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Abstract

The major theme of this thesis is the study on multiplicity results for frac-

tional elliptic equations and system of equations. The thesis is mainly divided

into three parts. In the first part, existence and multiplicity of positive solu-

tions for perturbed nonlocal scalar field equation with subcritical nonlinearity

and nonhomogeneous terms have been studied, and the global compactness

result has been proved. The second part deals with Fractional Hardy-Sobolev

equation involving critical nonlinearity and nonhomogeneous term. The exis-

tence of at least two positive solutions is obtained provided the corresponding

nonhomogeneous terms are small enough in the dual space norm. Besides

the profile decomposition for the Palais-Smale sequences of the associated

energy functional has been accomplished. Third part comprises of the study

of nonhomogeneous weakly coupled nonlocal system of equations with criti-

cal and subcritical nonlinearities. Firstly, the existence of a positive solution

exploiting the local geometry of the associated functional near the origin

is achieved. Then proving the global compactness result (which gives the

complete description of the associated Palais Smale sequences for the sys-

tem), the existence of two positive solutions is obtained under some suitable

conditions on the nonhomogeneous terms. In addition, considering the corre-

sponding homogeneous system, uniqueness for the ground state solution has

been proved.
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Notation

The following symbols will be used throughout the thesis.

R : the set of real numbers.

N : the set of natural numbers.

RN : N − fold cartesian product of R with itself.

Br : Ball in RNof radius r centered at origin.

B(x, r) : Ball in RNof radius r centered at x.

C(RN) : the set of continuous functions on RN .

Cc(RN) : the set of continuous functions on RN with compact support.

C∞
0 (RN) : the space of smooth functions from RN → R with compact support.

Hs(RN) = W s,2(RN) : fractional Sobolev space.

H−s(RN) : The dual space of Hs(RN).

Ḣs(RN) : Homogeneous fractional Sobolev Space.

(Ḣs(RN))′ := The dual space of Ḣs(RN)

∆ : the Laplace Operator defined by ∆u = ∑N
i=1

∂2

∂x2
i
u for any function

u : RN → R, real valued measurable function.

(−∆)s : the fractional-Laplacian Operator.�
B(x,R) u dx : average integral of u over the ball of radius R centered at x.

∥ · ∥X : Norm in the Banach space X.

S : Best Sobolev Constant.

2∗
s : the fractional critical Sobolev exponent 2N

N−2s
.

: end of a proof.
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Chapter 1

Introduction

The main objective of the thesis is to study existence and multiplicity of so-

lutions to various class of nonlocal elliptic equations and system of equations.

Over the last few decades fractional Laplace operator drew much attention

both in pure and applied mathematics point of view. The fractional Lapla-

cian and these types of operators arise in natural way in many different

contexts such as the thin obstacle problem, optimization, mathematical fi-

nance, phase transition, anomalous diffusion, crystal dislocation, soft thin

films, ultra relativistic limits of quantum mechanics, jump Lévy process in

probability theory, minimal surfaces, flame propagation, chemical reactions

of liquids, population dynamics etc. To know details about this topics one

might refer to [58], [41], [40] and references therein.

In contrast to classical differential operators, such as the Laplacian which

is defined for a C2 function u as, −∆u(x) = −∑n
i=1

∂2u
∂x2

i
(x) whose value at

any point x, depends on the local behavior of function u in an arbitrarily

small neighborhood of x, where as to define (−∆)su (s ∈ (0, 1)), one needs

the information about u in the entire space RN .

The contents of the thesis is mostly divided into three parts. On the

1



CHAPTER 1. INTRODUCTION

first part we have dealt with existence and multiplicity results for a class of

nonlocal scalar field equation. Second part concerns about fractional Hardy-

Sobolev type equation and the last part discusses about elliptic system of

equations with fractional Laplacian.

Chapter 2 is devoted to the basic tools that are needed to study our prob-

lems. The contents of the thesis is mainly corresponds to a paper or preprint

as follows:

Part I:

• Bhakta, M.; Chakraborty, S.; Ganguly, D., Existence and Multiplicity

of positive solutions of certain nonlocal scalar field equations, arXiv:

1910:07919 (To appear in Mathematische Nachrichten (2022)).

Part II:

• Bhakta, M.; Chakraborty, S.; Pucci, P.; Fractional Hardy-Sobolev equa-

tions with nonhomogeneous terms, Adv. Nonlinear Anal. 10 (2021), no.

1, 1086–1116.

Part III:

• Bhakta, M.; Chakraborty, S.; Pucci, P.; Nonhomogeneous systems in-

volving critical or subcritical nonlinearities, Differential Integral Equa-

tions 33 (2020), no. 7-8, 323–336.

• Bhakta, M.; Chakraborty, S.; Miyagaki, O. H.; Pucci, P.; Fractional

elliptic systems with critical nonlinearities, Nonlinearity 34 (2021), no.

11, 7540–7573.

The thesis is organized as follows:

• Chapter 2 consists of the background materials which are essential

to study critical points of the energy functional associated to non-local

2



equation. First we introduce the Fractional Sobolev spaces, Fractional

Laplace operator. Then we mention key differences between local and

nonlocal operators. Then we define the Lusternik-Schnirelmann Cate-

gory theory, Morrey Spaces, Fractional Hardy-Sobolev inequality. Con-

tents of this chapter is based on [10,93,105].

• Chapter 3 corresponds to the existence and multiplicity of positive

solutions of nonlocal scalar field equation with subcritical nonlinearity

and with non-homogeneous term of the type



(−∆)su+ u = a(x)|u|p−1u+ f(x) in RN ,

u > 0 in RN ,

u ∈ Hs(RN),

(P)

where s ∈ (0, 1) is fixed parameter, N > 2s, 1 < p < 2∗
s − 1 := N+2s

N−2s
,

0 < a ∈ L∞(RN) and 0 ̸≡ f ∈ H−s(RN) is a nonnegative functional

i.e., H−s⟨f, u⟩Hs ≥ 0 whenever u ≥ 0.

We establish Palais-Smale decomposition of the functional associated

with the above equation. Using the decomposition, we prove that (P)

admits at least two positive solutions when a(x) ≥ 1, a(x) → 1 as |x| →

∞ and ∥f∥H−s(RN ) is small enough (but f ̸≡ 0). Further, we establish

existence of three positive solutions to (P), under the condition that

a(x) ≤ 1 with a(x) → 1 as |x| → ∞ and ∥f∥H−s(RN ) is small enough

(but f ̸≡ 0). Finally, we prove existence of a positive solution when f ≡

0 under certain asymptotic behavior on the function a. This chapter is

based on the paper [24].

• Chapter 4 deals with existence and multiplicity of positive solutions

of the fractional Hardy-Sobolev equations with nonhomogeneous term

3



CHAPTER 1. INTRODUCTION

of the type
(−∆)su− γ u

|x|2s = K(x) |u|2∗
s(t)−2u
|x|t + f(x) in RN ,

u ∈ Ḣs(RN),
(Eγ

K,t,f )

where N > 2s, s ∈ (0, 1), 0 ≤ t < 2s < N and 2∗
s(t) := 2(N−t)

N−2s
. Clearly,

2 < 2∗
s(t) ≤ 2N

N−2s
= 2∗

s. Here 0 < γ < γN,s, where γN,s is the best

Hardy constant in the fractional Hardy inequality

γN,s

�
RN

|u(x)|2
|x|2s

dx ≤
�
RN

|ξ|2s|F(u)(ξ)|2 dξ, γN,s = 22s Γ2(N+2s
4 )

Γ2(N−2s
4 )

.

Here and throughout F (u) denotes the Fourier transform of u.

In (Eγ
K,t,f ), the functions K and f satisfy the properties :

(K) 0 < K ∈ C(RN), K(0) = 1 = lim|x|→∞ K(x).

(F) f ̸≡ 0 is a nonnegative functional in the dual space Ḣs(RN)′ of

Ḣs(RN), i.e. whenever u is a nonnegative function in Ḣs(RN)

then (Ḣs)′⟨f, u⟩Ḣs ≥ 0.

We establish the profile decomposition of the Palais-Smale sequence of

the functional associated to (Eγ
K,t,f ). Further, if K ≥ 1 and ∥f∥(Ḣs)′

is small enough (but f ̸≡ 0), we establish existence of at least two

positive solutions to the above equation. This chapter is based on the

paper [27].

• Chapter 5 deals with existence, uniqueness/multiplicity of positive

solutions to the following nonlocal system of equations

(−∆)su+ γu = α

α + β
|u|α−2u|v|β + f(x) in RN ,

(−∆)sv + γv = β

α + β
|v|β−2v|u|α + g(x) in RN ,

u, v > 0 in RN ,

(Sγ
α,β)

4



where N > 2s, α, β > 1, α+ β ≤ 2∗
s, 2∗

s := 2N/(N − 2s), f, g are non-

trivial nonnegative functionals in the dual space of Ḣs(RN) if α+β = 2∗
s

and of Hs(RN) if α + β < 2∗
s, while γ = 0 if α + β = 2∗

s and γ = 1 if

α + β < 2∗
s.

First via a minimization argument exploiting the local geometry of the

associated functional near the origin we prove the existence of one pos-

itive solution whose energy is negative provided the non-homogeneous

terms are small enough in the dual norm. This part is based on the

paper [26].

When γ = 0, α + β = 2∗
s and f = 0 = g, we show that the ground

state solution of (S0
2∗

s
) is unique. On the other hand, when f and g

are nontrivial nonnegative functionals with ker(f)=ker(g), then we es-

tablish the existence of at least two different positive solutions of (S0
2∗

s
)

provided that ∥f∥(Ḣs)′ and ∥g∥(Ḣs)′ are small enough. Moreover, we

also provide a global compactness result, which gives a complete de-

scription of the Palais-Smale sequences of the above system. This part

of the chapter is based on the paper [25].

————— ◦ —————
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Chapter 2

Nonlocal Framework and

Variational Tools

This chapter is devoted to the basic definitions and results regarding frac-

tional Sobolev spaces and fractional nonlocal operators that will be used

throughout the thesis. Almost every results presented in this chapter is well

known. First three sections of this chapter is written in the spirit of [93], [58].

On the last two sections we briefly discuss about Morrey space and fractional

Hardy-Sobolev inequality. Most of the proofs have been omitted.

2.1 Fourier transform of tempered distribu-

tions

First we introduce the notion of Fourier transform of a tempered distribu-

tion. We consider the Schwartz space consisting of C∞(RN) functions which,

together with all its derivatives of all orders, decrease to zero at infinity faster

than any power of |x|−1. More precisely, we define

S (RN) :=
{
ϕ ∈ C∞(RN) : ∀α, β ∈ NN

0 , sup
x∈RN

|xαDβϕ(x)| < ∞
}
,

7



CHAPTER 2. NONLOCAL FRAMEWORK AND VARIATIONAL TOOLS

whose topology is generated by the seminorms {pj}j∈N defined as:

pj(ϕ) := sup
x∈RN

(1 + |x|)j
∑

|α|≤j

|Dαϕ(x)|,

where ϕ ∈ S (RN).

For any ϕ ∈ S (RN), denoting the space variable x ∈ RN and the fre-

quency variable ξ ∈ RN , the Fourier transform of ϕ is defined as

Fϕ(ξ) = ϕ̂(ξ) :=
�
RN

e−2πix·ξϕ(x) dx. (2.1.1)

We note that, for every ϕ ∈ S (RN), we have Fϕ ∈ S (RN). The inverse

Fourier transform is given by

F −1ϕ(x) :=
�
RN

e2πix·ξϕ̂(ξ) dξ. (2.1.2)

It can be proved that the map ϕ 7→ ϕ̂ is a continuous linear map of

S (RN) into itself with a continuous inverse and hence the Fourier transform

is a (topological) isomorphism of S (RN) onto itself.

Now, let S ′(RN) be the topological dual of S (RN) and this space is

called the space of tempered distributions. If T ∈ S ′(RN), the Fourier

transform of T can be defined as the tempered distribution given by

⟨FT, ϕ⟩ := ⟨T,Fϕ⟩,

for every ϕ ∈ S (RN), where ⟨·, ·⟩ denotes the usual duality bracket between

S ′(RN) and S (RN). We have for

ϕ ∈ S (RN), ∥ϕ∥L2(RN ) = ∥ϕ̂∥L2(RN ),

which leads us to the extension of the Fourier transform to another class of

functions :

Theorem 2.1.1. (Plancherel) There exists a unique isometry P : L2(RN) →

L2(RN) which is surjective such that P(ϕ) = ϕ̂, for every ϕ ∈ S (RN).

The above formula will be used to establish the equivalence between the

fractional spaces Hs(RN) and Ĥs(RN) (see Proposition 2.4.4).

8



2.2. Fractional Sobolev spaces

2.2 Fractional Sobolev spaces

Let Ω be an open, smooth set in RN and p ∈ [1,+∞). For any s > 0, we would

define the fractional Sobolev space W s,p(Ω). If s ≥ 1 is a positive integer,

W s,p(Ω) denotes the classical Sobolev space equipped with the standard norm

∥u∥W s,p(Ω) :=
∑

0≤|α|≤s

∥Dαu∥Lp(Ω),

for every u ∈ W s,p(Ω). We are interested in the cases where s /∈ N. Now, for

a fixed s ∈ (0, 1), the Sobolev space W s,p(Ω) is defined as:

W s,p(Ω) :=
{
u ∈ Lp(Ω) : |u(x) − u(y)|

|x− y|
N
p

+s
∈ Lp(Ω × Ω)

}
(2.2.1)

endowed with the norm

∥u∥W s,p(Ω) :=
(�

Ω
|u(x)|pdx+

�
Ω×Ω

|u(x) − u(y)|p
|x− y|N+sp

dxdy

) 1
p

, (2.2.2)

where the term

[u]W s,p(Ω) :=
(�

Ω×Ω

|u(x) − u(y)|p
|x− y|N+sp

dxdy

) 1
p

(2.2.3)

is the Gagliardo seminorm of u. For s > 1, s /∈ N, we can write s = k + τ,

for τ ∈ (0, 1). Then we define,

W s,p(Ω) :=
{
u ∈ W k,p(Ω) : Dαu ∈ W τ,p(Ω) for any α such that |α| = k

}
.

This space is equipped with the norm

∥u∥W s,p(Ω) :=
∥u∥p

W k,p(Ω) +
∑

|α|=m

∥Dαu∥p
W τ,p(Ω)


1
p

,

for every u ∈ W s,p(Ω). The space W s,p(Ω) is a well defined Banach space for

every s > 0.

9



CHAPTER 2. NONLOCAL FRAMEWORK AND VARIATIONAL TOOLS

2.2.1 Embedding results

This subsection deals with the embeddings of fractional Sobolev spaces into

Lebesgue spaces. Some basic facts are recalled briefly. For details, see [58,

Sections 6 and 7], [93, Section 1.2.1].

Proposition 2.2.1. Let Ω be an open subset of RN and 1 ≤ p < ∞. Then

the following assertions hold true:

(a) If 0 < s ≤ s′ < 1, then the embedding

W s′,p(Ω) ↪→ W s,p(Ω)

is continuous. Hence, there exists a constant C1(N, s, p) ≥ 1 such that

∥u∥W s,p(Ω) ≤ C1(N, s, p)∥u∥W s′,p(Ω),

for any u ∈ W s′,p(Ω).

(b) If 0 < s < 1 and Ω is of class C0,1(that is, with the Lipschitz boundary)

and with bounded boundary ∂Ω, then the embedding

W 1,p(Ω) ↪→ W s,p(Ω)

is continuous. Hence, there exists a constant C2(N, s, p) ≥ 1 such that

∥u∥W s,p(Ω) ≤ C2(N, s, p)∥u∥W 1,p(Ω),

for any u ∈ W 1,p(Ω).

(c) If s′ ≥ s > 1 and Ω is of class C0,1, then the embedding

W s′,p(Ω) ↪→ W s,p(Ω)

is continuous.

Proof. For proofs, see Proposition 2.1, Proposition 2.2 and Corollary 2.3

in [58].

10



2.2. Fractional Sobolev spaces

Now let us recall some basic properties about continuous (compact) em-

beddings of the fractional Sobolev spaces W s,p into Lebesgue spaces. We di-

vide our discussion in three different cases : (i) sp < N, (ii) sp = N, (iii) sp >

N. Proofs of the following results can be found in [58, Sections 6-8].

Case 1 : sp < N

Theorem 2.2.2. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < N.

Then there exists a positive constant C := C(N, p, s) such that, for any

u ∈ W s,p(RN),

∥u∥p

Lp∗
s (RN ) ≤ C

�
R2N

|u(x) − u(y)|p
|x− y|N+ps

dxdy,

where the exponent

p∗
s := Np

N − ps

is the so-called fractional critical exponent . Consequently, the space

W s,p(RN) is continuously embedded in Lq(RN) for any q ∈ [p, p∗
s]. Moreover,

the embedding W s,p(RN) ↪→ Lq
loc(RN) is compact for every q ∈ [p, p∗

s).

Definition 2.2.3 (Extension domain). For any s ∈ (0, 1) and any 1 ≤ p <

∞, we say that an open set Ω ⊆ RN is an extension domain for W s,p(Ω) if

there exists a positive constant C ≡ C(n, p, s,Ω) such that for every function

u ∈ W s,p(Ω) there exists ũ ∈ W s,p(RN) with ũ(x) = u(x) for all x ∈ Ω and

∥ũ∥W s,p(RN ) ≤ C∥u∥W s,p(Ω).

In an extension domain Ω, the following embedding result holds:

Theorem 2.2.4. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < N. Let Ω ⊂

RN be an extension domain for W s,p. Then there exists a positive constant

C := C(N, p, s,Ω) such that, for any u ∈ W s,p(Ω),

∥u∥Lq(Ω) ≤ C∥u∥W s,p(Ω),

for any q ∈ [p, p∗
s]; that is, the space W s,p(Ω) is continuously embedded in

11



CHAPTER 2. NONLOCAL FRAMEWORK AND VARIATIONAL TOOLS

Lq(Ω) for any q ∈ [p, p∗
s]. If, in addition, Ω is bounded, then the space W s,p(Ω)

is compactly embedded in Lq(Ω) for any q ∈ [1, p∗
s).

Case 2 : sp = N

Theorem 2.2.5. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp = N.

Then there exists a positive constant C := C(N, p, s) such that for any

u ∈ W s,p(RN),

∥u∥Lq(RN ) ≤ C∥u∥W s,p(RN ),

for any q ∈ [p,+∞); that is, the space W s,p(RN) is continuously embedded

in Lq(RN) for any q ∈ [p,+∞).

For an extension domain Ω, the following embedding results hold:

Theorem 2.2.6. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp = N. Let

Ω ⊂ RN be an extension domain for W s,p(Ω). Then there exists a positive

constant C := C(N, p, s,Ω) such that, for any u ∈ W s,p(Ω),

∥u∥Lq(Ω) ≤ C∥u∥W s,p(Ω),

for any q ∈ [p,+∞); that is, the space W s,p(Ω) is continuously embedded

in Lq(Ω) for any q ∈ [p,+∞). If, in addition, Ω is bounded, then the space

W s,p(Ω) is compactly embedded in Lq(Ω) for any q ∈ [1,+∞).

Case 3 : sp > N

We denote by C0,α(Ω) the space of Hölder continuous functions endowed with

the standard norm

∥u∥C0,α(Ω) := ∥u∥L∞(Ω) + sup
x,y∈Ω, x ̸=y

|u(x) − u(y)|
|x− y|α

.

Theorem 2.2.7. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp > N. Let Ω be

a C0,1 domain of RN . Then there exists a positive constant C := C(N, p, s,Ω)

such that for any u ∈ W s,p(Ω), we have,

∥u∥C0,α(Ω) ≤ C∥u∥W s,p(Ω),

12



2.2. Fractional Sobolev spaces

with α := (sp−N)/p; that is, the space W s,p(Ω) is continuously embedded in

C0,α(Ω).

As a consequence of Theorem 2.2.7, we have the following result.

Corollary 2.2.8. Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp > N. Let Ω

be a C0,1 bounded domain of RN . Then the embedding

W s,p(Ω) ↪→ C0,β(Ω)

is compact for every β < α, with α := (sp−N)/p.

2.2.2 The Sobolev space Hs(Ω)

This section is devoted to the case p = 2 where we deal its relation with the

fractional Laplacian. Let Ω be an open subset of RN and denote

Hs(Ω) := W s,2(Ω),

for any s ∈ (0, 1). In this case, we note that the preceding fractional Sobolev

space turns out to be a Hilbert space. The inner product on Hs(Ω) is defined

by

⟨u, v⟩Hs(Ω) :=
�

Ω
u(x)v(x)dx+

�
Ω×Ω

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2s

dx dy,

for any u, v ∈ Hs(Ω) induces the norm given in (2.2.2) when p = 2. That is,

for every s ∈ (0, 1), we have,

Hs(RN) := W s,2(RN) = {u ∈ L2(RN) : [u]W s,2(RN ) < +∞}, (2.2.4)

where [·]W s,2(RN ) is defined in (2.2.3).

Alternatively, we can also define the space Hs(RN) via a Fourier trans-

form, that is, we define

Ĥs(RN) :=
{
u ∈ L2(RN) :

�
RN

(1 + |y|2s)|Fu(y)|2dx < +∞
}
, (2.2.5)

13
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for any s > 0 and

Ĥs(RN) :=
{
u ∈ S ′ :

�
RN

(1 + |y|2)s|Fu(y)|2dx < +∞
}
,

for every s < 0.

The equivalence between the space Ĥs(RN) defined in (2.2.5) and the one

defined by the Gagliardo norm in (2.2.4) is given in Proposition 2.4.4.

Theorem 2.2.2 motivates us to define, the homogeneous fractional Sobolev

space is denoted by

Ḣs(RN) :=
{
u ∈ L2∗

s (RN) :
�

R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy < ∞
}
,

which turns out to be a Hilbert space with the inner product

⟨u, v⟩Ḣs =
�

R2N

(u(x) − u(y)) (v(x) − v(y))
|x− y|N+2s

dxdy,

and corresponding Gagliardo norm is given by

∥u∥Ḣs(RN ) :=
(
CN,s

2

�
R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy
)1

2
=
( �

RN

|ξ|2s|F(u)(ξ)|2 dξ
) 1

2

.

2.3 The Morrey Spaces

The contents of this section can be found in [31,94].

First we recall the definition of the homogeneous Morrey spaces Lr,γ(RN),

introduced by Morrey as a refinement of the usual Lebesgue spaces. A mea-

surable function u : RN → R belongs to the Morrey space Lr,γ(RN), with

r ∈ [1,∞) and γ ∈ [0, N ] if and only if

∥u∥r
Lr,γ(RN ) := sup

R>0, x∈RN

Rγ

 
B(x,R)

|u|rdy < ∞. (2.3.1)

Note that if γ = N then Lr,N(RN) coincides with the usual Lebesgue space

Lr(RN) for any r ≥ 1 and similarly Lr,0(RN) coincides with L∞(RN). Also we

14
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observe that Lr,γ(RN) experiences same translation and dilation invariance as

in L2∗
s (RN) and therefore of Ḣs(RN) if γ

r
= N−2s

2 . Let (u)x0,r be the function

defined by

(u)x0,r(·) = r− N−2s
2 u

( · − x0

r

)
.

By change of variable formula, one can see that the following equality holds

∥(u)x0,r∥
Lr, N−2s

2 r = ∥u∥
Lr, N−2s

2 r ,

for any r ∈ [1, 2∗
s]. We recall a result from [94] which states

Theorem 2.3.1. [94, Theorem 1] For any 0 < 2s < N there exists a

constant C depending only on N and s such that, for any 2/2∗
s ≤ θ < 1 and

for any 1 ≤ r < 2∗
s,

∥u∥L2∗
s (RN ) ≤ ∥u∥θ

Ḣs(RN )∥u∥1−θ
Lr,r(N−2s)/2 for all u ∈ Ḣs(RN). (2.3.2)

Again, there exists a constant C = C(N, s) such that

∥u∥Lr,r(N−2s)/2(RN ) ≤ C∥u∥L2∗
s (RN ) for all u ∈ L2∗

s (RN), (2.3.3)

see Theorem 2.3.1 (also see [31, (A.2)]). For further discussion on Morrey

spaces, we refer the reader to [94].

Next we define the product space L2,N−2s(RN)×L2,N−2s(RN) in the stan-

dard way with

∥(u, v)∥Lp×Lp :=
(
∥u∥2

Lp(RN ) + ∥v∥2
Lp(RN )

) 1
2

and

∥(u, v)∥L2,N−2s×L2,N−2s :=
(
∥u∥2

L2,N−2s + ∥v∥2
L2,N−2s

) 1
2 .

Therefore, using Sobolev inequality and (2.3.3), it follows that

Ḣs × Ḣs ↪→ L2∗
s × L2∗

s ↪→ L2,N−2s × L2,N−2s, (2.3.4)

where the embeddings are continuous.

15
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Lemma 2.3.2. For any 0 < s < N/2 there exists a constant C = C(N, s)

such that, for any 2/2∗
s ≤ θ < 1 and for any 1 ≤ r < 2∗

s

∥(u, v)∥L2∗
s ×L2∗

s ≤ C∥(u, v)∥θ
Ḣs×Ḣs∥(u, v)∥1−θ

L2,(N−2s)×L2,(N−2s)

for all (u, v) ∈ Ḣs(RN) × Ḣs(RN).

Proof. Using Theorem 2.3.1,

∥(u, v)∥L2∗
s ×L2∗

s =
(
∥u∥2

L2∗
s

+ ∥v∥2
L2∗

s

) 1
2

≤ ∥u∥L2∗
s + ∥v∥L2∗

s

≤ C
[
∥u∥θ

Ḣs∥u∥1−θ
L2,N−2s + ∥v∥θ

Ḣs∥v∥1−θ
L2,N−2s

]
≤ C

[
∥(u, v)∥θ

Ḣs×Ḣs∥u∥1−θ
L2,N−2s + ∥(u, v)∥θ

Ḣs×Ḣs∥v∥1−θ
L2,N−2s

]
≤ C∥(u, v)∥θ

Ḣs×Ḣs

[
∥u∥1−θ

L2,N−2s + ∥v∥1−θ
L2,N−2s

]
≤ C∥(u, v)∥θ

Ḣs×Ḣs

[
∥(u, v)∥1−θ

L2,N−2s×L2,N−2s + ∥(u, v)∥1−θ
L2,N−2s×L2,N−2s

]
≤ 2C∥(u, v)∥θ

Ḣs×Ḣs∥(u, v)∥1−θ
L2,(N−2s)×L2,(N−2s) .

2.4 The fractional Laplacian operator

A very popular non-local operator is given by the fractional Laplacian (−∆)s

with s ∈ (0, 1). This operator and its generalization appear in many areas

of mathematics, like harmonic analysis, probability theory, potential theory,

quantum mechanics, statistical physics etc. This section deals with the defi-

nition of this operator and its properties. For more complete discussions and

comparisons regarding fractional Laplacian see [58], [40], [85].

Let s ∈ (0, 1) and define the fractional Laplacian operator (−∆)s : S →

16



2.4. The fractional Laplacian operator

L2(RN) by

(−∆)su(x) := C(N, s) P.V.
�
RN

u(x) − u(y)
|x− y|N+2s

dy (2.4.1)

:= C(N, s) lim
ε→0+

�
RN \B(x,ε)

u(x) − u(y)
|x− y|N+2s

dy, x ∈ RN ,

where B(x, ε) is the ball centered at x ∈ RN with radius ε and C(N, s) is

the following (positive) normalization constant:

C(N, s) :=
(�

RN

1 − cos(ξ1)
|ξ|N+2s

dξ

)−1

(2.4.2)

with ξ = (ξ1, ξ
′), ξ′ ∈ RN−1. The next proposition tells us that the singular

integral defined in (2.4.1) can be written as a weighted second-order differ-

ential quotient.

Proposition 2.4.1. Let s ∈ (0, 1). Then for any u ∈ S ,

− (−∆)su(x) = 1
2C(N, s)

�
RN

u(x+ y) + u(x− y) − 2u(x)
|y|N+2s

dy, x ∈ RN .

(2.4.3)

For proof, see [93, Proposition 1.10].

Remark 2.4.2. The above expression in (2.4.3) discloses the fact that the

fractional Laplacian is a sort of second order difference operator, weighted by

a measure supported in RN with a polynomial decay, namely

−(−∆)su(x) = 1
2

�
RN

δu(x, y) dµ(y),

where δµ(x, y) := u(x+ y) + u(x− y) − 2u(x), and dµ(y) := dy
|y|N+2s .

Remark 2.4.3. Let s ∈ (0, 1/2). Notice that for any u ∈ S and for a fixed

x ∈ RN , we have that,�
RN

u(x) − u(y)
|x− y|N+2s

dy ≤ C

�
B(x,R)

|x− y|
|x− y|N+2s

dy

+ ∥u∥L∞(RN )

�
RN \B(x,R)

1
|x− y|N+2s

dy

≤ C

( � R

0

1
ρ2s

dρ+
� +∞

R

1
ρ2s+1 dρ

)
< +∞,

17
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where C is a positive constant depending only on the dimension N and the

L∞- norm of the function u. So, in the case s ∈ (0, 1/2), the integral
�
RN

u(x) − u(y)
|x− y|N+2s

dy

is not singular near the point x, so one can get rid of the P.V. in (2.4.1).

Proposition 2.4.4. Let s ∈ (0, 1) and C(N, s) be the constant defined in

(2.4.2). Then, for any u ∈ Hs(RN),

[u]2Hs(RN ) = 2C(N, s)−1
�
RN

|ξ|2s|Fu(ξ)|2dξ. (2.4.4)

Moreover, Hs(RN) = Ĥs(RN)

For proof, see [93, Corollary 1.15].

Now we show that the fractional Laplacian (−∆)s can be viewed as a

pseudo-differential operator of symbol |ξ|2s (see [58, Section 3]).

Proposition 2.4.5. Let s ∈ (0, 1). Then, for any u ∈ S (RN),

(−∆)su(x) = F −1(|ξ|2s(Fu)(ξ))(x), x ∈ RN , (2.4.5)

where F −1 is the inverse Fourier transform defined in (2.1.2).

For proof, (see [93, Proposition 1.17]).

The following lemma ensures the relation between the fractional Laplacian

operator (−∆)s and the fractional Sobolev space Hs(RN) (see [58]).

Proposition 2.4.6. Let s ∈ (0, 1) and C(N, s) be the constant defined in

(2.4.2). Then, for any u ∈ Hs(RN),

[u]2Hs(RN ) = 2C(N, s)−1∥(−∆)s/2u∥2
L2(RN ). (2.4.6)

For proof, see [93, Proposition 1.18].

18



2.4. The fractional Laplacian operator

2.4.1 Local vs Nonlocal operator

We list some major differences between the usual Laplacian and the fractional

Laplacian. For more details one might see [1], [40] and references therein.

• 1. Let u ∈ C∞
0 (R2) such that 0 ≤ u(x) ≤ 1 on R2 and it satisfies

u ≡ 1 on B(x0,
r
2) and supp(u) ⊂ B(x0, r), 0 /∈ B(x0, r).

Consider the figure below

It is easy to see that (−∆)u(0) = 0. In contrast we notice that,
�
R2

u(y) − u(0)
|y|2+2s

dy ≥
�

B(x0,r/2)

1
|y|2+2s

dy > 0

and this gives (−∆)su(0) ̸= 0.

The above example conveys a general message that the classical Lapla-

cian maps a C∞
0 (RN) function to again a C∞

0 (RN) function, which is

not the case for fractional Laplace operator.

• 2. Classical Laplacian on a function u does not require any integrability

assumption on u, whereas in order to define (−∆)su, one must assume,
�
RN

|u(y)|
1 + |y|N+2s

dy < +∞,

which can be understood as a local integrability complemented by a

growth condition at infinity.
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• 3. (All functions are locally s-harmonic up to a small error) It is a very

well-known fact that, Harmonic functions are very rigid. For instance,

in dimension 1, they reduce to linear functions and in any dimension,

they never possess any local extrema. But the situation is completely

different for fractional harmonic functions. In fact, we can approxi-

mate every function f in Ck(B1) by an s-harmonic function in B1 that

vanishes outside a compact set. This was proved in [61].

• 4. (Harnack inequality) The classical Harnack inequality says that for

a nonnegative harmonic function on a ball, its oscillation can be con-

trolled on every compactly contained subset of the ball.

The same does not hold for s-harmonic functions. For Harnack in-

equality to hold in fractional case one must assume the solution to be

nonnegative on whole of RN , rather than on a given ball. For details

one might see [84].

• 5. (Growth from the boundary) Roughly, solution of Laplace equations

have "linear (i.e., Lipschitz) growth from the boundary", whereas for

s-harmonic function, we only have Hölder growth from the boundary.

To understand this, consider u ∈ C(B1) which solves
∆u = f in B1

u = 0 on ∂B1,

then we can show that

|u(x)| ≤ C(1 − |x|) sup
B1

|f |.

Notice that (1 − |x|) represents the distance of the point x ∈ B1 from

the boundary ∂B1.

In contrast, the function u(x) = (xn)s
+ is s-harmonic in the half space

{xn > 0}. But this function is only Hölder continuous of exponent s

near the origin.
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• 6. (Regularity up to the boundary) Roughly, solutions of Laplace equa-

tions are "smooth up to the boundary", whereas one can expect at most

Hölder continuity at the boundary for solutions of fractional Laplace

equation. For details regarding boundary regularity for the Dirichlet

problem for fractional Laplacian one might see [99].

2.5 Fractional Hardy-Sobolev inequality

We study about fractional Hardy equation and fractional Hardy-Sobolev

equation in some detail in Chapter 4. Fractional Hardy inequality states

that for s ∈ (0, 1) and N > 2s and for all u in Ḣs(RN) the following inequal-

ity holds:

γN,s

�
RN

|u(x)|2
|x|2s

dx ≤ ∥u∥2
Ḣs(RN ),

where γN,s is the best Hardy constant, that is

γN,s := inf
Ḣs(RN )\{0}

∥u∥2
Ḣs(RN )(�

RN
|u(x)|2
|x|2s dx

)
It has also been shown that γN,s = 22s Γ2( N+2s

4 )
Γ2( N−2s

4 ) . Note that γN,s converges

to the best classical Hardy constant
(

N−2
2

)2
, when s → 1. For more details

regarding fractional Hardy inequality we refer [73].

Lemma 2.5.1. ( [75, Lemma 2.1]) For s ∈ (0, 1) and 0 ≤ t < 2s < N, there

exists positive constants C1(N, s) and C2(N, s) such that

(�
RN

|u|2∗
s(t)

|x|t
dx
) 2

2∗
s(t)

≤ C1∥u∥2
Ḣs(RN ) ∀u ∈ Ḣs(RN), (2.5.1)

where 2∗
s(t) = 2(N−t)

N−2s
. Moreover, if γ < γN,s then

(�
RN

|u|2∗
s(t)

|x|t
dx
) 2

2∗
s(t)

≤ C2

(
∥u∥2

Ḣs(RN ) − γ

�
RN

|u|2

|x|2s
dx
)

(2.5.2)

∀u ∈ Ḣs(RN).
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Proof. Here we briefly sketch the proof. Note that, for t = 0, (2.5.1) is

fractional Sobolev inequality and for t = 2s, (2.5.1) is fractional Hardy in-

equality. So it is enough to consider the case 0 < t < 2s, for which 2∗
s(t) > 2.

Then we have
�
RN

|u|2∗
s(t)

|x|t
dx =

�
RN

|u|
t
s

|x|t
|u|2

∗
s(t)− t

s dx

≤
(�

RN

|u|2

|x|2s
dx
) t

2s
(�

RN

|u|2∗
s dx

)2s−t
2s

≤ C∥u∥2∗
s(t)

Ḣs(RN ).

For the first inequality we use Hölder’s inequality with exponents 2s
t

and 2s
2s−t

,

whereas for the last inequality we have used fractional Sobolev inequality and

fractional Hardy inequality.

The proof of (2.5.2) follows directly from the above and Remark 4.0.2.

2.6 The Lusternik-Schnirelman Category the-

ory

The following results due to Lusternik and Schnirelman will help us to find

critical points of abstract functional on Hilbert Manifolds, in connection with

the topological properties of the manifold. For detailed treatment on this

topic one might look at [9, 10,105].

Definition 2.6.1. For a topological space M , a nonempty subset A of M is

said to be contractible in M if the inclusion map i : A ↪→ M is homotopic to

a constant p ∈ M , namely there is map η ∈ C
(
[0, 1] × A, M

)
such that for

some p ∈ M

(i) η(0, u) = u for all u ∈ A

(ii) η(1, u) = p for all u ∈ A
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Definition 2.6.2. The (L-S) category of A with respect to M , denoted by

cat(A,M), is the least non-negative integer k such that A ⊂ ∪k
i=1Ai, where

each Ai (1 ≤ i ≤ k) is closed and contractible in M . We set cat(∅,M) = 0

and cat(A,M) = +∞ if there are no integers with the above property. We

write cat(M) to denote cat(M,M).

Remark 2.6.3. From the definition we see that for any A ⊆ M, cat(A,M) =

cat(A,M). Moreover, for A ⊂ M ⊂ M̃, since contractible closed sets in M

are also closed and contractible in M̃, we have, cat(A,M) ≥ cat(A, M̃).

Example 1. Let SN−1 denotes the unit sphere in RN . Clearly, SN−1 is not

contractible in itself. But we can consider, two closed hemispheres which

covers SN−1 and contractible in SN−1. Thus cat(SN−1) = 2. But if we

consider the closed unit disc in RN , that is closed and contractible in RN and

contains SN−1 as its boundary. Therefore, cat(SN−1,RN) = 1.

Example 2. We can prove that cat(T2) = 3, where T2 = S1 × S1 denotes

the two dimensional torus in R3. In general, cat(TN) = N + 1, where TN =

RN/ZN denotes the N-dimensional Torus.

The following fundamental properties of Lusternik-Schnirelman category,

can be found in [10] (also see Ambrosetti [9]).

Lemma 2.6.4. For A, B ⊂ M ,

(i) if A ⊂ B, then cat(A,M) ≤ cat(B,M);

(ii) cat(A ∪B,M) ≤ cat(A,M) + cat(B,M);

(iii) if A is closed and let η ∈ C(A,M) be a deformation, then

cat(A,M) ≤ cat(η(A),M).

Next we state the following property (see [9], also see [4, Proposition 2.4])

which will play a pivotal role to in the coming chapter.
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Proposition 2.6.5. Suppose M is a Hilbert manifold and Ψ ∈ C1(M, R).

Assume that for c0 ∈ R and k ∈ N,

(i) Ψ(x) satisfies (PS)c for c ≤ c0,

(ii) cat
(
{x ∈ M : Ψ(x) ≤ c0}

)
≥ k.

Then Ψ(x) has at least k critical points in {x ∈ M : Ψ(x) ≤ c0}.

For definition and related discussions on (PS)c see next chapter, Sec-

tion 3.2.

Lemma 2.6.6. ( [4, Lemma 2.5]) Let N ≥ 1 and M be a topological space

and SN−1 denote the unit sphere in RN . Suppose the there exists two contin-

uous mapping

F : SN−1 → M, G : M → SN−1,

such that G ◦F is homotopic to the identity map Id : SN−1 → SN−1, namely

there is continuous map η : [0, 1] × SN−1 → SN−1 such that

η(0, x) = (G ◦ F )(x) for all x ∈ SN−1

η(1, x) = x for all x ∈ SN−1.

Then cat(M) ≥ 2.

————— ◦ —————
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Chapter 3

Existence and Multiplicity of

Positive solutions of certain

Nonlocal Scalar Field Equations

In this chapter we study the existence and multiplicity of positive solutions

to the following fractional elliptic problem in RN :

(−∆)su+ u = a(x)|u|p−1u+ f(x) in RN ,

u > 0 in RN ,

u ∈ Hs(RN),

(P)

where s ∈ (0, 1) is fixed parameter, N > 2s, 1 < p < 2∗
s − 1 := N+2s

N−2s
,

0 < a ∈ L∞(RN) and 0 ̸≡ f ∈ H−s(RN) is a nonnegative functional i.e.,

H−s⟨f, u⟩Hs ≥ 0 whenever u ≥ 0.

Definition 3.0.1 (Positive weak solution). We say u ∈ Hs(RN) is a

positive weak solution of (P) if u > 0 in RN and for every ϕ ∈ Hs(RN), we

have�
R2N

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dx dy+
�
RN

uϕ dx =
�
RN

aupϕ dx+H−s⟨f, ϕ⟩Hs ,

where H−s⟨., .⟩Hs denotes the duality bracket between f and ϕ.
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In recent years, there has been a considerable interest in more general

version of nonlinear scalar field equation with fractional diffusion



(−∆)su+ V (x)u = g(x, u) in RN ,

u > 0 in RN ,

u ∈ Hs(RN),

(3.0.1)

see for e.g., the papers ( [11, 29, 62, 66, 71, 81, 100]) and the references

quoted therein. In the physical context, equations of the type (3.0.1) arise

in the study of standing waves for the fractional Schrödinger equations and

fractional Klein-Gordon equations. First consider the fractional Schrödinger

equation

i
∂ψ

∂t
+ (−∆)sψ + (V (x) + ω)ψ = g(x, ψ),

where ψ = ψ(x, t) is a complex valued function defined on RN × R.

Suppose we assume

g(x, ρeiθ) = eiθg(x, ρ), ∀ ρ, θ ∈ R, x ∈ RN , (3.0.2)

and g : RN ×R → R and g(x, .) is a continuous odd function and g(x, 0) = 0.

Then one can look for standing wave solutions, i.e., ψ(x, t) = eiωtu(x), which

led us to the following scalar field equation

(−∆)su+ V (x)u = g(x, u) in RN . (3.0.3)

In context to fractional quantum mechanics, nonlinear fractional Schrödinger

equation has been proposed by Laskin in ( [86,87]) in modelling some quan-

tum mechanical phenomenon. In particular it arises in evaluating Feynman

path integral from the Brownian-like to the Lévy-like quantum mechanical

paths.
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One may also consider fractional nonlinear Klein-Gordon equation:

ψtt + (−∆)sψ + (V (x) + ω2)ψ = g(x, ψ),

where ψ : RN ×R → C and g satisfies (3.0.2). Then one can look for standing

wave solutions as before and once again this will led us to the equation of

type (3.0.3).

Equations of the type (3.0.3) with s = 1 arise in various other contexts

of physics, for example, the classical approximation in statistical mechanics,

constructive field theory, false vacuum in cosmology, nonlinear optics, laser

propagation etc (see [13, 52, 70, 78]). They are also known as nonlinear Eu-

clidean scalar field equations (see [21,22]) which has been studied extensively

in the last few decades by many Mathematicians. We recall some of the works

without any claim of completeness the papers ( [15,21,22,57,59,111]) and the

references quoted therein. Much of the interest has centered on the existence

and multiplicity of solutions under various assumptions on the potential V

and the nonlinearity g.

Also in the nonlocal case s ∈ (0, 1), several existence and multiplicity

results have been obtained for (3.0.3) using different variational techniques.

Felmer et al. [66] have studied the existence and the symmetry of positive

solutions to equation (3.0.3) with V ≡ 1 and involving a superlinear non-

linearity g(x, u) satisfying the Ambrosetti-Rabinowitz condition. Frank et

al. [71] have proved the uniqueness and nondegeneracy of positive ground

state solutions to equation (3.0.3) with V ≡ 1 and g(x, u) = |u|p−1u where

p < 2∗
s − 1. Using minimization on Nehari manifold, Secchi [100] have ob-

tained the existence of ground state solutions to equation (3.0.3) when the

nonlinearity is superlinear and subcritical, and the potential V satisfies suit-

able assumptions as |x| → ∞. Pucci et al. [97] established via Mountain

Pass Theorem and Ekeland’s variational principle, the existence of multiple

solutions for a Kirchhoff fractional Schrödinger equations involving a nonlin-
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earity satisfying the Ambrosetti-Rabinowitz condition, a positive potential

V validating suitable assumptions, and in presence of a perturbation term.

We refer to [33,45,63,67,76] for further results related to (3.0.3).

Under the stated assumptions, problem (P) can be considered as a per-

turbation problem of the following homogeneous equation:

(−∆)sw + w = wp in RN ,

w > 0 in RN ,

w ∈ Hs(RN).

(3.0.4)

In the seminal paper, Frank, Lenzmann and Silvestre in [71] proved that

(3.0.4) has a unique (up to a translation) ground state solution. Further, if

w is any positive solution of (3.0.4), then w is radially symmetric, strictly

decreasing and w ∈ H2s+1(RN) ∩ C∞(RN) and satisfies the decay property:

C−1

1 + |x|N+2s
≤ w(x) ≤ C

1 + |x|N+2s
, (3.0.5)

with some constant C > 0 depending on N, p, s.

Our main question is whether positive solutions can still survive after a

perturbation of type (P). This question have been studied by several authors

in the local case s = 1. The homogeneous case, i.e., f(x) ≡ 0 has been

studied extensively by Bahri-Li [15], Berestycki-Lions [21] and Ding-Ni [59].

On the other hand for the non homogeneous case, i.e., f(x) ̸≡ 0 we refer the

works of Bahri-Berestycki [14], Tanaka [106] in the case of bounded domain

and Adachi-Tanaka [4], Jeanjean [83] and Zhu [113] in the case of entire RN

where existence and multiplicity of positive solutions were proved under some

assumptions on the potential function and nonhomogeneous term. We also

refer the work of Cao-Zhou [42] for the existence of positive solution with

more general nonlinearities. In the nonlocal case, there are very few papers

where the existence and the multiplicity of solutions for nonhomogeneous
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problem have been studied, we refer [19,53] for equations studied in bounded

domain and [12,31,82] for entire RN . We also refer [17,18] for closely related

problems.

In this article, drawing primary motivation from the above works, we

propose to establish the existence and the multiplicity of positive solutions

to the equation (P), under the effect of a small perturbation f ∈ H−s(RN),

and suitable assumptions on the potential a.

We separate the following two cases:

• (A1) : a(x) ∈ (0, 1] ∀x ∈ RN , infx∈RN a(x) > 0,

µ({x : a(x) ̸= 1}) > 0, and a(x) → 1 as |x| → ∞,

• (A2) : a(x) ≥ 1 ∀x ∈ RN , a ∈ L∞(RN), µ({x : a(x) ̸= 1}) > 0,

and a(x) → 1 as |x| → ∞,

where µ(X) denotes the Lebesgue measure of a set X.

3.1 Main Results

Now we state our main theorems

Theorem 3.1.1. Suppose a satisfies (A1) and

1 − a(x) ≤ C

1 + |x|µ(N+2s) ∀x ∈ RN , (3.1.1)

for some µ > p + 1 + N
N+2s

. Then there exists δ0 > 0 such that for any

0 ̸≡ f ∈ H−s(RN) with f is a non-negative functional and ∥f∥H−s(RN ) ≤ δ0,

problem (P) admits at least three positive solutions.

Theorem 3.1.2. Let a satisfy (A2), 0 ̸≡ f ∈ H−s(RN) is a nonnegative

functional and S1 be defined as in (3.2.24). Moreover, if

∥f∥H−s(RN ) < CpS

p+1
2(p−1)
1 where Cp := (p∥a∥L∞(RN ))− 1

p−1
(

p−1
p

)
,
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CHAPTER 3. EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS OF
CERTAIN NONLOCAL SCALAR FIELD EQUATIONS

then (P) admits at least two positive solutions.

Remark 3.1.3. For the above two Theorems, it was necessary that ∥f∥H−s(RN )

sufficiently small but f ̸≡ 0. In contrast, our next existence result holds in

the case when f ≡ 0.

Theorem 3.1.4. Let f ≡ 0, 0 < a ∈ L∞(RN) and there exists a0 > 0 such

that

lim
|x|→∞

a(x) = a0 = inf
x∈RN

a(x).

Then, there exists a positive solution to (P) for every 1 < p < 2∗
s − 1.

Like in the local case, it is well known that the Sobolev embedding

Hs(RN) ↪→ Lp(RN) for 2 ≤ p ≤ 2N
N − 2s,

is not compact. Thus the variational functional associated with (P) fails to

satisfy the Palais-Smale (PS) condition. The lack of compactness becomes

clear when one looks at the special case (3.0.4). Solutions of (3.0.4) are

invariant under translation and therefore, it is not compact. Thus the stan-

dard variational technique can not be applied directly. The existence and

multiplicity results obtained in the local case were based on the careful anal-

ysis of the Palais-Smale level. However one of the major differences in the

nonlocal case s ∈ (0, 1) with the local case s = 1 is due to the difference in

Palais-Smale decomposition theorem.

In the case of s = 1, we see that Palais-Smale condition holds for Īa,f

(see Section 3.2 for the definitions) at level c if c can not be decomposed

as c = Īa,f (ū) + kĪ1,0(w), where k ≥ 1, ū is a solution of (P) and w is

the unique radial solution of (3.0.4) (with s = 1). But in the case of s ∈

(0, 1), uniqueness of positive solution of (3.0.4) is not yet known, only the

uniqueness of ground state solution is known ( [71]). Therefore, studying
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the Palais-Smale decomposition theorem (see Proposition 3.2.1), we can not

exclude the possibility of breaking down of Palais-Smale condition at the

level c for c ∈
(
Īa,f (u) + Ī1,0(w∗), Īa,f (u) + 2Ī1,0(w∗)

)
, where w∗ is the unique

ground state solution of (3.0.4) and u is any positive solution of (P). Thus one

can not argue using Palais-Smale decomposition to obtain positive solutions

to (P) whose energy level is strictly greater than Īa,f (u) + Ī1,0(w∗). For the

same reason, arguments of Bahri-Li [15] can not be adopted here to prove

Theorem 3.1.4 even if we assume lim|x|→∞ a(x) = 1.

It is worth mentioning about the novelty of the paper. In the local case

s = 1, solutions of (3.0.4) has exponential decay, where as for s ∈ (0, 1),

solutions of (3.0.4) has polynomial decay of the rate |x|−(N+2s). Thus it is

not at all straight forward to guess that the energy estimates would stay

in the desired level in the nonlocal case and hence deriving such estimates

require a very careful analysis. Due to this fact we are able to prove Theorem

3.1.1 under much weaker growth rate assumption of a at infinity (see (3.1.1))

compared to the local case s = 1(see [4]), where it was assumed

1 − a(x) ≤ C exp
(

− (2 + δ)|x|
)

for all x ∈ RN ,

for some constant δ > 0, C > 0.

Now let us briefly explain the methodology to obtain our results. To

prove Theorem 3.1.1, we establish existence of first positive solution as a

perturbation of 0 (which actually solves the problem for f ≡ 0, without

the signed condition) via Mountain Pass theorem. We obtain the second

and third solutions of (P) using Lusternik-Schnirelman category where the

main problem lies in the breaking down of Palais-Smale condition at some

level c and we have proved that below the level of breaking down of Palais

Smale condition there are two other critical points of the energy functional

associated to (P).
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To prove Theorem 3.1.2, we first decompose Hs(RN) into three compo-

nents which are homeomorphic to the interior, boundary and the exterior of

the unit ball in Hs(RN) respectively. Then using assumption (A2), we prove

that the energy functional associated to (P) attains its infimum on one of the

components which serves as our first positive solution. The second positive

solution is obtained via a careful analysis on the (PS)-sequence associated to

the energy functional and we construct a min-max critical level γ, where the

(PS) condition holds. That leads to the existence of second positive solution.

In order to prove Theorem 3.1.4, we first establish existence of a positive

solution uk to the following problem:


(−∆)su+ u = a(x)|u|p−1u in Bk,

u = 0 in RN \Bk,

where Bk is the ball of radius k centered at 0. Then we show ∥uk∥Hs(RN )

is uniformly bounded and there exists 0 ≤ ū ∈ Hs(RN) such that up to a

subsequence uk ⇀ ū in Hs(RN) and ū is a positive solution of (P). The

main difficulty in this proof lies in showing that ū i.e., the weak limit of the

subsequence uk is a nontrivial element in Hs(RN).

This chapter is organised in the following way: In Section 3.2, we prove

the Palais-Smale decomposition theorem associated with the functional cor-

responding to (P). In Section 3.4, we establish existence of three positive

solutions of (P), namely Theorem 3.1.1. Section 3.3 deals with existence

of two positive solutions of (P) under the assumption (A2), namely Theo-

rem 3.1.2. In section 3.5, we prove Theorem 3.1.4.
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3.2. Palais-Smale characterization

3.2 Palais-Smale characterization

In this section we study the Palais-Smale sequences (in short, PS sequences)

of the functional associated to (P).

Īa,f (u) = 1
2

�
R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy + 1
2

�
RN

|u|2 dx

− 1
p+ 1

�
RN

a(x)|u|p+1 dx− H−s⟨f, u⟩Hs (3.2.1)

= 1
2∥u∥2

Hs(RN ) − 1
p+ 1

�
RN

a(x)|u|p+1 dx− H−s⟨f, u⟩Hs ,

where 0 < a ∈ L∞(RN), a(x) → 1 as |x| → ∞ and 0 ̸≡ f ∈ H−s(RN) is a

nonnegative functional i.e., H−s⟨f, u⟩Hs ≥ 0 whenever u ≥ 0.

We say that the sequence uk ∈ Hs(RN) is a PS sequence for Īa,f at level

β if Īa,f (uk) → β and (Īa,f )′(uk) → 0 in H−s(RN). It is easy to see that the

weak limit of a PS sequence solves (P) (with f ≡ 0) except the positivity.

However the main difficulty is that the PS sequence may not converge

strongly and hence the weak limit can be zero even if β > 0. The main pur-

pose of this section is to classify PS sequences for the functional Īa,f . Clas-

sification of PS sequences has been done for various problems having lack of

compactness, to quote a few, we cite [16, 20, 88]. We establish a classifica-

tion theorem for the PS sequences of (3.2.1) in the spirit of the above results.

Throughout this section we assume a(x) → 1 as |x| → ∞.

Proposition 3.2.1. Let {uk} ⊂ Hs(RN) be a PS sequence for Īa,f . Then

there exists a subsequence (still denoted by uk) for which the following hold :

there exists an integer m ≥ 0, sequences xi
k for 1 ≤ i ≤ m, functions ū, wi

for 1 ≤ i ≤ m such that

(−∆)sū+ ū = a(x)|ū|p−1ū+ f in RN (3.2.2)
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(−∆)swi + wi = wp
i in RN

wi ∈ Hs(RN), wi ̸≡ 0
(3.2.3)

uk −
(
ū+

m∑
i=1

wi(· − xi
k)
)

→ 0 as k → ∞

Īa,f (uk) → Īa,f (ū) +
m∑

i=1
Ī1,0(wi) as k → ∞

(3.2.4)

|xi
k| → ∞, |xi

k − xj
k| → ∞ as k → ∞, for 1 ≤ i ̸= j ≤ m, (3.2.5)

where we agree in the case m = 0, the above holds without wi, x
i
k.

To prove the above proposition, we first need some auxiliary lemmas.

Lemma 3.2.2. Let t > 0 and 2 ≤ q < 2∗
s. If {wk} is a bounded sequence in

Hs(RN) and if

sup
y∈RN

�
B(y,t)

|wk|qdx −→ 0 as k → ∞,

then wk → 0 in Lr(RN) for all r ∈ (2, 2∗
s). In addition, if wk satisfies

(−∆)swk + wk − a(x)|wk|p−1wk − f −→ 0 in H−s(RN), (3.2.6)

then wk → 0 in Hs(RN).

Proof. Choose κ ∈ (q, 2∗
s) arbitrarily. Therefore, using interpolation, we have

∥wk∥Lκ(B(y,t)) ≤ ∥wk∥1−λ
Lq(B(y,t))∥wk∥λ

L2∗
s (B(y,t)) ≤ C∥wk∥1−λ

Lq(B(y,t))∥wk∥λ
Hs(RN ),

where 1
κ

= 1−λ
q

+ λ
2∗

s
. Now, covering RN by balls of radius t, in such a way

that each point of RN is contained in at most N0 balls (for some positive

integer N0), we find
�
RN

|wk|κ dx ≤ N0C
κ sup

y∈RN

(�
B(y,t)

|wk|qdx
)(1−λ) κ

q

∥wk∥λκ
Hs(RN ).

34



3.2. Palais-Smale characterization

Therefore, the hypothesis of the lemmas implies wk → 0 in Lκ(RN) for all

κ ∈ (q, 2∗
s). This completes the lemma if q = 2, otherwise, if q > 2, then

again one can argue in similar way by choosing κ ∈ (2, q). In addition, if

(3.2.6) is satisfied, then we obtain

| H−s⟨(−∆)swk +wk − a(x)|wk|p−1wk − f, wk⟩Hs| = o(1)∥wk∥Hs(RN ), (3.2.7)

where H−s⟨., .⟩Hs denotes the duality bracket between H−s(RN) and Hs(RN).

Since {wk} is bounded in Hs(RN), the RHS is o(1). On the other hand, for

the LHS we observe that since wk is bounded in Hs(RN) and wk → 0 in

Lr(RN), for r ∈ (2, 2∗
s), we must have wk ⇀ 0 in Hs(RN) and consequently,

H−s⟨f, wk⟩Hs = o(1). Also, by first part, wk → 0 in Lp+1(RN). Hence, (3.2.7)

yields wk → 0 in Hs(RN).

Lemma 3.2.3. Let ϕk weakly converges to ϕ in Hs(RN), then we have

a|ϕk|p−1ϕk − a|ϕ|p−1ϕ −→ 0 in H−s(RN).

Proof. Defining ψk as ϕk − ϕ, we see ψk ⇀ 0 in Hs(RN). In partic-

ular, {ψk} is bounded in Hs(RN). Thus, up to a subsequence, ψk →

0 in Lq
loc(RN) for all 1 < q < 2∗

s and ψk → 0 a.e.. Consequently,

a|ϕ + ψk|p−1(ϕ + ψk) − a|ϕ|p−1ϕ → 0 a.e.. Therefore, using Vitali’s conver-

gence theorem, it follows a|ϕ+ ψk|p−1(ϕ+ ψk) − a|ϕ|p−1ϕ → 0 in L
p+1

p
loc (RN).

We also observe that for every ε > 0, there exists Cε > 0 such that
∣∣∣∣∣a|ϕ+ ψk|p−1(ϕ+ ψk) − a|ϕ|p−1ϕ

∣∣∣∣∣
p+1

p

≤ ε|ψk|p+1 + Cε|ϕ|p+1. (3.2.8)

Moreover, since ψk ⇀ 0 in Hs(RN) implies ψk is uniformly bounded in

Lp+1(RN) and the fact that |ϕ|p+1 ∈ L1(RN), it is easy to see from (3.2.8)

that given ε > 0, there exists R > 0 such that

�
RN \B(0,R)

∣∣∣∣∣a|ϕ+ ψk|p−1(ϕ+ ψk) − a|ϕ|p−1ϕ

∣∣∣∣∣
p+1

p

dx < ε. (3.2.9)
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As a result, a|ϕ+ψk|p−1(ϕ+ψk)−a|ϕ|p−1ϕ → 0 in L
p+1

p (RN). Since Hs(RN)

is continuously embedded in Lp+1(RN), which is the dual space of L
p+1

p (RN),

it follows that a|ϕ+ ψk|p−1(ϕ+ ψk) − a|ϕ|p−1ϕ → 0 in H−s(RN).

Lemma 3.2.4. For each c0 ≥ 0, there exists δ > 0 such that if v ∈ Hs(RN)

solves

(−∆)sv + v = |v|p−1v in RN , v ∈ Hs(RN), (3.2.10)

and ∥v∥Hs(RN ) ≤ c0, ∥v∥L2(RN ) ≤ δ, then v ≡ 0.

Proof. Taking v as a test function, it follows

∥v∥2
Hs(RN ) =

�
RN

|v|p+1 dx ≤ ∥v∥λ(p+1)
L2(RN )∥v∥(1−λ)(p+1)

L2∗
s (RN ) ≤ Cδλ(p+1)∥v∥(1−λ)(p+1)

Hs(RN ) ,

(3.2.11)

where λ is such that 1
p+1 = λ

2 + 1−λ
2∗

s
. If (1−λ)(p+1) ≥ 2, i.e., p ≥ 1+ 4s

N
, then

(3.2.11) implies v ≡ 0 as we can choose δ small enough. Now if p < 1 + 4s
N

,

then (3.2.11) yields ∥v∥Hs(RN ) ≤ Cδ
λ(p+1)

2−(1−λ)(p+1) . Therefore, choosing δ > 0

small enough, we can conclude the lemma.

Proof of Proposition 3.2.1:

Proof. We prove this proposition in the spirit of [16]. We divide the proof

into few steps.

Step 1: Using standard arguments it follows that any PS sequence for

Īa,f is bounded in Hs(RN). More precisely,

lim
k→∞

Īa,f (uk) + o(1) + o(1)∥uk∥Hs(RN ) ≥ Īa,f (uk) − 1
p+ 1(Īa,f )′(uk)uk

=
(

1
2 − 1

p+ 1

)
∥uk∥2

Hs(RN )

−
(

1 − 1
p+ 1

)
H−s⟨f, uk⟩Hs .

Hence boundedness follows. Consequently, up to a subsequence uk ⇀ u in
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Hs(RN). Moreover, as (Īa,f )′(uk)v → 0 as k → ∞ ∀ v ∈ Hs(RN), we have

(−∆)suk + uk − a(x)|uk|p−1uk − f = εk
k→ 0 in H−s(RN). (3.2.12)

Step 2: From (3.2.12) we get by letting k → ∞,

�
R2N

(uk(x) − uk(y))(v(x) − v(y))
|x− y|N+2s

dx dy +
�
RN

ukv dx

−
�
RN

a(x) |uk|p−1ukv dx − H−s⟨f, v⟩Hs → 0,

for all v ∈ Hs(RN).

Claim 1: Weak limit u satisfies

(−∆)su+ u = a(x) |u|p−1u + f in RN , u ∈ Hs(RN).

Indeed, uk ⇀ u in Hs(RN) implies,
�

R2N

(uk(x) − uk(y))(v(x) − v(y))
|x− y|N+2s

dx dy +
�
RN

ukv dx

−→
�

R2N

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2s

dx dy +
�
RN

uv dx.

Further using Lemma 3.2.3 we conclude
�
RN

a(x) |uk|p−1ukv dx −→
�
RN

a(x) |u|p−1uv dx.

In view of above the claim follows.

Step 3: In this step we show that uk − u is a PS sequence for Īa,0 at the

level limk→∞ Īa,f (uk) − Īa,f (u) and uk − u ⇀ 0 in Hs(RN).

To see this, first we observe that using Brezis-Lieb lemma, we have
�

R2N

|uk(x) − uk(y)|2
|x− y|N+2s

dx dy −
�

R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy

=
�

R2N

|(uk − u)(x) − (uk − u)(y)|2
|x− y|N+2s

dx dy + o(1). (3.2.13)

�
RN

|uk|2 dx−
�
RN

|u|2 dx =
�
RN

|uk − u|2 dx+ o(1). (3.2.14)
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RN

a(x)|uk|p+1 dx−
�
RN

a(x)|u|p+1 dx =
�
RN

a(x)|uk − u|p+1 dx+ o(1).

(3.2.15)

Further as uk ⇀ u and f ∈ H−s(RN), we also have

H−s⟨f, uk⟩Hs −→ H−s⟨f, u⟩Hs . (3.2.16)

Using above, it follows that

Īa,0(uk − u) = 1
2
(
∥uk∥2

Hs(RN ) − ∥u∥2
Hs(RN )

)
− 1
p+ 1

( �
RN

a(x)|uk|p+1 −
�
RN

a(x)|u|p+1
)

+ o(1)

−→ lim
k→∞

Īa,f (uk) + H−s⟨f, u⟩Hs − Īa,0(u), as k → ∞,

= lim
k→∞

Īa,f (uk) − Īa,f (u).

Next, note that (3.2.12) and Claim 1 implies

(−∆)s(uk −u)+(uk −u)−a(x)(|uk|p−1uk −|u|p−1u) = εk → 0 in H−s(RN).

Combining this with Lemma 3.2.3, we conclude I ′
a,0(uk −u) → 0 in H−s(RN).

Hence Step 3 follows.

Step 4: Using Lemma 3.2.2 we have, either uk−u → 0 in Hs(RN), in that

case the proof is over or there exists α > 0, such that up to a subsequence

Qk(1) := supy∈RN

�
B(y,1)

|uk − u|2 dx > α > 0.

Therefore we can find a sequence {yk} ⊂ RN such that

�
B(yk,1)

|uk − u|2 dx ≥ α. (3.2.17)

Let us define ũk(x) := (uk − u)(yk + x), then using translation invariance

of Hs(RN), it implies ũk is also bounded in Hs(RN) and hence up to a subse-

quence converges weakly in Hs(RN) to ũ. Now we claim that ũ ̸= 0. Indeed
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Rellich compactness theorem yields Hs(B(yk, 1)) ↪→ L2(B(yk, 1)) compactly

embedded and therefore (3.2.17) concludes the claim.

Also it follows from the fact uk − u ⇀ 0 in Hs(RN) and (3.2.17) that

|yk| −→ ∞ as k → ∞.

Now define, vk := ũk − ũ. Note that, ũk ⇀ ũ implies vk ⇀ 0 in Hs(RN).

Using this and Lemma 3.2.3, in the definition of Ī ′
1,0(vk) yields

Ī ′
1,0(vk) = o(1) in H−s(RN), (3.2.18)

i.e., (−∆)svk + vk − |vk|p−1vk −→ 0 in H−s(RN).

Step 5: In this step we show that

(−∆)sũ+ ũ = |ũ|p−1ũ in RN , ũ ∈ Hs(RN). (3.2.19)

To prove this step, it is enough to show that for arbitrarily chosen v ∈

C∞
0 (RN), the following holds:

⟨ũ, v⟩Hs(RN ) =
�
RN

|ũ|p−1ũv dx. (3.2.20)

To show the above, let v ∈ C∞
0 (RN) be arbitrarily chosen. Since, ũk ⇀ ũ,

using Step 3, we estimate the inner product between ũ and v as follows:

⟨ũ, v⟩Hs(RN ) = lim
k→∞

⟨ũk, v⟩Hs(RN )

= lim
k→∞

[�
R2N

(
(uk − u)(x+ yk) − (uk − u)(y + yk)

)(
v(x) − v(y)

)
|x− y|N+2s

dx dy

+
�
RN

(uk − u)(x+ yk)v(x) dx
]

= lim
k→∞

[�
R2N

(
(uk − u)(x) − (uk − u)(y)

)(
v(x− yk) − v(y − yk)

)
|x− y|N+2s

dx dy

+
�
RN

(uk − u)(x)v(x− yk) dx
]

= lim
k→∞

�
RN

a(x)|(uk − u)(x)|p−1(uk − u)(x)v(x− yk) dx

= lim
k→∞

�
RN

a(x+ yk)|ũk(x)|p−1ũk(x)v(x) dx. (3.2.21)
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Claim 2: limk→∞

�
RN

a(x+yk)|ũk(x)|p−1ũk(x)v(x) dx =
�
RN

|ũ|p−1ũv dx.

To prove the claim, we estimate∣∣∣∣∣
�
RN

a(x+ yk)|ũk(x)|p−1ũk(x)v(x) dx−
�
RN

|ũ|p−1ũv dx
∣∣∣∣∣

≤
∣∣∣∣∣
�
RN

a(x+ yk)(|ũk|p−1ũk − |ũ|p−1ũ)v dx
∣∣∣∣∣+

∣∣∣∣∣
�
RN

(
a(x+ yk) − 1

)
|ũ|p−1ũv dx

∣∣∣∣∣
= I1

k + J1
k .

Since |yk| → ∞, |ũ|p−1ũv ∈ L1(RN), a ∈ L∞(RN) and a(x) → 1 as |x| → ∞,

using dominated convergence theorem, it follows that

lim
k→∞

J1
k = 0. (3.2.22)

On the other hand, since v has compact support, using Vitali’s convergence

theorem

lim
k→∞

I1
k ≤ lim

k→∞
∥a∥L∞(RN )

�
supp v

∣∣∣|ũk|p−1ũk − |ũ|p−1ũ
∣∣∣|v|dx = 0.

Combining the above two estimates, Claim 2 holds. Using Claim 2, we

conclude Step 5 from (3.2.21).

Further, by Brezis-Lieb Lemma
�

R2N

|ũk(x) − ũk(y)|2
|x− y|N+2s

dx dy −
�

R2N

|ũ(x) − ũ(y)|2
|x− y|N+2s

dx dy

−
�

R2N

|vk(x) − vk(y)|2
|x− y|N+2s

dx dy → 0;

�
RN

|ũk|2 dx−
�
RN

|ũ|2 dx−
�
RN

|vk|2 dx → 0.

as k → ∞.

In view of the above steps, if ũk − ũ does not converge to zero in Hs(RN),

we can repeat the procedure for the Palais-Smale (PS) sequence ũk − ũ to

land in either of the two cases. If it converges to zero then we stop or else
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we repeat the process. But this process has to stop in finitely many steps

and we obtain ũ1, ũ2, . . . , ũn denotes the limit solution of (3.2.19) obtained

through the procedure, we have
n∑

i=1

�
RN

|ũi|2dx ≤ lim inf
k→∞

�
RN

|uk − u|2 dx.

Thus n can not go to infinity in view of Lemma 3.2.4.

We end this section with the definition of some functions which will be

used throughout the rest of the paper. We define,

J(u) :=
∥u∥2

Hs(RN )( �
RN

a(x)|u(x)|p+1dx
) 2

p+1
, J∞(u) :=

∥u∥2
Hs(RN )( �

RN

|u(x)|p+1dx
) 2

p+1
,

(3.2.23)

and S1 := inf
u∈Hs(RN )\{0}

J∞(u). (3.2.24)

From [71], it is known that S1 is achieved by unique ground state solution

w∗ of (3.0.4). Further w∗ is radially symmetric positive decreasing smooth

function satisfying (3.0.5).

3.3 Proof of Theorem 3.1.1

In this section we prove multiplicity of positive solutions to (P) when a

satisfies the assumption (A1) in the spirit of [4] (also see [15], [5]). Define,

Ia,f (u) = 1
2∥u∥2

Hs(RN ) − 1
p+ 1

�
RN

a(x)up+1
+ dx− H−s⟨f, u⟩Hs , (3.3.1)

where f ∈ H−s(RN) is a nonnegative nontrivial functional. Clearly, if u is a

critical points of Ia,f , then u is solution to
(−∆)su+ u = a(x)up

+ + f(x) in RN ,

u ∈ Hs(RN).
(3.3.2)
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Remark 3.3.1. If u is a weak solution of (3.3.2) and f is a nonnegative

functional, then taking v = u− as a test function in (3.3.2), we obtain

−∥u−∥2
Ḣs(RN ) −

�
R2N

[u+(y)u−(x) + u+(x)u−(y)]
|x− y|N+2s

dx dy = H−s⟨f, u−⟩Hs ≥ 0.

This in turn implies u− = 0, i.e., u ≥ 0. Therefore, using maximum principle

[56, Theorem 1.2], it follows that, u > 0 and hence u is a solution to (P).

We set

Σ := {u ∈ Hs(RN) : ∥u∥Hs(RN ) = 1} and Σ̃+ := {u ∈ Σ : u+ ̸≡ 0}.

(3.3.3)

Define a modified functional Ja,f : Σ̃+ → R by

Ja,f := max
t>0

Ia,f (tv), (3.3.4)

where Ia,f is defined as in (3.3.1). Set,

a = inf
x∈RN

a(x) > 0,

ā = sup
x∈RN

a(x) = 1.

From the definition of Ja,f , a straight forward computation yields

Ja,0(v) = Ia,0

((�
RN

a(x)vp+1
+ dx

)− 1
p−1

v

)
=
(

1
2− 1

p+ 1

)(�
RN

a(x)vp+1
+ dx

)− 2
p−1

.

(3.3.5)

Thus,

ā− 2
p−1J1,0(v) ≤ Jā,0(v) ≤ Ja,0(v) ≤ Ja,0(v) = a− 2

p−1J1,0(v).

Further, as

max
t∈[0,1]

I1,0(tw∗) = I1,0(w∗),

where w∗ is the unique (radial) ground state solution of (3.0.4), we obtain

ā
− 2

(p−1) I1,0(w∗) ≤ inf
v∈Σ̃+

Ja,0(v) ≤ a− 2
(p−1) I1,0(w∗). (3.3.6)
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Lemma 3.3.2. (i) Let u ∈ Hs(RN) and ε ∈ (0, 1). Then there holds

(1−ε)I a
1−ε

, 0(u)− 1
2ε∥f∥2

H−s(RN ) ≤ Ia,f (u) ≤ (1+ε)I a
1+ε

, 0(u)+ 1
2ε∥f∥2

H−s(RN ).

(3.3.7)

(ii) For v ∈ Σ̃+ and ε ∈ (0, 1), there holds

(1−ε)
p+1
p−1Ja,0(v)− 1

2ε
∥f∥2

H−s(RN ) ≤ Ja,f (v) ≤ (1+ε)
p+1
p−1Ja,0(v)+ 1

2ε
∥f∥2

H−s(RN ).

(3.3.8)

(iii) In particular, there exists d0 > 0 such that if ∥f∥H−s(RN ) ≤ d0, then,

inf
v∈Σ̃+

Ja,f (v) > 0.

Proof. Using Young inequality with ε > 0, we can write

| H−s⟨f, u⟩Hs| ≤ ∥f∥H−s(RN )∥u∥Hs(RN ) ≤ ε

2∥u∥2
Hs(RN ) + 1

2ε∥f∥2
H−s(RN ).

Applying the above inequality in the definition of Ia,f (u), we obtain (i). Using

(i) in the definition of Ja,f (v), we obtain

(1 − ε)J a
1−ε

,0(v) − 1
2ε

∥f∥2
H−s(RN ) ≤ Ja,f (v) ≤ (1 + ε)J a

1+ε
,0(v) + 1

2ε
∥f∥2

H−s(RN ).

Combining this with (3.3.5), we get (ii). Finally, substituting (3.3.6) into (ii)

yields (iii).

Next, for v ∈ Σ̃+, we study properties of the function g̃ : [0, ∞) → R

defined as

g̃(t) := Ia,f (tv). (3.3.9)

Lemma 3.3.3. (i) For every v ∈ Σ̃+, the function g̃ has at most two critical

points in [0, ∞).

(ii) If ∥f∥H−s(RN ) ≤ d0 (d0 is chosen as in Lemma 3.3.2), then for any

v ∈ Σ̃+, there exists a unique ta,f (v) > 0 such that

Ia,f

(
ta,f (v)v

)
= Ja,f (v),
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where Ja,f is defined as in (3.3.4). Moreover, ta,f (v) > 0 satisfies,

ta,f (v) >
(
p

�
RN

a(x)vp+1
+ dx

)− 1
p−1

≥
(
pS

− (p+1)
2

1

)− 1
p−1

, (3.3.10)

and furthermore

I ′′
a,f

(
ta,f (v)v

)
(v, v) < 0. (3.3.11)

(iii) If g̃ has a critical point different from ta,f (v), then it lies in[
0, (1 − 1

p
)−1∥f∥H−s(RN )

]
.

This lemma can be proved exactly in the same spirit of [4, Lemma 1.3].

We skip the details. Now we prove the existence of first positive solution in

the neighbourhood of 0.

3.3.1 Existence of first solution

The following proposition provides existence of first positive solution.

Proposition 3.3.4. Let d0 be as in Lemma 3.3.3. Then there exists r1 > 0

and d1 ∈ (0, d0] such that

(i) Ia,f (u) is strictly convex in B(r1) = {u ∈ Hs(RN) : ∥u∥Hs(RN ) < r1}.

(ii) If ∥f∥H−s(RN ) ≤ d1, then

inf
∥u∥

Hs(RN )=r1
Ia,f (u) > 0.

Moreover, Ia,f has a unique critical point ulocmin(a, f ;x) in B(r1) and it sat-

isfies,

ulocmin(a, f ;x) ∈ B(r1) and Ia,f (ulocmin(a, f ;x)) = inf
u∈B(r1)

Ia,f (u). (3.3.12)

i.e., ulocmin(a, f ;x) is a positive solution to (P) satisfying (3.3.12).

Proof. We begin the proof of part (i).

I ′′
a,f (u)(h, h) = ∥h∥2

Hs(RN ) − p

�
RN

a(x)up−1
+ h2 dx (3.3.13)
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Since a ≤ 1, using Hölder inequality and Sobolev inequality, we estimate

the second term on the RHS as follows

�
RN

a(x)up−1
+ h2 dx ≤

(�
RN

|u|p+1 dx
) p−1

p+1
(�

RN

|h|p+1 dx
) 2

p+1

≤ S
− p−1

2
1 S−1

1 ∥u∥p−1
Hs(RN ) ∥h∥2

Hs(RN )

= S
− p+1

2
1 ∥u∥p−1

Hs(RN ) ∥h∥2
Hs(RN ).

Thus substituting the above in (5.2.1) we obtain

I ′′
a,f (u)(h, h) ≥

(
1 − pS

− p+1
2

1 ∥u∥p−1
Hs(RN )

)
∥h∥2

Hs(RN ).

Therefore, I ′′
a, f (u) is positive definite for u ∈ B(r1), with r1 = p− 1

p−1S
p+1

2(p−1)
1

and hence Ia,f (u) is strictly convex in B(r1). This completes the proof of part

(i).

(ii) Let ∥u∥Hs(RN ) = r1, then we have

Ia,f (u) = 1
2∥u∥2

Hs(RN ) − 1
p+1

�
RN

a(x)up+1
+ dx− H−s⟨f, u⟩Hs

≥ 1
2r

2
1 − 1

p+1S
− p+1

2
1 rp+1

1 − r1∥f∥H−s(RN )

=
(

1
2 − 1

p+ 1S
− p+1

2
1 rp−1

1

)
r2

1 − r1∥f∥H−s(RN )

Since, rp−1
1 = 1

p
S

p+1
2

1 , we obtain

Ia,f (u) ≥
(

1
2 − 1

p(p+ 1)

)
r2

1 − r1∥f∥H−s(RN ).

Thus there exists d1 ∈ (0, d0] such that

inf
∥u∥

Hs(RN ) = r1
Ia,f (u) > 0, for 0 < ∥f∥H−s(RN ) ≤ d1.

Since Ia,f (u) is strictly convex in B(r1) and inf∥u∥
Hs(RN ) = r1 Ia,f (u) > 0 =

Ia,f (0), there exists a unique critical point ulocmin(a, f ;x) of Ia,f in B(r1) and

it satisfies

Ia,f (ulocmin(a, f ;x)) = inf
∥u∥

Hs(RN )<r1
Ia,f (u) < Ia,f (0) = 0, (3.3.14)
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where the last inequality is due to strict convexity of Ia,f in B(r1). Combining

this with Remark 3.3.1, we conclude the proof of the proposition.

The next proposition characterises all the critical points of Ia,f in terms

of the functional Ja,f .

Proposition 3.3.5. Let d2 := min{d1, (1 − 1
p
)r1} > 0, where d1, r1 be as in

Proposition 3.3.4 and suppose that 0 < ∥f∥H−s(RN ) ≤ d2. Then,

(i) Ja,f ∈ C1(Σ̃+, R) and

J ′
a,f (v)h = ta,f (v)I ′

a,f

(
ta,f (v)v

)
h (3.3.15)

for all h ∈ TvΣ̃+ = {h ∈ Hs(RN) | ⟨h, v⟩Hs(RN ) = 0}.

(ii) v ∈ Σ̃+ is a critical point of Ja,f (v) iff ta,f (v)v ∈ Hs(RN) is a critical

point of Ia,f (u).

(iii) Moreover, the set of all critical points of Ia,f (u) can be written as{
ta,f (v)v | v ∈ Σ̃+, J

′
a,f (v) = 0

}
∪
{
ulocmin(a, f ;x)

}
(3.3.16)

Proof. (i) Let g̃ be as defined in (3.3.9). Then, from Lemma 3.3.3, we have

g̃′(ta,f (v)) = I ′
a,f

(
ta,f (v)v

)
(v) = 0 and I ′′

a,f

(
ta,f (v)v

)
(v, v) < 0.

i.e., d2

dt2

∣∣∣∣∣
t=ta,f (v)

Ia, f (tv) < 0. Therefore, by implicit function theorem (ap-

plying implicit function theorem on the function, F̃ : (0,∞) × Σ̃+ →

R, F̃ (t, v) = I ′
a,f (tv)(v) which is of class C1), we can see that ta,f (v) ∈

C1(Σ̃+, [0, ∞)). Consequently, Ja,f (v) = Ia,f (ta,f (v)v) ∈ C1(Σ̃+, R).

Further, as

I ′
a,f (ta,f (v)v)(v) = 0, (3.3.17)

for h ∈ TvΣ̃+ := {h ∈ Hs(RN) | ⟨h, v⟩Hs(RN ) = 0}, we have

J ′
a,f (v)h = I ′

a,f (ta,f (v)v)
(
ta,f (v)h+ ⟨t′a,f (v), h⟩Hs(RN )v

)
= ta,f (v)I ′

a,f (ta,f (v)v)h+ ⟨t′a,f (v), h⟩Hs(RN )I
′
a,f (ta,f (v)v)(v)

= ta,f (v)I ′
a,f (ta,f (v)v)(h).
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Hence (i) follows.

(ii) Applying (i), we have J ′
a,f (v) = 0 if and only if

I ′
a,f (ta,f (v)v)h = 0 ∀ h ∈ TvΣ̃+. (3.3.18)

Since,

Hs(RN) = Span{v} ⊕ TvΣ̃+,

combining (3.3.17) and (3.3.18), (ii) follows.

(iii) Suppose that u ∈ Hs(RN) is a critical point of Ia,f . Writting u = tv

with v ∈ Σ̃+ and t ≥ 0. By lemma 3.3.3, we have either t = ta,f (v) or

t ≤ (1 − 1
p
)−1∥f∥H−s(RN ).

Thus either u ∈ Hs(RN) corresponds to a critical point of Ja,f or,

∥u∥Hs(RN ) = t∥v∥Hs(RN ) = t ≤
(
1 − 1

p

)−1
d2 ≤ r1. By Proposition 3.3.4,

Ia,f (u) has a unique critical point in B(r1) and it is ulocmin(a, f ;x). Hence

the set of all critical points of Ja,f (v) is precisely (3.3.16).

Next we study the Palais-Smale condition for Ja,f (v).

Proposition 3.3.6. Suppose 0 < ∥f∥H−s(RN ) ≤ d2, where d2 > 0 is as found

in Proposition 3.3.5. Then,

(i) Ja,f (vj) → ∞ whenever distHs(RN )(vj, ∂Σ̃+) j→ 0, where

distHs(RN )(vj, ∂Σ̃+) := inf{∥vj − u∥Hs(RN ) : u ∈ Σ, u+ ≡ 0}.

(ii) Suppose that {vj}∞
j=1 ⊂ Σ̃+ satisfies as j → ∞

Ja,f (vj) → c, for some c > 0, (3.3.19)

∥J ′
a,f (vj)∥T ∗

v Σ̃+
≡ sup{J ′

a,f (vj)h : h ∈ Tvj
Σ̃+, ∥h∥Hs(RN ) = 1} −→ 0.

(3.3.20)

Then there exists a subsequence, still we denote by {vj}, a critical point

u0(x) ∈ Hs(RN) of Ia,f (u), an integer l ∈ N ∪ {0} and l sequences of points
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{y(1)
j }, . . . , {y(l)

j } ⊂ RN , critical points wk ∈ Hs(RN) (k = 1, 2, · · · l) of

(3.0.4) such that

1. |yk
j | → ∞ as j → ∞, for all k = 1, 2, . . . , l.

2. |y(k)
j − y

(k′)
j | → ∞ as j → ∞ for k ̸= k′.

3.
∥∥∥∥∥vj(x) − u0(x)+

∑l

k=1 wk(x−yk
j )

∥u0(x)+
∑l

k=1 wk(x−yk
j )∥

Hs(RN )

∥∥∥∥∥
Hs(RN )

→ 0 as j → ∞.

4. Ja,f (vj) → Ia,f (u0) +∑l
k=1 I1,0(wk) as j → ∞.

Proof. (i) Using (3.3.8) and (3.3.5), for any ε ∈ (0, 1), we have

Ja,f (vj) ≥ (1 − ε)
p+1
p−1Ja,0(vj) − 1

2ε∥f∥2
H−s(RN )

≥ (1 − ε)
p+1
p−1 (1

2 − 1
p+1)

( �
RN

a(x)vp+1
j+ dx

)− 2
p−1

− 1
2ε∥f∥2

H−s(RN )

Since, dist(vj, ∂Σ̃+) → 0 implies (vj)+ → 0 in Hs(RN). Therefore, (vj)+ →

0 in Lp+1(RN). Consequently,∣∣∣∣∣
�
RN

a(x)(vj)p+1
+ dx

∣∣∣∣∣ ≤ ∥a∥L∞(RN )

�
RN

(vj)p+1
+ dx → 0 as j → ∞.

Therefore,

Ja,f (vj) −→ ∞ as distHs(RN )(vj, ∂Σ̃+) −→ 0.

Hence (i) follows.

(ii) From (3.3.10) and (3.3.15) we have,
∥∥∥I ′

a,f

(
ta,f (vj)vj

)∥∥∥
H−s(RN )

= 1
ta,f (vj)

∥J ′
a,f (vj)∥T ∗

vj
Σ̃+

≤
(
pS

− p+1
2

1

) 1
p−1

∥J ′
a,f (vj)∥T ∗

vj
Σ̃+

j−→ 0

We also have, Ia,f (ta,f (vj)vj) = Ja,f (vj) → c as j → ∞. Applying Palais-

Smale result for Ia,f (u) (Proposition 3.2.1 ), we conclude (ii).
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As a consequence to the above Proposition 3.3.6, we have,

Corollary 3.3.7. Suppose that 0 < ∥f∥H−s(RN ) ≤ d2, where d2 > 0 is as

found in Proposition 3.3.5. Then Ja,f satisfies (PS)c at level

c < Ia,f

(
ulocmin(a, f ;x)

)
+ I1,0(w∗),

where w∗ is the unique ground state solution of (3.0.4).

Here we say that Ja,f (v) satisfies (PS)c if and only if for any sequence

{vj} ⊆ Σ̃+ satisfying (3.3.19) and (3.3.20) has a strongly convergent subse-

quence in Hs(RN).

Proof. By (3.3.14),

Ia,f (ulocmin(a, f ;x)) < 0. (3.3.21)

On the other hand, from (3.3.16) we see that apart from ulocmin(a, f ;x), all

critical points of Ia,f corresponds to a critical point Ja,f . So, if u1 is a critical

point of Ia,f , there exists v1 ∈ Σ̃+ such that Ia,f (u1) = Ja,f (v1) > 0 (here we

have used (iii) of Lemma 3.3.2). Hence,

Ia,f

(
ulocmin(a, f ;x)

)
= inf

{
Ia,f (u0)

∣∣∣∣∣ u0 ∈ Hs(RN) is a critical point of Ia,f

}
.

(3.3.22)

Consequently, Ia,f

(
ulocmin(a, f ;x)

)
+ I1,0(w∗) ≤ Ia,f (u0) + ∑l

i=1 I1,0(wi), for

any critical point u0 of Ia,f and l ≥ 1, where w∗ is the unique positive

ground state solution of (3.0.4) and wi are positive solutions of (3.0.4). From

Proposition 3.3.6, we know that if PS sequence for Ja,f breaks down at level

c, then c must be of the form Ia,f (u0) +∑l
i=1 I1,0(wi), where u0 is any critical

point of Ia,f and l ∈ N ∪ {0}. Thus, if l = 0 and u0 = ulocmin(a, f ;x), then

applying (3.3.21) to the Proposition 3.3.6(ii)(4), we have limj→∞ Ja,f (vj) =

Ia,f (ulocmin(a, f ;x)) < 0. On the other hand, from Lemma 3.3.2(iii) we have

limj→∞ Ja,f (vj) > 0, which gives a contradiction. Therefore, l = 0 and

u0 = ulocmin(a, f ;x) can not happen together. Now, if l = 0 and u0 ̸=
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ulocmin(a, f ;x), then from Proposition 3.3.6(ii)(3), it follows vj → u0
||u0|| in

Hs(RN). Hence the Palais-Smale condition at level c is satisfied. Thus

the lowest level of breaking down of (PS)c is Ia,f (ulocmin(a, f ;x)) + I1,0(w∗).

Hence the corollary follows.

3.3.2 Existence of second and third solution

In this subsection, our main aim is to show the existence of second and third

positive solution. To this aim we shall use Lusternik-Schnirelman Category

theory and a careful analysis of Palais-Smale sequence to prove multiplicity

result. We use the following notation.

[Ja,f ≤ c] = {v ∈ Σ̃+ | Ja,f (v) ≤ c}, (3.3.23)

for c ∈ R. As explained before in order to find the critical points of Ja,f (v),

we show for a sufficiently small ε > 0,

cat
(

[Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1, 0(w∗) − ε]
)

≥ 2, (3.3.24)

where cat denotes Lusternik-Schnirelman Category.

Now we prove a very delicate energy estimate which plays a pivotal role

in the proof of existence of critical points.

Proposition 3.3.8. Let a be as in Theorem 3.1.1 and f be a nonnegative

nontrivial functional in H−s(RN) with ∥f∥H−s(RN ) ≤ d2, where d2 > 0 is as

found in Proposition 3.3.5. Then there exists R0 > 0 such that

Ia,f (ulocmin(a, f ;x) + tw∗(x− y)) < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗), (3.3.25)

for all |y| ≥ R0 and t > 0. Here w∗ is the unique ground state solution of

(3.0.4).

Proof. It is easy to see that

Ia,f

(
ulocmin(a, f ;x) + tw∗(x− y)

)
−→ Ia,f (ulocmin(a, f ;x)) < 0, as t → 0,
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which follows from the continuity of Ia,f . It also follows

Ia,f

(
ulocmin(a, f ;x) + tw∗(x− y)

)
→ −∞, as t → ∞.

From these two facts, there exist m, M with 0 < m < M such that

Ia,f (ulocmin(a, f ;x) + tw∗(x− y)) < Ia,f (ulocmin(a, f ;x)) + I1, 0(w∗)

for all t ∈ (0,m) ∪ (M,∞).

In view of above it is enough to prove (3.3.25) for all t ∈ [m,M ]. We can

write

Ia,f

(
ulocmin(a, f ;x) + tw∗(x− y)

)
= 1

2
∥∥∥ulocmin(a, f ;x) + tw∗(x− y)

∥∥∥2

Hs(RN )

− 1
p+ 1

�
RN

a(x)
(
ulocmin(a, f ;x) + tw∗(x− y)

)p+1
dx

−
H−s

〈
f,
(
ulocmin(a, f ;x) + tw∗(x− y)

)〉
Hs

= 1
2∥ulocmin(a, f ;x)∥2

Hs(RN ) + t2

2 ∥w∗∥2
Hs(RN ) + t⟨ulocmin(a, f ;x), w∗(x− y)⟩Hs(RN )

− 1
p+ 1

�
RN

a(x)(ulocmin(a, f ;x))p+1 dx− tp+1

p+ 1

�
RN

a(x)w∗(x− y)p+1 dx

− 1
p+ 1

�
RN

a(x)
{

(ulocmin(a, f ;x) + tw∗(x− y))p+1

− (ulocmin(a, f ;x))p+1 − tp+1w∗(x− y)p+1
}

dx

−
H−s

〈
f,
(
ulocmin(a, f ;x) + tw∗(x− y)

)〉
Hs
. (3.3.26)

Also we have for all h ∈ Hs(RN),

0 = I ′
a,f

(
ulocmin(a, f ;x)

)
(h) = ⟨ulocmin(a, f ;x), h⟩Hs(RN )

−
�
RN

a(x)(ulocmin(a, f ;x))ph dx− H−s⟨f, h⟩Hs ,

which in turn implies

⟨ulocmin(a, f ;x), h⟩Hs(RN ) =
�
RN

a(x)(ulocmin(a, f ;x))ph dx+ H−s⟨f, h⟩Hs .
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Now by setting h = tw∗(x− y) in above expression, we obtain

t⟨ulocmin(a, f ;x), w∗(x− y)⟩Hs(RN ) = t
�
RN a(x)(ulocmin(a, f ;x))pw∗(x− y) dx

+tH−s⟨f, w∗(x− y)⟩Hs .

Thus using above and the rearranging the terms in (3.3.26) we have

Ia,f

(
ulocmin(a, f ;x) + tw∗(x− y)

)
= Ia,f

(
ulocmin(a, f ;x)

)
+ I1,0(tw∗)

+ tp+1

p+1

�
RN

(
1 − a(x)

)
w∗(x− y)p+1 dx

− 1
p+1

�
RN

a(x)
{(
ulocmin(a, f ;x) + tw∗(x− y)

)p+1
− (ulocmin(a, f ;x))p+1

−t(p+ 1)(ulocmin(a, f ;x))pw∗(x− y) − tp+1w∗(x− y)p+1
}

dx

= Ia,f

(
ulocmin(a, f ;x)

)
+ I1,0(tw∗) + (I) − (II), (3.3.27)

where

(I) := tp+1

p+ 1

�
RN

(
1 − a(x)

)
w∗(x− y)p+1 dx

and

(II) := 1
p+ 1

�
RN

a(x)
{(
ulocmin(a, f ;x) + tw∗(x− y)

)p+1
− (ulocmin(a, f ;x))p+1

− t(p+ 1)(ulocmin(a, f ;x))pw∗(x− y) − tp+1w∗(x− y)p+1
}

dx.

Therefore the proof will be completed if we can show I < II. To this aim let

us recall a standard fact from calculus. The following inequalities hold true

• (s+ t)p+1 − sp+1 − tp+1 − (p+ 1)spt ≥ 0 for all (s, t) ∈ [0, ∞) × [0, ∞).

• For any r >, 0 we can find a constant A(r) > 0 such that

(s+ t)p+1 − sp+1 − tp+1 − (p+ 1)spt ≥ A(r)t2

for all (s, t) ∈ [r, ∞) × [0, ∞).
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The proof of the above inequalities follows directly using Taylor’s theorem

on the function ψ(x) = xp+1 − (x− s)p+1. In particular,

ψ(s+ t) − ψ(s) = tψ′(s) + t2

2 ψ
′′(ξ),

where s ≤ ξ ≤ s+t. It’s easy to see that ψ′′(ξ) ≥ 0 and thus the 1st inequality

follows. For the 2nd inequality, a simple computation yields

ψ′′(ξ) ≥


p(p+ 1)rp−1 if p ≥ 2
p(p+ 1)(p− 1)

22−p
rp−1 if 1 < p < 2

Using the above inequality (II) can be estimated as follows : setting

r := min|x|≤1 ulocmin(a, f ;x) > 0, A := A(r), we have

(II) ≥ 1
p+ 1

�
|x|≤1

a(x)At2(w∗)2(x− y) dx ≥ m2 aA
p+ 1

�
|x|≤1

(w∗)2(x− y) dx

≥ C m2 aA
p+ 1

�
|x|≤1

dx
(1 + |x− y|N+2s)2 ≥ C m2 aA

p+ 1 |y|−2(N+2s), (3.3.28)

where in the last inequality we have used the fact that for |x| ≤ 1, there

exists R > 0 with |y| > R, such that

1 + |x− y|N+2s ≈ |y|(N+2s). (3.3.29)

On the other hand,

(I) = tp+1

p+ 1

�
RN

(
1 − a(x)

)
w∗(x− y)p+1 dx

≤ tp+1

p+ 1

�
RN

C

1 + |x|µ(N+2s)

{
C2

1 + |x− y|N+2s

}p+1

dx

≤ CMp+1

p+ 1

�
RN

dx
(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 . (3.3.30)

Claim:
�
RN

dx
(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 ≤ C ′

|y|(N+2s)(p+1) for |y|

large enough.
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Using the claim, first we complete the proof. Clearly combining the above

claim with (3.3.28), it immediately follows that there exists R0 > R > 0 large

enough such that

(I) < (II) for |y| ≥ R0,

as p+ 1 > 2. Hence (3.3.25) follows from (3.3.27).

Therefore, we are left to prove the claim.

Note that, to prove the claim, it is enough to show that
�
RN

|y|(p+1)(N+2s)

(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 dx ≤ C(N,M, a, p).

Therefore we estimate LHS of the above inequality:
�
RN

|y|(p+1)(N+2s)

(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 dx

≤
�
RN

|x− y|(p+1)(N+2s)

(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 dx︸ ︷︷ ︸
:=J1

+
�
RN

|x|(p+1)(N+2s)

(1 + |x|µ(N+2s))(1 + |x− y|N+2s)p+1 dx︸ ︷︷ ︸
:=J2

.

Clearly,

J1 ≤
�
RN

dx
1 + |x|µ(N+2s) = C(N,µ),

since µ > N
N+2s

. On the other hand, using (3.3.29), we estimate

J2 ≤
�
RN

|x|(p+1)(N+2s)

1 + |x|µ(N+2s) dx = C(N,µ, p),

since µ > (p + 1) + N
N+2s

(by hypothesis of the proposition). Combining

the above estimates, claim follows. Hence we conclude the proof of the

Proposition.

We further need several preparatory lemmas and propositions along with

the key energy estimate (3.3.25) to prove existence of second and third pos-

itive solution. The results below are along the line of [4, 15].
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We begin with the properties of the functional Ja,0 under the condition

(A1).

Lemma 3.3.9. Let a be as in Theorem 3.1.1 and w∗ is unique ground state

solution of (3.0.4). Then there holds

(i) infv∈Σ̃+
Ja,0(v) = I1,0(w∗).

(ii) infv∈Σ̃+
Ja,0(v) is not attained.

(iii) Ja,0(v) satisfies (PS)c for c ∈ (−∞, I1,0(w∗)).

Proof. (i) Using (3.3.6), we have infv∈Σ+ Ja,0(v) ≥ I1,0(w∗).

Define wl(x) = w∗(x + le), where e is an unit vector in RN . Using

Lemma 3.3.3, corresponding to w̄l = wl

∥wl∥Hs(RN )
∈ Σ̃+ there exists an unique

ta,0(w̄l) such that

Ja,0

(
wl

∥wl∥Hs(RN )

)
= Ia,0

(
ta,0(w̄l)

wl

∥wl∥Hs(RN )

)
.

Now let us compute

Ia,0

(
ta,0(w̄l)

wl

∥wl∥Hs(RN )

)
=
t2a,0(w̄l)

2 ∥w̄l∥2
Hs(RN ) −

tp+1
a,0 (w̄l)
p+ 1

�
RN

a(x)(w̄l)p+1 dx.

Moreover from direct computation, we find an explicit form of ta,0(w̄l) which

is given by

ta,0(w̄l) =
(�

RN

a(x)w̄p+1
l dx

)− 1
p−1

l→∞−−−→
(

∥w∗∥Hs(RN )

∥w∗∥Lp+1(RN )

)p+1
p−1

,

the last limit follows since a(x) → 1 as |x| → ∞. Hence,

Ja,0(w̄l) l→∞−−−→1
2

{
∥w∗∥Hs(RN )

∥w∗∥Lp+1(RN )

}2(p+1)
(p−1)

− 1
p+ 1


{

∥w∗∥Hs(RN )

∥w∗∥Lp+1(RN )

} (p+1)2

(p−1)
×

∥w∗∥p+1
Lp+1(RN )

∥w∗∥p+1
Hs(RN )


=
(

1
2 − 1

p+ 1

)
∥w∗∥p+1

Lp+1(RN ) = I1,0(w∗).
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Hence (i) follows.

(ii) Let us assume on the contrary that there exists v0 ∈ Σ̃+ such that

Ja,0(v0) = infv∈Σ̃+
Ja,0(v) = I1,0(w∗). Define, the Nehari manifold N as

N :=
{
u ∈ Hs(RN) : ⟨(I1,0)′(u), u⟩ = 0

}
.

From a straight forward computation, it is easy to see that there exists tv0 > 0

such that tv0v0 ∈ N. Further, observe that for any v ∈ N, it holds

I1,0(v) = p− 1
2(p+ 1)∥v∥2

Hs(RN ) ≥ p− 1
2(p+ 1)S

p+1
p−1
1 ,

where S1 is as defined in (3.2.24). therefore, it follows from Remark 3.4.5

that I1,0(v) ≥ I1,0(w∗) for all v ∈ N. Moreover w ∈ N and hence

inf
v∈N

I1,0(v) = I1,0(w∗).

Therefore,

I1,0(w∗) = Ja,0(v0)

:= maxt>0Ia,0(tv0) ≥ Ia,0(tv0v0)

=
t2v0

2 ∥v0∥2
Hs(RN ) −

tp+1
v0

p+ 1

�
RN

a(x)(v0)p+1
+ dx

=
t2v0

2 ∥v0∥2
Hs(RN ) −

tp+1
v0

p+ 1

�
RN

(v0)p+1
+ dx

+
tp+1
v0

p+ 1

�
RN

(1 − a(x))(v0)p+1
+ dx

= I1,0(tv0v0) +
tp+1
v0

p+ 1

�
RN

(1 − a(x))(v0)p+1
+ dx

≥ I1,0(w∗) +
tp+1
v0

p+ 1

�
RN

(1 − a(x))(v0)p+1
+ dx. (3.3.31)

The above inequality and (A1) implies

tp+1
v0

p+ 1

�
RN

(1 − a(x))(v0)p+1
+ dx = 0. (3.3.32)

Therefore

(v0)+ ≡ 0 in {x ∈ RN : a(x) ̸= 1}. (3.3.33)
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Moreover, substituting (3.3.32) into (3.3.31), we see that inequality in

(3.3.31) becomes an equality there. Therefore,

inf
N
I1,0(v) = I1,0(w∗) = I1,0(tv0v0).

Thus tv0v0 is a constraint critical point of I1,0. Therefore using Lagrange

multiplier and maximum principle (as before) we conclude that tv0v0 > 0

which in turn implies v0 > 0 in RN . This contradicts (3.3.33). Hence (ii)

holds.

(iii) From Proposition 3.3.4, we know that ulocmin(a, f ;x) is the unique

critical point of Ia,f in B(r1). Therefore, ulocmin(a, 0;x) = 0. Consequently,

it follows from Corollary 3.3.7 that Palais-Smale condition for Ja,0 is satisfied

at the level c < I1,0(w∗).

This completes the proof.

The following property of Ja,0(v) is important to obtain multiplicity of

solutions of (P)

Lemma 3.3.10. (Center of mass)

Let a be as in Theorem 3.1.1. Then there exists a constant δ0 > 0 such that

if Ja,0(v) ≤ I1,0(w∗) + δ0, then

�
RN

x

|x|
|v(x)|p+1 dx ̸= 0. (3.3.34)

Proof. Suppose the conclusion is not true. Then there exists a sequence

{vn} ⊂ Σ̃+ such that

Ja,0(vn) ≤ I1,0(w∗) + 1
n

and
�
RN

x

|x|
|vn|p+1dx n→∞−−−→ 0.

Since, by Lemma 3.3.9, we have infv∈Σ̃+
Ja,0(v) = I1,0(w∗) and the infimum is

not attained, applying Ekeland’s variational principle, there exists ṽn ⊂ Σ̃+
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such that

∥vn − ṽn∥Hs(RN )
n→∞−−−→ 0

Ja,0(ṽn) ≤ Ja,0(vn) = I1,0(w∗) + 1
n

J ′
a,0(ṽn) n→∞−−−→ 0 in H−s(RN).

Therefore, {ṽn} is a Palais Smale sequence for Ja,0 at the level I1,0(w∗).

Applying Proposition 3.3.6, we get {yn} ⊂ RN such that |yn| n−→ ∞ and∥∥∥∥∥ṽn − w∗(x− yn)
∥w∗(x− yn)∥Hs(RN )

∥∥∥∥∥
Hs(RN )

n→∞−−−→ 0.

Therefore,∥∥∥∥∥vn − w∗(x− yn)
∥w∗(x− yn)∥Hs(RN )

∥∥∥∥∥
Hs(RN )

≤ ∥vn − ṽn∥Hs(RN )

+
∥∥∥∥∥ṽn − w∗(x− yn)

∥w∗(x− yn)∥Hs(RN )

∥∥∥∥∥
Hs(RN )

n→∞−−−→ 0.

Therefore the above yields

o(1) =
�
RN

x

|x|
|vn|p+1dx =

�
RN

x

|x|

(
w∗(x− yn)

∥w∗(x− yn)∥Hs(RN )

)p+1

dx+ o(1)

= 1
∥w∥p+1

Hs(RN )

�
RN

x+ yn

|x+ yn|
|w∗(x)|p+1dx n→∞−−−→ e for some e ∈ SN−1.

Hence we arrive at a contradiction.

Lemma 3.3.11. ( [4, Lemma 2.5]) Let N ≥ 1 and M be a topological space

and SN−1 denote the unit sphere in RN . Suppose the there exists two contin-

uous mapping

F : SN−1 → M, G : M → SN−1,

such that G ◦F is homotopic to the identity map Id : SN−1 → SN−1, namely

there is continuous map η : [0, 1] × SN−1 → SN−1 such that

η(0, x) = (G ◦ F )(x) for all x ∈ SN−1

η(1, x) = x for all x ∈ SN−1.
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Then cat(M) ≥ 2.

In view of the above lemma, our next goal will be to construct two map-

pings:

F : SN−1 → [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(w∗) − ε] ,

G : [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(w∗) − ε] → SN−1,

so that G ◦ F is homotopic to the identity.

Proposition 3.3.12. Let a be as in Theorem 3.1.1 and d2 > 0 and R0 > 0

be as found in Proposition 3.3.5 and Proposition 3.3.8 respectively. Then

there exists d3 ∈ (0, d2] and R1 > R0, such that for any 0 < ∥f∥H−s(RN ) ≤ d3

and for any |y| ≥ R1, there exists a unique t = t(f, y) > 0 in a neighbourhood

of 1 satisfying

ulocmin(a, f ;x) + tw∗(x− y) = ta,f

(
ulocmin(a, f ;x) + tw∗(x− y)

∥ulocmin(a, f ;x) + tw∗(x− y)∥Hs(RN )

)

× ulocmin(a, f ;x) + tw∗(x− y)
∥ulocmin(a, f ;x) + tw∗(x− y)∥Hs(RN )

.

Moreover,

{y ∈ RN : |y| > R1} → (0, ∞); y 7→ t(f, y)

is continuous. Here w∗ is the unique ground state solution of (3.0.4).

Proof. Using implicit function theorem, the proof follows exactly in the same

spirit of [4, Proposition 2.6]. We skip the details.

Let us define FR : SN−1 → Σ̃+ in the following way:

FR(y) = ulocmin(a, f ;x) + t(f,Ry)w∗(x−Ry)
∥ulocmin(a, f ;x) + t(f,Ry)w∗(x−Ry)∥Hs(RN )

,

for ∥f∥H−s(RN ) ≤ d3 and R ≥ R1.

In Proposition 3.3.8, we have noticed that for |y| ≥ R0, (3.3.25) holds for

all t ≥ 0. For |y| ≥ R0, we choose t = t(f, y) such that (3.3.35) holds.
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Therefore,

Ja,f

(
ulocmin(a, f ;x) + tw∗(x− y)

∥ulocmin(a, f ;x) + tw∗(x− y)∥Hs(RN )

)
= Ia,f (ulocmin(a, f ;x) + tw∗(x− y))

< Ia,f (ulocmin(a, f ;x)) + I1,0(w∗).

Proposition 3.3.13. ( [4, Proposition 2.7]) Let d3 and R1 be as found in

Proposition 3.3.12. Then, for 0 < ∥f∥H−s(RN ) ≤ d3 and R ≥ R1, there exists

ε0 = ε0(R) > 0 such that

FR(SN−1) ⊆ [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(w∗) − ε0(R)] ,

where the notation [Ja,f ≤ c] is meant in the sense of (3.3.23).

Proof. By construction, we have,

FR(SN−1) ⊆ [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)] .

Since, F (SN−1) is compact, the conclusion holds.

Thus we construct a mapping

FR : SN−1 → [Ja,f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(w∗) − ε0(R)]

Now we will construct G. For the construction of G the following lemma is

important.

Lemma 3.3.14. There exists d4 ∈ (0, d3] such that if ∥f∥H−s(RN ) ≤ d4, then

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)] ⊆ [Ja,0 < I1,0(w∗) + δ0] (3.3.35)

where δ0 > 0 is given in lemma (3.3.10).

Proof. From (3.3.8), we have for any ε ∈ (0, 1)

Ja,0(v) ≤ (1 − ε)− p+1
p−1

(
Ja,f (v) + 1

2ε∥f∥2
H−s(RN )

)
for all v ∈ Σ̃+ (3.3.36)

From (3.3.21), we also have Ia,f (ulocmin(a, f ;x)) < 0.
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Therefore, if v ∈ [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)] then Ja,f (v) <

I1,0(w∗). Consequently, from (3.3.36), we have

Ja,0(v) ≤ (1 − ε)− p+1
p−1

(
I1,0(w∗) + 1

2ε∥f∥2
H−s(RN )

)

for all v ∈ [Ja, f ≤ Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)]. Since ε ∈ (0, 1) is arbi-

trary, we have

v ∈ [Ja,0 < I1,0(w∗) + δ0] for sufficiently small ∥f∥H−s(RN ).

Hence the lemma follows.

Now we can define, G : [Ja,f < Ia,f (ulocmin(a, f ;x)) + I1;0(w∗)] → SN−1

by

G(v) :=

�
RN

x
|x| |v|p+1dx∣∣∣∣∣

�
RN

x
|x| |v|p+1dx

∣∣∣∣∣
,

which is well defined thanks to Lemma 3.3.10 and Lemma 3.3.14. Moreover,

we will prove that these constructions F and G serves our purpose.

Proposition 3.3.15. For a sufficiently large R ≥ R1 and for sufficiently

small ∥f∥H−s(RN ) > 0,

G ◦ FR : SN−1 → SN−1

is homotopic to identity.

Proof. This proof follows in the same spirit as in [4, Proposition 2.4]. We

skip the details.

We are now in a position to state our main result in this subsection:

Proposition 3.3.16. For sufficiently large R ≥ R1,

cat

(
[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1, 0(w∗) − ε0(R)]

)
≥ 2.
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Proof. Combining Lemma 3.3.11 and Proposition 3.3.15, this proof follows.

The above proposition led us to the following multiplicity results.

Theorem 3.3.17. Let a be as in Theorem 3.1.1. Then there exists d5 > 0

such that if ∥f∥H−s(RN ) ≤ d5 and f is nonnegative nontrivial functional in

H−s(RN), then Ja,f has at least two critical points in

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)] .

Proof. From Corollary 3.3.7, we know (PS)c is satisfied for Ja,f when

c ∈ (−∞, Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)). Hence the theorem follows from

Proposition 3.3.16 and Proposition 2.6.5.

Proof of Theorem 3.1.1 concluded:

Proof. We set the first positive solution as u1 := ulocmin(a, f, x) which was

found in Proposition 3.3.4. Further, (3.3.21) implies

Ia,f (ulocmin(a, f ;x)) < 0.

By Theorem 3.3.17, Ja,f has at least two critical points v2, v3 in

[Ja,f < Ia,f (ulocmin(a, f ;x)) + I1,0(w∗)] .

Using Proposition 3.3.5(iii), u2 := ta,f (v2)v2 and u3 := ta,f (v3)v3 are the

2nd and 3rd positive solutions of (P). Further, by Lemma 3.3.2(iii), 0 <

Ja,f (vi) = Ia,f (ui), i = 2, 3. Hence

0 < Ia,f (ui) < Ia,f (u1) + I1,0(w∗), i = 2, 3.

Hence u1, u2, u3 are distinct and (P) has at least 3 distinct solutions.
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3.4 Proof of Theorem 3.1.2

In this section we prove Theorem 3.1.2. To this aim we first establish

existence of two positive critical points of Ia,f (see (3.3.1)) in the spirit

of [83]. Towards that, we partition Hs(RN) into three disjoint sets. Let,

g : Hs(RN) → R be defined by

g(u) := ∥u∥2
Hs(RN ) − p∥a∥L∞(RN )∥u∥p+1

Lp+1(RN ).

Now, we define

U1 := {u ∈ Hs(RN) : u = 0 or g(u) > 0}, U2 := {u ∈ Hs(RN) : g(u) < 0},

U := {u ∈ Hs(RN) \ {0} : g(u) = 0}.

Remark 3.4.1. Since p > 1, using Sobolev inequality, it is easy to see that

∥u∥Hs(RN ) and ∥u∥Lp+1(RN ) are bounded away from 0, for all u ∈ U .

We define,

c0 := inf
U1
Ia,f (u) and c1 := inf

U
Ia,f (u). (3.4.1)

Remark 3.4.2. For any t > 0, g(tu) = t2∥u∥2
Hs(RN )−tp+1p∥a∥L∞(RN )∥u∥p+1

Lp+1(RN ).

Moreover g(0) = 0 and t 7→ g(tu) is a strictly concave function, we have

for any u ∈ Hs(RN) with ∥u∥Hs(RN ) = 1, there exists unique t = t(u)

such that tu ∈ U. On the other hand, for any u ∈ U , it holds g(tu) =

(t2 − tp+1)∥u∥2
Hs(RN ). This implies

tu ∈ U1 for all t ∈ (0, 1) and tu ∈ U2 for all t > 1.

Lemma 3.4.3. Assume Cp is defined as in Theorem 3.1.2. Then there holds,

p−1
p

∥u∥Hs(RN ) ≥ CpS

p+1
2(p−1)
1 ∀ u ∈ U,

where S1 is as defined in (3.2.24).
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Proof. u ∈ U implies, ∥u∥Lp+1(RN ) =
∥u∥

2
p+1
Hs(RN )

(p||a||
L∞(RN ))

1
p+1

. Therefore, combining

this with the definition of S1, we have

∥u∥Hs(RN ) ≥ S
1
2
1 ∥u∥Lp+1(RN ) = S

1
2
1

∥u∥
2

p+1
Hs(RN )

(p∥a∥L∞(RN ))
1

p+1
∀u ∈ U.

Therefore, for all u ∈ U , we have

∥u∥Hs(RN ) ≥ S
p+1

2(p−1)
1

(p∥a∥L∞(RN ))
1

p−1
= p

p− 1CpS
p+1

2(p−1)
1 .

Hence the lemma follows.

Lemma 3.4.4. Assume Cp is defined as in Theorem 3.1.2 and

inf
u∈Hs(RN ), ∥u∥

Lp+1(RN )=1

{
Cp∥u∥

2p
p−1
Hs(RN ) − H−s⟨f, u⟩Hs

}
> 0. (3.4.2)

Then c0 < c1, where c0 and c1 are defined as in (3.4.1).

Proof. Define,

J̃(u) := 1
2∥u∥2

Hs(RN ) −
∥a∥L∞(RN )

p+ 1 ∥u∥p+1
Lp+1(RN ) − H−s⟨f, u⟩Hs , u ∈ Hs(RN).

(3.4.3)

Step 1: In this step we prove that there exists α > 0 such that
d

dt
J̃(tu)|t=1 ≥ α ∀u ∈ U.

From the definition of J̃ , we have
d

dt
J̃(tu)|t=1 = ∥u∥2

Hs(RN ) − ∥a∥L∞(RN )∥u∥p+1
Lp+1(RN ) − H−s⟨f, u⟩Hs .

Therefore, using the definition of U and the value of Cp, we have for u ∈ U

d

dt
J̃(tu)|t=1 = p− 1

p
∥u∥2

Hs(RN ) − H−s⟨f, u⟩Hs

= (p∥a∥L∞(RN ))
1

p−1Cp∥u∥2
Hs(RN ) − H−s⟨f, u⟩Hs

=
( ∥u∥2

Hs(RN )

∥u∥p+1
Lp+1(RN )

) 1
p−1

Cp∥u∥2
Hs(RN ) − H−s⟨f, u⟩Hs

= Cp

∥u∥
2p

p−1
Hs(RN )

∥u∥
p+1
p−1
Lp+1(RN )

− H−s⟨f, u⟩Hs . (3.4.4)
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Further, (3.4.2) implies there exists d > 0 such that

inf
u∈Hs(RN ),

∥u∥
Lp+1(RN )=1

{
Cp∥u∥

2p
p−1
Hs(RN ) − H−s⟨f, u⟩Hs

}
≥ d. (3.4.5)

Now,

(3.4.5) ⇐⇒ Cp

∥u∥
2p

(p−1)
Hs(RN )

∥u∥
p+1
p−1
Lp+1(RN )

− H−s⟨f, u⟩Hs ≥ d, ∥u∥Lp+1(RN ) = 1

⇐⇒ Cp

∥u∥
2p

(p−1)
Hs(RN )

∥u∥
p+1
p−1
Lp+1(RN )

− H−s⟨f, u⟩Hs ≥ d∥u∥Lp+1(RN ), u ∈ Hs(RN) \ {0}.

Hence, plugging back the above estimate into (3.4.4) and using Remark

(3.4.1) we complete the proof of Step 1.

Step 2: Let un be a minimizing sequence for Ia,f on U , i.e., Ia,f (un) → c1

and ∥un∥2
Hs(RN ) = p∥a∥L∞(RN )∥un∥p+1

Lp+1(RN ). Therefore, for large n

c1+o(1) ≥ Ia,f (un) ≥ J̃(un) ≥
(

1
2− 1

p(p+ 1)

)
∥un∥2

Hs(RN )−∥f∥H−s(RN )∥un∥Hs(RN ).

This implies that {J̃(un)} is a bounded sequence and ∥un∥Hs(RN ) and

∥un∥Lp+1(RN ) are bounded.

Claim: c0 < 0.

Indeed, to prove the claim, it’s enough to show that there exists v ∈ U1

such that Ia,f (v) < 0. Note that, thanks to Remark 3.4.2, we can choose

u ∈ U such that H−s⟨f, u⟩Hs > 0. Therefore,

Ia,f (tu) ≤ t2∥u∥p+1
Lp+1(RN )

[
p∥a∥L∞(RN )

2 − tp−1

p+ 1

]
− tH−s⟨f, u⟩Hs < 0.

for t << 1. Also by Remark 3.4.2, tu ∈ U1. Hence the claim follows.

Thanks to the above claim, Ia,f (un) < 0 for large n. Consequently,

0 > Ia,f (un) ≥
(

1
2 − 1

p(p+ 1)

)
∥un∥2

Hs(RN ) − H−s⟨f, un⟩Hs .
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This in turn implies H−s⟨f, un⟩Hs > 0 for all large n (since p > 1). Conse-

quently, d
dt
J̃(tun) < 0 for t > 0 small enough. Thus, by Step 1, there exists

tn ∈ (0, 1) such that d
dt
J̃(tnun) = 0. Moreover, tn is unique since,

d2

dt2
J̃(tu) = ∥u∥2

Hs(RN )−p∥a∥L∞(RN )t
p−1∥u∥p+1

Lp+1(RN ) = (1−tp−1)∥u∥2
Hs(RN ) > 0,

for all u ∈ U , for all t ∈ [0, 1).

Step 3: In this step we show that

lim inf
n→∞

{J̃(un) − J̃(tnun)} > 0. (3.4.6)

We observe that, J̃(un) − J̃(tnun) =
� 1

tn

d

dt
{J̃(tun)} dt and that for all

n ∈ N, there is ξn > 0 such that tn ∈ (0, 1 − 2ξn) and d
dt
J̃(tun) ≥ α for

t ∈ [1 − ξn, 1].

To establish (3.4.6), it is enough to show that ξn > 0 can be chosen in-

dependent of n ∈ N. But this is true since, d
dt
J̃(tun)|t=1 ≥ α and for the

boundedness of {un},∣∣∣∣∣ d2

dt2
J̃(tun)

∣∣∣∣∣ =
∣∣∣∣∣∥un∥2

Hs(RN ) − p∥a∥L∞(RN )t
p−1∥un∥p+1

Lp+1(RN )

∣∣∣∣∣
=

∣∣∣∣∣(1 − tp−1)∥un∥2
Hs(RN )

∣∣∣∣∣ ≤ C,

for all n ≥ 1 and t ∈ [0, 1].

Step 4: From the definition of Ia,f and J̃ , it immediately follows that
d
dt
Ia,f (tu) ≥ d

dt
J̃(tu) for all u ∈ Hs(RN) and for all t > 0. Hence,

Ia,f (un)−Ia,f (tnun) =
� 1

tn

d

dt
(Ia,f (tun)) dt ≥

� 1

tn

d

dt
J̃(tun) dt = J̃(un)−J̃(tnun)

Since, {un} ∈ U is a minimizing sequence for Ia,f , and tnun ∈ U1, we conclude

using (3.4.6) that

c0 = inf
u∈U1

Ia,f (u) < inf
u∈U

Ia,f (u) ≡ c1.
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Next, we introduce the problem at infinity associated to (3.3.2):

(−∆)su+ u = up
+ in RN , (3.4.7)

and the corresponding functional I1,0 : Hs(RN) → R defined by

I1,0(u) = 1
2∥u∥2

Hs(RN ) − 1
p+ 1

�
RN

up+1
+ dx.

Define,

X1 := {u ∈ Hs(RN) \ {0} : (I1,0)′(u) = 0}, S∞ := inf
X1
I1,0. (3.4.8)

Remark 3.4.5. Clearly I1,0(u) = p−1
2(p+1)∥u∥2

Hs(RN ) on X1. From (3.2.24),

we also have ∥u∥2
Hs(RN ) ≥ S

p+1
p−1
1 on X1. Therefore, S∞ ≥ p−1

2(p+1)S
p+1
p−1
1 > 0.

Further, it’s known from [71] that S1 is achieved by unique positive radial

ground state solution w∗ of (3.0.4). Therefore,

I1,0(w∗) = p− 1
2(p+ 1)S

p+1
p−1
1 .

Hence S∞ is achieved by w∗.

Proposition 3.4.6. Assume (3.4.2) holds. Then Ia,f has a critical point

u0 ∈ U1 with Ia,f (u0) = c0. In particular, u0 is a positive weak solution to

(P).

Proof. We decompose the proof into few steps.

Step 1: c0 > −∞.

Since Ia,f (u) ≥ J̃(u), where J̃ is defined as in (3.4.3), in order to prove

Step 1, it is enough to show that J̃ is bounded from below. From definition

of U1, it immediately follows that

J̃(u) ≥
[

1
2 − 1

p(p+1)

]
∥u∥2

Hs(RN ) −∥f∥H−s(RN )∥u∥Hs(RN ) for allu ∈ U1. (3.4.9)

As RHS is quadratic function in ∥u∥Hs(RN ), J̃ is bounded from below. Hence

Step 1 follows.
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Step 2: In this step we show that there exists a bounded PS sequence

{un} ⊂ U1 for Ia,f at level c0.

Let {un} ⊂ Ū1 such that Ia,f (un) → c0. Since Ia,f (u) ≥ J̃(u) from

(3.4.9), it follows that {un} is a bounded sequence. Since by Lemma 3.4.4,

c0 < c1, without restriction we can assume un ∈ U1. Therefore, by Ekeland’s

variational principle from {un}, we can extract a PS sequence in U1 for Ia,f

at level c0. We again call it by {un}. That completes the proof of Step 2.

Step 3: In this step we show that there exists u0 ∈ U1 such that un → u0

in Hs(RN).

Applying Proposition 3.2.1, it follows

un − u0 −
m∑

i=1
wi(x− xi

n) → 0 in Hs(RN) (3.4.10)

for some u0 with (Ia,f )′(u0) = 0 and some appropriate wi, {xi
n}. To prove

Step 3, we need to show that m = 0. We argue by method of contradiction.

Suppose there is wi ̸= 0 (i ∈ {1, 2, · · · ,m}) such that (I1,0)′(wi) = 0. i.e,

∥wi∥2
Hs(RN ) =

�
RN (wi

+)p+1 dx. Therefore,

g(wi) = ∥wi∥2
Hs(RN ) − p∥a∥L∞(RN )∥wi∥p+1

Lp+1(RN )

=
�
RN

(wi
+)p+1 dx− p∥a∥L∞(RN )

�
RN

|wi|p+1 dx

≤ ∥wi∥p+1
Lp+1(RN )(1 − p∥a∥L∞(RN )) < 0.

The last inequality follows from the fact that p > 1 and ∥a∥L∞(RN ) ≥ 1.

Now from Remark 3.4.5, I1,0(wi) ≥ S∞ > 0 for all 1 ≤ i ≤ m. Therefore,

Ia,f (un) → Ia,f (u0)+∑m
i=1 I1,0(wi) implies Ia,f (u0) < c0. This in turn implies,

u0 ̸∈ U1. Therefore, g(u0) ≤ 0.

Now we evaluate, g
(
u0 + ∑m

i=1 w
i(x − xi

n)
)
. Since un ∈ U1, we have

g(un) ≥ 0. Therefore, applying uniform continuity of g, we obtain from

(3.4.10) that

0 ≤ lim inf
n→∞

g(un) = lim inf
n→∞

g
(
u0 +

m∑
i=1

wi(x− xi
n)
)
. (3.4.11)
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On the other hand, since |xi
n| → ∞, |xi

n − xj
n| → ∞, for 1 ≤ i ̸= j ≤ m

the supports of u0(·) and wi(·−xi
n) are going increasingly far away as n → ∞

and we get

lim
n→∞

g
(
u0+

m∑
i=1

wi(x−xi
n)
)

= g(u0)+ lim
n→∞

m∑
i=1

g

(
wi(x−xi

n)
)

= g(u0)+
m∑

i=1
g(wi),

where the last equality is due to the fact that g is invariant under translation

in RN . Now since g(u0) ≤ 0 and g(wi) < 0, for i ≤ i ̸= j ≤ m, we get a

contradiction to (3.4.11). Hence Step 3 follows.

Step 4: From the previous steps we conclude that Ia,f (u0) = c0 and

(Ia,f )′(u0) = 0. Therefore, u0 is a weak solution to (3.3.2). Combining this

with Remark 3.3.1, we conclude the proof of the proposition.

Proposition 3.4.7. Assume (3.4.2) holds. Then Ia,f has a second critical

point v0 ̸= u0. In particular, v0 is a positive solution to (P).

Proof. Let u0 be the critical point obtained in Proposition 3.4.6 and w∗ be

as in Remark 3.4.5. Set, wt(x) := w∗
(

x
t

)
Claim 1: u0 + wt ∈ U2 for t > 0 large enough.

Indeed, as p > 1 and ∥a∥L∞(RN ) ≥ 1,

g(u0 + wt) ≤ ∥u0∥2
Hs(RN ) + ∥wt∥2

Hs(RN ) + 2 ⟨u0, wt⟩Hs

−p
(
∥u0∥p+1

Lp+1(RN ) + ∥wt∥p+1
Lp+1(RN )

)
≤ (1 + ε)∥wt∥2

Hs(RN ) + (1 + C(ε))∥u0∥2
Hs(RN )

−p
(
∥u0∥p+1

Lp+1(RN ) + ∥wt∥p+1
Lp+1(RN )

)
,

where to get the last inequality, we have used Young’s inequality with ε > 0.

Further, as w∗ solves (3.0.4), we have

∥wt∥2
Hs(RN ) = tN−2s[w∗]2Hs + tN∥w∗∥2

L2(RN ) and ∥wt∥p+1
Lp+1(RN ) = tN∥w∗∥2

Hs(RN ),
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where [·]Hs denotes the seminorm in Hs(RN). Therefore,

g(u0 + wt) ≤ (1 + C(ε))∥u0∥2
Hs(RN ) − p∥u0∥p+1

Lp+1(RN )

+[w∗]2Hs

[
(1 + ε)tN−2s − ptN

]
+ tN∥w∗∥2

L2(RN )

[
(1 + ε) − p

]
.

Choose ε > 0 such that 1 + ε < p. Therefore, g(u0 +wt) < 0 for t to be large

enough. Hence the claim follows.

Claim 2: Ia,f (u0 + wt) < Ia,f (u0) + I1,0(wt), ∀ t > 0.

Indeed, since u0, wt > 0, taking wt as the test function for (3.3.2) yields

⟨u0, wt⟩Hs(RN ) =
�
RN

a(x)up
0wt dx+ H−s⟨f, wt⟩Hs .

Therefore, using the above expression and the fact that a ≥ 1, we obtain

Ia,f (u0 + wt) = 1
2∥u0∥2

Hs(RN ) + 1
2∥wt∥2

Hs(RN ) + ⟨u0, wt⟩Hs(RN )

− 1
p+ 1

�
RN

a(x)(u0 + wt)p+1 dx− H−s⟨f, u0⟩Hs − H−s⟨f, wt⟩Hs

= Ia,f (u0) + I1,0(wt) + ⟨u0, wt⟩Hs(RN ) + 1
p+ 1

�
RN

a(x)up+1
0 dx

+ 1
p+ 1

�
RN

wp+1
t dx− 1

p+ 1

�
RN

a(x)(u0 + wt)p+1 dx− H−s⟨f, wt⟩Hs

≤ Ia,f (u0) + I1,0(wt) +
1

p+ 1

�
RN

a(x)
[
(p+ 1)up

0wt + up+1
0 + wp+1

t − (u0 + wt)p+1
]
dx

< Ia,f (u0) + I1,0(wt).

Hence the Claim follows.

Also, by direct computation, it follows

I1,0(wt) = tN−2s

2 [w∗]2Hs+
tN

2 ∥w∗∥2
L2(RN )−

tN

p+ 1∥w∗∥p+1
Lp+1(RN ) → −∞ as t → ∞,

(3.4.12)

From (3.4.12), it is also easy to see that

sup
t>0

I1,0(wt) = I1,0(w1) = I1,0(w∗) = S∞,
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where the last equality is due to Remark 3.4.5. Combing this with Claim 2

yields

Ia,f (u0 + wt) < Ia,f (u0) + S∞ ∀ t > 0. (3.4.13)

Combining (3.4.12) with Claim 2, we have

Ia,f (u0 + wt) < Ia,f (u0) for t large enough. (3.4.14)

Fix t0 > 0 large enough such that (3.4.14) and Claim 1 are satisfied.

Then we set

γ := inf
i∈Γ

max
t∈[0,1]

Ia,f

(
i(t)

)
,

where

Γ := {i ∈ C
(
[0, 1], Hs(RN)

)
: i(0) = u0, i(1) = u0 + wt0}.

As u0 ∈ U1 and u0 + wt0 ∈ U2, for every i ∈ Γ, there exists ti ∈ (0, 1) such

that i(ti) ∈ U . Therefore,

max
t∈[0,1]

Ia,f (i(t)) ≥ Ia,f

(
i(ti)

)
≥ inf

U
Ia,f (u) = c1.

Thus, γ ≥ c1 > c0 = Ia,f (u0). Here in the last inequality we have used

Lemma 3.4.4.

Claim 3: γ < S∞, where S∞ is as defined in (3.4.8).

It’s easy to see that limt→0 ∥wt∥Hs(RN ) = 0. Thus, if we define ĩ(t) =

u0 +wtt0 , then limt→0 ∥̃i(t) − u0∥Hs(RN ) = 0. Consequently, ĩ ∈ Γ. Therefore,

using (3.4.13), we obtain

γ ≤ max
t∈[0,1]

Ia,f (̃i(t)) = max
t∈[0,1]

Ia,f (u0 + wtt0) < Ia,f (u0) + S∞.

Hence the claim follows.

Hence

Ia,f (u0) < γ < Ia,f (u0) + S∞.
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Using Ekeland’s variational principle, there exists a PS sequence {un}

for Ia,f at level γ. Doing a standard computation yields {un} is bounded

sequence. Since, by Remark 3.4.5, we have S∞ = I1,0(w∗), from Proposi-

tion 3.2.1 we can conclude that un → v0, for some v0 ∈ Hs(RN) such that

(Ia,f )′(v0) = 0 and Ia,f (v0) = γ. Further, as Ia,f (u0) < γ, we conclude

v0 ̸= u0.

(Ia,f )′(v0) = 0 =⇒ v0 is a weak solution to (3.3.2). Combining this with

Remark 3.3.1, we conclude the proof of the proposition.

Lemma 3.4.8. If ∥f∥H−s(RN ) < CpS

p+1
2(p−1)
1 , then (3.4.2) holds.

Proof. Using the given hypothesis, we can obtain ε > 0 such that ∥f∥H−s(RN ) <

CpS

p+1
2(p−1)
1 − ε. Therefore, using Lemma 3.4.3, we have

H−s⟨f, u⟩Hs ≤ ∥f∥H−s(RN )∥u∥Hs(RN )

<
[
CpS

p+1
2(p−1)
1 − ε

]
∥u∥Hs(RN )

≤ p− 1
p

∥u∥2
Hs(RN ) − ε∥u∥Hs(RN ),

for all u ∈ U . Therefore,

p−1
p

∥u∥2
Hs(RN ) − H−s⟨f, u⟩Hs > ε∥u∥Hs(RN ) ∀u ∈ U.

i.e.,

inf
U

[
p−1

p
∥u∥2

Hs(RN ) − H−s⟨f, u⟩Hs

]
≥ ε inf

U
∥u∥Hs(RN ).

Since, by Remark 3.4.1, we have ∥u∥Hs(RN ) is bounded away from 0 on U ,

the above expression implies

inf
U

[
p−1

p
∥u∥2

Hs(RN ) − H−s⟨f, u⟩Hs

]
> 0. (3.4.15)
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On the other hand,

(3.4.2) ⇐⇒ Cp

∥u∥
2p

p−1
Hs(RN )

∥u∥
p+1
p−1
Lp+1(RN )

− H−s⟨f, u⟩Hs > 0 for ∥u∥Lp+1(RN ) = 1

⇐⇒ Cp

∥u∥
2p

p−1
Hs(RN )

∥u∥
p+1
p−1
Lp+1(RN )

− H−s⟨f, u⟩Hs > 0 for u ∈ U

⇐⇒ p−1
p

∥u∥2
Hs(RN ) − H−s⟨f, u⟩Hs > 0 for u ∈ U. (3.4.16)

Clearly, (3.4.15) insures RHS of (3.4.16) holds. Hence the lemma follows.

Proof of Theorem 3.1.2 completed:

Proof. Combining Proposition 3.4.6 and Proposition 3.4.7 with Lemma 3.4.8,

we conclude the proof of Theorem 3.1.2.

3.5 Existence Result when f ≡ 0

In this section we aim to prove Theorem 3.1.4 in the spirit of [59]. For this

using Mountain pass theorem, we first attempt to solve the following problem

in the bounded domain with Dirichlet boundary condition:

(−∆)su+ u = a(x)|u|p−1u in Bk,

u > 0 in Bk,

u = 0 in RN \Bk,

(Pk)

where Bk denotes the ball of radius k, centered at origin, 0 < a ∈ L∞(RN)

satisfies

lim
|x|→∞

a(x) = a0 = inf
x∈RN

a(x). (3.5.1)

Remark 3.5.1. Without loss of generality, we can assume a ̸≡ a0, since if

a ≡ a0 then u = a
− 1

p−1
0 w∗ is a solution of (P) (with f ≡ 0), where w∗ is the
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unique ground state solution of (3.0.4). In this case Theorem 3.1.4 follows

immediately.

We fix some notations first. Denote,

Ek := {u ∈ Hs(RN) : u = 0 in RN \Bk}

i.e., Ek is the closure of C∞
0 (Bk) w.r.t. the norm in Hs(RN). Therefore,

E1 ⊆ E2 ⊆ · · · ⊆ Hs(RN)

and ∪k≥1Ek is dense in Hs(RN). We define Ia,0 as in (3.3.1) (taking f = 0

there) and let Ik
a,0 denote the restriction of Ia,0 to the subspace Ek. Like

before using Remark 3.3.1, we can conclude that any nontrivial critical point

of Ik
a,0 is necessarily a positive solution of (Pk).

Lemma 3.5.2. For each k ≥ 1, Dirichlet problem (Pk) admits a solution

uk. Moreover, {uk} is uniformly bounded in Hs(RN) and so it contains a

subsequence that converges weakly to ū ≥ 0 in Hs(RN).

Proof. For u ∈ Ek,

Ik
a,0(u) = Ia,0(u) = 1

2∥u∥2
Hs(RN ) − 1

p+ 1

�
RN

a(x)up+1
+ dx

≥ 1
2∥u∥2

Hs(RN ) − 1
p+ 1∥a∥L∞(RN )∥u∥p+1

Lp+1(RN )

≥ 1
2∥u∥2

Hs(RN ) − 1
p+ 1∥a∥L∞(RN )S

− p+1
2

1 ∥u∥p+1
Hs(RN ),

where S1 is as defined in (3.2.24). As ∪k≥1Ek is dense in Hs(RN),

Ia,0(u) ≥ 1
2∥u∥2

Hs(RN ) − 1
p+ 1∥a∥L∞(RN )S

− p+1
2

1 ∥u∥p+1
Hs(RN ) ∀u ∈ Hs(RN).

Therefore, there exist δ, ᾱ > 0 such that

Ia,0(u) ≥ ᾱ > 0 on ∥u∥Hs(RN ) = δ, u ∈ Hs(RN).
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Now, choose u0 ∈ E1 with ∥u0∥Hs(RN ) > δ and u0 ≥ 0. As p > 1, there exists

t0 > 0 such that

Ia,0(tu0) ≤ t2

2 ∥u∥2
Hs(RN ) − a0t

p+1

p+ 1

�
B1

up+1
0 dx < 0 ∀ t > t0.

If t0 ≤ 1, then we define e := u0 otherwise, we define e := t0u0. Therefore,

0 ≤ e ∈ E1, ∥e∥ ≥ δ and Ia,0(te) < 0 for all t > 1. We define Γk to be the

set of all continuous paths in Ek connecting 0 and e and Γ be the set of all

continuous paths in Hs(RN) connecting 0 and e. Set,

α := inf
γ∈Γ

max
u∈γ

Ia,0(u) (3.5.2)

and

αk := inf
γ∈Γk

max
u∈γ

Ia,0(u). (3.5.3)

Observe that, Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γ and this in turn implies

α1 ≥ α2 ≥ · · · ≥ α ≥ ᾱ > 0. (3.5.4)

Moreover, since ∪k≥1Ek is dense in Hs(RN), it is easy to check that αk → α

as k → ∞. Applying Mountain pass lemma, we obtain αk is a critical point of

Ik
a,0. Let uk ∈ Ek be the critical point of Ik

a,0 corresponding to αk. Therefore,

Ia,0(uk) = Ik
a,0(uk) = αk and (Ik

a,0)′(uk) = 0. In particular,

αk = Ik
a,0(uk) − 1

p+ 1(Ik
a,0)′(uk)uk =

(
1
2 − 1

p+ 1

)
∥uk∥2

Hs(RN ).

Since αk ≤ α1, for all k ≥ 1, from the above expression we obtain {uk} is

uniformly bounded in Hs(RN). Hence there exists ū in Hs(RN) such that,

up to a subsequence, uk ⇀ ū in Hs(RN). Moreover, Ia,0(uk) = αk ≥ ᾱ > 0

implies uk is nontrivial. Therefore, taking (uk)− as the test function in
(−∆)su+ u = a(x)up

+ in Bk,

u = 0 in RN \Bk,

we obtain uk ≥ 0. Therefore, using maximum principle we have uk > 0 in

Bk. Hence ū ≥ 0.
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Lemma 3.5.3. Let uk be a critical point of Ik
a,0 and uk ⇀ ū in Hs(RN).

Then ū is a critical point of Ia,0.

Proof. uk be a critical point of Ik
a,0 implies

⟨uk, ψ⟩Hs(RN ) −
�

Bk

a(x)(uk)p
+ ψ dx = 0 ∀ψ ∈ Ek.

Let ϕ ∈ C∞
0 (RN). Then ϕ ∈ Ek for large k. Therefore, for large k,

⟨uk, ϕ⟩Hs(RN ) −
�
RN

a(x)(uk)p
+ϕ dx = 0. (3.5.5)

Since uk ⇀ ū in Hs(RN) implies ⟨uk, ϕ⟩Hs(RN ) → ⟨ū, ϕ⟩Hs(RN ) and by Lemma

3.2.3,
�
RN

a(x)(uk)p
+ ϕ dx →

�
RN

a(x)ūp
+ ϕ dx, as k → ∞. Therefore letting

k → ∞ in (3.5.5), yields I ′
a,0(ū)(ϕ) = 0. Since ϕ ∈ C∞

0 (RN) is arbitrary, the

lemma follows.

Thanks to Lemma 3.5.2 and Lemma 3.5.3, we are just left to show that

ū ̸≡ 0, in order to complete the proof of Theorem 3.1.4.

3.5.1 Comparison argument

For any arbitrarily fixed R > 0, define,

hR(x) =


a(x) if |x| > R,

0 if |x| ≤ R.
(3.5.6)

We define the following Nehari manifolds:

N := {u ∈ Hs(RN) \ {0} : ∥u∥2
Hs(RN ) =

�
RN

a(x)up+1
+ dx}

and

NR := {u ∈ Hs(RN) \ {0} : ∥u∥2
Hs(RN ) =

�
RN

hR(x)up+1
+ dx}

Set,

α∗ := inf
u∈N

Ia,0(u) and β∗
R := inf

u∈NR

IhR,0(u). (3.5.7)
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Lemma 3.5.4. α∗ < limR→∞ β∗
R.

Proof. From the definition of Ia,0, we have

α∗ =
(

1
2 − 1

p+ 1

)
inf
N

�
RN

a(x)up+1
+ dx

=
(

1
2 − 1

p+ 1

)
inf

Hs(RN )\{0}

[
∥u∥Hs(RN )( �

RN a(x)up+1
+ dx

) 1
p+1

] 2(p+1)
p−1

.

Similarly,

β∗
R =

(
1
2 − 1

p+ 1

)
inf

Hs(RN )\{0}

[
∥u∥Hs(RN )( �

RN hR(x)up+1
+ dx

) 1
p+1

] 2(p+1)
p−1

.

Therefore, it is enough to prove

inf
Hs(RN )\{0}

∥u∥Hs(RN )( �
RN a(x)up+1

+ dx
) 1

p+1
< lim

R→∞

(
inf

Hs(RN )\{0}

∥u∥Hs(RN )( �
RN hR(x)up+1

+ dx
) 1

p+1

)
.

Equivalently, it is enough to show

sup
∥u∥

Hs(RN )=1

�
RN

a(x)up+1
+ dx > lim

R→∞

(
sup

∥u∥
Hs(RN )=1

�
|x|>R

a(x)up+1
+ dx

)
. (3.5.8)

From (3.5.1) we have lim|x|→∞ a(x) = a0 = infx∈RN a(x). In view of Remark

3.5.1, we first note that, it is enough to consider the case when µ({x ∈ RN :

a(x) ̸= a0}) > 0, where µ(X) denotes the Lebesgue measure of a set X. In

this case, we

Claim:

sup
∥u∥

Hs(RN )=1

�
RN

a(x)up+1
+ dx > M := sup

∥u∥
Hs(RN )=1

�
RN

a0u
p+1
+ dx. (3.5.9)

To see the claim, first we note that clearly, for each u ∈ Hs(RN) with

∥u∥Hs(RN ) = 1, we have
�
RN

a(x)up+1
+ dx >

�
RN

a0u
p+1
+ dx.
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Therefore, the claim will be proved if we show that M is attained. For that,

let vn be a maximizing sequence, i.e.,

∥vn∥Hs(RN ) = 1,
�
RN

a0(vn)p+1
+ dx → M.

Using symmetric rearrangement technique, without loss of generality, we can

assume that vn is radially symmetric and symmetric decreasing (see [73]).

We denote by Hs
rad,d(RN), the set of all radially symmetric and decreasing

functions in Hs(RN). Using [28, Lemma 6.1], it is easy to see that

Hs
rad,d(RN) ↪→ Lp+1(RN)

is compact. Hence by standard argument, it follows that M is attained.

Therefore the claim follows.

Thanks to the above above claim, we have

sup
∥u∥

Hs(RN )=1

�
RN

a(x)up+1
+ dx > sup

∥u∥
Hs(RN )=1

�
RN

a0u
p+1
+ dx

> sup
∥u∥

Hs(RN )=1

�
|x|>R

a0u
p+1
+ dx

≥ lim
R→∞

(
sup

∥u∥
Hs(RN )=1

�
|x|>R

a0u
p+1
+ dx

)
.

(3.5.10)

Using the fact that lim|x|→∞ a(x) → a0, a straight forward computation yields

lim
R→∞

(
sup

∥u∥
Hs(RN )=1

�
|x|>R

a0u
p+1
+ dx

)
= lim

R→∞

(
sup

∥u∥
Hs(RN )=1

�
|x|>R

a(x)up+1
+ dx

)
.

Substituting the above equality into (3.5.10), we obtain (3.5.8).

Lemma 3.5.5. α ≤ α∗, where α and α∗ are defined as in (3.5.2) and (3.5.7).

Proof. Let v ∈ N be arbitrarily chosen and V denote the 2-dimensional

subspace spanned by v and e, where e is as found in the proof of Lemma

3.5.2. Let V + := {av + be : a ≥ 0, b ≥ 0}. Let S be the circle on V
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with radius R large enough such that Ia,0 ≤ 0 on S ∩ V + (this follows since

p > 1 and standard compactness argument on V +) and v, e lie inside S. Let

lv := {tv : t ≥ 0} and le := {te : t ≥ 0} intersect S at v1 and v2 respectively.

We define, γ̃ be the path that consists of the segment on lv with endpoints

0 and v1, the arc S ∩ V + (connecting v1 and v2) and the segment on le with

endpoints v2 and e. Therefore, clearly γ̃ ∈ Γ and v ∈ γ̃.

Claim: maxu∈γ̃ Ia,0(u) = Ia,0(v).

Indeed, a straight forward computation yields

v ∈ N implies max
t≥0

Ia,0(tv) = Ia,0(v).

Further, from the construction of γ̃ it follows Ia,0 ≤ 0 on the rest part of γ̃

(since Ia,0 ≤ 0 on S∩V + and Ia,0(te) < 0 for t > 1). Hence the claim follows.

The above claim immediately yields

α ≤ max
u∈γ̃

Ia,0(u) = Ia,0(v).

On the other hand, as v ∈ N was arbitrarily chosen, we obtain

α ≤ inf
v∈N

Ia,0(v) = α∗.

Proof of Theorem 3.1.4

Proof. By Lemma 3.5.3 and Lemma 3.5.2, we know that ū is a nonnegative

critical point of Ia,0. Therefore, it’s enough to show that ū ̸≡ 0 in Hs(RN).

We prove this by method of contradiction. Suppose ū ≡ 0 in Hs(RN).

Therefore, using Rellich compactness theorem, uk → 0 in Lp+1
loc (RN). Hence,

0 ≤ εk :=
�

BR

a(x)(uk)p+1
+ dx → 0 as k → ∞.

It is easy to see that for each k, there exists unique tk,R > 0 such that

tk,Ruk ∈ NR, i.e.,

t2k,R∥uk∥2
Hs(RN ) = tp+1

k,R

�
RN

hR(x)(uk)p+1
+ dx.
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Claim: {tk,R}∞
k=1 is a bounded sequence.

To prove the claim, first we note that since uk is critical point of Ik
a,0, we

have

∥uk∥2
Hs(RN ) =

�
RN

a(x)(uk)p+1
+ dx = εk +

�
|x|>R

a(x)(uk)p+1
+ dx

= εk +
�

|x|>R

hR(x)(uk)p+1
+ dx.

Further, p > 1 implies there exists δ > 0 such that p+ 1 > 2 + δ. Therefore,

if tk,R ≥ 1 then combining the above two expressions, we obtain

εkt
2
k,R + t2k,R

�
|x|>R

hR(x)(uk)p+1
+ dx ≥ tp+1

k,R

�
|x|>R

hR(x)(uk)p+1
+ dx

≥ t2+δ
k,R

�
|x|>R

hR(x)(uk)p+1
+ dx.

Consequently,

t2k,Rεk ≥ (t2+δ
k,R − t2k,R)

�
|x|>R

hR(x)(uk)p+1
+ dx

= (t2+δ
k,R − t2k,R)

�
|x|>R

a(x)(uk)p+1
+ dx

= (t2+δ
k,R − t2k,R)(∥uk∥2

Hs(RN ) − εk). (3.5.11)

Further, note that εk → 0 and Ik
a,0(uk) = αk implies

∥uk∥2
Hs(RN ) = 2

�
RN

a(x)(uk)p+1
+ dx+ 2αk ≥ 2αk ≥ 2ᾱ

(the last inequality follows from (3.5.4)). Therefore from (3.5.11), we have

t2k,Rεk ≥ ᾱ(t2+δ
k,R − t2k,R) for large k.

As a consequence, tk,R → 1 as k → ∞ (for fixed R > 0). Hence the claim

holds.

Using the above claim, we have tk,Ruk ⇀ 0 in Hs(RN). Further, as uk

is critical point of Ik
a,0 implies ∥uk∥2

Hs(RN ) =
�
RN a(x)(uk)p+1

+ dx, a straight
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forward computation yields that maxt≥0 Ia,0(tuk) = Ia,0(uk). Therefore,

αk = Ia,0(uk) ≥ Ia,0(tk,Ruk)

=
t2k,R

2 ∥uk∥2
Hs(RN ) −

tp+1
k,R

p+ 1

�
|x|>R

a(x)(uk)p+1
+ dx

−
tp+1
k,R

p+ 1

�
|x|<R

a(x)(uk)p+1
+ dx

= IhR,0(tk,Ruk) −
tp+1
k,R

p+ 1

�
|x|<R

a(x)(uk)p+1
+ dx

≥ β∗
R −

tp+1
k,R

p+ 1

�
|x|<R

a(x)(uk)p+1
+ dx,

where in the last inequality we have used the fact that tk,Ruk ∈ NR. As

before, tp+1
k,R

p+1

�
|x|<R

a(x)(uk)p+1
+ dx → 0 as k → ∞ (keeping R > 0 fixed).

Thus, taking the limit k → ∞ yields α ≥ β∗
R, where α is as defined in

(3.5.2). Consequently, α ≥ limR→∞ β∗
R. Combining this with Lemma 3.5.5,

we obtain limR→∞ β∗
R ≤ α∗. This contradicts Lemma 3.5.4. Hence ū ̸= 0.

Therefore, ū is a nontrivial nonnegative critical point of Ia,0. Finally, thanks

to maximum principle [56, Theorem 1.2], we get ū is a positive solution to

(3.3.2) (with f ≡ 0). Hence, ū is a positive solution to (P)(with f ≡ 0). This

completes the proof.

Remark 3.5.6. It is easy to note that if a(x) → 0 as |x| → ∞ at infinity,

once again some “compactness” exists and standard variational arguments

leads to the existence of positive solutions in this case.

Remark 3.5.7. If s > 1
2 and a : RN → [0,∞) is radial function satisfying

the growth condition

a(r) ≤ C(1 + rl), r ≥ 0,

C>0 being a constant and l < (N − 1)(p− 1)/2, then proceeding in the spirit

of [59, Lemma 4.8], it follows that (3.5.5) admits a positive radial solution wk

and ∥wk∥Hs(RN ) is uniformly bounded above. Therefore, up to a subsequence

81



CHAPTER 3. EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS OF
CERTAIN NONLOCAL SCALAR FIELD EQUATIONS

wk ⇀ w in Hs(RN) and w ≥ 0. Next, using the radial lemma [ [101],

Theorem 7.4(i)], it can be shown in the similar way as in [59, Corollary 4.8]

that w ̸≡ 0 in Hs(RN) i.e., (P) (with f ≡ 0) admits a positive radial solution

in Hs(RN). In this case, we do not need to assume any asymptotic behavior

of a at infinity.

Conclusion : In this chapter, we have considered nonlocal nonhomoge-

neous scalar field equation with subcritical nonlinearity multiplied by a pos-

itive, bounded coefficient function a whose asymptotic behavior is known.

Under the assumption a ≥ 1 or a ∈ (0, 1], we have obtained multiplicity

results under suitable condition on the nonhomogeneous term. While in the

homogeneous case we could prove existence of a positive solution under no

additional assumption on a except positivity, boundedness and asymptotic

behavior. Now, it might be interesting to consider the same question with

nonhomogeneous term and weak assumptions on a.

————— ◦ —————
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Chapter 4

Fractional Hardy-Sobolev

equations with

nonhomogeneous terms

The chapter deals with the following fractional Hardy-Sobolev equation with

nonhomogeneous term
(−∆)su− γ u

|x|2s = K(x) |u|2∗
s(t)−2u
|x|t + f(x) in RN ,

u ∈ Ḣs(RN),
(Eγ

K,t,f )

where N > 2s, s ∈ (0, 1), 0 ≤ t < 2s < N and 2∗
s(t) := 2(N−t)

N−2s
. Clearly,

2 < 2∗
s(t) ≤ 2N

N−2s
= 2∗

s. Here 0 < γ < γN,s, where γN,s is the best Hardy

constant in the fractional Hardy inequality

γN,s

�
RN

|u(x)|2
|x|2s

dx ≤
�
RN

|ξ|2s|F(u)(ξ)|2 dξ, γN,s = 22s Γ2(N+2s
4 )

Γ2(N−2s
4 )

,

where F(u) denotes the Fourier transform of u. Moreover,

lim
s→1

γN,s :=
(
N − 2

2

)2

,

which is exactly the best Hardy constant in the classical case s = 1. For

the sharp Hardy inequalities in general fractional Sobolev spaces W s,p(RN),
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1 < p < ∞, as well as for historical comments in the case p = 2, we refer

the interested reader to [73] and the references therein. While for fractional

Hardy-Sobolev-Maz’ya inequality, we mention the recent contribution [90]

and for fractional Hardy inequality in Heisenberg group we refer to [6]. In

(Eγ
K,t,f ), the functions K and f satisfy the properties:

(K) 0 < K ∈ C(RN), K(0) = 1 = lim|x|→∞ K(x).

(F) f ̸≡ 0 is a nonnegative functional in the dual space Ḣs(RN)′ of

Ḣs(RN), i.e. whenever u is a nonnegative function in Ḣs(RN) then

(Ḣs)′⟨f, u⟩Ḣs ≥ 0.

Using the Hardy inequality, it is easy to see that the operator Lγ,s := (−∆)s−
γ

|x|2s with 0 ≤ γ < γN,s is a positive operator. The request γ < γN,s is fairly

natural since we are looking for positive solutions. In this case the Hardy-

Sobolev inequality holds for Lγ,s, which states that if 0 ≤ t < 2s < N ,

then

Sγ,t,s = Sγ,t,s(RN) := inf
u∈Ḣs(RN )\{0}

CN,s

2

�
R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy − γ

�
RN

|u|2

|x|2s
dx( �

RN

|u|2∗
s(t)

|x|t
dx
) 2

2∗
s(t)

(4.0.1)

is finite, strictly positive and achieved (see [74, 75]). Observe that thanks

to [74], any minimizer for (4.0.1) leads (up to a constant) to a nonnegative

variational solution of the

(−∆)su− γ
u

|x|2s
= |u|2∗

s(t)−2u

|x|t
, u ∈ Ḣs(RN). (Eγ

1,t,0)

If γ = 0 = t, then Sγ,t,s reduces to the best Sobolev constant S0,0,s = S which

is known to be achieved by CN,s(1 + |x|2)− N−2s
2 and any minimizer of S leads

(up to a constant) to a nonnegative solution of equation (E0
1,0,0) i.e., (Eγ

1,t,0)

with γ = 0 = t.
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Definition 4.0.1. (Positive weak solution) We say u ∈ Ḣs(RN) is a

positive weak solution of (Eγ
K,t,f ) if u > 0 in RN and for every ϕ ∈ Ḣs(RN),

we have

CN,s

2

�
R2N

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dx dy − γ

�
RN

uϕ

|x|2s
dx

=
�
RN

K(x) |u|2∗
s(t)−2uϕ

|x|t
dx+ (Ḣs)′⟨f, ϕ⟩Ḣs ,

where (Ḣs)′⟨., .⟩Hs denotes the duality bracket between Ḣs(RN) and its dual

Ḣs(RN)′.

Remark 4.0.2. For 0 < γ < γN,s,

∥u∥γ :=
(
CN,s

2

�
R2N

|u(x) − u(y)|2
|x− y|N+2s

dxdy − γ

�
RN

|u|2

|x|2s
dx
)1

2

defines a norm in Ḣs(RN) which is equivalent to the standard norm in

Ḣs(RN). In particular,√
1 − γ

γN,s

∥u∥Ḣs ≤ ∥u∥γ ≤ ∥u∥Ḣs .

The corresponding equivalent inner product ⟨·, ·⟩γ in the fractional homoge-

neous Hilbert space Ḣs(RN) is given by

⟨u, v⟩γ := CN,s

2

�
R2N

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x− y|N+2s

dx dy − γ

�
RN

uv

|x|2s
dx.

Finally, for simplicity we endow in what follows the weighted Lebesgue space

L2∗
s(t)(RN , |x|−t) with the norm ∥u∥L2∗

s(t)(RN ,|x|−t)) =
(�

RN
|u|2∗

s(t)

|x|t dx
)1/2∗

s(t)
.

We are going to prove existence and multiplicity of positive solutions of

(Eγ
K,t,f ) in the spirit of [24, 31]. Under the conditions on K and f stated

above, equation (Eγ
K,t,f ) can be regarded as a perturbation problem of the

homogeneous equation (Eγ
1,t,0). It is known from [75] that when 0 < γ <

γN,s or {γ = 0 and 0 < t < 2s}, then any nonnegative minimizer for Sγ,t,s

is positive, radially symmetric, radially decreasing, and approaches zero as
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|x| → ∞. The main question to be addressed is whether positive solution

can survive after a perturbation of type (Eγ
K,t,f ) or not.

For γ = 0 = t, this kind of question was recently studied by the first and

third author of the current paper in [31]. For Schrödinger operator (without

Hardy term), same type of questions were addressed in [24] with subcritical

nonlinearity. However for γ ̸= 0 the presence of the Hardy potential requires

a new argument to dealt with. One of the key steps to prove the multiplicity

result is a careful analysis of the Palais-Smale level. Theorem 4.2.1 studies

the profile decomposition of any Palais-Smale sequence possessed by the un-

derlying functional associated to (Eγ
K,t,f ). We show that concentration takes

place along a single profile when t > 0, while concentration takes place along

two different profiles when t = 0. In the local case s = 1, t = 0 and f = 0

Smets deals with the profile decomposition in [103]. In bounded domains and

again in the local case s = 1, paper [32] treats the case of all t ≥ 0. How-

ever, extension of the latter results in the nonlocal case s ∈ (0, 1) and in the

entire space RN is highly nontrivial and requires several delicate estimates

and techniques to deal with.

In local case s = 1, we refer [65, 103], where authors have studied the

local version of (Eγ
K,0,0) in RN . In the nonlocal case, when the domain is a

bounded subset of RN , existence of positive solutions of (Eγ
K,t,f ) in Ω with

γ = 0 = t (i.e., without Hardy and Hardy-Sobolev terms) and Dirichlet

boundary condition has been proved in [102]. Existence of sign changing

solutions of

(−∆)su = |u|
4s

N−2su+ εf in Ω, u = 0 in RN \ Ω,

where f ≥ 0, f ∈ L∞(Ω) has been studied in [7] and existence of two positive

solutions have been established in [110] when f is a continuous function with

compact support in Ω. In the nonlocal case, when the domain is the entire

space RN , but γ = 0, we refer to [24, 31], where multiplicity of positive
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solutions have been studied in presence of a nonhomogeneous term.

There is a wide literature regarding problems involving the fractional

Hardy potential. Avoiding to disclose the discussion we refer to the following

(far from being complete) list of works and references therein [2,3,23,34,60,

72, 75]. In [60] Dipierro, et al. study the equation (Eγ
1,0,0) (i.e., (Eγ

1,t,0) with

t = 0) and prove existence of a ground state solution, qualitative properties

of positive solutions and asymptotic behavior of solutions at both 0 and

infinity. In [36], the authors studied existence and asymptotic behavior of

p-Laplacian problems with Hardy potentials and critical nonlinearities on

general open subsets of Heisenberg groups. In [23], the authors deal with

the Green function for Lγ,s (0 < γ < γN,s) and show when the integral

representation of the weak solution is valid.

It is worth noting that solutions of (Eγ
1,t,0) do not belong to L∞(RN) as

soon as γ > 0, because of the singularity at zero. In fact solutions blow up at

origin (see [60,75]). For this reason, it seems more difficult to handle (Eγ
K,t,f )

in the general case using the fine analysis of blow up technique quoted above.

To the best of our knowledge, so far there has been no papers in the

literature, where existence and multiplicity of positive solutions of Hardy-

Sobolev type equations (with γ ̸= 0 and t ≥ 0) in RN , have been established

in the nonhomogeneous case f ̸= 0. Also the profile decomposition in the

nonlocal case with the Hardy term is completely new and the proof is very

involved, delicate and complicated compared with the local case s = 1. The

proofs are not at all an easy adoption of the local case or the case γ = 0.

The multiplicity results in this paper is new even in the local case s = 1, but

we leave the obvious changes, when s = 1, to the interested reader.

4.1 Main Results

Below we state the main result.
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Theorem 4.1.1. Assume that (F) and (K) are satisfied, with K ≥ 1 in RN .

If ∥f∥(Ḣs)′ < Ct

√
1 − γ

γN,s
S

N−t
4s−2t
γ,t,s , where

Ct =
(

4s− 2t
N − 2t+ 2s

)(
(2∗

s(t) − 1)∥K∥L∞(RN )

)−
(

N−2s
4s−2t

)
,

then

(i) For t > 0, equation (Eγ
K,t,f ) admits two positive solutions;

(ii) For t = 0, equation (Eγ
K,t,f ) admits a positive solution. In addition,

if ∥K∥L∞(RN ) <
(

S
Sγ,0,s

) N
N−2s then (Eγ

K,t,f ) admits two positive solutions.

Remark 4.1.2. It is worth mentioning that S > Sγ,0,s for any γ > 0. To see

this, we denote by W the unique positive solution of (E0
1,0,0) and let Wγ,0 be

a minimum energy positive solution (ground state solution) of (Eγ
1,t,0) with

t = 0. Then,

Iγ
1,0,0(Wγ,0) ≤ Iγ

1,0,0(W ) < I0
1,0,0(W ).

A straight forward computation yields that I0
1,0,0(W ) = s

N
S

N
2s and Iγ

1,0,0(Wγ,0) =
s
N
S

N
2s
γ,0,s. Consequently, S > Sγ,0,s for any γ > 0. From this observation, it

immediately follows that if K ≡ 1, then (Eγ
1,t,f ) admits two positive solutions

for all t ≥ 0 under the given assumption (F) on f .

Note that the Hardy-Sobolev embedding Ḣs(RN) ↪→ L2∗
s(t)(RN , |x|−t) for

any 0 ≤ t < 2s is continuous, but not compact. This noncompactness of the

embedding even locally in any neighbourhood of zero leads to other additional

difficulties, and more importantly, to new phenomenon concerning the possi-

bility of blow up. Thus the variational functional associated to (Eγ
K,t,f ) does

not satisfy the Palais-Smale condition, briefly called (PS) condition. The

lack of compactness of the functional associated to (Eγ
K,t,f ) is due to a con-

centration phenomenon. We analyze this noncompactness in Theorem 4.2.1,

which is one of the most important theorems of the paper. Using this the-

orem we prove existence and multiplicity of positive solutions to (Eγ
K,t,f ) in
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Theorem 4.1.1. For that first we decompose Ḣs(RN) into three components

which are homeomorphic to the interior, boundary and the exterior of the

unit ball in Ḣs(RN) respectively. Then we prove that the energy functional

associated to (Eγ
K,t,f ) attains its infimum on one of the components which

serves as our first positive solution. The second positive solution is obtained

via a careful analysis on the (PS) sequences associated to the energy func-

tional and we construct a min–max critical level κt, where the (PS) condition

holds.

This chapter has been organised in the following way. In Section 4.2,

we prove the Palais-Smale decomposition theorem associated with the func-

tional corresponding to (Eγ
K,t,f ) (see Theorem 4.2.1). In Section 4.3, we show

existence of two positive solutions of (Eγ
K,t,f ), namely Theorem 4.1.1. Last

section contains some basic estimates which are used in proving the Palais-

Smale characterization theorem in Section 4.2.

4.2 Palais-Smale decomposition

In this section we study the Palais-Smale sequences (in short, (PS) se-

quences) of the functional Īγ
K,t,f associated to (Eγ

K,t,f )

Īγ
K,t,f (u) := CN,s

4

�
R2N

|u(x) − u(y)|2
|x− y|N+2s

dx dy − γ

2

�
RN

|u|2

|x|2s
dx

− 1
2∗

s(t)

�
RN

K(x) |u|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, u⟩Ḣs (4.2.1)

= 1
2∥u∥2

γ − 1
2∗

s(t)

�
RN

K(x) |u|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, u⟩Ḣs ,

where K and f satisfy (K) and (F) respectively.

We say that the sequence (un)n ⊂ Ḣs(RN) is a (PS) sequence for ĪK,t,f

at level β if ĪK,t,f (un) → β and (ĪK,t,f )′(un) → 0 in (Ḣs)′. It is easy to see

that the weak limit of a (PS) sequence solves (Eγ
K,t,f ) except the positivity.
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However the main difficulty is that the (PS) sequence may not converge

strongly and hence the weak limit can be zero even if β > 0. The main

purpose of this section is to classify (PS) sequences of the functional Īγ
K,t,f .

Classification of (PS) sequences has been done for various problems having

lack of compactness, to quote a few, we cite [31, 94, 95] in the nonlocal case

with γ = 0 = t, while in the local case [32, 103] with Hardy potentials and

in [105] without Hardy potentials. We also refer to [108] for a more abstract

approach of the profile decomposition in general Hilbert spaces. We establish

a classification theorem for the (PS) sequences of (4.2.1) in the spirit of the

above results. In [31,94], the noncompactness is completely described by the

single blow up profile W , which is a solution of

(−∆)sW = |W |2∗
s−2W in RN , W ∈ Ḣs(RN). (E0

1,0,0)

In [32,103] (the local case s = 1), the noncompactness are due to concentra-

tion occurring through two different profiles. Possibility of two different type

of profiles are still present for (Eγ
K,t,f ) in the case t = 0.

Let t = 0 and let W be any solution of (E0
1,0,0). Then, it can be easily

verified that any sequence of the form

W rn, yn(x) := K(y)− N−2s
4s r

− N−2s
4s

n W
(x− yn

rn

)
, (4.2.2)

is a (PS) sequence for Īγ
K,0,0 if yn → y ̸= 0 and rn → 0. If y = 0, then W rn, yn

remains a (PS) sequence for Īγ
K,0,0 provided that |yn|

rn
→ ∞. Also W rn, yn ⇀ 0

in Ḣs(RN) by [94, Lemma 3].

Further, let Wγ,t be any solution of (Eγ
1,t,0) (where t ≥ 0). Define a

sequence (WRn,0
γ,t )n of the form

WRn,0
γ,t (x) := R

− N−2s
4s

n Wγ,t

( x
Rn

)
, (4.2.3)

where Rn → 0. Then WRn,0
γ,t ⇀ 0 in Ḣs(RN) and (WRn,0

γ,t )n is a (PS) sequence

for Īγ
K,t,0 for t ≥ 0.
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Theorem 4.2.1. Let (un)n be a (PS) sequence for Īγ
K,t,f at the level β. Then

up to a subsequence, still denoted by (un)n, the next properties hold.

If t = 0, then there exist n1, n2 ∈ N, n2 sequences (Rk
n)n ⊂ R+ (1 ≤

k ≤ n2), n1 sequences (rj
n)n ⊂ R+ and (yj

n)n ⊂ RN \ {0} (1 ≤ j ≤ n1) and

0 ≤ ū ∈ Ḣs(RN) such that

(i) un = ū+
n1∑

j=1
K(yj)− N−2s

4s (W j)rj
n, yj

n +
n2∑

k=1
(W k

γ,t)Rk
n,0 + o(1)

(ii) (Īγ
K,t,f )′(ū) = 0

(iii) Rk
n → 0 (1 ≤ k ≤ n2) and rj

n → 0 (1 ≤ j ≤ n1)

(iv) either yj
n → yj ∈ RNor |yj| → ∞ and rj

n

|yj
n|

→ 0 (1 ≤ j ≤ n1)

(v) β = Īγ
K,t,f (ū) +

n1∑
j=1

K(yj)− N−2s
2s Ī0

1,0,0(W j) +
n2∑

k=1
Īγ

1,t,0(W k
γ,t) + o(1)

(vi)
∣∣∣∣∣ log

(ri
n

rj
n

)∣∣∣∣∣+
∣∣∣∣∣yi

n − yj
n

rj
n

∣∣∣∣∣ −→
n→∞

∞ for i ̸= j

(vii)
∣∣∣∣∣ log

(Rk
n

Rl
n

)∣∣∣∣∣ −→
n→∞

∞ for k ̸= l,

where o(1) → 0 in Ḣs(RN) as n → ∞, (W j)rj
n, yj

n and (W k
γ,t)Rk

n,0 are (PS)

sequences of the form (4.2.2) and (4.2.3) respectively, with W = W j and

Wγ,t = W k
γ,t.

When t > 0, the same conclusions hold, with W j = 0 for all j.

In the case n1 = 0, n2 = 0 the above properties (i)–(vii) are valid without

W, Wγ, R
k
n, r

j
n.

Proof. We prove the theorem in several steps.

Step 1: Using standard arguments it follows that there exists M > 0 such

that

∥un∥γ < M for all n ∈ N.
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More precisely, as n → ∞

β + o(1) + o(1)∥un∥γ ≥ Īγ
K,t,f (un) − 1

2∗
s(t) (Ḣs)′

〈
(Īγ

K,t,f )′(un), un

〉
Ḣs

=
(

1
2 − 1

2∗
s(t)

)
∥un∥2

γ −
(

1 − 1
2∗

s(t)

)
(Ḣs)′⟨f, un⟩Ḣs

≥
(

1
2 − 1

2∗
s(t)

)
∥un∥2

γ −
(

1 − 1
2∗

s(t)

)
∥f∥(Ḣs)′∥un∥Ḣs .

As 2∗
s(t) > 2, from the above estimate it follows that (un)n is bounded

in Ḣs(RN). Consequently, there exists ū in Ḣs(RN) such that, up to a

subsequence, still denoted by (un)n, un ⇀ ū in Ḣs(RN) and un → ū a.e. in

RN . Moreover, as
(Ḣs)′

〈
(Īγ

K,t,f )′(un), v
〉

Ḣs
→ 0 as k → ∞ for all v ∈ Ḣs(RN),

then

(−∆)sun − γ
un

|x|2s
−K(x)|un|2∗

s(t)−2un − f −→ 0 in Ḣs(RN)′. (4.2.4)

Step 2: From (4.2.4), letting n → ∞, we get

⟨un, v⟩γ −
�
RN

K(x) |un|2∗
s(t)−2unv

|x|t
dx− (Ḣs)′⟨f, v⟩Ḣs → 0. (4.2.5)

As un ⇀ ū in Ḣs(RN), it is easy to see that ⟨un, v⟩γ → ⟨ū, v⟩γ for all

v ∈ Ḣs(RN).

Claim 1:
�
RN

K(x) |un|2∗
s(t)−2unv

|x|t
dx −→

�
RN

K(x) |ū|2∗
s(t)−2ūv

|x|t
dx for all v ∈

Ḣs(RN).

Indeed, un → ū a.e. in RN and
�
RN

K(x) |un|2∗
s(t)−2unv

|x|t
dx =

�
BR

K(x) |un|2∗
s(t)−2unv

|x|t
dx

+
�
RN \BR

K(x) |un|2∗
s(t)−2unv

|x|t
dx.

(4.2.6)

On BR we will show the convergence using Vitali’s convergence theorem. For

that, given any ε > 0, we choose Ω ⊂ BR such that
(�

Ω

|v|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

<
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ε

∥K∥L∞(RN )(MS
− 1

2
γ,t,s)2∗

s(t)−1
. Since |v|2∗

s(t)

|x|t is in L1(RN), the above choice makes

sense. Therefore,∣∣∣∣∣
�

Ω
K(x) |un|2∗

s(t)−2unv

|x|t
dx
∣∣∣∣∣

≤ ∥K∥L∞(RN )

�
Ω

|un|2∗
s(t)−1|v|
|x|t

dx

≤ ∥K∥L∞(RN )

( �
Ω

|un|2∗
s(t)

|x|t
dx
)2∗

s(t)−1
2∗

s(t)
( �

Ω

|v|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

≤ ∥K∥L∞(RN )S
− 2∗(t)−1

2
γ,t,s ∥un∥2∗

s(t)−1
γ

(�
Ω

|v|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

< ε

Thus K |un|2∗
s(t)−2unv
|x|t is uniformly integrable in BR. Therefore, using Vitali’s

convergence theorem, we can pass the limit in the 1st integral on RHS of

(4.2.6).

To estimate the integral now on Bc
R, we first set vn = un − ū. Then

vn ⇀ 0 in Ḣs(RN). It is not difficult to see that for every ε > 0 there exists

Cε > 0 such that∣∣∣∣∣|vn + ū|2∗
s(t)−2(vn + ū) − |ū|2∗

s(t)−2ū

∣∣∣∣∣ < ε|vn|2∗
s(t)−1 + Cε|ū|2∗

s(t)−1.

Therefore,∣∣∣∣∣
�

Bc
R

K(x)
{

|un|2∗
s(t)−2un

|x|t
− |ū|2∗

s(t)−2ū

|x|t

}
v dx

∣∣∣∣∣
≤ ∥K∥L∞(RN )

[
ε

�
Bc

R

|vn|2∗
s(t)−1|v|
|x|t

dx+ Cε

�
Bc

R

|ū|2∗
s(t)−1|v|
|x|t

]

≤ ∥K∥L∞(RN )

[
ε

( �
Bc

R

|vn|2∗
s(t)

|x|t
dx
)2∗

s(t)−1
2∗

s(t)
( �

Bc
R

|v|2∗
s(t)

|x|t

) 1
2∗

s(t)

+ Cε

( �
Bc

R

|ū|2∗
s(t)

|x|t

)2∗
s(t)−1
2∗

s(t)
( �

Bc
R

|v|2∗
s(t)

|x|t

) 1
2∗

s(t)
]

≤ C∥K∥L∞(RN )

[
ε∥vn∥2∗

s(t)−1
γ

( �
Bc

R

|v|2∗
s(t)

|x|t

) 1
2∗

s(t)
+ Cε∥ū∥2∗

s(t)−1
γ

( �
Bc

R

|v|2∗
s(t)

|x|t

) 1
2∗

s(t)
]
.
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Since (∥vn∥γ)n is uniformly bounded and |v|2∗
s(t)

|x|t ∈ L1(RN), given ε > 0, we

can choose R > 0 so large that

∣∣∣∣∣
�

Bc
R

K(x)
{

|un|2∗
s(t)−2un

|x|t
− |ū|2∗

s(t)−2ū

|x|t

}
v dx

∣∣∣∣∣ < ε.

This completes the proof of claim 1.

Hence (4.2.5) yields that ū is a solution of (Eγ
K,t,f ).

Step 3: Here we show that (un − ū)n is a (PS) sequence for Īγ
K,t,0 at the level

β − Īγ
K,t,f (ū). To see this, first we observe that as n → ∞,

∥un − ū∥2
γ = ∥un∥2

γ − ∥ū∥2
γ + o(1),

and by the Brézis-Lieb lemma as n → ∞

�
RN

K(x) |un − ū|2∗
s(t)

|x|t
dx =

�
RN

K(x) |un|2∗
s(t)

|x|t
dx−

�
RN

K(x) |ū|2∗
s(t)

|x|t
dx+o(1).

Further as un ⇀ u and f ∈ Ḣs(RN)′, we also have

(Ḣs)′⟨f, un⟩Ḣs −→ (Ḣs)′⟨f, ū⟩Ḣs .

Therefore, as n → ∞

Īγ
K,t,0(un − ū) = 1

2∥un − ū∥2
γ − 1

2∗
s(t)

�
RN

K(x) |un − ū|2∗
s(t)

|x|t
dx

= 1
2∥un∥2

γ − 1
2∗

s(t)

�
RN

K(x) |un|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, un⟩Ḣs

−
{

1
2∥ū∥2

γ − 1
2∗

s(t)

�
RN

K(x) |ū|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, ū⟩Ḣs

}
+ o(1)

= Īγ
K,t,f (un) − Īγ

K,t,f (ū) + o(1)

−→ β − Īγ
K,t,f (ū).
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Further, as
(Ḣs)′

〈
(Īγ

K,t,f )′(ū), v
〉

Ḣs
= 0 for all v ∈ Ḣs(RN), we obtain

(Ḣs)′

〈
(Īγ

K,t,0)′(un − ū), v
〉

Ḣs
= ⟨un − ū, v⟩γ −

�
RN

K(x) |un − ū|2∗
s(t)−2(un − ū)v
|x|t

dx

= ⟨un, v⟩γ −
�
RN

K(x) |un|2∗
s(t)−2unv

|x|t
dx− (Ḣs)′⟨f, v⟩Ḣs

−
(

⟨ū, v⟩γ −
�
RN

K(x) |ū|2∗
s(t)−2ūv

|x|t
dx− (Ḣs)′⟨f, v⟩Ḣs

)

+
�
RN

K(x)
{

|un|2∗
s(t)−2un

|x|t
− |ū|2∗

s(t)−2ū

|x|t
(4.2.7)

− |un − ū|2∗
s(t)−2(un − ū)
|x|t

}
vdx

= o(1) +
�
RN

K(x)
{

|un|2∗
s(t)−2un

|x|t
− |ū|2∗

s(t)−2ū

|x|t

− |un − ū|2∗
s(t)−2(un − ū)
|x|t

}
vdx.

We observe that∣∣∣∣∣K {
|un|2∗

s(t)−2uk − |ū|2∗
s(t)−2ū− |un − ū|2∗

s−2(un − ū)
} ∣∣∣∣∣

≤ C

(
|un − ū|2∗

s(t)−2|ū| + |u|2∗
s(t)−2|un − ū|

)
.

Therefore, following the same method as in the proof of Claim 1 in Step 2,

we show that as n → ∞
�
RN

K(x)
{

|un|2∗
s(t)−2un

|x|t
− |ū|2∗

s(t)−2ū

|x|t
− |un − ū|2∗

s(t)−2(un − ū)
|x|t

}
vdx = o(1)

(4.2.8)

for all v ∈ Ḣs(RN). Plugging this back into (4.2.7), we complete the proof

of Step 3.

Step 4: Define vn := un − ū. Then vn ⇀ 0 in Ḣs(RN) and by Step 3, (vn)n

is a (PS) sequence for Īγ
K,t,0 at the level β − Īγ

K,t,f (ū). Thus,

sup
n∈N

∥vn∥γ ≤ C and ⟨vn, φ⟩γ =
�
RN

K(x) |vn|2∗
s(t)−2vnφ

|x|t
dx+ o(1) (4.2.9)
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as n → ∞ for all φ ∈ Ḣs(RN). Therefore, ∥vn∥2
γ =

�
RN K(x) |vn|2∗

s(t)

|x|t dx+o(1).

Thus, if
�
RN K(x) |vn|2∗

s(t)

|x|t dx −→ 0, then we are done when k = l = 0 and the

(PS) sequence (un)n admits a strongly convergent subsequence.

If not, let 0 < δ < S
N−t
2s−t
γ,t,s ∥K∥− N−2s

2s−t

L∞(RN ) such that

lim sup
n→∞

�
RN

K(x) |vn|2∗
s(t)

|x|t
dx > δ.

Up to a subsequence, let Rn > 0 be such that

�
BRn

K(x) |vn|2∗
s(t)

|x|t
dx = δ

and Rn being minimal with this property. Define

wn(x) := R
N−2s

2
n vn(Rnx).

Therefore, ∥wn∥γ = ∥vn∥γ and

δ =
�

BRn

K(x) |vn|2∗
s(t)

|x|t
dx =

�
B1

K(Rnx) |wn|2∗
s(t)

|x|t
dx. (4.2.10)

Therefore, up to a subsequence

wn ⇀ w in Ḣs(RN) and wn → w a.e. in RN .

Let us now distinguish two cases w ̸= 0 and w = 0.

Step 5: Assume that w ̸= 0.

Since, wn ⇀ w ̸= 0 and vn ⇀ 0, it follows that Rn → 0 as n → ∞. Next,

we show that w is a solution of (Eγ
1,t,0). Indeed, thanks to (4.2.9), for any
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ϕ ∈ C∞
c (RN)

⟨w, ϕ⟩γ = lim
n→∞

⟨wn, ϕ⟩γ

= lim
n→∞

CN,s

2

�
R2N

(wn(x) − wn(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dxdy − γ

�
RN

wnϕ

|x|2s
dx

= lim
n→∞

CN,s

2

�
R2N

R
N−2s

2
n (vn(Rnx) − vn(Rny))(ϕ(x) − ϕ(y))

|x− y|N+2s
dxdy

− γ

�
RN

R
N−2s

2
n vn(Rnx)ϕ(x)

|x|2s
dx (4.2.11)

= lim
n→∞

CN,s

2

�
R2N

R
− N−2s

2
n (vn(x) − vn(y))(ϕ( x

Rn
) − ϕ( y

Rn
))

|x− y|N+2s
dxdy

− γ

�
RN

R
− N−2s

2
n vn(x)ϕ( x

Rn
)

|x|2s
dx

= lim
n→∞

�
RN

K(x) |vn|2∗
s(t)−2vn

|x|t
R

− N−2s
2

n ϕ
( x
Rn

)
dx

= lim
n→∞

�
RN

K(Rnx) |wn|2∗
s(t)−2wn

|x|t
ϕ(x) dx.

Clearly K(Rnx) |wn|2∗
s(t)−2wn

|x|t ϕ → |w|2∗
s(t)−2w
|x|t ϕ a.e. in RN , since K ∈ C(RN),

with K(0) = 1, and wn → w a.e. in RN . Further, arguing as in the proof

of Claim 1 in Step 2, we have K(Rnx) |wn|2∗
s(t)−2wn

|x|t ϕ is uniformly integrable.

Therefore, as ϕ has compact support, using Vitali’s convergence theorem we

obtain

lim
n→∞

�
RN

K(Rnx) |wn|2∗
s(t)−2wn

|x|t
ϕ(x) dx =

�
RN

|w|2s∗(t)−2wϕ

|x|t
dx. (4.2.12)

Combining (4.2.12) along with (4.2.11), we conclude that w is a solution of

(Eγ
1,t,0).

Define

zn(x) := vn(x) −R
− N−2s

2
n w( x

Rn
).

Claim 2: (zn)n is a (PS) sequence for Īγ
K,t,0 at the level β − Īγ

K,t,f (ū) −

Īγ
1,0,0(w).
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To prove the claim, set

z̃n(x) := R
N−2s

2
n zn(Rnx).

Then

z̃n(x) = wn(x) − w(x) and ∥z̃n∥γ = ∥wn − w∥γ = ∥zn∥γ.

As K(0) = 1 and K is a continuous function, the Brézis-Lieb lemma and a

straight forward computation yield as n → ∞
�
RN

K(Rnx) |wn(x)|2∗
s(t)

|x|t
dx−

�
RN

|w|2∗
s(t)

|x|t
dx

=
�
RN

∣∣∣K 1
2∗

s(t) (Rnx)wn − w
∣∣∣2∗

s(t)

|x|t
dx+ o(1)

=
�
RN

K(Rnx) |wn − w|2∗
s(t)

|x|t
dx+ o(1).

Therefore, using the above relations, as n → ∞

Īγ
K,t,0(zn) = 1

2∥zn∥2
γ − 1

2∗
s(t)

�
RN

K(x) |zn|2∗
s(t)

|x|t
dx

= 1
2∥wn − w∥2

γ − 1
2∗

s(t)

�
RN

K(Rnx) |wn − w|2∗
s(t)

|x|t
dx

= 1
2
(
∥wn∥2

γ − ∥w∥2
γ

)
− 1

2∗
s(t)

�
RN

K(Rnx) |wn(x)|2∗
s(t)

|x|t
dx

+ 1
2∗

s(t)

�
RN

|w|2∗
s(t)

|x|t
dx+ o(1)

= 1
2∥vn∥2

γ − 1
2∗

s(t)

�
RN

K(x) |v(x)|2∗
s(t)

|x|t
dx

−
(

1
2∥w∥2

γ − 1
2∗

s(t)

�
RN

|w|2∗
s(t)

|x|t
dx
)

+ o(1)

= Īγ
K,t,0(vn) − Īγ

1,0,0(w) + o(1)

= β − Īγ
K,t,f (ū) − Īγ

1,0,0(w) + o(1).

Next, let ϕ ∈ C∞
0 (RN) be arbitrary and set ϕn(x) := R

N−2s
2

n ϕ(Rnx). This in
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turn implies that ∥ϕn∥γ = ∥ϕ∥γ and ϕn ⇀ 0 in Ḣs(RN). Therefore,

(Ḣs)′

〈
(Īγ

K,t,0)′(zn), ϕ
〉

Ḣs

= ⟨zn, ϕ⟩γ −
�
RN

K(x) |zn|2∗
s(t)−2znϕ

|x|t
dx

= ⟨z̃n, ϕn⟩γ −
�
RN

K(Rnx) |z̃n|2∗
s(t)−2z̃nϕn

|x|t
dx

= ⟨wn − w, ϕn⟩γ −
�
RN

K(Rnx) |wn − w|2∗
s(t)−2(wn − w)ϕn

|x|t
dx

= ⟨wn, ϕn⟩γ −
�
RN

K(Rnx) |wn|2∗
s(t)−2wnϕn

|x|t
dx

−
(

⟨w, ϕn⟩γ −
�
RN

|w|2∗
s(t)−2wϕn

|x|t
dx
)

(4.2.13)

+
�
RN

(K(Rnx) − 1) |w|2∗
s(t)−2wϕn

|x|t
dx

+
�
RN

K(Rnx)
(

|wn|2∗
s(t)−2wn − |w|2∗

s(t)−2w − |wn − w|2∗
s(t)−2(wn − w)

|x|t

)
ϕndx

= ⟨vn, ϕ⟩γ −
�
RN

K(x) |vn|2∗
s(t)−2vnϕ

|x|t
dx−

(Ḣs)′

〈
Īγ

1,0,0
′(w), ϕn

〉
Ḣs

+ I1
n + I2

n

=
(Ḣs)′

〈
(Īγ

K,t,0)′(vn), ϕ
〉

Ḣs
− 0 + I1

n + I2
n = o(1) + I1

n + I2
n.

Now

I1
n :=

�
BR

(
K(Rnx)−1

) |w|2∗
s(t)−2wϕn

|x|t
dx+

�
Bc

R

(
K(Rnx)−1

) |w|2∗
s(t)−2wϕn

|x|t
dx.

Note that as |w|2∗
s(t)

|x|t ∈ L1(RN), for ε > 0 there exists R = R(ε) > 0 such that∣∣∣∣∣
�

Bc
R

(
K(Rnx) − 1

) |w|2∗
s(t)−2wϕn

|x|t
dx
∣∣∣∣∣

≤ C

( �
Bc

R

|w|2∗
s(t)

|x|t
dx
) 2∗

s(t)−1
2∗

s(t)
( �

RN

|ϕn|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

≤ C

( �
Bc

R

|w|2∗
s(t)

|x|t
dx
) 2∗

s(t)−1
2∗

s(t)

∥ϕ∥γ < ε.

On the other hand, as K ∈ C(RN) and lim|x|→∞ K(x) = 1 implies that

K ∈ L∞(RN), applying the Hölder inequality followed by the Hardy-Sobolev
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inequality, it is easy to see that

(
K(Rnx) − 1

) |w|2∗
s(t)−2wϕn

|x|t

is uniformly integrable. Therefore, using Vitali’s convergence theorem, we

get �
BR

(
K(Rnx) − 1

) |w|2∗
s(t)−2wϕn

|x|t
dx = o(1).

Hence, I1
n = o(1) as n → ∞.

Next, we aim to show that

I2
n :=

�
RN

K(Rnx)
{

|wn|2∗
s(t)−2wn − |w|2∗

s(t)−2w − |wn − w|2∗
s(t)−2(wn − w)

|x|t

}
ϕndx

= o(1).

Indeed, this follows as in the proof of (4.2.8), since
�
RN

|ϕn|2∗
s(t)

|x|t dx =�
RN

|ϕ|2∗
s(t)

|x|t dx < ∞. Hence, from (4.2.13) we conclude the proof of Claim

2.

Step 6: Assume that w = 0.

Let φ ∈ C∞
0

(
B1
)
, with 0 ≤ φ ≤ 1. Set ψn(x) := [φ( x

Rn
)]2vn(x). Clearly

(ψn)n is a bounded sequence in Ḣs(RN). Thus,

o(1) =
(Ḣs)′

〈
(Īγ

K,t,0)′(vn), ψn

〉
Ḣs

= ⟨vn, ψn⟩γ −
�
RN

K(x) |vn|2∗
s(t)−2vnψn

|x|t
dx

= CN,s

2

�
R2N

(vn(x) − vn(y)
(
φ2( x

Rn
)vn(x) − φ2( y

Rn
)vn(y)

)
|x− y|N+2s

dxdy

− γ

�
RN

v2
n(x)φ2( x

Rn
)

|x|2s
dx−

�
RN

K(x)
φ2( x

Rn
)|vn|2∗

s(t)

|x|t
dx

= CN,s

2

�
R2N

(
vn(Rnx) − vn(Rny)

)(
φ2(x)vn(Rnx) − φ2(y)vn(Rny)

)
RN−2s

n

|x− y|N+2s
dxdy

− γ

�
RN

v2
n(Rnx)φ2(x)RN−2s

n

|x|2s
dx−

�
RN

K(x)
|vn|2∗

s(t)−2
(
φ( x

Rn
)vn

)2

|x|t
dx.
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Therefore

CN,s

2

�
R2N

(
vn(Rnx) − vn(Rny)

)(
φ2(x)vn(Rnx) − φ2(y)vn(Rny)

)
RN−2s

n

|x− y|N+2s
dxdy

− γ

�
RN

v2
n(Rnx)φ2(x)RN−2s

n

|x|2s
dx =

�
RN

K(x)
|vn|2∗

s(t)−2
(
φ( x

Rn
)vn

)2

|x|t
dx+ o(1).

(4.2.14)

Now,

RHS of (4.2.14) =
�

B1

K(Rnx)
|vn(Rnx)|2∗

s(t)−2
(
φ(x)vn(Rnx)

)2
RN−t

n

|x|t
dx+ o(1)

=
�

B1

∣∣∣K(Rnx)
1

2∗
s(t)−2wn(x)

∣∣∣2∗
s(t)−2(

φ(x)wn(x)
)2

|x|t
dx+ o(1)

≤
( �

B1

K(Rnx)
2∗

s(t)
2∗

s(t)−2
|wn(x)|2∗

s(t)

|x|t
dx
) 2∗

s(t)−2
2∗

s(t)

·

×
(�

RN

|φwn|2∗
s(t)

|x|t
dx
) 2

2∗
s(t)

+ o(1) (4.2.15)

≤
∥K∥

2
2∗

s(t)
L∞(RN )

Sγ,t,s

( �
B1

K(Rnx) |wn|2∗
s(t)

|x|t
dx
) 2∗

s(t)−2
2∗

s(t)

∥φwn∥2
γ + o(1)

≤
∥K∥

2
2∗

s(t)
L∞(RN )δ

2s−t
N−t

Sγ,t,s

∥φwn∥2
γ + o(1)

< ∥φwn∥2
γ + o(1) (By the choice of δ fixed in Step 4).

Claim 3: As n → ∞

LHS of (4.2.14) = ∥φwn∥2
γ + o(1). (4.2.16)

Indeed,

LHS of (4.2.14)

= CN,s

2

�
R2N

(
vn(Rnx) − vn(Rny)

)(
φ2(x)vn(Rnx) − φ2(y)vn(Rny)

)
RN−2s

n

|x− y|N+2s
dxdy

− γ

�
RN

|φwn|2

|x|2s
dx
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= CN,s

2

�
R2N

(
wn(x) − wn(y)

)(
φ2(x)wn(x) − φ2(y)wn(y)

)
|x− y|N+2s

dxdy

− γ

�
RN

|φwn|2

|x|2s
dx

= CN,s

2

�
R2N

|φ(x)wn(x) − φ(y)wn(y)|2
|x− y|N+2s

dxdy − γ

�
RN

|φwn|2

|x|2s
dx

− CN,s

2

�
R2N

(φ(x) − φ(y))2wn(x)wn(y)
|x− y|N+2s

dxdy

= ∥φwn∥2
γ − CN,s

2

�
R2N

(φ(x) − φ(y))2wn(x)wn(y)
|x− y|N+2s

dxdy. (4.2.17)

Now,

�
R2N

(φ(x) − φ(y))2wn(x)wn(y)
|x− y|N+2s

dxdy =
�

x∈B1

�
y∈B1

+
�

x∈B1

�
y∈Bc

1

+
�

x∈Bc
1

�
y∈B1

=: I1
n + I2

n + I3
n.

Of course, I2
n = I3

n, as the integral is symmetric with respect to x and y.

I1
n =

�
x∈B1

�
y∈B1

(φ(x) − φ(y))2wn(x)wn(y)
|x− y|N+2s

dxdy

≤ C

�
x∈B1

�
y∈B1

|wn(x)||wn(y)|
|x− y|N+2s−2 dxdy

≤ C

( �
x∈B1

�
y∈B1

|wn(x)|2
|x− y|N+2s−2 dxdy

)1
2
·

×
( �

x∈B1

�
y∈B1

|wn(y)|2
|x− y|N+2s−2 dxdy

)1
2

(4.2.18)

≤ C

�
x∈B1

�
y∈B1

|wn(x)|2
|x− y|N+2s−2 dxdy

≤ C

�
x∈B1

( �
|z|<2

1
|z|N+2s−2 dz

)
|wn(x)|2dx

≤ C∥wn∥2
L2(B1) = o(1)

(
as w = 0 implies wn → 0 in L2

loc(RN)
)
.
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Furthermore,

I2
n =

�
x∈B1

�
y∈Bc

1

(φ(x) − φ(y))2wn(x)wn(y)
|x− y|N+2s

dxdy

≤
�

x∈B1

�
y∈Bc

1∩{|x−y|≤1}
+
�

x∈B1

�
y∈Bc

1∩{|x−y|≥1}
(4.2.19)

=: I21
n + I22

n ,

where

I21
n ≤ C

( �
x∈B1

�
y∈Bc

1∩{|x−y|≤1}

|wn(x)|2
|x− y|N+2s−2 dydx

)1
2
·

×
( �

x∈B1

�
y∈Bc

1∩{|x−y|≤1}

|wn(y)|2
|x− y|N+2s−2 dydx

)1
2

=: CJ1
n · J2

n.

Now,

|J1
n|2 ≤

�
x∈B1

( �
|z|<1

1
|z|N+2s−2 dz

)
|wn(x)|2dx ≤ C∥wn∥2

L2(B1) = o(1),

and

|J2
n|2 =

�
x∈B1

�
y∈Bc

1

1{|x−y|<1}(x, y)|wn(y)|2
|x− y|N+2s−2 dydx

≤
�

y∈Bc
1

( �
x∈B1

1{|x−y|<1}(x, y)
|x− y|N+2s−2 dx

)
|wn(y)|2 dy

≤
�

y∈B2

( �
x∈B1

1{|x−y|<1}(x, y)
|x− y|N+2s−2 dx

)
|wn(y)|2 dy

≤ C∥wn∥2
L2(B2) ≤ C ′.

Therefore, I21
n = o(1) as n → ∞. Moreover,

I22
n =

�
x∈B1

�
y∈Bc

1∩{|x−y|≥1}

|wn(x)||wn(y)||φ(x) − φ(y)|2
|x− y|N+2s

dydx

≤ C

�
x∈B1

�
y∈Bc

1∩{|x−y|≥1}

|wn(x)||wn(y)|
|x− y|N+2s

dydx
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≤ C

( �
x∈B1

�
y∈Bc

1∩{|x−y|≥1}

|wn(x)|2
|x− y|N+2s

dydx
) 1

2

·

×
(�

x∈B1

�
y∈Bc

1∩{|x−y|≥1}

|wn(y)|2
|x− y|N+2s

dydx
) 1

2

≤ C

( �
x∈B1

(�
|z|≥1

1
|z|N+2s

dz
)

|wn(x)|2dx
) 1

2

·

×
(�

x∈B1

�
|z|≥1

|wn(x+ z)|2
|x+ z|2s

|x+ z|2s

|z|N+2s
dzdx

) 1
2

≤ C ′∥wn∥L2(B1)

[ �
x∈B1

(�
RN

|wn(x+ z)|2
|x+ z|2s

dz
)

dx
] 1

2

,

since |z| ≥ 1 and |x| < 1 implies |x+z|2s

|z|N+2s ≤ C. Therefore, using the Hardy

inequality, we obtain from the last of the above estimate that as n → ∞

I22
n ≤ C ′′∥wn∥L2(B1)∥wn∥2

Ḣs(RN ) = o(1).

Putting the above estimates together, we obtain from (4.2.19) that I2
n = o(1)

as n → ∞. This, along with (4.2.18), concludes the proof of Claim 3.

Combining Claim 3 with (4.2.15) yields

∥φwn∥γ = o(1) as n → ∞. (4.2.20)

Substituting this into (4.2.16) and comparing with (4.2.14) yields as n → ∞
�
RN

K(Rnx)φ
2(x)|wn(x)|2∗

s(t)

|x|t
dx = o(1).

Therefore,
�

Br

K(Rnx) |wn|2∗
s(t)

|x|t
dx = o(1), for any 0 < r < 1. (4.2.21)

But this contradicts (4.2.10) when t > 0. Therefore, w = 0 cannot happen

in the case t > 0, i.e.,

t > 0 =⇒ w ̸= 0.

Consequently, from now onwards, we restrict ourselves to the case t = 0

and w = 0.
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4.2. Palais-Smale decomposition

Step 7: Let t = 0 and w = 0. First we consider the tight case, (vn)n ⊆

Ḣs
0(BR), for some fixed ball of radius R > 0 (where Ḣs

0(BR) is the closure

of C∞
0 (BR) with respect to the Ḣs(RN) norm). The remaining case will be

obtained by a splitting argument together with a Kelvin transform.

Therefore, in view of (4.2.10) and (4.2.21), using the concentration-

compactness principle in the tight case [89], it follows that in the sense of

measure,

K(Rnx)|wn|2∗
s dx

∣∣∣
{|x|≤1}

∗
⇀
∑

j

Cxj
δxj
, (4.2.22)

where xj ∈ RN satisfies |xj| = 1. Let C̄ := maxj Cxj
and define

Qn(r) := sup
y∈RN

�
Br(y)

K(Rnx)|wn|2∗
s dx. (4.2.23)

Clearly, Qn(r) > C/2 for each r > 0 large enough. Moreover, (4.2.22) gives

lim inf
n→∞

Qn(r) ≥ C

2 .

Hence, there exist sequences (sn)n ⊂ R+ and (qn)n ⊂ RN such that sn → 0

and |qn| > 1/2 and

C

2 = sup
q∈RN

�
Bsn (q)

K(Rnx)w2∗
s

n dx =
�

Bsn (qn)
K(Rnx)w2∗

s
n dx. (4.2.24)

Define θn(x) := s
N−2s

2
n wn(snx + qn). Thus ∥θn∥γ = ∥wn∥γ for any n ∈ N.

Consequently, up to a subsequence, there exists θ ∈ Ḣs(RN) such that θn ⇀ θ

in Ḣs(RN) and θn → θ a.e. in RN .

First note that θ ̸= 0. Otherwise, choosing φ ∈ C∞
0

(
B1(x)

)
, with 0 ≤

φ ≤ 1, for an arbitrary but fixed x ∈ RN , and proceeding exactly as in

obtaining (4.2.20), we are able to show that θn → 0 in L
2∗

s
loc(RN). On the

other hand, from (4.2.24) it follows that
�

B1

K(snRnx+ qn)θ2∗
s

n dx = C

2 > 0.
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which leads to a contradiction. Thus, θ ̸= 0. Recall that

θn(x) = s
N−2s

2
n wn(snx+ qn) = (snRn)( N−2s

2 )vn(snRnx+Rnqn).

Define rn = snRn = o(1) and yn = Rnqn. Hence, rn

|yn| < 2sn = o(1) and, up

to a subsequence, yn → y in RN . From Lemma 4.4.1, we deduce that

θ = K(y)− N−2s
4s W τ,a for some τ > 0, a ∈ RN ,

where W is a solution of (E0
1,0,0) and that n 7→ ṽn(x) := vn(x) −

K(y)
4s

N−2sW rnτ,yn+rna(x) is a (PS) sequence for Īγ
K,t,0 at level β − Īγ

K,t,f (ū) −

K(y)− N−2s
2s Ī

(0)
1,0,0(W ), where W is a solution of (E0

1,0,0).

In summary, in both cases t > 0 and t = 0, starting from a (PS) sequence

(vn)n of Īγ
K,t,0 we have found another (PS) sequence (ṽn)n of Īγ

K,t,0 at a strictly

lower level, with a fixed minimum amount of decrease. Since supn ∥vn∥γ ≤

C < ∞, the process should stop after finitely many steps.

Step 8: When t = 0 we only dealt with the case (vn)n ⊂ Ḣs
0(BR) for some

fixed R > 0. Now we are going to relax the assumption (vn)n ⊂ Ḣs
0(BR).

Let us define

f̃(k) := lim inf
n→∞

�
Bk+1\Bk

K(x)|vn|2∗
s dx.

We claim that f̃(k) = 0 for all but finitely many k’s.

Indeed, if f̃(k) > 0 for some k, then lim infn→∞
�

Bk+1\Bk
K(x)|vn|2∗

s dx >

0. Therefore,

lim inf
n→∞

�
Bk+1\Bk

|vn|2∗
s dx > 0. (4.2.25)

By Step 6, for any φ ∈ C∞
0 (RN) as n → ∞

∥K∥
2

2∗
s

L∞

(�
supp(φ)

K(Rnx)|wn|2∗
s dx

) 2∗
s−2
2∗

s

(�
RN

|φwn|2∗
s dx

) 2
2∗

s

≥ ∥φwn∥2
γ + o(1)

≥ Sγ,0,s

(�
RN

|φwn|2∗
s

) 2
2∗

s

+ o(1).
(4.2.26)
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Fix any ε > 0 and choose φ ∈ C∞
0 (RN) such that φ ≡ 1 in Bk+1 \ Bk and

supp(φ) ⊆ Bk+1+ε \Bk−ε and 0 ≤ φ ≤ 1. Define, φn(x) = φ(Rnx). Then

lim inf
n→∞

�
RN

|φnwn|2∗
s dx = lim inf

n→∞

�
RN

|φvn|2∗
s dx > lim inf

n→∞

�
Bk+1\Bk

|vn|2∗
s dx > 0.

Now (4.2.26), with φ = φn, yields as n → ∞
�

Bk+1+ε\Bk−ε

K(x)|vn|2∗
s dx ≥ ∥K∥− N−2s

2s

L∞(RN )S
N
2s
γ,0,s + o(1).

Combining the above, as ε > 0 is arbitrary, we obtain f̃(k) ≥ ∥K∥− N−2s
2s

L∞(RN )S
N
2s
γ,0,s.

Therefore, since (vn)n is bounded in L2∗
s (RN), it follows that f̃(k) = 0 for all

but finitely many k’s and this completes the proof of the claim.

Now given such a k for which f̃(k) = 0, we take a cut-off function χ ∈

C∞
0 (RN) such that χ ≡ 1 on Bk and χ ≡ 0 on Bc

k+1 and 0 ≤ χ ≤ 1. We

shall show that both (χvn)n and
(
(1 − χ)vn

)
n

are (PS) sequences for Iγ
K,0,0.

Indeed for h ∈ C∞
0 (RN) as n → ∞

⟨χvn, h⟩γ

= CN,s

2

�
R2N

(
χ(x)vn(x) − χ(y)vn(y)

)(
h(x) − h(y)

)
|x− y|N+2s

dxdy − γ

�
RN

χvnh

|x|2s
dx

= CN,s

2

�
R2N

(
vn(x) − vn(y)

)(
χ(x)h(x) − χ(y)h(y)

)
|x− y|N+2s

dxdy − γ

�
RN

vn(χh)
|x|2s

dx

+ CN,s

2

�
R2N

(
χ(x) − χ(y)

)
h(x)vn(y)

|x− y|N+2s
dxdy

− CN,s

2

�
R2N

(
χ(x) − χ(y)

)
h(y)vn(x)

|x− y|N+2s
dxdy (4.2.27)

= ⟨vn, χh⟩γ + CN,s

�
R2N

(
χ(x) − χ(y)

)
h(x)vn(y)

|x− y|N+2s
dxdy

=
�
RN

K(x)|vn|2∗
s−2vn(χh) dx+ CN,sIn + o(∥h∥),

where In :=
�

R2N

(
χ(x) − χ(y)

)
h(x)vn(y)

|x− y|N+2s
dxdy.
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Claim 4: In = o(∥h∥γ) as n → ∞.

Indeed,

In ≤
(�

R2N

|χ(x) − χ(y)|2h2(x)
|x− y|N+2s

dxdy
) 1

2
(�

R2N

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy

) 1
2

.

Now,

�
R2N

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy =

�
y∈Bk+1

�
x∈Bk+1

+
�

y∈Bk+1

�
x∈Bc

k+1

+
�

y∈Bc
k+1

�
x∈Bk+1

=: I1
n + I2

n + I3
n.

Since v ⇀ 0 in Ḣs(RN) implies vn → 0 in L2
loc(RN), we see that as n → ∞

I1
n =

�
y∈Bk+1

�
x∈Bk+1

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy

≤ C

�
y∈Bk+1

�
x∈Bk+1

v2
n(y)

|x− y|N+2s−2 dxdy

≤ C

�
y∈Bk+1

( �
x∈Bk+1∩{|x−y|<1}

dx
|x− y|N+2s−2 +

�
x∈Bk+1∩{|x−y|≥1}

dx
)
v2

n(y)dy

(4.2.28)

≤ C ′
�

y∈Bk+1

v2
n(y)dy

= o(1);

I2
n =

�
y∈Bk+1

�
x∈Bc

k+1

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy

≤ C

�
y∈Bk+1

(�
x∈Bc

k+1∩{|x−y|≤1}

dx
|x− y|N+2s−2 +

�
x∈Bc

k+1∩{|x−y|≥1}

dx
|x− y|N+2s

)
v2

n(y)dy

(4.2.29)

≤ C ′′
�

y∈Bk+1

v2
n(y)dy = o(1);
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I3
n =

�
y∈Bc

k+1

�
x∈Bk+1

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy

=
�

x∈Bk+1

�
y∈Bc

k+1

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dydx

=
�

x∈Bk+1

�
y∈Bc

k+1∩{|x−y|≥1}
+
�

x∈Bk+1

�
y∈Bc

k+1∩{|x−y|≤1}

=: I31
n + I32

n .

For estimating I31
n , we choose ε > 0 arbitrary and R >> k + 1 so that

I31
n =

�
x∈Bk+1

�
y∈Bc

k+1∩{|x−y|≥1}

χ2(x)v2
n(y)

|x− y|N+2s
dydx

≤
�

x∈Bk+1

(�
y:|x−y|≥1

v2
n(y)

|x− y|N+2s
dy
)

dx

≤
�

x∈Bk+1

(�
BR

v2
n(y)dy +

�
Bc

R∩{|x−y|≥1}

v2
n(y)

|y|N+2s

|y|N+2s

|x− y|N+2s
dy
)
dx

(4.2.30)

≤
�

x∈Bk+1

(
o(1) + C

�
Bc

R

v2
n(y)

|y|N+2s
dy
)
dx

≤ C ′′′
(
o(1) + C

(�
Bc

R

|vn|2∗
s dy

) 2
2∗

s

( �
Bc

R

dy
|y|(N+2s)N/2s

) 2s
N

)
< ε forR >> k + 1,

since (vn)n is uniformly bounded in L2∗
s (RN) and |y|(N+2s)N/2s ∈ L1({|y| >

1}). Moreover,

I32
n =

�
x∈Bk+1

�
y∈Bc

k+1∩{|x−y|≤1}

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dydx

≤ C

�
x∈Bk+1

�
y∈Bc

k+1

1|x−y|≤1(x, y)v2
n(y)

|x− y|N+2s−2 dydx

= C

�
y∈Bc

k+1

( �
x∈Bk+1

1|x−y|≤1(x, y)
|x− y|N+2s−2 dx

)
v2

n(y)dy (4.2.31)

= C

�
y∈Bk+2

( �
x∈Bk+1

1|x−y|≤1(x, y)
|x− y|N+2s−2 dx

)
v2

n(y)dy

≤ C ′′′′
�

y∈Bk+2

v2
n(y)dy = o(1).
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Combining (4.2.28)–(4.2.31), we obtain(�
R2N

|χ(x) − χ(y)|2v2
n(y)

|x− y|N+2s
dxdy

) 1
2

= o(1)

as n → ∞. Similarly, it follows that(�
R2N

|χ(x) − χ(y)|2h2(x)
|x− y|N+2s

dxdy
) 1

2

≤ ∥h∥Ḣs(RN ).

Hence Claim 4 is proved.

Therefore, using (4.2.27) and the fact that f̃(k) = 0, we obtain as n → ∞

(Ḣs)′⟨(Īγ
K,t,0)′(χvn), h⟩Ḣs = ⟨χvn, h⟩γ −

�
RN

K(x)|χvn|2∗
s−2(χvn)h dx

=
�
RN

K(x){χ− χ2∗
s−1}|vn|2∗

s−2vnh dx+ o(∥h∥)

≤ C∥K∥L∞(RN )

(�
Bk+1\Bk

|vn|2∗
s dx

)2∗
s−1
2∗

s

∥h∥γ + o(∥h∥)

= o(∥h∥).

This is the required inequality.

Now, as n → ∞�
RN

K(x)|vn|2∗
s dx =

�
RN

K(x)|χvn + (1 − χ)vn|2∗
s dx

=
�
RN

K(x)|χvn|2∗
s dx+

�
RN

K(x)|(1 − χ)vn|2∗
s dx+ o(1).

(4.2.32)

The last line in (4.2.32) follows from the fact that supp(χ) ⊆ Bk+1 and

supp(1 − χ) ⊂ RN \ Bk and all the remaining terms in the expansion of

|χvn + (1 − χ)vn|2∗
s involves product of some powers of χvn and (1 − χ)vn

whose support lies in Bk+1 \ Bk, but in the definition of χ we have chosen

the same k for which f̃(k) = 0.

We know that (vn)n is a (PS) sequence of Īγ
K,0,0 at the level β− Īγ

K,t,f (ū).

Hence, from (4.2.32) the level of the (PS) sequence (vn)n of Īγ
K,0,0 is integrally

split between the two new (PS) sequences (χvn)n and
(
(1 − χ)vn

)
n
.
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Let K denote the Kelvin transform in Ḣs(RN) given by,

Ku(x) := 1
|x|N−2s

u(|x|−2x).

Therefore, it is known that (see [99]),

(−∆)sKu(x) = 1
|x|N+2s

(−∆)su(|x|−2x).

Claim 5: ∥K(u)∥Ḣs(RN ) = ∥u∥Ḣs(RN ).

To prove the claim, first assume that u ∈ C∞
0 (RN). Thus

|(−∆)sKu(x)| ≤ C

1 + |x|N+2s
. (4.2.33)

Therefore,

∥K(u)∥2
Ḣs(RN ) =

�
RN

|(−∆)
s
2Ku(x)|2 dx

=
�
RN

(−∆)sK(u(x))Ku(x) dx (Using (4.2.33) and K(u) ∈ Ḣs(RN))

=
�
RN

1
|x|N+2s

(−∆)su(|x|−2x) 1
|x|N−2s

u(|x|−2x)dx

=
�
RN

(
(−∆)su(x)

)
u(x)dx

=
�
RN

|(−∆)
s
2u(x)|2dx

(
as u ∈ C∞

0 (RN)
)

= ∥u∥2
Ḣs(RN )

Next for any u ∈ Ḣs(RN), let (un)n ∈ C∞
0 (RN) be such that un → u in

Ḣs(RN). Then

∥K(un)∥Ḣs(RN ) = ∥un∥Ḣs(RN ) → ∥u∥Ḣs(RN ). (4.2.34)

Thus,

∥K(un) −K(um)∥Ḣs(RN ) = ∥K(un − um)∥Ḣs(RN ) = ∥un − um∥Ḣs(RN ) −→
n,m→∞

0.

Hence, (K(un))n is a Cauchy sequence in Ḣs(RN), so there exists v ∈ Ḣs(RN)

such that K(un) → v. Now, as un → u a.e. in RN so K(un) → K(u) a.e.
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in RN . Consequently, v = K(u). Therefore, passing the limit in (4.2.34), we

have ∥K(u)∥Ḣs(RN ) = ∥u∥Ḣs(RN ) for all u ∈ Ḣs(RN).

Using Claim 5 along with standard change of variable, it is easy to see

that

Īγ
K,0,0

(
K(u)

)
= 1

2∥u∥2
Ḣs − γ

2

�
RN

|u(x)|2
|x|2s

dx− 1
2∗

s

�
RN

K
(
|x|−2x

)
|u|2∗

s (x)dx,

that is, Īγ
K,0,0 ◦ K has the same expression as Īγ

K,0,0 except that K(x) has to

be replaced by K(|x|−2x). Hence, Steps 5 and 7 can be applied to (K
(
(1 −

χ)vn

)
)n, since this sequence is now a (PS) sequence for Īγ

K,0,0 ◦K in Ḣs
0(B 1

k
).

Using again either Step 5 or Step 7, we obtain the characterization of (K
(
(1−

χ)vn

)
)n and from that we deduce the characterization of ((1 − χ)vn)n; the

only point which needs to be taken care of K
(
W (x−yj

n

rj
n

)
)
. This is the concern

in Lemma 4.4.2.

Finally (vi) and (vii) follow as in [94, Theorem 4]. Thus the proof is

completed.

We mention the proofs of Lemma 4.4.1 and Lemma 4.4.2 in the end of

this chapter, namely in Section 4.4.

4.3 Proof of the main Theorem 4.1.1

In this section we assume without further mentioning that all the assumptions

of Theorem 4.1.1 are satisfied. We first establish existence of two positive

critical points for the functional

Iγ
K,t,f (u) = 1

2∥u∥2
γ − 1

2∗
s(t)

�
RN

K(x)u
2∗

s(t)
+

|x|t
dx− (Ḣs)′⟨f, u⟩Ḣs .

Clearly, if u is a critical point of Iγ
K,t,f , then u solves

(−∆)su− γ
u

|x|2s
= K(x)u

2∗
s(t)−1

+

|x|t
+ f(x) in RN ,

u ∈ Ḣs(RN).
(4.3.1)
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Remark 4.3.1. If u is a weak solution of (4.3.1) and f is a nonnegative

functional in Ḣs(RN)′, then taking v = u− as a test function in (4.3.1), we

obtain

−∥u−∥2
γ −

�
R2N

|u+(y)u−(x) + u+(x)u−(y)|
|x− y|N+2s

dxdy = (Ḣs)′⟨f, u−⟩Ḣs ≥ 0,

which in turn implies that u− ≡ 0, i.e., u ≥ 0. Therefore, the maximum

principle [56, Theorem 1.2] yields that u is a positive solution to (4.3.1).

Hence u is a solution to (Eγ
K,t,f ).

To establish the existence of two critical points for Iγ
K,t,f , we first need to

prove some auxiliary results. Towards that, we partition Ḣs(RN) into three

disjoint sets. Let ψt : Ḣs(RN) → R be defined by

ψt(u) := ∥u∥2
γ −

(
2∗

s(t) − 1
)
∥K∥L∞(RN )

�
RN

|u|2∗
s(t)

|x|t
dx

and set

Σt
1 :=

{
u ∈ Ḣs(RN) : u = 0 or ψt(u) > 0

}
, Σt

2 :=
{
u ∈ Ḣs(RN) : ψt(u) < 0

}
,

Σt :=
{
u ∈ Ḣs(RN) : ψt(u) = 0

}
.

Remark 4.3.2. If u ∈ Σt, then

∥u∥2
γ =

(
2∗

s(t)−1
)
∥K∥L∞(RN )

�
RN

|u|2∗
s(t)

|x|t
dx ≤

(
2∗

s(t)−1
)
∥K∥L∞(RN )S

− 2∗
s(t)
2

γ,t,s ∥u∥2∗
s(t)

γ .

Therefore, ∥u∥γ and ∥u∥L2∗
s(t)(RN ,|x|−t) are bounded away from 0 for all u ∈ Σt.

Set

ct
0 := inf

Σt
1

Iγ
K,t,f (u), ct

1 := inf
Σt
Iγ

K,t,f (u), t ≥ 0. (4.3.2)

Remark 4.3.3. For any λ > 0 and u ∈ Ḣs(RN)

ψt(λu) = λ2∥u∥2
γ − λ2∗

s(t)
(
2∗

s(t) − 1
)
∥K∥L∞(RN )

�
RN

|u|2∗
s(t)

|x|t
dx.

Moreover, ψt(0) = 0 and λ 7→ ψt(λu) is a strictly concave function. Thus

for any u ∈ Ḣs(RN) with ∥u∥γ = 1, there exists a unique λ = λ(u) such
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that λu ∈ Σt. Moreover, as ψt(λu) =
(
λ2 − λ2∗

s(t)
)
∥u∥2

γ for all u ∈ Σt, then

λu ∈ Σt
1 for all λ ∈ (0, 1) and λu ∈ Σt

2 for all λ > 1.

Lemma 4.3.4. Assume that Ct is defined as in Theorem 4.1.1. Then

4s− 2t
N − 2t+ 2s∥u∥γ ≥ CtS

N−t
4s−2t
γ,t,s for all u ∈ Σt, t ≥ 0.

Proof. Fix u ∈ Σt. Then

(�
RN

|u|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

= ∥u∥
2

2∗
s(t)

γ((
2∗

s(t) − 1
)
∥K∥L∞(RN )

) 1
2∗

s(t)
.

Combining this with the definition of Sγ,t,s yields

∥u∥γ ≥ S
1
2
γ,t,s

( �
RN

|u|2∗
s(t)

|x|t
dx
) 1

2∗
s(t)

= S
1
2
γ,t,s

∥u∥
2

2∗
s(t)

γ((
2∗

s(t) − 1
)
∥K∥L∞(RN )

) 1
2∗

s(t)

for all u ∈ Σt. From here using the definition of Ct, we conclude the proof of

the lemma.

Lemma 4.3.5. Assume that t ≥ 0, Ct is given as in Theorem 4.1.1 and ct
0,

ct
1 are defined as in (4.3.2). Further if

inf
u∈Ḣs(RN )

∥u∥
L2∗

s(t)(RN ,|x|−t)
=1

{
Ct∥u∥

N−2t+2s
2s−t

γ − (Ḣs)′⟨f, u⟩Ḣs

}
> 0, (4.3.3)

then ct
0 < ct

1.

Proof. Define

J̃t(u) := 1
2∥u∥2

γ − ∥K∥L∞

2∗
s(t)

�
RN

|u|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, u⟩Ḣs . (4.3.4)

Step I: In this step we prove that there exists βt > 0 such that

d

dp
J̃t(pu)

∣∣∣∣∣
p=1

≥ βt for all u ∈ Σt.
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Indeed, using the definition of Σt and the value of Ct, we have for u ∈ Σt

d

dp
J̃t(pu)

∣∣∣∣∣
p=1

= ∥u∥2
γ − ∥K∥L∞(RN )

�
RN

|u|2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, u⟩Ḣs

=
(

1 − 1
2∗

s(t) − 1

)
∥u∥2

γ − (Ḣs)′⟨f, u⟩Ḣs (4.3.5)

= 4s− 2t
N − 2t+ 2s∥u∥2

γ − (Ḣs)′⟨f, u⟩Ḣs

= Ct
∥u∥

N+2s−2t
2s−t

γ

∥u∥
N−t
2s−t

L2∗
s(t)(RN ,|x|−t)

− (Ḣs)′⟨f, u⟩Ḣs .

Furthermore, (4.3.3) implies that there exists d > 0 such that

inf
u∈Ḣs(RN )

∥u∥
L2∗

s(t)(RN ,|x|−t)
=1

{
Ct∥u∥

N−2t+2s
2s−t

γ − (Ḣs)′⟨f, u⟩Ḣs

}
≥ d. (4.3.6)

Observe that,

(4.3.6) ⇐⇒ Ct
∥u∥

N+2s−2t
2s−t

γ

∥u∥
N−t
2s−t

L2∗
s(t)(RN ,|x|−t)

− (Ḣs)′⟨f, u⟩Ḣs ≥ d,

�
RN

|u|2∗
s(t)

|x|t
dx = 1,

⇐⇒ Ct
∥u∥

N+2s−2t
2s−t

γ

∥u∥
N−t
2s−t

L2∗
s(t)(RN ,|x|−t)

− (Ḣs)′⟨f, u⟩Ḣs ≥ d∥u∥L2∗
s(t)(RN ,|x|−t),

u ∈ Ḣs(RN) \ {0}.

Hence, plugging back the above estimate into (4.3.5) and using Remark 4.3.2,

we complete the proof of Step I.

Step II: Let (ut
n)n be a minimizing sequence for Iγ

K,t,f on Σt, that is,

Iγ
K,t,f (ut

n) → ct
1 and ∥ut

n∥2
γ = ∥K∥L∞(RN )

(
2∗

s(t) − 1
) �

RN

|ut
n|2∗

s(t)

|x|t
dx.

Therefore,

ct
1 + o(1) = Iγ

K,t,f (un) ≥ J̃t(ut
n)

≥
(

1
2 − 1

2∗
s(t)

(
2∗

s(t) − 1
))∥ut

n∥2
γ − ∥f∥(Ḣs)′∥un∥γ.
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This implies that (J̃t(ut
n))n is bounded and (∥ut

n∥γ)n, (∥ut
n∥L2∗

s(t)(RN ,|x|−t))n

are bounded.

Claim: ct
0 < 0 for all t ≥ 0.

To prove this claim, it is enough to show that there exists vt ∈ Σt
1 such

that Iγ
K,t,f (vt) < 0. Note that, thanks to Remark 4.3.3, we can choose ut ∈ Σt

such that (Ḣs)′⟨f, ut⟩Ḣs > 0.

Therefore,

Iγ
K,t,f (put) = p2

[(2∗
s(t) − 1

)
∥K∥L∞(RN )

2 − p2∗
s(t)−2

2∗
s(t)

] �
RN

|ut|2∗
s(t)

|x|t
dx

−p (Ḣs)′⟨f, ut⟩Ḣs < 0

for p << 1. Moreover, put ∈ Σt
1 by Remark 4.3.3. Hence the claim follows.

Thanks to the above claim, Iγ
K,t,f (ut

n) < 0 for large n. Consequently,

0 > Iγ
K,t,f (ut

n) ≥
(

1
2 − 1

2∗
s(t)

(
2∗

s(t) − 1
))∥ut

n∥2
γ − (Ḣs)′⟨f, ut

n⟩Ḣs

for large n. This in turn implies that (Ḣs)′⟨f, ut
n⟩Ḣs > 0 for n large enough.

Hence, d
dp
J̃t(put

n) < 0 for p > 0 small enough. Thus, by Step I there exists

pt
n ∈ (0, 1) such that d

dp
J̃t(pt

nu
t
n) = 0.

Moreover, it is easy to check that for all ut ∈ Σt, the map p 7→ d
dp
J̃t(put) is

strictly increasing in [0, 1) and therefore, we can conclude that pt
n is unique.

Step III: In this step we show that

lim inf
n→∞

{
J̃t(ut

n) − J̃t(pt
nu

t
n)
}
> 0. (4.3.7)

We observe that J̃t(ut
n) − J̃t(pt

nu
t
n) =

� 1

pt
n

d

dp
J̃t(pun)dp and that for all n ∈ N

there exists ξt
n > 0 such that pt

n ∈ (0, 1 − 2ξt
n) and d

dp
J̃t(put

n) ≥ βt

2 for

p ∈ [1 − ξt
n, 1].

To establish (4.3.7), it is enough to show that ξt
n > 0 can be chosen

independently of n ∈ N. This is possible, since d
dp
J̃t(put

n)
∣∣∣∣∣
p=1

≥ βt, and (ut
n)n
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is bounded, so that for all n and p ∈ [0, 1]∣∣∣∣∣ d2

dp2 J̃t(put
n)
∣∣∣∣∣ =

∣∣∣∣∣∥ut
n∥2

γ −
(
2∗

s(t) − 1
)
∥K∥L∞p2∗

s(t)−2
�
RN

|ut
n|2∗

s(t)

|x|t
dx
∣∣∣∣∣

=
∣∣∣∣∣(1 − p2∗

s(t)−2
)
∥ut

n∥2
γ

∣∣∣∣∣ ≤ C.

Step IV: From the definition of Iγ
K,t,f and J̃t, it immediately follows that

d
dp
Iγ

K,t,f (pu) ≥ d
dp
J̃t(pu) for all u ∈ Ḣs(RN) and for all p > 0. Hence,

Iγ
K,t,f (ut

n) − Iγ
K,t,f (pt

nu
t
n) =

� 1

pt
n

d

dp
Iγ

K,t,f (put
n) dp ≥

� 1

pt
n

d

dp
J̃t(put

n) dp

= J̃t(ut
n) − J̃t(pt

nu
t
n).

Since (ut
n)n ⊂ Σt is a minimizing sequence for Iγ

K,t,f on Σt and pt
nu

t
n ∈ Σt

1,

then by (4.3.7)

ct
0 = inf

Σt
1

Iγ
K,,t,f (u) < inf

Σt
Iγ

K,t,f (u) = ct
1.

Proposition 4.3.6. Assume that t ≥ 0 and (4.3.3) holds. Then Iγ
K,t,f has

a critical point ut ∈ Σt
1 with Iγ

K,t,f (ut) = ct
0. In particular, ut is a positive

solution to (Eγ
K,t,f ).

Proof. We divide the proof in few steps.

Step 1: In this step we show that ct
0 > −∞.

From the definition of J̃t in (4.3.4), we have Iγ
K,t,f (u) > J̃t(u). Therefore,

in order to prove Step 1, it is enough to show that J̃t is bounded from below.

From the definition of Σt
1,

J̃t(u) ≥
(

1
2 − 1

2∗
s(t)

(
2∗

s(t) − 1
))∥u∥2

γ −∥f∥(Ḣs)′∥u∥γ for all u ∈ Σt
1. (4.3.8)

As the RHS is a quadratic function in ∥u∥γ, then J̃t is bounded from below

and thus so is Iγ
K,t,f .

Step 2: In this step we show that there exists a bounded nonnegative (PS)

sequence (ut
n)n ⊂ Σt

1 for Iγ
K,t,f at the level ct

0. Let (ut
n)n ⊂ Σ̄t

1 such that
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Iγ
K,t,f (ut

n) → ct
0. Since Lemma 4.3.5 implies ct

0 < ct
1, without any restriction

we can assume that (un)n ⊂ Σt
1. Further, using Ekeland’s variational prin-

ciple, (ut
n)n admits a (PS) subsequence, still called (ut

n)n, in Σt
1 for Iγ

K,t,f

at the level ct
0. Moreover, as Iγ

K,t,f (u) ≥ J̃t(u), from (4.3.8) it follows that

(ut
n)n is a bounded sequence in Ḣs(RN). Therefore, up to a subsequence,

ut
n ⇀ ut in Ḣs(RN) and ut

n → ut a.e. in RN . In particular, (ut
n)+ → (ut)+

and (ut
n)− → (ut)− a.e. in RN . Moreover, the fact that f is a nonnegative

functional gives as n → ∞

o(1) =
(Ḣs)′

〈
(Iγ

K,t,f )′(ut
n), (ut

n)−
〉

Ḣs

= ⟨ut
n, (ut

n)−⟩γ −
�
RN

K(x)(ut
n)2∗

s(t)−1
+ (ut

n)−

|x|t
dx− (Ḣs)′⟨f, (ut

n)−⟩Ḣs

≤ −∥(ut
n)−∥2

γ −
�

R2N

(ut
n)−(x)(ut

n)+(y) + (ut
n)+(x)(ut

n)−(y)
|x− y|N+2s

dxdy

≤ −∥(ut
n)−∥2

γ.

This implies that (un)− → 0 in Ḣs(RN) and so (un)− → 0 in a.e. in RN ,

which in turn yields that (u0)− ≡ 0, that is, u0 ≥ 0 a.e. in RN . Conse-

quently, without loss of generality, we can assume (ut
n)n is a nonnegative

(PS) sequence. This completes the proof of Step 2.

Step 3: In this step we show that ut
n → ut in Ḣs(RN).

Applying Theorem 4.2.1, we get as n → ∞

ut
n = ut +

n1∑
j=1

K(yj)− N−2s
4s W rj

n, yj
n +

n2∑
k=1

(W k
γ,t)Rk

n,0 + o(1), if t = 0, (4.3.9)

and

ut
n = ut +

n2∑
k=1

(W k
γ,t)Rk

n,0 + o(1), if t > 0, (4.3.10)

where (Iγ
K,t,f )′(ut) = 0, W is the unique positive solution of (E0

1,0,0), where

W k
γ,t, k = 1, 2, · · ·n2 are positive ground state solutions of (Eγ

1,t,0) ( {ut
n} is

a (PS) sequence for Iγ
K,t,f implies W k

γ,t is a solution of (4.3.1), with f ≡ 0,

and therefore by Remark (4.3.1), W k
γ,t is a nonnegative solution of (Eγ

1,t,0)).
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Moreover, (yj
n)n, (rj

n)n and (Rk
n)n are some appropriate sequences with Rk

n →

0 for each k = 1, · · ·n2, rj
n → 0, rj

n

yj
n

→ 0 and either yj
n → yj or |yj

n| → ∞ and

for all j = 1, · · ·n1, are appropriate sequences. To prove Step 3, we need to

show that n1 = 0 = n2. We prove this by the method of contradiction.

Suppose t = 0. The case t > 0 is comparatively easier and the proof of

that case will easily follow from arguments that we present in the case of

t = 0. Also for t > 0, one can argue as in [24, Proposition 3.1].

Thus, let us assume that t = 0 and ut
n ̸→ ut in Ḣs(RN). For simplicity

of notations, we denote u0
n by un.

Then either n1 ̸= 0 or n2 ̸= 0 or both n1, n2 ̸= 0 in (5.5.9). Here we prove

the last case that is when n1 and n2 both are non zero. If one of them is

zero, that case is again comparatively easier and argument in that case will

follow from this case. First we observe that

ψ0

(
K(yj)− N−2s

4s W rj
n,yj

n

)

= K(yj)− N−2s
2s ∥W∥2

γ − (2∗
s − 1)∥K∥L∞(RN )K(yj)− N

2s ∥W∥2∗
s

L2∗
s (RN )

= K(yj)− N
2s

(
K(yj) − (2∗

s − 1)∥K∥L∞(RN )

)
∥W∥2∗

s

L2∗
s (RN )

− γK(yj)− N−2s
2s

�
RN

|W |2

|x|2s
dx < 0.

Similarly,

ψ0
(
(W k

γ,0)Rk
n,0
)

= ψ0(W k
γ,0) = ∥W k

γ,0∥2
γ − (2∗

s − 1)∥K∥L∞(RN )∥W k
γ,0∥

2∗
s

L2∗
s (RN )

=
(
1 − (2∗

s − 1)∥K∥L∞(RN )

)
∥W k

γ,0∥2
γ < 0.

Theorem 4.2.1 gives

o(1)+c0
0 = Iγ

K,0,f (un) → Iγ
K,0,f (u0)+

n1∑
j=1

K(yj)− N−2s
2s I0

1,0,0(W )+
n2∑

k=1
Iγ

1,0,0(W k
γ,0).

As K > 0, I0
1,0,0(W ) = s

N
∥W∥2

Ḣs > 0 and Iγ
1,0,0(Wγ,0) = s

N
∥Wγ,0∥2

γ > 0, from

the above expression we obtain Iγ
K,0,f (u0) < c0

0. This in turn yields u0 ̸∈ Σ0
1
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and

ψ0(u0) ≤ 0. (4.3.11)

Next, we evaluate ψ0

(
u0 +

n1∑
j=1

K(yj)− N−2s
4s W rj

n, yj
n +

n2∑
k=1

(W k
γ,0)Rk

n,0
)

. Since

un ∈ Σ0
1, we have ψ0(un) ≥ 0. Therefore, the uniform continuity of ψ0 and

(5.5.9) imply

0 ≤ lim inf
n→∞

ψ0(un) = lim inf
n→∞

ψ0

(
u0 +

n1∑
j=1

K(yj)− N−2s
4s W rj

n,yj
n +

n2∑
k=1

(W k
γ,0)Rk

n,0
)
.

(4.3.12)

Since u0, W, W
k
γ,0 ≥ 0 for all k = 1, · · · , n1,

ψ0

(
u0 +

n1∑
j=1

K(yj)− N−2s
4s W rj

n,yj
n +

n2∑
k=1

(W k
γ,0)Rk

n,0
)

≤ ∥u0∥2
γ +

n2∑
k=1

∥W k
γ,0∥2

γ +
n1∑

j=1
∥K(yj)− N−2s

4s W rj
n,yj

n∥2
γ + 2

〈
u0,

n2∑
k=1

(W k
γ,0)Rk

n,0
〉

γ

+ 2
〈
u0,

n1∑
j=1

K(yj)− N−2s
4s W rj

n,yj
n

〉
γ

+ 2
〈 n2∑

k=1
(W k

γ,0)Rk
n,0,

n1∑
j=1

K(yj)− N−2s
4s W rj

n,yj
n

〉
γ

+
n2∑

i,k=1, i ̸=k

〈
(W i

γ,0)Ri
n,0, (W k

γ,0)Rk
n,0
〉

γ

+
n1∑

l,j=1, l ̸=j

〈
K(yl)− N−2s

4s W rl
n,yl

n , K(yj)− N−2s
4s W rj

n,yj
n

〉
γ

− (2∗
s − 1)∥K∥L∞(RN )

(
∥u0∥2∗

s
2∗

s
+

n1∑
j=1

∥K(yj)− N−2s
4s

(
W rj

n,yj
n

)
∥2∗

s
2∗

s
+

n2∑
k=1

∥W k
γ,0∥

2∗
s

2∗
s

)

≤ ψ0(u0) +
n2∑

k=1
ψ0(W k

γ,0) +
n1∑

j=1
ψ0
(
K(yj)− N−2s

4s W rj
n,yj

n

)
+ the above inner products.

(4.3.13)

We now prove that all the five inner products in the RHS of (4.3.13) ap-

proaches 0 as n → ∞. As rj
n → 0 and |yj

n|
|rj

n|
→ ∞, it follows that W rj

n,yj
n ⇀ 0

in Ḣs(RN) (see [94, Lemma 3]) and W rj
n,yj

n → 0 a.e. in RN . Choosing R > 0
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large enough as n → ∞�
RN

u0W
rj

n,yj
n

|x|2s
dx ≤

�
BR

u0W
rj

n,yj
n

|x|2s
dx+

�
|x|>R

u0W
rj

n,yj
n

|x|2s
dx

≤
�

BR

u0W
rj

n,yj
n

|x|2s
dx+

(�
|x|>R

|u0|2

|x|2s
dx
) 1

2
(�

|x|>R

|W |2

|x+ yj
n

rj
n
|2s

dx
) 1

2

= o(1),

where in the 1st integral we have passed the limit using Vitali’s convergence

theorem via the Hölder inequality, while in the 2nd integral simply using the

Hardy inequality. Therefore, as n → ∞〈
u0, K(yj)− N−2s

4s W rj
n,yj

n

〉
γ

= K(yj)− N−2s
4s

[〈
u0, W

rj
n,yj

n

〉
Ḣs

− γ

�
RN

u0W
rj

n,yj
n

|x|2s
dx
]

= o(1). (4.3.14)

Since Rk
n → 0 as n → ∞, similarly we also have〈

u0,
n2∑

k=1
(W k

γ,0)Rk
n,0
〉

γ
= o(1). (4.3.15)

Now,〈
K(yl)− N−2s

4s

(
W rl

n,yl
n

)
, K(yj)− N−2s

4s

(
W rj

n,yj
n

)〉
γ

= K(yl)− N−2s
4s K(yj)− N−2s

4s (rl
n)− N−2s

2 (rj
n)− N−2s

2

×
[�

R2N

(
W (x−yl

n

rl
n

) −W (y−yl
n

rl
n

)
)(
W (x−yj

n

rj
n

) −W (y−yj
n

rj
n

)
)

|x− y|N+2s
dxdy

− γ

�
RN

W (x−yl
n

rl
n

)W (x−yj
n

rj
n

)
|x|2s

dx
]

= K(yl)− N−2s
4s K(yj)− N−2s

4s (rl
n)N−2s

2 (rj
n)− N−2s

2

×
[�

R2N

(
W (x) −W (y)

)(
W ( rl

nx+yl
n−yj

n

rj
n

) −W ( rl
ny+yl

n−yj
n

rj
n

)
)

|x− y|N+2s
dxdy

− γ

�
RN

W (x)W ( rl
ny+yl

n−yj
n

rj
n

)

|x+ yl
n

rl
n
|2s

dx
]

= K(yl)− N−2s
4s K(yj)− N−2s

4s

[〈
W,Wn

〉
Ḣs(RN )

− γ

�
RN

WWn

|x+ yl
n

rl
n
|2s

dx
]
,
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where Wn := ( rl
n

rj
n
)N−2s

2 W
(

rl
n

rj
n
x+ yl

n−yj
n

rj
n

)
. Theorem 4.2.1 (vi) yields

∣∣∣∣∣ log
(rl

n

rj
n

)∣∣∣∣∣+
∣∣∣∣∣yl

n − yj
n

rj
n

∣∣∣∣∣ −→ ∞.

Thus Wn ⇀ 0 in Ḣs(RN) (see [94, Lemma 3]). Hence, as n → ∞〈
K(yl)− N−2s

4s

(
W rl

n,yl
n

)
, K(yj)− N−2s

4s

(
W rj

n,yj
n

)〉
γ

= o(1). (4.3.16)

Similarly, 〈
(W i

γ,0)Ri
n,0, (W k

γ,0)Rk
n,0
〉

γ
= o(1) (4.3.17)

as | log Rj
n

Rk
n
| → ∞.

Finally, we estimate
〈
(W k

γ,0)Rk
n,0, K(yj)− N−2s

4s W rj
n,yj

n

〉
γ
. First we note that

| log Rj
n

Rk
n
| → ∞ implies that either Rj

n

Rk
n

→ 0 or Rj
n

Rk
n

→ ∞. Suppose Rj
n

Rk
n

→ 0.

Then

〈
(W k

γ,0)Rk
n,0, K(yj)− N−2s

4s W rj
n,yj

n

〉
γ

= K(yj)− N−2s
4s (Rk

n)N−2s
2 (rj

n)− N−2s
2 ·

×
[�

R2N

(
W k

γ,0(x) −W k
γ,0(y)

)(
W (Rk

nx−yj
n

rj
n

) −W (Rk
ny−yj

n

rj
n

)
)

|x− y|N+2s
dxdy

− γ

�
RN

W k
γ,0(x)W (Rk

nx−yj
n

rj
n

)
|x|2s

dx
]

= K(yj)− N−2s
4s

[〈
W k

γ,0,W
n
〉

Ḣs(RN )
− γ

�
RN

W k
γ,0W

n

|x|2s
dx
]
,

where W n := ( rj
n

Rk
n
)− N−2s

2 W

(
x− y

j
n

Rk
n

rj
n/Rk

n

)
. The proof of Theorem 4.2.1 gives

rj
n

Rk
n

= sj
nRj

n

Rk
n

for any j and k. As sj
n → 0 and Rj

n

Rk
n

→ 0, we have rj
n

Rk
n

→ 0. More-

over, |yj
n|

rj
n

→ ∞ implies that |yj
n/Rk

n|
rj

n/Rk
n

→ ∞. Thus | log rj
n

Rk
n
| + |yj

n/R
k
n| → ∞.

Consequently by [94, Lemma 3], W n ⇀ 0 in Ḣs(RN). Hence, an argument

similar to (4.3.14) yields

〈
(W k

γ,0)Rk
n,0, K(yj)− N−2s

4s W rj
n,yj

n

〉
γ

= o(1). (4.3.18)
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On the other hand, if Rj
n

Rk
n

→ ∞ then Rk
n

Rj
n

→ 0. Then similarly, we also show

that

〈
(W k

γ,0)Rk
n,0, K(yj)− N−2s

4s W rj
n,yj

n

〉
Ḣs(RN )

= K(yj)− N−2s
4s ⟨W n

γ ,W ⟩,

where W n
γ (x) =

(
Rk

n

Rj
n

)− N−2s
2s W k

γ,0

(
x− y

j
n

r
j
n

Rk
n/rj

n

)
. Since Rk

n

Rj
n

→ 0 and |yj
n|

rj
n

→ ∞, again

applying [94, Lemma 3], we get W n
γ ⇀ 0 in Ḣs(RN). Hence, in any case

(4.3.18) holds.

Combining (4.3.14)–(4.3.18) along with (4.3.13), we have

ψ0

(
u0 +

n1∑
j=1

K(yj)− N−2s
4s W rj

n,yj
n +

n2∑
k=1

(W k
γ,0)Rk

n,0
)
< 0.

This contradicts (4.3.12). Therefore, n1 = 0 and n2 = 0 in (5.5.9). Hence,

un → u0 in Ḣs(RN). Consequently, ψ0(un) → ψ0(u0), which in turn implies

that u0 ∈ Σ̄t
1. But, since c0

0 < c0
1, we concludeu0 ∈ Σt

1. Hence Step 3

follows.

Proposition 4.3.7. Assume that t ≥ 0 and (4.3.3) holds. Then Iγ
K,t,f has a

second critical point vt ̸= ut. In particular, vt solves (Eγ
K,t,f ).

Proof. Let t ≥ 0 and let ut be the critical point of Iγ
K,t,f obtained in Proposi-

tion 4.3.6. Let Wγ,t be a positive radial ground state solution of (Eγ
1,t,0). Set

wτ
γ,t(x) := Wγ,t(x

τ
). Let x̄0 ∈ RN be such that K(x̄0) = ∥K∥L∞(RN ).

Claim 1: ut +K(x̄0)− N−2s
4s wτ

γ,t ∈ Σt
2 for τ > 0 large enough.

Indeed, as ∥K∥L∞(RN ) ≥ 1, 0 ≤ t < 2s and ut, w
τ
γ,t > 0, using Cauchy’s
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inequality, with ε > 0, we have

ψt

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)
= ∥ut +K(x̄0)− N−2s

4s wτ
γ,t∥2

γ

−
(
2∗

s(t) − 1
)
K(x̄0)

�
RN

|ut +K(x̄0)− N−2s
4s wτ

γ,t|2
∗
s(t)

|x|t
dx

≤ ∥ut∥2
γ +K(x̄0)− N−2s

2s ∥wτ
γ,t∥2

γ + 2K(x̄0)− N−2s
4s ⟨ut, w

τ
γ,t⟩γ

−
(
2∗

s(t) − 1
){�

RN

|ut|2
∗
s(t)

|x|t
dx+K(x̄0)− N−t

2s

�
RN

|wτ
γ,t|2

∗
s(t)

|x|t
dx
}

≤ ∥ut∥2
γ +K(x̄0)− N−2s

2s ∥wτ
γ,t∥2

γ + 2K(x̄0)− N−2s
4s

(ε
2∥wτ

γ,t∥2
γ + 1

2ε∥ut∥2
γ

)
−
(
2∗

s(t) − 1
){�

RN

|ut|2
∗
s(t)

|x|t
dx+K(x̄0)− N−t

2s τN−t

�
RN

|Wγ,t|2
∗
s(t)

|x|t
dx
}

=
(
1 + 1

ε

)
∥ut∥2

Ḣs(RN ) − (2∗
s(t) − 1)∥ut∥2∗

s(t)
L2∗

s(t)(RN ,|x|−t)

+ ∥Wγ,t∥2
γ

[
(1 + ε)τN−2s −

(
2∗

s(t) − 1
)
K(x̄0)− N−t

2s τN−t

]

< 0 for τ > 0 large enough.

Therefore, ut + K(x̄0)− N−2s
4s wτ

γ,t ∈ Σt
2 for τ > 0 large enough. Hence, Claim

1 follows.

Claim 2: Iγ
K,t,f

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)
< Iγ

K,t,f (ut) + Iγ
1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)
for all τ > 0.

Indeed, as ut, w
τ
γ,t > 0 taking K(x̄0)− N−2s

4s wτ
γ,t as the test function in (Eγ

K,t,f ),

we get

⟨ut, K(x̄0)− N−2s
4s wτ

γ,t⟩γ = K(x̄0)− N−2s
4s

�
RN

K(x)
u

2∗
s(t)−1

t wτ
γ,t

|x|t
dx

+ (Ḣs)′⟨f,K(x̄0)− N−2s
4s wτ

γ,t⟩Ḣs . (4.3.19)
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Therefore, using the above equality together with the fact that K ≥ 1 yields

Iγ
K,t,f

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)
= 1

2∥ut∥2
γ + 1

2K(x̄0)− N−2s
2s ∥wτ

γ,t∥2
γ +K(x̄0)− N−2s

4s ⟨ut, w
τ
γ,t⟩γ

− 1
2∗

s(t)

�
RN

K(x)

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)2∗
s(t)

|x|t
dx− (Ḣs)′⟨f, ut⟩Ḣs

−K(x̄0)− N−2s
4s (Ḣs)′⟨f, wτ

γ,t⟩Ḣs

= Iγ
K,t,f (ut) + Iγ

1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)
+K(x̄0)− N−2s

4s ⟨ut, w
τ
γ,t⟩γ

+ 1
2∗

s(t)

�
RN

K(x)u
2∗

s(t)
t

|x|t
dx+ K(x̄0)− N−t

2s

2∗
s(t)

�
RN

(wτ
γ,t)2∗

s(t)

|x|t
dx

− 1
2∗

s(t)

�
RN

K(x)

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)2∗
s(t)

|x|t
dx−K(x̄0)− N−2s

4s (Ḣs)′⟨f, wτ
γ,t⟩Ḣs

≤ Iγ
K,t,f (ut) + Iγ

1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)

+K(x̄0)− N−2s
4s

�
RN

K(x)
u

2∗
s(t)−1

t wτ
γ,t

|x|t
dx+ 1

2∗
s(t)

�
RN

K(x)u
2∗

s(t)
t

|x|t
dx

+ K(x̄0)− N−t
2s

2∗
s(t)

�
RN

(wτ
γ,t)2∗

s(t)

|x|t
dx− 1

2∗
s(t)

�
RN

K(x)

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)2∗
s(t)

|x|t
dx

≤ Iγ
K,t,f (ut) + Iγ

1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)

+ 1
2∗

s(t)

�
RN

K(x)
[
2∗

s(t)K(x̄0)− N−2s
4s

u
2∗

s(t)−1
t wτ

γ,t

|x|t

+ u
2∗

s(t)
t

|x|t
+K(x̄0)− N−t

2s
(wτ

γ,t)2∗
s(t)

|x|t
−

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)2∗
s(t)

|x|t

]
dx

< Iγ
K,t,f (ut) + Iγ

1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)
.

Hence the claim follows. As

∥wτ
γ,t∥2

γ = τN−2s∥Wγ,t∥2
γ, ∥wτ

γ,t∥
2∗

s(t)
L2∗

s(t)(RN ,|x|−t) = τN∥Wγ,t∥2
γ,
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and 0 ≤ t < 2s < N , it is easy to see using the definition of

Iγ
1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)
that

lim
τ→∞

Iγ
1,t,0

(
K(x̄0)− N−2s

4s wτ
γ,t

)
= −∞ (4.3.20)

Consequently, a straight forward computation yields that

sup
τ>0

Iγ
1,t,0

(
K(x0)− N−2s

4s wτ
γ,t

)
= Iγ

1,t,0

(
K(x̄0)− N−2s

4s wτmax
γ,t

)
, where τmax = K(x̄0)

1
2s .

Therefore, substituting the value of τmax in the definition of Iγ
1,t,0, it is not

difficult to check that

sup
τ>0

Iγ
1,t,0

(
K(x0)− N−2s

4s wτ
γ,t

)
= Iγ

1,t,0(Wγ,t).

Combining the above relation with Claim 2 and (5.5.3), we obtain

Iγ
K,t,f

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)
< Iγ

K,t,f (ut) + Iγ
1,t,0(Wγ,t) for all τ > 0,

(4.3.21)

Iγ
K,t,f

(
ut +K(x̄0)− N−2s

4s wτ
γ,t

)
< Iγ

K,t,f (ut) for τ large enough. (4.3.22)

Now, fix τ0 > 0 large enough such that Claim 1 and (4.3.22) are satisfied.

Set

κt := inf
θ∈Θt

max
r∈[0,1]

Iγ
K,t,f

(
θ(r)

)
,

where

Θt :=
{
θ ∈ C

(
[0, 1], Ḣs(RN)

)
: θ(0) = ut, θ(1) = ut +K(x̄0)− N−2s

4s wτ0
γ,t

}
.

As ut ∈ Σt
1, ut+K(x̄0)− N−2s

4s wτ0
γ,t ∈ Σt

2 for every θ ∈ Θt, there exists rθ ∈ (0, 1)

such that θ(rθ) ∈ Σt. Thus

max
r∈[0,1]

Iγ
K,t,f (θ(r)) ≥ Iγ

K,t,f (θ(rθ)) ≥ inf
u∈Σt

Iγ
K,t,f (u) = ct

1.

Hence,

κt ≥ ct
1 > ct

0 = Iγ
K,t,f (ut).
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Here in the last inequality we have used Lemma 4.3.5.

Claim 3: κt < Iγ
K,t,f (ut) + Iγ

1,t,0(Wγ,t).

Note that limτ→0 ∥wτ
γ,t∥γ = 0, thus if we define θ̄(r) := ut +K(x̄0)− N−2s

4s wrτ0
γ,t ,

then θ̄ ∈ Θt and limr→0 ∥θ̄(r) − ut∥γ = 0. Therefore by (4.3.21),

κt ≤ max
r∈[0,1]

Iγ
K,t,f

(
θ̄(r)

)
= max

r∈[0,1]
Iγ

K,t,f

(
ut +K(x̄0)− N−2s

4s wrτ0
γ,t

)
< Iγ

K,t,f (ut) + Iγ
1,t,0(Wγ,t),

that is,

Iγ
K,t,f (ut) < κt < Iγ

K,t,f (ut) + Iγ
1,t,0(Wγ,t) for all t ≥ 0. (4.3.23)

Using Ekeland’s variational principle, there exists a (PS) sequence (vt
n)n of

Iγ
K,t,f at level κt for all t ≥ 0. Since any (PS) for Iγ

K,t,f is bounded and

κt < Iγ
K,t,f (ut) + Iγ

1,t,0(Wγ,t), using Theorem 4.2.1, in the case of t > 0, there

exists vt ∈ Ḣs(RN) such that vt
n → vt in Ḣs(RN), with Iγ

K,t,f (vt) = κt and

(Iγ
K,t,f )′(vt) = 0. Moreover, Iγ

K,t,f (ut) < κt implies that ut ̸= vt. Hence we

have proved the proposition for t > 0.

Next let us assume that t = 0 so that we are in case (ii) of Theorem 4.1.1

and so

K(x̄0) = ∥K∥L∞(RN ) <

(
S

Sγ,0,s

) N
N−2s

(4.3.24)

holds by assumption. Let W denote the unique positive solution of (E0
1,0,0).

As Wγ,0 is a minimum energy positive solution (ground state solution) of

(Eγ
1,t,0), with t = 0, it follows that

Iγ
1,0,0(Wγ,0) ≤ Iγ

1,0,0(W ) < I0
1,0,0(W ),

where the last inequality is due to the fact that W > 0 and so
�
RN

|W |2
|x|2s dx > 0.

Since S and Sγ,0,s are achieved by W and Wγ,0 respectively, it is easy to

see that ∥W∥2
Ḣs(RN ) = S

N
2s and ∥Wγ,0∥2

γ = S
N
2s
γ,0,s. On the other hand, as
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I0
1,0,0(W ) = s

N
∥W∥2

Ḣs and Iγ
1,0,0(Wγ,0) = s

N
∥Wγ,0∥2

γ, we obtain Iγ
1,0,0(Wγ,0)
I0

1,0,0(W ) =(
Sγ,0,s

S

)N
2s . This together with (4.3.24) yields

Iγ
1,0,0(Wγ,0) < K(x̄0)− N−2s

2s I0
1,0,0(W ) ≤ K(x)− N−2s

2s I0
1,0,0(W ) for all x ∈ RN .

Combining the above inequality with (4.3.23) yields

Iγ
K,0,f (u0) < κ0 < min

{
Iγ

K,0,f (u0)+K(x)− N−2s
2s I0

1,0,0(W ), Iγ
K,0,f (u0)+Iγ

1,0,0(Wγ,0)
}
.

Hence, again using Theorem 4.2.1 (as in the case t > 0), we can conclude

that the (PS) sequence (v0
n)n converges strongly to some v0 ∈ Ḣs(RN), with

Iγ
K,0,f (v0) = κ0 and (Iγ

K,0,f )′(v0) = 0. As before, Iγ
K,0,f (u0) < κ0 implies that

u0 ̸= v0. Hence we have completed the proof for all t ≥ 0.

Lemma 4.3.8. If ∥f∥(Ḣs)′ < Ct

√
1 − γ

γN,s
S

N−t
4s−2t
γ,t,s , then (4.3.3) holds.

Proof. By the given assumption, there exists ε > 0 such that

∥f∥(Ḣs)′ < Ct

√
1 − γ

γN,s

S
N−t

4s−2t
γ,t,s − ε.

Combining this with Lemma 4.3.4, for all ut ∈ Σt, it holds

(Ḣs)′⟨f, ut⟩Ḣs ≤ ∥f∥(Ḣs)′∥ut∥Ḣs(RN )

≤
(

1 − γ

γN,s

)− 1
2

∥f∥(Ḣs)′∥ut∥γ

< CtS
N−t

4s−2t
γ,t,s ∥ut∥γ − ε

(
1 − γ

γN,s

)− 1
2

∥ut∥γ

≤ 4s− 2t
N − 2t+ 2s∥ut∥2

γ − ε

(
1 − γ

γN,s

)− 1
2

∥ut∥γ.

Hence,

inf
u∈Σt

[ 4s− 2t
N − 2t+ 2s∥u∥2

γ − (Ḣs)′⟨f, u⟩Ḣs

]
≥ ε

(
1 − γ

γN,s

)− 1
2

inf
u∈Σt

∥u∥γ.

Since ∥u∥γ is bounded away from 0 on Σt by Remark 4.3.2, the above ex-

pression implies that

inf
u∈Σt

[ 4s− 2t
N − 2t+ 2s∥u∥2

γ − (Ḣs)′⟨f, u⟩Ḣs

]
> 0. (4.3.25)
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On the other hand,

(4.3.3) ⇐⇒ Ct
∥u∥

N−2t+2s
2s−t

γ(�
RN

|u|2∗
s(t)

|x|t
dx
)N−2s

4s−2t

− (Ḣs)′⟨f, u⟩Ḣs > 0, for ∥u∥L2∗
s(t)(RN ,|x|−t) = 1

⇐⇒ Ct
∥u∥

N−2t+2s
2s−t

γ(�
RN

|u|2∗
s(t)

|x|t
dx
)N−2s

4s−2t

− (Ḣs)′⟨f, u⟩Ḣs > 0 for u ∈ Σt

(4.3.26)

⇐⇒ 4s− 2t
N − 2t+ 2s∥u∥2

γ − (Ḣs)′⟨f, u⟩Ḣs > 0 for u ∈ Σt.

Clearly, (5.5.16) ensures the RHS of (4.3.26) holds. The lemma now follows.

Proof of Theorem 4.1.1 completed. Combining Propositions 4.3.6 and 4.3.7

with Lemma 4.3.8, we conclude the proof of Theorem 4.1.1.

4.4 Necessary Lemmas to complete the proof

of Proposition (4.2.1):

Lemma 4.4.1. Let (vn)n ⊆ Ḣs(RN) be a (PS) sequence for Īγ
K,0,0 at the level

d. Assume that, there exist sequences (yn)n → y ∈ RN , rn → 0 ∈ R+ ∪ {0}

such that wn(x) = r
N−2s

2
n vn(rnx+yn) converges weakly in Ḣs(RN) and a.e. to

some w ∈ Ḣs(RN). If |yn|
rn

→ ∞, then K(y)N−2s
4s w solves (E0

1,0,0). Moreover,

zn := vn − r
− N−2s

2
n w(x− yn

rn

)

is a (PS) sequence for Īγ
K,0,0 at the level d−K(y)− N−2s

2s Ī0
1,0,0(K(y)N−2s

4s w).

Proof. Let (vn)n ⊆ Ḣs(RN) be a (PS) sequence for Īγ
K,0,0 at the level d and
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ϕ be an arbitrary C∞
c (RN) function. Put ϕn(x) := r

− N−2s
2

n ϕ(x−yn

rn
). Thus,

⟨w, ϕ⟩Ḣs = lim
n→∞

⟨wn, ϕ⟩Ḣs

= lim
n→∞

CN,s

2

�
R2N

(wn(x) − wn(y))(ϕ(x) − ϕ(y))
|x− y|N+2s

dxdy

= lim
n→∞

CN,s

2

�
R2N

(vn(x) − vn(y))(ϕn(x) − ϕn(y))
|x− y|N+2s

dxdy (4.4.1)

= lim
n→∞

γ

�
RN

vnϕn

|x|2s
dx+

�
RN

K(x)|vn|2∗
s−2vnϕn dx

= lim
n→∞

[
γ

�
RN

wnϕ

|x+ r−1
n yn|2s

dx+
�
RN

K(rnx+ yn)|wn|2∗
s−2wnϕ dx

]
.

Since r−1
n |yn| → ∞, for each fixed ϕ we have

lim
n→∞

�
RN

wnϕ

|x+ r−1
n yn|2s

dx = 0.

Therefore, taking the limit as n → ∞ in (4.4.1), we obtain (−∆)sw =

K(y)|w|2∗
s−2w, or equivalently K(y)N−2s

4s w solves (E0
1,0,0). Moreover,

�
RN

wnw

|x− r−1
n yn|2s

dx =
�
RN

|w|2

|x− r−1
n yn|2s

dx = o(1).

Therefore, proceeding as in Claim 2 of Step 5 in the proof of Theorem 4.2.1,

we obtain as n → ∞

Īγ
K,0,0(zn) = Īγ

K,0,0(vn) −K(y)− N−2s
2s Ī0

1,0,0(K(y)N−2s
4s w) + o(1).

To prove that
(Ḣs)′

〈
Īγ

K,0,0(zn), φ
〉

Ḣs
= o(∥φ∥), we proceed as in the proof of

Claim 2 of Step 5 in Theorem 4.2.1, the only additional estimate we need to

check is �
RN

wφn

|x− r−1
n yn|2s

dx = o(∥φn∥),

where φn = r
N−2s

2s
n φ(rnx + yn), ∥φn∥ = ∥φ∥. This estimate follows from the

Cauchy-Schwartz and the Hölder inequalities.

Lemma 4.4.2. Let K denote the Kelvin transform in RN . If (rn)n ⊂ R+∪{0}

and (yn)n ⊂ RN are sequences such that |yn|
rn

→ ∞ and W is a positive
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solution of (E0
1,0,0), then in the sense of Ḣs(RN)-norm as n → ∞

r
− N−2s

2
n K

(
W (x−yn

rn
)
)

=
(
rn|yn|−2

)− N−2s
2 W

(
x− yn

|yn|2

rn|yn|−2

)
+ o(1). (4.4.2)

Proof. Let the assumptions and notation of the statement hold. Let W be a

positive solution of (E0
1,0,0). Then W (x) = CN,s(1+ |x|2)− N−2s

2 thanks to [46].

The Ḣs(RN) norm is invariant under the scaling so that

v 7→ ṽ(x) :=
(
rn

|yn|2

)N−2s
2

v

(
rn

|yn|2
x+ yn

|yn|2

)
, (4.4.3)

we can apply it to each side of (4.4.2) to check the convergence. The RHS of

(4.4.2) becomes W + o(1). The LHS of (4.4.2), after some algebraic compu-

tation, is transformed into

W n(x) := CN,s

(
1 + rn

|yn|
⟨x, yn⟩ +

(
1 + r2

n|yn|−2
)
|x|2)

)− N−2s
2

.

As rn

|yn| → 0, clearly W n → W in Ḣs(RN). Hence the proof is complete.

Conclusion: In this chapter we consider, nonlocal Hardy-Sobolev equa-

tion with nonhomogeneous term in RN . Here the nonlinearity is multiplied

by a positive continuous coefficient function K ≥ 1, whose asymptotic behav-

ior is known. First, we prove the profile decomposition of the PS sequences

for the associated energy functional. Then, using that we prove multiplic-

ity result for the equation under certain restrictions on the nonhomogeneous

term. It might be interesting to know whether we can prove multiplicity

results under weaker assumptions on the coefficient function K, say what

happens when K ∈ (0, 1] or K is only positive and asymptotically converges

to 1?

————— ◦ —————
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Chapter 5

Fractional Elliptic Systems

with Critical or Subcritical

nonlinearities

In this chapter we study existence, uniqueness and multiplicity of positive

solutions to the following fractional nonhomogeneous elliptic system in RN



(−∆)su+ γu = α

α + β
|u|α−2u|v|β + f(x) in RN ,

(−∆)sv + γv = β

α + β
|v|β−2v|u|α + g(x) in RN ,

u, v > 0 in RN ,

(Sγ
α,β)

where N > 2s, α, β > 1, α + β ≤ 2∗
s, 2∗

s := 2N/(N − 2s), f, g are non-

trivial nonnegative functionals in the dual space of Ḣs(RN) if α + β = 2∗
s

and of Hs(RN) if α+β < 2∗
s, while γ = 0 if α+β = 2∗

s and γ = 1 if α+β < 2∗
s.

In the vectorial case, the natural solution space for (Sγ
α,β) is the Hilbert

space Ḣs(RN) × Ḣs(RN), equipped with the inner product

〈
(u, v), (ϕ, ψ)

〉
Ḣs×Ḣs

:= ⟨u, ϕ⟩Ḣs + ⟨v, ψ⟩Ḣs ,
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and the norm

∥(u, v)∥Ḣs×Ḣs :=
(
∥u∥2

Ḣs + ∥v∥2
Ḣs

) 1
2 ,

when α+β = 2∗
s, while is Hs(RN)×Hs(RN) equipped with the inner product

〈
(u, v), (ϕ, ψ)

〉
Hs×Hs

:= ⟨u, ϕ⟩Ḣs + ⟨v, ψ⟩Ḣs + ⟨u, ϕ⟩L2 + ⟨v, ψ⟩L2 ,

and the norm

∥(u, v)∥Hs×Hs :=
(
∥u∥2

Hs + ∥v∥2
Hs

) 1
2 ,

if α + β < 2∗
s.

In general, given any two Banach spaces X and Y , the product space

X × Y is endowed with the following product norm

∥(x, y)∥X×Y :=
(
∥x∥2

X + ∥y∥2
Y

) 1
2 .

For instance, Lp(RN) × Lp(RN) (p > 1) is equipped with the product norm

∥(u, v)∥Lp(RN )×Lp(RN ) :=
(
∥u∥2

Lp(RN ) + ∥v∥2
Lp(RN )

) 1
2 .

When α + β = 2∗
s, we consider the corresponding weakly coupled Frac-

tional elliptic system

(−∆)su = α

2∗
s

|u|α−2u|v|β + f(x) in RN ,

(−∆)sv = β

2∗
s

|v|β−2v|u|α + g(x) in RN ,

u, v > 0 in RN .

(S0
2∗

s
)

It is well-known that u ∈ Ḣs(RN) implies u ∈ Lp
loc(RN) for any p ∈ [2, 2∗

s].

Definition 5.0.1 (Positive Weak Solution). When α + β = 2∗
s, we say

(u, v) ∈ Ḣs(RN) × Ḣs(RN) is a positive weak solution of (S0
2∗

s
) if u, v > 0 in

RN and
〈
(u, v), (ϕ, ψ)

〉
Ḣs×Ḣs

= α

2∗
s

�
RN

|u|α−2u|v|βϕ dx+ β

2∗
s

�
RN

|v|β−2v|u|αψ dx

+ (Ḣs)′⟨f, ϕ⟩Ḣs + (Ḣs)′⟨g, ψ⟩Ḣs
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holds for every (ϕ, ψ) ∈ Ḣs(RN) × Ḣs(RN), while if α + β < 2∗
s a couple

(u, v) ∈ Hs(RN) × Hs(RN) is said to be a positive weak solution of (Sγ
α,β) if

u, v > 0 in RN and

〈
(u, v), (ϕ, ψ)

〉
Hs×Hs

= α

α + β

�
RN

|u|α−2u|v|βϕ dx+ β

α + β

�
RN

|v|β−2v|u|αψ dx

+ H−s⟨f, ϕ⟩Hs + H−s⟨g, ψ⟩Hs

holds for every (ϕ, ψ) ∈ Hs(RN) ×Hs(RN).

Define

S = inf
u∈Ḣs(RN )\{0}

∥u∥2
Ḣs

∥u∥2
2∗

s

, Sα+β = inf
u∈Hs(RN )\{0}

∥u∥2
Ḣs

∥u∥2
α+β

,

and

S(α,β) =



inf
(u,v)∈Ḣs(RN )×Ḣs(RN )\{(0,0)}

∥u∥2
Ḣs + ∥v∥2

Ḣs(�
RN

|u|α|v|βdx
)2/2∗

s
, if α + β = 2∗

s

inf
(u,v)∈Hs(RN )×Hs(RN )\{(0,0)}

∥u∥2
Ḣs + ∥v∥2

Ḣs(�
RN

|u|α|v|βdx
)2/(α+β) , if α + β < 2∗

s.

In the celebrated paper [46] Chen, Li and Ou prove that when α+β = 2∗
s the

Sobolev constant Sα+β = S is achieved by w, where w is the unique positive

solution (up to translations and dilations) of

(−∆)sw = w2∗
s−1 in RN , w ∈ Ḣs(RN). (5.0.1)

Indeed, any positive solution of the above equation is radially symmetric,

with respect to some point x0 ∈ RN , strictly decreasing in r = |x − x0|, of

class C∞(RN) and so of the explicit parametric form

w(x) = cN,s

(
λ

λ2 + |x− x0|2

)N−2s
2

,
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for some λ > 0. On the other hand, when 2 < α+ β < 2∗
s, Frank, Lenzmann

and Silvestre in their celebrated paper [71] prove that Sα+β is achieved by

unique (up to a translation) positive ground state solution w of

(−∆)sw + w = wα+β−1 in RN , w ∈ Hs(RN).

Furthermore, w is radially symmetric, symmetric decreasing C∞(RN) func-

tion which satisfies the following decay property in RN

C−1

1 + |x|N+2s
≤ w(x) ≤ C

1 + |x|N+2s
,

with some constant C > 0 depending on N, α + β, s.

Next, we recall a result from [64] ( [8] in the local case) which states the

relation between Sα,β and Sα+β.

Lemma 5.0.2. [64, Lemma 5.1] In all cases α > 1, β > 1, with α+β ≤ 2∗
s,

it results

Sα,β =
[(

α

β

) β
α+β

+
(
α

β

) −α
α+β

]
Sα+β.

Moreover, if w achieves Sα+β then (Bw,Cw) achieves Sα,β for all positive

constants B and C such that B/C =
√
α/β.

The scalar version of (S0
2∗

s
) has been considered by Bhakta and Pucci

in [31], where they prove existence of at least two positive solutions. This

class of problems in the scalar and local cases, involving Sobolev critical

exponents was treated in the pioneering paper [39]. Then existence was

extended in [107] to multiplicity results. These kind of problems were studied

in several directions. Let us mention [43, 44, 91, 104, 109] for more general

perturbations and [50] for existence of sign changing solutions. Versions for

systems were extended, for instance, in [37, 79, 80, 112] and in the references

therein.

Elliptic systems arise in biological applications (e.g. population dynam-

ics) or physical applications (e.g. models of a nuclear reactor) and have
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drawn a lot of attentions (see [8, 51, 92, 98] and references therein). For

systems in bounded domains with nonhomogeneous terms we refer to [35].

Problems involving the fractional Laplace operator appear in several areas

such as phase transitions, flames propagation, chemical reaction in liquids,

population dynamics, finance, etc., see for e.g. [41, 58].

In the nonlocal case, there are not so many papers, in which weakly cou-

pled systems of equations have been studied. We refer to [30,47,55,64,77,80],

where Dirichlet systems of equations in bounded domains have been treated.

For the nonlocal systems of equations in the entire space RN , we cite

[26, 68, 69] and the references therein. In the very recent work [26], we have

proved existence of one solution to (Sγ
α,β) when f and g are nontrivial but

∥f∥(Ḣs)′ and ∥g∥(Ḣs)′ are small enough. To the best of our knowledge, so far

there have been no papers in the literature, where uniqueness/multiplicity of

positive solutions have been established for (S0
2∗

s
), with the fractional Lapla-

cian and the critical exponents in RN . The main results in the chapter are

new even in the local case s = 1.

5.1 Main Results

Our first result concerns about a general existence result for our Fractional

elliptic system with both critical and subcritical nonlinearity.

Theorem 5.1.1. (i) If α + β = 2∗
s, and f, g are nontrivial nonnegative

functionals in the dual space Ḣs(RN)′ of Ḣs(RN) such that ker(f)= ker(g),

then system (S0
2∗

s
) admits a nontrivial solution (ū, v̄) such that ū > 0 and v̄ >

0, provided that 0 < max{∥f∥(Ḣs)′ , ∥g∥(Ḣs)′} ≤ d for some d > 0 sufficiently

small.

(ii) If α + β < 2∗
s, and f, g are nontrivial nonnegative functionals in

the dual space H−s(RN) of Hs(RN) such that ker(f)=ker(g), then (Sγ
α,β)
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admits a nontrivial solution (ū, v̄) such that ū > 0 and v̄ > 0, provided that

0 < max{∥f∥H−s , ∥g∥H−s} ≤ d for some d > 0 sufficiently small.

Furthermore, in both the cases (i) and (ii) if f ≡ g, then the solution

(ū, v̄) has the property that ū ̸≡ v̄, whenever α ̸= β. Finally, if α = β but

f ̸≡ g, then ū ̸≡ v̄.

This is the main result proved in [26].

Definition 5.1.2 (Ground state solution of (S0
2∗

s
)). We say that a pair

(u, v) ∈ Ḣs(RN) × Ḣs(RN) is a ground state solution or least energy so-

lution for (S0
2∗

s
), with f = 0 = g, if (u, v) is a minimizer of Sα,β.

Lemma 5.0.2 poses a natural question: are all the ground state solutions

of (S0
2∗

s
), with f = 0 = g, of the form (Bw,Cw), where w is the unique

positive solution of (5.0.1)?

We answer this question affirmatively in our first main theorem which is

stated as below.

Theorem 5.1.3 (Uniqueness of ground state for homogeneous system). Let

(u0, v0) be a minimizer of Sα,β. Then there exist τ, B > 0 such that

(u0, v0) = (Bw,Cw), with C = Bτ, τ =
√
β

α
,

where w is the unique positive solution of (5.0.1).

The above result partially extends the uniqueness theorem due to Chen,

Li and Ou [46] from the scalar case (5.0.1) to the system (S0
2∗

s
) with f =

0 = g. Theorem 5.1.3 proves the uniqueness of ground state solution of the

system (S0
2∗

s
) when f = 0 = g and also generalizes [64, Lemma 5.1], where

as in [46] uniqueness has been established among all positive solutions of

(5.0.1).

Our next main result is the multiplicity of solutions for the nonhomoge-
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neous system (S0
2∗

s
).

Theorem 5.1.4 (Multiplicity for nonhomogeneous system). Assume that

f, g are nontrivial nonnegative functionals in the dual space of Ḣs(RN) with

ker(f) = ker(g) and

max{∥f∥(Ḣs)′ , ∥g∥(Ḣs)′} < C0S
N
4s
α,β, where C0 :=

(
4s

N + 2s

)
(2∗

s − 1)− N−2s
4s ,

then (S0
2∗

s
) admits at least two positive solutions.

Furthermore, if f ≡ g, then the solution (u, v) of (S0
2∗

s
) has the property

that u ̸≡ v, whenever α ̸= β. Finally, if α = β but f ̸≡ g, then u ̸≡ v.

Theorem 5.1.3 and Theorem 5.1.4 are the main results of [25]. Theo-

rem 5.1.4 complements the mentioned work [26] on (S0
2∗

s
).

The proof of the uniqueness Theorem 5.1.3 is inspired by some arguments

made in [49] and [96] (also see [48]). The main difference is that in our case

the nontrivial solution (u, v) has both components nontrivial, that is u ̸= 0

and v ̸= 0, and in the proof it was necessary to deal with a non symmetric

system.

To prove the multiplicity Theorem 5.1.4, the main difficulty is the lack of

compactness of the Sobolev space Ḣs(RN) into the Lebesgue space L2∗
s (RN).

For this reason the functional associated to system (S0
2∗

s
) may fail to satisfy

the Palais-Smale condition at some critical levels. To overcome this, it is

necessary to look for a nice energy range where the (PS) condition holds in

order to use variational arguments. Classification of (PS) sequences associ-

ated with a scalar equation (local/nonlocal) has been done in many papers,

to quote a few, we cite [31, 54, 88, 94, 95, 105]. To the best of our knowledge,

the (PS) decomposition associated to systems of equations has not been

studied much. We quote the recent work [96], where in the local case the

(PS) decomposition was done for systems of equations in bounded domains.

Again to the best of our knowledge, in both the local and nonlocal cases,
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Proposition 5.4.1 (see, Section (5.4)) is the first result where the (PS) de-

composition has been established for system of equations in the whole space

RN . Next, to prove multiplicity of solutions, we decompose the space Ḣs(RN)

into three disjoint components. The first solution is constructed using a min-

imization argument in one of the components. Another solution is obtained

by combining the Ekeland’s variational principle with a careful analysis of the

critical levels by using the homogeneous unique solution with some estimates

in a slightly larger Morrey space.

The chapter has been organized as follows. In Section (5.2), we prove

existence of one positive solution of the system (Sγ
α,β), namely Theorem 5.1.1.

In Section (5.3), we prove the uniqueness for the ground state solution of

the homogeneous system, namely Theorem 5.1.3. Section (5.4) deals with

the Palais-Smale decomposition associated with the functional of (S0
2∗

s
). In

Section (5.5), we prove Theorem 5.1.4.

Remark 5.1.5. Adapting the arguments in the proof of Theorem 5.1.3 and

Theorem 5.1.4, the results of uniqueness and multiplicity can be obtained for

the following system of equations:

a) 

(−∆)su+ u = α

α + β
|u|α−2u|v|β + f(x) in RN ,

(−∆)sv + v = β

α + β
|v|β−2v|u|α + g(x) in RN ,

u, v > 0 in RN ,

(5.1.1)

where N > 2s, α, β > 1 and α+β < 2∗
s, and f, g are nonnegative func-

tionals in the dual space of Hs(RN) (see Theorem 5.1.1, for existence

of solutions). It is known that the scalar equation

(−∆)su+ u = |u|α+β−2u in RN (5.1.2)

has a unique ground state solution (see [71]). If ω denotes the unique

ground state solution of (5.1.2), then it can be shown that (rω, tω) is
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a ground state solution of (5.1.1) when f = 0 = g and r/t =
√
α/β.

Next, following an argument similar to Theorem 5.1.3, with obvious

modifications, it can be shown that any ground state solution of (5.1.1)

with f = 0 = g is of the form (rω, tω) where r/t =
√
α/β.

b) 

(−∆)su = α

2∗
s

a(x)|u|α−2u|v|β + f(x) in RN ,

(−∆)sv = β

2∗
s

b(x)|v|β−2v|u|α + g(x) in RN ,

u, v > 0 in RN ,

(5.1.3)

where α, β, f, g are as in (S0
2∗

s
) and the potentials a, b are continuous

functions in RN with a, b ≥ 1 and a(x), b(x) → 1 as |x| → ∞. See for

instance [31] in the scalar case.

c) One can also try to adopt the methodology of this paper in order

to study the system of equations involving the Hardy operator i.e.,

if (−∆)s is replaced by the Hardy operator (−∆)s − γ
|x|2s , where

γ ∈ (0, γN,s) and γN,s is the best Hardy constant in the fractional

Hardy inequality. The multiplicity question in the scalar case was al-

ready solved for this problem in the recent paper [27].

Remark 5.1.6. Theorem 5.1.3 proves uniqueness of ground state solutions

of (S0
2∗

s
) with f = 0 = g. Therefore, it is interesting to ask if any positive

solution of (S0
2∗

s
) with f = 0 = g is of the form (rw, tw), where r/t =

√
α/β

and w is the unique positive solution of (5.0.1).

5.2 Proof of Theorem 5.1.1

Before proving the main Theorem 5.1.1 let us present some auxiliary results.
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Lemma 5.2.1. There exists a positive constant C = C(α, β, s,N) such that

when α + β = 2∗
s ( �

RN

|u|α|v|βdx
)1/2∗

s

≤ C∥(u, v)∥Ḣs×Ḣs

for all (u, v) ∈ Ḣs(RN) × Ḣs(RN), while if α + β < 2∗
s( �

RN

|u|α|v|βdx
)1/(α+β)

≤ C∥(u, v)∥Hs(RN )×Hs(RN )

for all (u, v) ∈ Hs(RN) ×Hs(RN).

Proof. It easily follows from the definition of Sα+β and the inequality

|t|α|τ |β ≤ |t|α+β + |τ |α+β

for all (t, τ) ∈ R2.

Finally we prove a short useful result

Lemma 5.2.2. In all cases α > 1, β > 1, with α + β ≤ 2∗
s,

S(α,β) > Sα+β

holds true.

Proof. If α > β, then using Lemma 5.0.2,

S(α,β)

Sα+β

=
(
α

β

) β
α+β

+
(
α

β

) −α
α+β

=
(
α

β

) β
α+β α + β

α
> 1.

Similarly, if α < β then

S(α,β)

S
=
(
α

β

) β
α+β

+
(
α

β

) −α
α+β

=
(
β

α

)− β
α+β

+
(
β

α

) α
α+β

=
(
β

α

) α
α+β

[
1 +

(
β

α

)−1 ]

=
(
β

α

) α
α+β α + β

β
> 1.

Further, S(α,β) > 2Sα+β for α = β.
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We are finally in a position to prove the main result and we simply say

that a couple (u, v) is positive if both components are positive.

Proof of Theorem 5.1.4 – Part (i). Let α + β = 2∗
s. We note that system

(S0
2∗

s
) is variational and the underlying functional is

If,g(u, v) := 1
2∥(u, v)∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

|u|α|v|β dx− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs ,

which is well defined in Ḣs(RN) × Ḣs(RN) and of class C1
(
Ḣs(RN) ×

Ḣs(RN)
)
. Moreover, if (u, v) is a solution of (S0

2∗
s
), then (u, v) is a posi-

tive critical point of If,g and vice versa.

Let us now introduce the auxiliary functional

Jf,g(u, v) := 1
2∥(u, v)∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

uα
+v

β
+ dx− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs ,

which is well defined in Ḣs(RN) × Ḣs(RN) and of class C1
(
Ḣs(RN) ×

Ḣs(RN)
)
, with second derivative. Indeed, for all (u, v), (ϕ, ψ) ∈ Ḣs(RN) ×

Ḣs(RN)

J ′′
f,g(u, v)

(
(ϕ, ψ), (ϕ, ψ)

)
= ∥(ϕ, ψ)∥2

Ḣs×Ḣs − α(α− 1)
2∗

s

�
RN

uα−2
+ vβ

+ϕ
2 dx

− β(β − 1)
2∗

s

�
RN

uα
+v

β−2
+ ψ2 dx− 2αβ

2∗
s

�
RN

uα−1
+ vβ−1

+ ϕψ dx.

(5.2.1)

Using Hölder’s and Sobolev’s inequalities, we estimate the second term on

the RHS as follows
�
RN

uα−2
+ vβ

+ϕ
2dx ≤

(�
RN

|ϕ|2∗
s dx

) 2
2∗

s

(�
RN

|u|2∗
s dx

)α−2
2∗

s

(�
RN

|v|2∗
s dx

) β
2∗

s

≤ S−1− α−2
2 − β

2 ∥u∥α−2
Ḣs ∥v∥β

Ḣs∥ϕ∥2
Ḣs

≤ S− 2∗
s
2 ∥(u, v)∥2∗

s−2
Ḣs×Ḣs∥(ϕ, ψ)∥2

Ḣs×Ḣs .

In the inequality we have used the fact that ∥u∥Ḣs ≤ ∥(u, v)∥Ḣs×Ḣs and

α + β = 2∗
s. Similarly,
�
RN

uα
+v

β−2
+ ψ2 dx ≤ S− 2∗

s
2 ∥(u, v)∥2∗

s−2
Ḣs×Ḣs∥(ϕ, ψ)∥2

Ḣs×Ḣs .
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Furthermore,

�
RN

uα−1
+ vβ−1

+ ϕψ dx ≤
(�

RN

|ϕ|2∗
s dx

) 1
2∗

s

(�
RN

|ψ|2∗
s dx

) 1
2∗

s

(�
RN

|u|2∗
s dx

)α−1
2∗

s

(�
RN

|v|2∗
s dx

)β−1
2∗

s

≤ S− 1
2 − 1

2 − α−1
2 − β−1

2 ∥ϕ∥Ḣs∥ψ∥Ḣs∥u∥α−1
Ḣs ∥v∥β−1

Ḣs

≤ S− 2∗
s
2

2 ∥(ϕ, ψ)∥2
Ḣs×Ḣs∥(u, v)∥2∗

s−2
Ḣs×Ḣs .

Thus, substituting the above three estimates in (5.2.1), we obtain

J ′′
f,g(u, v)

(
(ϕ, ψ), (ϕ, ψ)

)
≥

1 − S− 2∗
s
2

2∗
s

∥(u, v)∥2∗
s−2

Ḣs×Ḣs

[
α(α− 1) + β(β − 1) + αβ

] ·

× ∥(ϕ, ψ)∥2
Ḣs×Ḣs .

Therefore, J ′′
f,g(u, v) is positive definite for (u, v) in the ball centered at 0 and

of radius r in Ḣs(RN) × Ḣs(RN), where

r =
(

2∗
s

α2 + β2 + αβ − 2∗
s

) 1
2∗

s−2

S
N
4s .

Hence Jf,g is strictly convex in Br. For (u, v) ∈ Ḣs(RN) × Ḣs(RN), with

∥(u, v)∥Ḣs×Ḣs = r,

Jf,g(u, v) = 1
2∥(u, v∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

uα
+v

β
+dx− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

≥
(

1
2 − 1

2∗
s

S
− 2∗

s
2

(α,β)r
2∗

s−2
)
r2 − (∥f∥(Ḣs)′∥u∥Ḣs + ∥g∥(Ḣs)′∥v∥Ḣs)

≥
(

1
2 − 1

2∗
s

S
− 2∗

s
2

(α,β)r
2∗

s−2
)
r2 −

(
∥f∥(Ḣs)′ + ∥g∥(Ḣs)′

)
r.

As r2∗
s−2 = 2∗

s

α2+β2+αβ−2∗
s
S

2∗
s
2 , we obtain

Jf,g(u, v) ≥
[

1
2 − 1

α2 + β2 + αβ − 2∗
s

(
S

S(α,β)

) 2∗
s
2
]
r2 − r(∥f∥(Ḣs)′ + ∥g∥(Ḣs)′).

(5.2.2)
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We claim that

(α2 + β2 + αβ − 2∗
s)
(
S(α,β)

S

)2∗
s/2

> 2. (5.2.3)

By Lemma 5.2.2 and α + β = 2∗
s, we have

(α2 + β2 + αβ − 2∗
s)
(
S(α,β)

S

) 2∗
s
2

> (α2 + β2 + αβ − 2∗
s)
S(α,β)

S

=
[
2∗

s(2∗
s − 1) − αβ

] (α
β

) β
2∗

s 2∗
s

α
.

Since 2∗
s > 2, to prove (5.2.3) it is enough to show that

[
2∗

s(2∗
s − 1) − αβ

] (α
β

) β
2∗

s 1
α
> 1.

Now,

[
2∗

s(2∗
s − 1) − αβ

] (α
β

) β
2∗

s 1
α
> 1 ⇐⇒ 2∗

s(2∗
s − 1) − αβ > β

β
2∗

s α
2∗

s−β

2∗
s

⇐⇒ 2∗
s(2∗

s − 1) > αβ

[
1 + 1

α
β

2∗
s β

2∗
s−β

2∗
s

]
.

Since, α, β > 1 and α + β = 2∗
s, we have

αβ

[
1 + 1

α
β

2∗
s β

2∗
s−β

2∗
s

]
< 2αβ ≤ (α + β)2

2 = (2∗
s)2

2 < 2∗
s(2∗

s − 1).

Hence the claim (5.2.3) follows.

Now, by (5.2.2) and (5.2.3) there exists a number d > 0 such that

inf
∥(u,v)∥Ḣs×Ḣs =r

Jf,g(u, v) > 0, provided that 0 < max{∥f∥(Ḣs)′ , ∥g∥(Ḣs)′} ≤ d.

Furthermore, for (u, v) ∈ Ḣs(RN) × Ḣs(RN), with u > 0 and v ≥ 0,

Jf,g(tu, tv)


< 0 for t > 0 small enough

> 0 for t < 0 small enough,
(5.2.4)

since f and g are nontrivial. Combining this along with the fact that Jf,g is

strictly convex in Br and

inf
∥(u,v)∥Ḣs×Ḣs = r

Jf,g(u, v) > 0 = Jf,g(0, 0),
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we conclude that there exists a unique critical point (ū, v̄) of Jf,g in Br such

that

Jf,g(ū, v̄) = inf
∥(u,v)∥Ḣs×Ḣs <r

Jf,g(u, v) < Jf,g(0, 0) = 0.

Therefore, (ū, v̄) is a nontrivial solution of

(−∆)su = α

2∗
s

uα−1
+ vβ

+ + f(x) in RN ,

(−∆)sv = β

2∗
s

vβ−1
+ uα

+ + g(x) in RN ,

u, v ∈ Ḣs(RN).

(5.2.5)

Since, f and g are nonnegative functionals, then taking (ϕ, ψ) = (ū−, v̄−) as

a test function in (5.2.5), we obtain

−∥ū−∥2
Ḣs −

�
R2N

[ū+(y)ū−(x) + ū+(x)ū−(y)]
|x− y|N+2s

dx dy − ∥v̄−∥2
Ḣs

−
�

R2N

[v̄+(y)v̄−(x) + v̄+(x)v̄−(y)]
|x− y|N+2s

dx dy

= H−s⟨f, ū−⟩Hs + H−s⟨g, v̄−⟩Hs ≥ 0.

This in turn implies ū− = 0 and v̄− = 0, i.e., ū ≥ 0 and v̄ ≥ 0. Therefore,

(ū, v̄) is nontrivial nonnegative solution of (S0
2∗

s
).

Next we assert that (ū, v̄) ̸= (0, 0) implies ū ̸= 0 and v̄ ̸= 0. Suppose

not, that is assume for instance that ū ̸= 0 but v̄ = 0. Then taking the test

function (ϕ, ψ) = (ū, 0) we get

∥ū∥2
Ḣs = (Ḣs)′⟨f, ū⟩Ḣs .

Next, choose as test function (ϕ, ψ) = (0, ū), so that

(Ḣs)′⟨g, ū⟩Ḣs = 0.

Hence, ∥ū∥Ḣs = 0, since ker(f) = ker(g) by assumption. This contradicts

the fact that (ū, v̄) ̸= (0, 0). Similarly, we can show that if ū = 0 then v̄ = 0

too. Hence the assertion follows.
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Let us claim that ū > 0 and v̄ > 0 in RN . To prove the claim, first we

note that taking the test function (ϕ, ψ) = (ϕ, 0), where ϕ ∈ Ḣs(RN) with

ϕ ≥ 0, we obtain

⟨ū, ϕ⟩Ḣs = α

2∗
s

�
RN

ūα−1v̄βϕ dx+ (Ḣs)′⟨f, ϕ⟩Ḣs ≥ 0,

as f is a nonnegative functional and ū, v̄ ≥ 0. This implies ū is a weak

supersolution to

(−∆)su = 0.

Therefore, applying the maximum principle [56, Theorem 1.2 (ii)], with c ≡ 0

and p = 2 there, it follows that ū > 0 in RN . Similarly, taking the test

function (ϕ, ψ) = (0, ψ), with ψ ∈ Ḣs(RN) and ψ ≥ 0, yields v̄ > 0 in RN .

This proves the claim.

The final assertion will be shown below by the method of contradiction.

Therefore, let us suppose ū ≡ v̄ and divide the proof in the two cases covered

by the theorem.

First, we assume f ≡ g but α ̸= β. Then, taking the test function

(ϕ, ψ) = (ū,−ū) yields

1
2∗

s

(α− β)
�
RN

ūα+βdx = 0.

This is impossible since ū is positive in RN .

In the remaining case, we assume α = β but f ̸≡ g and ker(f) =ker(g).

Then taking the test function (ϕ, ψ) = (ϕ,−ϕ), where ϕ ∈ C∞
0 (RN), we

obtain

(Ḣs)′⟨f − g, ϕ⟩Ḣs = 0.

This in turn implies f ≡ g as ϕ ∈ C∞
0 (RN) is arbitrary. This contradiction

completes the proof of Part (i).

Part (ii). The proof follows along the same lines as in Part (i), therefore

we just mention only the differences. It is easy to see that the associated
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functional corresponding to (Sγ
α,β) is now

Ĩf,g(u, v) := 1
2∥(u, v)∥2

Hs×Hs−
1

α + β

�
RN

|u|α|v|β dx−H−s⟨f, u⟩Hs−H−s⟨g, v⟩Hs .

Let us introduce the auxiliary functional as

J̃f,g(u, v) := 1
2∥(u, v)∥2

Hs×Hs − 1
α + β

�
RN

uα
+v

β
+ dx−H−s⟨f, u⟩Hs −H−s⟨g, v⟩Hs ,

which is well defined inHs(RN)×Hs(RN) and of class C1
(
Hs(RN)×Hs(RN)),

with second derivative. Arguing as before, we obtain for all (u, v), (ϕ, ψ) ∈

Hs(RN) ×Hs(RN)

J̃ ′′
f,g(u, v)

(
(ϕ, ψ), (ϕ, ψ)

)
= ∥(ϕ, ψ)∥2

Hs×Hs − α(α− 1)
α + β

�
RN

uα−2
+ vβ

+ϕ
2dx

− β(β − 1)
α + β

�
RN

uα
+v

β−2
+ ψ2dx− 2αβ

α + β

�
RN

uα−1
+ vβ−1

+ ϕψdx.

≥

1 −
S

− α+β
2

α+β

α + β
∥(u, v)∥α+β−2

Hs×Hs

[
α(α− 1) + β(β − 1) + αβ

]× ∥(ϕ, ψ)∥2
Hs×Hs .

Therefore, J̃ ′′
f,g(u, v) is positive definite for (u, v) in the ball centered at 0 and

of radius r in Hs(RN) ×Hs(RN), where

r =
(

α + β

α2 + β2 + αβ − (α + β)

) 1
α+β−2

S
α+β

2(α+β−2)
α+β .

Hence J̃f,g is strictly convex in Br. Furthermore, for all (u, v) ∈ Hs(RN) ×

Hs(RN), with ∥(u, v)∥Hs×Hs = r,

J̃f,g(u, v) ≥
[

1
2− 1

α2 + β2 + αβ − (α + β)

(
Sα+β

S(α,β)

)α+β
2
]
r2−r (∥f∥H−s + ∥g∥H−s) .

(5.2.6)

Since S(α,β) > Sα+β by Lemma 5.2.2, we have
(
α2 + β2 + αβ − (α + β)

)(S(α,β)

Sα+β

)(α+β)/2

≥
(
α2 + β2 + αβ − (α + β)

)S(α,β)

Sα+β

=
[
(α + β)(α + β − 1) − αβ

] (α
β

) β
α+β α + β

α
.
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Therefore, to prove
[
α2 + β2 + αβ − (α + β)

](S(α,β)

Sα+β

)(α+β)/2

> 2,

it is enough to show that

[
(α + β)(α + β − 1) − αβ

] (α
β

) β
α+β 1

α
> 1,

since α + β > 2. Actually, the above expression is equivalent to

(α + β)(α + β − 1) > αβ

[
1 + 1

α
β

α+β β
α

α+β

]
.

As α, β > 1, a straight forward computation yields

αβ

[
1 + 1

α
β

α+β β
α

α+β

]
< 2αβ ≤ (α + β)2

2 < (α + β)(α + β − 1).

Therefore, (5.2.6) implies the existence of a number d > 0 such that

inf
∥(u,v)∥Hs×Hs =r

J̃f,g(u, v) > 0, provided that 0 < max{∥f∥H−s , ∥g∥H−s} ≤ d.

From here on, proceeding as in the proof of Part (i), with obvious changes,

we get the assertion.

5.3 Uniqueness for the homogeneous system

First we need an auxiliary lemma which will be used to prove Theorem 5.1.3.

Consider the following system with a parameter µ > 0



(−∆)su = µ|u|2∗
s−2u+ α

2∗
s

|u|α−2u|v|β in RN ,

(−∆)sv = β

2∗
s

|v|β−2v|u|α in RN ,

u, v > 0 in RN .

(5.3.1)

Associated to (5.3.1), we define

Sµ,α,β := inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

∥(u, v)∥2
Ḣs×Ḣs(

µ

�
RN

|u|2∗
s dx+

�
RN

|u|α|v|βdx
)2/2∗

s
. (5.3.2)
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Lemma 5.3.1. (i) Let h(τ) := 1 + τ 2

(µ+ τβ)2/2∗
s
, τ > 0. Then there exists µ0 >

0 such that for µ ∈ (0, µ0),

Sµ,α,β = h(τ0)S, where h(τ0) = min
τ>0

h(τ).

Furthermore, τ0 = τ0(µ, α, β,N, s) > 0.

(ii) For any r > 0, (rw, rτ0w) achieves Sµ,α,β, where w is the unique

positive solution of (5.0.1).

Proof. Let {(un, vn)} be a minimizing sequence for Sµ,α,β. Choose τn >

0 such that ∥vn∥L2∗
s (RN ) = τn∥un∥L2∗

s (RN ). Now set, zn = vn

τn

. Therefore,

∥un∥L2∗
s (RN ) = ∥zn∥L2∗

s (RN ) and applying Young’s inequality,
�
RN

|un|α|zn|βdx ≤ α

2∗
s

�
RN

|un|2∗
s dx+ β

2∗
s

�
RN

|zn|2∗
s dx

=
�
RN

|un|2∗
s dx =

�
RN

|zn|2∗
s dx.

Hence,

Sµ,α,β + o(1) =
∥un∥2

Ḣs + ∥vn∥2
Ḣs(

µ

�
RN

|un|2∗
s dx+

�
RN

|un|α|vn|βdx
)2/2∗

s

=
∥un∥2

Ḣs(
µ

�
RN

|un|2∗
s dx+ τβ

n

�
RN

|un|α|zn|βdx
)2/2∗

s

+
τ 2

n∥un∥2
Ḣs(

µ

�
RN

|zn|2∗
s dx+ τβ

n

�
RN

|un|α|zn|βdx
)2/2∗

s

≥ 1
(µ+ τβ

n )2/2∗
s

∥un∥2
Ḣs( �

RN |un|2∗
s dx

)2/2∗
s

+ τ 2
n

(µ+ τβ
n )2/2∗

s

∥zn∥2
Ḣs( �

RN |zn|2∗
s dx

)2/2∗
s

≥ 1 + τ 2
n

(µ+ τβ
n )2/2∗

s

S ≥ min
τ>0

h(τ)S.

150



5.3. Uniqueness for the homogeneous system

Note that h is a C1 function with h(τ) > 0 for all τ ≥ 0, h(τ) → ∞ as

τ → ∞ and h(τ) → µ
− 2

2∗
s as τ → 0. Therefore, there exists τ0 ≥ 0 such

that minτ>0 h(τ) = h(τ0). Next, we claim that τ0 > 0, if we choose µ > 0

small enough. To prove the claim, first we note that h(0) = µ
− 2

2∗
s and

h(1) = 2(1 + µ)−2/2∗
s . Therefore, we can choose µ0 > 0 small enough such

that for µ ∈ (0, µ0), h(0) > h(1). Thus, h can not attain global minimum at

0, if µ ∈ (0, µ0). Hence τ0 > 0.

Consequently, Sµ,α,β + o(1) ≥ h(τ0)S, and as o(1) → 0 as n → ∞, we get

Sµ,α,β ≥ h(τ0)S. On the other hand, choosing (u, v) = (w, τ0w), we easily see

that Sµ,α,β ≤ h(τ0)S. Hence Sµ,α,β = h(τ0)S.

Since τ0 is the minimum point for h, clearly h′(τ0) = 0. Thus τ0 satisfies

τ
(
µ2∗

s + ατβ − βτβ−2
)

= 0.

But τ0 > 0, and so τ0 satisfies µ2∗
s + ατβ − βτβ−2 = 0. This proves (i).

(ii) Note that for (u, v) = (rw, rτ0w), an easy computation yields

∥(u, v)∥2
Ḣs×Ḣs(

µ

�
RN

|u|2∗
s dx+

�
RN

|u|α|v|βdx
)2/2∗

s
= h(τ0)S.

Hence using (i), we conclude that Sµ,α,β is achieved by (rw, rτ0w).

Proof of Theorem 5.1.3

Proof. Suppose that (u0, v0) and w achieves Sα,β and S respectively. We are

going to prove that there are r, t > 0 such that

(u0, v0) = (rw, tw).

Claim.

a) �
RN

|u0|α|v0|β dx = rαtβ
�
RN

w2∗
s dx, whenever r

t
=
√
α

β
.

151



CHAPTER 5. FRACTIONAL ELLIPTIC SYSTEMS WITH CRITICAL OR
SUBCRITICAL NONLINEARITIES

b) There exists r > 0 such that
�
RN

|u0|2
∗
s dx = r2∗

s

�
RN

w2∗
s dx.

Assuming the Claim for a while, first we complete the proof.

Indeed, fix r as found in claim b) and set t = r
√
β/α. Therefore, by

Lemma 5.0.2, (rw, tw) achieves Sα,β. Consequently, (rw, tw) solves (S0
2∗

s
)

with f = 0 = g and
α

2∗
s

rα−2tβ = 1 = β

2∗
s

rαtβ−2. (5.3.3)

Now define (u1, v1) = (u0
r
, v0

t
). Then, by Claim a) we have

∥u1∥2
Ḣs = 1

r2 ∥u0∥2
Ḣs = α

2∗
sr

2

�
RN

|u0|α|v0|β dx = αrαtβ

2∗
sr

2

�
RN

|w|2∗
s dx = ∥w∥2

Ḣs ,

where for the last equality we have used (5.3.3). Similarly, it follows that

∥v1∥2
Ḣs = ∥w∥2

Ḣs .

Therefore

∥u1∥2
Ḣs = ∥w∥2

Ḣs = ∥v1∥2
Ḣs . (5.3.4)

Further, using Claim b) in the definition of u1 yields
�
RN

|u1|2
∗
s dx =

�
RN

|w|2∗
s dx. (5.3.5)

Combining (5.3.4) and (5.3.5), by the uniqueness result in the scalar case,

see [48], we conclude that

u1 = w, that is u0 = rw.

Now we prove that v1 = w. Indeed, by Claim a)
�
RN

|w|2∗
s dx =

�
RN

|u1|α|v1|βdx ≤
( �

RN

|u1|2
∗
s dx

)α/2∗
s
(�

RN

|v1|2
∗
s dx

)β/2∗
s

=
( �

RN

|w|2∗
s dx

)α/2∗
s
(�

RN

|v1|2
∗
s dx

)β/2∗
s

.
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Consequently, ∥w∥L2∗
s ≤ ∥v1∥L2∗

s . Combining this with (5.3.4) and the fact

that w achieves S, we obtain

S−1/2∥v1∥Ḣs = S−1/2∥w∥Ḣs = ∥w∥L2∗
s ≤ ∥v1∥L2∗

s ≤ S−1/2∥v1∥Ḣs .

Hence the inequality becomes equality in the above expression, i.e., v1

achieves S. Again by the uniqueness result in the scalar case, we conclude

that

v1 = w, that is v0 = tw.

This proves Theorem 5.1.3. Now we are going to prove the Claim. First, we

prove Claim a).

Consider the following problem with a parameter µ > 0

(−∆)su = µα

2∗
s

|u|α−2u|v|β in RN ,

(−∆)sv = µβ

2∗
s

|v|β−2v|u|α in RN ,

u, v > 0 in RN .

(Sµ)

Associated to (Sµ), define the following min-max problem

B(µ) := inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

max
t>0

Eµ(tu, tv),

where

Eµ(u, v) := 1
2∥(u, v)∥2

Ḣs×Ḣs − µ

2∗
s

�
RN

|u|α|v|β dx.

Note that there exists tµ > 0 such that

max
t>0

Eµ(tu0, tv0) = Eµ(tµu0, tµv0),

where tµ satisfies

H(µ, tµ) = 0 and H(µ, t) := C − µDt2
∗
s−2,

with

C = ∥(u0, v0)∥2
Ḣs×Ḣs and D =

�
RN

|u0|α|v0|β dx.
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Since (u0, v0) is a least energy solution of (S0
2∗

s
) with f = 0 = g,

H(1, 1) = 0, ∂

∂t
H(1, 1) < 0 and H(µ, tu) = 0.

By the implicit function theorem tµ is a C1 function near of µ = 1, and

t′µ |µ=1= −
∂

∂µ
H

∂
∂t
H

∣∣∣∣∣
µ=1=t

= − 1
(2∗

s − 2) .

By the Taylor formula around µ = 1, we have

tµ(µ) = 1 + t′µ(1)(µ− 1) +O(|µ− 1|2)

Consequently,

t2µ(µ) = 1 + 2t′µ(1)(µ− 1) +O(|µ− 1|2).

Further, as H(µ, tµ) = C − µDt2
∗
s−2

µ = 0 and C = D, we have t2∗
s−2

µ = µ−1.

Therefore,

B(µ) ≤ Eµ(tµu0, tµv0) = t2µ

(
1
2 −

µt2
∗
s−2

µ

2∗
s

)
∥(u0, v0)∥2

Ḣs×Ḣs

= t2µ
s

N
∥(u0, v0)∥2

Ḣs×Ḣs = t2µB(1)

= B(1) − 2
(2∗

s − 2)B(1)(µ− 1) +O(|µ− 1|2).

(5.3.6)

From the definition of B(1), a direct computation yields

B(1) = inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

E1(t̃u, t̃v), where t̃ =
( ∥(u, v)∥2

Ḣs×Ḣs�
RN |u|α|v|βdx

)1/(2∗
s−2)

= inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

s

N

( ∥(u, v)∥2
Ḣs×Ḣs( �

RN |u|α|v|βdx
)2/2∗

s

)2∗
s/(2∗

s−2)

= s

N
S

2∗
s

2∗
s−2

α,β = s

N

( ∥(u0, v0)∥2
Ḣs×Ḣs( �

RN |u0|α|v0|βdx
)2/2∗

s

)2∗
s/(2∗

s−2)

= sD

N
. (5.3.7)

Substituting the above value of B(1) in (5.3.6) yields

B(µ) ≤ B(1) − D

2∗
s

(µ− 1) +O(|µ− 1|2).
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Thus

B(µ) −B(1)
µ− 1


≤ − D

2∗
s

+O(|µ− 1|) if µ > 1

≥ − D
2∗

s
+O(|µ− 1|) if µ < 1.

(5.3.8)

The first inequality in (5.3.8) implies B′(1) ≤ −D

2∗
s

and the second inequality

in (5.3.8) implies B′(1) ≥ −D

2∗
s

. Hence,

B′(1) = −D

2∗
s

= − 1
2∗

s

�
RN

|u0|α|v0|β dx. (5.3.9)

On the other hand, proceeding as in (5.3.7), we derive that

B(µ) = s

N

1
µ

2
2∗

s−2
inf

(u,v)∈Ḣs×Ḣs\{(0,0)}

( ∥(u, v)∥2
Ḣs×Ḣs( �

RN |u|α|v|βdx
) 2

2∗
s

)2∗
s/(2∗

s−2)

= s

N

1
µ

2
2∗

s−2
S

2∗
s

2∗
s−2

α,β .

Since, (rw, tw) (for any r, t > 0 with r/t =
√
α/β) is also a ground state

solution of (S0
2∗

s
) with f = 0 = g, from the above expression of B(µ), we

obtain

B(µ) = s

N

1
µ

2
2∗

s−2
rαtβ

�
RN

|w|2∗
s dx =⇒ B′(1) = −rαtβ

2∗
s

�
RN

|w|2∗
s dx.

Comparing this with (5.3.9), we conclude that
�
RN

|u0|α|v0|β dx = rαtβ
�
RN

|w|2∗
s dx,

where r, t > 0 are arbitrary with r/t =
√
α/β. This proves Claim a).

Let us turn to the proof of Claim b). Let µ0 be as in Lemma 5.3.1.

Consider the system (5.3.1) with µ ∈ (0, µ0) and define the following min-

max problem

B̃(µ) := inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

max
t>0

Ẽµ(tu, tv),
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where

Ẽµ(u, v) := 1
2∥(u, v)∥2

Ḣs(RN )×Ḣs(RN ) − µ

2∗
s

�
RN

|u|2∗
s dx− 1

2∗
s

�
RN

|u|α|v|β dx.

Note that there exists tµ > 0 such that

max
t>0

Ẽµ(tu0, tv0) = Ẽµ(tµu0, tµv0),

where tµ satisfies

H̃(µ, tµ) = 0 and H̃(µ, t) = C − (µG+D)t2∗
s−2

with

C = ∥(u0, v0)∥2
Ḣs×Ḣs G =

�
RN

|u0|2
∗
s dx and D =

�
RN

|u0|α|v0|β dx.

Since (u0, v0) is a ground state solution of (S0
2∗

s
) with f = 0 = g,

H̃(0, 1) = C −D = 0, ∂

∂t
H̃(0, 1) = −(2∗

s − 2)D and ∂

∂µ
H̃(0, 1) = −G,

evaluated at t = 1 and µ = 0. By the implicit function theorem tµ is a C1

function near of µ = 0, and

t′µ |µ=0= −
∂

∂µ
H̃

∂
∂t
H̃

|µ=0,t=1= − G

(2∗
s − 2)D.

The Taylor formula around µ = 0 and tµ = 1 yields

tµ(µ) = 1 + µt′µ(0) +O(|µ|2),

consequently,

t2µ(µ) = 1 + 2µt′µ(0) +O(|µ|2).

Now B̃(0) = B(1), where B(.) is as defined in the proof of Claim a). There-

fore, B̃(0) = sD

N
.

Since H̃(µ, tµ) = C − (µG+D)t2∗
s−2 = 0, and C = D using an argument

as before, it follows that
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5.3. Uniqueness for the homogeneous system

B̃(µ) ≤ Ẽµ(tµu0, tµv0) =
t2µ
2 C −

t2
∗
s

µ

2∗
s

(µG+D)

= t2µ
sD

N
= t2µB̃(0)

= B̃(0) − 2G
(2∗

s − 2)DµB̃(0) +O(|µ|2)

= B̃(0) − 1
2∗

s

Gµ+O(|µ|2).

Then

B̃′(0) = lim
µ→0

B̃(µ) − B̃(0)
µ

= −G

2∗
s

= − 1
2∗

s

�
RN

|u0|2
∗
s dx. (5.3.10)

On the other hand, from the definition of B̃(µ), a straight forward computa-

tion yields

B̃(µ) = inf
(u,v)∈Ḣs×Ḣs\{(0,0)}

Ẽµ(t̃u, t̃v),

where t̃ =
( ∥(u, v)∥2

Ḣs×Ḣs

µ
�
RN |u|2∗

s dx+
�
RN |u|α|u|βdx

)1/(2∗
s−2)

,

= s

N
inf

(u,v)∈Ḣs×Ḣs\{(0,0)}

[
∥(u, v)∥2(

µ
�
RN |u|2∗dx+

�
RN |u|α|v|βdx

)2/2∗
s

]2∗
s/(2∗

s−2)

.

Since by Lemma 5.3.1, Sµ,α,β is achieved by (rw, τ0rw), an easy computation

yields

B̃(µ) = s

N

(
1 + τ 2

0

(µ+ τβ
0 )2/2∗

s

)2∗
s/(2∗

s−2) �
RN

|u|2∗dx.

As a consequence,

B̃′(0) = − 1
2∗

s

(
1 + τ 2

0

τβ
0

)2∗
s/(2∗

s−2) �
RN

|w|2∗
s dx.

Now set

r̃ =
(

1 + τ 2
0

τβ
0

)1/(2∗
s−2)

.
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Therefore, B̃′(0) = − r̃2∗
s

2∗
s

�
RN

|w|2∗
s dx. Comparing this with (5.3.10) yields

�
RN

|u0|2
∗
s dx = r̃2∗

s

�
RN

|w|2∗
s dx.

This proves Claim b). Thus, we conclude the proof of Theorem 5.1.3.

5.4 The Palais-Smale decomposition

In this section we study the Palais-Smale sequences (in short, (PS) se-

quences) of the functional associated to (S0
2∗

s
), namely,

If,g(u, v) := 1
2∥(u, v)∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

|u|α|v|β dx− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs .

(5.4.1)

We say that the sequence {(un, vn)} ⊂ Ḣs(RN)×Ḣs(RN) is a (PS) sequence

for If,g at level β if If,g(un, vn) → β and I ′
f,g(un, vn) → 0 in

(
Ḣs(RN) ×

Ḣs(RN)
)′

. It is easy to see that the weak limit of a (PS) sequence of If,g

solves (S0
2∗

s
) except the positivity.

However the main difficulty is that the (PS) sequence may not converge

strongly and hence the weak limit can be zero even if β > 0. The main

purpose of this section is to classify (PS) sequences for the functional If,g.

Proposition 5.4.1. Let {(un, vn)} ⊂ Ḣs(RN) × Ḣs(RN) be a (PS) se-

quence for If,g at a level γ. Then there exists a subsequence (still denoted by

{(un, vn)}) for which the following hold :

there exist an integer k ≥ 0, sequences {xi
n}n ⊂ RN , ri

n > 0 for 1 ≤ i ≤ k,

pair of functions (u, v), (ũi, ṽi) ∈ Ḣs(RN) × Ḣs(RN) for 1 ≤ i ≤ k such that

(u, v) satisfies (S0
2∗

s
) without the signed restrictions and


(−∆)sũi = α

2∗
s

|ũi|α−2ũi|ṽi|β in RN ,

(−∆)sṽi = β

2∗
s

|ṽi|β−2ṽi|ũi|α in RN ,
(5.4.2)
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(un, vn) = (u, v) +
k∑

i=1
(ũi, ṽi)ri

n,xi
n + o(1),

where (ũi, ṽi)r,y := r− N−2s
2
(
ũi(x−y

r
), ṽi(x−y

r
)
)

and o(1) → 0 in Ḣs(RN) × Ḣs(RN),

γ = If,g(u, v) +
k∑

i=1
I0,0(ũi, ṽi) + o(1),

(5.4.3)

ri
n → 0 and either xi

n → xi ∈ RN or |xi
n| → ∞, 1 ≤ i ≤ k,∣∣∣∣∣ log

(
ri

n

rj
n

)∣∣∣∣∣+
∣∣∣∣∣xi

n − xj
n

ri
n

∣∣∣∣∣ −→ ∞ for i ̸= j, 1 ≤ i, j ≤ k,
(5.4.4)

where in the case k = 0 the above expressions hold without (ũi, ṽi), xi
n and

ri
n.

Remark 5.4.2. From Proposition 5.4.1, we see that if {(un, vn)} is any

nonnegative (PS) sequence for If,g at level γ, then {(un, vn)} satisfies the

(PS) condition if γ can not be decomposed as γ = If,g(u, v)+∑k
i=1 I0,0(ũi, ṽi),

where k ≥ 1 and (ũi, ṽi) is a solution of (5.4.2).

Before starting the proof of this proposition, we prove some lemmas which

will be used in proving Proposition 5.4.1.

Lemma 5.4.3. [38, Theorem 2] Let j : C → C be a continuous function

with j(0) = 0 and satisfy the following hypothesis that for every ε > 0, there

exists two continuous functions φε and ψε such that

|j(ã+ b̃) − j(ã)| ≤ εφε(ã) + ψε(b̃) ∀ ã, b̃ ∈ C.

Further, let fn = f + gn be a sequence of measurable functions from RN to C

such that

(i) gn → 0 a.e.

(ii) j(f) ∈ L1(RN).

(iii)
�
RN φε

(
gn(x)

)
dx ≤ C < ∞, for some constant C, independent of ε

and n.
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(iv)
�
RN ψε(f(x))dx < ∞ for all ε > 0.

Then �
RN

|j(f + gn) − j(f) − j(gn)|dx −→ 0, as n → ∞.

Lemma 5.4.4. Let α, β > 1. Then for every ε > 0, there exists Cε > 0 such

that∣∣∣|x+ a|α|y + b|β − |x|α|y|β
∣∣∣ ≤ ε(|x|α+β + |y|α+β) + Cε(|a|α+β + |b|α+β)

holds for all x, y, a, b ∈ R.

Proof. Let ε > 0 be arbitrary. Then there exists Cε > 0 such that

|x+ a|α|y + b|β − |x|α|y|β = |y + b|β(|x+ a|α − |x|α) + |x|α(|y + b|β − |y|β)

≤ 2β−1(|y|β + |b|β)
(

ε/2
2β − 1 |x|α + Cε|a|α

)

+|x|α
(
ε

2 |y|β + Cε|b|β
)

≤ ε

(
|x|α|y|β + 1

2 |b|β|x|α
)

+Cε(|x|α|b|β + |y|β|a|α + |a|α|b|β)

≤ ε(|x|α+β + |y|α+β) + C ′
ε(|a|α+β + |b|α+β),

where in the last inequality we have used Young’s inequality with different

ε. This completes the proof.

Lemma 5.4.5. If un ⇀ u and vn ⇀ v in Ḣs(RN). Then�
RN

(
|un|α|vn|β − |u|α|v|β − |un − u|α|vn − v|β

)
dx = o(1).

Proof. Define j : R2 → R defined by j(x, y) = |x|α|y|β. Then j satisfies the

hypothesis of Lemma 5.4.3. Next considering

fn := (un, vn), f = (u, v), gn = (un − u, vn − v),

we see that all the hypothesis of Lemma 5.4.3 are satisfied. Hence the lemma

follows from Lemma 5.4.3.
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Lemma 5.4.6. Let {(un, vn)} weakly converge to (u, v) in Ḣs(RN)×Ḣs(RN)

and pointwise a.e. in RN × RN , then
�
RN

|un|α−2un|vn|βϕ dx −→
�
RN

|u|α−2u|v|βϕ dx as n → ∞,(5.4.5)
�
RN

|un|α|vn|β−2vnψ dx −→
�
RN

|u|α|v|β−2vψ dx as n → ∞,(5.4.6)

for all (ϕ, ψ) ∈ Ḣs(RN) × Ḣs(RN).

Proof. Set

M := max
{

∥un∥α−1
L2∗

s (RN ), ∥vn∥β

L2∗
s (RN ) ∥u∥α−1

L2∗
s (RN ) ∥v∥β

L2∗
s (RN )

}
.

Using the Sobolev inequality we see that M is well-defined. Let ϕ ∈ Ḣs(RN)

and ε > 0 be arbitrary. Then, there exists R = R(ε) > 0 such that( �
B(0,R)c |ϕ|2∗

s dx
) 1

2∗
s < ε

2M2 . Note that,
�
RN

(
|un|α−2un|vn|β − |u|α−2u|v|β

)
ϕ dx

=
(�

B(0,R)
+
�

B(0,R)c

)(
|un|α−2un|vn|β − |u|α−2u|v|β

)
ϕ

and using Hölder inequality
�

B(0,R)c

(
|un|α−2un|vn|β − |u|α−2u|v|β

)
ϕ dx

≤
( �

RN

|un|2∗
s dx

)(α−1)/2∗
s
( �

RN

|vn|2∗
s dx

)β/2∗
s
(�

B(0,R)c

|ϕ|2∗
s dx

)1/2∗
s

+
( �

RN

|u|2∗
s dx

)(α−1)/2∗
s
(�

RN

|v|2∗
s dx

)β/2∗
s
(�

B(0,R)c

|ϕ|2∗
s dx

)1/2∗
s

< ε.

On the other hand, using Hölder inequality as above, it is also easily checked

that
(
|un|α−2un|vn|β −|u|α−2u|v|β

)
ϕ is equi-integrable in B(0, R). Therefore,

applying Vitaly’s convergence theorem it follows that

lim
n→∞

�
B(0,R)

(
|un|α−2un|vn|β − |u|α−2u|v|β

)
ϕ dx = 0.

Hence the lemma follows.
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Proof of Proposition 5.4.1:

Proof. We divide the proof into few steps.

Step 1: Using standard arguments it follows that (PS) sequences for If,g

are bounded in Ḣs(RN) × Ḣs(RN). More precisely, as n → ∞

γ + o(1) + o(1)∥(un, vn)∥Ḣs×Ḣs

≥ If,g(un, vn) − 1
2∗

s
(Ḣs×Ḣs)′⟨I ′

f,g(un, vn), (un, vn)⟩Ḣs×Ḣs

≥
(

1
2 − 1

2∗
s

)
∥(un, vn)∥2

Ḣs×Ḣs

−
(

1 − 1
2∗

s

)(
∥f∥(Ḣs)′∥un∥Ḣs + ∥g∥(Ḣs)′∥vn∥Ḣs

)
≥

(
1
2 − 1

2∗
s

)
∥(un, vn)∥2

Ḣs×Ḣs

−
(

1 − 1
2∗

s

)
(∥f∥(Ḣs)′ + ∥g∥(Ḣs)′)∥(un, vn)∥Ḣs×Ḣs .

This immediately implies that {(un, vn)} is bounded in Ḣs(RN) × Ḣs(RN).

Consequently, up to a subsequence, (un, vn) ⇀ (u, v) in Ḣs(RN) × Ḣs(RN).

Further, (Ḣs×Ḣs)′⟨I ′
f,g(un, vn), (ϕ, ψ)⟩Ḣs×Ḣs → 0 implies

〈
(un, vn), (ϕ, ψ)

〉
Ḣs×Ḣs

− α

2∗
s

�
RN

|un|α−2un|vn|βϕ dx

− β

2∗
s

�
RN

|vn|β−2vn|un|αψ dx− (Ḣs)′⟨f, ϕ⟩Ḣs − (Ḣs)′⟨g, ψ⟩Ḣs = o(1).

Passing to the limit using Lemma 5.4.6, we see that (u, v) satisfies (S0
2∗

s
)

without signed restrictions.

Step 2: In this step we show that {(un − u, vn − v)} is a (PS) sequence

for I0,0 at the level γ − If,g(u, v)

To see this, first we observe that as n → ∞

∥un −u∥Ḣs = ∥un∥2
Ḣs − ∥u∥2

Ḣs + o(1), ∥vn − v∥2
Ḣs = ∥vn∥2

Ḣs − ∥v∥2
Ḣs + o(1).
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Using this along with the fact that (un, vn) ⇀ (u, v), f, g ∈ (Ḣs(RN))′ and

Lemma 5.4.5 yields

I0,0(un − u, vn − v)

= 1
2∥(un − u, vn − v)∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

|un − u|α|vn − v|βdx

= 1
2(∥un∥2

Ḣs − ∥u∥2
Ḣs) + 1

2(∥vn∥2
Ḣs − ∥v∥2

Ḣs) − 1
2∗

s

�
RN

|un|α|vn|βdx

+ 1
2∗

s

�
RN

|un|α|vn|βdx− (Ḣs)′⟨f, un⟩Ḣs − (Ḣs)′⟨g, vn⟩Ḣs

+ (Ḣs)′⟨f, u⟩Ḣs + (Ḣs)′⟨g, v⟩Ḣs

+ 1
2∗

s

�
RN

{
|un|α|vn|β − |u|α|v|β − |un − u|α|vn − v|β

}
dx+ o(1)

= If,g(un, vn) − If,g(u, v) + o(1).

Next, as (un−u, vn−v) ⇀ (0, 0) in Ḣs(RN)×Ḣs(RN), applying Lemma 5.4.6,

we obtain

(Ḣs×Ḣs)′⟨I ′
0,0(un − u, vn − v), (ϕ, ψ)⟩Ḣs×Ḣs

= ⟨(un − u, vn − v), (ϕ, ψ)⟩Ḣs×Ḣs − α

2∗
s

�
RN

|un − u|α−2(un − u)|vn − v|βϕ dx

− β

2∗
s

�
RN

|un − u|α|vn − v|β−2(vn − v)ψ dx

= o(1). (5.4.7)

This completes Step 2.

Step 3: Rescaling of {(un, vn)}n in the nontrivial case.

If (un, vn) → (u, v) in Ḣs(RN)×Ḣs(RN), then the theorem is proved with

k = 0. Therefore, we assume (un, vn) ̸→ (u, v) in Ḣs(RN) × Ḣs(RN). Set,

ũn := un − u, ṽn := vn − v.

Therefore, we are in the case where (ũn, ṽn) ̸−→ (0, 0) in Ḣs(RN) × Ḣs(RN).

Since, by Step 2, {(ũn, ṽn)} is a bounded (PS) sequence for I0,0, we have

163



CHAPTER 5. FRACTIONAL ELLIPTIC SYSTEMS WITH CRITICAL OR
SUBCRITICAL NONLINEARITIES

I ′
0,0(ũn, ṽn)(ũn, ṽn) = o(1). Therefore, up to a subsequence

0 < ∥(ũn, ṽn)∥2
Ḣs×Ḣs =

�
RN

|ũn|α|ṽn|βdx

≤
�
RN

|ũn|2∗
s dx+

�
RN

|ṽn|2∗
s dx ≤ ∥(ũn, ṽn)∥2∗

s

L2∗
s ×L2∗

s
.

Thus (ũn, ṽn) ̸−→ (0, 0) in L2∗
s (RN) × L2∗

s (RN). Consequently,

inf
n

∥(ũn, ṽn)∥L2∗
s ×L2∗

s ≥ δ for some δ > 0.

Hence, applying Lemma 2.3.2,

δ ≤ C∥(ũn, ṽn)∥θ
Ḣs×Ḣs∥(ũn, ṽn)∥1−θ

L2,(N−2s)×L2,(N−2s) ≤ C ′∥(ũn, ṽn)∥1−θ
L2,(N−2s)×L2,(N−2s) ,

that is,

∥(ũn, ṽn)∥L2,(N−2s)×L2,(N−2s) ≥ C1 for some C1 > 0.

Comparing the above inequality with (2.3.4) yields existence of some C̄ > 0

such that

C̄ ≤ ∥(ũn, ṽn)∥2
L2,(N−2s)×L2,(N−2s) ≤ C̄−1,

that is

C̄ ≤ sup
x∈RN , R>0

RN−2s

 
B(x,R)

(
|ũn|2 + |ṽn|2

)
dy ≤ C̄−1.

As a result, for every n ∈ N, there exists xn ∈ RN and rn > 0 such that

rN−2s
n

 
B(xn,rn)

(
|ũn|2 + |ṽn|2

)
dy ≥ ∥(ũn, ṽn)∥L2,(N−2s)×L2,(N−2s) − C̄

2n ≥ C̄

2 > 0.

(5.4.8)

Now define

˜̃un := r
N−2s

2
n ũn(rnx+ xn), ˜̃vn := r

N−2s
2

n ṽn(rnx+ xn).

In view of the scaling invariance of the Ḣs(RN) norm and L2∗
s (RN) norm,

{(˜̃un, ˜̃vn)} is a bounded sequence in Ḣs(RN) × Ḣs(RN) and up to a subse-

quence

(˜̃un, ˜̃vn) ⇀ (ũ, ṽ) in Ḣs(RN)×Ḣs(RN) and (˜̃un, ˜̃vn) −→ (ũ, ṽ) inL2
loc(RN)×L2

loc(RN).
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Therefore, using change of variable, we observe from (5.4.8) that

0 < r−2s
n

�
B(xn,rn)

(
|ũn|2 + |ṽn|2

)
dy

=
�

B(0,1)

(
|˜̃un(z)|2 + |˜̃vn(z)|2

)
dz −→

�
B(0,1)

(|ũ|2 + |ṽ|2)dx.

Hence (ũ, ṽ) ̸= (0, 0). Clearly, up to a subsequence, either xn → x0 ∈ RN or

|xn| → ∞. Further, as (˜̃un, ˜̃vn) ⇀ (ũ, ṽ) ̸= (0, 0) in Ḣs(RN) × Ḣs(RN) and

(ũn, ṽn) ⇀ (0, 0) in Ḣs(RN) × Ḣs(RN), we infer that rn → 0.

Step 4: In this step we prove that (ũ, ṽ) solves
(−∆)sũ = α

2∗
s

|ũ|α−2ũ|ṽ|β in RN ,

(−∆)sṽ = β

2∗
s

|ũ|α|ṽ|β−2ṽ in RN .
(5.4.9)

To this aim, it is enough to show that for arbitrary (φ, ψ) ∈ C∞
c (RN) ×

C∞
c (RN) it holds

⟨ũ, φ⟩Ḣs + ⟨ṽ, ψ⟩Ḣs = α

2∗
s

�
RN

|ũ|α−2ũ|ṽ|βφ dx+ β

2∗
s

�
RN

|ũ|α|ṽ|β−2ṽψ dx.

Let φ, ψ ∈ C∞
c (RN) be arbitrary. As (˜̃un, ˜̃vn) ⇀ (ũ, ṽ) in Ḣs(RN) × Ḣs(RN),

using change of variables and Step 2, that is {(ũn, ṽn)} is a (PS) sequence

for I0,0, we deduce

⟨ũ, φ⟩Ḣs + ⟨ṽ, ψ⟩Ḣs

= lim
n→∞

(
⟨˜̃un, φ⟩Ḣs + ⟨˜̃vn, ψ⟩Ḣs

)

= lim
n→∞

�
R2N

r
N−2s

2
n

(
ũn(rnx+ xn) − ũn(rny + xn)

)(
φ(x) − φ(y)

)
|x− y|N+2s

dxdy

+ lim
n→∞

�
R2N

r
N−2s

2
n

(
ṽn(rnx+ xn) − ṽn(rny + xn)

)(
ψ(x) − ψ(y)

)
|x− y|N+2s

dxdy

= lim
n→∞

�
R2N

r
− N−2s

2
n

(
ũn(x) − ũn(y)

)(
φ
(x− xn

rn

)
− φ

(y − xn

rn

))
|x− y|N+2s

dxdy

165



CHAPTER 5. FRACTIONAL ELLIPTIC SYSTEMS WITH CRITICAL OR
SUBCRITICAL NONLINEARITIES

+ lim
n→∞

�
R2N

r
− N−2s

2
n

(
ṽn(x) − ṽn(y)

)(
ψ
(x− xn

rn

)
− ψ

(y − xn

rn

))
|x− y|N+2s

dxdy

= lim
n→∞

[
α

2∗
s

�
RN

|ũn|α−2ũn|ṽn|βφ̃ndx+ β

2∗
s

�
RN

|ũn|α|ṽn|β−2ṽnψ̃ndx
]
,

(5.4.10)

where

φ̃n(x) := r
− N−2s

2
n φ

(x− xn

rn

)
and ψ̃n(x) := r

− N−2s
2

n ψ
(x− xn

rn

)
.

Again applying change of variable to (5.4.10) yields us

RHS of (5.4.10) = lim
n→∞

[
α

2∗
s

�
RN

|˜̃un|α−2 ˜̃un|˜̃vn|βφ dx+ β

2∗
s

�
RN

|˜̃un|α|˜̃vn|β−2 ˜̃vnψ dx
]

= α

2∗
s

�
RN

|ũ|α−2ũ|ṽ|βφ dx+ β

2∗
s

�
RN

|ũ|α|ṽ|β−2ṽψ dx,

where the last equality is obtained by Lemma 5.4.6. This completes Step 4.

Now define,

wn(x) := ũn(x)−r− N−2s
2

n ũ
(
x− xn

rn

)
and zn(x) := ṽn(x)−r− N−2s

2
n ṽ

(
x− xn

rn

)
.

(5.4.11)

Step 5: In this step we show that {(wn, zn)} is a (PS) sequence for I0,0

at the level γ − If,g(u, v) − I0,0(ũ, ṽ).

To prove that, first we set

w̃n := r
N−2s

2
n wn(rnx+ xn), and z̃n := r

N−2s
2

n zn(rnx+ xn). (5.4.12)

Combining (5.4.11) and (5.4.12) yields

w̃n = ˜̃un − ũ, z̃n = ˜̃vn − ṽ,

and from the scaling invariance in the norm of Ḣs(RN) × Ḣs(RN) gives

∥(wn, zn)∥Ḣs×Ḣs = ∥(w̃n, z̃n)∥Ḣs×Ḣs = ∥(˜̃un − ũ, ˜̃vn − ṽ)∥Ḣs×Ḣs .
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A straight forward computation using the above equality, change of variables

and Lemma 5.4.5 yields

I0,0(wn, zn) = 1
2∥˜̃un − ũ∥2

Ḣs + 1
2∥˜̃vn − ṽ∥2

Ḣs − 1
2∗

s

�
RN

|wn|α|zn|βdx

= 1
2
(
∥˜̃un∥2

Ḣs − ∥ũ∥2
Ḣs + ∥˜̃vn∥2

Ḣs − ∥ṽ∥2
Ḣs + o(1)

)
− 1

2∗
s

�
RN

|˜̃un − ũ|α|˜̃vn − ṽ|βdx

= 1
2∥(˜̃un, ˜̃vn)∥2

Ḣs×Ḣs − 1
2∥(ũ, ṽ)∥2

Ḣs×Ḣs

− 1
2∗

s

[ �
RN

|˜̃un|α|˜̃vn|βdx−
�
RN

|ũ|α|ṽ|βdx
]

+ o(1)

= I0,0(˜̃un, ˜̃vn) − I0,0(ũ, ṽ) + o(1)

= I0,0(ũn, ṽn) − I0,0(ũ, ṽ) + o(1)

= γ − If,g(u, v) − I0,0(ũ, ṽ) + o(1),

where in the last equality we have used Step 2. Now, to complete the proof of

Step 5, we left to show that ⟨I ′
0,0(wn, zn)(φ, ψ)⟩ = 0 for all (φ, ψ) ∈ C∞

c (RN)×

C∞
c (RN). Let (φ, ψ) ∈ C∞

c (RN) × C∞
c (RN) be arbitrary and set

φn := r
N−2s

2
n φ(rnx+ xn), ψn := r

N−2s
2

n ψ(rnx+ xn).

Thus φn ⇀ 0 and ψn ⇀ 0 in Ḣs(RN) as rn → 0. Observe that applying

change of variables,

〈
(wn, zn), (φ, ψ)

〉
Ḣs×Ḣs

= ⟨wn, φ⟩Ḣs + ⟨zn, ψ⟩Ḣs

= ⟨w̃n, φn⟩Ḣs + ⟨z̃n, ψn⟩Ḣs

= ⟨˜̃un − ũ, φn⟩Ḣs + ⟨˜̃vn − ṽ, ψn⟩Ḣs .

Therefore,

⟨I ′
0,0(wn, zn)(φ, ψ)⟩ = ⟨˜̃un − ũ, φn⟩Ḣs + ⟨˜̃vn − ṽ, ψn⟩Ḣs

− α

2∗
s

�
RN

|˜̃un − ũ|α−2(˜̃un − ũ)|˜̃vn − ṽ|βφndx
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− β

2∗
s

�
RN

|˜̃un − ũ|α|˜̃vn − ṽ|β−2(˜̃vn − ũ)ψndx

= o(1),

where the last equality follows by change of variable and an argument similar

to Step 2. This concludes Step 5.

Now, starting from a (PS) sequence {(ũn, ṽn)} for I0,0 we have extracted

another (PS) sequence {(wn, zn)} at a level which is strictly lower than the

previous one, with a fixed minimum amount of decrease (as it is easy to check

that I0,0(ũ, ṽ) ≥ s

N
S

N
2s
α,β ). On the other hand, as supn ∥(ũn, ṽn)∥Ḣs×Ḣs ≤ C

(finite), this process should terminate after finitely many steps and the last

(PS) sequence strongly converges to 0. Further,
∣∣∣∣∣ log

(
ri

n

rj
n

)∣∣∣∣∣ +
∣∣∣∣∣xi

n−xj
n

ri
n

∣∣∣∣∣ −→

∞ for i ̸= j, 1 ≤ i, j ≤ m (see [95, Theorem 1.2]). This completes the

proof.

5.5 Multiplicity in the nonhomogeneous case

In this section we aim to prove Theorem 5.1.4. For that first we would like

to establish existence of two positive critical points of the functional

Jf,g(u, v) = 1
2∥(u, v)∥2

Ḣs×Ḣs − 1
2∗

s

�
RN

uα
+v

β
+ dx− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

(5.5.1)

where f, g are nontrivial nonneagtive functionals on (Ḣs(RN))′ with ker(f) =

ker(g).

Remark 5.5.1. If (u, v) ∈ Ḣs(RN) × Ḣs(RN) is a nontrivial critical point

of Jf,g then (u, v) solves
(−∆)su = α

2∗
s

uα−1
+ vβ

+ + f(x) in RN ,

(−∆)sv = β

2∗
s

uα
+v

β−1
+ + g(x) in RN .

(5.5.2)
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Note that taking (ϕ, ψ) = (u−, v−) as a test function in (5.5.2), we obtain

−∥(u−, v−)∥2
Ḣs×Ḣs −

�
R2N

[u+(y)u−(x) + u+(x)u−(y)]
|x− y|N+2s

dx dy

−
�

R2N

[v+(y)v−(x) + v+(x)v−(y)]
|x− y|N+2s

dx dy

= (Ḣs)′⟨f, u−⟩Hs + (Ḣs)′⟨g, v−⟩Hs ≥ 0.

which in turn implies u− = 0 and v− = 0. Therefore u, v ≥ 0 and (u, v) is a

solution of (S0
2∗

s
) without strict positivity condition.

Next, we assert that (u, v) ̸= (0, 0) implies u ̸= 0 and v ̸= 0. Suppose

not, that is assume for instance that u ̸= 0 but v = 0. Then taking (ϕ, ψ) =

(u, 0) as test function we get ∥u∥2
Ḣs(RN ) = (Ḣs)′⟨f, u⟩Ḣs . Further choosing

(ϕ, ψ) = (0, u) as test function, we have (Ḣs)′⟨g, u⟩Ḣs = 0. These together

with the hypothesis that ker(f)=ker(g) implies ∥u∥Ḣs = 0. This contradicts

(u, v) ̸= (0, 0). Similarly we can show that if u = 0 then v = 0 too. Hence

our assertion follows. Next, we claim that u > 0, and v > 0 in RN . Taking

(ϕ, 0) as test function where ϕ ≥ 0 in Ḣs(RN) we get,

⟨u, ϕ⟩Ḣs = α

2∗
s

�
RN

uα−1vβϕ dx+ (Ḣs)′⟨f, ϕ⟩Ḣs ≥ 0.

This implies 0 ≤ u ∈ Ḣs(RN) is a weak supersolution to (−∆)su = 0.

Therefore applying maximum principle [56, Theorem 1.2(2)], with c = 0 and

p = 2 there, we obtain u > 0 in RN . Similarly we can show that v > 0 in

RN . Hence, if (u, v) is a critical point of Jf,g then (u, v) is a solution of (S0
2∗

s
).

To prove, existence of two critical points for Jf,g, first we partition the

space Ḣs(RN)×Ḣs(RN) into three disjoint sets via the function Ψ : Ḣs(RN)×

Ḣs(RN) → R defined by

Ψ(u, v) := ∥(u, v)∥2
Ḣs×Ḣs − (2∗

s − 1)
�
RN

|u|α|v|β dx.

Set

Ω1 := {(u, v) ∈ Ḣs(RN) × Ḣs(RN) : (u, v) = (0, 0) or Ψ(u, v) > 0},
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Ω2 := {(u, v) ∈ Ḣs(RN) × Ḣs(RN) : Ψ(u, v) < 0},

Ω := {(u, v) ∈ Ḣs(RN) × Ḣs(RN) \ {(0, 0)} : Ψ(u, v) = 0}.

Put

c0 := inf
Ω1
Jf,g(u, v), c1 := inf

Ω
Jf,g(u, v). (5.5.3)

Remark 5.5.2. Note that for all λ > 0 and (u, v) ∈ Ḣs(RN) × Ḣs(RN)

Ψ(λu, λv) = λ2∥(u, v)∥2
Ḣs×Ḣs − λ2∗

s (2∗
s − 1)

�
RN

|u|α|v|β dx.

Moreover, Ψ(0, 0) = 0 and λ 7→ Ψ(λu, λv) is a strictly concave function in

R+. Thus for any (u, v) ∈ Ḣs(RN) × Ḣs(RN) with ∥(u, v)∥Ḣs×Ḣs = 1, there

exists a unique λ (λ depends on (u, v)) such that (λu, λv) ∈ Ω. Moreover as

Ψ(λu, λv) = (λ2 − λ2∗
s )∥(u, v)∥2

Ḣs×Ḣs for all (u, v) ∈ Ω,

(λu, λv) ∈ Ω1 for all λ ∈ (0, 1) and (λu, λv) ∈ Ω2 for all λ > 1.

Lemma 5.5.3. Assume C0 is defined as in Theorem 5.1.4 and c0 and c1 are

defined as in (5.5.3). Further, if

inf
(u,v)∈Ḣs×Ḣs,�
RN |u|α|v|β dx=1

{
C0∥(u, v)∥

N+2s
2s

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Hs − (Ḣs)′⟨g, v⟩Hs

}
> 0, (5.5.4)

then c0 < c1.

Proof. Step 1: First we assert that, there exists δ > 0 such that
d

dt
If,g(tu, tv)

∣∣∣∣∣
t=1

≥ δ ∀ (u, v) ∈ Ω.

Doing a straight forward computation, it is easy to see that for any (u, v) ∈ Ω

d

dt
Ĩf,g(tu, tv)

∣∣∣∣∣
t=1

= 4s
N + 2s∥(u, v)∥2

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

= C0
∥(u, v)∥

N+2s
2s

Ḣs×Ḣs( �
RN

|u|α|v|β dx
)N−2s

4s

− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

(5.5.5)
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Further, (5.5.4) implies there exists d > 0 such that

inf
(u,v)∈Ḣs×Ḣs,�
RN |u|α|v|β dx=1

{
C0∥(u, v)∥

N+2s
2s

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Hs − (Ḣs)′⟨g, v⟩Hs

}
≥ d. (5.5.6)

Now,

(5.5.6) ⇐⇒ C0
∥(u, v)∥

N+2s
2s

Ḣs×Ḣs

(
�
RN |u|α|v|β dx)N−2s

4s

− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs ≥ d,

with
�
RN

|u|α|v|β dx = 1.

⇐⇒ C0
∥(u, v)∥

N+2s
2s

Ḣs×Ḣs

(
�
RN |u|α|v|β dx)N−2s

4s

− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

≥ d

(�
RN

|u|α|v|β dx
)1/2∗

s

,

for all (u, v) ∈ Ḣs(RN) × Ḣs(RN) \ {(0, 0)}.

Observe that
�
RN |u|α|v|β dx is bounded away from 0 for all (u, v) ∈ Ω. There-

fore, plugging back the above estimate into (5.5.5) proves Step 1.

Step 2: Let {(un, vn)} be a minimizing sequence for Jf,g on Ω, i.e.,

Jf,g(un, vn) → c1 and ∥(un, vn)∥2
Ḣs×Ḣs = (2∗

s−1)
�
RN |un|α|vn|β dx. Therefore,

for large n

c1 + o(1) ≥ Jf,g(un, vn) ≥ If,g(un, vn) ≥
(

1
2 − 1

2∗
s(2∗

s − 1)

)
∥(un, vn)∥2

Ḣs×Ḣs

− (∥f∥(Ḣs)′ + ∥g∥(Ḣ)′)∥(un, vn)∥Ḣs×Ḣs .

This implies that {If,g(un, vn)} is a bounded sequence and {∥(un, vn)∥Ḣs×Ḣs}

and
{�

RN |un|α|vn|β dx
}

are bounded.

Claim: c0 < 0.

Observe that to prove the claim, it is sufficient to show that there exists

(u, v) ∈ Ω1 such that Jf,g(u, v) < 0. Using Remark 5.5.2, we can choose
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(u, v) ∈ Ω such that (Ḣs)′⟨f, u⟩Ḣs + (Ḣs)′⟨g, v⟩Ḣs > 0. Therefore,

Jf,g(tu, tv) = t2
[

2∗
s − 1

2 − t2
∗
s−2

2∗
s

] �
RN

|u|α|v|β dx

−t (Ḣs)′⟨f, u⟩Ḣs − t (Ḣs)′⟨g, v⟩Ḣs < 0,

for t << 1. Moreover, (tu, tv) ∈ Ω1 by Remark 5.5.2. Hence the claim

follows.

Due to the above claim, Jf,g(un, vn) < 0 for large n. Consequently, for

large n

0 > Jf,g(un, vn) ≥
(

1
2− 1

2∗
s(2∗

s − 1)

)
∥(un, vn)∥2

Ḣs×Ḣs−(Ḣs)′⟨f, un⟩Ḣs−(Ḣs)′⟨g, vn⟩Ḣs .

This in turn implies (Ḣs)′⟨f, un⟩Ḣs + (Ḣs)′⟨g, vn⟩Ḣs > 0 for all large n. Conse-

quently, d
dt
If,g(tun, tvn) < 0 for t > 0 small enough. Thus, by Step 1, there

exists tn ∈ (0, 1) such that d
dt
If,g(tnun, tnvn) = 0. Since for all (u, v) ∈ Ω, the

function d
dt
If,g(tu, tv) is strictly increasing in t ∈ [0, 1), we can conclude that

tn is unique.

Step 3: In this step we show that

lim inf
n→∞

{If,g(un, vn) − If,g(tnun, tnvn)} > 0. (5.5.7)

Observe that If,g(un, vn)−If,g(tnun, tnvn) =
� 1

tn

d

dt
{If,g(tun, tvn)} dt and that

for all n ∈ N there is ξn > 0 such that tn ∈ (0, 1 − 2ξn) and d
dt
If,g(tun) ≥ δ/2

for t ∈ [1 − ξn, 1].

To establish (5.5.7), it is enough to show that ξn > 0 can be chosen inde-

pendent of n ∈ N. This is possible as d
dt
If,g(tun, tvn)|t=1 ≥ δ

2 for t ∈ [1−ξn, 1]

and {(un, vn)} is bounded in Ḣs(RN) × Ḣs(RN), so that for all n ∈ N and

t ∈ [0, 1]

∣∣∣∣∣ d2

dt2
If,g(tun, tvn)

∣∣∣∣∣ =
∣∣∣∣∣∥(un, vn)∥2

Ḣs×Ḣs − (2∗
s − 1)t2∗

s−2
�
RN

|un|α|vn|β dx
∣∣∣∣∣

= |1 − t2
∗
s−2| ∥(un, vn)∥2

Ḣs×Ḣs ≤ C,
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for all n ≥ 1 and t ∈ [0, 1].

Step 4: From the definition of Jf,g and If,g, it immediately follows that
d
dt
Jf,g(tu, tv) ≥ d

dt
If,g(tu, tv) for all (u, v) ∈ Ḣs(RN) × Ḣs(RN) and for all

t > 0. Hence,

Jf,g(un, vn) − Jf,g(tnun, tnvn) =
� 1

tn

d

dt
(Jf,g(tun, tvn)) dt

≥
� 1

tn

d

dt
If,g(tun, tvn) dt

= If,g(un, vn) − If,g(tnun, tnvn).

Since {(un, vn)} ⊂ Ω is a minimizing sequence for Jf,g on Ω, and (tnun, tnvn) ∈

Ω1, we conclude using (5.5.7) that

c0 = inf
(u,v)∈Ω1

Jf,g(u, v) < inf
(u,v)∈Ω

Jf,g(u, v) = c1.

Proposition 5.5.4. Assume that (5.5.4) holds. Then Jf,g has a critical point

(u0, v0) ∈ Ω1, with Jf,g(u0, v0) = c0. In particular, (u0, v0) is a positive weak

solution to (S0
2∗

s
).

Proof. We decompose the proof into few steps.

Step 1: c0 > −∞.

Since Jf,g(u, v) ≥ If,g(u, v), it is enough to show that If,g is bounded

from below. From the definition of Ω1, it immediately follows that for all

(u, v) ∈ Ω1,

If,g(u, v) ≥
[

1
2 − 1

2∗
s(2∗

s − 1)

]
∥(u, v)∥2

Ḣs×Ḣs−(∥f∥(Ḣs)′+∥g∥(Ḣ)′)∥(un, vn)∥Ḣs×Ḣs .

(5.5.8)

As RHS is quadratic function in ∥(u, v)∥Ḣs×Ḣs , If,g is bounded from below.

Hence Step 1 follows.

Step 2: In this step we show that there exists a bounded nonnegative

(PS) sequence {(un, vn)} ⊂ Ω1 for Jf,g at level c0.
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Let {(un, vn)} ⊂ Ω̄1 such that Jf,g(un, vn) → c0. Since Lemma 5.5.3

implies that c0 < c1, without restriction we can assume {(un, vn)} ⊂ Ω1.

Further, using Ekeland’s variational principle from {(un, vn)}, we can extract

a (PS) sequence in Ω1 for Jf,g at level c0. We again call it by {(un, vn)}.

Moreover, as Jf,g(u, v) ≥ If,g(u, v), from (5.5.8) it follows that {(un, vn)}

is a bounded sequence. Therefore, up to a subsequence (un, vn) ⇀ (u0, v0)

in Ḣs(RN) × Ḣs(RN) and (un, vn) → (u0, v0) a.e. in RN . In particular,

(un)+ → (u0)+, (vn)+ → (v0)+ and (un)− → (u0)−, (vn)− → (v0)− a.e.

in RN . Moreover, as f, g are nonnegative functionals, a straight forward

computation yields

o(1) = Ḣs)′⟨J ′
f,g(un, vn), ((un)−, (vn)−)⟩Ḣs×Ḣs

= ⟨(un, vn), ((un)−, (vn)−)⟩Ḣs×Ḣs − (Ḣs)′⟨f, (un)−⟩Ḣs − (Ḣs)′⟨g, (vn)−⟩Ḣs

≤ −∥ ((un)−, (vn)−) ∥2
Ḣs×Ḣs .

Therefore,
(
(un)−, (vn)−

)
−→ (0, 0) in Ḣs(RN) × Ḣs(RN), which in turn

implies up to a subsequence (un)− → 0 and (vn)− → 0 a.e. in RN and thus

(u0)− = 0 and (v0)− = 0 a.e. in RN . Consequently, without loss of generality,

we can assume that {(un, vn)} is a nonnegative sequence. This completes the

proof of Step 2.

Step 3: In this step we show that (un, vn) → (u0, v0) in Ḣs(RN)×Ḣs(RN)

and (u0, v0) ∈ Ω1.

Applying Proposition 5.4.1, we get

(un, vn) −
(

(u0, v0) +
m∑

j=1
(ũj, ṽj)rj

n,xj
n

)
−→ (0, 0) in Ḣs(RN) × Ḣs(RN).

(5.5.9)

with J ′
f,g(u0, v0) = 0, (ũj, ṽj) is a nonnegative solution of (5.4.2) ({(un, vn)}

is a (PS) sequence for Jf,g implies (ũj, ṽj) is a solution of (5.5.2), with f ≡

g ≡ 0, and therefore by Remark (5.5.1), (ũj, ṽj) is a nonnegative solution of

(5.4.2)), and {xj
n} ⊂ RN , {rj

n} ⊂ R+ are some appropriate sequences such
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that rj
n

n→∞−→ 0 and either xj
n

n→∞−→ xj or |xj
n| n→∞−→ ∞. To prove Step 3, we

need to show that m = 0. Arguing by contradiction, suppose that j ̸= 0 in

(5.5.9). Therefore,

Ψ
(

(ũj, ṽj)rj
n,xj

n

)
= ∥ (ũj, ṽj) ∥2

Ḣs×Ḣs − (2∗
s − 1)

�
RN

|ũj|α|ṽj|β dx

= (2 − 2∗
s)∥ (ũj, ṽj) ∥2

Ḣs×Ḣs < 0. (5.5.10)

From Proposition 5.4.1, we also have

c0 = lim
n→∞

Jf,g(un, vn) = Jf,g(u0, v0) +
m∑

j=1
J0,0(ũj, ṽj).

Since (ũj, ṽj) is a solution to (5.4.2), it is easy to see that J0,0(ũj, ṽj) =
s
N

∥(ũj, ṽj)∥2
Ḣs×Ḣs and S(α,β) ≤ ∥(ũj, ṽj)∥

4s
N

Ḣs×Ḣs , which in turn implies

J0,0(ũj, ṽj) = s
N
S

N
2s

(α,β). Consequently, Jf,g(u0, v0) < c0. Therefore, (u0, v0) ̸∈

Ω1 and

Ψ(u0, v0) ≤ 0. (5.5.11)

Next, we evaluate Ψ
(

(u0, v0)+∑m
j=1(ũj, ṽj)rj

n,xj
n

)
. We observe that (un, vn) ∈

Ω1 implies Ψ(un, vn) ≥ 0. Combining this with the uniform continuity of Ψ

and (5.5.9) yields

0 ≤ lim inf
n→∞

Ψ(un, vn) = lim inf
n→∞

Ψ
(

(u0, v0) +
m∑

j=1
(ũj, ṽj)rj

n,xj
n

)
. (5.5.12)

Note that from Step 2, we already have u0, v0 ≥ 0. We also have (ũj, ṽj) is

nonnegative for all j (see the paragraph after (5.5.9)) (since {(un, vn)} is a

nonnegative sequence). Therefore, as α, β > 1,
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Ψ
(

(u0, v0) +
m∑

j=1
(ũj, ṽj)rj

n,xj
n

)

= ∥(u0, v0)∥2
Ḣs×Ḣs +

∥∥∥∥∥∥
m∑

j=1
(ũj, ṽj)rj

n,xj
n

∥∥∥∥∥∥
2

Ḣs×Ḣs

+ 2
〈

(u0, v0),
m∑

j=1
(ũj, ṽj)rj

n,xj
n

〉
Ḣs×Ḣs

− (2∗
s − 1)

�
RN

∣∣∣∣∣u0 +
m∑

j=1
ũrj

n,xj
n

j

∣∣∣∣∣
α∣∣∣∣∣v0 +

m∑
j=1

ũrj
n,xj

n
j

∣∣∣∣∣
β

dx

≤ ∥(u0, v0)∥2
Ḣs×Ḣs +

m∑
j=1

∥∥∥∥∥∥(ũj, ṽj)rj
n,xj

n

∥∥∥∥∥∥
2

Ḣs×Ḣs

+ 2
m∑

j=1

m∑
i=1

〈
(ũj, ṽj)rj

n,xj
n , (ũi, ṽi)ri

n,xi
n

〉
Ḣs×Ḣs

+ 2
〈

(u0, v0),
m∑

j=1
(ũj, ṽj)rj

n,xj
n

〉
Ḣs×Ḣs

− (2∗
s − 1)

( �
RN

|u0|α|v0|βdx+
m∑

j=1

�
RN

|ũrj
n,xj

n
j |α|ṽrj

n,xj
n

j |βdx
)

= Ψ(u0, v0) +
m∑

j=1
Ψ
(
(ũj, ṽj)rj

n,xj
n

)
+ the above inner products. (5.5.13)

We now prove that all the inner products in the RHS of (5.5.13) ap-

proaches 0 as n → ∞. As rj
n

n→∞−→ 0, it follows that urj
n,xj

n
j ⇀ 0 and vrj

n,xj
n

j ⇀ 0

in Ḣs(RN) as n → ∞ (see [94, Lemma 3]). Therefore, ⟨u0, u
rj

n,xj
n

j ⟩Ḣs
n→∞−→ 0

and ⟨v0, v
rj

n,xj
n

j ⟩Ḣs
n→∞−→ 0 for all j = 1, · · · ,m. Hence,

2
〈

(u0, v0),
m∑

j=1
(ũj, ṽj)rj

n,xj
n

〉
Ḣs×Ḣs

= o(1) as n → ∞.

Next,〈
(ũj, ṽj)rj

n,xj
n , (ũi, ṽi)ri

n,xi
n

〉
Ḣs×Ḣs

= (ri
n)N−2s

2 (rj
n)− N−2s

2

�
R2N

(
ũj(x−xj

n

rj
n

) − ũj(y−xj
n

rj
n

)
)(
ũi(x−xi

n

ri
n

) − ũi(x−xi
n

ri
n

)
)

|x− y|N+2s
dxdy

+(ri
n)N−2s

2 (rj
n)− N−2s

2

�
R2N

(
ṽj(x−xj

n

rj
n

) − ṽj(y−xj
n

rj
n

)
)(
ṽi(x−xi

n

ri
n

) − ṽi(x−xi
n

ri
n

)
)

|x− y|N+2s
dxdy

= (ri
n)N−2s

2 (rj
n)− N−2s

2

�
R2N

(
ũi(x) − ũi(y)

)(
ũj( ri

nx+xi
n−xj

n

rj
n

) − ũj( ri
ny+xi

n−xj
n

rj
n

)
)

|x− y|N+2s
dxdy
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+(ri
n)N−2s

2 (rj
n)− N−2s

2

�
R2N

(
ṽi(x) − ṽi(y)

)(
ṽj( ri

nx+xi
n−xj

n

rj
n

) − ṽj( ri
ny+xi

n−xj
n

rj
n

)
)

|x− y|N+2s
dxdy

= ⟨ũi, ũ
n
j ⟩Ḣs + ⟨ṽi, ṽ

n
j ⟩Ḣs ,

where ũn
j (x) :=

(
ri

n

rj
n

)N−2s
2
ũj

(
ri

n

rj
n
x + xi

n−xj
n

rj
n

)
, and ṽn

j (x) :=
(

ri
n

rj
n

)N−2s
2
ṽj

(
ri

n

rj
n
x +

xi
n−xj

n

rj
n

)
. Further, we observe that using the following∣∣∣∣∣ log

(
ri

n

rj
n

) ∣∣∣∣∣+
∣∣∣∣∣xi

n − xj
n

ri
n

∣∣∣∣∣ −→ ∞

from Proposition 5.4.1, it is easy to see that ũn
i ⇀ 0 and ṽn

i ⇀ 0 in Ḣs(RN)×

Ḣs(RN) as n → ∞ for each fixed i and j (see [94, Lemma 3]). Hence〈
(ũj, ṽj)rj

n,xj
n , (ũi, ṽi)ri

n,xi
n

〉
Ḣs×Ḣs

= o(1).

Substituting this back into (5.5.13) and using (5.5.10) and (5.5.11) gives a

contradiction to (5.5.12). Therefore, m = 0 in (5.5.9). Hence, (un, vn) →

(u0, v0) in Ḣs(RN) × Ḣs(RN). Consequently, Ψ(un, vn) → Ψ(u0, v0), which

in turn implies (u0, v0) ∈ Ω̄1. But, since c0 < c1, we conclude (u0, v0) ∈ Ω1.

Thus Step 3 follows.

Step 4: From the previous steps we see that Jf,g(u0, v0) = c0 and

J ′
f,g(u0, v0) = 0. Therefore, (u0, v0) is a weak solution to (5.5.2). Combining

this with Remark 5.5.1, we end the proof of the proposition.

Proposition 5.5.5. Assume that (5.5.4) holds. Then, Jf,g has a second

critical point (u1, v1) ̸= (u0, v0), where (u0, v0) is the positive solution to

(S0
2∗

s
) obtained in Proposition 5.5.4. In particular, (u1, v1) is a second positive

solution to (S0
2∗

s
).

Proof. Let (u0, v0) be the critical point obtained in Proposition 5.5.4 and

(Bw,Cw) (with C = B
√

β
α
) be a positive ground state solution of (5.4.2)

described as in Theorem 5.1.3. A standard computation yields that

I0,0(Bw,Cw) = s

N
S

N
2s
α,β. For t > 0, define

wt(x) := w
(x
t

)
, ũt(x) := Bwt(x), ṽt(x) := Cwt(x).
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Claim 1: (u0 + ũt, v0 + ṽt) ∈ Ω2 for t > 0 large enough.

Indeed, as (u0, v0) and (ũt, ṽt) are positive and α, β > 1, using Young’s

inequality with ε > 0, we have

Ψ(u0 + ũt, v0 + ṽt)

= ∥(u0 + ũt)∥2
Ḣs + ∥(v0 + ṽt)∥2

Ḣs − (2∗
s − 1)

�
RN

|u0 + ũt|α|v0 + ṽt|βdx

≤ ∥(u0, v0)∥2
Ḣs×Ḣs + ∥(ũt, ṽt)∥2

Ḣs×Ḣs + 2⟨u0, ut⟩Ḣs + 2⟨v0, vt⟩Ḣs

−(2∗
s − 1)

(�
RN

|u0|α|v0|β dx+
�
RN

|ũt|α|ṽt|β dx
)

≤ (1 + ε)∥(ũt, ṽt)∥2
Ḣs×Ḣs + (1 + Cε)∥(u0, v0)∥2

Ḣs×Ḣs

−(2∗
s − 1)

�
RN

|u0|α|v0|βdx− (2∗
s − 1)tNBαCβ

�
RN

|w|2∗
s dx

≤
(

(1 + ε)(B2 + C2)tN−2s − (2∗
s − 1)tNBαCβ

)
∥w∥2

Ḣs

+(1 + Cε)∥(u0, v0)∥2
Ḣs×Ḣs − (2∗

s − 1)
�
RN

|u0|α|v0|βdx

< 0 for t > 0 large enough.

Hence the claim follows.

Claim 2: Jf,g

(
u0 + ũt, v+ṽt

)
< Jf,g(u0, v0) + J0,0(ũt, ṽt) ∀ t > 0.

Indeed, since u0, v0, wt, B > 0, taking (ũt, ṽt) as the test function for

(5.5.2) yields
〈

(u0, v0), (ũt, ṽt)
〉

Ḣs×Ḣs
= α

2∗
s

�
RN

uα−1
0 vβ

0 ũt dx+ β

2∗
s

�
RN

uα
0 v

β−1
0 ṽt dx

+ (Ḣs)′⟨f, ũt⟩Ḣs + (Ḣs)′⟨g, ṽt⟩Ḣs .

Consequently, using the above expression, we obtain

Jf,g

(
u0 + ũt, v0 + ṽt

)
= 1

2∥(u0, v0)∥2
Ḣs×Ḣs + 1

2∥(ũt, ṽt)∥2
Ḣs×Ḣs +

〈
(u0, v0), (ũt, ṽt)

〉
Ḣs×Ḣs

− 1
2∗

s

�
RN

(u0 + ũt)α(v0 + ṽt)β dx− (Ḣs)′⟨f, u0 + ũt⟩Ḣs − (Ḣs)′⟨g, v0 + ṽt⟩Ḣs
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= Jf,g(u0, v0) + J0,0(ũt, ṽt) + 1
2∗

s

�
RN

uα
0 v

β
0 dx+ 1

2∗
s

�
RN

|ũt|α|ṽt|βdx

+ α

2∗
s

�
RN

uα−1
0 vβ

0 ũt dx+ β

2∗
s

�
RN

uα
0 v

β−1
0 ṽt dx

− 1
2∗

s

�
RN

(u0 + ũt)α(v0 + ṽt)β dx

≤ Jf,g(u0, v0) + J0,0(ũt, ṽt) + 1
2∗

s

�
RN

[
uα

0 v
β
0 + ũα

t ṽ
β
t

+ αuα−1
0 vβ

0 ũt + βuα
0 v

β−1
0 ṽt − (u0 + ũt)α(v0 + ṽt)β

]
dx

< Jf,g(u0, v0) + J0,0(ũt, ṽt).

Hence the Claim follows.

Using the definition of ũt and ṽt, it immediately follows

lim
t→∞

J0,0
(
ũt, ṽt

)
= −∞, (5.5.14)

and

sup
t>0

J0,0
(
ũt, ṽt

)
= J0,0(ũt′ , ṽt′), where t′ =

(
B2 + C2

BαCβ

) 1
2s

.

Therefore, doing a straight forward computation and using Lemma 5.0.2, we

get that

sup
t>0

J0,0
(
ũt, ṽt

)
= s

N

(B2 + C2) N
2s

(BαCβ)N−2s
2s

S
N
2s = s

N
S

N
2s
α,β.

Combining this with Claim 2 and (5.5.14) yields

Jf,g(u0 + ũt, v0 + ṽt) < Jf,g(u0, v0) + s

N
S

N
2s
α,β ∀ t > 0

and Jf,g(u0 + ũt, v0 + ṽt) < Jf,g(u0, v0) for t large enough.
(5.5.15)

Fix t0 > 0 large enough such that (5.5.15) and Claim 1 are satisfied.

Next, we set

η := inf
γ∈Γ

max
r∈[0,1]

Jf,g

(
γ(r)

)
,

where

Γ :=
{
γ ∈ C

(
[0, 1], Ḣs(RN)×Ḣs(RN)

)
: γ(0) = (u0, v0), γ(1) = (u0+ũt0 , v0+ṽt0)

}
.
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As (u0, v0) ∈ Ω1 and (u0 + ũt0 , v0 + ṽt0) ∈ Ω2, for every γ ∈ Γ, there exists

rγ ∈ (0, 1) such that γ(rγ) ∈ Ω. Therefore,

max
r∈[0,1]

Jf,g(γ(r)) ≥ Jf,g

(
γ(rγ)

)
≥ inf

Ω
Jf,g(u, v) = c1.

Thus, η ≥ c1 > c0 = Jf,g(u0, v0). Here in the last inequality we have used

Lemma 5.5.3.

Claim 3: Jf,g(u0, v0) < η < Jf,g(u0, v0) + s

N
S

N
2s
α,β.

Since limt→0 ∥wt∥Ḣs(RN ) = 0, we also have limt→0 ∥(ũt, ṽt)∥Ḣs×Ḣs = 0.

Thus, if we define γ̃(r) := (u0, v0) + (ũrt0 , ũrt0), then limr→0 ∥γ̃(r) −

(u0, v0)∥Ḣs×Ḣs = 0. Consequently, γ̃ ∈ Γ. Therefore, using (5.5.15), we

obtain

η ≤ max
r∈[0,1]

Jf,g(γ̃(r)) = max
r∈[0,1]

Jf,g (u0 + ũrt0 , v0 + ṽrt0) < Ja,f (u0, v0) + s

N
S

N
2s
α,β.

Hence Claim 3 follows.

Using Ekeland’s variational principle, there exists a (PS) sequence

{(un, vn)} for Jf,g at level η. Arguing as before we see that {(un, vn)} is

a bounded sequence. Further, since Claim 3 holds, from Proposition 5.4.1 we

conclude that (un, vn) → (u1, v1), for some (u1, v1) ∈ Ḣs(RN) × Ḣs(RN)

such that J ′
f,g(u1, v1) = 0 and Jf,g(u1, v1) = η. On the other hand, as

Jf,g(u0, v0) < η, we conclude (u0, v0) ̸= (u1, v1).

J ′
f,g(u1, v1) = 0 =⇒ (u1, v1) is a weak solution to (5.5.2). Combining this

with Remark 5.5.1, we complete the proof of the proposition.

Lemma 5.5.6. Let C0 be as defined in Theorem 5.1.4. If max{∥f∥(Ḣs)′ , ∥g∥(Ḣs)′} <

C0S
N
4s
α,β, then (5.5.4) holds.

Proof. Assertion 1:

4s
N + 2s∥(u, v)∥Ḣs×Ḣs ≥ C0S

N
4s
α,β ∀ (u, v) ∈ Ω.
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To see this, we fix (u, v) ∈ Ω. Therefore, using the definition of Sα,β we have

∥(u, v)∥Ḣs×Ḣs ≥ S
1/2
α,β

(�
RN

|u|α|v|β dx
)1/2∗

s

=⇒ ∥(u, v)∥Ḣs×Ḣs ≥ S
1/2
α,β

∥(u, v)∥2/2∗
s

Ḣs×Ḣs

(2∗
s − 1)1/2∗

s
.

From here, using the definition of C0, the assertion follows.

Note that by the given hypothesis, there exists ε > 0 such that

∥f∥(Ḣs)′ + ∥g∥(Ḣs)′ < C0S
N
4s
α,β − ε.

Combining this with the above Assertion 1, for all (u, v) ∈ Ω, it holds

(Ḣs)′⟨f, u⟩Ḣs + (Ḣs)′⟨g, v⟩Ḣs ≤
(
∥f∥(Ḣs)′ + ∥g∥(Ḣs)′

)
∥(u, v)∥Ḣs×Ḣs

<

(
C0S

N
4s
α,β − ε

)
∥(u, v)∥Ḣs×Ḣs

≤ 4s
N + 2s∥(u, v)∥2

Ḣs×Ḣs − ε∥(u, v)∥Ḣs×Ḣs .

Consequently,

inf
(u,v)∈Ω

[ 4s
N + 2s∥(u, v)∥2

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

]
> ε inf

(u,v)∈Ω
∥(u, v)∥Ḣs×Ḣs .

Since ∥(u, v)∥Ḣs×Ḣs is bounded away from 0 on Ω, the above expression

implies that

inf
(u,v)∈Ω

[ 4s
N + 2s∥(u, v)∥2

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs

]
> 0. (5.5.16)
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On the other hand,

(5.5.4) ⇐⇒ C0
∥(u, v)∥

N+2s
2s

Ḣs×Ḣs( �
RN

|u|α|v|β dx
)N−2s

4s

− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs > 0

for
�
RN

|u|α|v|β dx = 1

⇐⇒ C0
∥(u, v)∥

N+2s
2s

Ḣs×Ḣs( �
RN

|u|α|v|β dx
)N−2s

4s

− (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs > 0

for (u, v) ∈ Ω

⇐⇒ 4s
N + 2s∥(u, v)∥2

Ḣs×Ḣs − (Ḣs)′⟨f, u⟩Ḣs − (Ḣs)′⟨g, v⟩Ḣs > 0

for (u, v) ∈ Ω. (5.5.17)

Clearly, (5.5.16) ensures that the RHS of (5.5.17) holds. The lemma now

follows.

End of Proof of Theorem 5.1.4 Combining Propositions 5.5.4 and

5.5.5 with Lemmas 5.5.6 and 5.5.3, we complete the proof of Theorem 5.1.4.

Conclusion : In this chapter we consider nonlocal weakly coupled el-

liptic system of equations with both critical and subcritical nonlinearity and

with nonhomogeneous term in RN . First, we prove existence of one positive

solution for the system as a perturbation of 0. Then we consider the corre-

sponding homogeneous system with critical nonlinearity and prove unique-

ness for ground state solutions. Then characterizing the PS sequences for

the associated energy functional, we prove multiplicity result for the nonho-

mogeneous critical system under certain assumption on the nonhomogeneous

terms.

We could able to prove uniqueness for ground state solutions for the corre-

sponding critical system. It will be an interesting question if we can prove
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uniqueness/multiplicity of solutions for the homogeneous system with critical

nonlinearity.

————— ◦ —————
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