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Abstract

We will compute the boundary asymptotics of the Carathéodory and Kobayashi-Eisenman vol-
ume elements on convex finite type domains and Levi corank one domains in Cn using the
standard scaling techniques. We will show that their ratio, the so-called C/K ratio or the
quotient invariant, can be used to detect strong pseudoconvexity. Some properties of a Kähler
metric called the Kobayashi–Fuks metric will also be observed on planar domains as well as on
strongly pseudoconvex domains in Cn. We study the localization of this metric near holomor-
phic peak points and show that this metric shares several properties with the classical Bergman
metric on strongly pseudoconvex domains.
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Notations

R : Set of real numbers

C : Set of complex numbers

∆ : The unit disc in C
∆(a, r) : Disc of radius r centered at a ∈ C
Bn : The unit ball in Cn

B(a, r) : Ball of radius r centered at a ∈ Cn

∆n : The unit polydisc ∆× · · · ×∆ in Cn

D : Topological closure of a domain D

∂D : Topological boundary of a domain D

δD(z) : The (shortest) Euclidean distance of z ∈ D to its boundary ∂D

δD(z, u) : The (shortest) Euclidean distance of z ∈ D to ∂D in the direction of the vector u

∇ : The gradient operator

I : The identity matrix or the identity transformation

M t : Transpose of a matrix M

M : Complex conjugate of a matrix M

M∗ : Conjugate transpose of M

adM : Adjugate of a matrix M

detM : Determinant of a matrix M

diag{d1, . . . , dn} : A diagonal matrix with entries d1, . . . , dn in the exact order

O(D1, D2) : The collection of holomorphic maps from a domain D1 to another domain D2

detψ′(p) : Determinant of the complex Jacobian of a holomorphic map ψ at a point p

u ∈ Cn : An n× 1 column vector in Cn

uα : α-th component of a vector u

(′u, un) ∈ Cn : ′u = (u1, . . . , un−1) ∈ Cn−1 and un ∈ C
(u1, u

′) ∈ Cn : u1 ∈ C and u′ = (u2, . . . , un) ∈ Cn−1

aj → a : Sequence aj converges to a as j goes to ∞
: End of a proof
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Chapter 1

Introduction

The study of intrinsic or invariant objects has been of fundamental importance in several com-
plex variables for several decades. This played a pivotal role in understanding the geometry of a
wide range of domains in the complex Euclidean space, even on complex manifolds. One of the
most celebrated results in complex analysis of single variable is the Riemann mapping theorem,
which says that, every simply connected domain in C, except for the whole complex plane, is
biholomorphically equivalent to the unit disc. Therefore the topological property “simply con-
nectedness” is sufficient to describe a large class of planar domains, up to biholomorphism. On
the other hand in 1907, H. Poincaré proved that the group of holomorphic automorphisms of the
open ball and the open polydisc in C2 are not isomorphic. Hence they are, although topologically
equivalent, not equivalent biholomorphically. Therefore, it seemed important to associate with
domains in Cn obedient objects those are invariant under biholomorphic mappings. Generalizing
the Schwarz-Pick Lemma, C. Carathéodory provided the first example of such an object, which
was different from the automorphism group, and later this object was called the Carathéodory
pseudodistance. Roughly speaking, his principal idea was to use the set of bounded holomor-
phic functions on a domain D as an invariant. Apart from the class of bounded holomorphic
functions, S. Bergman in 1933 considered the Hilbert space of square integrable holomorphic
functions on D to obtain a Kähler metric which is now known as the Bergman metric. In 1967,
using the set of analytic discs to cook up new biholomorphic invariants, S. Kobayashi introduced
a pseudodistance, which is in some sense dual to the Carathéodory pseudodistance, and is called
the Kobayashi pseudodistance.

The estimates and study of the limiting behavior of these invariant pseudodistances or met-
rics play an important role in a wide range of problems in complex analysis like biholomorphic
equivalence or non-equivalence of domains, continuation of holomorphic mappings, asymptotic
estimates of various classes of holomorphic functions, description of domains with noncompact
groups of automorphisms, among many others. Geometry and analysis of bounded domains,
especially those of pseudoconvex domains, are broad and rich. In this thesis, we study the lim-
iting behavior of certain invariant objects near the boundary of various classes of pseudoconvex
domains and try to convince the readers the importance of studying the boundary behavior by
giving a number of applications later on.

Let us now shed some light on the contents of the thesis. The next chapter (Chapter 2)
will be on preliminaries, where we list some of the definitions and concepts those will be used
in the discourse later. This will serve as a basic prerequisite which provides the necessary
groundwork to understand the results in this thesis. Chapters 3 and 4 comprise the study of

1



2 CHAPTER 1. INTRODUCTION

the Carathéodory and Kobayashi-Eisenman volume elements, most of which can be found in [5].
In 1969, D. A. Eisenman initiated the study of these volume elements as intrinsic measures on
complex manifolds (see [18]). The construction of these measures was modelled in analogy with
the intrinsic distances of Carathéodory and Kobayashi. One can refer to the exposition [34]
and the article [35] of Kobayashi for more survey on these measures. We adopt the following
definitions of the volume elements on domains in Cn: For a domain D ⊂ Cn, the Carathéodory
and Kobayashi-Eisenman volume elements on D at a point p ∈ D are defined respectively by

cD(p) = sup
{∣∣detψ′(p)

∣∣2 : ψ ∈ O(D,Bn), ψ(p) = 0
}
,

kD(p) = inf
{∣∣ detψ′(0)

∣∣−2
: ψ ∈ O(Bn, D), ψ(0) = p

}
.

In Chapter 3, along with some literature survey, we will list some of the properties these volume
elements enjoy. A biholomorphic invariant can be defined using these volume elements, called
the quotient invariant, given by

qD(p) =
cD(p)

kD(p)
.

Using the behavior of this invariant near the boundary of bounded convex domains, a criterion
is derived that detects strongly pseudoconvex domains in Cn, which says:

Theorem 1.0.1. For any positive integer n and α ∈ (0, 1), there exists some ε = ε(n, α) > 0
with the following property: If D ⊂ Cn is a bounded convex domain with C2,α boundary and if

qD(p) ≥ 1− ε

outside a compact subset of D, then D is strongly pseudoconvex.

Chapter 4 is basically the study of boundary behavior of these volume elements on two
special kinds of pseudoconvex domains, namely– convex finite type domains and Levi corank
one domains. In particular we procure that as we move towards the boundary of these domains,
the Kobayashi-Eisenman volume element blows up at a rate reciprocal to the size of certain
polydiscs in each of the cases. The method of scaling of domains comes in handy in obtaining
these boundary asymptotics, and as we will see, several variants of the scaling technique will
be used in this dissertation to achieve our desired objectives. Briefly speaking, scaling is a
convenient tool that converts boundary problems into interior problems, and the latter of which
is easier to tackle in general. Let us first discuss the convex finite type case.

A smooth boundary point p0 of a domain D ⊂ Cn is said to be a point of finite type (in
the sense of D’Angelo) if the maximum order of contact of one-dimensional complex analytic
varieties with ∂D at p0 is bounded. D is called a finite type domain if all the points on the
boundary ∂D are finite type points. More on this “finite type-ness” will be explained later in
Chapter 2. Let D = {ρ < 0} be a smoothly bounded convex finite type domain and p0 ∈ ∂D.
For each point p ∈ D sufficiently close to p0, and ε > 0 sufficiently small, McNeal’s orthogonal
coordinate system zp,ε1 , . . . , zp,εn centred at p is constructed as follows (see [40]). Denote by Dp,ε

the domain
Dp,ε =

{
z ∈ Cn : ρ(z) < ρ(p) + ε

}
.

Let τn(p, ε) be the distance of p to ∂Dp,ε and ζn(p, ε) be a point on ∂Dp,ε realising this distance.
Let Hn be the complex hyperplane through p and orthogonal to the vector ζn(p, ε)−p. Compute
the distance from p to ∂Dp,ε along each complex line in Hn. Let τn−1(p, ε) be the largest such
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distance and let ζn−1(p, ε) be a point on ∂Dp,ε such that |ζn−1(p, ε) − p| = τn−1(p, ε). For the
next step, define Hn−1 as the complex hyperplane through p and orthogonal to the span of the
vectors ζn(p, ε)− p, ζn−1(p, ε)− p and repeat the above construction. Continuing in this way, we
define the numbers τn(p, ε), τn−1(p, ε), . . . , τ1(p, ε), and the points ζn(p, ε), ζn−1(p, ε), . . . , ζ1(p, ε)
on ∂Dp,ε. Let T p,ε be the translation sending p to the origin and Up,ε be a unitary mapping
aligning ζk(p, ε)− p along the zk-axis and ζk(p, ε) to a point on the positive Re zk axis. Set

zp,ε = Up,ε ◦ T p,ε(z).

The polydisc

P (p, ε) =
{
zp,ε : |zp,ε1 | < τ1(p, ε), . . . , |zp,εn | < τn(p, ε)

}
is known as McNeal’s polydisc. The scaling method, which will be briefly explained in Chapter 4,
shows that every sequence in D that converges to p0 ∈ ∂D furnishes limiting domains

D∞ =

{
z ∈ Cn : −1 + Re

n∑
α=1

bαzα + P2m(′z) < 0

}
, (1.1)

where bα are complex numbers and P2m is a real convex polynomial of degree at most 2m
(m ≥ 1), where 2m is the 1-type of ∂D at p0. The polynomial P2m is not unique in general
and depends on how the given sequence approaches p0. The exact asymptotic expression for the
Kobayashi-Eisenman volume element on convex finite type domains is:

Theorem 1.0.2. Let D = {ρ < 0} be a smoothly bounded convex finite type domain in Cn and
pj ∈ D be a sequence converging to p0 ∈ ∂D. Let εj = −ρ(pj). Then up to a subsequence,

kD(pj)

n∏
α=1

τα(pj , εj)
2 → kD∞(0)

as j →∞, where D∞ is a limiting domain associated with D at p0.

Now we consider the Levi corank one case. A boundary point p0 of a domain D ⊂ Cn is said
to have Levi corank one if there exists a neighborhood of p0 where ∂D is smooth, pseudoconvex,
of finite type, and the Levi form has at least (n − 2) positive eigenvalues. If every boundary
point of D has Levi corank one, then D is called a Levi corank one domain. The collection of
Levi corank one domains includes the class of all smoothly bounded pseudoconvex finite type
domains in C2. A basic example in higher dimension is the egg

E2m =
{
z ∈ Cn : |z1|2m + |z2|2 + . . .+ |zn|2 < 1

}
,

where m ≥ 2 is an integer. Let D = {ρ < 0} be a smoothly bounded Levi corank one domain
and p0 ∈ ∂D. It was proved in [10] that for each point p in a sufficiently small neighborhood U
of p0, there are holomorphic coordinates ζ = Φp(z) such that

ρ ◦ (Φp)−1(ζ) = ρ(p) + 2 Re ζn +
∑

j+k≤2m
j,k>0

ajk(p)ζ
j
1ζ
k
1 +

n−1∑
α=2

|ζα|2

+

n−1∑
α=2

∑
j+k≤m
j,k>0

Re
((
bαjk(p)ζ

j
1ζ
k
1

)
ζα

)
+O

(
|ζn||ζ|+ |ζ∗|2|ζ|+ |ζ∗||ζ1|m+1 + |ζ1|2m+1

)
, (1.2)
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where ζ∗ = (0, ζ2, . . . , ζn−1, 0). To construct the distinguished polydiscs around p, set

Al(p) = max
{∣∣ajk(p)∣∣ : j + k = l

}
, 2 ≤ l ≤ 2m,

Bl′(p) = max
{∣∣bαjk(p)∣∣ : j + k = l′, 2 ≤ α ≤ n− 1

}
, 2 ≤ l′ ≤ m.

(1.3)

Now define for each δ > 0, the special-radius

τ(p, δ) = min
{(
δ/Al(p)

)1/l
,
(
δ1/2/Bl′(p)

)1/l′

: 2 ≤ l ≤ 2m, 2 ≤ l′ ≤ m
}
. (1.4)

It was shown in [10] that the coefficients bαjk’s in the above definition of τ(p, δ) are insignificant
and may be ignored, so that

τ(p, δ) = min
{(
δ/Al(p)

)1/l
: 2 ≤ l ≤ 2m

}
. (1.5)

Set

τ1(p, δ) = τ(p, δ) = τ, τ2(p, δ) = · · · = τn−1(p, δ) = δ1/2, τn(p, δ) = δ.

The distinguished polydiscs Q(p, δ) of Catlin are defined by

Q(p, δ) =
{

(Φp)−1(ζ) : |ζ1| < τ1(p, δ), . . . , |ζn| < τn(p, δ)
}
.

The scaling method (which is well known in this case and will be briefly explained in Chapter 4)
shows that every sequence in D that converges to p0 ∈ ∂D furnishes limiting domains

D∞ =

{
z ∈ Cn : 2 Re zn + P2m(z1, z1) +

n−1∑
α=2

|zα|2 < 0

}
, (1.6)

where P2m(z1, z1) is a subharmonic polynomial of degree at most 2m (m ≥ 1) without harmonic
terms, 2m being the 1-type of ∂D at p0. Observe that the point b = (′0,−1) lies in every such
D∞. The boundary asymptotics of the Kobayashi-Eisenman volume element on Levi corank
one domains is as follows:

Theorem 1.0.3. Let D = {ρ < 0} be a smoothly bounded Levi corank one domain in Cn and
pj ∈ D be a sequence converging to p0 ∈ ∂D. Let δj > 0 be such that p̃j = (pj1, . . . , p

j
n−1, p

j
n + δj)

is a point on ∂D. Then up to a subsequence,

kD(pj)

n∏
α=1

τα(p̃j , δj)
2 → c(ρ, p0)kD∞(b)

as j → ∞, where c(ρ, p0) is a positive constant that depends only on ρ and p0, and D∞ is a
limiting domain associated with D at p0.

Based on [6], Chapters 5-7 consist of the study on the Kobayashi–Fuks metric, a Kähler
metric which is closely related to the classical Bergman metric. In these chapters we explore
a few similarities of this metric with the Bergman metric by exploring localization of some of
its associated invariants and later studying their boundary behavior on strongly pseudoconvex
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domains. If we denote the Bergman kernel (on the diagonal) for a domain D by KD, the
Bergman metric is given by

ds2
B,D :=

n∑
α,β=1

gB,D
αβ

(z) dzαdzβ,

where

gB,D
αβ

(z) =
∂2 logKD

∂zα∂zβ
(z).

Denoting by GB,D(z) the matrix
(
gB,D
αβ

(z)
)
n×n, the components of the Ricci tensor of ds2

B,D are

given by

RicB,D
αβ

(z) = −
∂2 log detGB,D

∂zα∂zβ
(z),

and the Ricci curvature of ds2
B,D is given by

RicB,D(z, u) =

∑n
α,β=1 RicB,D

αβ
(z)uαuβ∑n

α,β=1 g
B,D

αβ
(z)uαuβ

.

Kobayashi [33] showed that the Ricci curvature of the Bergman metric on a bounded domain in
Cn is strictly bounded above by n+ 1, and hence the following matrix

GB̃,D(z) =
(
gB̃,D
αβ

(z)
)
n×n

=
(

(n+ 1)gB,D
αβ

(z)− RicB,D
αβ

(z)
)
n×n

is positive definite on a bounded domain D (see also Fuks [19]). Using the above result,

ds2
B̃,D

:=

n∑
α,β=1

gB̃,D
αβ

(z) dzαdzβ

turns out to be an invariant Kähler metric with Kähler potential log(Kn+1
D detGB,D). We call

this the Kobayashi–Fuks metric on D. We denote the length of a vector u at a point z ∈ D in
ds2
B̃,D

by τB̃,D(z, u), i.e.,

τ2
B̃,D

(z, u) =
n∑

α,β=1

gB̃,D
αβ

(z)uαuβ.

The Riemannian volume element of the Kobayashi–Fuks metric on D will be denoted by gB̃,D(z),

i.e., gB̃,D(z) = detGB̃,D(z). Note that in dimension one, the metric ds2
B̃,D

has the form

ds2
B̃,D

= gB̃,D(z)|dz|2, τB̃,D(z, u) =
√
gB̃,D(z)|u|

and the Gaussian curvature of the Kobayashi–Fuks metric is given by

RB̃,D(z) = − 1

gB̃,D(z)

∂2 log gB̃,D
∂z∂z

(z).

Chapter 5, apart from formally defining the Kobayashi–Fuks metric, gives a brief survey of
some of the work that has been done on this metric recently. Towards the end of that chapter,
some of the monotonicity or the comparison results on the Kobayashi–Fuks metric will be derived
which will help us in localising the invariants related to it. Chapter 6 is completely dedicated
towards obtaining the localization results associated to the Kobayashi–Fuks metric, and the
main result there is the following:
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Theorem 1.0.4. Let D ⊂ Cn be a bounded pseudoconvex domain with a holomorphic peak point
p0 ∈ ∂D. If U is a sufficiently small neighborhood of p0, then

(i) limz→p0
τB̃,D(z,u)

τB̃,U∩D(z,u) = 1 uniformly in unit vectors u ∈ Cn.

(ii) limz→p0
gB̃,D(z)

gB̃,U∩D(z) = 1.

(iii) If n = 1, then limz→p0
2−RB̃,D(z)

2−RB̃,U∩D(z) = 1.

In Chapter 7, we first examine the boundary behavior of the Kobayashi–Fuks metric on
planar domains by using the Riemann mapping theorem. In particular we find that the Gaussian
curvature of the Kobayashi–Fuks metric approaches a fixed negative integer as we move towards
the boundary of a smoothly bounded domain.

Theorem 1.0.5. For a C2-smoothly bounded domain D in C with p0 ∈ ∂D, there exists a
constant C = C(D) > 0 such that

(i) δ2
D(z)τ2

B̃,D
(z, u)→ C|u|2,

(ii) RB̃,D(z)→ −1
3 ,

as z → p0. Here δD(z) denotes the Euclidean distance of z ∈ D to the boundary ∂D.

Theorem 1.0.5 (ii) combined with the arguments in the proof of Theorem 1.17 of [24] imme-
diately yields:

Corollary 1.0.6. Let D,D′ ⊂ C be C2-smoothly bounded domains equipped with the metrics
ds2
B̃,D

and ds2
B̃,D′

respectively. Then every isometry f : (D, ds2
B̃,D

) → (D′, ds2
B̃,D′

) is either

holomorphic or conjugate holomorphic.

The arguments used in the proof of Theorem 1.0.5 are based on the Riemann mapping
theorem and thus restricted to dimension one only. To compensate for this we make use of
the Pinchuk’s scaling method to study the boundary behavior of the Kobayashi–Fuks metric
on smoothly bounded strongly pseudoconvex domains in higher dimensions. Let us denote by
δD(z) the Euclidean distance from the point z ∈ D to the boundary ∂D. For z close to ∂D, let
π(z) ∈ ∂D be the nearest point to z, i.e., δD(z) = |z − π(z)|, and for a tangent vector u ∈ Cn
based at z, let u = uH(z) + uN (z) be the decomposition of u along the tangential and normal
directions respectively at π(z).

Theorem 1.0.7. Let D ⊂ Cn be a C2-smoothly bounded strongly pseudoconvex domain and
p0 ∈ ∂D. Then there are holomorphic coordinates z near p0 in which

(i) δD(z) τB̃,D(z, u)→ 1
2

√
(n+ 1)(n+ 2) |uN (p0)| ,

(ii)
√
δD(z) τB̃,D

(
z, uH(z)

)
→
√

1
2(n+ 1)(n+ 2)L∂D

(
p0, uH(p0)

)
,

(iii) δD(z)n+1gB̃,D(z)→ (n+1)n(n+2)n

2n+1 ,

as z → p0. Here, L∂D is the Levi form of ∂D with respect to some defining function for D.
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Note that Theorem 1.0.7 (i), (ii) are analogs of Graham’s result [22] for the Kobayashi
and Carathéodory metrics. Next, simulating a theorem of Herbort on the Bergman metric, we
derive a result that ascertains the existence of closed geodesics in the Kobayashi–Fuks metric
with prescribed homotopy class.

Theorem 1.0.8. Let D ⊂ Cn be a smoothly bounded strongly pseudoconvex domain which is
not simply connected. Then every nontrivial homotopy class in π1(D) contains a closed geodesic
for ds2

B̃,D
.

Finally, we end the thesis by posing some relevant open questions on the Kobayashi–Fuks
metric as a part of future research plans. Answering these questions will give a comprehensive
understanding of this metric in accordance with some of the classical results in the literature
on various well-studied metrics such as the Carathéodory metric, the Bergman metric, the
Kobayashi metric, etc.
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Chapter 2

Preliminaries

2.1 Pseudoconvexity

A domain D ⊂ Cn with boundary ∂D is said to have Ck-smooth boundary near p0 ∈ ∂D, for
k ≥ 1, if there is a real-valued Ck differentiable function ρ defined on a neighborhood U of p0

such that

(a) D ∩ U = {z ∈ U : ρ(z) < 0},

(b) ∂D ∩ U = {z ∈ U : ρ(z) = 0},

(c) ∇ρ 6= 0 on ∂D ∩ U.

We call the function ρ a Ck local defining function for D near p0.
If D is a bounded domain, the boundary ∂D is said to be Ck-smooth if there exists a real-

valued Ck differentiable function ρ defined on a neighborhood U of D such that ρ satisfies the
above three conditions (a), (b) and (c). We call ρ a Ck defining function for D.

Definition 2.1.1. Let D ⊂ Cn be an open set, ∂D be C1-smooth near p0, and ρ a local
defining function for D near p0. Under the natural identification Cn ≈ R2n by (z1, . . . , zn) =
(x1 + iy1, . . . , xn + iyn) ≈ (x1, y1, . . . , xn, yn), an n-tuple (w1, . . . , wn) = (u1 + iv1, . . . , un + ivn)
of complex numbers is called a tangent vector to ∂D at p0 if

n∑
j=1

∂ρ

∂xj
(p0)uj +

n∑
j=1

∂ρ

∂yj
(p0)vj = 0. (2.1)

We write w = (w1, . . . , wn) ∈ Tp0(∂D). Note that in the complex notation (2.1) can be rewritten
as

2 Re

 n∑
j=1

∂ρ

∂zj
(p0)wj

 = 0.

The collection of vectors w ∈ Cn that satisfy the above equation is not closed under mul-
tiplication by i, and hence is not a natural subject of study in complex analysis. Instead, we
restrict our attention to the space of vectors w ∈ Cn that satisfy

n∑
j=1

∂ρ

∂zj
(p0)wj = 0.

9
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The collection of all such vectors w is termed as the complex tangent space to ∂D at p0, and
is denoted by Hp0(∂D). Clearly Hp0(∂D) ⊂ Tp0(∂D), and one can check that Hp0(∂D) is the
largest complex subspace of Tp0(∂D) in the following sense: If S is a real linear subspace of
Tp0(∂D) that is closed under multiplication by i, then S ⊂ Hp0(∂D).

Definition 2.1.2. Let D be a domain in Cn with C2-smooth boundary near p0 ∈ ∂D and ρ be
a local defining function for D near p0. Then D is said to be pseudoconvex at p0 ∈ ∂D if the
Levi form of ρ is positive semidefinite on the complex tangent space at p0, i.e.,

n∑
α,β=1

∂2ρ

∂zα∂zβ
(p0)wαwβ ≥ 0 for all w ∈ Hp0(∂D). (2.2)

Moreover, D is called strongly pseudoconvex at p0, if the Levi form is positive definite on
Hp0(∂D), i.e., the inequality in (2.2) becomes strict for all w 6= 0 ∈ Hp0(∂D). A domain
D ⊂ Cn is called a pseudoconvex (or, strongly pseudoconvex) domain, if D is pseudoconvex
(or, strongly pseudoconvex) at every boundary point. It can be checked that the definition of
pseudoconvexity is independent of the defining function chosen.

2.2 Concept of finite type

2.2.1 D’Angelo finite 1-type

Given a scalar-valued function f : C→ R with f(0) = 0, let ν(f) denote the order of vanishing
of f at 0. Hence ν(f) is the least positive integer such that ν(f)-th derivative of f doesn’t
vanish at 0. Similarly, for a vector valued function of a complex variable φ : C → Rn with
φ(0) = (0, . . . , 0), the order of vanishing ν(φ) is defined to be the minimum of the order of
vanishing of its components at 0.

Definition 2.2.1. For a domain D = {z ∈ Cn : ρ(z) < 0}, where ρ is a C∞ defining function
for D, we say that a point p0 ∈ ∂D has finite type (or, finite 1-type) in the sense of D’Angelo if

sup

{
ν(ρ ◦ l)
ν(l − p0)

∣∣∣∣ l : C→ Cn is a non-constant, one dimensional holomorphic curve

such that l(0) = p0

}
<∞.

The above supremum is called the 1-type (in the sense of D’Angelo) of ∂D at p0. If all the
points on ∂D has finite 1-type, then D is called a finite type domain. It can be shown that the
definition of 1-type is independent of the choice of defining function.

Example 2.2.2. Every point on the boundary of the unit ball Bn ⊂ Cn has 1-type 2. In fact,
every smoothly bounded strongly pseudoconvex domain in Cn is a finite type domain with every
boundary point of 1-type 2.

Example 2.2.3. Consider the following egg domain in C2,

D = {(z1, z2) ∈ C2 : |z1|2 + |z2|2m < 1}

with the boundary point p0 = (1, 0). It can be shown that p0 has 1-type 2m on the boundary.
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2.2.2 Catlin’s multitype

Corresponding to each point z on the boundary of a smoothly bounded pseudoconvex domain
in Cn, D. Catlin [8] introduced an invariant M(z) generally called as Catlin’s multitype of z.
This invariant arises from the study of the boundary regularity properties of solutions of the
∂-Neumann problem on finite type domains (in the sense of D’Angelo). Before formally defining
the multitype M(z), we introduce some notations.

Let D be a domain in Cn and ρ a smooth local defining function for D near p0 ∈ ∂D. Let
Γn denote the set of all n-tuples of real numbers Λ = (λ1, . . . , λn) with 1 ≤ λi ≤ +∞ such that

λ1 ≤ λ2 ≤ · · · ≤ λn,

and for each k, either λk = +∞ or there is a set of nonnegative integers a1, . . . , ak with ak > 0
such that

k∑
j=1

aj
λj

= 1.

An element of Γn will be referred to as a weight. The set of weights can be ordered lexicograph-
ically as follows: If Λ′ = (λ′1, . . . , λ

′
n) and Λ′′ = (λ′′1, . . . , λ

′′
n), then Λ′ < Λ′′ if for some k, λ′j = λ′′j

for all j < k, but λ′k < λ′′k. A weight Λ ∈ Γn is said to be distinguished if there exist holomorphic
coordinates (z1, . . . , zn) about p0 with p0 mapped to the origin such that

If
n∑
i=1

αi + βi
λi

< 1, then DαD βρ(p0) = 0.

Here Dα and D
β

denote the partial derivative operators

∂|α|

∂zα1
1 · · · ∂z

αn
n

and
∂|β|

∂zβ11 · · · ∂z
βn
n

respectively. The Catlin’s multitype M(∂D, p0) is defined to be the smallest weight (in the
lexicographic sense) M = (m1, . . . ,mn) in Γn such that M ≥ Λ for every distinguished weight
Λ.

Example 2.2.4. Let D be a domain in Cn and p0 ∈ ∂D be a smooth boundary point. If p0 is
a strongly pseudoconvex boundary point, then M(∂D, p0) = (1, 2, . . . , 2). More generally, if the
Levi form of ∂D has rank k at p0, then M(∂D, p0) = (m1, . . . ,mn) where m1 = 1, mj = 2 for
2 ≤ j ≤ k + 1, and mj > 2 for j > k + 1.

Example 2.2.5. Consider the following domain D ⊂ C3 defined by{
ρ(z1, z2, z3) = 2 Re z3 +

∣∣z2
1 − z3

2

∣∣2 < 0
}
.

Clearly 0 ∈ ∂D, and the multitype M(∂D, 0) = (1, 4, 6).

2.3 Complete hyperbolicity and tautness

The infinitesimal Kobayashi pseudometric on a domain D ⊂ Cn is defined by

FKD (z, ζ) = inf
{
α > 0 : there exists f ∈ O(∆, D) with f(0) = z, αf ′(0) = ζ

}
.
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The Kobayashi pseuodistance is the integrated form of the Kobayashi pseudometric described
as follows. Let γ : [0, 1] → D be a piecewise C1 curve. The Kobayashi length of γ is defined to
be

LKD(γ) =

ˆ 1

0
FKD
(
γ(t), γ′(t)

)
dt.

Let w1 and w2 be two points in D. The Kobayashi pseudodistance between w1 and w2 is defined
to be

dKD(w1, w2) = inf

{
LKD(γ) : γ is a piecewise C1 curve such that γ(0) = w1 and γ(1) = w2

}
.

Definition 2.3.1. A domain D ⊂ Cn is said to be hyperbolic, if the Kobayashi pseudodistance
is an actual distance on D. In addition to that, if D is complete with respect to the Kobayashi
distance, then D is called a complete hyperbolic domain.

Definition 2.3.2. A complex manifold X is said to be taut if O(∆, X) is a normal family, i.e.,
given any sequence (fj)j ⊂ O(∆, X), there exists a subsequence (fjν )ν which either

• converges uniformly on compact subsets of ∆ to a function f ∈ O(∆, X), or

• diverges uniformly on compact sets, i.e., given any two compact sets L ⊂ ∆ and M ⊂ X,
there exists k = k(L,M) ∈ N such that fjν (L) ∩M = ∅ for all ν ≥ k.

It can be shown that any complete hyperbolic domain is a taut domain (see [21]).

2.4 Local Hausdorff convergence

A sequence of domains Dj ⊂ Cn is said to converge in the local Hausdorff topology to a domain
D∞ ⊂ Cn if the following conditions are satisfied:

(i) For any compact set K contained in the interior of ∩j>mDj for some positive integer m,
K ⊂ D∞.

(ii) For any compact subset L of D∞, there exists a positive integer n > 0 such that L ⊂ Dj

for every j > n.

2.5 Holomorphic peak points

A boundary point p0 of a domain D ⊂ Cn is called a global holomorphic peak point, or simply a
global peak point of D, if there exists a holomorphic function f such that for any neighborhood
W of p0 with D \W 6= ∅ one has

sup
z∈D\W

|f(z)| < 1 = lim
z→p0

f(z).

We say that p0 ∈ ∂D is a local holomorphic peak point, or simply a local peak point of D, if
there is a neighborhood U of p0 such that p0 is a global peak point of U ∩D.
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2.6 Ricci and holomorphic sectional curvatures

Let (X, J) be an n-dimensional complex manifold with Kähler metric g. If R is the Riemannian
curvature tensor of (X, g), then the holomorphic sectional curvature Hg(v) of a non-zero vector
v is defined to be the sectional curvature of the 2-plane spanned by v and Jv. That is,

Hg,X(v) :=
R(v, Jv, Jv, v)

‖v‖4g
.

In the local coordinates, suppose the Kähler metric g is given in the form

ds2
g,X(z) =

n∑
α,β=1

gX
αβ

(z) dzαdzβ,

and let
Gg,X(z) =

(
gX
αβ

(z)
)
n×n

.

It can be shown that the holomorphic sectional curvature of ds2
g,X is given by

Hg,X(z, v) =

∑n
α,β,γ,δ=1R

g,X

αβγδ
(z)vαvβvγvδ(∑n

α,β=1 g
X
αβ

(z)vαvβ
)2 ,

where

Rg,X
αβγδ

(z) = −
∂2gXβα
∂zγ∂zδ

(z) +
∑
µ,ν

gνµX (z)
∂gXβµ
∂zγ

(z)
∂gXνα
∂zδ

(z), (2.3)

gνµX (z) being the (ν, µ)th entry of the inverse of the matrix Gg,X(z).

The Ricci tensors of ds2
g,X are defined by

Ricg,X
αβ

(z) = −
∂2 log detGg,X

∂zα∂zβ
(z),

and the Ricci curvature of ds2
g,X in the direction of v is given by

Ricg,X(z, v) =

∑n
α,β=1 Ricg,X

αβ
(z)vαvβ∑n

α,β=1 g
X
αβ

(z)vαvβ
.
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Chapter 3

The Carathéodory and
Kobayashi-Eisenman volume
elements

For a domain D ⊂ Cn, recall that the Carathéodory and Kobayashi-Eisenman volume elements
on D at a point p ∈ D are defined respectively by

cD(p) = sup
{∣∣detψ′(p)

∣∣2 : ψ ∈ O(D,Bn), ψ(p) = 0
}
,

kD(p) = inf
{∣∣ detψ′(0)

∣∣−2
: ψ ∈ O(Bn, D), ψ(0) = p

}
.

By Montel’s theorem we will see that cD(p) is always attained and if D is taut then kD(p) is
also attained. Under a holomorphic map F : D → Ω, they satisfy the rule

vD(p) ≥
∣∣ detF ′(p)

∣∣2vΩ

(
F (p)

)
where v = c, k. In particular, equality holds if F is a biholomorphism. Accordingly, if kD is
nonvanishing (which is the case if D is bounded or taut), then

qD(p) =
cD(p)

kD(p)

is a biholomorphic invariant and is called the quotient invariant. If D = Bn, then

cBn(p) = kBn(p) =
(
1− |p|2

)−n−1
,

and thus qBn is identically equal to 1. In general, an application of the Schwarz lemma shows
that qD ≤ 1. It is a remarkable fact that if D is any domain in Cn and qD(p) = 1 for some point
p ∈ D, then qD(z) = 1 for all z ∈ D and D is biholomorphic to Bn. This was first proved by
Wong [48] with the hypothesis that D is bounded and complete hyperbolic, which was relaxed
by Rosay [45] to D being any bounded domain. Dektyarev [11] further relaxed this condition
to D being only hyperbolic and later Graham and Wu [23] showed that no assumption on D is
required for the result to be true, in fact, it is true for any complex manifold. Thus qD measures
the extent to which the Riemann mapping theorem fails for D. This fact is a fundamental step in
the proof of the Wong-Rosay theorem and several other applications can be found in [25,26,37].

15
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In this chapter, we study a few properties of the Carathéodory and Kobayashi-Eisenman
volume elements on various domains. After establishing certain regularity properties of the
volume elements in the next section using the normal family arguments, one can remark that
these volume elements are well behaved on taut domains. To showcase one of the importances
of studying the boundary behavior of biholomorphic invariants, towards the end of this chapter,
we will give a proof of Theorem 1.0.1. This result shows an efficacy of the quotient invariant
in determining strong pseudoconvexity if its boundary behavior is a priori known—a property
enjoyed by the squeezing function and its dual the Fridman invariant as well. We refer the reader
to the recent articles [39, 43] and the references therein for the definition and other relevant
materials related to these two invariants. Let us denote the squeezing function for a domain D
by sD and the Fridman invariant by hD. It was proved in [51] that if D is a bounded convex
domain with C2,α boundary for some α ∈ (0, 1), then D is strongly pseudoconvex if sD(z)→ 1
as z → ∂D. Mahajan and Verma [39] showed that if D is a smoothly bounded convex domain or
if D is a smoothly bounded h-extendible domain (i.e., D is a smoothly bounded pseudoconvex
finite type domain for which the Catlin and D’Angelo multitypes coincide at every boundary
point), then D is strongly pseudoconvex if either hD(z)→ 0 or sD(z)→ 1 as z → ∂D.

3.1 Regularity of the volume elements

In this section, we prove continuity of the volume elements that will be required in computing
the boundary asymptotics. The arguments are similar to the case of the Carathéodory-Reiffen
and Kobayashi-Royden pseudometrics and we present them only for convenience. First, a few
remarks. If D ⊂ Cn is any domain and p ∈ D, then cD(p) is attained. Indeed, choose a
sequence ψj ∈ O(D,Bn) such that ψj(p) = 0 and | det(ψj)′(p)|2 → cD(p). By Montel’s theorem,
passing to a subsequence if necessary, ψj converges uniformly on compact subsets of D to a map
ψ ∈ O(D,Bn). Since ψ(p) = 0, by the maximum principle ψ ∈ O(D,Bn), and it follows that
cD(p) = |detψ′(p)|2. In particular, this implies that cD(p) is always finite. Note that cD(p) can
vanish (for example if D = C), but is strictly positive if D is not a Liouville domain. Likewise, if
D is taut then similar arguments as above shows that kD(p) is attained. Observe that kD(p) is
finite for any domain D because we can put a ball B(p, r) inside D and consequently φ(t) = rt+p
is a competitor for kD(p), giving us kD(p) ≤ r−2n. It is possible that kD(p) can also vanish but
if D is bounded, then by invoking Cauchy’s estimates we see that kD(p) > 0. Similarly, if D is
taut, then also kD(p) > 0 as it is attained. We will call a map ψ ∈ O(D,Bn) satisfying ψ(p) = 0
and |detψ′(p)|2 = cD(p) a Carathéodory extremal map for D at p. Similarly, a Kobayashi
extremal map for D at p is a map ψ ∈ O(Bn, D) with ψ(0) = p and |detψ′(0)|−2 = kD(p).

Proposition 3.1.1. Let D ⊂ Cn be a domain. Then cD is continuous. If D is taut, then kD is
also continuous.

Proof. We will show that cD is locally Lipschitz which of course implies that cD is continuous.
Let B(a, 2r) ⊂⊂ D and fix p, q ∈ B(a, r). Choose a Carathéodory extremal map ψ for D at p.
Then

cD(p)− cD(q) ≤
∣∣ detψ′(p)

∣∣2 − ∣∣detψ′(q)
∣∣2cBn(ψ(q)

)
=
∣∣ detψ′(p)

∣∣2 − ∣∣detψ′(q)
∣∣2(

1− |ψ(q)|2
)n+1 ≤

∣∣ detψ′(p)
∣∣2 − ∣∣detψ′(q)

∣∣2.
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Since the distances of p and q to ∂D is at least r, by Cauchy’s estimates the right hand side
is bounded above by Cr|p − q| where Cr is a constant that depends only on r. Thus we can
interchange the role of p and q to have |cD(p)−cD(q)| ≤ Cr|p−q| that establishes local Lipschitz
property of cD.

For kD, first we show that it is upper semicontinuous for any domain D. Let p ∈ D and
ε > 0. Then there exists φ ∈ O(Bn, D) with φ(0) = p such that

|detφ′(0)|−2 < kD(p) + ε. (3.1)

Let 0 < r < 1 and set for z ∈ D,

fz(t) = φ
(
(1− r)t

)
+ (z − p), t ∈ Bn.

Since φ
(
B(0, 1−r)

)
is a relatively compact subset of D, there exists δ > 0 such that if z ∈ B(p, δ),

then fz ∈ O(Bn, D). Also fz(0) = z and so fz is a competitor for kD(z). Therefore,

kD(z) ≤
∣∣ det(fz)′(0)

∣∣−2
= (1− r)−2n

∣∣detφ′(0)
∣∣−2

.

Letting r → 0+ and using (3.1), we obtain that

kD(z) < kD(p) + ε

for all z ∈ B(p, δ) which proves the upper semicontinuity of kD.
Next we assume that D is taut and show that kD is lower semicontinuous. Let p ∈ D. If

possible, assume that kD is not lower semicontinuous at p. Then kD(p) > 0 and there exist
ε > 0, a sequence pj → p, such that

kD(pj) < kD(p)− ε.

Since D is taut, there are Kobayashi extremal maps gj for D at pj . Again by tautness and the
fact that gj(0) = pj → p ∈ D, passing to a subsequence, gj converges uniformly on compact
subsets of Bn to a map g ∈ O(Bn, D). Therefore,

kD(pj) =
∣∣det(gj)′(0)

∣∣−2 →
∣∣det g′(0)

∣∣−2
.

But g is a competitor for kD(p) and so kD(p) ≤ |det g′(0)|−2. Thus we have

kD(p) ≤ kD(p)− ε

which is a contradiction. This proves the lower semicontinuity of kD and thus kD is continuous
if D is taut.

3.2 Localization of the Kobayashi-Eisenman volume element

In the process of studying the boundary behavior of any object, its localization plays an impor-
tant role. In this section, we list one such result for the Kobayashi-Eisenman volume element,
which says: the Kobayashi-Eisenman volume element can be localized near a holomorphic peak
point of a bounded domain in Cn. We can actually replace the hypothesis “ bounded domain”
by “ hyperbolic domain” and still get the desired localization.
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Definition 3.2.1. Let z, w be two points in a domain D, and dK denote the Kobayashi distance
on Bn. Then

lD(z, w) := inf
{
dK(a, b) : there exists f ∈ O(Bn, D) such that f(a) = z, f(b) = w

}
.

Using the homogeneity of Bn, lD can be rewritten as

lD(z, w) = inf
{
dK(0, r1) : r ≥ 0, and there exists f ∈ O(Bn, D) such that f(0) = z, f(r1) = w

}
,

where r1 denotes the point (r, 0′) ∈ Bn.

Definition 3.2.2. Let D1 ⊂ D and z ∈ D1. Then

lD\D1
(z) := inf

{
lD(z, w) : w ∈ D \D1

}
.

Lemma 3.2.3. Let D be any bounded domain in Cn and D1 ⊂ D be any non-empty subdomain.
Then,

kD1(z0) ≤
(
coth lD\D1

(z0)
)2n

kD(z0)

for any z0 ∈ D1.

Proof. First, observe that lD\D1
(z0) > 0 since D is bounded and hence a hyperbolic domain.

Secondly, since coth dK(0, r1) = 1/r for 0 < r < 1, and coth is a decreasing function, we may
write

coth lD(z, w) = sup
{

1/r > 1 : there exists f ∈ O(Bn, D) such that f(0) = z, f(r1) = w
}
,

for z, w ∈ D, z 6= w. Similarly,

coth lD\D1
(z0) = sup

{
1/r : there exists f ∈ O(Bn, D) such that f(0) = z0, f(r1) = w ∈ D\D1

}
.

Now, let ψ ∈ O(Bn, D) be an arbitrary map with ψ(0) = z0. Moreover, choose an s > 0 with
1/s > coth lD\D1

(z0). Then clearly 0 < s < 1 and we claim that every f ∈ O(Bn, D) with
f(0) = z0 maps B(0, s) into D1. If possible, assume this is not true. Then there would exist
g ∈ O(Bn, D), w ∈ D \D1 such that g(0) = z0 and g(s1) = w. This immediately implies that
coth lD\D1

(z0) > 1/s, which is a contradiction and hence our claim is proved. Now if we put

ψ̃(z) := ψ(sz), z ∈ Bn, then ψ̃ ∈ O(Bn, D1) with ψ̃(0) = z0 and

1

|det ψ̃′(0)|2
=

(
1

s

)2n 1

| detψ′(0)|2
.

Since s is arbitrary, by letting s→ 1/ coth lD\D1
(z0) in the above equation and by the property

of infimum, the conclusion of the lemma follows.

Theorem 3.2.4. Let D ⊂ Cn be a bounded domain with a holomorphic peak point p0 ∈ ∂D.
Then for any neighborhood U of p0,

lim
z→p0

kD(z)

kU∩D(z)
= 1.
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Proof. By Lemma 3.2.3, we have

kU∩D(z) ≤
(
coth lD\(U∩D)(z)

)2n
kD(z) (3.2)

for every z ∈ U ∩D. Similar arguments in the proof of Theorem 19.3.2 in [31], using the fact
that p0 is a holomorphic peak point for D, implies

lD\(U∩D)(z)→ +∞ as z → p0.

Therefore letting z → p0 in (3.2) we obtain

lim sup
z→p0

kU∩D(z)

kD(z)
≤ 1.

Again, the monotonicity property of the volume elements imply

kD(z) ≤ kU∩D(z).

Therefore, our result follows from the last two inequalities.

3.3 Detecting strong pseudoconvexity

A convex domain D ⊂ Cn is called C-properly convex if it does not contain any affine complex
line. Let Xn denote the set of all C-properly convex domains endowed with the local Hausdorff
topology. Consider the space

Xn,0 =
{

(D, p) : D ∈ Xn, p ∈ D
}
⊂ Xn × Cn

endowed with the subspace topology. It was shown in [2] that a convex domain in Cn is complete
hyperbolic if and only if it is C-properly convex. In particular, C-properly convex domains are
taut and hence the quotient invariant on such domains are well-defined. Thus we have a function
q : Xn,0 → R defined by

q(D, p) = qD(p).

Recall that a function f : Xn,0 → R is called intrinsic (see [50]) if f(D, p) = f(D′, p′) whenever
there exits a biholomorphism F : D → D′ with F (p) = p′. Thus the function q is intrinsic. The
following theorem was proved by Zimmer:

Theorem 3.3.1 ([52]). Let f : Xn,0 → R be an upper semicontinuous intrinsic function with the
following property: if D ∈ Xn and f(D, p) ≥ f(Bn, 0) for all p ∈ D, then D is biholomorphic to
Bn. Then for any α > 0, there exists some ε = ε(n, f, α) > 0 such that: if D ⊂ Cn is a bounded
convex domain with C2,α boundary and

f(D, p) ≥ f(Bn, 0)− ε

outside some compact subset of D, then D is strongly pseudoconvex.

Observe that if D ⊂ Cn is any domain and if qD(p) ≥ 1 for some point p ∈ D, then qD(p) = 1
and so D must be biholomorphic to Bn. Thus, to prove Theorem 1.0.1, we only need to show
that the function q : Xn,0 → R is upper semicontinuous.
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Lemma 3.3.2. Suppose (Dj , pj) → (D∞, p). If f j : Bn → Dj, f j(0) = pj, then passing to a
subsequence, f j converges uniformly on compact subsets of Bn to a holomorphic function f on
Bn.

This is precisely Lemma 4.2 of [50] with ∆ replaced by Bn and since the proof is exactly the
same we do not repeat it.

Proposition 3.3.3. The function q : Xn,0 → R is upper semicontinuous.

Proof. Let (Dj , aj) → (D∞, a) in Xn,0. We prove the upper semicontinuity of q in two steps,
first showing

kD∞(a) ≤ lim inf
j→∞

kDj (a
j), (3.3)

and then showing

lim sup
j→∞

cDj (a
j) ≤ cD∞(a) (3.4)

in the next steps.
Step 1. Fix ε > 0 arbitrarily small. Then there exist φj ∈ O(Bn, Dj) such that φj(0) = aj

and ∣∣ det(φj)′(0)
∣∣−2

< kDj (a
j) + ε. (3.5)

By Lemma 3.3.2, φj admits a subsequence which we denote by φj itself, and which converges
uniformly on compact subsets of Bn to a map φ ∈ O(Bn, D∞). Then from (3.5),∣∣ detφ′(0)

∣∣−2 ≤ lim inf
j→∞

kDj (a
j) + ε.

But φ is a competitor for kD∞(a) and ε is arbitrary, hence (3.3) follows.
Step 2. Since the Carathéodory volume element is always attained, let us consider ψj as

Carathéodory extremal maps for Dj at aj , i.e., ψj ∈ O(Dj ,Bn), ψj(aj) = 0, and

cDj (a
j) =

∣∣det(ψj)′(aj)
∣∣2. (3.6)

Since the target of these extremal maps is Bn, passing to a subsequence if necessary, ψj converges
uniformly on compact subsets of D∞ to a holomorphic map ψ : D∞ → Bn, and since ψ(a) = 0,
we must have ψ ∈ O(D∞,Bn). Now, taking limit in equation (3.6), one obtains

lim sup
j→∞

cDj (a
j) =

∣∣ detψ′(a)
∣∣2.

Since ψ is a candidate function for cD∞(a), (3.4) follows from the above identity by the property
of supremum.

Combining Step 1 and Step 2, the upper semicontinuity of q is established.

Thus, we have shown that q satisfies the hypothesis of Theorem 3.3.1 and this completes the
proof of Theorem 1.0.1.



Chapter 4

Boundary behavior of the volume
elements

Our main purpose here is to study the boundary asymptotics of the Kobayashi volume element
on smoothly bounded convex finite type domains and Levi corank one domains in Cn. Boundary
behavior of the quotient invariant on strongly pseudoconvex domains had been studied by several
authors, see for example [9, 25, 38], and in particular it is known that qD(z) → 1 if z → ∂D
for a strongly pseudoconvex domain D. Recently in [41], nontangential boundary asymptotics
of the volume elements near h-extendible boundary points were obtained. Finally, we also note
that in [42], a relation between the Carathéodory volume element and the Bergman kernel was
observed in light of the multidimensional Suita conjecture. Our goal is to compute the boundary
asymptotics of the Kobayashi volume element in terms of the distinguished polydiscs of McNeal
and Catlin devised to capture the geometry of a domain near a convex finite type and Levi
corank one boundary point respectively.

One of the most convenient tools to compute boundary asymptotics of holomorphic invariants
is the scaling method. Roughly speaking, the process of scaling magnifies a small neighborhood
of that boundary point via a sequence of biholomorphisms and obtains a sequence of domains
which are the images of the biholomorphisms of that small neighborhood. These sequence
of domains are generally called the scaled domains. Now, studying the behavior of the volume
elements near the specific boundary point of our given domain amounts to studying those objects
in the interior of the obtained scaled domains. Since interior problems are much more easier to
handle than the boundary problems in general, scaling becomes a handy tool. We will present
two different scaling methods, one on convex finite type domains and another on Levi corank
one domains, in subsequent sections of this chapter.

4.1 Convex finite type case

In the hypothesis of Theorem 1.0.2, we are given a smoothly bounded convex finite type domain
D = {ρ < 0} with a sequence pj ∈ D converging to p0 ∈ ∂D. Without loss of generality
assume that p0 = 0. The numbers εj are defined by εj = −ρ(pj). Recall the construction of the

translation T p
j ,εj and the unitary transformation Up

j ,εj from Chapter 1. The maps Up
j ,εj ◦T pj ,εj

satisfy

Up
j ,εj ◦ T pj ,εj (pj) = 0.

21
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4.1.1 Scaling

Consider the dilations

Λp
j ,εj (z) =

(
z1

τ1(pj , εj)
, . . . ,

zn
τn(pj , εj)

)
.

The scaling maps are the compositions Sj = Λp
j ,εj ◦ Upj ,εj ◦ T pj ,εj and the scaled domains are

Dj = Sj(D). Note that Dj is convex and Sj(pj) = 0 ∈ Dj , for each j. It was shown in [20]
that the defining functions ρj = 1

εj
ρ ◦ (Sj)−1 for Dj , after possibly passing to a subsequence,

converge uniformly on compact subsets of Cn to

ρ∞(z) = −1 + Re
n∑

α=1

bαzα + P2m(′z),

where bα are complex numbers and P2m is a real convex polynomial of degree less than or equal
to 2m. This implies that after passing to a subsequence if necessary, the domains Dj converge
in the local Hausdorff sense to the limiting domain D∞ = {ρ∞ < 0}. It is known that D∞
possesses a local holomorphic peak function at every boundary point including the point at
infinity and hence is complete hyperbolic (see [21]).

4.1.2 Stability of the volume elements

Lemma 4.1.1. Let φj ∈ O(Bn, Dj) and φj(0) = aj → a ∈ D∞. Then φj admits a subsequence
that converges uniformly on compact subsets of Bn to a map φ ∈ O(Bn, D∞).

Proof. By the arguments in the proof of Lemma 3.1 in [20], observe that the family φj is
normal. Also, φj(0) = aj → a. Hence, the sequence φj admits a subsequence, which we denote
by φj itself, and which converges uniformly on compact subsets of Bn to a holomorphic map
φ : Bn → Cn. We will now show that φ ∈ O(Bn, D∞).

Let 0 < r < 1. Then φj converges uniformly on B(0, r) to φ, and so the sets φj(B(0, r)) ⊂ K
for some fixed compact set K and for all large j. Since ρj(φj(t)) < 0 for t ∈ B(0, r) and for all
j, we have ρ∞(φ(t)) ≤ 0, or equivalently φ(B(0, r)) ⊂ D∞. Since r ∈ (0, 1) is arbitrary, we have
φ(Bn) ⊂ D∞. Since φ(0) = a ∈ D∞, and D∞ possesses a local holomorphic peak function at
every boundary point, the maximum principle implies that φ(Bn) ⊂ D∞.

Proposition 4.1.2. For any a ∈ D∞,

lim
j→∞

kDj (a) = kD∞(a).

Moreover, this convergence is uniform on compact subsets of D∞.

Proof. Assume that kDj does not converge to kD∞ uniformly on some compact subset S ⊂ D∞.
Then there exist ε0 > 0, a subsequence of kDj which we denote by kDj itself, and a sequence
aj ∈ S satisfying ∣∣kDj (aj)− kD∞(aj)

∣∣ > ε0

for all large j. Since S is compact, after passing to a subsequence if necessary, aj → a ∈ S. Since
D∞ is complete hyperbolic, and hence taut, kD∞ is continuous by Proposition 3.1.1. Hence for
all large j, we have ∣∣kD∞(aj)− kD∞(a)

∣∣ ≤ ε0
2
.
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Combining the above two inequalities we have∣∣kDj (aj)− kD∞(a)
∣∣ > ε0

2
(4.1)

for all large j. We will deduce a contradiction in the following two steps:
Step 1. Since D∞ is taut, we have 0 < kD∞(a) <∞ and there exists a Kobayashi extremal

map ψ for D∞ at a. Fix 0 < r < 1 and define the holomorphic maps ψj : Bn → Cn by

ψj(t) = ψ
(
(1− r)t

)
+ (aj − a).

Since the image ψ
(
B(0, 1− r)

)
is compactly contained in D∞ and aj → a as j →∞, it follows

that ψj ∈ O(Bn, Dj) for all large j. Also, ψj(0) = ψ(0)+aj−a = aj and thus ψj is a competitor
for kDj (a

j). Therefore,

kDj (a
j) ≤

∣∣ det(ψj)′(0)
∣∣−2

= (1− r)−2n
∣∣ detψ′(0)

∣∣−2
.

Letting r → 0+, we get
lim sup
j→∞

kDj (a
j) ≤ kD∞(a).

Step 2. Fix ε > 0 arbitrarily small. Then there exist φj ∈ O(Bn, Dj) such that φj(0) = aj

and ∣∣ det(φj)′(0)
∣∣−2

< kDj (a
j) + ε. (4.2)

By Lemma 4.1.1, φj admits a subsequence which we denote by φj itself, and which converges
uniformly on compact subsets of Bn to a map φ ∈ O(Bn, D∞). Then from (4.2)∣∣detφ′(0)

∣∣−2 ≤ lim inf
j→∞

kDj (a
j) + ε

But φ is a competitor for kD∞(a) and ε is arbitrary. So we obtain

kD∞(a) ≤ lim inf
j→∞

kDj (a
j)

as required.
By Step 1 and Step 2, we have limj→∞ kDj (a

j) = kD∞(a) which contradicts (4.1) and thus
the proposition is proved.

We believe that the analog of the above stability result holds for the Carathéodory volume
element also, but we do not have a proof. However, we do have the following:

Proposition 4.1.3. For aj ∈ Dj converging to a ∈ D∞,

lim sup
j→∞

cDj (a
j) ≤ cD∞(a).

Proof. If possible, assume that this is not true. Then there exists a subsequence of cDj (a
j)

which we denote by cDj (a
j) itself, and an ε > 0, such that

cDj (a
j) > cD∞(a) + ε for all j ≥ 1.

Let ψj be a Carathéodory extremal map for Dj at aj . Since the target of these maps is Bn,
passing to a subsequence if necessary, ψj converges uniformly on compact subsets of D∞ to a
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holomorphic map ψ : D∞ → Bn, and since ψ(a) = 0 we must have ψ ∈ O(D∞,Bn). Now, the
above inequality implies that this limit map satisfies∣∣ detψ′(a)

∣∣2 ≥ cD∞(a) + ε.

On the other hand, as ψ is a candidate for cD∞(a), we also have

cD∞(a) ≥
∣∣ detψ′(a)

∣∣2.
Combining the last two inequalities, we obtain

cD∞(a) ≥ cD∞(a) + ε

which is a contradiction.

4.1.3 Boundary asymptotics on convex finite type domains

Proof of Theorem 1.0.2. By the transformation rule

kD(pj) =
∣∣ det(Λp

j ,εjUp
j ,εjT p

j ,εj )′(pj)
∣∣2kDj (0).

Since |det(Λp
j ,εj )′(0)|2 =

∏n
α=1 τα(pj , εj)

−2 we get

kD(pj)

n∏
α=1

τα(pj , εj)
2 = kDj (0).

Recall that the domains Dj converge in the local Hausdorff sense to D∞ up to a subsequence
and hence in view of Proposition 4.1.2, a limit of the right hand side is kD∞(0). This completes
the proof of the theorem.

Remark 4.1.4. The exact asymptotics as given in Theorem 1.0.2 can be derived near p0 ∈ ∂D
when D, instead of being a smoothly bounded convex finite type domain, is given to have a
smooth convex finite type boundary point p0 locally. In this case, McNeal’s orthogonal coordi-
nate system zp,ε1 , . . . , zp,εn can be defined on U ∩D for a sufficiently small neighborhood U of p0

(see [20]), and then the scaling is applied to U ∩ D. Next, the arguments in the above proof
provides asymptotics for U ∩D, and finally, using the localization result as in Theorem 3.2.4 we
obtain the boundary asymptotics for D.

4.2 Levi corank one case

4.2.1 Change of coordinates

Let D = {ρ < 0} be a smoothly bounded Levi corank one domain and p0 ∈ ∂D. We may assume
that the Levi form of ρ at p0 has exactly n − 2 positive eigenvalues. We recall the definition
of the change of coordinates Φp that transform ρ into the normal form (1.2). The maps Φp are
actually holomorphic polynomial automorphisms defined as Φp = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1 where
φi are described below. Since the volume elements are invariant under unitary rotations, we



4.2. LEVI CORANK ONE CASE 25

assume without loss of generality that ∂ρ/∂zn(p0) 6= 0. Then there is a neighborhood U of p0

such that (∂ρ/∂zn)(p) 6= 0 for all p ∈ U . Thus,

ν =

(
∂ρ

∂z1
, . . . ,

∂ρ

∂zn

)
is a nonvanishing vector field on U . Note that the vector fields

Ln =
∂

∂zn
, Lα =

∂

∂zα
− bα

∂

∂zn
, 1 ≤ α ≤ n− 1,

where bα = ∂ρ
∂zα

/ ∂ρ
∂zn

, form a basis of T 1,0(U). Moreover, for 1 ≤ α ≤ n− 1, Lαρ ≡ 0 and so Lα
is a complex tangent vector field to ∂D ∩ U . Shrinking U if necessary, we also assume that[

∂∂ρ(Lα, Lβ)
]
2≤α,β≤n−1

has all its eigenvalues positive at each p ∈ U .

(i) The map φ1 is defined by

φ1(z) =

(
z1 − p1, . . . , zn−1 − pn−1,

〈
z − p, ν(p)

〉)
and it normalises the linear part of the Taylor series expansion of ρ at p. In the new
coordinates which we denote by z itself, ρ takes the form

ρ ◦ φ−1
1 (z) = ρ(p) + 2 Re zn +O(|z|2).

(ii) Now

A =
[

∂2ρ
∂zα∂zβ

(p)
]

2≤α,β≤n−1

is a Hermitian matrix and there is a unitary matrix P =
[
Pjk
]
2≤j,k≤n−1

such that P ∗AP =

D, where D is a diagonal matrix whose entries are the positive eigenvalues of A. Writing
z̃ = (z2, . . . zn−1), the map w = φ2(z) is defined by

w1 = z1, wn = zn, w̃ = P T z̃.

Then

n−1∑
α,β=2

∂2ρ

∂zα∂zβ
(p)zαzβ = z̃TAz̃ = (Pw̃)TA(Pw̃) = w̃TDw̃ =

n−1∑
α=2

λα|wα|2,

where λα > 0 is the α-th entry of D. Thus, denoting the new coordinates w by z again,

ρ ◦ φ−1
1 ◦ φ

−1
2 (z) = ρ(p) + 2 Re zn +

n−1∑
α=2

λα|zα|2 +O(|z|2)

where O(|z|2) consists of only the non-Hermitian quadratic terms and all other higher order
terms.
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(iii) The map w = φ3(z) is defined by w1 = z1, wn = zn, and wj = λ
1/2
j zj for 2 ≤ j ≤ n− 1. In

the new coordinates, still denoted by z,

ρ ◦ φ−1
1 ◦ φ

−1
2 ◦ φ

−1
3 (z) = ρ(p) + 2 Re zn +

n−1∑
α=2

m∑
j=1

2 Re
(
(aαj z

j
1 + bαj z

j
1)zα

)
+ 2 Re

n−1∑
α=2

cαz
2
α +

∑
2≤j+k≤2m

ajkz
j
1z
k
1 +

n−1∑
α=2

|zα|2 +
n−1∑
α=2

∑
j+k≤m
j,k>0

2 Re
(
bαjkz

j
1z
k
1zα
)

+O
(
|zn||z|+ |z∗|2|z|+ |z∗||z1|m+1 + |z1|2m+1

)
(4.3)

where z∗ = (0, z2, . . . , zn−1, 0).

(iv) Next, the pure terms in (4.3), i.e., z2
α, zk1 , zk1, as well as zk1zα, zk1zα terms are removed by

absorbing them into the normal variable zn in terms of the change of coordinates t = φ4(z)
which is defined by

zj = tj , 1 ≤ j ≤ n− 1,

zn = tn − Q̂1(t1, . . . , tn−1),

where

Q̂1(t1, . . . , tn−1) =
2m∑
k=2

ak0t
k
1 −

n−1∑
α=2

m∑
k=1

aαk tαt
k
1 −

n−1∑
α=2

cαt
2
α.

(v) In the final step, the terms of the form t
j
1tα are removed by applying the transformation

ζ = φ5(t) given by

t1 = ζ1, tn = ζn,

tα = ζα −Qα2 (ζ1), 2 ≤ α ≤ n− 1,

where Qα2 (ζ1) =
∑m

k=1 b
α
k ζ

k
1 . In these coordinates, ρ takes the normal form (1.2).

It is evident from the definition of Φp that Φp(p) = 0,

Φp(p1, . . . , pn−1, pn − ε) =

(
0, . . . , 0,−ε ∂ρ

∂zn
(p)

)
,

and

det(Φp)′(p) =
∂ρ

∂zn
(p)(λ2 · · ·λn−1)1/2, (4.4)

where λ2, . . . , λn−1 are the positive eigenvalues of[
∂2ρ

∂zα∂zβ
(p)
]

2≤α,β≤n−1
.
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4.2.2 Scaling

Suppose p0 = 0 and ρ is in the normal form (1.2) for p = p0; in particular, ν(p0) = (′0, 1). Let
pj ∈ D be a sequence converging to p0. The points p̃j ∈ ∂D are chosen so that p̃j = pj + (′0, δj)
for some δj > 0. Then δj ≈ δD(pj), where δD(p) = d(p, ∂D) is the distance of p to the boundary

of D. The polynomial automorphisms Φp̃j of Cn as described above satisfy Φp̃j (p̃j) = (′0, 0) and

Φp̃j (pj) =
(′0,−δjd0(p̃j)

)
,

where d0(p̃j) = ∂ρ/∂zn(p̃j)→ 1 as j →∞.

Define a dilation of coordinates by

∆p̃j ,δj (z1, z2, . . . , zn) =

(
z1

τ(p̃j , δj)
,
z2

δ
1/2
j

, . . . ,
zn−1

δ
1/2
j

,
zn
δj

)
.

The scaling maps are Sj = ∆p̃j ,δj ◦ Φp̃j and the scaled domains are Dj = Sj(D). Note that Dj

contains Sj(pj) =
(′0,−d0(p̃j)

)
which we will denote by bj and which converges to b = (′0,−1).

From (1.2), the defining function ρj = 1
δj
ρ ◦ (Sj)−1 for Dj has the form

ρj(z) = 2 Re zn + P j(z1, z1) +

n∑
α=2

|zα|2 +

n−1∑
α=2

Re
(
Qjα(z1, z1)zα

)
+O(τ j1 ),

where τ j1 = τ1(p̃j , δj),

P j(z1, z1) =
∑

µ+ν≤2m
µ,ν>0

aµν(p̃j)δ−1
j (τ j1 )µ+νzµ1 z

ν
1 ,

and

Qjα(z1, z1) =
∑

µ+ν≤m
µ,ν>0

bαµν(p̃j)δ
−1/2
j (τ j1 )µ+νzµ1 z

ν
1 .

By (1.3) and the definition of τ1, the coefficients of P j and Qjα are bounded by 1. By Lemma 3.7
in [46], it follows that the defining functions ρj , after possibly passing to a subsequence, converge
together with all derivatives uniformly on compact subsets of Cn to

ρ∞(z) = 2 Re zn + P2m(z1, z1) +
n−1∑
α=2

|zα|2,

where P2m(z1, z1) is a polynomial of degree at most 2m without harmonic terms. This implies
that the corresponding domains Dj converge in the local Hausdorff sense to D∞ = {ρ∞ < 0}.
Note that since D∞ is a smooth limit of pseudoconvex domains, it is pseudoconvex and hence
P2m is subharmonic. By Proposition 4.5 of [49] and the remark at the end of page 605 of the
same article, D∞ possesses a local holomorphic peak function at every boundary point. By
Lemma 1 of [3], there is a local holomorphic peak function for D∞ at the point at infinity also.
It follows that D∞ is complete hyperbolic (see [21]).
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4.2.3 Stability of the volume elements

Lemma 4.2.1. Let φj ∈ O(Bn, Dj) and φj(0) = aj → a ∈ D∞. Then φj admits a subsequence
that converges uniformly on compact subsets of Bn to a map φ ∈ O(Bn, D∞).

Proof. We first claim that the sequence qj := (Sj)−1(aj) ∈ D converges to p0 ∈ ∂D, where
p0 = 0 is the base point for scaling. Choose a relatively compact neighborhood K of a in D∞.
Since aj → a ∈ D∞, aj ∈ K for all large j. Now choose a constant C > 1 large enough, so that
K is compactly contained in the polydisc

∆(0, C1/2m)×∆(0, C1/2) · · ·∆(0, C1/2)×∆(0, C).

From (1.5), we have τ1(p̃j , Cδj) ≥ C1/2mτ1(p̃j , δj). Moreover, by definition,

τα(p̃j , Cδj) = (Cδj)
1/2 = C1/2τα(p̃j , δj)

for α = 2, . . . , n− 1, and
τn(p̃j , Cδj) = Cδj = Cτn(p̃j , δj).

As a consequence, the above polydisc is contained in

n∏
α=1

∆

(
0,
τα(p̃j , Cδj)

τα(p̃j , δj)

)
.

The pull back of this polydisc by Sj = ∆p̃j ,δj ◦ Φp̃j is precisely Q(p̃j , Cδj). Thus,

qj ∈ Q(p̃j , Cδj)

for all large j. Since p̃j → p0 and δj → 0 as j → ∞, it follows that qj → p0 establishing our
claim.

Now we prove that the family φj is normal. Consider the sequence of maps

f j = (Sj)−1 ◦ φj : Bn → D.

Note that f j(0) = qj → p0. It is shown in [46] that (see page 156 in the proof of Theorem 3.11)
for every 0 < r < 1, there exists a constant Cr ≥ 1 depending only on r such that

f j
(
B(0, r)

)
⊂ Q

(
qj , Crε(q

j)
)
, (4.5)

where ε(qj) = |ρ(qj)|. Let U be a neighborhood of p0 = 0 in Cn as defined earlier. One can
show that (see page 149 in [46]) there exist constants 0 ≤ α ≤ 1 and C1, C2 ≥ 1 such that for
η, η′ ∈ U and ε ∈ (0, α] the following estimates hold for η ∈ Q(η′, ε):

ρ(η) ≤ ρ(η′) + C1ε, (4.6)

Q(η, ε) ⊂ Q(η′, C2ε) and Q(η′, ε) ⊂ Q(η, C2ε). (4.7)

Since δj → 0, passing to a subsequence we may assume

Q(p̃j , Cδj) ⊂ U and CC1C2Crδj ≤ α
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for each j. Now, since qj ∈ Q(p̃j , Cδj) and Cδj ∈ (0, α], we have by (4.6)

ρ(qj) ≤ ρ(p̃j) + CC1δj = CC1δj .

Using the above inequality in (4.5), one obtains

f j
(
B(0, r)

)
⊂ Q

(
qj , CC1Crδj

)
. (4.8)

Moreover using the fact that qj ∈ Q(p̃j , Cδj) ⊂ Q(p̃j , CC1Crδj) and CC1Crδj ∈ (0, α], we obtain
from (4.7) that

Q
(
qj , CC1Crδj

)
⊂ Q

(
p̃j , CC1C2Crδj

)
. (4.9)

Using (4.8) and (4.9), and denoting Kr := CC1C2Cr, we conclude

f j
(
B(0, r)

)
⊂ Q

(
p̃j ,Krδj

)
for all large j. This implies that

φj
(
B(0, r)

)
⊂

n∏
α=1

∆

(
0,
τα(p̃j ,Krδj)

τα(p̃j , δj)

)

for all large j. Again from (1.5), τ1(p̃j ,Krδj) ≤ K
1/2
r τ1(p̃j , δj). Together with this, using the

definition of τα for α = 2, . . . , n, we see that the above polydisc is contained in

∆
(
0,K1/2

r

)
× · · · ×∆

(
0,K1/2

r

)
×∆

(
0,Kr

)
.

Using a diagonal argument, it now follows that the family φj is normal.

Now, since φj(0) = aj → a ∈ D∞, φj admits a subsequence which we denote by φj itself and
which converges uniformly on compact subsets of Bn to a holomorphic mapping φ : Bn → Cn.
Since D∞ possesses a local holomorphic peak function at every boundary point, arguments
similar to Lemma 4.1.1 now implies that φ(Bn) ⊂ D∞.

With this lemma, the proof of the following proposition is exactly similar to that of Propo-
sition 4.1.2 and so we do not repeat the arguments.

Proposition 4.2.2. For any a ∈ D∞,

lim
j→∞

kDj (a) = kD∞(a).

Moreover, this convergence is uniform on compact subsets of D∞.

Similarly, the proof of Proposition 4.1.3 also gives

Proposition 4.2.3. For aj ∈ Dj converging to a ∈ D∞,

lim sup
j→∞

cDj (a
j) ≤ cD∞(a).



30 CHAPTER 4. BOUNDARY BEHAVIOR OF THE VOLUME ELEMENTS

4.2.4 Boundary asymptotics on Levi corank one domains

Proof of Theorem 1.0.3. Recall that we are in the case when p0 = 0 and ρ is in the normal form
for p = p0. Therefore, Φp0 = I, the identity map. Observe that by the transformation rule

kD(pj) =
∣∣det

(
Sj
)′

(pj)
∣∣2kDj (bj),

where Sj = ∆p̃j ,δj ◦ Φp̃j are the scaling maps. Since∣∣∣det(∆p̃j ,δj )′
(
Φp̃j (pj)

)∣∣∣2 =
n∏

α=1

τα(p̃j , δj)
−2,

we get

kD(pj)

n∏
α=1

τα(p̃j , δj)
2 =

∣∣det(Φp̃j )′(pj)
∣∣2kDj (bj). (4.10)

Now | det(Φp̃j )′(pj)| → |det
(
Φp0
)′

(p0)| = 1, and recall that after possibly passing to a subse-
quence, the domains Dj converge in the local Hausdorff sense to D∞. Hence by Propostion 4.2.2,
the right hand side of (4.10) has kD∞(b) as a limit, proving the theorem in the current situation.

For the general case, assume that (∂ρ/∂zn)(p0) 6= 0 and make an initial change of coordinates
w = T (z) = Φp0(z). Let Ω = T (D), q0 = T (p0) = 0, and qj = T (pj). Then

kD(pj) =
∣∣detT ′(pj)

∣∣2kΩ(qj). (4.11)

To emphasize the dependence of Φp, τ , and τα on D = {ρ < 0}, we will write them now as Φp
ρ,

τρ and τα,ρ respectively. Note that the defining function r = ρ ◦T−1 for Ω is in the normal form

at q0 = 0. Choose ηj such that q̃j = (qj1, . . . , q
j
n−1, q

j
n + ηj) ∈ ∂Ω. Then by the previous case

kΩ(qj)

n∏
α=1

τα,r(q̃
j , ηj)

2 → kD∞(b) (4.12)

up to a subsequence. Since δΩ ◦ T is a defining function for D, we have δΩ ◦ T ≈ δD and hence
δj ≈ δD(pj) ≈ δΩ(qj) ≈ ηj . Also, by (3.3) of [46],

ρ ◦ (Φpj

ρ )−1 = r ◦ (Φqj

r )−1.

It follows from (2.9) of [10] that τρ(p̃
j , δj) ≈ τr(q̃j , ηj). Hence, after passing to a subsequence if

necessary,
n∏

α=1

τα,ρ(p̃
j , δj)

τα,r(q̃j , ηj)
→ c0 (4.13)

for some c0 > 0 that depends only on ρ. Also,

∣∣ detT ′(pj)
∣∣→ ∣∣ detT ′(p0)

∣∣ =

∣∣∣∣ ∂ρ∂zn (p0)

∣∣∣∣ n−1∏
α=2

λ1/2
α , (4.14)

by (4.4), where λα’s are the positive eigenvalues of[
∂2ρ

∂zα∂zβ
(p0)

]
2≤α,β≤n−1

.
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Hence it follows from equations (4.11) to (4.14) that

kD(pj)
n∏

α=1

τα,ρ(p̃
j , δj)

2 → c2
0

∣∣∣∣ ∂ρ∂zn (p0)

∣∣∣∣2
(
n−1∏
α=2

λα

)
kD∞(b)

up to a subsequence. This completes the proof of the theorem.
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Chapter 5

The Kobayashi–Fuks metric

For a bounded domain D ⊂ Cn the space

A2(D) =

{
f : D → C holomorphic and ‖f‖2D :=

ˆ
D
|f |2 dV <∞

}
where dV is the Lebesgue measure on Cn is a closed subspace of L2(D) and is a reproducing kernel
Hilbert space. The associated reproducing kernel denoted by KD(z, w) is uniquely determined
by the following properties: KD(·, w) ∈ A2(D) for each w ∈ D, it is anti-symmetric, i.e.,
KD(z, w) = KD(w, z), and it reproduces A2(D):

f(w) =

ˆ
D
f(z)KD(z, w) dV (z), f ∈ A2(D).

It also follows that for any complete orthonormal basis {φk} of A2(D),

KD(z, w) =
∑
k

φk(z)φk(w),

where the series converges uniformly on compact subsets of D × D. The reproducing kernel
KD(z, w) is called the Bergman kernel for D. Denote by KD(z) = KD(z, z) its restriction to
the diagonal. It is known that logKD is a strongly plurisubharmonic function and thus is a
potential for a Kähler metric which is called the Bergman metric for D and is given by

ds2
B,D =

n∑
α,β=1

gB,D
αβ

(z) dzαdzβ,

where

gB,D
αβ

(z) =
∂2 logKD

∂zα∂zβ
(z).

Let
GB,D(z) =

(
gB,D
αβ

(z)
)
n×n

and gB,D(z) = detGB,D(z).

The components of the Ricci tensor of ds2
B,D are defined by

RicB,D
αβ

(z) = −
∂2 log gB,D
∂zα∂zβ

(z), (5.1)

33
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and the Ricci curvature of ds2
B,D is given by

RicB,D(z, u) =

∑n
α,β=1 RicB,D

αβ
(z)uαuβ∑n

α,β=1 g
B,D

αβ
(z)uαuβ

. (5.2)

We have already seen (by results of Kobayashi and Fuks mentioned in Chapter 1) that the
matrix

GB̃,D(z) =
(
gB̃,D
αβ

(z)
)
n×n

where

gB̃,D
αβ

(z) = (n+ 1)gB,D
αβ

(z)− RicB,D
αβ

(z) =
∂2 log(Kn+1

D gB,D)

∂zα∂zβ
(z),

is positive definite. Therefore,

ds2
B̃,D

=

n∑
α,β=1

gB̃,D
αβ

(z) dzαdzβ

is a Kähler metric with Kähler potential log(Kn+1
D gB,D). Moreover, if F : D → D′ is a biholo-

morphism, then
GB̃,D(z) = F ′(z)tGB̃,D′

(
F (z)

)
F
′
(z), (5.3)

where F ′(z) is the Jacobian matrix of F at z. This implies that ds2
B̃,D

is an invariant metric.

We will call this metric the Kobayashi–Fuks metric on D.
The boundary asymptotics of the Bergman metric and its Ricci curvature on strongly pseudo-

convex domains are known from which it turns out that the Kobayashi–Fuks metric is complete
on such domains (to be seen later in Section 7.5). Dinew [15] showed that on any bounded hy-
perconvex domain the Kobayashi–Fuks metric is complete, and hence in particular, by a result
of Demailly [12], this metric is complete on any bounded pseudoconvex domain with Lipschitz
boundary. Dinew [13] also observed that the Kobayashi–Fuks metric is useful in the study of the
Bergman representative coordinates. Invariant metrics play an important role in understanding
the geometry of a domain which makes their study of natural interest in complex analysis and
our purpose here is to show that the Kobayashi–Fuks metric shares several properties with the
Bergman metric. Let us fix some notations before we state our results. We will denote by h any
of B or B̃. We write

Gh,D(z) =
(
gh,D
αβ

(z)
)
n×n

and gh,D(z) = detGh,D(z).

The length of a vector u at a point z ∈ D in ds2
h,D will be denoted by τh,D(z, u), i.e.,

τ2
h,D(z, u) =

n∑
α,β=1

gh,D
αβ

(z)uαuβ.

The holomorphic sectional curvature of ds2
h,D is defined by

Rh,D(z, u) =

∑n
α,β,γ,δ=1R

h,D

αβγδ
(z)uαuβuγuδ(∑n

α,β=1 g
h,D

αβ
(z)uαuβ

)2 , (5.4)
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where

Rh,D
αβγδ

(z) = −
∂2gh,Dβα
∂zγ∂zδ

(z) +
∑
µ,ν

gνµh,D(z)
∂gh,Dβµ
∂zγ

(z)
∂gh,Dνα
∂zδ

(z), (5.5)

gνµh,D(z) being the (ν, µ)th entry of the inverse of the matrix Gh,D(z). The Ricci curvature of

ds2
h,D is defined by (5.2) with B replaced by h. Finally, note that in dimension one, the metric

ds2
h,D has the form

ds2
h,D = gh,D(z)|dz|2, τh,D(z, u) =

√
gh,D(z)|u|

and both the holomorphic sectional curvature and the Ricci curvature at a point are independent
of the tangent vector u and are simply the Gaussian curvature

Rh,D(z) = − 1

gh,D(z)

∂2 log gh,D
∂z∂z

(z).

5.1 Some examples

Proposition 5.1.1. For the unit ball Bn ⊂ Cn,

ds2
B̃,Bn = (n+ 2)ds2

B,Bn = (n+ 1)(n+ 2)

n∑
α,β=1

(
δαβ

1− |z|2
+

zαzβ
(1− |z|2)2

)
dzαdzβ.

Proof. Recall that for the unit ball Bn ⊂ Cn,

KBn(z) =
n!

πn
1

(1− |z|2)n+1
,

and so

gB,B
n

αβ
(z) = (n+ 1)

∂2

∂zα∂zβ
log

1

1− |z|2
= (n+ 1)

(
δαβ

1− |z|2
+

zαzβ
(1− |z|2)2

)
.

Denoting the matrix zzt by Az and using the fact that its characteristic polynomial is det(λI−
Az) = λn − |z|2λn−1, we obtain

gB,Bn(z) =
(n+ 1)n

(1− |z|2)n+1
,

and hence

RicB,B
n

αβ
(z) = −(n+ 1)

∂2

∂zα∂zβ
log

1

1− |z|2
= −gB,B

n

αβ
(z).

It follows that
gB̃,B

n

αβ
(z) = (n+ 2)gB,B

n

αβ
(z),

which completes the proof of the proposition.

Proposition 5.1.2. For the unit polydisc ∆n ⊂ Cn,

ds2
B̃,∆n = (n+ 2)ds2

B,∆n = 2(n+ 2)
n∑

α=1

1

(1− |zα|2)2
dzαdzα.
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Proof. For the unit polydisc ∆n ⊂ Cn, recall that by the product formula for the Bergman
kernel,

K∆n(z) =

n∏
j=1

K∆(zj) =
1

πn

n∏
j=1

1

(1− |zj |2)2
,

and therefore

gB,∆
n

αβ
(z) = 2

∂2

∂zα∂zβ

n∑
j=1

log
1

1− |zj |2
=

2δαβ
(1− |zα|2)2

.

Thus,

gB,∆n(z) = 2n
n∏
j=1

1

(1− |zj |2)2
,

and hence

RicB,∆
n

αβ
(z) = −2

∂2

∂zα∂zβ

n∑
j=1

log
1

1− |zj |2
= −gB,∆

n

αβ
(z).

It follows that

gB̃,∆
n

αβ
(z) = (n+ 2)gB,∆

n

αβ
(z) =

2(n+ 2)

(1− |zα|2)2
δαβ,

and the proof of the proposition is complete.

In general, if D is a bounded domain with a transitive group of holomorphic automorphisms,
the Bergman metric is Kähler-Einstein, and so ds2

B̃,D
is a constant multiple of ds2

B,D.

5.2 Some monotonicity results

In this section, we will first express the Kobayashi–Fuks length in terms of a maximal domain
function introduced by Krantz and Yu [36]. Using that expression several monotonicity prop-
erties of the Kobayashi–Fuks metric will be established. The monotonicity properties are not
only interesting results in themselves, they also help us in localising the holomorphic sectional
curvature of the Kobayashi–Fuks metric. We begin by recalling the maximal domain function
of Krantz and Yu: For a domain D ⊂ Cn, z0 ∈ D and a nonzero vector u ∈ Cn, let

ID(z0, u) = sup
{
utf ′′(z0)G

−1
B,D(z0)f ′′(z0)u : ‖f‖D = 1, f(z0) = f ′(z0) = 0

}
. (5.6)

Here f ′′(z0) is the symmetric matrix

f ′′(z0) =
(

∂2f
∂zi∂zj

(z0)
)
n×n

.

It was shown in Proposition 2.1 (ii) of [36] that whenever KD(z0) and τB,D(z0, u) are positive,

RicB,D(z0, u) = (n+ 1)− 1

τ2
B,D(z0, u)KD(z0)

ID(z0, u). (5.7)

Also, from the definition of the Kobayashi–Fuks metric, note that

τB̃,D(z0, u) = τB,D(z0, u)
√
n+ 1− RicB,D(z0, u). (5.8)

Combining (5.7) and (5.8) we obtain
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Proposition 5.2.1. Let D be a bounded domain in Cn, z0 ∈ D, and u ∈ Cn. Then we have

τ2
B̃,D

(z0, u) =
ID(z0, u)

KD(z0)
.

For the localization of gB̃,D, which will be established in the next chapter, we will need the
following lemma. The notation In, or simply I, stands for the n× n identity matrix.

Lemma 5.2.2. Let D1, D2 be two bounded domains in Cn such that D2 ⊂ D1. For any z0 ∈ D2,
there exist a nonsingular matrix Q and positive real numbers d1, . . . , dn such that

QtGB̃,D1
(z0)Q = diag{d1, . . . , dn} and QtGB̃,D2

(z0)Q = I.

Proof. Note that we have GB̃,D2
(z0) as a positive definite Hermitian matrix. Hence one can find

an invertible matrix A such that

AtGB̃,D2
(z0)A = I.

By the transformation rule (5.3) applied to A : A−1D1 → D1 and A : A−1D2 → D2,

GB̃,A−1D1
(A−1z0) = AtGB̃,D1

(z0)A and GB̃,A−1D2
(A−1z0) = AtGB̃,D2

(z0)A = I.

From the first identity above, AtGB̃,D1
(z0)A is a positive definite Hermitian matrix and hence

there exists a unitary matrix B such that

Bt(AtGB̃,D1
(z0)A)B = diag{d1, . . . , dn} for some d1, . . . , dn > 0.

Now letting Q = AB the lemma follows.

In general, the Kobayashi–Fuks metric and its associated objects do not satisfy the mono-
tonicity properties with respect to increasing domains. However, we show that they can be
compared after taking products with certain invariants. Recall that the Bergman canonical
invariant on D is the function defined by

JD(z) =
detGB,D(z)

KD(z)
=
gB,D(z)

KD(z)
.

From the transformation rule for the Bergman kernel it is evident that JD is a biholomorphic
invariant.

Proposition 5.2.3. Let D1, D2 be two bounded domains in Cn such that D2 ⊂ D1. For any
z0 ∈ D2 and u ∈ Cn, we have

(i) τ2
B̃,D1

(z0, u) ≤
(
KD2

(z0)

KD1
(z0)

)n+1 (JD2
(z0)

JD1
(z0)

)
τ2
B̃,D2

(z0, u),

(ii) utḠ−1
B̃,D1

(z0)u ≥
(
KD1

(z0)

KD2
(z0)

)n+1 (JD1
(z0)

JD2
(z0)

)
utḠ−1

B̃,D2
(z0)u,

(iii) ut adGB̃,D1
(z0)u ≤

(
KD2

(z0)

KD1
(z0)

)n2−1 (JD2
(z0)

JD1
(z0)

)n−1
ut adGB̃,D2

(z0)u.
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Proof. Fix z0 ∈ D2 and u ∈ Cn. For simplicity of notations, we will write Ki for KDi(z0), Ji for
JDi(z0), Gi for GB,Di(z0), and G̃i for GB̃,Di(z0) for i = 1, 2.

(i) In view of Proposition 5.2.1, it is enough to prove that

ID1(z0, u) ≤
(
K2

K1

)n J2

J1
ID2(z0, u). (5.9)

From the proof of Proposition 2.2 in [36] (see page 236) there exists a nonsingular matrix P
(depending on z0) such that for every v ∈ Cn,

vtP−1 adG1(P ∗)−1v ≤
(
K2

K1

)n−1

vtP−1 adG2(P ∗)−1v. (5.10)

Now consider f ∈ A2(D1) such that ‖f‖D1 = 1, f(z0) = f ′(z0) = 0. We can write f ′′(z0) =
(P t)−1A for some matrix A. Putting v = Au in (5.10) and using the fact that f ′′(z0) is
symmetric, we get

utf ′′(z0) adG1f ′′(z0)u ≤
(
K2

K1

)n−1

utf ′′(z0)adG2f ′′(z0)u. (5.11)

Define g : D2 → C by

g(z) =
f(z)

‖f‖D2

.

Then g ∈ A2(D2), ‖g‖D2 = 1, g(z0) = g′(z0) = 0. Since f ′′(z0) = ‖f‖D2g
′′(z0), ‖f‖D2 ≤ 1, and

adGi = (detGi)G
−1
i , we have from (5.11)

utf ′′(z0) Ḡ−1
1 f ′′(z0)u ≤

(
K2

K1

)n−1 detG2

detG1

(
utg′′(z0) Ḡ−1

2 g′′(z0)u
)
≤
(
K2

K1

)n J2

J1
ID2(z0, u). (5.12)

Taking supremum over f in (5.12) and using Proposition 5.2.1, we obtain (5.9) and hence (i) is
proved.

(ii) Let Q be as in Lemma 5.2.2. Let ej denote the j-th standard unit vector in Cn, i.e.,
ej = (0, . . . , 0, 1, 0, . . . , 0). Taking u = Qej in (i), we get

dj ≤
(
K2

K1

)n+1 J2

J1
for j = 1, . . . , n. (5.13)

From Lemma 5.2.2, it follows that

Q−1
(
G̃1

)−1
(Q∗)−1 = diag

{
1

d1
, . . . ,

1

dn

}
and Q−1

(
G̃2

)−1
(Q∗)−1 = I.

Hence for any v ∈ Cn, using the inequality (5.13), we get

vtQ−1
(
G̃1

)−1
(Q∗)−1v = vt diag

{
1

d1
, . . . ,

1

dn

}
v ≥

(
K1

K2

)n+1 J1

J2
(vtIv)

=

(
K1

K2

)n+1 J1

J2

(
vtQ−1

(
G̃2

)−1
(Q∗)−1v

)
.
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Putting u = (Qt)−1v in the above inequality, we get (ii).
(iii) Note that from Lemma 5.2.2, we get

det G̃1 =

( n∏
j=1

dj

)
det G̃2.

Therefore using the relation ad G̃i = (det G̃i)G̃i
−1

, we have

Q−1 adG̃1(Q∗)−1 =
(

det G̃1

)
Q−1

(
G̃1

)−1
(Q∗)−1 =

(
det G̃2

)
diag

∏
j 6=1

dj , . . . ,
∏
j 6=n

dj

 .

Hence, for any v ∈ Cn, using (5.13)

vtQ−1 adG̃1(Q∗)−1v ≤
(

det G̃2

)[(K2

K1

)n+1 J2

J1

]n−1 (
vtIv

)
=
(

det G̃2

)[(K2

K1

)n+1 J2

J1

]n−1

vtQ−1
(
G̃2

)−1
(Q∗)−1v

=

(
K2

K1

)n2−1(J2

J1

)n−1

vtQ−1 adG̃2(Q∗)−1v.

Now putting u = (Qt)−1v in the above equation, we get the desired result.
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Chapter 6

Localizations

The localization of invariant metrics is one of the pivotal components in the study of their
boundary behavior. It was Graham (see [22]) who first studied the localization of the Kobayashi
metric on strongly pseudoconvex domains with smooth boundary based on the existence of a
global peak function at each boundary point of such domains. The Bergman invariants such
as – the metric, its Ricci and holomorphic sectional curvatures, etc. are also localized. The
localization of the Bergman kernel (on the diagonal) near a local holomorphic peak point of a
bounded pseudoconvex domain was proved by Lars Hörmander in [29]. Later several authors
(cf. [4, 14, 32, 36]) used his L2-technique to obtain the localization results for various Bergman
invariants. In this chapter, we localize some invariants associated with the Kobayashi–Fuks
metric near the holomorphic peak points of bounded pseudoconvex domains in Cn. When we
deal with the holomorphic sectional curvature of the Kobayashi–Fuks metric, we will restrict
our attention only to the planar case, i.e., n = 1.

We start by proving Theorem 1.0.4. A crucial step in the proof of this theorem is to obtain
Bergman–Fuks type results for the Kobayashi–Fuks metric and its related invariants, i.e., to
express them in terms of certain maximal domain functions. For the holomorphic sectional
curvature of the Kobayashi–Fuks metric, we derive such a result only in dimension one, though
we believe that in higher dimensions also, an analog of this and hence of Theorem 1.0.4 (iii)
should hold.

Proof of Theorem 1.0.4. (i) It was shown in [32] that

lim
z→p0

KD(z)

KU∩D(z)
= 1, (6.1)

and Krantz and Yu [36] showed that

lim
z→p0

ID(z, u)

IU∩D(z, u)
= 1 (6.2)

uniformly in unit vectors u, and hence (i) follows from Proposition 5.2.1.

(ii) By Lemma 5.2.2, there exist an invertible matrixQ(z) and positive real numbers d1(z), . . . , dn(z)
such that

Qt(z)GB̃,D(z)Q(z) = diag{d1(z), . . . , dn(z)} and Qt(z)GB̃,U∩D(z)Q(z) = I.

41
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Taking determinant on both sides of these equations yields

gB̃,D(z)

gB̃,U∩D(z)
=

n∏
j=1

dj(z).

Also, by Proposition 5.2.1,

τ2
B̃,D

(z, u) =
KU∩D(z)

KD(z)

ID(z, u)

IU∩D(z, u)
τ2
B̃,U∩D(z, u).

Putting u = Q(z)ej in the above equation, we get

dj(z) =
KU∩D(z)

KD(z)

ID
(
z,Q(z)ej

)
IU∩D

(
z,Q(z)ej

) for j = 1, . . . , n.

Therefore,

gB̃,D(z)

gB̃,U∩D(z)
=

(
KU∩D(z)

KD(z)

)n n∏
j=1

ID
(
z,Q(z)ej

)
IU∩D

(
z,Q(z)ej

) =

(
KU∩D(z)

KD(z)

)n n∏
j=1

ID
(
z, vj(z)

)
IU∩D

(
z, vj(z)

)
where vj(z) = Q(z)ej/‖Q(z)ej‖. Now (ii) follows immediately from (6.1) and (6.2).

The proof of (iii) will be given later once we express the Gaussian curvature of the Kobayashi–
Fuks metric on bounded planar domains in terms of certain maximal domain functions.

We now introduce two maximal domain functions on planar domains for the purpose of
localising the Gaussian curvature of the Kobayashi–Fuks metric. For a bounded domain D ⊂ C,
let

I ′D(z0) = sup
{
g−1
B̃,D

(z0)|f ′(z0)|2 : f ∈ A2(D), ‖f‖D = 1, f(z0) = 0
}
,

I ′′D(z0) = sup
{
g−3
B̃,D

(z0)|f ′′′(z0)|2 : f ∈ A2(D), ‖f‖D = 1, f(z0) = f ′(z0) = f ′′(z0) = 0
}
.

Note that, as D is bounded, the functions I ′D and I ′′D are well-defined and strictly positive.
It is also evident that the supremums are achieved. Moreover, under biholomorphisms they
transform by the same rule as that of the Bergman kernel which we establish in the following:

Proposition 6.0.1. Let F : D1 → D2 be a biholomorphism between two bounded domains in C.
Then

I ′D1
(z0) = I ′D2

(
F (z0)

)∣∣F ′(z0)
∣∣2 and I ′′D1

(z0) = I ′′D2

(
F (z0)

)∣∣F ′(z0)
∣∣2.

Proof. We will prove the transformation rule only for I ′′D, as the case of I ′D is even simpler and
follows from similar arguments. Suppose g ∈ A2(D2) is a maximizer for I ′′D2

(
F (z0)

)
. Now set

f(z) = g
(
F (z)

)
F ′(z).

It is straightforward to check that ‖f‖D1 = ‖g‖D2 = 1, f(z0) = f ′(z0) = f ′′(z0) = 0, and

f ′′′(z0) = g′′′
(
F (z0)

)(
F ′(z0)

)4
.

Therefore,
g−3
B̃,D1

(z0)
∣∣f ′′′(z0)

∣∣2 = g−3
B̃,D1

(z0)
∣∣g′′′(F (z0)

)∣∣2∣∣F ′(z0)
∣∣8. (6.3)
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Note that from the transformation rule for the Kobayashi–Fuks metric, we have

g−1
B̃,D1

(z0)|F ′(z0)|2 = g−1
B̃,D2

(
F (z0)

)
.

Applying this on the right hand side of (6.3), we get

g−3
B̃,D1

(z0)|f ′′′(z0)|2 = g−3
B̃,D2

(
F (z0)

)∣∣g′′′(F (z0)
)∣∣2∣∣F ′(z0)

∣∣2.
As f is a candidate for I ′′D1

(z0) and g is a maximizer for I ′′D2
(F (z0)), we obtain

I ′′D1
(z0) ≥ I ′′D2

(
F (z0)

)
|F ′(z0)|2.

Similar arguments when applied to the map F−1 : D2 → D1 gives the reverse inequality and
hence it is an equality.

The main ingredient for the localization of the Gaussian curvature of the Kobayashi–Fuks
metric is the following Bergman–Fuks type result:

Proposition 6.0.2. Let D ⊂ C be a bounded domain and z0 ∈ D. Then the Gaussian curvature
of the Kobayashi–Fuks metric on D satisfies

RB̃,D(z0) = 2−
I ′D(z0)

KD(z0)
−
I ′′D(z0)

I ′D(z0)
. (6.4)

Observe that both the sides of (6.4) are invariant under biholomorphisms and we will es-
tablish their equality by computing them in terms of a suitable orthonormal basis of A2(D) in
some special coordinates. To this end, we fix z0 ∈ D and consider the closed subspaces of A2(D)
given by

A1(z0) =
{
f ∈ A2(D) : f(z0) = 0

}
,

A2(z0) =
{
f ∈ A2(D) : f(z0) = f ′(z0) = 0

}
,

A3(z0) =
{
f ∈ A2(D) : f(z0) = f ′(z0) = f ′′(z0) = 0

}
.

Observe that the orthogonal complement of A1(z0) in A2(D) has dimension one and let h0 be
a unit vector in this orthogonal complement. It is easy to see that the orthogonal complement
of A2(z0) inside A1(z0) has dimension at most one and the orthogonal complement of A3(z0) in
A2(z0) also has dimension at most one. Without loss of generality, we assume that both these
dimensions are exactly one. Let {φ, ψ, h1, h2, . . .} be an orthonormal basis for A1(z0) such that
φ is a unit vector in A1(z0) \A2(z0), ψ is a unit vector in A2(z0) \A3(z0), and {h1, . . . , hj , . . .}
is an orthonormal basis for A3(z0). Note that

KD(z) =
∣∣h0(z)

∣∣2 +
∣∣φ(z)

∣∣2 +
∣∣ψ(z)

∣∣2 +
∞∑
j=1

∣∣hj(z)∣∣2, z ∈ D. (6.5)

Hence KD(z0) =
∣∣h0(z0)

∣∣2, which in particular implies h0(z0) 6= 0.

Lemma 6.0.3. In normal coordinates for the Kobayashi–Fuks metric at z0,

(a) I ′D(z0) = |φ′(z0)|2, and
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(b) I ′′D(z0) =
∑∞

j=1

∣∣∣h′′′j (z0)
∣∣∣2.

Proof. (a) Observe that in normal coordinates at z0, I ′D is reduced to

I ′D(z0) = sup
{
|f ′(z0)|2 : f ∈ A1(z0), ‖f‖D = 1

}
.

Since φ is a candidate for I ′D(z0),

I ′D(z0) ≥
∣∣φ′(z0)

∣∣2 .
To see the reverse inequality, consider any f ∈ A1(z0) with ‖f‖D = 1. Since f can be represented
as

f(z) = 〈f, φ〉φ(z) + 〈f, ψ〉ψ(z) +
∞∑
j=1

〈f, hj〉hj(z),

using ‖f‖D = 1, we have

|f ′(z0)|2 =
∣∣〈f, φ〉∣∣2∣∣φ′(z0)

∣∣2 ≤ ∣∣φ′(z0)
∣∣2.

Now taking supremum in the left hand side of the above inequality, we get

I ′D(z0) ≤
∣∣φ′(z0)

∣∣2.
(b) Clearly the right hand side is finite thanks to Cauchy estimates. Observe that in normal

coordinates at z0,
I ′′D(z0) = sup

{
|f ′′′(z0)|2 : f ∈ A3(z0), ‖f‖D = 1

}
.

Note that if f(z) =
∑∞

j=1 ajhj(z) is an arbitrary member of A3(z0), then

∣∣f ′′′(z0)
∣∣2 =

∣∣∣∣∣∣
∞∑
j=1

ajh
′′′
j (z0)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∞∑
j=1

ajHj

∣∣∣∣∣∣
2

,

where Hj = h′′′j (z0). Moreover, as A3(z0) is linearly isometric to `2 via the orthonormal basis
{hj}, we also have ‖f‖D = ‖a‖`2 , where a = {aj}j≥1. Hence, we arrive at

I ′′D(z0) = sup


∣∣∣∣ ∞∑
j=1

ajHj

∣∣∣∣2 : a = {aj}j≥1 ∈ `2, ‖a‖`2 = 1

 . (6.6)

Now let H = {Hj}∞j=1 and define LH : `2 → C by

LH(a) =

∞∑
j=1

ajHj .

Then LH is a bounded linear operator on `2 and denoting its operator norm by ‖LH‖, observe
that

‖LH‖2 = sup
‖a‖=1

∣∣∣LH({aj})∣∣∣2 = sup
‖a‖=1

∣∣∣∣ ∞∑
j=1

ajHj

∣∣∣∣2 = I ′′D(z0) (6.7)

by (6.6). Also, from the canonical isometry of `′2 with `2, we have

‖LH‖2 = ‖H‖2`2 =
∞∑
j=1

|Hj |2 =
∞∑
j=1

∣∣h′′′j (z0)
∣∣2 . (6.8)

From (6.7) and (6.8), the lemma follows immediately.



45

Proof of Proposition 6.0.2. We work in normal coordinates for the Kobayashi–Fuks metric at
z0. Without loss of generality, we will denote the new coordinates by z, same as the previous
ones. Note that in normal coordinates at z0, we have

gB̃,D(z0) = 1,
∂gB̃,D
∂z

(z0) = 0, and RB̃,D(z0) = −
∂2gB̃,D
∂z∂z

(z0). (6.9)

Next, we express the above equations in terms of the basis expansion of KD. Recall that the
Kähler potential of the Kobayashi–Fuks metric in dimension 1 is logA(z) where

A = K2
DgB,D = K2

D

∂2 logKD

∂z∂z
= KD

∂2KD
∂z∂z −

∂KD
∂z

∂KD
∂z . (6.10)

Thus,

gB̃,D =
∂2 logA

∂z∂z
=

1

A

∂2A

∂z∂z
− 1

A2

∂A

∂z

∂A

∂z
. (6.11)

Using the expansion of the Bergman kernel as in (6.5), we get from (6.10)

A(z0) =
∣∣h0(z0)

∣∣2 ∣∣φ′(z0)
∣∣2 ,

∂A

∂z
(z0) =

∣∣h0(z0)
∣∣2 φ′(z0)φ′′(z0),

∂2A

∂z∂z
(z0) =

∣∣h0(z0)
∣∣2 (∣∣φ′′(z0)

∣∣2 +
∣∣ψ′′(z0)

∣∣2) ,
∂2A

∂z2
(z0) =

∣∣h0(z0)
∣∣2φ′(z0)φ′′′(z0) + h0(z0)h′0(z0)φ′(z0)φ′′(z0)

− h0(z0)h′′0(z0)
∣∣φ′(z0)

∣∣2 , (6.12)

∂3A

∂z2∂z
(z0) =

∣∣h0(z0)
∣∣2 (φ′′(z0)φ′′′(z0) + ψ′′(z0)ψ′′′(z0)

)
− h0(z0)h′′0(z0)φ′(z0)φ′′(z0)

+ h0(z0)h′0(z0)
(∣∣φ′′(z0)

∣∣2 +
∣∣ψ′′(z0)

∣∣2) , and

∂4A

∂z2∂z2 (z0) =
∣∣h0(z0)

∣∣2 ∣∣φ′′′(z0)
∣∣2 +

∣∣ψ′′′(z0)
∣∣2 +

∞∑
j=1

∣∣h′′′j (z0)
∣∣2+

∣∣h′0(z0)
∣∣2 (∣∣φ′′(z0)

∣∣2 +
∣∣ψ′′(z0)

∣∣2)
+
∣∣φ′(z0)

∣∣2 (∣∣h′′0(z0)
∣∣2 +

∣∣ψ′′(z0)
∣∣2)− 2 Re

(
h0(z0)h′′0(z0)φ′(z0)φ′′′(z0)

)
− 2 Re

(
h′0(z0)h′′0(z0)φ′(z0)φ′′(z0)

)
+ 2 Re

(
h0(z0)h′0(z0)φ′′(z0)φ′′′(z0)

)
+ 2 Re

(
h0(z0)h′0(z0)ψ′′(z0)ψ′′′(z0)

)
.

Also, differentiating (6.11) one immediately obtains

∂gB̃,D
∂z

=
1

A

∂3A

∂z2∂z
− 2

A2

∂A

∂z

∂2A

∂z∂z
− 1

A2

∂A

∂z

∂2A

∂z2
+

2

A3

∂A

∂z

(
∂A

∂z

)2

, (6.13)
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and

−
∂2gB̃,D
∂z∂z

(z) = − 1

A

∂4A

∂z2∂z2 +
2

A2

∂A

∂z

∂3A

∂z2∂z
+

2

A2

∂A

∂z

∂3A

∂z∂z2

+
2

A2

(
∂2A

∂z∂z

)2

+
1

A2

∂2A

∂z2

∂2A

∂z2 +
6

A4

(
∂A

∂z

)2(∂A
∂z

)2

− 2

A3

(
∂A

∂z

)2 ∂2A

∂z2
− 2

A3

(
∂A

∂z

)2 ∂2A

∂z2 −
8

A3

∂A

∂z

∂A

∂z

∂2A

∂z∂z
. (6.14)

Now, the relation gB̃,D(z0) = 1 using (6.11) and (6.12) gives∣∣h0(z0)
∣∣4 ∣∣φ′(z0)

∣∣2 ∣∣ψ′′(z0)
∣∣2 =

∣∣h0(z0)
∣∣4 ∣∣φ′(z0)

∣∣4 .
Observe that h0(z0) 6= 0 and φ′(z0) 6= 0. Hence the above identity implies∣∣ψ′′(z0)

∣∣2 =
∣∣φ′(z0)

∣∣2 .
As a consequence, applying a unitary transformation to the basis {ψ}, we may assume that

ψ′′(z0) = φ′(z0). (6.15)

The relation
∂gB̃,D
∂z (z0) = 0 using (6.13) and (6.12) gives∣∣h0(z0)

∣∣2 ∣∣φ′(z0)
∣∣2 ψ′′(z0)ψ′′′(z0) + h0(z0)h′0(z0)

∣∣φ′(z0)
∣∣2 ∣∣ψ′′(z0)

∣∣2
− 2
∣∣h0(z0)

∣∣2 φ′(z0)φ′′(z0)
∣∣ψ′′(z0)

∣∣2 = 0.

Using (6.15) in the above sum, we obtain the relation

h0(z0)ψ′′′(z0) + h′0(z0)φ′(z0)− 2h0(z0)φ′′(z0) = 0. (6.16)

Finally, we compute the curvature. It follows from (6.14) and (6.12), by a straightforward
but lengthy calculation, that

A4
−∂2gB̃,D
∂z∂z

= −|h0|8|φ′|6
(
|ψ′′′|2 +

∞∑
j=1

|h′′′j |2
)
− 2|h0|6 |φ′|6 Re

(
h0h′0ψ

′′ψ′′′
)

− |h0|6 |h′0|2 |φ′|6 |ψ′′|2 − |h0|6|φ′|8|ψ′′|2 + 4|h0|8|φ′|4 Re
(
φ′φ′′ψ′′ψ′′′

)
+ 4|h0|6|φ′|4|ψ′′|2 Re

(
h0h′0φ

′φ′′
)

+ 2|h0|8|φ′|4|ψ′′|4 − 4|h0|8|φ′|4|φ′′|2|ψ′′|2

at the point z0. In the above equation and in the subsequent steps, if not mentioned, all the
terms and partial derivatives are evaluated at the point z0. Now making use of the relation
(6.15), the above equation can be rewritten as

|h0|8|φ′|8
−∂2gB̃,D
∂z∂z

(z0) = 2|h0|8|φ′|8 − |h0|6|φ′|10 − |h0|8|φ′|6
∞∑
j=1

|h′′′j |2 − |h0|6|φ′|6
{
|h0|2|ψ′′′|2

+ |h′0|2|φ′|2 + 4|h0|2|φ′′|2 + 2 Re
(
h0h′0φ

′ψ′′′
)
− 4|h0|2 Re

(
φ′′ψ′′′

)
− 4 Re

(
h0h′0φ

′φ′′
)}
.
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Here one can see that, the terms inside the curly bracket above is exactly equal to

|h0ψ
′′′ + h′0φ

′ − 2h0φ
′′|2,

which vanishes by vitue of the relation (6.16). Hence we finally arrive at

RB̃,D(z0) = −
∂2gB̃,D
∂z∂z

(z0) = 2−
∣∣φ′(z0)

∣∣2∣∣h0(z0)
∣∣2 − 1∣∣φ′(z0)

∣∣2
∞∑
j=1

∣∣h′′′j (z0)
∣∣2. (6.17)

The right hand side of the above identity is finite thanks to the Cauchy estimates. The propo-
sition now follows from Lemma 6.0.3.

The following result is an immediate consequence of Proposition 6.0.2.

Corollary 6.0.4. The Gaussian curvature of the Kobayashi–Fuks metric on bounded planar
domains is strictly bounded above by 2.

Now we localize the domain funtions I ′Ω and I ′′Ω.

Proposition 6.0.5. The functions I ′D and I ′′D can be localized. More precisely, let D ⊂ C be
a bounded domain, p0 ∈ ∂D a local peak point, and U a sufficiently small neighborhood of p0.
Then

lim
z→p0

I ′D(z)

I ′U∩D(z)
= lim

z→p0
I ′′D(z)

I ′′U∩D(z)
= 1.

Proof. We will present the proof only for I ′′D here. The proof for I ′D follows in an exact similar
manner. Let h be a local holomorphic peak function for p0 defined on a neighborhood U of
p0. Shrinking U if necessary, we can assume that h is nonvanishing on U ∩ D. Now choose
any neighborhood V of p0 such that V ⊂⊂ U . Then there is a constant b ∈ (0, 1) such that
|h| ≤ b on (U \ V ) ∩D. Let us choose a cut-off function χ ∈ C∞0 (U) satisfying χ = 1 on V and
0 ≤ χ ≤ 1 on U . Given any ζ ∈ V , a function f ∈ A2(U ∩D), and an integer k ≥ 1, set

φ(z) = 8 log |z − ζ| and αk = ∂(χfhk).

Then φ is a subharmonic function on C and αk is a ∂-closed, smooth (0, 1)-form on D with
suppαk ⊂ (U \ V )∩D. Now as in [36], applying Theorem 4.2 of [30], we get a solution u to the
equation ∂u = αk on D such that

ˆ
D
|u(z)|2e−φ(z)(1 + |z|2)−2dV (z) ≤

ˆ
D
|αk(z)|2e−φ(z)dV (z),

where dV denotes the standard Lebesgue measure on C. Then above inequality clearly implies

ˆ
D

|u(z)|2

|z − ζ|8(1 + |z|2)2
dV (z) ≤

ˆ
(U\V )∩D

|αk(z)|2

|z − ζ|8
dV (z). (6.18)

Since the right-hand side of (6.18) is bounded, so is the left-hand side. This in particular implies
that

∂|A|+|B|u

∂zA∂zB
(ζ) = 0 for all multi-indices A,B with |A|+ |B| ≤ 3. (6.19)
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Moreover, since D is bounded, there are positive constants c1, c2 independent of k and ζ such
that ˆ

D

|u|2

|z − ζ|8 (1 + |z|2)2
dV (z) ≥ c1

ˆ
Ω
|u|2dV,

and

ˆ
(U\V )∩D

|αk|2

|z − ζ|8
dV (z) =

ˆ
(U\V )∩D

|∂χ|2|f |2|h|2k

|z − ζ|8
dV (z) ≤ c2

ˆ
(U\V )∩D

|f |2|h|2kdV

≤ c2b
2k

ˆ
(U\V )∩D

|f |2dV, by the choices of h, V

≤ c2b
2k‖f‖2U∩D.

For c = c2/c1, it follows from (6.18) that

‖u‖D ≤ cbk‖f‖U∩D. (6.20)

Here, clearly, c is a constant independent of ζ and k.

Now let f ∈ A2(U ∩ D) be a maximizing function for I ′′U∩D(ζ), i.e., ‖f‖U∩D = 1, f(ζ) =
f ′(ζ) = f ′′(ζ) = 0, and g−3

B̃,U∩D(ζ)|f ′′′(ζ)|2 = I ′′U∩D(ζ). Choose u as above and set Fk = χfhk−u.

Then Fk ∈ A2(D) and it follows from (6.20) that

‖Fk‖D ≤ ‖χfhk‖D + ‖u‖D ≤ ‖f‖U∩D + cbk‖f‖U∩D = 1 + cbk. (6.21)

Therefore, setting fk = Fk/‖Fk‖D, we see that fk ∈ A2(D), ‖fk‖D = 1, and fk(ζ) = f ′k(ζ) =
f ′′k (ζ) = 0. Moreover, by the maximality of I ′′D(ζ), estimate (6.21), and (ii) of Proposition 5.2.3,
one obtains

I ′′D(ζ) ≥ g−3
B̃,D

(ζ)|f ′′′k (ζ)|2

= ‖Fk‖−2
D |h

k(ζ)|2 g−3
B̃,D

(ζ)|f ′′′(ζ)|2

≥ ‖Fk‖−2
D |h(ζ)|2k

(
KD(ζ)

KU∩D(ζ)

)6( JD(ζ)

JU∩D(ζ)

)3

g−3
B̃,U∩D(ζ)|f ′′′(ζ)|2

≥ |h(ζ)|2k

(1 + cbk)2

(
KD(ζ)

KU∩D(ζ)

)6( JD(ζ)

JU∩D(ζ)

)3

I ′′U∩D(ζ).

This implies that

I ′′D(ζ)

I ′′U∩D(ζ)
≥ |h(ζ)|2k

(1 + cbk)2

(
KD(ζ)

KU∩D(ζ)

)6( JD(ζ)

JU∩D(ζ)

)3

.

Note that h(p0) = 1. By (6.1), Proposition 2.1, and Proposition 2.4 of [36],

lim
ζ→p0

KD(ζ)

KU∩D(ζ)
= lim

ζ→p0
JD(ζ)

JU∩D(ζ)
= 1.

Hence, letting ζ → p0 in the above inequality, we get

lim inf
ζ→p0

I ′′D(ζ)

I ′′U∩D(ζ)
≥ (1 + cbk)−2.
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Now letting k →∞, as 0 ≤ b < 1, and c is independent of k, we obtain

lim inf
ζ→p0

I ′′D(ζ)

I ′′U∩D(ζ)
≥ 1. (6.22)

On the other hand, consider a candidate function η for I ′′D(ζ), i.e., η ∈ A2(D), ‖η‖D = 1,
and η(ζ) = η′(ζ) = η′′(ζ) = 0. Now for z ∈ U ∩D, let us define

γ(z) =
η(z)

‖η‖U∩D
.

Then clearly γ ∈ A2(U ∩ D) with ‖γ‖U∩D = 1, and γ(ζ) = γ′(ζ) = γ′′(ζ) = 0. Therefore the
maximality of I ′′U∩D(ζ) implies

I ′′U∩D(ζ) ≥ g−3
B̃,U∩D(ζ)|γ′′′(ζ)|2 = ‖η‖−2

U∩D

(
gB̃,U∩D(ζ)

gB̃,D(ζ)

)−3

g−3
B̃,D

(ζ)|η′′′(ζ)|2

≥

(
gB̃,U∩D(ζ)

gB̃,D(ζ)

)−3

I ′′D(ζ).

The last inequality above follows from ‖η‖U∩D ≤ 1 and the fact that η is an arbitrary candidate
function for I ′′D(ζ). Thus we obtain

I ′′D(ζ)

I ′′U∩D(ζ)
≤

(
gB̃,U∩D(ζ)

gB̃,D(ζ)

)3

. (6.23)

By (ii) of Theorem 1.0.4, the right hand side converges to 1 as ζ → p0, and therefore,

lim sup
ζ→p0

I ′′D(ζ)

I ′′U∩D(ζ)
≤ 1. (6.24)

From (6.22) and (6.24), we conclude that

lim
ζ→p0

I ′′D(ζ)

I ′′U∩D(ζ)
= 1,

as required.

Lemma 6.0.6. Suppose {aj}, {bj}, {cj} and {dj} are real sequences with bj , dj > 0 and

lim
j→∞

aj
bj

= 1 and lim
j→∞

cj
dj

= 1.

Then we have

lim
j→∞

aj + cj
bj + dj

= 1.

Proof. To verify this claim let ε > 0. Then there exists N ∈ N such that∣∣∣∣ajbj − 1

∣∣∣∣ < ε

2
and

∣∣∣∣ cjdj − 1

∣∣∣∣ < ε

2
for j ≥ N.
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This, in particular implies that

|aj − bj |
bj + dj

<
ε

2
and

|cj − dj |
bj + dj

<
ε

2
for j ≥ N.

Hence we have ∣∣∣∣aj + cj
bj + dj

− 1

∣∣∣∣ ≤ |aj − bj |bj + dj
+
|cj − dj |
bj + dj

< ε for j ≥ N,

proving the lemma.

We are now in a state to give a proof of remaining part of Theorem 1.0.4.

Proof of Theorem 1.0.4 (iii). By Proposition 6.0.2, let us write

RB̃,D(z) = 2− ẼD(z)− F̃D(z),

where

ẼD(z) =
I ′D(z)

KD(z)
and F̃D(z) =

I ′′D(z)

I ′D(z)
.

From Proposition 6.0.5 and (6.1), we have

lim
z→p0

ẼD(z)

ẼU∩D(z)
= 1 and lim

z→p0
F̃D(z)

F̃U∩D(z)
= 1,

for a small enough neighborhood U of p0. Now (iii) follows immediately from Lemma 6.0.6.



Chapter 7

Boundary behavior of the
Kobayashi–Fuks metric

In this chapter, we use Pinchuk’s scaling method to find boundary behavior and compute exact
asymptotics of the Kobayashi–Fuks metric on bounded strongly pseudoconvex domains. But
we will dedicate our first section towards obtaining the boundary asymptotics on domains in C.
As we will see, in the planar case, one can bypass the scaling method by virtue of the Riemann
mapping theorem to obtain the boundary behavior.

7.1 Boundary behavior on planar domains

Proof of Theorem 1.0.5. Note that because of the localization results in Theorem 1.0.4, it suffices
to prove the theorem for τB̃,U∩D and RB̃,U∩D for a small neighborhood U of p0. Since the

boundary ∂D is smooth near p0, we can choose a tiny disc U centered at p0 such that U ∩D is
simply connected. Hence, there exists a Riemann map φ, which is a biholomorphism between
U ∩D and the unit disc ∆. Since ∂(U ∩D) is a Jordan curve and is smooth near the boundary
point p0, by the work of S. E. Warschawski [47], it is known that φ can be extended smoothly
to p0 with φ′(p0) 6= 0.

(i) Consider any sequence of points {pj} ⊂ U ∩D converging to p0 ∈ ∂D. Then using the
invariance of the Kobayashi–Fuks metric and by Proposition 5.1.1, we have

τ2
B̃,U∩D(pj , u) = τ2

B̃,∆

(
φ(pj), φ′(pj)u

)
=

6 |φ′(pj)|2(
1− |φ(pj)|2

)2 |u|2.
Since δ2

D(pj) ≈
(
1−|φ(pj)|2

)2
, there exists a constant c > 0 such that the above identity becomes

lim
j→∞

δ2
D(pj)τ2

B̃,U∩D(pj , u) = c lim
j→∞

(
6 |φ′(pj)|2|u|2

)
= C(D) |u|2,

where C(D) = 6 c|φ′(p0)|2. This proves our claim.
(ii) By invariance of the Gaussian curvature,

RB̃,U∩D(pj) = RB̃,∆
(
φ(pj)

)
. (7.1)

By Proposition 5.1.1, we have for z ∈ ∆,

gB̃,∆(z) =
6

(1− |z|2)2
,
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and therefore,

RB̃,∆(z) = − 1

gB̃,∆(z)

∂2 log gB̃,∆
∂z∂z

(z) = −1

3
.

This, along with (7.1), completes the proof of (ii) and the theorem.

7.2 Pinchuk’s scaling

In this section, we deal with the scaling technique on strongly pseudoconvex domains introduced
by S. Pinchuk. As an application of Pinchuk’s scaling, we will see how boundary behavior of
the Kobayashi–Fuks objects on strongly pseudoconvex domains is dealt with by transferring the
problem into computing those objects on the unit ball. The symmetric and geometrically simple
nature of the unit ball allows us to handle the above stated problem in a rather perspicuous
manner. We begin by recalling the change of coordinates associated with Pinchuk’s scaling
method. Throughout this section, D is a C2-smoothly bounded strongly pseudoconvex domain
in Cn and ρ is a C2-smooth local defining function for D defined on a neighborhood U of a point
p0 ∈ ∂D. Without loss of generality, we assume that

∇zρ(p0) = (′0, 1) and
∂ρ

∂zn
(z) 6= 0 for all z ∈ U. (7.2)

Here, ∇zρ = (∂ρ/∂z1, . . . , ∂ρ/∂zn) and we write∇zρ = ∇zρ. Note that the gradient∇ρ = 2∇zρ.

7.2.1 Change of coordinates

The following lemma from [44] illustrates the change of coordinates near strongly pseudoconvex
boundary points.

Lemma 7.2.1. There exist a family of biholomorphic mappings hζ : Cn → Cn depending con-
tinuously on ζ ∈ ∂D ∩ U , satisfying the following conditions:

(a) hp
0

= I.

(b) hζ(ζ) = 0.

(c) The local defining function ρζ = ρ ◦ (hζ)−1 of the domain Dζ = hζ(D) near the origin has
the form

ρζ(z) = 2 Re
(
zn +Kζ(z)

)
+Hζ(z) + o(|z2|)

in a neighborhood of the origin, where

Kζ(z) =
n∑

µ,ν=1

aµν(ζ)zµzν and Hζ(z) =
n∑

µ,ν=1

aµν(ζ)zµzν

with Kζ(′z, 0) ≡ 0 and Hζ(′z, 0) ≡ |′z|2.

(d) The biholomorphism hζ takes the real normal ηζ = {z = ζ + 2t∇zρ(ζ) : t ∈ R} to ∂D at ζ
into the real normal {′z = yn = 0} to ∂Dζ at the origin.
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The definition of the map hζ and its derivative will play an important role in the computation
of the boundary asymptotics and so we quickly recall its construction. We fix ζ ∈ ∂D ∩U . The
map hζ is a polynomial automorphism of Cn defined as the composition hζ(z) = φζ3 ◦φ

ζ
2 ◦φ

ζ
1(z),

where the maps φζi : Cn → Cn are biholomorphisms defined as follows: The map w = φζ1(z) is
an affine transformation given by

wj =
∂ρ

∂zn
(ζ)(zj − ζj)−

∂ρ

∂zj
(ζ)(zn − ζn) for j = 1, . . . , n− 1,

wn =

n∑
ν=1

∂ρ

∂zν
(ζ)(zν − ζν).

(7.3)

The map φζ1 is nonsingular by (7.2) and it takes the point ζ to the origin. We relabel the new

coordinates w as z. Then the Taylor series expansion of the local defining function ρ ◦ (φζ1)−1

for the domain φζ1(D) near the origin has the form

2 Re

zn +

n∑
µ,ν=1

aµν(ζ)zµzν

+Hζ(z) + o(|z|2), (7.4)

where Hζ(z) is a Hermitian form.

The map w = φζ2(z) is given by

w =

′z, zn +

n−1∑
µ,ν=1

aµν(ζ)zµzν

 (7.5)

and is a polynomial automorphism. Relabelling the new coordinates w as z, the Taylor series
expansion of the local defining function ρ ◦ (φζ1)−1 ◦ (φζ2)−1 for the domain φζ2 ◦ φ

ζ
1(D) has the

form (7.4) with aµν = 0 for 1 ≤ µ, ν ≤ n− 1.

Finally, the map φζ3 is chosen so that the Hermitian form Hζ(z) satisfies Hζ(′z, 0) = |′z|2.
Since D is strongly pseudoconvex and the complex tangent space to ∂D at ζ is given by zn = 0
in the current coordinates, the form Hζ(′z, 0) is strictly positive definite. Hence there exists
a unitary map U ζ : Cn−1 → Cn−1 such that Hζ

(
U ζ(′z), 0

)
is diagonal with diagonal entries

λζ1, . . . , λ
ζ
n−1 > 0. Now consider the stretching map Lζ = diag{(λζ1)−1/2, . . . , (λζn−1)−1/2}. Then

the linear map Aζ : Cn−1 → Cn−1 given by Aζ := Lζ ◦ U ζ satisfies Hζ
(
Aζ(′z), 0

)
= |′z|2. Note

that U ζ and Lζ , and hence Aζ can be chosen to depend continuously on ζ. Thus, if we define
w = φζ3(z) by

w =
(
Aζ(′z), zn

)
,

and relabel w as z, then the local defining function ρζ = ρ ◦ (hζ)−1 for the domain Dζ = hζ(D)
near the origin has the Taylor series expansion as in (c). If we compute the defining function
explicitly, we get

Kζ(z) = zn

 n∑
µ=1

aµn(ζ)zµ +

n−1∑
ν=1

anν(ζ)zν


Hζ(z) = |′z|2 + zn

 n∑
µ=1

aµn(ζ)zµ

+ zn

(
n−1∑
ν=1

anν(ζ)zν

)
.

(7.6)
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Therefore the conditions Kζ(′z, 0) ≡ 0 and Hζ(′z, 0) ≡ |′z|2 are satisfied.

It is evident from the construction that hp
0

= I and as ζ → ζ0, φζi (z)→ φζ
0

i (z) uniformly on

compact subsets of Cn, for i = 1, 2, 3. Hence hζ(z) converges to hζ
0
(z) uniformly on compact

subsets of Cn. Again, note that the linear map φζ1 takes the real tangent plane Tζ(∂Ω) to

{z ∈ Cn : Re zn = 0}. Since φζ1 takes the point ζ to the origin, now the normal to the boundary

at the origin is along Re zn-axis. Observe that the remaining two maps φζ2 and φζ3 do not alter
the real tangent plane or the normal at the origin. Hence the biholomorphism hζ takes the real
normal ηζ to ∂Ω at p0 into the real normal line {′z = yn = 0} to ∂Dζ at the origin.

7.2.2 Scaling of the domain

By strong pseudoconvexity, shrinking U if necessary, there exist local holomorphic coordinates
z1, . . . , zn on U in which p0 = 0, and

ρ(z) = 2 Re zn + |′z|2 + o
(

Im zn, |′z|2
)
, z ∈ U, (7.7)

and a constant 0 < r < 1 such that

U ∩D ⊂ Ω :=
{
z ∈ Cn : 2 Re zn + r|′z|2 < 0

}
. (7.8)

Henceforth, we will be working in the above coordinates, and with U, ρ and p0 as above.
Let us consider a sequence of points pj in D that converges to p0 = 0 on ∂D. For j sufficiently

large, and without loss of generality we assume that for all j, pj ∈ U and there exists a unique
ζj ∈ ∂D∩U that is closest to pj . Define δj := d(pj , ∂D) = |pj − ζj |. Note that ζj → p0 = 0 and

δj → 0 as j →∞. For each ζj , denote by hj the map hζ
j

given by Lemma 7.2.1. Denoting φζ
j

i

by φji for j = 1, 2, 3, we have hj = φj1 ◦ φ
j
2 ◦ φ

j
3. Also set ρj = ρζ

j
. Then by Lemma 7.2.1, near

the origin,

ρj(z) = 2 Re
(
zn +Kj(z)

)
+Hj(z) + o

(
|z|2
)
,

where Kj = Kζj and Hj = Hζj . Moreover, thanks to the strong pseudoconvexity of ∂D near
p0 = 0, shrinking U if necessary and taking a smaller r in (7.8), we have

hj(U ∩D) ⊂ Ω (7.9)

for all large j. Note that by Theorem 1.0.4, it is enough to prove Theorem 1.0.7 for the domain
U ∩D, shrinking U if necessary. Set Dj = hj(U ∩D), qj = hj(p

j), and ηj = d(qj , ∂Dj).
Now consider the anisotropic dilation map Λj : Cn → Cn defined by

Λj(z) =

(
z1√
ηj
, . . . ,

zn−1√
ηj
,
zn
ηj

)
. (7.10)

Set D̃j = Λj(Dj) = Λj ◦hj(U ∩D). We will call the maps Sj := Λj ◦hj the scaling maps and the

domains D̃j = Sj(U ∩D) the scaled domains. Note that since Sj(p
j) = Λj ◦ hj(pj) = (′0,−1),

each D̃j contains the point (′0,−1) and we will denote this point by b∗. A defining function for
D̃j near the origin, is given by

ρ̃j(z) =
1

ηj
ρj
(
Λ−1
j (z)

)
= 2 Re

(
zn +

1

ηj
Kj

(
Λ−1
j (z)

))
+

1

ηj
Hj

(
Λ−1
j (z)

)
+ o
(
η

1/2
j |z|

2
)
.
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Since Kj(z) and Hj(z) satisfy condition (c) of Lemma 7.2.1, it follows that

lim
j→∞

1

ηj
Kj(Λ

−1
j z) = 0 and lim

j→∞

1

ηj
Hj(Λ

−1
j z) = |′z|2

in C2-topology on compact subsets of Cn. Evidently, as ηj → 0, we have o(η
1/2
j |z|2) → 0 as

j → ∞ in C2-topology on any compact set of Cn. Thus, the defining functions ρ̃j converge in
C2 topology on compact subsets of Cn to

ρ∞(z) = 2 Re zn + |′z|2.

Hence our scaled domains D̃j converge in the local Hausdorff sense to the Siegel upper half-space

D∞ =
{
z ∈ Cn : 2 Re zn + |′z|2 < 0

}
.

7.3 A Ramanadov type theorem and stability results

In this section, we will establish the stability results for the quantities associated to the Kobayashi–
Fuks metric whose boundary asymptotics will be computed in the later sections. First we state
a stability result for the Bergman kernel along with its partial derivatives under a specific per-
turbation of domains, generally known as a Ramanadov type result. The majority of content
of this section can be found in [7] with some more details and we include it here for reader’s
convenience.

Let G be a domain in Cn. For q ∈ Cn, G − q will denote the domain that is the the image
of G under the translation v 7→ v− q. Similarly, for r > 0, rG will denote the image of G under
the map v 7→ rv.

Proposition 7.3.1. Let Gj be a sequence of domains in Cn converging to a domain G in Cn
in the following manner:
(i) any compact set of G is eventually contained in each Gj ,
(ii) there exists a common interior point q of G and all Gj , such that for every ε > 0 there exists
jε ∈ N satisfying

Gj − q ⊂ (1 + ε)(G− q), for all j ≥ jε.
Assume further that G is star-convex with respect to q and KG is non-vanishing on the diagonal.
Then KGj → KG uniformly on compact subsets of G together with all the partial derivatives.

A proof of the above proposition can be found in [1]. We now derive a stability result for
the Bergman kernel and its derivatives under Pinchuk’s scaling. First note that the Cayley
transform Φ defined by

Φ(z1, . . . , zn) =

( √
2z1

zn − 1
, . . . ,

√
2zn−1

zn − 1
,
zn + 1

zn − 1

)
(7.11)

is a biholomorphism that maps D∞ onto Bn. The following properties of the map Φ can also be
checked by a routine calculation: Φ is a biholomorphism of its domain

DΦ := Cn \ {z : zn = 1}

onto itself with Φ−1 = Φ. The domain Ω defined in (7.8) is mapped by Φ onto the bounded
domain

Φ(Ω) = {z ∈ Cn : r|′z|2 + |zn|2 < 1}. (7.12)
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Lemma 7.3.2. For any multi-index α = (α1, . . . , αn) and β = (β1, . . . , βn),

∂|α|+|β|

∂zα∂zβ
KD̃j

(z)→ ∂|α|+|β|

∂zα∂zβ
KD∞(z)

uniformly on compact subsets of D∞, as j →∞.

Proof. We have seen, by (7.9), that Ω contains Dj for all sufficiently large j. The domain Ω
can also be checked to be invariant by the dialation maps Λj . Therefore, Ω contains D̃j for all
sufficiently large j. Again it can be easily observed that, since c < 1, Ω contains D∞. We claim
that Φ(D̃j) converge to Φ(D∞) = Bn in the way required by the hypothesis of Proposition 7.3.1
with q = 0.

Indeed, first note that if S is a compact subset of Φ(D∞), then Φ−1(S) is a compact subset of
D∞. Since D̃j → D∞ in the local Hausdorff sense, Φ−1(S) is contained in D̃j for all sufficiently
large j, which in turn implies that S is contained in Φ(D̃j) for all sufficiently large j. Next, if
possible, assume that the second condition in the hypothesis of Proposition 7.3.1 is not satisfied
with q = 0. Then there exists an ε > 0, a subsequence of Φ(D̃j) (which we relabel as Φ(D̃j)
itself) and ξj ∈ Φ(D̃j) such that ξj lies outside (1 + ε)Φ(D∞) = B(0, 1 + ε). Therefore

|ξj | ≥ 1 + ε. (7.13)

Since Φ(D̃j) ⊂ Φ(Ω) for all large j, the sequence {ξj} is bounded and hence after passing to a

subsequence, ξj → ξ for some ξ ∈ Φ(Ω). This, in particular, implies that

|ξn|2 + r|′ξ|2 ≤ 1 and |ξ| ≥ 1 + ε. (7.14)

The first inequality above follows from (7.12) and the second one is obtained taking limit in
(7.13). The inequalities in (7.14) together ensure that ξn 6= 1, i.e., ξ ∈ DΦ. Therefore it follows
Φ−1(ξj) → Φ−1(ξ), as j → ∞. Since Φ−1(ξj) ∈ D̃j , we have ρ̃j

(
Φ−1(ξj)

)
< 0 for all large j,

and hence ρ∞
(
Φ−1(ξ)

)
≤ 0. This implies Φ−1(ξ) ∈ D∞ and hence ξ ∈ Φ(D∞) = Bn, which

contradicts the fact that |ξ| ≥ 1 + ε. This proves our claim.
Therefore, by Proposition 7.3.1, KΦ(D̃j)

(z) converges to KΦ(D∞)(z) uniformly on compact

subsets of Φ(D∞), together with all partial derivatives. Now, applying the transformation rule
of the Bergman kernel, our result follows immediately.

Proposition 7.3.3. For z ∈ D∞ and u ∈ Cn \ {0}, we have

gB̃,D̃j (z)→ gB̃,D∞(z), τB̃,D̃j (z, u)→ τB̃,D∞(z, u) and RicB̃,D̃j (z, u)→ RicB̃,D∞(z, u)

as j →∞. Moreover, the first convergence is uniform on compact subsets of D∞ and the second
and third convergences are uniform on compact subsets of D∞ × Cn.

Proof. Since the Kobayashi–Fuks metric on the domain D has Kähler potential log(Kn+1
D gB,D),

i.e.,

gB̃,D
αβ

=
∂2 log(Kn+1

D gB,D)

∂zα∂zβ
,

all that is required is to show that

Kn+1
D̃j

gB,D̃j → Kn+1
D∞

gB,D∞

uniformly on compact subsets of D∞, together with all derivatives. But this is an immediate
consequence of the fact that KD̃j

→ KD∞ together will all derivatives on compact subsets of

D∞, which is precisely Lemma 7.3.2.
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7.4 Boundary asymptotics in higher dimensions

We are now ready to compute the boundary asymptotics of the Kobayashi–Fuks metric on
smoothly bounded strongly pseudoconvex domains. Recall that Sj = Λj ◦ hj , Sj(U ∩D) = D̃j ,
and Sj(p

j) = b∗ = (′0,−1). Denoting the matrix of a linear map by itself, we have

S′j(p
j) = Λjh

′
j(p

j) = Λj · φj3 · (φ
j
2)′
(
φj1(pj)

)
· (φj1)′(pj). (7.15)

Note that from the definition of φj1,

(φj1)′(pj) =



∂ρ

∂zn
(ζj) 0 · · · 0 − ∂ρ

∂z1
(ζj)

0
∂ρ

∂zn
(ζj) · · · 0 − ∂ρ

∂z2
(ζj)

...
...

. . .
...

...

0 0 · · · ∂ρ

∂zn
(ζj) − ∂ρ

∂zn−1
(ζj)

∂ρ

∂z1
(ζj)

∂ρ

∂z2
(ζj) · · · ∂ρ

∂zn−1
(ζj)

∂ρ

∂zn
(ζj)


. (7.16)

Also, since

pj = ζj − δj
∇zρ(ζj)∣∣∇zρ(ζj)

∣∣ , (7.17)

we have
φj1(pj) =

(
′0,−δj

∣∣∇zρ(ζj)
∣∣). (7.18)

Therefore, from the definition of φj2, we have

(φj2)′
(
φj1(pj)

)
= In.

Finally, recall that φj3(z) =
(
Aj(′z), zn

)
, where Aj := Aζ

j
: Cn−1 → Cn−1 are linear maps

satisfying Aj → In−1. Therefore,

φj3 =

[
Ajp,q 0

0 1

]
,

where Ajp,q are the entries of the matrix of Aj . Thus,

h′j(p
j) =



Aj1,1
∂ρ

∂zn
(ζj) · · · Aj1,n−1

∂ρ

∂zn
(ζj) −

n−1∑
ν=1

Aj1,ν
∂ρ

∂zν
(ζj)

... · · ·
...

...

Ajn−1,1

∂ρ

∂zn
(ζj) · · · Ajn−1,n−1

∂ρ

∂zn
(ζj) −

n−1∑
ν=1

Ajn−1,ν

∂ρ

∂zν
(ζj)

∂ρ

∂z1
(ζj) · · · ∂ρ

∂zn−1
(ζj)

∂ρ

∂zn
(ζj)


→ In (7.19)

in the operator norm.
We also note that as φj2 and φj3 fix points on the Re zn-axis, we have from (7.18),

qj = hj(p
j) =

(
′0,−δj

∣∣∇zρ(ζj)
∣∣).
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As the normal to ∂Dj at 0 is the Re zn-axis and ηj = d(qj , ∂Dj), we have ηj = δj |∇zρ(ζj)| and
hence

lim
j→∞

ηj
δj

= 1. (7.20)

Now recall that the Cayley transform Φ defined in (7.11) is a biholomorphism between D∞
and Bn. Also note that b∗ = (′0,−1) ∈ D∞, Φ(b∗) = 0, and

Φ′(b∗) = −diag{1/
√

2, . . . , 1/
√

2, 1/2}. (7.21)

We now present the proof of Theorem 1.0.7.

Proof of Theorem 1.0.7. Note that by the localization result Theorem 1.0.4, it is enough to
compute the asymptotics for the domain U ∩D.

(i) By invariance of the Kobayashi–Fuks metric,

τB̃,U∩D(pj , u) = τB̃,D̃j

(
b∗, S′j(p

j)u
)
.

Note that
S′j(p

j)u = Λj
(
h′j(p

j)u
)

=
(
η
−1/2
j

′(h′j(pj)u), η−1
j

(
h′j(p

j)u
)
n

)
,

and so by (7.19),
ηjS

′
j(p

j)u→ (′0, un)

uniformly in unit vectors u. Therefore, by Proposition 7.3.3,

lim
j→∞

δj τB̃,U∩D(pj , u) = lim
j→∞

δj
ηj
τB̃,D̃j

(
b∗, ηjS

′
j(p

j)u
)

= τB̃,D∞
(
b∗, (′0, un)

)
uniformly in unit vectors u. Now, all that is required is to compute the right hand side using the
Cayley transform Φ from (7.11), its derivative from (7.21), and the transformation rule. Thus,

τB̃,D∞
(
b∗, (′0, un)

)
= τB̃,Bn

(
0,
(
′0,−un

2

))
=

1

2

√
(n+ 1)(n+ 2)|un|,

where the last equality follows from Proposition 5.1.1, and this proves (i).
(ii) For brevity, we write uj = uH(pj) and u0 = uH(p0). By invariance of the Kobayashi–Fuks

metric,

τB̃,U∩D
(
pj , uH(pj)

)
= τB̃,D̃j

(
b∗, S′j(p

j)uj
)
.

Note that, since uj ∈ Hqj (∂D), we have from (7.19)

h′j(p
j)uj = (vj1, . . . , v

j
n−1, 0),

where

vjl =

n−1∑
ν=1

Ajl,ν

(
ujν

∂ρ

∂zn
(ζj)− ujn

∂ρ

∂zν
(ζj)

)
, l = 1, . . . , n− 1.

Therefore,

S′j(p
j)uj = Λj

(
h′j(p

j)uj
)

=

(
vj1√
ηj
, . . . ,

vjn−1√
ηj
, 0

)
.
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Observe that vjl → u0
l and the convergence is uniform on unit vectors u and so

√
ηjS

′
j(p

j)uj →
(
u0

1, . . . , u
0
n−1, 0

)
and this convergence is also uniform in unit vectors u. Hence, by Proposition 7.3.3,

√
δjτB̃,U∩D

(
pj , uH(pj)

)
=

√
δj
ηj
τB̃,D̃j

(
b∗,
√
ηjS

′
j(p

j)uj
)
→ τB̃,D∞

(
b∗, (′u0, 0)

)
uniformly in unit vectors u. Again, using the Cayley transform Φ from (7.11) and its derivative
from (7.21), the transformation rule gives

τB̃,D∞
(
b∗, (′u0, 0)

)
= τB̃,Bn

(
0,

(
−
′u0

√
2
, 0

))
=

√
1

2
(n+ 1)(n+ 2)|′u0|2,

by Proposition 5.1.1. This proves (ii) once we observe from (7.7) that Lρ
(
p0, uH(p0)

)
= |′u0|2.

(iii) By the transformation rule for the Kobayashi–Fuks metric, we have

gB̃,U∩D(pj) = gB̃,D̃j (b
∗)
∣∣detS′j(p

j)
∣∣2. (7.22)

Note that
detS′j(p

j) = det Λj deth′j(p
j) = η

−(n+1)/2
j deth′j(p

j),

and so by (7.19),
ηn+1
j | detS′j(p

j)|2 → 1.

Therefore,

δn+1
j gB̃,U∩D(pj) =

(
δj
ηj

)n+1

gB̃,D̃j (b
∗)ηn+1

j

∣∣detS′j(p
j)
∣∣2 → gB̃,D∞(b∗).

As before, using the Cayley transform Φ from (7.11) and its derivative from (7.21), we obtain
from the transformation rule,

gB̃,D∞(b∗) = gB̃,Bn(0) |det Φ′(b∗)|2 =
(n+ 1)n(n+ 2)n

2n+1
,

by Proposition 5.1.1. This completes the proof of (iii), and the theorem.

7.5 Existence of closed geodesics with prescribed homotopy class

This section can be considered as an application of studying the boundary behavior of invariant
metrics on strongly pseudoconvex domains. The aim here is to prove Theorem 1.0.8. This result
is motivated by a theorem of Herbort [28, Theorem 1.2] on the existence of closed geodesics for
the Bergman metric on strongly pseudoconvex domains, given by:

Theorem 7.5.1 (Herbort, [28, Theorem1.1]). Let G ⊂ RN be a bounded domain such that
π1(G) is nontrivial and the following conditions are satisfied:

(i) For each p ∈ G there is an open neighborhood U ⊂ Rn, such that the set G ∩ U is simply
connected.
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(ii) The domain G is equipped with a complete Riemannian metric g which possesses the fol-
lowing property:

(P) For each S > 0 there is a δ > 0 such that for every point p ∈ G with d(p, ∂G) < δ
and every X ∈ Rn, g(p,X) ≥ S‖X‖2.

Then every nontrivial homotopy class in π1(G) contains a closed geodesic for g.

Proof of Theorem 1.0.8. We will show that both the conditions in Theorem 7.5.1 hold for G = D
and g = ds2

B̃,D
. By the smoothness of ∂D, it is evident that condition (i) is satisfied. For

condition (ii), note that we have the following relation as given in (5.8),

τB̃,D(z, u) = τB,D(z, u)
√
n+ 1− RicB,D(z, u)

for every z ∈ D and u ∈ Cn. Again using the fact that RicB,D(z, u) approaches −1 near the
boundary of a strongly pseudoconvex domain (see for example [36]), there exists C = C(D) > 0
such that

τB̃,D(z, u) ≥ CτB,D(z, u) (7.23)

for z near the boundary of D and unit vectors u. As both the Bergman and Kobayashi–Fuks
metrics are Kähler, this relation also holds for z on any compact subset of D and unit vectors
u. Thus (7.23) holds for all z ∈ D and u ∈ Cn. This has the following two consequences.
Firstly, since the Bergman metric dominates the Carathéodory metric on bounded domains (see
Hahn [27]) and the Carathéodory metric is complete on strongly pseudoconvex domains, (7.23)
implies that the Kobayashi–Fuks metric on D is complete. Secondly, as the Bergman metric
on D satisfies property (P) which was observed in the proof of Theorem 1.2 in [28], (7.23) also
implies that the Kobayashi–Fuks metric on D satisfies property (P) as well, and hence condition
(ii) holds. This completes the proof of the theorem.



Chapter 8

Future research plans on the
Kobayashi–Fuks metric

Problem 8.0.1. One can try to derive the localization results for the holomorphic sectional
curvature as well as the Ricci curvature of the Kobayashi–Fuks metric near local holomorphic
peak points of bounded pseudoconvex domains in higher dimension. As a result of which, we can
find out the boundary asymptotics for the associated holomorphic sectional curvature and the
Ricci curvature on bounded strongly pseudoconvex domains in Cn. Note that we have already
established the required localization in dimension one, in which case both the stated curvatures
coincide with the Gaussian curvature.

The approach in this direction would be to first express the holomorphic sectional curvature
(similarly, the Ricci curvature) in terms of some cleverly chosen maximal domain functions in
higher dimension. Then we try to localize all the domain functions involved using Hörmander’s
solution of certain weighted ∂̄-problem. In this step, one might need to derive some monotonicity
results for the quantities related to the Kobayashi–Fuks metric.

Here one of the issues will be the complexity of computations. Since the expression of the
Kobayashi–Fuks metric involves computing certain determinant and its partial derivatives, on
the top of that finding associated curvatures require computing even higher derivatives. Hence
the computations become huge! Certain tricks like Jacobi’s formula might be incorporated
somehow to reduce the calculations in finding the partial derivatives of the determinant.

Problem 8.0.2. The boundary behavior of the Kobayashi–Fuks metric and its related invariants
can be found out on more general class of pseudoconvex domains, for example – Levi corank one
domains and h-extendible domains.

The first step in this direction would be to implement the scaling technique on respective
domains for converting the boundary problem into interior problem. But in this step, estab-
lishing the inner-stability results under the scaling might be an issue, as we do not have a clear
generalization of Ramanadov type stability result for general pseudoconvex domains. So one
might look for some other machinery to settle issues related to the stability results.

Problem 8.0.3 (Existence of geodesic spirals for the Kobayashi–Fuks metric). Herbort [28]
showed that – If D is a strongly pseudoconvex domain in Cn such that the universal covering
D̃ of D is infinitely sheeted, then for each point z0 ∈ D which does not lie on a closed geodesic
there exists a geodesic spiral for the Bergman metric passing through z0.

Since the Kobayashi–Fuks metric is closely related to the Bergman metric, it would be
interesting to find such a result for the Kobayashi–Fuks metric.

61
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Problem 8.0.4 (L2-cohomology of the Kobayashi–Fuks metric). Let D be a smoothly bounded
pseudoconvex domain in Cn. We denote the space of square integrable harmonic (p, q) forms
associated to the Bergman metric by H

p,q
2 (D). Donnelly and Fefferman [16] proved the following

(see also [17]):

Theorem 8.0.5. If D is strongly pseudoconvex, then

dimH
p,q
2 (D) =

{
0, if p+ q 6= n,

∞, if p+ q = n.

One can definitely ask whether similar statement holds true if we replace the space of square
integrable harmonic (p, q) forms associated to the Bergman metric by that of the Kobayashi–
Fuks metric. Using similar tools as in the proof of Theorem 8.0.5, we are hopeful to get an
affirmative answer to the above question.

Problem 8.0.6. Consider a line bundle L over a complex manifold M . Let D be a relatively
compact domain in M and consider sections of L over D. The Bergman metric can be defined
for this collection of sections (assuming there are plenty of them). So can the Kobayashi–Fuks
metric. It would be interesting to have versions of all the results we have obtained on the
Kobayashi–Fuks metric in this setting.



Bibliography

[1] G. P. Balakumar, Diganta Borah, Prachi Mahajan, and Kaushal Verma, Remarks on the higher dimensional
Suita conjecture, Proc. Amer. Math. Soc. 147 (2019), no. 8, 3401–3411.

[2] Theodore J. Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980), no. 4,
556–558.

[3] Eric Bedford and Sergey Pinchuk, Domains in Cn+1 with noncompact automorphism group, J. Geom. Anal.
1 (1991), no. 3, 165–191.

[4] Harold P. Boas, Emil J. Straube, and Ji Ye Yu, Boundary limits of the Bergman kernel and metric, Michigan
Math. J. 42 (1995), no. 3, 449–461.

[5] Diganta Borah and Debaprasanna Kar, Boundary behavior of the Carathéodory and Kobayashi-Eisenman
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