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Abstract

The main theme of the thesis is the study of the depth and genericity of representations
of a p-adic group. This thesis is divided into two parts. In the local Langlands
correspondence(LLC), irreducible representations of the group G(F) of F-points of a
reductive group G defined over a non-archimedean local field F are expected to be
parametrized by arithmetic objects called Langlands parameters in a natural way. One
can attach a numerical invariant, namely the ‘depth’ to each side of LLC. We will show
that for a wildly ramified induced torus, in general the depth is not preserved under LLC
for tori. In the second part, we will discuss the principal series component of Gelfand-
Graev representations of G(F). We describe the component in terms of principal series
Hecke algebra.

xii



Notation

F : a field
F

◊ : F \ {0}
F : an algebraic closure of the field F

F
sep : separable closure of the field F in F

Z : the set of all integers
Q : the set of all rational numbers
R : the set of all real numbers
RØ0 : the set of all non-negative real numbers
C : the set of all complex numbers
Fq : finite field with q elements
≥=: isomorphism
G : a connected reductive algebraic group defined over the field F

G(F ) : the group of F - points of the algebraic group G defined over F

Gm : multiplicative algebraic group
Ga : additive algebraic group
ZG(g) : centralizer of an element g in the group G

Z(G) : center of the group G

(G : H) : index of the subgroup H in the group G

Aut (V ) : group of all automorphisms of V

GL(V ) or GLn(F ) : general linear group

1
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SL(V ) or SLn(F ) : special linear group
GSp2n(F ) : general symplectic group
[L : F ] : the degree of the finite field extension L/F

Gal (L/F ) : the Galois group of a Galois field extension L over F

Card(A) : cardinality of the set A

lim≠æ, limΩ≠ : direct limit and inverse limit respectively
: end of a proof



1
Introduction

Let F be a non-archimedean local field and WF be the Weil group of F with respect to a
fixed seperable closure F

sep of F . For any Galois extension L/F in F
sep, we have the upper

numbering filtration {Gal(L/F )u}uØ0 of the Galois group Gal(L/F ) of the extension
L/F (see [Ser, Chap. IV]). If H is any subgroup of the Galois group Gal(L/F ), then
in Proposition 10, we will show that the upper numbering filtration subgroups {H

u}uØ0

satisfy the following intersection property:

Gal(L/F )u fl H = H
Â

L/LH (u) for all u Ø 0 (1.1)

where L
H is the fixed field of H in L and ÏL/LH is the classical Hasse-Herbrand function

of the extension L/L
H , whose inverse is denoted by ÂL/LH . So, we have an upper

numbering filtration subgroups {W
r

F
}rØ0 of the Weil group WF . Parallelly, we have

a natural filtration {F
◊
r

}rØ0 of the multiplicative group F
◊ defined by

F
◊
r

:= {x œ F
◊ | valF (x ≠ 1) Ø r},

where valF is the normalized valuation of F so that valF (F ◊) = Z.
The central result of local class field theory provides us a cononical isomorphism

· : F
◊ ≥≠æ W

ab

F
between the multiplicative group F

◊ of F and the abelianization of the
Weil group WF . This gives a bijection

⁄Gm
: Irr(F ◊) ≥≠æ Hom(WF , C◊) (1.2)

3



4

between the characters of F
◊ and the characters of WF . Moreover, the isomorphism ·

respects the numbering on the filtration subgroups that means F
◊
r

≥= (W r

F
)ab.

The local Langlands correspondence is a family of conjectures that stipulates a vast
generalization of the local class field theory isomorphism ⁄Gm

mentioned in Eq. (1.2).
Let G be a connected reductive algebraic group defined over F and G(F ) be the group
of F -points of G. Let G‚(C) be the complex dual of G(F ) and W

Õ
F

be the Weil-Deligne
group WF ◊ SL2(C). A Langlands parameter for G(F ) is a homomorphism „ : W

Õ
F

æ
G‚(C) o WF , which are admissible as defined in [Bor1, §8.2]. Let Irr(G(F )) be the
set of isomorphism classes of irreducible smooth complex representations of G(F ) and
�(G(F )) be the set of G‚(C)-conjugacy classes of Langlands parameters for G(F ). The
local Langlands correspondence(LLC) for G(F ) expects that irreducible representations
in Irr(G(F )) can be parametrized by Langlands parameters in �(G(F )) in a natural way.
In particular, the correspondence predicts the existance of a finite to one surjection map

⁄G : Irr(G(F )) æ �(G(F )), (1.3)

which satisfies some conditions mentioned in [Bor1, §10].

Here we are assuming that G(F ) admits a local Langlands correspondence ⁄G. One
can attached a numerical invariant namely the depth to each side of the LLC ⁄G in
the following way. Let B(G, F ) be the Bruhat-Tits building of G defined over F .
In [MP3, MP4], Moy and Prasad defined the depth dep(fi) of an irreducible smooth
complex representation (fi,Vfi) of G(F ) in terms of filtration subgroups {G(F )x,r}rØ0 of
the parahoric subgroup G(F )x,0 for each x œ B(G, F ) by

dep(fi) := inf{r œ RØ0 | ÷ x œ B(G, F ) with VG(F )x,r+
fi

”= 0},

where G(F )x,r+ = fis>rG(F )x,s. Also, for each „ œ �(G(F )), one can define the notion
of depth dep(„) of „ by the smallest number dep(„) Ø 0 such that „ is trivial on W

r

F
for

all r > dep(„).

Now one fundamental question arises that if „ associates to fi under LLC, can we
expect that the depth will be preserved by LLC, that is

dep(fi) = dep(„) if fi œ �„ (1.4)
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where �„ µ Irr(G(F )) is the L-packet of „ œ �(G(F )) defined by the preimage of „

under ⁄G. Though, on each side of LLC the depth is defined in di�erent ways but it
has been observed that the depth is preserved in many situations. To be more specific,
when G is GLn and its inner form, in [ABPS1] Aubert et. all observed that the depth
is preserved under the correspondence ⁄G. Also for inner forms of SLn, they showed
in [ABPS1, Theorem 3.8] that the LLC preserves the depth for essencially tame Langlands
parameters. In [Gan, §10], Ganapathy showed that LLC for GSp4(F ) preserves depth.
When the residue field characteristic is large enough, M. Oi showed in [Oi2, Oi1] that
the depth is preserved under LLC for the unitary groups and for the quasi-split classical
groups. When G is a tamely induced torus T = r

k

i=1 ResLi/F Gm, Yu proved the equality
(1.4) in [Yu2, Theorem 7.10].

However, for certain classical octahedral representation of SL2(Q2), Reeder showed
that depth will not be preserved under LLC (see [ABPS1, Example 3.5]). Other counter
examples for the equality (1.4) have been constructed for inner forms of SLn(F ) [ABPS1]
and in the case of SL2(F ), when F has characteristic 2 (see [AMPS]).

In this spirit, we will investigate the depth under local Langlands correspondece for
wildly ramified induced tori. Now consider the induced F -torus T = ResF Õ/F Gm, where
F

Õ is a finite separable extension of F and ResF Õ/F denotes the Weil-restriction over F
Õ
/F

. Let ⁄T : Irr(T(F )) æ �(T(F )) be the local Langlands correspondence for torus T,
which is a bijective map in this case. In Theorem 32, we show that ÏF Õ/F (e · dep(‰)) =
dep(⁄T(‰)) for ‰ œ Irr(T(F )), where ÏF Õ/F is the Hasse-Herbrand function and e is the
ramification index of the extension F

Õ
/F . Thus for all postitive depth characters ‰ of

T(F ), we have dep(⁄T(‰)) Ø dep(‰). In particular, when F
Õ
/F is a wildly ramified

extension, we have dep(⁄T(‰)) > dep(‰) and when F
Õ
/F is a tamely ramified extension,

dep(⁄T(‰)) = dep(‰). When T is a tamely induced wildly ramified torus (see Sec.
6.5.1), we show that T(F ) admits characters for which depth is not preserved under
LLC. In Section 6.5.2, we compute Hasse-Herbrand function for a certain wildly ramified
extension of a cyclotomic field to illustrate the failure of depth preservation.

In the second part of this thesis, we will discuss about the principal series component of
Gelfand-Graev representation (in short GGR) of G(F ), where G is a connected reductive
algebraic group defined over a non-archimedean local field F with its F -points group
G(F ). Whenever H is a (Zariski-) closed subgroup of the group G defined over F , we
will denote the group of F -points of H by H(F ). Fix a minimal F -parabolic subgroup
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B = TU of G with unipotent radical U and whose Levi factor T contains a maximal
F -split torus S of G. Then, T(F ) acts on the space \U(F ) of all smooth characters
Â : U(F ) æ C◊ of U(F ) via

t · Â = Â
t : x ‘æ Â(txt

≠1) for t œ T(F ) and Â œ \U(F ).

A smooth character Â : U(F ) æ C◊ of U(F ) is called non-degenerate (a.k.a. generic) if
the stabilizer in S(F ) lies in the center of the group G(F ). We take a generic character Â

of U(F ) and consider the induced representation c-indG(F )
U(F )(Â) realized by the functions

whose support is compact mod U(F ).
Let R(G(F )) denote the category of all smooth complex representations of G(F )

and B(G(F )) be the set of inertial equivalence classes of cuspidal pairs in G(F ). To
each class s œ B(G(F )), Bernstein attached a full subcateory Rs(G(F )) of the category
R(G(F )) such that R(G(F )) is the direct product of these subcategories. Through this
decomposition, the induced representation c-indG(F )

U(F )(Â) decomposed into the direct sum
of certain representations c-indG(F )

U(F )(Â)s œ Rs(G(F )) for s œ B(G(F )). Bushnell and
Henniart showed in [BH, Theorem 4.2] that the Bernstein component c-indG(F )

U(F )(Â)s is
finitely generated over G(F ) for each s œ B(G(F )). Our purpose is to give a refinement
of this finiteness result of Bushnell and Henniart for principal series components. The
refinement results can be stated as follows:

(A) Let ⁄ be a smooth character of T(F ). Then the pair (T(F ), ⁄) determines an
inertial equivalence class sÕ := [T(F ), ⁄]G(F ) in B(G(F )) , which gives a Bernstein
block RsÕ(G(F )) in the category R(G(F )). Bushnell-Kutzko types are known to
exist for Bernstein blocks under suitable residue characteristic hypothesis [Fin,KY].
Let (K, fl) be a sÕ-type in G(F ) and H(G(F ), fl) is the Hecke algebra associated
to the pair (K, fl). Then the Bernstein component c-indG(F )

U(F )(Â)sÕ is generated by
the fl-isotypical component (c-indG(F )

U(F )(Â))fl of the representation c-indG(F )
U(F )(Â). In

Theorem 40, we will show that the fl-isotypical component (c-indG(F )
U(F )(Â))fl is a

cyclic H(G(F ), fl)-module.

(B) Now assume that T is split and Â is a non-degenerate character of U(F ) of generic
depth-zero (see §7.5 for definition). If ⁄ ”= 1, then assume further that the group G
has connected center. In that case, H(G(F ), fl) will be an Iwahori-Hecke algebra.
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It contains a finite subalgebra HW⁄
. The algebra HW⁄

has a one dimensional
representation sgn. In Theorem 43, we will show that as H(G(F ), fl)-module, the
fl-isotypic component (c-indG(F )

U(F )(Â))fl is isomorphic to H(G(F ), fl) ¢HW
⁄

sgn.

For positive depth character ⁄ of T(F ), Theorem 43 assumes that characteristic of F is
0 and the residue characteristic of F is not too small. Then, Theorems 40 and Theorem 43
generalize the main result of Chan and Savin in [CS] who treat the case ⁄ = 1 for T split,
i.e., unramified principal series blocks of split groups. Our proofs benefit from the ideas
in [CS]. However they are quite di�erent. The existence of a generator in (c-indG(F )

U(F )(Â))fl

is concluded by specializing quite general results in [BH, BK]. For Theorem 43, instead
of computing the e�ect of intertwiners on the generator as in [CS], we make a reduction
to depth-zero case i.e., we will show that if the result holds for depth-zero characters ⁄,
then it holds for positive depth characters also under the above conditions. Then the
depth-zero situation can be reduced to a finite group analogue of the question. There it
holds by a result in [Ree, §7.2] of Reeder .

Structure of the thesis:

In Part I, we first recall some preliminaries such as local fields (in §2.1), the Weil group
(in §2.3), ramification groups (in §2.4), structure of root subgroups (in §3.4), Bruhat-
Tits buildings of G(F ) (in §3.5), Moy-Prasad filtration of G(F ) (in §3.6), Bernstein
decomposition (in §4.1), Hecke algebra (in §4.2), and the notion of types (in §4.3).

In Part II, we will start with the investigation of the depth under induction and
Shapiro’s isomorphism. In section 5.1 and 5.2 , we will give depth-comparison results
for induction and Shapiro’s isomorphism respectively using the Hasse-Herbrand function.
Then, in Chapter 6, we will review the statement of the local Langlands correspondence
for tori and there, we investigate the depth under LLC for induced tori by proving
Theorem 32. Moreover, in section 6.6, we will mention a recent work [AP] of Aubert
and Plymen, who have generalized our Theorem 32 by giving a depth comparison result
under the enhanced local Langlands correspondence for the Weil restricted groups.

In Part III, we will study about Gelfand-Graev representations of a p-adic group
G(F ). In section 7.3, we show that the fl-isotypical component of a Gelfand-Graev
representation of G(F ) is a cyclic Hecke algebra module (in Theorem 40). In section
7.4, we will briefly discuss about the principal series Hecke algebra as constructed by
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Roche in [Roc]. In section 7.5, we will conclude the thesis by proving Theorem 43 about
principal series component of Gelfand-Graev representation.



Part I

Preliminaries

9





2

Basic Theory

2.1 Local Fields

Let F be a non-archimedean local field with respect to a (non-trivial) discrete valuation
valF : F æ R fi {Œ} defined on it. The discrete valuation valF determines a topology
on the field F such that F is complete with respect to that topology. For example, the
completion Qp of the set Q of rational numbers with respect to the p-adic valuation, the
field Fp((t)) of formal power series over the finite field Fp and any finite extension of Qp

or, Fp((t)) are non-archimedean local fields, where p is a prime number.
We write OF := {x œ F | valF (x) Ø 0} for the valuation ring (a.k.a. ring of integers)

of F with it’s unique maximal ideal PF := {x œ F | valF (x) > 0} and ÈF for a
uniformizer. Let kF be the residue field OF /PF of F . Since F is a local field, kF is a
finite field, say Fq with cardinality q equal to p

r for some natural number r, where the
characteristic of kF is the prime number p.

2.2 Unramified and Ramified extensions:

Fix an algebraic closure F of the local field F . Throughout this thesis, we will assume
every field extension of F to be contained in F . Consider a degree n field extension
E/F , where F µ E are local fields. Then the valuation valF of F can be extended

11



12 2.2. Unramified and Ramified extensions:

uniquely to a valuation valE of E. Let OE,PE and kE respectively denote the ring of
integers, the unique maximal ideal and the residue field of E. Then we have the inclusions
valF (F ◊) µ valE(E◊) and kF µ kE. The ramification index of the finite extension E/F

is defined by the index eE/F :=
1
valE(E◊) : valF (F ◊)

2
and the inertia degree of the

extension E/F is defined by the degree fE/F := [kE : kF ] of the residue field extension
kE/kF .

Definition 1 (Unramified Extension). A finite extension E/F is called unramified
extension if the corresponding residue field extension kE/kF is separable and the degrees
of the field extensions E/F and kE/kF are equal, i.e. [E : F ] = [kE : kF ].

Let L/F is an algebraic extension and as before we denote the corresponding invariant
as OL,PL and kL respectively. Then the extension L/F is said to be unramified extension
if it is the union of finite unramified subextensions. It is an well known fact that
the composite of any two unramified extensions of F is again an unramified extension.
Consider the maximal unramified subextension L

ur
/F of L/F , which is the composition

of all unramified subextensions in L/F . Then the residue field of L
ur is the separable

closure k
sep

F
of kF in the residue field extension kL/kF of L/F

Definition 2 (Ramified Extension). (i) An algebraic extension L/F is said to be
purely ramified if L

ur = F .

(ii) An algebraic extension L/F is said to be tamely ramified if the residue fields’
extension kL/kF is separable and the degree of every finite subextension of L/L

ur

is prime to p.

(iii) The composite Lt/F of all tamely ramified subextensions in an algebraic extension
L/F is called the maximal tamely ramified subextension of L/F .

(iv) An extension L/F is said to be wildly ramified if it is not a tamely ramified extension
i.e., Lt ”= L.

Example 3. Consider F = Qp and L = Qp(’n), where ’n is the primitive n
th root of

unity. If n is prime to p, then the extension L/F is an unramified extension of degree
d such that d is the smallest natural number with p

d © 1 mod n. If n = p
m for some

natural number m, then the extension L/F is a purely ramified extension with degree
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(p ≠ 1)pm≠1. Suppose n = n
Õ
p

m for some natural numbers n
Õ
, m with (nÕ

, p) = 1. Then,
the maximal unramified subextension L

ur of L/F is Qp(’nÕ) and the maximal tamely
ramified sub-extension Lt of L/F is L

ur(’p).

2.3 The Weil Group

Consider the local field F with its residue field kF , where we assume kF to be the
finite field Fq. Let F

sep and k
sep
F

be fixed separable closures of F and kF respectively.
If F

ur denotes the unique maximal unramified extension of F contained in F
sep, then

from [Fro, §7, Cor.2] the Galois group Gal(F ur
/F ) is topologically isomorphic with the

Galois group Gal(ksep
F

/kF ). Since the only finite extensions of Fq are Fqn for various
natural number n œ Z>0 and Gal(Fqn/Fq) ƒ Z/nZ with the canonical generator being
the automorphism defined by x ‘æ x

q, then by definition

Gal(ksep
F

/kF ) = limΩ≠
l/kF finite

Gal(l/kF ) ƒ limΩ≠
n

Z/nZ =: ‚Z

with the topological generator being the (Frobenius) automorphism FrobkF
: x ‘æ x

q

i.e., FrobkF
generates the dense subgroup Z of ‚Z. Therefore, Gal(F ur

/F ) is topologically
isomorphic with the pro-finite group ‚Z. Let IF := Gal(F sep

/F
ur) be the inertia group of

F . Then we have the following exact sequence of topological groups:

1 æ IF = Gal(F sep
/F

ur) æ Gal(F sep
/F ) æ Gal(F ur

/F ) ƒ ‚Z æ 1.

Let WF be the inverse image of ÈFrobkF
Í ( i.e., equal to Z ) in Gal(F sep

/F ). Now, the
topology in WF will be that for which the inertia subgroup IF has the pro-finite topology
induced from the natural topology of Gal(F sep

/F ). Then the topological group WF is
called the Weil group of F relative to the separable closure F

sep.

2.4 Ramification Groups

Consider F to be a complete field under a non-archimedean valuation valF . Let OF

denotes the corresponding valuation ring of F with the unique maximal ideal PF and the
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corresponding residue field kF , which is equal to OF /PF . Let L be a Galois extension
(may be infinite) of the field F . Consider the Galois group G := Gal(L/F ) of the
extension L/F . In this section, we will mainly study about some filtration subgroups of
the group G = Gal(L/F ). In particular, we study some chain of subgroups of G with
some nice properties.

2.4.1 Ramification Groups in Lower Numbering

Let F be a complete field and L be a finite Galois extension of F . Then L is a again
a complete field under extended non-archimedean valuation valL. Write OL, PL for the
ring of integers of L and the unique maximal ideal of OL respectively, with the residue
field kL. Further assume that the residue field extension kL/kF is separable. If eL/F and
fL/F are the ramification index and inertia degree of the field extension L/F respectively,
then we have the identity [L : F ] = eL/F · fL/F . Naturally, the Galois group Gal(L/F )
acts on the valuation ring OL. Then, we have the following

Lemma 4. [Ser, Chap. IV, Lemma 1] Let ‡ œ G := Gal(L/F ) and i be an integer Ø ≠1.
Then ‡ operates trivially on the quotient ring OL/Pi+1

L
if and only if valL(‡(x)≠x) Ø i+1

for all x œ OL.

Proof. Lemma follows from the fact that for any [a] = a + Pi+1
L

œ OL/Pi+1
L

with a œ OL,

‡ · [a] = [a] if and only if ‡(a) + Pi+1
L

= a + Pi+1
L

if and only if ‡(a) ≠ a œ Pi+1
L

if and only if valL(‡(a) ≠ a) Ø i + 1.

For integer i Ø ≠1, define Gi to be the set of all ‡ œ G = Gal(L/F ) such that ‡

operates trivially on OL/Pi+1
L

. Then G≠1 = G. The groups Gi are called ramification
groups. They form a decreasing filtration

G = G≠1 ´ G0 ´ G1 ´ G2 ´ G3 ´ · · ·
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of normal subgroups of G. Conventionally, G0 and G1 are called the inertia and wild
inertia subgroup of G respectively with the quotient G0/G1 is called the tame quotient.

Extend the definition of Gu for all real numbers u Ø ≠1 by setting

Gu = Gi, where i is the least integer Ø u. (2.1)

This numbering of ramification groups is called lower numbering. Lower numbering
behaves nice with respect to intersections i.e.,

Proposition 5. [Ser, Chap. IV, Prop. 2] If H is a subgroup of G = Gal(L/F ), then
Gu fl H = Hu for u œ RØ≠1

Proof. Let L
H be the subextension of L fixed by H. Then H = Gal(L/L

H) µ G.
Therefore, for each integer i Ø ≠1,

‡ œ Hi ≈∆ ‡ œ H and ‡ operates trivially on OL/Pi+1
L

≈∆ {‡ œ G | ‡ operates trivially on OL/Pi+1
L

} fl H

≈∆ Gi fl H.

Now the Proposition follows from Eq.(2.1).

2.4.2 Hasse-Herbrand Function and Upper Numbering

In this section, we will mainly describe how the lower numbering of the ramification
groups behaves under quotients and will define another filtration of the Galois group to
extend the filtration for infinite Galois extensions.

Hasse-Herbrand function: As before, consider the finite Galois group G =
Gal(L/F ) and it’s lower numbering ramification subgroups Gu for all real numbers u Ø
≠1. For t > 0, (G0 : Gt) denotes the index of the subgroup Gt in G0 and for t œ [≠1, 0],
(G0 : Gt) is (Gt : G0)≠1. Therefore, (G0 : Gt) = (Gt : G0)≠1 = (G0 : G0)≠1 = 1 for
≠1 < t Æ 0. Now define ÏL/F : [≠1, Œ) æ R to be the map

r ‘æ
⁄

r

0

1
(G0 : Gt)

dt.
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Explicitly, one can write the function ÏL/F as:

ÏL/F (r) =

Y
_____]

_____[

r, if ≠ 1 Æ r Æ 0
g1
g0

r, if 0 Æ r Æ 1
1
g0

[g1 + g2 + · · · + gm + (r ≠ m)gm+1], if 0 < m Æ r Æ m + 1, m œ Z,

(2.2)
here gi = Card(Gi) denotes the cardinality of Gi for integers i Ø 0. The function ÏL/F is
called the Hasse-Herbrand function. It has the basic properties [Ser, Chap. IV, §3]:

(a) ÏL/F is continuous, piecewise linear, increasing and concave.

(b) ÏL/F (0) = 0.

(c) ÏL/F is a homeomorphism of [≠1, Œ) onto itself.

(d) If Ï
Õ
L/F

be the left derivative of ÏL/F then for r œ RØ≠1

Ï
Õ
L/F

(r) = 1
(G0 : Gr)

. (2.3)

(e) If Ï
Õ
L/F

be the right derivative of ÏL/F then

Ï
Õ
L/F

(r) =

Y
_]

_[

1
(G0:Gr) if r is not an integer,

1
(G0:Gr+1) if r is an integer.

(2.4)

If an extension L/F is not Galois, define ÏL/F = ÏEÕ/F ¶Ï
≠1
L/EÕ , where E

Õ is any Galois
extension of F contained in L. Convensionaly, the inverse Ï

≠1
L/F

is denoted ÂL/F . Then
the function ÂL/F has also the following properties [Ser, Chap. IV, §3]:

(a) ÂL/F is continuous, piecewise linear, increasing and convex.

(b) ÂL/F (0) = 0.

(c) ÂL/F is a homeomorphism of [≠1, Œ) onto itself.

(d) If z is an integer, the ÂL/F (z) is also an integer.
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Using the Hasse-Herbrand function, we have the following quotient relation of lower
numbering ramification groups:

Theorem 6 (Herbrand). Let H be a normal subgroup of the Galois group G = Gal(L/F )
and L

H be the corresponding subfield of L fixed by H i.e., H = Gal(L/L
H). Then we

have the following lower numbering relation under quotient:

GrH/H = (G/H)s, for s = ÏL/LH (r).

Here, we omit the proof of this standard theorem. Interested readers may look [Neu,
Theorem 10.7] for the proof. The functions ÏL/F and ÂL/F satisfy the following Chain
relations or transitivity formulas:

Proposition 7. [Ser, Chap. IV, Prop. 15] Suppose H be a normal subgroup of the
Galois group G = Gal(L/F ) with the corresponding subfield L

H of L fixed by H. Then,

ÏL/F = ÏLH/F ¶ ÏL/LH and ÂL/F = ÂL/LH ¶ ÂLH/F .

Ramification groups in upper numbering: The lower numbering of the
ramification groups Gs has many nice properties, including the compatible with subgroup
intersections but it does not behave well while taking quotients (which follows from
Herbrand’s Theorem 6), so it is very natural to look for another numbering or filtrations
of the Galois group that behaves well under quotients. And as a result, one will able to
define that filtrations for infinite Galois extensions.

Let L/F be a finite Galois extension and the corresponding finite Galois group G =
Gal(L/F ) has the lower numbering filtration {Gs}sœRØ≠1 . Then using the Herbrand
function ÏL/F , one can define the following filtration of G:

Definition 8. Define an upper numbering on ramification groups by setting

• G
v = Gu if v = ÏL/F (u) for u œ [≠1, Œ) or,

• G
v = GÂL/F (v) for v œ [≠1, Œ).

Upper numbering filtration determines the ramification groups of a quotient group
and it is given by the following result
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Proposition 9. If H is a normal subgroup of G, then for any v œ [≠1, Œ),

(G/H)v = G
v
H/H.

Proof. Let L
H be the subfield of L fixed by the normal subgroup H. So G/H =

Gal(LH
/F ). Fix an element v œ [≠1, Œ). Then,

G
v
H/H = GÂL/F (v)H/H

= (G/H)Ï
L/LH ¶ÂL/F (v) (Using Herbrand Theorem 6)

= (G/H)Â
LH /F

(v) (Using Proposition 7)

= (G/H)v
.

So upper ramification groups behave well under quotients and therefore, one can
define the upper numbering ramification groups for infinite extensions. For an infinite
Galois extension � of F , define the ramification groups on G = Gal(�/F ) by:

G
v = limΩ≠

E/F be finite, Eµ�
Gal(E/F )v

.

for v œ [≠1, Œ). As a consequence, we can say that the upper numbering ramification
groups are more natural than the lower numbering ramification groups.

Now let L/F be any Galois extension (may be infinite) of local fields and E be a
finite extension of F contained in L. Write G = Gal(L/F ) and H = Gal(L/E).

Proposition 10 (Lemma 1, [MP1]). For all r Ø 0, G
r fl H = H

ÂE/F (r).

Proof. Let E
Õ be a finite Galois extension of F in L containing E. Write I := Gal(L/E

Õ).
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Then

(G/I)r fl (H/I) = (G/I)Â
EÕ/F

(r) fl (H/I)

= (H/I)Â
EÕ/F

(r)

= (H/I)Ï
EÕ/E

(Â
EÕ/F

(r))

= (H/I)Ï
EÕ/E

Â
EÕ/E

ÂE/F (r)

= (H/I)ÂE/F (r)
.

The proposition now follows by taking inverse limit over E
Õ.
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Buildings and filtrations

Let F be a complete field under a non-trivial discrete valuation valF and the field is
strictly Henseline. Let OF be the corresponding valuation ring of F with the unique
maximal ideal PF and the corresponding residue class field kF = OF /PF . Let G be a
connected reductive algebraic group defined over F and G(F ) be the F -points group of
G. This chapter contains a brief review of the construction of Bruhat-Tits building on
G(F ) and Moy-Prasad filtration of parahoric subgroups of G(F ) associated to each point
of the building. For a detailed and comprehensive discussion, interested readers can refer
to the book [Lan1] by Landvogt.

3.1 Root datum

By a root datum we mean a quadruple � = (X, �, X
‚
, �‚), where X and X

‚ are two
finitely generated torsion free Z-modules with a perfect pairing È, Í : X ◊ X

‚ æ Z. Here,
� and �‚ are finite subsets of X and X

‚ respectively with a bijection – ‘æ –
‚ of � onto

�‚. If – œ �, define the endomorphisms s– : X æ X and s–‚ : X
‚ æ X

‚ respectively
by

s–(x) = x ≠ Èx, –
‚Í – and s–‚(y) = y ≠ È–, yÍ –

‚
,

for x œ X and y œ X
‚
. Then the above data is subjected to the following conditions:

(R1) We have È–, –
‚Í = 2 for each – œ �,

20
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(R2) We have s–(�) µ � and s–‚(�‚) µ �‚ for each – œ �.

The elements of the finite set � (resp. �‚) are called roots (resp. coroots) of the root
datum �. It is clear that if � = (X, �, X

‚
, �‚) is a root datum, so is �‚ = (X‚

, �‚
, X, �)

and �‚ is called the dual of �.
Let Q := Q(�) be the submodule of X generated by � and V := Q ¢Z Q be the

corresponding vector space over Q. Similarly we have Q‚ := Q(�‚) and V
‚ := Q‚ ¢Z Q.

One can identify V
‚ with the dual space of the vector-space V . If � ”= ÿ, then � (identify

with � ¢ 1 µ V ) is a root system on V in the sense of [Bou2]. Let W = W (�) be the
finite group generated by reflection maps s– for – œ �. Then W is called the spherical
Weyl group of � and W can also be identified with the group of automorphisms of X

‚

generated by the s–‚ for –
‚ œ �‚.

3.2 Root datum of a reductive group:

Let G be a connected reductive algebraic group defined over a non-archimedean local
field F . Consider G(F ) to be the group of F -points of G. Naturally, G(F ) has the
structure of a Hausdor�, locally compact and totally disconnected topological group.

Let S be a maximal F -split torus (i.e., F -split torus and maximal for these properties)
of G. Let N = NG(S) denotes the normalizer and Z = ZG(S) denotes the centralizer of
S in G. Both N and Z are F -subgroups of G. Denote X

ú(S) = HomF (S, Gm) for the
group of rational characters of S defined over F and Xú(S) = HomF (Gm, S) for the group
of co-characters of S defined over F . Both Xú(S) and X

ú(S) are free abelian groups of
finite rank. Also, there exists the following perfect pairing of these groups:

È, Í : Xú(S) ◊ X
ú(S) æ Z,

where È⁄, ‰Í is defined by the integer such that (‰ ¶ ⁄)(t) = t
È⁄,‰Í for all t œ F

◊ with
⁄ œ Xú(S), ‰ œ X

ú(S).
Fix V0 = Xú(S)¢Z R for the R-vector space corresponding to Xú(S). One can identify

its dual space V
‚

0 with X
ú(S) ¢Z R and get a canonical pairing È, Í : V0 ◊ V

‚
0 æ R, which

extends the above pairing È, Í.
As in [Spr, §3.5], let �F = �(G, S, F ) µ X

ú(S) be the relative root system of G with
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respect to the maximal F -split torus S. This is a root system in the above sense, lying
in a subspace of X

ú(S) ¢Z Q spanned by �F . As usual, we will denote �‚
F

µ Xú(S)
for the dual root system of �F . One can associate to the tuple (G, S, F ) a root datum
�F = �(G, S, F ) = (Xú(S), �F , Xú(S), �‚

F
).

A root – œ �F is called divisible if 1
2– œ �F . For any arbitrary subset � µ �F , we

will denote its non-divisible elements by �red = {– œ � | 1
2– /œ �}. A subset � µ �F is

called closed if for any –, — œ �, we have {n– + m— | m, n œ Z>0} fl �F µ �.
From [Bor2], we obtain that there exists a unique closed and connected unipotent

F -subgroup U– of G for each – œ �F . Each U– is normalized by Z = ZG(S). The
subgroup U– is called root subgroup of G associated to the root – œ �F .

One can define an equivalence relation ≥ on V0 as follows: for v1, v2 œ V0, v1 ≥ v2 if
and only if –(v1) and –(v2) have the same sign or –(v1) = –(v1) = 0 for all – œ �F . The
equivalence classes are called faces in V0 with respect to �F . One can identify the Weyl
group W = W (�F ) of �F with the quotient group W (G, S, F ) := N(F )/Z(F ), which
operates on V0 and V

‚
0 in a natural way. The field F being discrete valuation field, we

will have an a�ne action of N(F ) on V0 lifting the action of N(F )/Z(F ) with translation
action of Z(F ).

3.3 The Apartments

In this section we will associate to the tuple (G, S, F ) an a�ne space A0(G, S, F ) under
some vector subspace V on which the group N(F ) operates. Let Zc be the maximal
central F -torus of G with its maximal F -split F -subtorus Zc,s.

Let X
ú
F

(Z) be the group of F -rational characters of Z. Then X
ú
F

(Z) can be identified
with a finite index subgroup of X

ú(S). Then we have the following standard group
homomorphism from Z(F ) to V0 = Xú(S) ¢Z R:

Proposition 11 (Lemma 1.1, [Lan1]). There exists a unique group homomorphism

‹0 : Z(F ) æ Xú(S) ¢Z Q µ V0

characterized by È‹0(z), ‰Í = ≠valF (‰(z)) for all z œ Z(F ) and ‰ œ X
ú
F

(Z).

We will denote Zb(F ) for the subgroup ker(‹0), the kernel of the group homomorphism
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‹0. In the following Proposition, we will recall some properties of Zb(F ) described in
[Lan1, Prop. 1.2. and Prop. 1.3.].

Proposition 12. If one consider the F -analytic topology on the group Z(F ), that induces
a topology on Zb(F ) also. Then,

(i) Zb(F ) is the maximal compact open subgroup of Z(F ).

(ii) Zb(F ) is a normal subgroup of N(F ) (follows from the normality of Z(F ) in N(F )).

(iii) We have the following short exact sequence of groups:

0 æ Z(F )/Zb(F ) æ N(F )/Zb(F ) æ N(F )/Z(F ) æ 1.

(iv) Z(F )/Zb(F ) is a free abelian group containing Xú(S) and its rank is dim(V0).

Now we will consider the subspace V
Õ of V0 defined by

V
Õ := {v œ V0 | –(v) = 0 for all – œ �F = �(G, S, F )},

which can also be identified with Xú(Zc,s) ¢Z R i.e., the group of co-characters of the
central maximal split torus Zc,s of G tensored with R. Then, V

Õ is the zero space when
G is semi-simple. In general, V

Õ is not zero but when G is reductive, then the group
W ƒ N(F )/Z(F ) acts trivially on V

Õ.
Define the R-vector space V by the following quotient space:

V = V (G, S, F ) = V0/V
Õ

which can be identified with Xú(S/Zc,s) ¢Z R. Consider the map ‹0 : Z(F ) æ V, which
is the composition (pr ¶ ‹0) of the map ‹0 : Z(F ) æ V0, and the natural projection map
pr : V0 ⇣ V = V0/V

Õ. Therefore, we have the homomorphism ‹0 : Z(F )/Zb(F ) æ V.

The conjugation action of W on S induces a linear action on V0, which induces a
canonical group homomorphism

j : W æ GL(V0)
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and the image of this group homomorphism j acts trivially on V
Õ. Therefore, we have

the group homomorphism j
Õ : W æ GL(V ) induces from j.

Now let us consider any a�ne space A0 under the vector space V . If A�(A0) denotes
the set of a�ne bijections A0 æ A0, we have A�(A0) ƒ V o GL(V ).Then the group
homomorphisms ‹0 : Z(F )/Zb(F ) æ V and j

Õ : W æ GL(V ) assure the action of both
the groups Z(F )/Zb(F ) and N(F )/Z(F ) on the a�ne space A0. Now, one can construct
a group homomorphism

‹ : N(F ) æ A�(A0) ƒ V o GL(V ),

extending the homomorphism ‹0 : Z(F )/Zb(F ) æ V . In the following Proposition, we
will have the clear statement regarding this.

Proposition 13. [Lan1, Proposition 1.8] Up to unique isomorphism, there exists a
canonical a�ne space A0 = A0(G, S, F ) under V = V (G, S, F ) together with a group
homomorphism ‹ : N(F ) æ A�(A0) extending the map ‹0 : Z(F ) æ V .

Now, we can define the so called apartment of G associated to S in the following
way:

Definition 14 (The standard apartment:). The a�ne space(as mentioned in Proposition
13) A0 = A0(G, S, F ) together with a group homomorphism ‹ : N(F ) æ A�(A0) is called
the standard apartment of G with respect to the maximal F -split torus S.

3.4 Structure of the root subgroups.

In this section, we recall the structure of the root groups as described in the book [Lan1]
or, [BT2, section 4]. As before, let G be a connected reductive algebraic group defined
over the local field F . Moreover, for this section we will assume further that G is F -
quasi-split. Let S be a maximal F -split torus of G and Z = ZG(S) denotes the centralizer
of S in G. Then, Z is a F -subgroups of G and in particular, Z is a maximal torus of
G. Suppose ÂF be the splitting field of Z, where ÂF/F is a Galois extension with the
corresponding Galois group Gal( ÂF/F ). Consider the root system �ÂF = �(G,Z, ÂF ) of G
with respect to the maximal ÂF -split torus Z. Fix a Borel subgroup B of G containing



Chapter 3. Buildings and filtrations 25

Z, which will ensure a system of positive roots �+
ÂF in �ÂF together with the associated

simple root system �ÂF . Let �F be the restricted root system of G with respect to S
i.e., �F contains the restrictions of roots in �ÂF from Z to S. Let �F be a basis of �F

consisting of restriction of roots in �ÂF to S. Since there exists an F -Borel subgroup, one
can assume that �ÂF is Gal( ÂF/F )-invariant. Then, each fibre of the (restriction) map
– ‘æ –|S is a single Galois orbit in �ÂF .

Through out this section, we will label the roots in �ÂF (resp. in �F ) by Greek letters
:–, —, .... (resp. by Latin letters:a, b, ...). Let �a

ÂF be the pre-image of a œ �F in �ÂF . We
denote by ÊU– (resp. Ua) the root subgroup of GÂF = G ◊F

ÂF (resp. G) corresponding
to the root – œ �ÂF (resp. a œ �F ).

3.4.1 Chevalley-Steinberg system

The Galois group Gal( ÂF/F ) acts on the set {ÊU– | – œ �ÂF } as follows: for – œ �ÂF and
‡ œ Gal( ÂF/F ), we have ‡(ÊU–) = ÊU‡(–). Let ÂF– be the fixed subfield of ÂF of the stabilizer
subgroup StabGal(ÂF /F )(–) of – in Gal( ÂF/F ). Then ÊU– is defined over ÂF–.

Consider a system (Âx–)–œ�ÂF of ÂF -group isomorphisms Âx– : Ga æ ÊU–. Two ÂF -group
isomorphisms Âx– : Ga æ ÊU– and Âx≠– : Ga æ ÊU≠– are called associated if there exists a
ÂF -group monomorphism ‘– : SL2 æ G such that for all u œ ÂF = Ga( ÂF ), we have

Âx–(u) = ‘–

Q

a 1 u

0 1

R

b , and Âx≠–(u) = ‘–

Q

a 1 0
≠u 1

R

b .

Let m– := Âx–(1)Âx≠–(1)Âx–(1).

Definition 15. A system (Âx–)–œ�ÂF of ÂF -group isomorphisms Âx– : Ga æ ÊU– is called an
ÂF -Chevalley system of G with respect to Z , if it satisfies the following properties for all
– œ �ÂF .

(i) Âx–, Âx≠– are associated and,

(ii) for any –, — œ �ÂF , there exists an ‘ œ {1, ≠1} such that for all u œ Ga( ÂF ), we have
Âxs–(—)(u) = m– Âx—(‘u)m≠1

–
.

In order to parameterize the root groups {Ua}aœ�F
of G over F , we have to introduce
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a Chevalley-Steinberg system (Âx–)–œ�ÂF , which is a generalization of Chevalley system for
non-split groups.

Definition 16. An ÂF -Chevalley system (Âx–)–œ�ÂF of G is said to be a Chevalley-Steinberg
system of G , if the following properties hold for all root – œ �ÂF .

(i) The isomorphism Âx– is defined over ÂF–,

(ii) if the restriction a œ �F of – to S is not a divisible root, then Âx‡(–) = ‡ ¶ Âx– ¶ ‡
≠1

for all ‡ œ Gal( ÂF/F ) and

(iii) if the restriction a œ �F of – to S is a divisible root, then there exist —, —
Õ œ �ÂF

restricting to a

2 such that ÂF— = ÂF—Õ is a quadratic extension of ÂF–, and Âx‡(–) =
‡ ¶ Âx– ¶ ‡

≠1 ¶ ‘ for all ‡ œ Gal( ÂF/ ÂF–), where ‘ œ {1, ≠1} with ‘ = 1 if and only if
‡ induces the identity automorphism on ÂF—.

According to [Lan1, Proposition 4.4], a Chevalley-Steinberg system of G always exists.
Even if the group G is non-split, a Chevalley-Steinberg system of G will allow us to define
a valuation of root subgroups of G and that will be discussed in the next section.

3.4.2 Valuation of root groups

Consider the root subgroup Ua of G corresponding to the root a œ �F . In order to
describe the root subgroup Ua, one needs to consider the universal semisimple covering fi :
G

a æ ÈUa, U≠aÍ and the unipotent subgroups of G
a. The map fi induces an isomorphism

between Ua and a root subgroup U
a

+ of G
a. Now, two distinguished cases may arise:

Case(1) : The root a œ �F such that a

2 /œ �F , and 2a /œ �F .
Let – œ �a

ÂF such that –|S = a. There exists an ÂF -isomorphism between G
a ◊F

ÂF and
a product of SL2 indexed by �a

ÂF together with an action of Gal( ÂF/F ) on G
a ◊F

ÂF by
permuting the components. Then ResÂF–/F

SL2 ( the Weil restriction of SL2 over ÂF–/F )
is isomorphic to G

a. Similarly, the inclusion ÊU– µ Ua ◊F
ÂF induces a canonical F -

isomorphism ResÂF–/F

ÊU– ƒ Ua. From the Chevalley-Steinberg system (Âx–)–œ�ÂF of G,
the ÂF–-group isomorphisms Âx±– : Ga æ ÊU±– induces F -isomorphisms

x±a = ResÂF–/F
(Âx±–) : ResÂF–/F

(Ga) æ U±a,
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which are called parametrizations of Ua. These isomorphism induce group isomorphism

x±a : ResÂF–/F
(Ga)(F ) = ÂF– æ U±a(F ),

This isomorphism allows us to define the valuation Ïa : Ua(F ) æ R fi {Œ} of root group
Ua(F ) as follows: Ïa(xa(u)) = valF (u) for u œ F .

Set �a = �Õ
a

:= Ïa(Ua(F )\{1}) µ R and for each l œ R, define Ua,l := Ï
≠1
a

([l, Œ)) with
Ua,Œ = {1}, Ua,≠Œ = Ua(F ) and Ua,l+ = fik>lUa,k. Then, (Ua,l)lœR defines a filtration of
Ua(F ) and according to [Lan1, Lemma 4.9], this filtration is independent of the choice
of – œ �a

ÂF .

Case(2) : The root a œ �F such that a

2 œ �F or 2a œ �F .
We assume that 2a œ �F . Then there exists an ÂF -isomorphism between G

a ◊F
ÂF

and a product of SL3 indexed by the family of pairs (–, –
Õ), where –, –

Õ œ �a

ÂF with
– + –

Õ œ �a

ÂF . Again the Galois group Gal( ÂF/F ) acts on G
a ◊F

ÂF by permuting the
components. Note that ÂF– = ÂF–Õ is a quadratic separable extension of ÂF–+–Õ . For the
non-trivial automorphism ‡ œ Gal( ÂF–/ ÂF–+–Õ), there exists a Hermitean form h on ÂF 3

–
,

defined by

h(t≠1, t0, t1) = ‡(t≠1)t1 + ‡(t0)t1 + ‡(t1)t≠1 for t≠1, t0, t1 œ ÂF–.

Let SU3 be the special unitary ÂF–+–Õ-group associated to the Hermitean form h.
Then, ResÂF

–+–Õ/F

SU3 ( the Weil restriction of SU3 over ÂF–+–Õ/F ) is isomorphic to
G

a. Similarly, using the covering map fi, one can show that the inclusion of
unipotent subgroups: ÊU–

ÊU–+–Õ ÊU–Õ µ Ua ◊F
ÂF induces a canonical F -isomorphism

fi
Õ : ResÂF

–+–Õ/F

(ÊU–
ÊU–+–Õ ÊU–Õ) ƒ Ua.

Define a subset H0( ÂF–, ÂF–+–Õ) of ÂF– ◊ ÂF– by

H0( ÂF–, ÂF–+–Õ) := {(u, v) œ ÂF– ◊ ÂF– | v + ‡(v) = ‡(u)u},

with the following action: H0( ÂF–, ÂF–+–Õ) ◊ H0( ÂF–, ÂF–+–Õ) æ H0( ÂF–, ÂF–+–Õ) defined by
((u1, v1), (u2, v2)) ‘æ (u1 + u2, v1 + v2 + ‡(u1)u2). Then H0( ÂF–, ÂF–+–Õ) becomes a ÂF–+–Õ-
group scheme. In particular, one can identify H0( ÂF–, ÂF–+–Õ) with a closed subgroup of
SU3. Now using Chevalley-Steinberg system (Âx–)–œ�ÂF , one can define the ÂF–+–Õ-group
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isomorphism Ây–+–Õ : H0( ÂF–, ÂF–+–Õ) æ ÊU–
ÊU–+–Õ ÊU–Õ defined by,

Ây–+–Õ(u, v) = Âx–(u)Âx–+–Õ(v)Âx–Õ(‡(u)).

Consider the F -isomorphism

ya = ResÂF
–+–Õ/F

(Ây–+–Õ) : ResÂF
–+–Õ/F

(H0( ÂF–, ÂF–+–Õ)) æ ResÂF
–+–Õ/F

(ÊU–
ÊU–+–Õ ÊU–Õ).

Then the composition fi
Õ ¶ ya map induces the F -isomorphism

xa = fi
Õ ¶ ya : ResÂF

–+–Õ/F

H0( ÂF–, ÂF–+–Õ) æ Ua.

This isomorphism xa is called the parametrization of Ua. These isomorphisms induces
ismorphism xa on F -points as:

xa = (fiÕ ¶ ya)(F ) : ResÂF
–+–Õ/F

(H0( ÂF–, ÂF–+–Õ))(F ) æ Ua(F ).

Note that the root subgroup U2a corresponding to the root 2a is the subgroup of the
group Ua given by the image of xa(0, v).

Now, the parametrization xa allows us to define the valuation Ïa : Ua(F ) æ Rfi{Œ}
of root groups Ua(F ) as follows:

Ïa(u) = 1
2valF (vÕ) for xa(v, v

Õ) = u,

and the valuation Ï2a : U2a(F ) æ R fi {Œ} of root group U2a(F ) is defined by

Ï2a(u) = valF (v) for xa(0, v) = u.

Set �a := Ïa(Ua(F ) \ {1}) µ R, �Õ
a

:= {Ïa(u) | u œ Ua(F ) \ {1} and Ïa(u) =
Sup Ïa(uU2a(F ))} and �2a = �Õ

2a
:= Ï2a(U2a(F )\{1}) µ R. For each l œ R, define Ua,l :=

Ï
≠1
a

([l, Œ)), U2a,l := Ï
≠1
2a ([l, Œ)) with Ua,Œ = {1}, Ua,≠Œ = Ua(F ), U2a,Œ = {1}, U2a,≠Œ =

U2a(F ), Ua,l+ := fik>lUa,k, and U2a,l+ := fik>lU2a,k. Then, (Ua,l)lœR (resp. (U2a,l)lœR)
defines a filtration of Ua(F ) (resp. U2a(F )) and according to [Lan1, Lemma 4.15], these
filtrations are independent of the choice of –, –

Õ œ �a

ÂF .
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3.4.3 A�ne roots

Now, we recall the apartment A0 = A0(G, S, F ) associated to the tuple (G, S, F ).
According to [BT1, Section 6], the valuation of root groups i.e., the families of maps
(Ïa : Ua(F ) æ R fi {Œ})aœ�F

corresponds to a special point x0 in A0 = A(G, S, F ).
Let a œ �K . An a�ne function ◊ : A0 æ R is called an a�ne root with direction a, if
there exists l œ �Õ

a
such that ◊(y) = a(y ≠ x0) + l. The a�ne root ◊ will be denoted

by a + l, when ◊(y) = a(y ≠ x0) + l for some a œ �F and l œ �Õ
a
. Let �a�

F
be the set

{◊ © a + l | a œ �F , l œ �Õ
a
} of all a�ne roots on A0.

For each a�ne root ◊ œ �a�
F

, define the a�ne hyperplane H◊ = {x œ A0 | ◊(x) = 0}.
The set {H◊ | ◊ œ �a�

F
} of a�ne hyperplanes defines a poly-simplicial structure on the

apartment A0 in the following way: One can define an equivalence relation ≥ on A0 by
x ≥ y if for any a�ne hyperplane H◊, either both x, y œ H◊, or both x, y are in the same
connected component of A0 \ H◊. The equivalence classes are called the facets in the
apartment A0 and the singleton facet is called a vertex. A facet with maximal dimension
is called an alcove.

For every a�ne root ◊ œ �a�
F

with its gradient a◊ œ �F , one can define the subgroup
U◊ of Ua◊

(F ) by

U◊ := {u œ Ua◊
(F ) | u = 1 or Ïa◊

(u) Ø ◊(x0)}.

Then U◊ will be a compact open subgroup of Ua◊
(F ) and for any root a œ �F , the root

subgroup Ua(F ) will admit a filtration by these subgroups U◊ indexed by those a�ne
roots ◊ œ �a�

F
whose gradients are the root a.

Note that if the a�ne rooot ◊ © a◊ + l for some l œ R and a◊ œ �F , from [Lan1,
Proposition 7.7] we have U◊ = Ua◊,l, where Ua◊,l is the filtration subgroup of Ua◊

(F ) as
defined in §3.4.2.

For any (non-empty) subset � of A0, define a map f� : �F æ R fi {±Œ} by

f�(a) = inf{l œ �a | a(x) + l Ø 0 for all x œ �}.

For any (non-empty) subset � of A0, define U� to be the subgroup of G(F ) generated
by the filtration subgroups Ua,f�(a) for a œ �red

F
. Define N� := {n œ N(F ) | ‹(n)x =
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x, for all x œ �}, which is a subgroup normalizes U�. Set P� := N�U� = ÈU�, N�Í, then
P� will be a subgroup of G(F ). If � is a singleton set {x}, then the subgroups U{x}, N{x},
and P{x} will be denoted by Ux, Nx, and Px respectively.

3.5 The Building

For a connected reductive group G defined over a local field F , Bruhat and Tits in
[BT1,BT2] associated to Gder(F ) an a�ne building B0(G, F ), called the reduced Bruhat-
Tits building, where Gder(F ) is the F -points group of the derived subgroup Gder of G,
and also to G(F ), they associated another building B(G, F ), called the extended Bruhat-
Tits building. This section contains a brief discussion about these buildings associated
to the pair (G, F ).

3.5.1 The reduced Bruhat-Tits building

The reduced Bruhat-Tits building associated to G defined over F will be denoted by
B0(G, F ). The building B0(G, F ) is the set of equivalence classes

B0(G, F ) := G(F ) ◊ A0(G, S, F )/ s,

where the equivalence relation ‘s’ on G(F ) ◊ A0(G, S, F ) is defined by the following
way: for any g, h œ G(F ) and x, y œ A0(G, S, F )

(g, x) s (h, y) if there exists an elementn œ N(F ) such that n · x = y and g
≠1

hn œ Ux.

Via the map ‹ : N(F ) æ A�(A0), we have a N(F )-action on A0(G, S, F ). Now one can
extend this action to an action of G(F ) on B0(G, F ). Consider the map

G(F ) ◊ [G(F ) ◊ A0(G, S, F )] æ G(F ) ◊ A0(G, S, F )

(g, (h, x)) ‘æ (gh, x),

where g œ G(F ) and (h, x) œ G(F ) ◊ A0(G, S, F ). According to the definition of the
equivalence relation ‘s’, the above map induces an action of G(F ) on B0(G, F ) from the
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left side, extending the N(F )-action on A0(G, S, F ).
One can identify A0(G, S, F ) with its canonical image A0 in B0(G, F ) via the map

A0(G, S, F ) Òæ B0(G, F ) given by x ‘æ [(1, x)], which is a N(F )-equivarient embedding.
A subset AÕ

0 µ B0(G, F ) is called an apartment in B0(G, F ) if there exists an element
g œ G(F ) such that AÕ

0 = g.A0. Similarly, if F0 is the image (in B0(G, F )) of a facet of
A0(G, S, F ) under the above canonical embedding, the subset of the form g ·F0 for each
g œ G(F ) is called facet in B0(G, F ).

Now from [BT1, §7.4], we will briefly recall some important properties of B0(G, F )
based on the G(F )-action.

(1) The apartment AÕ
0 = g.A0 can be identified with the apartment corresponding

to the maximal F -split torus gS for g œ G(F ). Therefore, we have a one-to-
one correspondence between the set of maximal F -split tori of G, and the set of
apartments of B0(G, F ).

(2) If � µ A0 is a non-empty subset, then P� (as defined in §3.4.3) is the subgroup of
G(F ) that fixes all points in � i.e., P� = {g œ G(F ) | gx = x for all x œ �}.

(3) For any g œ G(F ), there exists an element n œ N(F ) such that g · x = n · x for all
x œ A0 fl g

≠1
.A0.

(4) Let � µ A0 be a non-empty subset. Then the group U� (as defined in §3.4.3) acts
on the set of all apartments containing � transitively.

(5) For any two facets (resp. points) in the building B0(G, F ), there exists an
apartment in the building which contains both the facets (resp. points).

3.5.2 The extended Bruhat-Tits building

The extended (a.k.a. enlarged) Bruhat-Tits building B(G, F ) of G defined over F , is
obtained by gluing together the extended apartments (which are a�ne spaces defined
over real vector spaces Xú(S)¢ZR, for maximal F -split torus S) is defined by all maximal
F -split torus of G . The primary purpose to study the extended building is that when
the center Z(G) of of the group G is of positive split rank, the stabilizer Px of a point
x in the reduced building B0(G, F ) is no longer a compact open subgroup of G(F ). To
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solve this issue, we will now introduce a larger building B(G, F ) of G following [LN, §3]
and [Bou1, §2.7].

Extended Apartment:

We recall the standard apartment A0(G, S, F ) corresponding to the tuple (G, S, F ),
which is an a�ne space under the R-vector space

V = V0/V
Õ = Xú(S) ¢Z R/Xú(Zc,s) ¢Z R

together with a homomorphism ‹ : N(F ) æ A�(A0(G, S, F )). There exists a unique
group homomorphism ‹

Õ
0 : G(F ) æ Xú(Zc,s) ¢Z R µ V

Õ characterized by

e
‹

Õ
0(g), ‰|Zc,s

f
= ≠valF (‰(g)), for all g œ G(F ) and ‰ œ X

ú
F

(G).

We denote G(F )1 := ker(‹ Õ
0), the kernel of the group homomorphism ‹

Õ
0. Then, the

quotient group G(F )/G(F )1 is a finitely generated abelian group and there exists an
isomorphism

(G(F )/G(F )1) ¢Z R ƒ Xú(Zc,s) ¢Z R = V
Õ
.

Now consider the real vector space V
Õ = Xú(Zc,s)¢Z R together with a G(F )-action on it

via the above isomorphism. Fix an a�ne space A
Õ under the real vector space V

Õ with a
morphism ‹

Õ : G(F ) æ A�(AÕ) where for each g œ G(F ), ‹
Õ(g) is the translation defined

by ‹
Õ(g)(a) = ‹

Õ
0(g) + a.

We can now define the extended standard apartment A = A(G, S, F ) associated to
the tuple (G, S, F ) by

A(G, S, F ) := A0(G, S, F ) ◊ A
Õ

together with a homomorphism Â‹ : N(F ) æ A�(A(G, S, F )) defined by

Â‹(n) = ‹(n) ü ‹
Õ(n) for all n œ N(F ).

From the direct sum decomposition of the vector space V0 = V ü V
Õ, it can be shown

that the extended apartment A(G, S, F ) is an a�ne space under the vector space V0 =
Xú(S) ¢Z R together with the map Â‹.

According to Bruhat and Tits [BT2], to each point x in the extended apartment
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A(G, S, F ), one can associate a smooth a�ne OF -group scheme Gx,0 such that its generic
fibre Gx,0◊Spec(OF )Spec(F ) is equal to G and its special fibre Gx := Gx,0◊Spec(OF )Spec(kF )
is a connected reductive algebraic group defined over the finite residue class field kF .
For each x œ A(G, S, F ), the group Gx,0 is called a parahoric subgroup of G . Let
G(F )x,0 := Gx,0(OF ) be the group of OF -points of Gx,0. Then G(F )x,0 is a compact
open subgroup of G(F ) for each x œ A(G, S, F ).

Extended Building

Definition 17. The extended Bruhat-Tits building B(G, F ) associated to G defined over
F is the set of equivalence classes

B(G, F ) := G(F ) ◊ A(G, S, F )/ s,

where the equivalence relation ‘s’ on G(F ) ◊ A(G, S, F ) is defined by the following way:
for any g, h œ G(F ) and x, y œ A(G, S, F )

(g, x) s (h, y) if there exists an elementn œ N(F ) such that n·x = y and g
≠1

hn œ G(F )x,0.

We can also identify the extended building B(G, F ) with the product of two G(F )-
sets as

B(G, F ) = B0(G, F ) ◊ V
Õ
.

Via the group homomorphism ‹
Õ
0 and the G(F )-action on B0(G, F ), one can define a

G(F )-action on the extended building B(G, F ) in the following way: for g œ G(F ) and
(x, v) œ B0(G, F ) ◊ V

Õ,
g · (x, v) = (g · x, ‹

Õ
0(g) + v)

Let A be the image of A(G, S, F ) under the inclusion map A(G, S, F ) Òæ B(G, F ) given
by x ‘æ [(1, x)]. Then A = A0 ◊ V

Õ for some apartment A0 in the reduced building
B0(G, F ). The apartments of the building B(G, F ) are of the forms g · A for g œ G(F ),
where g · A is the extended apartment corresponding to the torus gS and there exists
some apartment AÕ

0 µ B0(G, F ) such that g · A = AÕ
0 ◊ V

Õ. Similarly, a facet F in the
extended building B(G, F ) is a product of a facet F0 in the reduced building B0(G, F )
and V

Õ i.e., F = F0 ◊ V
Õ. Note that for any two points x, y œ B(G, F ), there exists an
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extended apartment AÕ µ B(G, F ) such that AÕ contains both the points x, y.

3.5.3 Galois descent

When the reductive group G is not F -quasi-split, then also one can define extended
building of G in the following method. Let E be a fixed maximal unramified extension of
F with its ring of integers OE and residue class field kE. Then kE is an algebraic closure
of kF and the Galois group � = Gal(E/F ) can be identified with the Galois group
Gal(kE/kF ). Consider a maximal F -split torus S of G. According to [BT2, §5.1.12],
there exists a maximal E-split torus T of GE = G ◊F E defined over F and containing
S as a subtorus. Since kE is algebraically closed, GE is quasi-split over E. As usual,
we can now define extended building B(GE, E) with its extended standard apartment
A(GE, T, E). This apartment A(GE, T, E) is equipped with an action of the Galois
group � such that the �-fixed point set A(GE, T, E)� is equal to the extended apartment
A(G, S, F ). Also there exists a natural � action on the group of E-rational points GE(E)
of GE. Combining both these �-actions, one can define an action of � on the building
B(GE, E) = GE(E) ◊ A(GE, T, E)/ s. Then the extended building B(G, F ) of G over
F will be the �-fixed point set of B(GE, E) i.e.,

B(G, F ) = B(GE, E)�
.

3.5.4 Stabilizer and Parahoric subgroups:

For each point x (resp. each facet F ) in B(G, F ), let us define their stabilizer subgroups
StabG(F )(x) (resp. StabG(F )(F)) by StabG(F )(x) := {g œ G(F ) | g · x = x} and
StabG(F )(F) := {g œ G(F ) | g · x = x ’x œ F} respectively. Then StabG(F )(x) (resp.
StabG(F )(F)) is a compact subgroup of G(F ). To each point x (resp. each facet F ) in
B(G, F ), Bruhat and Tits [BT2] associated a unique smooth a�ne OF -group scheme Gx

(resp. GF) with finite component group such that its generic fiber Gx ◊Spec(OF ) Spec(F )
(resp. GF ◊Spec(OF ) Spec(F )) is equal to G and its OF -points group G(F )x := Gx(OF )
(resp. GF := GF(OF )) is equal to StabG(F )(x) (resp. StabG(F )(F)). Let G¶

x
(resp. G¶

F)
denotes the identity component of Gx (resp. GF). If x is contained in some extended
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apartment A µ B(G, F ), then G¶
x

= Gx,0 (as defined in §3.5.2)

Definition 18 (Parahoric subgroup). The group G(F )x,0 := G¶
x
(OF ) (resp. G¶

F(OF ))
of OF -points of the connected component G¶

x
(resp. G¶

F) of Gx (resp. GF) is called a
parahoric subgroup of G(F ) for each x œ B(G, F ) (resp. each facet F µ B(G, F )). When
the facet F µ B(G, F ) is an alcove i.e., F has maximal dimension, then the parahoric
subgroup G¶

F(OF ) is called an Iwahori subgroup of G(F ).

Therefore, the parahoric subgroups are not the stabilizer subgroups on the building.
From the identification B(G, F ) = B0(G, F ) ◊ V

Õ, we have a natural projection map
B(G, F ) ⇣ B0(G, F ) and we will denote the image of a point x œ B(G, F ) in the
reduced building B0(G, F ) by [x]. Then for any x, y œ B(G, F ), Gx = Gy if and only if
[x] = [y]. For a given x œ B(G, F ), the stabilizer subgroup G(F )[x] := StabG(F )([x]) of
the point [x] œ B0(G, F ) is a compact modulo center subgroup of G(F ), whose maximal
compact subgroup coincides with G(F )x = StabG(F )(x). Infact, the subgroup G(F )[x] is
equal to the normalizer NG(F )(G(F )x) of the subgroup G(F )x in G(F ).

3.6 Moy-Prasad Filtration

Fix a point x œ B(G, F ) and choose an apartment A = A(G, S, F ) containing the point
x, where S is a maximal F -split torus in G corresponding to the apartment A. Consider
the parahoric subgroup G(F )x,0 associated to the point x œ A. In [MP3,MP4], Moy and
Prasad defined certain filtration {G(F )x,r | r œ RØ0} of the group G(F )x,0 by smaller
open normal subgroups G(F )x,r. Here, we will now recall the Moy-Prasad filtration
subgroup G(F )x,r associated to the tuple (G, x, r). We also assume here that G is a
connected reductive quasi-split group defined over F . Let Z = ZG(S) be the centralizer
of S in G. Since G is F -quasi-split, Z is a (maximal) torus defined over F . There exists
a unique smooth a�ne OF -group scheme Zb (which is a lft-Neron model of Z) such that
its generic fibre Zb ◊Spec(OF ) Spec(F ) is equal to Z. Then, the group Zb(OF ) of OF -points
of Zb is the maximal bounded subgroup of Z(F ). Let Z(F )0 be the group Z¶

b
(OF ) of

OF -points of the connected component Z¶
b

of Zb. Then Z(F )0 is called Iwahori (i.e.,
parahoric) subgroup of Z(F ), where the index of Z(F )0 in Zb(OF ) is finite.

To every real number r > 0, Moy and Prasad attached an open subgroup Z(F )r of
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Z(F )0, defined by

Z(F )r := {z œ Z(F )0 | valF (‰(z) ≠ 1) Ø r for all ‰ œ X
ú(Z)}.

This gives a decreasing sequence {Z(F )r | r œ RØ0} of subgroups, called Moy-Prasad
filtration of Z(F )0.

From §3.4.3, we recall the compact open subgroup U◊ attached to each a�ne root
◊ œ �a�

F
. Then for real number r Ø 0, the Moy-Prasad filtration subgroup G(F )x,r of

G(F )x,0 is the group generated by Z(F )r and those U◊ with ◊ œ �a�
F

such that ◊(x) Ø r

i.e.,
G(F )x,r :=

e
Z(F )r, U◊ | ◊ œ �a�

F
with ◊(x) Ø r

f
.

In [Yu3], Yu showed that for each x œ B(G, F ) and r œ RØ0, there exists a smooth a�ne
OF -group scheme Gx,r such that its generic fiber Gx,r ◊Spec(OF ) Spec(F ) is equal to G and
its OF -points group Gx,r(OF ) is equal to the Moy-Prasad subgroup G(F )x,r. Therefore,
these Moy-Prasad subgroups G(F )x,r are also schematic. We set

G(F )x,r+ :=
€

s>r

G(F )x,s together with G(F )x,r:r+ := G(F )x,r/G(F )x,r+.

Then, the quotient G(F )x,0:0+ can be identified with the kF -points group Gx(kF ) of
the finite reductive group Gx. For any r, s œ RØ0, G(F )x,r+s contains the commutator
subgroup [G(F )x,r, G(F )x,s]. Therefore, the quotient group G(F )x,r:r+ is an abelian
group for each positive real number r.
Remark 19. When G is not quasi-split over F , using Galois descent, one can define
Moy-Prasad subgroups Z(F )r, G(F )x,r etc.

We will now recall the definition of depth of a representation, which is mentioned in
the main theorem of Moy-Prasad theory developed in [MP3,MP4].

Theorem 20 (Moy and Prasad). Suppose fi be an irreducible admissible representation
of G(F ) on a complex vector-space Vfi. Then the infimum fl(fi) of the set

{r œ RØ0 | VG(F )x,r+
fi

”= 0 for x œ B(G, F )}

can be achieved for some x œ B(G, F ), where V
G(F )x,r+
fi denotes the G(F )x,r+-fixed vectors

of Vfi. Moreover, fl(fi) is a rational number.
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Definition 21 (Depth of a representation). If fi is an irreducible admissible representation
of G(F ), then the number fl(fi) (as mentioned in the above Theorem of Moy and Prasad)
is called the depth of the representation fi.
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Representations of a p-adic group

4.1 Bernstein decomposition

Let M be a Levi subgroup of G defined over F and M(F ) denotes the group of F -
rational points of M. In short, we say M(F ) is an F -Levi subgroup of G(F ). Let
XF (M(F )) be the group of F -rational characters „ : M(F ) æ F

◊ of M(F ). For each
„ œ XF (M(F )) and r œ C, one can define a smooth character ‰„,r : M(F ) æ C◊ of
M(F ) by ‰„,r(g) = ||„(g)||r

F
for g œ M(F ), where || · ||F denotes the normalized absolute

value on F . Let Xur(M(F )) denote the group generated by those smooth characters ‰„,r

for „ œ XF (M(F )) and r œ C. Then the elements of Xur(M(F )) are called unramified
quasicharacters of M(F ).

We consider a cuspidal pair (M(F ), ‡), where M(F ) is an F -Levi subgroup of G(F )
and ‡ is an irreducible supercuspidal representation of M(F ). Define an equivalence
relation (called inertial equivalence) on the set of all cuspidal pairs (M(F ), ‡) as: two
cuspidal pairs (M1(F ), ‡1) and (M2(F ), ‡2) are called inertially equivalent if there exist
g œ G and ‰ œ Xur(M2(F )) such that (M2(F ), ‡2 ¢ ‰) = (gM1(F ), g

‡1), where g
‡1

is defined by g
‡1(x) = ‡1(gxg

≠1), for x œ gM1(F ) = g
≠1M1(F )g. Let [M(F ), ‡]G(F )

be the inertial equivalence class corresponding to the cuspidal pair (M(F ), ‡). Denote
B(G(F )) for the Bernstein spectrum of G(F ), which is the set of all inertial equivalence
classes in G(F ). We say that a smooth irreducible representation (fi,V) has inertial

38
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support [M(F ), ‡]G(F ) if (fi,V) appears as a subquotient of a representation parabolically
induced from some element of [M(F ), ‡]G(F ).

Let R(G(F )) be the category of all smooth complex representations of G(F ) . For
each s := [M(F ), ‡]G(F ) œ B(G(F )), one can define a full subcategory Rs(G(F ))
(called the Bernstein block corresponding to s = [M(F ), ‡]G(F )) of R(G(F )) such that
Rs(G(F )) consists of those smooth complex representations (fi,V) œ R(G(F )) whose
each irreducible subquotient has inertial support s = [M(F ), ‡]G(F ).

Theorem 22 (Bernstein). The Bernstein decomposition gives a direct product decomposition
of R(G(F )) into indecomposable subcategories Rs(G(F )):

R(G(F )) =
Ÿ

sœB(G)
Rs(G(F )),

where s runs over the spectrum B(G(F )).

Concretely, if (fi,V) œ R(G(F )), then for each s œ B(G), V has a unique maximal
G(F )-subspace Vs œ Rs(G(F )) and

V =
n

sœB(G)
Vs.

Moreover, if s, sÕ œ B(G) with s ”= sÕ, then HomG(F )(Rs(G(F )),RsÕ(G(F ))) = 0.

4.2 Hecke algebra

Let (·, V ) be an irreducible smooth representation of a compact open subgroup J of
G(F ). The Hecke algebra H(G(F ), (J, ·)) is the space of all compactly supported
functions f : G(F ) æ EndC(V ‚) satisfying

f(j1gj2) = ·
‚(j1)f(g)·‚(j2) for all j1, j2 œ J and g œ G(F ).

Here (·‚
, V

‚) denotes the contragredient representation of (·, V ) . The standard
convolution operation ‘ú’ defined by

f1 ú f2(g) =
⁄

G(F )
f1(x)f2(x≠1

g) dx, for f1, f2 œ H(G(F ), (J, ·)),
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gives the space H(G(F ), (J, ·)) a structure of an associative C-algebra with identity.
Whenever the compact open subgroup J of G(F ) is explicitly mentioned, we will denote
H(G(F ), ·) for the Hecke algebra H(G(F ), (J, ·)) by dropping the notation J .

An element g œ G(F ) is said to intertwine · if the space HomJflgJ(·,
g
·) is non-zero.

Equivalently, an element g œ G(F ) intertwines · if and only if there exists a function
f œ H(G(F ), ·) whose support contains the element g. We denote IG(F )(·) for the set
of element g œ G(F ) such that g intertwines · . This set IG(F )(·) of intertwining serves
as an essential object in the study of the Hecke algebra H(G(F ), ·).

If (fi,V) is a smooth complex representation of G(F ), then the · -isotypic subspace
V· of V is the sum of all irreducible J-subspaces of V, which are equivalent to · . Let
R· (G(F )) denote the subcategory of R(G(F )) whose objects are the smooth complex
representations (fi,V) of G(F ) generated by the · -isotypic subspace V· of V. There is a
functor

M· : R· (G(F )) æ H(G(F ), ·)-Mod, (4.1)

given by
fi ‘æ HomJ(·, fi).

Here H(G(F ), ·)-Mod denotes the category of unital left-modules over the Hecke algebra
H(G(F ), ·).

4.3 Notion of Types

For each s œ B(G(F )), Bushnell and Kutzko [BK] described the abelian category
Rs(G(F )) in terms of a class of pairs (J, ·) consisting of irreducible smooth representations
· of compact open subgroups J of G(F ). For any finite subset S µ B(G(F )), we write
RS(G(F )) = r

sœS
Rs(G(F )) i.e., RS(G(F )) is the full subcategory of R(G(F )) such that

RS(G(F )) consists of those smooth complex representations (fi,V) œ R(G(F )) whose
each irreducible subquotient has inertial support contained in S.

Definition 23. Suppose · be an irreducible smooth representation of a compact open
subgroup J of G(F ). For a finite subset S of B(G(F )), the pair (J, ·) is called an
S-type in G(F ) if for any irreducible smooth representation (fi,V) of G(F ), we have
(fi,V) œ RS(G(F )) if and only if HomJ(·, fi) ”= 0.
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Equivalently, the pair (J, ·) is an S-type in G(F ) if R· (G(F )) = RS(G(F )) as
subcategories of R(G(F )). When S is a singleton set {s}, we will write ‘s-type’ in place
of {s}-type. From [BK, Theorem 4.3] and [LN, §4.2], we now review some properties
of types. If S is a finite subset of B(G(F )) and the pair (J, ·) is consisting of an
irreducible smooth representation · of a compact open subgroup J of G(F ), then the
followings happen.

(1) The pair (J, ·) is an S-type in G(F ) if and only if R· (G(F )) = RS(G(F )) as
subcategories of R(G(F )).

(2) If the pair (J, ·) is an S-type in G(F ), the functor M· as mentioned in Eq. (4.1)
gives an equivalence of the categories:

M· : R· (G(F )) ≥≠æ H(G(F ), ·)-Mod.

(3) The pair (J, ·) is an S-type in G(F ) if and only if the pair (g
J,

g
·) is an S-type in

G(F ) for any g œ G(F ).

(3) Let s = [G(F ), fi]G(F ) be an inertial equivalence class of a supercuspidal
representation fi of G(F ) and fl is an irreducible smooth representation of a compact
open subgroup K of G(F ) with J µ K such that the space HomJ(·, fl) ”= 0. Then
the pair (J, ·) is an s-type in G(F ) implies the pair (K, fl) is an s-type in G(F ).

4.3.1 G-cover

Let M be a proper Levi subgroup of G defined over F and M(F ) denotes the group of
F -points of M.

Definition 24. Consider the pair (KM(F ), flM(F )) consisting of a compact open subgroup
KM(F ) of M(F ) and an irreducible smooth representation flM(F ) of the subgroup KM(F ).
Let K be a compact open subgroup of G(F ) and fl be an irreducible smooth representation
of K. The pair (K, fl) is called a G(F )-cover of (KM(F ), flM(F )) if for any opposite pair
of F -parabolic subgroups P = MN and P≠ = MN≠ with common Levi factor M and
unipotent radicals N and N≠ respectively, the pair (K, fl) satisfies the following properties:
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(1) K decomposes with respect to (N(F ), M(F ), N≠(F )) i.e.,

K = (K fl N(F ))(K fl M(F ))(K fl N≠(F )).

(2) KM(F ) = K fl M(F ), fl|KM(F ) = flM(F ) and K fl N(F ), K fl N≠(F ) is contained in
the kernel ker(fl) of fl.

(3) For any smooth representation (fi,V) of G(F ); the natural projection V to the
Jacquet module VN(F ) induces an injection on Vfl.

See [Blo, Theorem 1] for this reformulation of the original definition of G(F )-cover
due to Bushnell and Kutzko [BK, §8.1] (see also [Roc, §4.2]). The transitivity property
of cover follows from [BK, Proposition 8.5]. Explicitly, if L is an F -Levi subgroup of G
such that L is contained in M and the pair (KL(F ), flL(F )) is consisting of a compact open
subgroup KL(F ) of L(F ) together with an irreducible smooth representation flL(F ) of the
subgroup KL(F ), then the followings hold:

(1) If (K, fl) is a G(F )-cover of (KM(F ), flM(F )) and (KM(F ), flM(F )) is a M(F )-cover of
(KL(F ), flL(F )), then (K, fl) is a G(F )-cover of (KL(F ), flL(F )).

(2) Suppose (K, fl) is a G(F )-cover of (KL(F ), flL(F )). If we denote K fl M(F ) =
KM(F ) and fl|KM(F ) = flM(F ), then (K, fl) is a G(F )-cover of (KM(F ), flM(F )) and
(KM(F ), flM(F )) is a M(F )-cover of (KL(F ), flL(F )).

Let B(M(F )) denote the Bernstein spectrum of M(F ). Consider any finite subset
SM(F ) = {[Li, ‡i]M(F ) : i = 1, ..., n} µ B(M(F )), where Li is an F -Levi subgroup of
M(F ) and ‡i is an irreducible supercuspidal representation of Li. Each class [Li, ‡i]M(F )

uniquely determines an element [Li, ‡i]G(F ) in B(G(F )). Therefore, every finite subset
SM(F ) = {[Li, ‡i]M(F ) : i = 1, ..., n} µ B(M(F )) corresponds to a finite subset SG(F ) =
{[Li, ‡i]G(F ) : i = 1, ..., n} of B(G(F )). Using the notion of cover, Bushnell and Kutzko
[BK, §8] showed that every SM(F )-type in M(F ) induces an SG(F )-type in G(F ). One
key property of G(F )-cover is the following:

Proposition 25. [BK, Theorem 8.3] Suppose the pair (KM(F ), flM(F )) is an SM(F )-type
in M(F ). If (K, fl) is a G(F )-cover of (KM(F ), flM(F )), then (K, fl) is an SG(F )-type in
G(F ).
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In particular, if (KM(F ), flM(F )) is an [M(F ), ‡]M(F )-type in M(F ) and (K, fl) is a
G(F )-cover of (KM(F ), flM(F )), then (K, fl) is an [M(F ), ‡]G(F )-type in G(F ), and the
representation c-IndG(F )

K
fl decomposes as a direct sum of some finite-length admissible

representations of G(F ), where each one is isomorphic to c-IndG(F )
P(F ) ‡

Õ for some parabolic
subgroup P of G with its Levi factor M and some irreducible supercuspidal representation
‡

Õ of M(F ) contained in the inertial support of ‡ [LN, Lemma 4.3].
Suppose (K, fl) is a G(F )-cover of (KM(F ), flM(F )), then for any F -parabolic subgroup

PÕ = MNÕ with its Levi factor M, and its unipotent radical NÕ, there is a C-algebra
embedding [BK, §8.3]

tPÕ : H(M(F ), flM(F )) æ H(G(F ), fl), (4.2)

with the property that for any smooth representation � of G(F ),

MflM(F )(�NÕ(F )) ≥= t
ú
PÕ(Mfl(�) as H(M(F ), flM(F ))-mod (4.3)

Here �NÕ(F ) is the Jacquet-module of � at the unipotent radical NÕ(F ), and t
ú
PÕ :

H(G(F ), fl)-mod æ H(M(F ), flM(F ))-mod is the restriction functor induced by tPÕ

(see [BK, Eq. 7.10]).
Kim and Yu [KY], using Kim’s work [Kim], showed that Yu’s construction of

supercuspidals [Yu2] can be used to produce G(F )-covers of [M(F ), ‡]M(F )-types for all
[M(F ), ‡]G(F ) œ B(G(F )), assuming F has characteristic 0 and the residue characteristic
p of F is suitably large. Using an approach di�erent from Kim, recently in [Fin], Fintzen
has shown the construction of types for all Bernstein blocks without any restriction on
the characteristic of F , and assuming only that the order of the Weyl group of G can
not be divided by p.



44 4.3. Notion of Types



Part II

Depth of a representation of a p-adic
group:

45





5
Notion of Depth

Let G = Gal(L/F ) be the Galois group of the field extension L/F , where L and F are
local fields and let M be a G-module. Define the depth of M as

dep
G

(M) = inf{r Ø 0 | M
G

s ”= 0 ’ s > r}.

Define the depth of a co-cycle as Ï œ H1(G, M)adm := t
rØ0 H1(G/G

r
, M

G
r) to be:

dep
G

(Ï) = inf{r Ø 0 | G
s µ ker(Ï) ’s > r}.

5.1 Depth change under induction

Let G = Gal(L/F ) be the Galois group of the extension L/F and H = Gal(L/K) be
the Galois group of the extension L/K, where F ™ K ™ L and K/F is finite Galois
extension.

Let N be an H-module. We define induction of N to G by

IndG

H
N := HomH(G, N),

i.e. IndG

H
N consists of all functions f : G æ N on G satisfying f(hg) = hf(g) for all

g œ G, h œ H. The G-action on IndG

H
N is given by (g · f)(x) = f(xg) for g, x œ G and

f œ IndG

H
N .
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Let M be a G-module. Then using Frobenius reciprocity theorem HomG(M, IndG

H
N) ≥=

HomH(ResHM, N), we have a natural isomorphism

(IndG

H
N)G ≥= N

H (5.1)

here ResH denotes the restriction functor to the subgroup H.

Proposition 26. If N be an H-module then,

dep
H

(N) = ÂK/F (dep
G

(IndG

H
N)).

Proof. By Mackey theory, the restriction ResGr(IndG

H
N) of the G-module IndG

H
N to a

G
r-module decomposes as a direct sum

ResGr(IndG

H
N) =

n

ḡœGr\G/H

IndG
r

GrflgH
N

g
,

where g is a representative of the double coset ḡ, g
H denotes the subgroup g

≠1
Hg and N

g

denotes the g-twisted module N with (Gr fl g
H)-action defined by x ·N g = (gxg

≠1) ·N for
x œ G

rflg
H, which only depends on the coset ḡ but not on the chosen coset representative

g. By Proposition 10, G
r fl g

H = (g
H)ÂK/F (r). Thus for any r Ø 0

(IndG

H
N)G

r ”= 0 ≈∆ (IndG
r

(gH)Â
K/F

(r)N
g)G

r ”= 0 for some ḡ œ G
r\G/H

≈∆ (N g)(g
H)Â

K/F
(r)

”= 0 ( follows from Eq.5.1)

≈∆ (N)H
Â

K/F
(r)

”= 0.

Hence, the result follows.

5.2 Depth change under Shapiro’s isomorphism

Again G = Gal(L/F ) and H = Gal(L/K) where F ™ K ™ L and K/F is any finite
extension and let N be an H-module.
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Shapiro’s lemma states that the map

Sh : H1(G, IndG

H
N) æ H1(H, N)

defined by
“ ‘æ (h ‘æ “(h)(1))

is an isomorphism. We wish to relate the depth of co-cycles under this isomorphism. We
first observe the following:

Lemma 27. Let A be a group, B and C subgroups of A with C being normal in A. Let
M be a B-module. Then there is a canonical isomorphism of A/C-modules:

(IndA

B
M)C ≥= IndA/C

B/BflC
M

BflC
.

Proof. For each f œ (IndA

B
M

2
C

, define Âf : A/C æ M by Âf(aC) = f(a). We will show
that Âf œ IndA/C

B/BflC
M

BflC
. Put D = B fl C. Since M is B-module, we have M

D is
B/D-module. Since f œ

1
IndA

B
M

2
C

, we have d · Âf(aC) = d · f(a) = f(a) = Âf(aC)
for all aC œ A/C and d œ D. Therefore, image of Âf lies in M

BflC . Define a map
� : (IndA

B
M

2
C

æ IndA/C

B/BflC
M

BflC by f ‘æ Âf . Clearly, � is well-defined A/C-linear map.

Let f œ Ker(�). Therefore Âf © 0 ∆ Âf(aC) = 0 for all a œ A ∆ f(a) = 0 for all
a œ A ∆ f © 0. Therefore, Ker(�) = {0} and � is injective.

Let · œ IndA/C

B/BflC
M

BflC . Therefore · is a map from A/C to M
BflC , where ·(bD.aC) =

bD.·(aC). Define a map f : A ‘æ M by f(a) = ·(aC). Now for b œ B and a œ A we have
f(ba) = ·(baC) = ·(bD · aC) = bD · ·(aC) = bf(a) and, (c · f)(a) = f(ac) = ·(acC) =
·(aC) = f(a) for each c œ C and a œ A. So, f œ (IndA

B
M

2
C

and �(f) = ·. Hence the
surjectivity of � follows.

Lemma 28. For r Ø 0, Shapiro’s lemma induces an isomorphism H1(G/G
r
, (IndG

H
N)G

r) ≥=
H1(H/H

ÂK/F (r)
, N

H
Â

K/F
(r)

).
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Proof. For r Ø 0, we have

H1(G/G
r
, (IndG

H
N)G

r) ≥= H1(G/G
r
, IndG/G

r

H/GrflH
N

G
rflH)

≥= H1(G/G
r
, IndG/G

r

H/H
Â

K/F
(r)N

H
Â

K/F
(r)

)

≥= H1(H/H
ÂK/F (r)

, N
H

Â
K/F

(r)
).

The first isomorphism follows from Lemma 27, second from Proposition 10 and the
last from Shapiro’s lemma.

Write H1(G, IndG

H
N)adm = t

rØ0 H1(G/G
r
, (IndG

H
N)G

r). In the next result, we will give
a depth comparison formulae under Shapiro’s isomorphism.

Corollary 29. If ⁄ œ H1(G, IndG

H
N)adm , then dep

G
(⁄) = ÏK/F (dep

H
(Sh(⁄)).

Proof. Let dep
G

(⁄) = r. Then G
s µ ker(⁄) if s > r. By Lemma 28, this implies

H
ÂK/F (s) µ ker(Sh(⁄)) if s > r. Therefore dep

H
(Sh(⁄)) Æ ÂK/F (dep

G
(⁄)). The argument

is reversible showing that dep
H

(Sh(⁄)) Ø ÂK/F (dep
G

(⁄)). Therefore dep
H

(Sh(⁄)) =
ÂK/F (dep

G
(⁄)).
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Local Langlands correspondence for tori

First we briefly discuss the history of the local Langlands correspondence (in short LLC)
for tori, which was observed by Robert P Langlands. Then we will review here the
statement of the local Langlands correspondence (LLC) for tori as stated and proved
in [Yu1].

6.1 Local class field theory

Let W
ab
F

:= WF /[WF , WF ] be the maximal abelian quotient of the Weil group WF of the
local field F relative to F

sep. Recall the following well known result from the local class
field theory:

Theorem 30 (Artin reciprocity). There exists a unique natural isomorphism of topological
groups

·F : F
◊ ≥≠æ W

ab
F

. (6.1)

Let Irr(F ◊) be the collection of all irreducible smooth complex characters of F
◊.

Then the Artin reciprocity map ·F gives us a bijection

Irr(F ◊) = Hom(F ◊
, C◊) ≥≠æ Hom(W ab

F
, C◊) = Hom(WF , C◊). (6.2)
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(Here ‘Hom’ means smooth homomorphism of topological groups.) Interpreting the
bijection ⁄Gm

: Irr(F ◊) ≥≠æ Hom(WF , C◊) as a statement for GL1(F ), Langlands
generalized this idea to a beautiful correspondence (LLC) for tori.

6.2 LLC for split tori:

Let T be an F -split torus and T = T(F ) denotes the group of F -rational points of
T. Let X

ú(T) (resp. Xú(T)) be the lattice of of algebraic characters T æ Gm (resp.
algebraic co-characters Gm æ T). Then T(F ) ≥= Xú(T) ¢Z F

◊ and T
‚ := X

ú(T) ¢Z C◊

be the complex dual torus of T = T(F ) with the identifications X
ú(T) = Xú(T ‚) and

Xú(T) = X
ú(T ‚). Let Irr(T(F )) be the collection of all irreducible smooth complex

representations (which are characters) of T(F ). Using the Hom-tensor duality and the
Artin reciprocity map ·F , we have the following isomorphism

Irr(T(F )) = Hom(T(F ), C◊) = Hom(Xú(T ) ¢Z F
◊

, C◊)
≥= Hom(F ◊

, Xú(T ) ¢Z C◊)
≥= Hom(W ab

F
, T

‚)

= Hom(WF , T
‚).

A Langlands parameter for T(F ) is defined to be an element of Hom(WF , T
‚). The

collection of such parameters is denoted by �(T(F )), so we have a natural bijection

⁄T : Irr(T(F )) ≥≠æ �(T(F )), (6.3)

called the local Langlands correspondence for split tori. The Langlands parameter of
‰ : T(F ) æ C◊ is the homomorphism Ï‰ : WF æ T

‚ defined by

“(Ï‰(x)) = ‰(“(·F (x))) (6.4)

for all “ œ Xú(T) = X
ú(T ‚) and x œ WF .
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6.3 LLC for induced tori: a special case

Let T = ResF Õ/F Gm, where F
Õ is a finite separable extension of F contained in F

sep and
ResF Õ/F denotes the Weil restriction. Then, the group of F -rational points T(F ) = F

Õ◊

and the group of characters X
ú(T) is canonically a free Z-module with basis WF /WF Õ

where WF (resp. WF Õ) denotes the Weil group of F (resp. F
Õ) and WF Õ is an open

subgroup of WF of index [F Õ : F ]. From this, it follows that the complex dual T
‚ = ‚T(C)

of T(F ) is canonically isomorphic to IndWF

W
F Õ C

◊, which is a complex torus of dimension
[F Õ : F ] and the group T

‚ is endowed with a canonical action of WF ( see [ABPS2,Lan2]
for more details). We get,

Irr(T(F )) = Hom(T(F ), C◊) ≥= Hom(F Õ◊
, C◊)

≥= Hom(WF Õ , C◊) (6.5)
≥= H1(WF Õ , C◊)
≥= H1(WF , IndWF

W
F Õ C

◊) (6.6)
≥= H1(WF , T

‚).

The isomorphism (6.5) follows from the Artin reciprocity map ·F Õ and the isomorphism
(6.6) by Shapiro’s lemma. Therefore, we have a natural bijection

⁄T : Irr(T(F )) ≥≠æ H1(WF , T
‚), (6.7)

called the local Langlands correspondence for induced tori. Here the space of Langlands
parameters �(T(F )) is H1(WF , T

‚).

6.4 The LLC for tori in general

Langlands showed that the correspondence like ⁄T is actually possible for every (non-
split) torus T. From [Yu1, §7.5], we will recall the statement of the local Langlands
correspondence for tori in general.
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Theorem. [Lan2]There is a unique family of homomorphisms

⁄T : Hom(T(F ), C◊) æ H1(WF , T
‚)

with the following properties:

1. ⁄T is additive functorial in T, i.e., it is a morphism between two additive functors
from the category of tori over F to the category of abelian groups;

2. For T = ResF Õ/F Gm, where F
Õ
/F is a finite separable extension, ⁄T is the

isomorphism described in Section 6.3.

6.5 Depth change under LLC for tori

We keep the notations as mentioned above. Let L be a local field. Recall that L
◊

admits a filtration {L
◊
r

}rØ0 where L
◊
0 is the units of the ring of integers and for r > 0,

L
◊
r

:= {x œ L | valL(x ≠ 1) Ø r}. Here valL is the valuation of L normalised so that
valL(L◊) = Z. Under local class field theory isomorphism

L
◊
r

≥= (W r

L
)ab

.

We recall that T(F ) carries a Moy-Prasad filtration {T(F )r}rØ0 (see §3.6). The depth
dep

T
(‰) of a character ‰ : T(F ) æ C◊ is defined to be

inf{r Ø 0 | T(F )s µ ker(‰) for s > r}.

The group T(F )0 is called the Iwahori subgroup of T(F ). It is a subgroup of finite
index in the maximal compact subgroup of T(F ). When T = ResF Õ/F Gm, then for r > 0,

T(F )r = {x œ T(F ) = F
Õ◊ | valÕ

F
(x ≠ 1) Ø r} (6.8)

= {x œ F
Õ◊ | valF Õ(x ≠ 1) Ø er} (6.9)

= F
Õ◊
er

.

Here valÕ
F

is the valuation on F
Õ normalised so that valÕ

F
(F ◊) = Z, and e is the
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ramification index of F
Õ
/F . The equality 6.8 follows from [Yu3, Sec. 4.2] and the equality

6.9 follows from the fact that valF Õ(–) = e · valÕ
F

(–) for all – œ F
◊

.

Proposition 31. [MP1, Theorem 6] Let T = ResF Õ/F Gm, where F
Õ
/F is a finite

separable extension of local fields of ramification index e. Then for r Ø 0, the local
Langlands correspondence for tori induces an isomorphism:

Hom(T(F )/T(F )r, C◊) ≥= H1(WF /W
Ï

F Õ/F
(er)

F
, T

‚W

Ï
F Õ/F

(er)
F ).

Proof. The case r = 0 is a special case of [Mis, Theorem 7]. For r > 0, this follows by

Hom(T(F )/T(F )r, C◊) ≥= Hom(F Õ◊
/F

Õ◊
er

, C◊)
≥= Hom(WF Õ/W

er

F Õ , C◊) (6.10)
≥= H1(WF Õ/W

er

F Õ , C◊)
≥= H1(WF /W

Ï
F Õ/F

(er)
F

, (IndWF

W
F Õ C

◊)W

Ï
F Õ/F

(er)
F ) (6.11)

≥= H1(WF /W
Ï

F Õ/F
(er)

F
, (T ‚)W

Ï
F Õ/F

(er)
F ).

Here, the isomorphism 6.11 follows from Lemma 28.

Theorem 32. Let T = ResF Õ/F Gm, where F
Õ
/F is a finite separable extension of local

fields of ramification index e. Then we have the following depth changing formulae under
LLC for tori:

ÏF Õ/F (e · dep
T

(‰)) = dep
WF

(⁄T(‰)).

Proof. Suppose, dep
T

(‰) = r for some non-negative real number r. Then, T(F )s µ
ker(‰) for s > r. Now, from Proposition 31, it follows that W

Ï
F Õ/F

(er)
F

µ ker(⁄T(‰)) for
s > r. Therefore, we have

dep
WF

(⁄T(‰)) Æ ÏF Õ/F (er) = ÏF Õ/F (e · dep
T

(‰))

The argument is reversible showing that

dep
WF

(⁄T(‰)) Ø ÏF Õ/F (e · dep
T

(‰))

Therefore, ÏF Õ/F (e · dep
T

(‰)) = dep
WF

(⁄T(‰)).
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Remark 33. The slope of the map r ‘æ ÏF Õ/F (er) at a di�erentiable point r is e

(G0:Gr) Ø
1. Thus, when F

Õ
/F is a wildly ramified extension, ÏF Õ/F (er) > r and consequently

dep
T

(‰) < dep
WF

(⁄T(‰)).

When F
Õ
/F is a tamely ramified extension, ÏF Õ/F (r) = r

e
. Therefore in this case,

Theorem 32 simplifies to,
dep

T
(‰) = dep

WF
(⁄T(‰)).

This is a special case of Depth-preservation Theorem of Yu for tamely ramified tori [Yu2,
Theorem 7.10].

6.5.1 Case of a tamely induced tori

Recall that a F -torus is called induced if it is of the form �n

i=1ResLi/F Gm, where Li are
finite separable extensions of F . A F -torus T is called tamely induced it T ¢F Ft is an
induced torus for some tamely ramified extension Ft of F . In this section, we compare
depths under LLC for such tori following the proof in [Yu2, Sec. 7.10].

Let T be a tamely induced F -torus. Then there exists an induced torus TÕ =
r

n

i=1 ResF
Õ
i
/F Gm such that TÕ ⇣ T and C0 := ker(TÕ æ T) is connected. Further

TÕ(F )r ⇣ T(F )r ’r > 0 (see proof in [Yu3, Lemma 4.7.4]). Let ‰ œ Hom(T(F ), C◊) and
let ‰

Õ denote its lift to TÕ(F ). Then

dep
T

(‰) = dep
TÕ(‰Õ) = sup{dep

T
Õ
i

(‰Õ
i
) | 1 Æ i Æ n}. (6.12)

Here TÕ
i

denotes ResF
Õ
i
/F Gm and ‰i = ‰|TÕ

i
(F ). By functoriality, ⁄TÕ(‰Õ) is the

image of ⁄T(‰) under H1(WF , T
‚) æ H1(WF , (T Õ)‚) and therefore dep

WF
(⁄T(‰)) =

dep
WF

(⁄TÕ(‰Õ)). But

dep
WF

(⁄TÕ(‰Õ)) = sup{dep
WF

(⁄T
Õ
i
(‰Õ

i
)) | 1 Æ i Æ n}

= sup{ÏF
Õ
i
/Fi

(ei · dep
T

Õ
i

(‰Õ
i
)) | 1 Æ i Æ n}.

Ø sup{dep
T

Õ
i

(‰Õ
i
) | 1 Æ i Æ n}.
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Here ei denotes the ramification index of F
Õ
i
/F . Thus

dep
WF

(⁄T(‰)) Ø dep
T

(‰). (6.13)

Now assume T is wildly ramified. We will now produce a character of T(F ) for which the
inequality (6.13) is strict. We can assume without loss of generality that T0 := ResF

Õ
1/F Gm

is wildly ramified. Let ‰
Õ
0 be a positive depth character of T0(F ) which is trivial on

C0 flT0(F ). Extend ‰
Õ
0 trivially to a character ‰

Õ of TÕ(F ). Then since C◊ is divisible, the
character ‰

Õ lifts to a character ‰ of T(F ). By Remark 33, dep
T0(‰Õ

0) < dep
WF

(⁄T0(‰Õ
0)).

Since dep
T
(‰) = dep

T0(‰Õ
0) and dep

WF
(⁄T(‰)) = dep

WF
(⁄T0(‰Õ

0)), it follows that the
inequality (6.13) is strict for this choice of ‰.

6.5.2 Example

Let F = Qp, L = F (’pn), where ’pn denotes a primitive p
nth root of unity, n Ø 1. Then

L/F is a totally ramified extension of degree (p ≠ 1)pn≠1
. Consider the intermediate

extension K = F (’p) of F of degree p ≠ 1 over F . Then, L/K is a wildly ramified
extension. Write G = Gal(L/F ) and H = Gal(L/K).

Lemma 34. For r Ø 1, we have ÏL/K(r) = (p ≠ 1)ÏL/F (r).

Proof. We first note that since we considering abelian extensions, the jumps in filtration
occur at integer values. We have for r Ø 1,

ÏL/F (r) =
⁄

r

0

dt

(G0 : Gt)

=
⁄ 1

0

dt

(G0 : Gt)
+

⁄
r

1

dt

(G0 : Gt)

= 1
p ≠ 1 +

⁄
r

1

dt

(G0 : Gt)

= 1
p ≠ 1 +

⁄
r

1

(H0 : Ht)
(G0 : Gt)

dt

(H0 : Ht)

= 1
p ≠ 1 +

⁄
r

1

(Gt : Ht)
(G0 : H0)

dt

(H0 : Ht)

= 1
p ≠ 1 + 1

p ≠ 1

⁄
r

1

dt

(H0 : Ht)
.
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The last equality holds because Gt = Ht for t Ø 1 and (G0 : H0) = p ≠ 1. Thus

ÏL/F (r) = 1
p ≠ 1 + 1

p ≠ 1(ÏL/F (r) ≠
⁄ 1

0

1
(H0 : Ht)

dt)

= 1
p ≠ 1 + 1

p ≠ 1(ÏL/K(r) ≠ 1)

= ÏL/K(r)
(p ≠ 1) .

Let us recall the ramification subgroups {Gu}uØ0 of G from [Ser, Chap IV]. Write
m = p

n and let G(m) = (Z/mZ)◊. By [Ser, Chap IV, Prop. 17], G = G(m). Define

G(m)s := {a œ G(m) | a © 1 mod p
s}.

Then G(m)s = Gal(L/F (’ps)). The ramification groups Gu of G are [Ser, Chap IV,
Prop. 18]:

G0 = G

if 1 Æ u Æ p ≠ 1 Gu = G(m)1

if p Æ u Æ p
2 ≠ 1 Gu = G(m)2

... ...

if p
n≠1 Æ u Gu = 1.

We now calculate the Hasse-Herbrand function ÏL/K .

Proposition 35. The Hasse-Herbrand function of the wildly ramified extension L/K is
given by

ÏL/K(r) =

Y
]

[
k(p ≠ 1) + r≠p

k+1
pk if p

k ≠ 1 < r Æ p
k+1 ≠ 1 with 0 Æ k < n ≠ 1

(n ≠ 1)(p ≠ 1) + r≠p
n≠1+1

pn≠1 r > p
n≠1 ≠ 1

(6.14)

Proof. We consider various cases:
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• Case 0 < r Æ 1

ÏL/K(r) =
⁄

r

0

dt

(H0 : Ht)

= 1
(H0 : H1)

⁄
r

0
dr

= r.

• Case 1 < r Æ p ≠ 1

ÏL/F (r) =
⁄

r

0

dt

(G0 : Gt)

=
⁄ 1

0

dt

(G0 : G1)
+

⁄
r

1

dt

(G0 : Gt)

= 1
p ≠ 1 +

⁄
r

1

dt

(G0 : G(m)1)
= r

p ≠ 1 .

Therefore, ÏL/K(r) = r.

• Case p
k ≠ 1 < r Æ p

k+1 ≠ 1 with 1 Æ k < n ≠ 1

ÏL/F (r) =
⁄

r

0

dt

(G0 : Gt)

=
k≠1ÿ

i=0

⁄ (pi+1≠1)

(pi≠1)

dt

(G0 : Gt)
+

⁄
r

pk≠1

dt

(G0 : Gt)

=
⁄ 1

0

dt

(G0 : G1)
+

⁄
p≠1

1

dt

(G0 : G(m)1) +
k≠1ÿ

i=1

⁄
p

i+1≠1

pi≠1

dt

(G0 : G(m)i+1

+
⁄

r

pk≠1

dt

(G0 : G(m)k+1

= 1
p ≠ 1 + p ≠ 2

p ≠ 1 +
k≠1ÿ

i=1

p
i+1 ≠ p

i

(p ≠ 1)pi
+ r ≠ p

k + 1
(p ≠ 1)pk

= k + r ≠ p
k + 1

(p ≠ 1)pk
.

Therefore, ÏL/K(r) = k(p ≠ 1) + r≠p
k+1

pk .
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• Case r > p
n≠1 ≠ 1

ÏL/F (r) =
⁄

r

0

dt

(G0 : Gt)

=
⁄

p
n≠1≠1

0

dt

(G0 : G1)
+

⁄
r

pn≠1≠1

dt

(G0 : Gt)

= (n ≠ 1) + r ≠ p
n≠1 + 1

(p ≠ 1)pn≠1 .

Therefore, ÏL/K(r) = (n ≠ 1)(p ≠ 1) + r≠p
n≠1+1

pn≠1 .

Now write T = ResL/KGm and let ⁄T be as denoted in Sec. 6.3. Then the following
result immediately follows from Proposition 35:

Lemma 36. For r > 0, we have

ÏL/F (pn≠1
r) > r.

Consequently, for all positive depth character ‰ œ Hom(T(F ), C◊), we have dep
T
(‰) <

dep
WF

(⁄T(‰)).

6.6 Further results

In this section, we will give a brief description of a recent work [AP] of Aubert and Plymen,
who have generalized our Theorem 32 by giving a depth depth changing formula under the
enhanced local Langlands correspondence for the groups coming from Weil-restriction.

Let F µ F
Õ be non-archimedean local fields such that the field extension F

Õ
/F is a

finite Galois extension. If G is a connected reductive algebraic group defined over the
field F

Õ, the Weil-restriction of scalars from G, which we will denote by H := ResF Õ/F G,
is again a reductive algebraic group defined over F and we have an isomorphism ÿ :
G(F Õ) æ H(F ) between the F

Õ-rational points of G and the F -rational points of H.
Consider G(F Õ) admits LLC ⁄G : Irr(G(F Õ)) æ �(G(F Õ)). Then one can define ⁄H as
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the unique map ⁄H : Irr(H(F )) æ �(H(F )) such that the following diagram :

Irr(H(F )) �(H(F ))

Irr(G(F Õ)) �(G(F Õ))

⁄H

ÿ
ú ÂSh

⁄G

commutes. Here ÊSh : �(H(F )) ≥≠æ �(G(F Õ)) is the canonical bijection as defined in [Bor2,
Proposition 8.4] using Shapiro’s isomorphism Sh and ÿ

ú is the natural map coming from
ÿ. Anne-Marie Aubert and Roger Plymen investigate how the depth can change in the
transition from G(F Õ) to H(F ). They have shown in [AP, Theorem 1.2] that if ⁄G

preserves depth i.e., dep
G

(fiÕ) = dep
W

F Õ (⁄G(fiÕ)) for each fi
Õ œ Irr(G(F Õ)) , then the

depth changing formula under ⁄H is

ÏF Õ/F (e · dep
H

(fi)) = dep
WF

(⁄H(fi)),

for each fi œ Irr(H(F )).
In particular, they get the followings:

(i) ⁄H preserves depth if and only if F
Õ
/F is a tamely ramified extension. This

reproduces the depth-preservation Theorem [Yu2, Theorem 7.10] of Yu for tamely
ramified induced tori.

(ii) For each fi œ Irr(H(F )) with dep
H

(fi) > 0, we have dep
H

(fi) < dep
WF

(⁄H(fi)) if
F

Õ
/F is a wildly ramified extension. This fact implies our main Theorem 32, if one

puts G = GL1.
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Part III

Genericity of representations of a
p-adic group:
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7

Gelfand-Graev spaces

7.1 Non-degenerate characters:

Let G be a connected reductive algebraic group defined over a non-archimedean local
field F with residue field kF . If H is a (Zariski-) closed subgroup of G defined over F ,
we will denote the group of F -points of H by H(F ). Fix a maximal F -split torus S in G
and let T = ZG(S) be the centralizer of S in G. Then T is the Levi factor of a minimal
F -parabolic subgroup B of G defined over F . We denote the unipotent radical of B by
U and B-opposite F -parabolic subgroup of G by B≠ with its unipotent radical U≠ i.e.,
B = TU and B≠ = TU≠.

Consider a smooth character Â : U(F ) æ C◊ of U(F ). Since U(F ) is normalized by
S(F ), for each s œ S(F ), one can define a smooth character Â

s : U(F ) æ C◊ of U(F )
by x ‘æ Â(sxs

≠1). Therefore, there is an action of S(F ) on the space \U(F ) of all smooth
characters of U(F ) defined by

s · Â = Â
s for s œ S(F ) and Â œ \U(F ).

Definition 37. A smooth character Â : U(F ) æ C◊ of U(F ) is called non-degenerate
(a.k.a. generic, or principal) if the stabilizer {s œ S(F ) | Â

s = Â} of Â in S(F ) lies in
the center ZG(F ) of G(F ).

65
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Let � = �(G, S, F ) be the relative root system of G with respect to the maximal
F -split torus S in G. The minimal F -parabolic subgroup B determines a subset �+ µ �
of positive roots in � and a subset � µ �+ of simple roots in �. For each root – œ �,
we denote the corresponding root subgroup by U– defined over F . Then an alternative
definition of non-degenerate character can be given from the result below:

Proposition 38. [BH, Prop. 1.2] A smooth character Â : U(F ) æ C◊ of U(F ) is non-
degenerate if and only if the restriction of Â to each root subgroup U–(F ) is non-trivial
for every – œ �.

We fix a non-degenerate character Â : U(F ) æ C◊ of U(F ). The Gelfand-Graev
representation c-indG(F )

U(F )(Â) of G(F ) (associated to the generic character Â) is provided
by the space of right G(F )-smooth compactly supported modulo U(F ) functions f :
G(F ) æ C satisfying:

f(ug) = Â(u)f(g), ’u œ U(F ), g œ G(F ).

In short, we will write GGR for Gelfand-Graev representation. Through Bernstein
decomposition (Theorem 22), the Gelfand-Graev representation c-indG(F )

U(F )(Â) decomposed
into the direct sum of certain representations c-indG(F )

U(F )(Â)s œ Rs(G(F )) for s œ
B(G(F )). In [BH, Theorem 4.2], Bushnell and Henniart showed that the representation
c-indG(F )

U(F )(Â)s is finitely generated over G(F ) for each s œ B(G(F )). In this chapter,
we mainly focus on Bernstein component c-indG(F )

U(F )(Â)s corresponding to the inertial
equivalence class s = [T(F ), ‰]G(F ), where T is a minimal F -Levi subgroup of G and ‰

is a smooth character of T(F ).

7.2 Jacquet modules of GGR

Fix a minimal F -parabolic subgroup B of G with its Levi factor T, and unipotent
radical U. Let M be a (B, T)-standard F -Levi subgroup of an F -parabolic subgroup
P = MN of G with unipotent radical N, i.e., M contains T and P contains B. Then
B fl M is a minimal F -parabolic subgroup of M with Levi factor T and unipotent
radical UM := U fl M. Fix a non-degenerate character Â : U(F ) æ C◊ of U(F ). Let
ÂM(F ) := Â|UM(F ) denote the restriction of Â to UM(F ). Then ÂM(F ) : UM(F ) æ C◊ is
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also a non-degenerate character of UM(F ) (see [BH, Proposition 2.2]).
Now, consider the Gelfand-Graev representation c-indG(F )

U(F )(Â) of G(F ) and the
Gelfand-Graev representation c-indM(F )

UM(F )(ÂM(F )) of M(F ) associated to the non-degenerate
characters Â and ÂM(F ) respectively. As before, denote by P≠ = MN≠, the P-opposite
F -parabolic subgroup of G with unipotent radical N≠. We write (c-indG(F )

U(F )(Â))N≠(F ) for
the Jacquet module of the smooth representation c-indG(F )

U(F )(Â) relative to the unipotent
radical N≠(F ). We will consider the M(F )-representation c-indM(F )

UM(F )(ÂM(F )) as a
P≠(F )-representation, on which the unipotent radical N≠(F ) acts trivially. Then we
have the following isomorphism of M(F ) representations:

Theorem 39. [BH, Theorem 2.2] There is a unique P≠(F )-homomorphism

rP≠ : c-indG(F )
U(F )(Â) æ c-indM(F )

UM(F )(ÂM(F )),

which induces an isomorphism of M(F ) representations:

c-indM(F )
UM(F )(ÂM(F )) ≥= (c-indG(F )

U(F )(Â))N≠(F ). (7.1)

7.3 Isotypic component of GGR

In this section, we assume that G is a connected reductive algebraic group defined over
a local field F such that G is split over a tamely ramified field extension of F and p, the
residual characteristic of F does not divide the order of the Weyl group of G(F̄ ).

Now let ‰ be a smooth character of T(F ). Consider a pair (KT(F ), flT(F )) consisting of
a compact open subgroup KT(F ) of T(F ) and an irreducible smooth representation flT(F )

of KT(F ) such that (KT(F ), flT(F )) be a [T(F ), ‰]T(F )-type in T(F ). Let the (K, fl) consists
of a a compact open subgroup K of G(F ) and an irreducible smooth representation fl of
K such that (K, fl) is a G(F )-cover of (KT(F ), flT(F )). Then, (K, fl) is a [T(F ), ‰]G(F )-
type in G(F ). Under the assumption that the residue characteristic p does not divide the
order of the Weyl group of G, J. Fintzen [Fin] shows that the pair (K, fl) exists . In that
case, Rs(G(F )) = Rfl(G(F )) as subcategories of R(G(F )) and the Bernstein component
c-indG(F )

U(F )(Â)s associated to the inertial equivalence class s = [T(F ), ‰]G(F ) is generated
by the fl-isotypic components

1
c-indG(F )

U(F )(Â)
2

fl

of the smooth representation c-indG(F )
U(F )(Â)
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of G(F ). Now, we will show that the H(G(F ), fl)-module
1
c-indG(F )

U(F )(Â)
2

fl

is cyclic. For
that, let B≠ = TU≠ denote the B-opposite Borel subgroup of G. View H(T(F ), flT(F ))
as a subalgebra of H(G(F ), fl) via the embedding:

tBÕ : H(T(F ), flT(F )) æ H(G(F ), fl), (7.2)

of Equation (4.2).

Theorem 40. [MP2, Theorem 1] There is an isomorphism

(c-indG(F )
U(F )(Â))fl ≥= H(T(F ), flT(F ))

of H(T(F ), flT(F ))-modules. Consequently, (c-indG(F )
U(F )(Â))fl is a cyclic H(G(F ), fl)-

module.

Proof. Putting M = T in Equation (7.1) and observing that in this case, UM = 1, we
get an isomorphism of T(F )-representations

(c-indG(F )
U(F )(Â))U≠ ≥= c-indT(F )

1 (C)
≥= C

Œ
c

(T(F )).

Consequently, this isomorphism of T(F )-representations induces an isomorphism between
their flT(F )-isotypic components

(c-indG(F )
U(F )(Â))flT(F )

U≠
≥= C

Œ
c

(T(F ))flT(F )

≥= H(T(F ), flT(F ))

as H(T(F ), flT(F ))-modules. Now by Equation (4.3),

(c-indG(F )
U(F )(Â))fl ≥= (c-indG(F )

U(F )(Â))flT(F )
U≠

≥= H(T(F ), flT(F ))

as H(T(F ), flT(F ))-modules. The result follows.
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7.4 Principal series Hecke algebra

In this subsection, we summarize some results of Roche in [Roc]. Let the notations be
as in Section §7.1. We assume further that S = T, so that B = TU is now an F-Borel
subgroup of G containing the maximal F -split torus T. The pair (B, T) determines a
based root datum � = (X, �, �, X

‚
, �‚

, �‚). Here X (resp. X
‚) is the character (resp.

co-character) lattice of T and � (resp. �‚) is a basis (resp. dual basis) for the set
of roots � = �(G, T) (resp.�‚) of T in G. For the results of this section, we assume
that F has characteristic 0 and the residue characteristic p of F satisfies the following
hypothesis.

Hypothesis 41. If � is irreducible, p is restricted as follows:

1. for type An, p > n + 1

2. for type Bn, Cn, Dn, p ”= 2

3. for type F4, p ”= 2, 3

4. for types G2, E6, p ”= 2, 3, 5

5. for types E7, E8, p ”= 2, 3, 5, 7

If � is not irreducible, then p excludes primes attached to each of its irreducible
factors.

We let T(F )0 = T(OF ) denote the maximal compact subgroup of T(F ), NG(T) to
be the normalizer of T in G and W = W (G, T) = NG(T)/T = NG(T)(F )/T(F ) denote
the Weyl group of G.

Let ‰
# be a smooth character of T(F ) and put ‰ = ‰

#|T(F )0 be the restriction of
‰

# to T(F )0, where T(F )0 denotes the maximal compact subgroup of T(F ). Then
(T(F )0, ‰) is a [T(F ), ‰

#]T(F )-type in T(F ).
Let NG(T)(F )‰ (resp. NG(T)(OF )‰, resp. W‰) denote the subgroup of NG(T)(F )

(resp. NG(T)(OF ), resp. W ) which fixes ‰. The group NG(T)(F )‰ contains T(F ) and
we have W‰ = NG(T)(F )‰/T(F ). Denote by ÊW = ÊW (G, T) = NG(T)(F )/T(F )0, the
Iwahori-Weyl group of G. There is an identification NG(T)(F ) = X

‚ o NG(T)(OF )
given by the choice of a uniformizer of F . Since NG(T)(OF )/T(F )0 = NG(T)/T, this
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identification gives us an identification ÊW = X
‚ o W . Let ÊW‰ = X

‚ o W‰ be the
subgroup of ÊW which fixes ‰.

Let
�Õ := {– œ � | ‰ ¶ –

‚|O◊
F

= 1}

Then �Õ is a closed subroot system of �. Let s– denotes the reflection on the space
A = X

‚ ¢Z R associated to a root – œ � and write W
Õ = Ès– | – œ �ÕÍ to be the

associated Weyl group. Let �+ (resp. �≠) be the system of positive (resp. negative)
roots determined by the choice of the Borel B and let �Õ+ = �+ fl �Õ. Then �Õ+ is a
positive system in �Õ. Put

C‰ = {w œ W‰ | w(�Õ+) = �Õ+}.

Then we have,
W‰ = W

Õ o C‰

The character ‰ extends to a W‰-invariant character Â‰ of NG(T)(OF )‰. Denote by Â‰,
the character of NG(T)(F )‰ extending Â‰ trivially on X

‚.
Roche’s construction produces a [T(F ), ‰

#]G(F )-type (K, fl). The pair (K, fl) depends
on the choice of B, T, ‰ but not on the extension ‰

# of ‰. Denote by IG(F )(fl), the set
of elements in G(F ) which intertwine fl. Equivalently, g œ IG(F )(fl) i� the double coset
KgK supports a non-zero function in H(G(F ), fl). We have an equality

IG(F )(fl) = K ÊW‰K. (7.3)

For an element w œ ÊW‰, choose any representative nw of w in NG(T)(F )‰ and let TÂ‰,w

be the unique element of the Hecke algebra H(G(F ), fl) supported on KnwK and taking
value q

≠l(w)/2 Â‰(nw)≠1 at nw . Here l is the length function on the a�ne Weyl group ÊW .
The functions TÂ‰,w

for w œ ÊW‰ form a basis for the C-vector space H(G(F ), fl).

Definition 42 (HW‰
). Define HW‰

to be the subalgebra of H(G(F ), fl) generated by
{TÂ‰,w

| w œ W
Õ}.

Also, identify H(T(F ), ‰) as a subalgebra of H(G(F ), fl) using the embedding tB.
When ‰ ”= 1, we further assume that G has connected center. Then, assuming Hypothesis
41, we have C‰ = 1 and so W‰ = W

Õ. In that case, HW‰
and H(T(F ), ‰) together
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generate the full Hecke algebra H(G(F ), fl). In particular, there exists a connected
reductive F -split group H and a certain Iwahori subgroup IH of the F -points group
H(F ) of H such that the corresponding Iwahori-Hecke algebra H(H(F ), 1IH

) of H(F )
and the algebra H(G(F ), fl) are isomorphic via a family of support preserving C-algebra
isomorphisms (see [Roc, §8] for more detail). In [Ros], Sean Rostami showed that
the Iwahori-Hecke algebra H(H(F ), 1IH

) has Bernstein type presentation, the kind of
presentation of the Hecke algebra Lusztig gave for a�ne Hecke algebra in [Lus]. Therefore,
in our situation, Roche’s Hecke algebra H(G(F ), fl) also has a Bernstein type presentation
and we can expressed it as

H(G(F ), fl) ≥= HW‰
¢C H(T(F ), ‰),

where the tensor product relation comes from the Bernstein relation as described in [Ros,
§5].

7.5 Principal series component of GGR

We continue to assume that G is F -split. Extend the triple (G, B, T) to a Chevalley-
Steinberg pinning of G. This determines a hyperspecial point x in the Bruhat-Tits
building B(G(F )), which gives G(F ) the structure of a Chevalley group. With this
identification, (G, B, T) are defined over OF and the hyperspecial subgroup G(F )x,0

at x is G(OF ). Let G(F )x,0+ denote the pro-unipotent radical of G(F )x,0. Then
G(F )x,0/G(F )x,0+ ≥= G(Fq). We say that Â is of generic depth-zero at x if Â|U(F )flG(F )x,0

factors through a generic character Âq of U(Fq) ≥= U(F ) fl G(F )x,0/U(F ) fl G(F )x,0+

(see [DR, §1], for the more general definition). Note that if G has connected center, then
all generic characters of U(F ) form a single orbit under the action of T(F ).

Let sgn denote the one dimensional representation of HW‰
in which TÂ‰,w

acts by the
scalar (≠1)lÕ(w). Here lÕ denotes the length function on W

Õ.

Theorem 43. [MP2, Theorem 3] If ‰ = 1, then assume that the T(F )-orbit of Â

contains a character of generic depth zero at x. If ‰ ”= 1, then assume that the
center of G is connected. If ‰ has positive depth, then assume further that F has
characteristic 0 and the residue characteristic satisfies Hypothesis 41. Then H(G(F ), fl)-
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module
1
c-indG(F )

U(F )(Â)
2

fl

is isomorphic to

H(G(F ), fl) ¢HW‰
sgn.

Proof. To give a proof of this theorem, we take the following steps: when ‰ has positive
depth, then we will reduce the result to a depth zero character situation. Later, we will
give a proof of the result, when ‰ is a depth-zero character.

Reduction to depth zero: It follows from the the proof of [Roc, Theorem 4.15],
(see also loc. cit., page 385, 2nd last paragraph), that there exists a standard F -Levi
subgroup M of G which is the Levi factor of a standard parabolic P = MN of G and
which is minimal with the property that

IG(F )(fl) µ KM(F )K. (7.4)

Put (KM(F ), flM(F )) = (K fl M(F ), fl|KM(F )). From [BK, Theorem 7.2(ii)], it follows
that (K, fl) satisfies the requirements [BK, §8.1], of being G(F )-cover of (KM(F ), flM(F )).
It also follows from [BK, Theorem 7.2(ii)], that there is a support preserving Hecke
algebra isomorphism

�M : H(M(F ), flM(F )) ƒ≠æ H(G(F ), fl) (7.5)

By Equation (7.1), we have an isomorphism of H(M(F ), flM(F ))-modules

(c-indM(F )
UM(F )(ÂM(F )))flM(F ) ≥= ((c-indG(F )

U(F )(Â))N≠(F ))flM(F ) (7.6)

And by Equation (4.3), we have a �M-equivariant isomorphism

((c-indG(F )
U(F )(Â))N≠(F ))flM(F ) ≥= (c-indG(F )

U(F )(Â))fl (7.7)

Combining Equations (7.6) and (7.7), we get a �M-equivariant isomorphism

(c-indM(F )
UM(F )(ÂM(F )))flM(F ) ≥= (c-indG(F )

U(F )(Â))fl
.

Also it is shown in the proof of [Roc, Theorem 4.15], that for such an M, there is a
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character ‰1 of M(F ) such that ‰‰1 viewed as a character of T(F )0 is depth-zero. We
then have an isomorphism

�‰1 : H(M(F ), flM(F )) ƒ≠æ H(M(F ), flM(F )‰1) (7.8)

given by f ‘æ f‰1. This gives a �‰1-equivariant isomorphism

(c-indM(F )
UM(F )(ÂM(F )))flM(F ) ≥= (c-indM(F )

UM(F )(ÂM(F )))flM(F )‰1 .

We thus have a �M ¶ �≠1
‰1 -equivariant isomorphism

(c-indM(F )
UM(F )(ÂM(F )))flM(F )‰1 ≥= (c-indG(F )

U(F )(Â))fl
. (7.9)

By Equations (7.2) and (7.4), it follows that �M restricts to an algebra isomorphism

HW (G,T)‰

ƒ≠æ HW (M,T)‰
(7.10)

From the proof of [Roc, Theorem 4.15], W (M, T)‰ = W (M, T)‰‰1 and therefore �‰1

restricts to an isomorphism

HW (M,T)‰

≥= HW (M,T)‰‰1
.

Thus �M ¶ �≠1
‰1 restricts to an isomorphism

HW (G,T)‰

ƒ≠æ HW (M,T)‰‰1
. (7.11)

Note that if G has connected center, then so does M (see proof of [Car, Propositon 8.1.4],
for instance for this fact). Thus, from Equations (7.9) and (7.11), it follows that to prove
Theorem 43, we can and do assume without loss of generality that ‰ has depth-zero.

Remark 44. For a much more general statement of the isomorphism �M ¶ �≠1
‰1 , see [AM,

§8].

Proof in depth-zero case: For results of this section, no restriction on characteristic
or residue characteristic is imposed. Let I be the Iwahori subgroup of G(F ) which is in
good position with respect to (B≠(F ), T(F )) i.e., I is the inverse image of B≠(OF /PF )
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under the map G(OF ) æ G(OF /PF ) (note here that we are taking opposite Borel)
and let I0+ denote its pro-unipotent radical. Put T(F )0+ = I0+ fl T(F )0. Then
I/I0+ ≥= T(F )0/T(F )0+. Since ‰ is depth-zero, it factors through T(F )0/T(F )0+ and
consequently lifts to a character of I which we denote by fl. The pair (I, fl) is then a
G(F )-cover of (T(F )0, ‰)

By conjugating with T(F ) if required, we can assume that Â is of generic depth-zero
at x. Define „ : G(F ) æ C to be the function supported on U(F ).(I fl B≠(F )) such
that „(ui) = Â(u)‰(i) for u œ U(F ) and i œ (I fl B≠(F )). There is a surjection of
G(Fq)-spaces

(c-indG(F )
U(F )(Â))G(F )x,0+ ⇣ indG(Fq)

U(Fq)(Âq). (7.12)

Under this surjection, „ maps to a function „q : G(Fq) æ C which is supported on
U(Fq).B≠(Fq) and such that „q(ub) = Âq(u)‰(b) for u œ U(Fq) and b œ B≠(Fq). There is
a unique irreducible common G(Fq)-constituent ‡ of both the representations indG(Fq)

B≠(Fq)‰

and indG(Fq)
U(Fq)(Âq). In particular, ‡

‰ is an irreducible HW‰
-module isomorphic to the ‰-

isotypical component of the irreducible Âq-generic constituent of indG(Fq)
B≠(Fq)‰. Observe

that „q œ ‡
‰ µ ‡. If ‰ is trivial, then ‡

‰ corresponds to the Steinberg constituent of
indG(Fq)

B≠(Fq)‰. If G has connected center, then it is shown in [Ree, §7.2, 2nd last paragraph]
that as HW‰

-modules ‡
‰ ≥= sgn. Thus in either case, the 1-dimensional space spanned by

„q a�ords the sgn representation of HW‰
. Consequently, the 1-dimensional space spanned

by „ a�ords the sgn representation of HW‰
. It is readily checked that „ maps to 1 under

the isomorphism of Theorem 40. It follows that „ is a generator of the cyclic H(G(F ), fl)-
module (c-indG(F )

U(F )(Â))fl. Using Frobenius reciprocity, HomHW‰
(sgn, (c-indG(F )

U(F )(Â))fl) is
isomorphic to

HomH(G(F ),fl)(H(G(F ), fl) ¢HW‰
sgn, (c-indG(F )

U(F )(Â))fl).

This isomorphism sends 1 ‘æ „ to the element 1 ¢ 1 ‘æ „. Since HW‰
and

H(T(F ), ‰) together generate the full Hecke algebra H(G(F ), fl), as a H(T(F ), ‰)-
module H(G(F ), fl)¢HW‰

sgn is free and generated by 1¢1. Theorem 43 now follows from
the fact that H(G(F ), fl) ¢HW‰

sgn and (c-indG(F )
U(F )(Â))fl) are free H(T(F ), ‰)-modules

generated by 1 ¢ 1 and „ respectively.
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