitational force and the force due to the dilaton are exerted.
Fixing conformal gauge for the test string, gives us X = 7, X! = ¢ and
gmn = (—1,+1). Force in the transverse direction experienced by the string
is given by the string equation of motion [2],

O2X' = 2T, + Hi, (3.9)

The 0,X* term vanishes due to the position of the string. That the equality

in Eq. (3.9) holds is easy to see on plugging in our ansatz Eq. (3.5)).

[2] goes on to give an explicit calculation to show that this fundamental
string solution is a %BPS object by looking at the supersymmetry variation
of fermionic fields.

3.5 Putting Oscillations On The String

We followed the discussion in [2], that the perturbative spectrum had states
which preserved % of the supersymmetry, and these could be mapped to
the fundamental string solution which preserved the same fraction of SUSY
(we did not prove this, but [2] show that the fundamental string solution is
%BPS ), we merely looked at the no force condition between 2 static funda-
mental strings).

We will now review discussions in [3], where they look for solutions in
the low energy theory which preserve a smaller fraction of SUSY (}l) be-
cause these states are known to exist in the perturbative regime of the string
[3]. They expect to get a solution of this kind by breaking just the right
amount of SUSY, which the propose to do by examining what happens to
the fundamental string solution if we put oscillations on it.
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3.5.1 Solution generating technique

We now discuss [I8] where the authors describe a solution generating method
for the fields due to an oscillating string, given the fields due to a static string.
Though the authors developed the technique to apply to gravitating cosmic
strings, it was efficiently used by DGHW [2] to construct the oscillating
fundamental string solution.

To give an overview of their technique, we first describe the flat space
case discussed in [I8]. Here they start with the fields produced by a static
string ¢(x) and A, (z), which obey the following equations of motion.

1
DD = M6~ 7P)6 (3.10)
/Le * v vV I *x
VW = DV~ 69" ) (3.11)
We now define the coordinates,
u=t+z
v=t—z

And the new coordinates,
r— 2 =x— f(u)

y—y =y—g(u
We see that 2’ =y’ = 0 is the world sheet of a travelling string wave. Let

¢ = p(x,y) and A, = A,dx*. The claim is, the fields due to a string with
oscillations propagating in the z direction, are given by

¢ = y) A, = A y)dx, (3.12)

where the functional forms of ¢ and A, are the same as the functional form
of ¢ and A,. (WHAT?) is demonstrated by checking that the equations of
motion are satisfied by these transformed fields.

If we want to solve the problem ie. Egs [ref], in curved space, we define
(following the discussion in [1§]):

9w = Guv + Flyk, (3.13)

The claim is ¢'(z'), ¢(2') and A,(2") satisfy the equations of motion given
that the functional forms of ¢, ¢’ and A, are same as g, ¢ and A, and g. k,
and I satisfy the following conditions:

kik, =0 (3.14)
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Viuky) =0 (3.15)
ki, Vo ky = 0 (3.16)
KA, =0 (3.17)
LiA, =0 (3.18)
Lrp =0 (3.19)
VAV, (e“F) =0 (3.20)

where « is any scalar.

The authors show that the equations of motion hold for the set ¢'(z2'),
¢(2') and A,(z') by writing the equations of motion explicitly in terms of
the new metric and using the above properties.

3.5.2 Using solution generation for oscillating strings

We now follow the construction of DHGW [3] using the technology developed
in the previous section to put oscillations on the fundamental string. We
choose K = 9, because K? = 0 and Lxv = 0 where 1) can be any of the
fields in the equations of motion. We could have as well chosen K = 0, and
this would have given us right moving oscillations on the string.

Using the recipe in the previous section, the static solutions now become:

ds* = —e**(dudv — T (v, )dv?) + dZ.dz (3.21)
By, = %(e% —1) (3.22)

_ Q
e =1+ 51 (3.23)

With T satisfying,
O*T(v,%) =0 (3.24)

where the partial derivatives are over the transverse space.
We can solve for the admissible form for 7'(v,Z). To do so we have to
impose some conditions on our solutions:

1. The metric should be asymptotically flat.

2. The solutions should map onto string sources ie. they should satisfy
the equations of motion with the fundamental string as the source.

35



We will now solve for
O*T(v,2) =0

by decomposing it into (D — 2) dimensional spherical harmonics:
T(v,2) = Zisol(ar(v)r' + by(v)r Py, (3.25)

Let us look at the terms carefully. r° terms are just additive constants and
can be set to 0 by shifting coordinates. r? and higher order terms are not
asymptotically flat. r—P*3 and lower order terms are asymptotically flat but
do not contribute to the ADM momentum. This is because in the D — 2
dimensional transverse space, for metric coefficient g, = ¢, terms of order

r=P+ contribute. These r~P*+* give the ADM momentum =22 g6 we
keep the terms of order r and r—P+4,
—D+4

The term which goes as r carries momentum but does not match to
a string source (we shall see this in the next section). So it is a momentum
wave without oscillations.

)
T, x)=f(v).r+ === 3.26
(v,2) = F(0)+ oy (320
Written in these coordinates with this form for 7' the metric isn’t asymptot-
ically flat due to the r! order term in 7. We can make it flat by doing the
following co-ordinate transformation:

v="1 (3.27)

u=u —2F3 +2FF — / F2dv (3.28)

f=a —F (3.29)

where the derivatives are w.r.t. to v and f: —2F The metric and fields in

these coordinates are:

ds® = —e**dudv + [e**p(v)r P — (&2 — 1)F2]dv2 +2(e*? — 1)135(1’0 +dx.dx

(3.30)
Bw::%@%‘L—l) (3.31)
By = Ey(e* —1) (3.32)
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where
e =1+ Lﬁ (3.33)
|7 — F|P—4

A very important feature of these solutions is that it is very easy to con-
struct multi-string solutions due to fundamental strings localized at different
points. The importance of this is underlined in [3], where they describe a
method of making solitons in lower dimensions by superimposing a periodic
array of fundamental strings on a compactified dimension.

Given a solution, we can write down a multi-centre solution by linear
superposition, because for the static case the linear equation 9%¢2¢ = 0 is
true even for solutions of the form:

(3.34)

This is analogous to electrodynamics where linearly superimposing delta
function sources (at particle positions) in 9*V(Z) = L gives the net V.
The linear nature of the equation 9?T'(v, ) lets us superimpose solutions
corresponding to many oscillating solutions.

T(v, ) +Z 7 _Z ’D y (3.35)

Making the same coordinate transformation to asymptotically flat coordi-
nates,
Q

|# — & — F(0)| P~

It is important to note that because T'(v, ) carries a piece which looks like

e =1+5%;

(3.36)

f (v).Z, the solutions which can be superlmposed all carry the same oscillation
profile F as it is determined by f They can carry different momenta given
by different functions p;(v).

Matching onto string sources

We now want to check if the solutions constructed actually do satisfy the
equations of motion ie. whether or not there exist string sources which
can source these field configurations. We also want to impose the Virasoro
constraints on the string. Taking the radius of the macroscopic string to
be much larger than the string scale, we can ignore normal ordering effects
of the CFT (this is evident from the mass shell formula). This is further
explained in [3].
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Fixing conformal gauge by using 0= = 7 £ ¢ and using light-cone coor-
dinates U(o%,07), V(c7,07) and X = 0 for the target space string coordi-
nates, the equations of motion of the string become:

I€2

DPe = ;—a dotdo~ [0, VO_U — d_V, U (x — X)] (3.37)
2

e = W_(,j/ dotdo~ [0, VO_U +0_VO,US" (z — X)) (3.38)

0= / do*do[0, VO V6P (z — X)] (3.39)

T e 2 + e 00T = / dotdo~ [0, U0_US" (z — X)] (3.40)

This last equation imposes the condition that T' cannot diverge as it ap-
proaches r = 0 as the RHS is finite. This tells us that terms of order r—P+3,
r~P+4 . cannot come from delta function string sources. Terms linear in r
are allowed as they go to 0 at the source. Also, the Virasoro constraints are:

T++ = —€2¢<8+V8+U — T8+V6+V) =0 (341)

T _ =—-e0.VOU-TI VO V)=0 (3.42)

Now, as €2* = 0 at r = 0 ie. right at the string source, the equations are
trivially satisfied as long as the string lies only at » = 0. The constraints can
be satisfied if we choose V =V (o%) and U = U(o7)

3.6 Making black holes from fundamental strings

We have seen that fundamental strings are solitonic objects and we have also
seen that we can linearly superpose their solutions. One possibility is to put
a periodic array of these strings along a particular transverse direction and
compactify along that direction. This would give us a fundamental string in
a lower dimension.

A second possibility is that we could get point-like objects whose asymp-
totic properties match black holes by doing a Kaluza Klein reduction along
the length of the fundamental string. We would get point like BPS objects
whose asymptotic charges would match those of supersymmetric black holes.
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3.7 Fundamental string NS5 intersection

In this section, we will write down a metric ansatz for an oscillating fun-
damental string in NS5 background. The metric for the fundamental string
(static) NS5 brane intersection is given by [19] using an algorithmic procedure
for calculating brane intersections:

5 4
ds’ = Hy'(—dudv + ) dy;.dy; + Hs Y _ dz;.da; (3.43)

=2 =1

where u = t—y; and v = t+y; are the coordinates of the fundamental string,
y; are the world volume directions of the NS5 brane, x; are the transverse
directions and r is the radial coordinate in the transverse direction.

e B
H,y
H1 - ]. + Q—Ql
T
T
By =2H ™!
Hmnk’ = _emnklalHE) (344)

To put oscillations on the fundamental string we use the solution generating
technique of [3] [I8]. It lets you transform a static solution produced by a
string source to one produced by an oscillating string if the static solution
has a null, hyper-surface orthogonal killing vector.

|| admits the killing vector 0, which corresponds to a left moving wave.
Applying the solution generating technique we have been discussing we get:

5 4
ds® = H; ' (—dudv + T(v, z)dv®) + Z dy;.dy; + Hj Z dr;.dr;  (3.45)
i=2 i=1

where 9?T'(v,z;) = 0 on the transverse directions, and the ¢ and B fields
stay the same.
0?T'(v,x) = 0 can be solved by expanding in spherical harmonics and only

keeping terms which keep the metric asymptomatically NS5 and contribute
to the ADM mass :

T (v,z) = f(v).7 + plv)r2 (3.46)

39



—

The r—2 term does not match to a string source. Due to the f(v).7 term, the
transverse metric is not asymptotically NS5, but this can be removed by a
coordinate transformation,
!/
V="

u=u’—2ﬁ.f’+2ﬁ.ﬁ—/ F2dy

f=a —F (3.47)
where the derivatives are w.r.t. to v and f: —2F. The metric and fields
become,
ds? = —Hy'dudv+2F(H;' — Hs)dedv + ((—Hy' 4 Hs)EF? + H 'p(v)r=?)do® +

5 4
> dyidy; + Hs Y dr;.da; (3.48)
i=2 i=1

By, = 2H !

By = AFH™!
where

=14 9L
|7 — F[?
Hs =1+ Q2
|7 — FJ?
and "
2= 2 3.49
= (3.49)

The multi string generalization for fundamental strings placed at z; and
NS5 branes placed at 2 in the transverse direction is given by the above
metric with

Zi Ql

& — @ — F|?

> Qo

7 — & — FJ]?

Hy =1+

Hy; =1+
[20] also gives the metric for a fundamental string in an NS5 background
by generating the metric for a multiply wound string and performing a set

of dualities to reach NS5-fundamental string intersection.
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3.8 Conclusion and Future Directions

We have reviewed the works of [2], [3] and [I8] and following the discussions
in these works, we have written an ansatz for the metric and fields produced
by an oscillating fundamental string in NS5 background. Along the way, we
have covered some topics in string theory from the textbook by Polchinski
[5] and lecture notes by D.Tong [4]. Most importantly, we have realised some
of the power of string theory in answering fundamental questions on black
holes.

We should now explicitly check that this solution is i BPS by doing a
supersymmetry variation of the fermionic fields and showing that it vanishes.
We also wish to understand how and why are solution differs from [20], and
how starting from our solution, we might be able to get to their solution.
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