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 Abstract 

 Sensitivity to perception varies on a moment-to-moment basis. It has been shown to be 

 dependent on the phase of spontaneous ongoing oscillations in the low frequency (alpha and 

 theta) bands. When inputs arrive at this optimal phase, the representation of the stimulus is 

 stronger which leads to beneficial processing. Studies have also revealed the existence of 

 traveling waves in the monkey visual cortex and that covert visual attention samples stimuli in a 

 theta-rhythmic way. We hypothesized that attention can scan different locations of an attended 

 object which could lead to beneficial processing of different locations over time. This means the 

 ‘optimal phase’ of neighboring neuronal populations will be systematically shifted in cortical 

 space. In this project, we focused on looking at whether an optimal phase for processing exists 

 by analyzing correlations between the amplitude of evoked response and the prestimulus phase. 

 We observed that, indeed, perception is associated with the prestimulus phase. We also 

 developed and tested a method for phase estimation in the process. Developing this method 

 was crucial in order to be able to estimate the phase reasonably well while dealing with the 

 group delay problem. The role of traveling waves in attentional scanning can be explored in 

 future analysis. It will help us understand the possible mechanisms by which attention scans 

 different attended items (locations or objects or features). 
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 1. Introduction 

 Thousands of signals are received by the brain at any moment, but only a few of them are 

 processed. This cognitive ability to give preference to behaviorally relevant stimuli  in order to 

 avoid an overload of information processing  has been  defined as selective attention. It is the 

 selection process that determines which information receives further processing; it can enhance 

 neuronal processing towards behaviorally relevant items (object, location, feature, etc.). It can 

 sample and process multiple items that are presented simultaneously and bias the neuronal 

 processing towards behaviorally relevant ones. 

 This sampling and selection process is aided by the anatomical hierarchy of the primate visual 

 cortex. The design of the visual system is such that inputs from lower areas of the visual cortex 

 converge to higher visual areas. This means that the higher areas can receive multiple 

 representations, but only some are behaviorally relevant. The competition between these 

 multiple representations is solved by selective attention, where behaviorally relevant stimuli are 

 attended and their representation is processed further. Numerous mathematical models have 

 been developed to explore neuronal mechanisms underlying this selection process which we call 

 selective attention. To simplify, let’s say two neurons with small receptive fields (in the lower 

 visual areas) feed into a neuron in the higher visual area such that the small receptive fields in 

 the lower areas combine to form the receptive field of the neuron in the higher area which can 

 select for complex features  (Lund et al., 2003; Salin  et al., 1992)  . The larger receptive fields can 

 contain multiple stimuli, which would have been in different small receptive fields in the lower 
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 visual areas. The effects of directing attention to one of these stimuli can be modeled by 

 increasing the gain of inputs from the neuron in the lower area (that represents the attended 

 stimulus) to the neuron in the higher area  (Reynolds  and Heeger, 2009; Reynolds et al., 1999; 

 Womelsdorf et al., 2008)  . 

 The increase in input gain between lower and higher area neurons can be implemented by 

 neuronal gamma-band (40-90 Hz) synchronization. Ongoing oscillations can modulate the 

 electrical field and excitability of local and long-range neuronal populations; because of this, they 

 might have a role in modifying temporal aspects of information  (Buzsáki and Draguhn, 2004; 

 Fries et al., 2007; Sirota et al., 2008)  . Attention  changes the temporal alignment of oscillations to 

 increase synchronization within and between neural ensembles. Attentional effects can be 

 related to ongoing oscillations as well.  Studies have  shown increased gamma-band 

 synchronization in macaque V4 during attention  (Bichot  et al., 2005; Fries et al., 2001; Taylor et 

 al., 2005)  .  It is also shown that variation in local  gamma-band synchronization is linked to better 

 behavioral performance and shorter reaction time  (Womelsdorf  et al., 2006)  . 

 The gamma-band synchronization makes the connectivity better by timing the arrival of inputs 

 from lower visual areas to higher visual areas such that they arrive at the time of maximal gain or 

 the high-gain phase. This means that the inputs have to arrive at the higher area neuron (refer to 

 figure 1) at a particular phase of the gamma oscillation to benefit from this enhanced gain. It has 

 been shown that the gain of spike responses to visual stimuli is rhythmically modulated by 

 gamma-band activity. This has a direct consequence on the behavior too. A study by Ni et al. in 

 2016 shows that the gamma phase having maximum firing rate response and shortest 

 behavioral reaction time are the same. It was also found that optogenetically induced gamma 

 rhythmically modulates the gain of spike responses in area 21a of anesthetized cat  (Ni et al., 

 2016)  and rodent somatosensory cortex  (Cardin et al.,  2009; Siegle et al., 2014)  . Therefore, 

 several studies have shown that gamma rhythmically modulates neuronal gain. Modeling studies 

 have also shown that gamma-band synchronization has a role in gain modulation such that 

 when input arrives at the phase of maximal gain (called the “window of opportunity”), 

 connectivity becomes better or a more excitatory response is elicited  (Börgers and Kopell, 

 2008)  . It has been shown that behavioral performance  improves when gamma synchronization 
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 between lower and higher visual areas occurs at the optimal phase relation  (Rohenkohl et al., 

 2018)  . In this study, macaques performed selective  attention tasks while V1 and V4 were 

 recorded simultaneously. They show that shorter reaction time to an unpredictable stimulus 

 change was associated with an increase in gamma-band synchronization between V1 and V4, 

 and this synchronization occurs at the phase that is optimal for transmission of stimulus to 

 response. The interareal gamma phase relation can predict reaction time which means stimulus 

 transmission is dependent on this phase. 

 Figure 1. Schematic representation of convergence in anatomical hierarchy in the primate visual system. The small 

 circles at the bottom correspond to the receptive fields of the lower area neurons, and the circle at the top 

 corresponds to the receptive field of higher area neuron. Two neurons in the lower visual area give input to a neuron 

 in the higher visual area such that the receptive field of the higher area neuron covers the receptive fields of lower 

 area neurons. 

 Several studies have shown phase dependent perceptual fluctuations in the low frequency 

 bands. When a stimulus happens to appear at the optimal oscillatory phase, it receives 
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 beneficial processing leading to a stronger representation. This temporal modulation of 

 information processing could lead to perceptual fluctuations with the phase of spontaneous 

 ongoing oscillations. It was observed that trial-to-trial variability in the detection of stimuli in a 

 signal detection task is linked to the prestimulus phase of ongoing neural oscillations  (Busch et 

 al., 2009)  . This study was done on human subjects,  and EEG was recorded while the subject did 

 a detection experiment. The stimulus threshold was such that its detection probability was 50%. 

 Phase distributions of hit and miss trials were evaluated, and they were found to have significant 

 phase concentration at opposite phase angles. A strong difference in phase distribution was 

 observed at 7.1 Hz and 120ms preceding stimulus onset in frontocentral channels. Busch and 

 VanRullen (2010) confirmed that perception is related to the prestimulus phase of ongoing 

 oscillation and found that this relation is observed only when the stimuli are attended. This 

 suggests that the fluctuations in attention are reflected in the ongoing 7 Hz neural oscillation. 

 Effects of attention (like improved perception or detection etc.) are associated with this periodic 

 sampling, and with every 7 Hz cycle, a different attended item (object, location, etc.) is indexed 

 (VanRullen, 2013)  . 

 The spotlight of attention moves from one item to the other, and this sampling is said to happen 

 at the frequency of around 7 to 8 Hz  (VanRullen, 2016)  .  This mechanism might be useful in the 

 exploration of different items, and many psychophysical studies have reported this behavioral 

 periodicity in visual attention. Attention might operate periodically even when only one item is 

 present  (Re et al., 2019)  . Rhythmic attentional sampling  has been found to be at 7 Hz when a 

 single stimulus was presented, around 3-4 Hz when attention was divided over two stimuli, and 

 so on  (Holcombe and Chen, 2013)  . The 3-4 Hz sampling  of stimuli could reflect a common 

 sampling process that is divided between the stimuli but operates globally. The same system 

 can sample a single item or divide different sampling cycles across multiple items. This indicates 

 that rhythmic sampling  might be a mechanism that resolves interactions among competing 

 stimuli when several behaviorally relevant items are presented. 
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 Figure 2. The experimental design of Fiebelkorn et al. (2013) (a) A schematic of a trial in which the target occurs at 

 the cued (spatial cue) location. Behavioral performance was measured at different cue-to-target  intervals relative to 

 the spatial cue. (b) The spatial cue and the orientation of the two bars (or objects) determine the conditions. They 

 looked into visual-target detection at a cued location, an uncued location within the same bar, and an uncued 

 location within a different bar. The same- and different-object locations were equidistant from the cued location. 

 (Permission obtained for reusing the figure) 

 A study by Fiebelkorn et al. (2013) provided more insight into attentional sampling. This study 

 measured behavioral performance at randomly sampled cue-to-target intervals relative to a 

 spatial cue. Human subjects had to maintain central fixation and report a contrast change at one 

 of two bars. In any given trial, two bars were displayed equidistantly from the central fixation 

 such that the four ends of the bar were at equal eccentricities.  A spatial cue (brief flash) 

 indicating  the behaviorally relevant location  occurred  at the end of one of the bars (Figure 2). 

 Following a variable time interval from cue presentation, a change in contrast (target) occurred 

 at one of the three locations; – 1) at the cued bar at the cued location (75% of trials). This 

 represented spatial selection condition.  2) at the cued bar but at the uncued location (12.5% of 

 trials). This represented object based selection. 3) at the uncued bar at the location such that 

 same and different object target locations were equidistant from cued location (12.5% of trials). It 

 was seen that the probability of visual-target detection was higher at certain time points (or 

 phases in the behavioral oscillation) than at others. These results are consistent with the 

 attentional sampling at 7-8 Hz. The detection performance fluctuated at 4Hz between the two 

 uncued, and at 8Hz between cued location and the uncued location at the cued bar (with a 30ms 
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 delay). This could suggest that preferential processing spreads from the cued location to the 

 uncued location on the same bar, demonstrating the process of attentional scanning. The 

 attentional scanning could be achieved by traveling waves. It is possible that the flash or spatial 

 cue evokes a traveling wave at the cued location, which travels to the uncued location on the 

 same object. This could explain the preferential processing at the uncued location with a delay of 

 30 ms from cue onset on the cued edge of the same object (Pascal Fries, personal 

 communication). 

 Traveling waves could be instrumental in the process of attentional scanning. They could be 

 internally generated or evoked by external stimuli like flashes or saccades. These waves were 

 shown to be triggered by saccadic eye movements in area V4 of the macaque visual cortex 

 (Zanos et al., 2015)  . The study suggests that the  traveling waves can change post-saccadic 

 neuronal processing, which can potentially lead to selectively processing behaviorally relevant 

 items. Another study reporting traveling waves in area MT of marmosets gives evidence towards 

 the role of these waves in attentional scanning. They found that spontaneous traveling waves in 

 area MT modulate sensory processing and gate perception during active vision  (Davis et al., 

 2020)  . 

 In summary, studies show that covert visual attention samples stimuli in a theta-rhythmic way 

 (Busch and VanRullen, 2010; Fiebelkorn et al., 2013; Landau and Fries, 2012)  and that the 

 detection performance of attended visual stimuli is dependent on the phase of spontaneous 

 ongoing oscillations in the low alpha and theta bands preceding stimulus onset  (Busch and 

 VanRullen, 2010; Busch et al., 2009)  . In other words,  there is an alternation between “optimal” 

 and “suboptimal” oscillatory phases during covert attention. When a stimulus happens to appear 

 at the optimal oscillatory phase, it receives a beneficial processing/stronger representation. We 

 hypothesized that attention scans different locations of an attended object, leading to beneficial 

 processing of different locations over time. Recent studies revealed the existence of traveling 

 waves in the visual cortex of monkeys  (Davis et al.,  2020; Zanos et al., 2015)  and humans 

 (Zhang et al., 2018)  . Attentional scanning could be  achieved by traveling waves of oscillatory 

 activity propagating through the visual cortex. Indeed, Davis et al. (2020) showed that 

 spontaneous ongoing traveling waves in marmoset area MT gate visual perception. The main 
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 characteristic of a traveling wave is that its phase varies systematically and approximately 

 monotonically as a function of anatomical space. If an “optimal phase” exists along with a 

 traveling wave in an area with a retinotopic organization as V4, then we would expect that the 

 ‘optimal phase' of neighboring neuronal populations will be systematically shifted in cortical 

 space. 

 Figure 3. Schematic representation of the attentional-scanning hypothesis. Left: Covert attention as a rhythmic 

 scanning of the visual space. At different time points, the spotlight of attention moves between different spatial 

 locations, leading to beneficial processing of different spatial locations over time. Right: Such an attentional 

 scanning process could be implemented through a traveling wave, which travels in cortical space. The main 

 characteristic of a traveling wave is that its phase varies as a function of anatomical space. Hence, if there is an 

 “optimal” phase and an ongoing traveling wave, we expect this phase to shift in the cortical space as the wave is 

 sweeping the cortex. (Figure provided by Elena Psarou) 

 This project involves analysis of previously recorded data (by Elena Psarou) from two 

 macaques, chronically implanted with a multichannel Utah array in area V4 while they performed 

 a demanding detection task. This allowed us to simultaneously record the activity of neural 

 populations with neighboring receptive fields while the monkeys attended an object in order to 

 detect a brief target presentation that could randomly appear at different locations within this 

 object. The locations of the target were such that they were covered by the receptive fields of the 

 channels. The stimulus presented was brief (only two monitor update frames) so that we could 

 find the instantaneous phase. If the stimulus were longer, it would be difficult to infer the part of 
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 the cycle at which the stimulus was actually perceived. A difficult target detection task was used 

 so that the monkey would pay attention, and we could have a sensitive measure of perceptual 

 performance fluctuations. Most attention-related work has been done in monkeys because they 

 learn the challenging behavioral tasks needed for attention experiments, and we can monitor 

 their eye movements, which gives information about what they are paying attention to. Attention 

 is studied extensively in the visual system because vision is a primary sensory modality for 

 primates, and they have more neurons devoted to the visual system than any other modality 

 (Felleman and Van Essen, 1991)  . Recordings were done  from area V4 because it is a mid-level 

 processing area in the visual hierarchy, and many studies have shown attentional effects in the 

 area  (Luck et al., 1997; Moran and Desimone, 1985)  .  The task design helps us record from 

 neighboring neural populations and inquire about attentional scanning. 

 The first half of the project revolved around going through literature to get some background, 

 getting familiar with the FieldTrip toolbox, and some initial data analysis. We looked at MUA, 

 LFP, and eye data to establish that behavior is reflected in this data. We compared measures 

 from the neural and eye data in trials with two different behavioral outcomes, namely trials in 

 which the monkey successfully detected the target (hits) with those in which the monkey missed 

 it (misses).  We investigated and observed differences in these measures between the two 

 behavioral outcomes. This shows that the difference in detection is reflected in the neural and 

 eye data along with the animal's behavior. The second half of the project revolved around 

 investigating whether the prestimulus LFP phase is systematically predictive of perception. The 

 phase is calculated just prior to the critical point which is the time at which the synaptic inputs 

 arrive at V4. To do so, we needed to determine the phase at different frequencies at the stimulus 

 onset (time at which visual target appears in the task). This turned out to be a complicated task. 

 To find the phase, we needed to calculate the Fourier decomposition of the signal using tapers 

 and then calculate the phase using this Fourier. While calculating the Fourier at the stimulus 

 onset, part of the signal after stimulus onset which contains the ERP (Event Related Potential), 

 is also included. This doesn't give an accurate phase value because the phase will be affected 

 by the ERP, which (as shown in the results section) is dependent on whether a trial is a hit or a 

 miss. To deal with this, we developed and tested a new method based on Ni et al. 2016. In this 

 method, we used autoregressive (AR) extrapolation to get a proxy for the signal after stimulus 
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 onset and then used the signal prior to stimulus onset together with this proxy signal after 

 stimulus onset to calculate the phase at stimulus onset. The details are described in the 

 methods section. After the phase calculation method was established, we tested whether an 

 optimal phase exists by analyzing how the prestimulus phase is related to neural responses 

 reflecting perceptual performance. 

 It was important to establish the existence of an optimal phase of processing to be able to 

 explore the role of traveling waves in the future. We needed a good and reliable phase 

 estimation method to find the optimal phase. So, the project's primary focus is to establish and 

 test the phase estimation method and discover if an optimal phase for processing exists. 

 15 



 2. Methods 

 2.1 Experiment 

 2.1.1  Animals 

 Two adult monkeys (Macaca mulatta) were implanted with a Utah array in area V4 of the left 

 hemisphere (Figure 4(b)). The array consisted of 64 microelectrodes that could have two 

 different lengths; half of them were 1mm and the other half 0.6 mm long. We analyzed data from 

 one monkey (Monkey K) in this project. 

 2.1.2 Behavioral Paradigm 

 Two monkeys were trained to perform a demanding visual detection task that required spatial 

 attention. During the experiments, the monkeys were head-fixed and sat comfortably in a 

 primate chair that was placed in a dark recording booth (faraday cage) that eliminated line noise 

 and attenuated external sounds. All behavioral paradigms were designed and controlled by 

 ARCADE, a stimulus presentation software written in Matlab, and presented on an LCD monitor 

 (Samsung 2233RZ) at a refresh rate of 120 Hz. 

 Conditions -  The visual detection task consisted of  three conditions: 1) target, 2) catch, and 3) 

 baseline (Figure 4(a)). 
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 Trials in the ‘target’ and ‘catch’ conditions started with the presentation of a central fixation point 

 that was paired with a placeholder (Figure 4(a)). The placeholder was a gray rectangle, darker 

 than the background gray, indicating the overall area where a target could appear to the monkey. 

 Throughout the trial, the monkey had to maintain central fixation while covertly attending within 

 that area in order to detect and report a brief target presentation. The target presentation lasted 

 only two frames (~17 ms). In 10% of the trials, the target could randomly appear anytime 

 between 1000 to 2000 ms from central fixation onset. In the rest of the trials, the target 

 randomly appeared between 2000 to 3000 ms following fixation onset. The monkey had to 

 saccade towards the memorized target location to report a target detection. When the monkey 

 entered a window of 1 degree around the target location, the target reappeared in order to give 

 visual feedback. The monkey had to maintain his eyes within the target window for 200 ms to 

 receive a reward. Trials in which the monkey failed to detect and report the target presentation 

 were classified as misses and aborted without reward. 

 The target stimulus consisted of a small Gaussian of gray color. In Monkey K., the target could 

 appear in one of nine predefined locations within the placeholder with eccentricities; 1.7, 2.1, 

 2.5, 2.9, 3.3, 3.7, 4.1, 4.5, and 4.9 (deg). The target location was pseudo-randomly selected to 

 ensure that all locations were selected equally. In particular, the probability that the target would 

 be presented at one of the possible locations depended on how often this location was chosen in 

 the preceding trials. In a given trial, we counted the number of previous occurrences per 

 location. This vector was padded and smoothed with the Matlab function fastsmooth, with a 

 width of 3 and triangular smooth type (Tom O'Haver (2022), Fast smoothing function). The 

 resulting vector was transformed into a probability distribution over the locations, and this vector 

 of weights was reversed and used for sampling the next location. Finally, the sampling was done 

 using the Matlab function datasample. This resulted in the exclusion of the locations that had the 

 most occurrences and a lower selection chance for the immediately neighboring locations. 

 In ‘catch’ trials, there was no target presentation, and the monkey was rewarded for maintaining 

 central fixation throughout the trial. Twenty percent of the total trials per session were catch trials 
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 to ensure that the subjects did not randomly saccade towards the placeholder to get a reward 

 but instead reported real target detections. 

 Five percent of the trials belonged to the ‘baseline’ condition, during which only the central 

 fixation point was presented. During this condition, no spatial attention was required, and the 

 monkey was rewarded at the end of the trial for successful fixation. 

 Difficulty Levels -  The task's difficulty level was  manipulated by changing the contrast of the 

 target stimulus to its background (placeholder) throughout the session. During each recording 

 session, we ran an independent staircase procedure per target location in order to maintain a hit 

 rate of ~0.8 within the target condition. To do so, at any given trial, we calculated the detection 

 rate of the subject at the previously presented location, taking into account the behavior of the 

 monkey in the last five ‘target’ trials during which this target location was used. If the hit rate was 

 equal to or higher than 0.8, then the contrast of the target was decreased. If it was smaller than 

 0.8, its contrast was increased, making the target detection easier. 

 Figure 4. (a) Schematic representation of the behavioral task and conditions. (b) Two monkeys were implanted in 

 left hemisphere V4 with Utah arrays consisting of 64 channels. The inter-electrode distance was 400 μm, and their 

 length was either 0.6 or 1 mm. (Figure provided by Elena Psarou) 
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 2.1.3 Data Acquisition 

 Electrophysiological recordings were performed using Tucker Davis Technologies (TDT) 

 systems. Data were filtered between 0.35 and 7500 Hz (3 dB filter cutoffs) and digitized at 

 24.4140625 kHz (TDT PZ2 preamplifier). Eye data (eye movements and pupil size) from both 

 eyes were recorded with an Eyelink 1000 system at a sampling rate of 1000 Hz. 

 2.2 Analysis methods 

 2.2.1 MUA and LFP data 

 LFP and MUA are extracellularly recorded signals from a local network of neurons. The local 

 field potential (LFP) was obtained by low-pass filtering the raw signal at 500 Hz.  It is thought to 

 be generated by membrane currents of the neurons in the vicinity of the recording electrode. 

 Multi-unit activity (MUA) represents the average spiking of neuronal populations in the 

 neighborhood of the recording electrode. It was obtained by band-pass filtering the raw 

 recording in the 300-12000 Hz range. FieldTrip  (Oostenveld  et al., 2011)  was used for data 

 analysis. It is an open-source MATLAB software toolbox for MEG, EEG, and iEEG analysis. 

 Data belonging to the target condition was cut into epochs ranging from -1 to 0.6 sec around 

 target onset. Using the FieldTrip function  ft_rejectvisual,  we  ran an artifact rejection procedure 

 for each recording session  .  This allowed us to exclude  LFP trials that were contaminated with 

 noise (time window: -1 to 0.4 sec from target onset). Channels that showed a high number of 

 artifacts that were not shared with the rest of the grid or very high  variance were also excluded 

 from our analysis. 

 A total of 24 sessions were used in this analysis.  Data from each session was z-scored before 

 pooling over sessions  . For z-scoring, we concatenated  all trials and computed standard 

 deviation (SD) and mean (avg) over all trials of the session. 

 19 

https://www.zotero.org/google-docs/?kmobnN


 This SD and mean were used to z-score every single trial as follows: 

                                                                                                                                                                                                          𝑧𝑑𝑎𝑡𝑎    = ( 𝑑𝑎𝑡𝑎    −    𝑎𝑣𝑔 )
 𝑆𝐷       ( 1 )

 2.2.1.1 Event Related Potential (ERP) 

 The visually evoked response in hit and miss trials was computed by averaging trials of each of 

 these behavioral outcomes per channel. This average was normalized by the mean baseline 

 activity (the time period used: -0.4 to 0) across behavioral outcomes (hits and misses). 

 The difficulty level of the target was varied systematically over trials. To exclude the possibility 

 that a difference in the ERP amplitude between hits and misses could be trivially explained by a 

 discrepancy in the target intensity, we checked the analysis by only including trials from an 

 example target location with the same difficulty level. 

 2.2.1.2 Time-Frequency analysis 

 We computed the power values for each frequency bin and each time bin using the mtmconv 

 method of the ft_freqanalysis function of FieldTrip. We used Hann tapers to calculate TFRs 

 (time-frequency representations). Both fixed and variable window length procedures were used. 

 In the fixed window procedure, the frequency resolution is defined according to the length of the 

 time window, which remains constant for all frequencies. In the variable window method, the 

 time window varies with frequency, and usually, the time window gets shorter with an increase in 

 frequency. This approach is advantageous because the temporal smoothing decreases with 

 higher frequencies, but this happens at the expense of frequency smoothing. The results are 

 shown for the variable window method, but similar results were obtained for the fixed window 

 method. 

 20 



 2.2.1.3 Phase Analysis 

 Phase estimation  -  We wanted to investigate whether  the phase of the ongoing LFP activity just 

 before the time of target-evoked synaptic input (critical point) could predict the amplitude of the 

 target-evoked neuronal responses. Even though we could not estimate the exact time synaptic 

 input arrived in area V4 in each trial, we noticed that the grand average visually-driven ERP 

 responses to the target presentation typically appear after 0.07 sec from target onset. In order to 

 exclude the potential influence of the non-stationary visual responses in the phase estimation, 

 the LFP trials were cut from -1 to 0.03 sec from target onset, excluding the visual response 

 period. In order to be able to compute the phase at critical point or at time points close to it, we 

 modified a previously described method introduced by Ni et al. (2016). In particular, they 

 suggested a method that allowed phase estimation at the edge of a window. To do so, they first 

 removed the time window containing the visual response; then, the trials were downsampled and 

 filtered in different frequency ranges. The filtered signals were fitted with an autoregressive (AR) 

 model (model order: 6)  and four cycles per frequency were extrapolated and added at the end 

 of the cut trials. Extending the signal after the critical point allowed spectral estimation without 1) 

 edge artifacts and 2) influence from transient ERP fluctuations. However, filtering can introduce 

 substantial group delays that vary across frequencies. Such delays could move the time of the 

 critical point in a frequency-dependent way that could significantly complicate our analysis. To 

 avoid this problem, we developed a method that is based on the Ni et al (2016) approach but 

 avoids band-pass filtering by using the broadband LFP signal. 

 Our approach was to estimate the Fourier of the signal using Hann tapers centered at the time of 

 stimulus onset (and at time points before that), and then calculate the phase using this Fourier. 

 The signal with ERP does not  give an accurate phase because phase will be affected by the 

 ERP, which is dependent on whether a trial is a hit or a miss (as shown in the results section). To 

 remove the influence of the ERP, we redefined the trials by cutting the data before the ERP 

 occurs and then using an autoregressive model (AR) to extend the data such that the 

 extrapolation does not contain  ERP, but has similar spectral properties to the original data. 
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 An autoregressive model predicts how the data will behave in the future based on how they 

 behaved in the past. The length of past data used to predict the future is determined by the 

 model order. To implement this, we used a collection of MATLAB modules called ARfit 

 (Neumaier and Schneider, 2001; Schneider and Neumaier, 2000)  . The modules in ARfit use a  -  𝑛 

 variate autoregressive model of order  𝑝 

                                                                                                                                                                𝑣 
 𝑡 

=     𝑤 +
 𝑙 = 1 

 𝑝 

∑  𝐴 
 𝑙 
 𝑣 

 𝑡 − 𝑙 
+ ε

 𝑡 
                              ε

 𝑡 
=  𝑛𝑜𝑖𝑠𝑒 ( 𝐶 )                                                                                                               ( 2 )

 This is a model for stationary time series with vectors  such that they have been recorded at  𝑣 
 𝑡 

 equally spaced intervals  These vectors are of  dimensions in this case (these are different  𝑡 .     𝑛 

 trials). The order  determines the number of past  vectors (or time steps) the model takes into  𝑝 

 account while calculating the future vector.  are the coefficient matrices of the  𝐴 
 1 
,  𝐴 

 2 
,........,  𝐴 

 𝑝 
   ϵ   ℜ

 𝑛 × 𝑛 

 AR model.  are uncorrelated random  vectors with zero mean and covariance ε
 𝑡 

=  𝑛𝑜𝑖𝑠𝑒 ( 𝐶 )

 matrix  .  is an intercept  vector which allows the mean of the time series to be  𝐶    ϵ   ℜ
 𝑛 × 𝑛 

 𝑤    ϵ   ℜ
 𝑛 

 zero. 

                                                                                                                                                                     <  𝑣 
 𝑡 

>    = (    𝐼 −  𝐴 
 1 

−........ −  𝐴 
 𝑝 
)− 1  𝑤                                                                                                                                                    ( 3 )

 Here <  > represents expected value. ARfit has a  function called arfit that lets us calculate the ·

 coefficient matrices  ,  intercept vector  and covariance matrix  given  the model  𝐴 
 1 
,  𝐴 

 2 
,........,  𝐴 

 𝑝 
 𝑤     𝐶    

 order. The best order can also be determined using different criteria like SBC (Schwarz's 

 Bayesian Criterion) and FPE (Akaike's Final Prediction Error) given the data and minimum and 

 maximum model order. The ARfit function used is arord. Accuracy of the AR extrapolation can 

 be checked by the arres function which plots the autocorrelation of the residuals. For the model 

 to be adequate, residuals have to be uncorrelated. If 95% of the autocorrelations (for lag > 0) lie 

 within the  confidence limits for the autocorrelations of an IID (independent and identically 

 distributed random variables) process of the same length as the time series of  residuals then we 

 consider the model order to be accurate. 
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 To extrapolate the data we first needed to find the correct model order and then use it to 

 calculate the coefficient matrices, intercept vector and covariance matrix which are then used to 

 extrapolate the data. The model order was determined by the arord function of the ARfit toolbox. 

 This function found the SBC or BIC (Bayesian information criterion) values for each model order 

 from 1 to 300. SBC is used for model selection among a finite set of models and does so by 

 introducing a penalty term for the number of parameters in the model  (Schwarz, 1978)  . This 

 function was run per channel. In order to get the correct model, the model order with minimum 

 SBC was chosen. Now, for any session we have the optimum model order for each channel. We 

 obtained the median of these orders to get an order for each session. This was repeated 

 throughout the sessions and after getting orders for all the sessions, a median was obtained to 

 get to a common model order for all the sessions. The model order decided upon was 50. Then, 

 we ran several tests  in order to assess the quality of the extrapolated signals (Figure 5). First, 

 we plotted the extrapolated signal along with the original signal for one trial to check if the signal 

 is continuous and without any kinks at the point of extrapolation. We also plotted the original and 

 extrapolated signals for trials to check if extrapolations of all the trials have the same variance. 

 And at last we did spectral analysis on the original and extrapolated signals to check if they have 

 similar properties. After all these checks we found that the selected model order was 

 appropriate. We also plotted autocorrelations of the residuals for model order 50 to check the 

 uncorrelatedness of residuals. 

 After deciding the correct model order, we took the following steps in order to obtain the phase at 

 a given frequency at each trial. After cutting the data at 30ms after stimulus onset, we 

 standardized the data by z-scoring (refer equation  ) and detrending the data using FieldTrip. ( 1 )

 An AR model was fitted on the broadband signal of both hits and misses together and the signal 

 was extrapolated for 800 ms using the ARfit toolbox and previously determined model order. We 

 ran this analysis per recording session. Then we estimated the Fourier of the extrapolated signal 

 using the 'mtmconvol' method of the ft_freqanalysis (FieldTrip function) and calculated the angle 

 of the Fourier at the time of stimulus onset (and other time points when needed) to obtain the 

 phase. Fourier decomposition was done for frequencies ranging from 2Hz to 60Hz and 

 frequency dependent Hann taper was used. The length of the taper decreased with an increase 
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 in frequency (length of the taper used was equivalent to 3 cycle length). The taper was used to 

 reduce spectral leakage and control the frequency smoothing. 

 Figure 5. Tests for quality of AR extrapolation. (a) Original signal and extrapolated signal at the point of extrapolation 

 (b) Original and extrapolated signals for all trials to check variance (c)  Spectral analysis on the original and 

 extrapolated signals (d)  Autocorrelations of the residuals, the green circles show the points where autocorrelation is 

 within bound. Example for one channel is shown here. 

 When Fourier is calculated using this AR extrapolation, it might not be very accurate because 

 AR extrapolations tend to get noisy as the length of extrapolation increases. To deal with that, 

 we ran 100 iterations of AR extrapolations and then obtained a transform (T) using Fourier of all 
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 these iterations. It is a weighted average of all the Fourier scaled to one multiplied by the mean 

 of length of all the Fourier. 

 Here  is Fourier of different iterations  𝑒𝑓𝑡 

                                                                                                                               𝑝ℎ𝑎𝑠𝑒𝑣𝑒𝑐    =     𝑚𝑒𝑎𝑛 ( 𝑒𝑓𝑡 )    /     𝑎𝑏𝑠 ( 𝑚𝑒𝑎𝑛 ( 𝑒𝑓𝑡 ))                                                                                                                                             ( 4 )

                                                                                                                               𝑎𝑚𝑝𝑣𝑒𝑐          =     𝑚𝑒𝑎𝑛 ( 𝑎𝑏𝑠 ( 𝑒𝑓𝑡 ))                                                                                                                                                                                                                     ( 5 )

                                                                                                                                                                      𝑇    =     𝑎𝑚𝑝𝑣𝑒𝑐 . ∗  𝑝ℎ𝑎𝑠𝑒𝑣𝑒𝑐                                                                                                                                                                                                    ( 6 )   

 To find the final phase at a given frequency at each trial, we obtain the angle of this transform ( 𝑇 )

                                                                                                                                                       𝑝ℎ𝑎𝑠𝑒    =     𝑎𝑛𝑔𝑙𝑒 ( 𝑇 )       ( 7 )

 Testing phase estimation  -  In order to test our method,  we created synthetic data that allowed 

 us to know the true instantaneous phase at certain frequencies. The simulated data was 

 obtained as follows (by Gregor Moenke, Fries lab). 

 Phase can be written as a function of angular frequency 

                                                                                                                                                                𝑑 φ /  𝑑𝑡    = ω( 𝑡 )   + ϵξ( 𝑡 )                     ( 8 )

 Here  is Gaussian white noise scaled with ξ( 𝑡 )   ϵ

 For a time-constant angular frequency, phase can be written as 

                                                                                                         φ( 𝑡 ) =
 0 

 𝑡 

∫ ω + ϵξ( 𝑡 )    𝑑𝑡    =    ω( 𝑡 ) + ϵ 𝑊 ( 𝑡 )                ( 9 )

 Where  is the Wiener Process with diffusion  constant  𝑊 ( 𝑡 )   ϵ

 For discrete time steps  phase can be written  as ∆ 𝑡 ,    
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φ( 𝑡 
 𝑖 
)   =    

 0 

 𝑖 

∑(ω   +    ξ
 𝑖 
)∆ 𝑡    =    ω 𝑡 

 𝑖 
   +  𝑊 

 𝑖 
( 10 )

 This is just a time-discrete diffusion with a linear drift term (angular frequency). This means that 

 we can simulate the exact phase diffusing around the linear (harmonic) phase propagation. 

 Now to get a  , we needed a  periodic  waveform function, so we take cosine:  𝑠𝑖𝑔𝑛𝑎𝑙     𝑥 ( 𝑡 )  2 π   

 𝑥 ( 𝑡 
 𝑖 
)   =     𝑐𝑜𝑠 [φ( 𝑡 

 𝑖 
)   ],     𝑖 =  0 ,........,  𝑛𝑆𝑎𝑚𝑝𝑙𝑒𝑠    ( 11 )

 Note that with this, the time averaged angular frequency still stays ω

< ω + ξ( 𝑡 )>
 𝑡 

= ω ( 12 )

 as the white noise  is a zero-mean process.  This explains the nicely concentrated spectral    ξ( 𝑡 )

 peak even with phase diffusion when ϵ << ω

 The data was obtained by combining cosine signals with an AR(1) process or with pink noise 

 𝑠𝑖𝑔𝑛𝑎𝑙    =     𝑎𝑐𝑜𝑠 [φ( 𝑡 
 𝑖 
)   ]

ω 1 
   +        𝑏𝑐𝑜𝑠 [φ( 𝑡 

 𝑖 
)   ]

ω 2 
   +     𝑐𝐴𝑅 ( 1 ) ( 13 )

 or 

 𝑠𝑖𝑔𝑛𝑎𝑙    =     𝑎𝑐𝑜𝑠 [φ( 𝑡 
 𝑖 
)   ]

ω 1 
   +        𝑏𝑐𝑜𝑠 [φ( 𝑡 

 𝑖 
)   ]

ω 2 
   +     𝑐 ( 𝑝𝑖𝑛𝑘     𝑛𝑜𝑖𝑠𝑒 ) ( 14 )

 Here  and  are different frequencies at which  the true phase is known by construction. ω 1    ω 2 

 Here  was varied to get different noise of the  AR process and  ) was varied to get different  𝑐 ξ( 𝑡 

 phase diffusion strength. 50 trials were obtained to test the method. The signal was cut at the 

 midpoint and extrapolated, and the taper was centered at the midpoint for Fourier. The method 

 was tested with different noise, phase diffusion and sampling frequency. The differences are 

 discussed in the results and discussion section. Overall the method works pretty well and 

 estimates the phase very close to the true phase and the phase obtained by original data. 
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 ERP amplitude estimation  - The ERP amplitude at each trial was calculated by using the LFP 

 signal from 50ms to 150ms after stimulus onset. Trials which have no saccades in this period are 

 used for correlation analysis. During this period, the monkey is not yet allowed to behaviorally 

 respond to the target. Thus, the ERP amplitude can not be attributed to saccade related 

 neuronal responses.  If  are the values of the LFP signal within this time interval,  𝑥 
 1 
,     𝑥 

 2 
..........  𝑥 

 100 

 then the ERP amplitude was calculated as 

 𝐸𝑅𝑃     𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒    =    
 𝑡 = 1    

 100 

∑     𝑥 
 𝑡 

−  𝑥 ( )  2 ( 15 )

 Here,  is the mean of  .  𝑥  𝑥 
 1 
,     𝑥 

 2 
..........  𝑥 

 100 

 Correlation between ERP and phase  -  The circular-linear  correlation between the  phase 

 (directional variable) and  ERP amplitude (linear variable) was calculated using the circ_corrcl 

 function of the CircStat toolbox  (Philipp, 2009)  .  Since phase is a circular measure, the Pearson 

 correlation coefficient cannot be used. Here  is  the directional variable,  is the linear variable α    𝑥 

 and  is the circular-linear correlation  (Zar,  1999)  . ρ
 𝑐𝑙    

ρ
 𝑐𝑙    

=    
 𝑟 

 𝑐𝑥 
 2    + 𝑟 

 𝑠𝑥 
 2 − 2  𝑟 

 𝑐𝑥 
 𝑟 

 𝑠𝑥 
 𝑟 

 𝑐𝑠       
   

 1 − 𝑟 
 𝑐𝑠 
 2 ( 16 )

 and  where  is the Pearson  𝑟 
 𝑠𝑥 

=  𝑝𝑐 ( 𝑠𝑖𝑛 α,  𝑥 ),     𝑟 
 𝑐𝑥 

=  𝑝𝑐 ( 𝑐𝑜𝑠 α,  𝑥 )    𝑟 
 𝑐𝑠 

=  𝑝𝑐 ( 𝑠𝑖𝑛 α,  𝑐𝑜𝑠 α)  𝑝𝑐 ( 𝑥 ,  𝑦 )

 correlation coefficient. 

 The phase is obtained for each frequency for a certain time point, so the circular linear 

 correlation value was calculated after pooling relevant trials from all sessions at each frequency. 

 This gives a list of correlation values for each frequency and a statistical analysis is done to 
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 obtain frequencies at which the phase is significantly correlated to ERP amplitude. The statistical 

 analysis is described in section 2.2.3. 

 2.2.2 Eye data 

 Microsaccade (MS) Detection  - Microsaccades are ballistic  eye movements that have small 

 trajectories. We focused our  MS analysis during the fixation period (from -1 to 0.1 sec from 

 target onset), before the monkey was allowed to respond (saccade) to the target presentation. . 

 Two different methods were used for MS detection; 1) the Engbert and Kliegl algorithm and, 2) a 

 convolutional neural network (CNN). Each method is briefly described below. 

 Engbert and Kliegl algorithm (EK method):  Using the  Engbert and Kliegl algorithm  (Engbert 

 and Kliegl, 2003)  according to which MS is defined  as outliers in the 2D velocity space. To 

 protect detection from noise, the threshold of this algorithm is based on the median of the 

 velocity-time series. A multiple of the standard deviation of the velocity distribution is used as the 

 detection threshold (6xstandard deviation was used in this analysis). 

 Convolutional neural network (CNN method)  : Using a  convolutional neural network (CNN) to 

 automatically detect saccades based on manually labeled data  (Bellet et al., 2019)  . The network 

 architecture draws inspiration from U-Net, and it operates on the eye velocity signal. For labeling 

 the MS, a MATLAB app called iLabel was used (the app was developed by Tim Näher, Fries 

 lab). Using these labels, the network was trained (200 trials of a single session, session 

 ‘klecks_20170828_attentional-sampling_1’ was used), and the prediction was done for the rest 

 of the trials and sessions using scripts available at https://github.com/berenslab/uneye. The 

 network segments eye movement recordings into epochs containing MS versus epochs not 

 containing them. The start and the end timing of MS can be extracted from this. We used two 

 different definitions of MS to train the data; they are shown in figure 6. 
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 Figure 6. (a) The labeling app ilabel. The orange and blue traces show horizontal and vertical traces. The 

 vertical red and blue lines show the start and end of MS, respectively. (b,c) The blue and black vertical lines 

 show the start and end of MS, respectively. An example detection when the network is trained using (b) 

 Definition 1 of MS, it includes PSOs in the MS end. (c) Definition 2 of MS, does not include PSOs in MS end. 

 This definition is a bit more stringent. 

 We were interested in comparing the characteristics of MS between hits and misses. To this end, 

 we computed the following microsaccade measures: 

 ●  Peak velocity amplitude plot - Microsaccades usually show a fixed relation between peak 

 velocity and amplitude due to their ballistic nature. This relation is usually used to check 

 the validity of detection  (Engbert and Kliegl, 2003)  .  Peak velocity is defined as the 

 maximum velocity during the MS, and amplitude is the distance between the start and 

 endpoint of the MS. 

 ●  MS distribution and rate - For MS distribution around target onset, we looked at the 

 number of MS in each bin (each bin was 40ms), and to have an equal number of trials for 

 each condition, hit trials were subsampled. For rate calculation, the number of MS at each 
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 time point was calculated for all trials of a given condition, and then this time series was 

 convolved with a gaussian of width 50 ms. To normalize the rate, the time series was 

 divided by the number of trials belonging to each condition and the window size of the 

 gaussian. 

 ●  Direction of MS -  Two methods were used for the calculation of the direction of MS. 

 Method 1: Direction of MS is the angle of vector joining start and endpoint of MS 

 (Engbert and Kliegl, 2003) 

 Method 2: Angle at peak velocity is defined as the direction of MS  (Xue et al., 2020)  . 

 2.2.3 Statistical Analysis 

 Nonparametric permutation testing was used to assess statistical significance. In this method, 

 we created a distribution from the available data by looking at what the test statistic would be if 

 the null hypothesis were true. For neural and eye data analysis, the distribution was created by 

 iteratively shuffling the condition labels over trials and recomputing the test statistic. The 

 shuffling was done 1000 times. Next, we compared the observed test statistic against a 

 null-hypothesis distribution of test statistic values. If the observed test statistic was not within the 

 ‘boundaries’ of null hypothesis distribution, then the effect is said to be significant, and the null 

 hypothesis is rejected. We corrected for multiple comparisons using pixel-based statistics 

 (Cohen, 2014)  . In order to do this, we found two extremely  valued pixels (for the two-tailed test) 

 from the distribution obtained for each iteration of permutation testing. After running all iterations, 

 we obtained a distribution containing the largest and smallest pixel values. The lower bound is 

 the value corresponding to the 2.5th percentile of the smallest values, and the upper bound is 

 defined as the value corresponding to the 97.5th percentile of the largest values (here p = 0.05). 

 Any pixel having a value greater than the upper bound or smaller than the lower bound is 

 considered to be statistically significant. 
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 For ERP analysis, the test statistic is the difference in ERP for the two outcomes. For frequency 

 analysis, the test statistic is the log ratio of power for the two outcomes. For MS rate analysis, 

 the difference between the MS rate for two outcomes was used as the test statistic. To do 

 statistical analysis on pooled data, maximum and minimum pixel values distributions for all the 

 sessions were pooled in and the lower and upper bounds were found using this pooled 

 distribution. This lower and upper bound was applied to the average of all the sessions and the 

 z-scored data was used for averaging. 

 In the correlation analysis, ERP amplitude is associated with a phase. We shuffled the ERP 

 amplitude values 1000 times and calculated linear circular correlation for each permutation to 

 create the null distribution. By doing so, we obtained 1000 correlation values for each frequency. 

 Similar to the previous analysis, the maximum correlation value for each permutation is obtained 

 to get a distribution (one-sided test). Suppose the test statistic is larger than the value 

 corresponding to the 95th percentile value of this distribution (p = 0.05). In that case, the 

 correlation between ERP amplitude and the prestimulus phase is not by chance. 

 All scripts for the analysis are available at https://github.com/shivangi1399/Attentional-Scanning 
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 3. Results 

 3.1 MUA and LFP data 

 3.1.1 Event Related Potential (ERP) 

 Most channels showed a significant difference between hit and miss conditions for LFP (figure 7) 

 and MUA (figure 8) signals within the first 100 ms of target onset. No saccades occur during this 

 time, which means that the difference is probably not due to saccades. 

 Figure 7. LFP signal for one example session (klecks_20170828_attentional-sampling_1)  for each channel. The 

 blue region shows the significance thresholds. The red and black traces are average hits and misses across trials of 

 respective conditions. Target onset is at 0. All trials and channels are included. 
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 Figure 8. MUA signal for one example session (klecks_20170828_attentional-sampling_1)  for each channel. The 

 blue region shows the significance thresholds. The red and black traces are average hits and misses across trials of 

 respective conditions. Target onset is at 0. All trials and channels are included. 

 Figure 9. LFP signal for one example session (session klecks_20170822_attentional-sampling_1)  for each channel. 

 The trials are for a particular location (103) and difficulty level (115). The blue region shows the significance 

 thresholds. The red and black traces are average hits and misses across trials of respective conditions. Target 

 onset is at 0. The cleaned data is used and trials or channels with high variance or high number of artifacts are 

 excluded. 

 33 



 3.1.2 Time-Frequency analysis 

 Most channels showed a significant difference between LFP power for hit and miss conditions 

 within the first 100ms of target onset (figure 10 and 11). No saccades occur in this time duration, 

 which means that the difference is probably not due to saccades. As the frequency changes, the 

 window length of time used for power calculation changes. There is a possibility that sometimes 

 the time window is large enough to capture power changes due to an early saccade. The power 

 difference is significant in the 20Hz band of frequency and some higher frequencies like 70 to 

 100 Hz (probably because of spiking activity). 

 The difference in detection between hits and misses is reflected in LFP power in the lower 

 gamma band (~ 20 Hz). 

 Figure 10. Pooled TFR (log(hit/miss)) for 4 sessions for each channel. Only the pixels crossing significance 

 thresholds are represented here. Target onset is at 0. The white line shows t=0.1 s; after this time, the monkey was 

 allowed to make a saccade. 
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 Figure 11. Pooled TFR (log(hit/miss) for 4 sessions, for example channel (ch.1). Only the pixels crossing 

 significance thresholds are represented here. Target onset is at 0. The white line shows t=0.1 s; after this time, the 

 monkey was allowed to make a saccade. 

 3.1.3 Phase Analysis 

 Phase estimation  - To investigate if the prestimulus  phase of the LFP (phase just prior to critical 

 point) correlates with ERP, we need to find the LFP phase at stimulus onset. Phase estimation 

 was done by a method based on Ni et al. 2016 where we used the broadband signal to find the 

 phase. This project assumes that the prestimulus phase of the ongoing oscillatory signal, free of 

 any ERP, determines the perceptual outcome and affects the amplitude of the ERP. To remove 

 the influence of ERP on phase determination, we cut the signal at 30ms after the target onset to 

 be as close to the critical point as possible. We extrapolated the cut LFP signal and then 

 calculated Fourier transform at the point of stimulus onset (and time points before that) as 

 described in the methods section. After establishing this method, we checked the accuracy of 

 phase detection in two ways: 
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 Using real data:  We checked the phase estimation method on our data by using the data before 

 the stimulus onset. The trials were 1.6 seconds long (from -1s to 0.6s), and the stimulus onset 

 was at zero seconds. So we could use the data from -1s to 0s as it doesn’t have  ERP. To test 

 the method, we decided to find the phase at -0.5s (midpoint of the cut signal). For this, we cut 

 data at -0.480 seconds (20ms after the point of phase determination so that a larger part of the 

 original signal be included in the phase determination), extrapolated it, and calculated Fourier 

 transform at -0.5 seconds. To compare the predicted phase to the phase using the original 

 signal, we cut the data at zero and found the phase at -0.5s. The method seemed to work well in 

 this case. The phase determination is better for higher frequencies in this case because the data 

 was cut 20 ms after the point of phase determination, which means a bigger part of the real 

 signal is used in Fourier of higher frequency. Signals used in the lower frequencies will be noisier 

 because AR extrapolation has more noise as it is extended more. 

 Figure 12. The histogram for the difference between AR phase and phase using the original signal for all trials and 

 all channels in an example session. Different subplots show different frequencies in Hz. x axis shows the difference 

 in radians and y axis shows the proportion of trials having that difference. The red and blue lines represent mean 

 and median respectively. 
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 Using synthetic data:  As mentioned in the methods section, the phase estimation method was 

 also tested using synthetic data with various phase diffusion strength, noise and sampling 

 frequency. Different signals were generated and AR and Fourier analysis was run on each of 

 them. The signal was constructed as mentioned in the methods section in equations  and ( 13 )

( 14 ).

 In case 1, the signal was constructed using the AR(1) process and the two frequencies used 

 were 10 Hz and 35 Hz. a = 1, b = 0.75 and c = 0.2 (refer equation  ). The phase diffusion ( 13 )

 strength is 0.0025 and sampling frequency is 200Hz. The model order came out to be 44. The 

 estimation in this case looks quite good because the difference between true phase and 

 predicted phase concentrates around zero (Figure 13(a) and 14(a)). This shows that the phase 

 estimation method works well. 

 Figure 13. Example trial where blue dots are of all the phases obtained in different iterations, Green is the predicted 

 phase (using AR signal), magenta is the true phase and black is the phase using the original signal (we can use this 

 since it doesn’t have any ERP). (a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4. 
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 Figure 14. The histograms show the difference between the predicted phase and the true phase for all the trials for 

 the two frequencies (a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4. The labels are different frequencies for which the 

 true phase was known. The red and blue lines represent mean and median respectively. 

 In the next three cases, we tried the method on a signal with 1000Hz sampling frequency so that 

 the signal is as similar to the original signal as possible. We changed noise and phase diffusion 

 strength to test how accuracy of phase determination changes with these different parameters. 

 To increase noise, the parameter  was increased.  Pink noise was used instead of the AR(1)  𝑐 

 process so the model order is comparable to a real signal. Refer equation  for the last three ( 14 )   

 cases. Since we are more interested in phase relations at lower frequencies, we looked at 5Hz 

 and 20Hz frequency signals in the next cases to check accuracy of phase estimation at these 
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 frequencies. Here parameters a and b correspond to 5Hz and 20Hz signals respectively. In all 

 the cases, the signal was cut and extrapolated at the midpoint of the signal, and Fourier 

 transform was calculated at the midpoint of the signal. 

 In case 2, strong phase diffusion, weak background noise is used: a = 1, b = 0.5 and c = 0.5. 

 The phase diffusion strength is 0.1. The model order came out to be 70. In case 3,  weak phase 

 diffusion, strong background noise is used:  a = 1,  b = 0.5 and c = 2. The phase diffusion strength 

 is 0.01. The model order came out to be 11. In case 4,  both strong phase diffusion and strong 

 background noise is used:  a = 1, b = 0.5 and c =  2. The phase diffusion strength is 0.1. The 

 model order came out to be 12. Model order came out to be low in the last two cases because of 

 strong pink noise but the signal is still comparable to real signal. 

 As shown in figure 14, the difference between the true phase and predicted phase is 

 concentrated around zero for case 1, which means phase determination was good. When we 

 compare case 2 to case 3 and 4, the spread around zero increases in both cases. So, as noise 

 increases and phase diffusion strength decreases, the accuracy of phase determination 

 decreases. And it looks like background noise has more influence on phase determination than 

 phase diffusion strength. Further statistical analysis needs to be done to confirm that. Real data 

 has strong noise and low phase diffusion strength, which makes phase determination even 

 harder, but the tests show that our phase calculation method works reasonably well. 

 After the phase determination method was established and tested by using synthetic data, we 

 looked at the correlation between ERP amplitude and phase. 

 Correlation between ERP and phase  - If perception  changes with ongoing LFP oscillations, 

 then the prestimulus phase of LFP should be correlated with post-stimulus ERP on a trial-by-trial 

 basis. A circular-linear correlation measure is used as described in the methods section. This 

 analysis was done for a particular location (location 161) and all the difficulty levels pooled 

 together. Trials for both the behavioral outcomes - hits and misses were pooled in for the 

 analysis. 
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 This whole analysis was done at four different time points namely t = 0 seconds (stimulus onset), 

 t = - 0.05 seconds, t = -0.1 seconds and t = -0.15 seconds. Correlation analysis at stimulus onset 

 tells us about prestimulus phase (phase just prior to critical point) correlation with post stimulus 

 ERP amplitude. Correlation analysis at time points before stimulus onset was done to check how 

 this correlation changes with time. 

 We observed that prestimulus single-trial phases were correlated with post-stimulus neural 

 responses for a few channels (Figure 15 and 16). The analysis for the four prestimulus time 

 points is shown in figure 16, circular-linear correlation is significant for lower frequencies (6 to 

 10Hz) for a few channels in the last three time points leading up to stimulus onset. Significant 

 correlation is also seen in some higher frequencies (~ 50 Hz) for one channel for t = 0 seconds 

 and t = -0.05 seconds. 

 Figure 15. Circular-linear correlation vs frequency for all channels att = 0 (or stimulus onset). Channels 45 and 64 

 are blank because they did not have good signal quality (selection of trials is described in methods section). Blue 

 area represents the frequencies which had significant correlations when we looked at significant correlations across 

 frequencies. All difficulty levels are used. 70 iterations of AR were used in this plot. 
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 Figure 16. Each subplot represents different prestimulus time points. In each plot, the yellow areas represent the 

 frequencies and channels which had significant circular-linear correlation between phase at the corresponding time 

 point and post-stimulus ERP amplitude. All difficulty levels are used.  70 iterations of AR were used in this plot. 

 We also did the correlation analysis by selecting trials of only intermediate difficulty levels (115, 

 116, 117 and 118) because the extreme difficulty levels had very few trials and different signals 

 compared to intermediate difficulty levels. This might be decreasing the observed significant 

 correlation. Indeed, we see that the number of channels having significant correlation increases 

 when only intermediate difficulty level trials are used (Figure 17) compared to when all the 

 difficulty levels were used (Figure 15). Till now we have been using both hit and miss trials but 

 there might be a lot of reasons to miss a trial apart from non-optimal phase, so we wanted to 

 check if the correlation becomes better when only hits trials are considered. Looking at only hit 

 trials can be helpful because in this case we might see a clearer correlation between ERP 

 amplitude and phase. We do observe slightly more channels showing significant correlation 

 when only hit trials are used (Figure 18). In all these cases, we observe that the circular-linear 

 correlation is significant for lower frequencies (6 to 10 Hz). 
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 Figure 17. Circular-linear correlation vs frequency for all channels for t = 0 (or stimulus onset). Channels 45 and 64 

 are blank because they did not have good trials (selection of trials is described in methods section). Blue area 

 represents the frequencies which had significant correlations when we looked at significant correlations across 

 frequencies. This analysis is for trials with intermediate difficulty levels, and for both hits and miss trials. 

 Figure 18. In each plot, the yellow areas represent the frequencies and channels which had significant 

 circular-linear correlation (at stimulus onset) when multiple comparison was done across frequency for each 

 channel. This analysis is for trials with intermediate difficulty levels.  a) Correlation for both hits and  miss trials. b) 

 Correlation for only hit trials. 
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 Figure 19. Average circular-linear correlation vs frequency for all channels (62 channels) for t = 0 (or stimulus 

 onset). Blue area represents the frequencies which had significant correlations when we looked at significant 

 correlations across frequencies. This analysis is for trials with intermediate difficulty levels.  a)  Correlation for both 

 hits and miss trials. b) Correlation for only hit trials. 

 We also looked at the average correlation for channels for intermediate difficulty levels and 

 observed that significant correlation in 6-10Hz band for both hit and miss trials and in 2-10Hz 

 band for only hit trials (Figure 19). This shows that prestimulus phase in the 6-10Hz frequency 

 band is correlated to post-stimulus ERP amplitude. 

 3.2 Eye data 

 Microsaccade 

 Engbert and Kliegl algorithm (EK method):  Some measures  of MS are discussed here: 

 ●  Peak velocity amplitude plot:  As expected, there is a fixed relation between peak velocity 

 and amplitude for all sessions. Two example sessions are shown in figure 21. 
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 ●  Distribution and rate - To check if there are more MSs around target onset in misses 

 compared to hits, we looked at MS rate and found that right after target onset, there is a 

 significant difference between hits and misses MS rate (figure 20). Similar results were 

 observed for MS distribution. There are more MS after target onset in the miss condition. 

 It is probably because MS around target onset does not allow good detection of the 

 target, and as a result, the monkey fails to perform the task correctly (miss trial). 

 Figure 20. (a,b) Average MS rate difference and statistical thresholds for all sessions pooled together. 

 ●  Direction of MS - We wanted to check if more microsaccades are in the direction of the 

 target compared to any other direction because this might benefit target detection. This 

 effect has been observed in some human psychophysical studies  (Engbert and Kliegl, 

 2003; Hafed and Clark, 2002; Rolfs et al., 2005)  .  MS is found to be in the general 

 direction (quadrant) of the target, but it’s still quite far from the exact target position. This 

 could be because microsaccades are biased towards the attended location and not the 

 exact target location  (Xue et al., 2020)  .  Figure  21 (b and c) shows the direction of MS in 

 hits and misses.  Proper statistical analysis needs  to be done in order to verify whether 

 there is a significant difference  . 
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 Figure 21. These plots are for the EK method. (a) Peak velocity-amplitude plots for sessions 3 (row 1) and 4 

 (row 2)). (b) Direction plots according to method 1 (Direction of MS is the angle of vector joining start and 

 endpoint of MS) for sessions 3 and 4. (c) Direction plots according to method 2 (Angle at peak velocity is 

 defined as the direction of MS) for session 3 and 4.  The differences between these two methods are due to 

 different endpoints of MS. Session 3 is klecks_20170808_attentional-sampling_1 and session 4 is 

 klecks_20170810_attentional-sampling_1. 

 Convolutional neural network (CNN method)  : The MS  rate was similar to the EK method 

 using this method. There is a difference between the distribution of the direction of MS and the 

 peak velocity-amplitude plot depending on the definition of MS used. In this method, the 

 amplitude peak velocity plot has more spread, probably due to the absence of strong 

 thresholding, which was present in the EK method. 

 ●  Definition 1 - This is a less stringent way of marking MS end, so the end is usually 

 defined as the point where the eye finally settles to, after making a MS. Because of this 

 difference in endpoints, the direction plot looks quite different for the two definitions. The 
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 peak velocity-amplitude plot is also concentrated towards smaller amplitudes in definition 

 1. The vector joining start and endpoint will be quite small as the eye tends to go back 

 near the fixation point (or window). 

 ●  Definition 2 - This definition is similar to the one used in detection by the EK method, and 

 the distribution obtained is similar to the one obtained in the EK method. Since it is a 

 stricter way of marking the MS end and does not include PSOs, the end of MS is defined 

 as the point to which the big saccade was made (similar to the EK method MS endpoint). 

 Here, the endpoint will be quite far from the start point because of which there is a fixed 

 relation between peak velocity and amplitude. 

 Figure 22. These plots are for CNN method (a) Peak velocity-amplitude plots for definitions 1 (row 1) and 2 (row 

 2). (b) Direction plots according to method 1 (Direction of MS is the angle of vector joining start and endpoint of 

 MS) for definition 1 and 2. (c) Direction plots according to method 2 (Angle at peak velocity is defined as the 

 direction of MS) for definition 1 and 2. All these plots are from session 1 

 (klecks_20170804_attentional-sampling_1). 
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 4. Discussion 

 Attention scans different locations of an attended object using traveling waves according to the 

 attentional scanning hypothesis. This can lead to beneficial processing of different locations over 

 time. To explore the role of traveling waves in attentional scanning, we had to establish that the 

 perception when the stimuli is attended fluctuates with the prestimulus phase of the spontaneous 

 ongoing oscillations. This project revolves around showing that perception is dependent on the 

 phase just prior to the time at which synaptic inputs arrive at V4. 

 The oscillations in the local field potential reflect the changes in the membrane potentials, which 

 represent the variation in excitability of the neuronal ensemble  (Bishop, 1932; Buzsáki and 

 Draguhn, 2004; Rajkai et al., 2008; Schroeder and Lakatos, 2009)  . There are certain points in 

 the oscillation where the neural excitability is high, which can be referred to as the high-gain 

 phase or the phase of maximal gain. The phase of ongoing oscillation can affect the processing 

 of the stimulus because when the input arrives at the postsynaptic neuron or neural ensemble 

 during this phase of maximal gain, it receives beneficial processing. This phase can affect how 

 well the stimulus is processed or even perceived. This means that perception is dependent on 

 the phase of ongoing oscillation. Phase can affect other dependent variables like perception, 

 behavioral response, neural response, etc. 

 In our task, the behavior of the monkey - whether the target is detected correctly (hits) or not 

 (miss) reflects perception. We first established that this difference in the two behavioral 
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 outcomes (or difference in perception) is reflected in the visually evoked responses (both in MUA 

 and LFP) and in the LFP power in the lower gamma band. The difference in ERP signal shows 

 there is a neural basis for the detection difference between hits and misses. The difference in 

 ERP for different conditions has been shown previously using EEG  (Busch and VanRullen, 

 2010)  and MUA data for different regions including  V4  (van Vugt et al., 2018)  . We also found a 

 significant difference in microsaccade rate between hits and misses, which means the difference 

 in detection is also reflected in MS rate (Figure 20). To exclude the possibility that the difference 

 in neuronal responses was due to microsaccades, the ERP difference analysis was repeated by 

 Elena only using trials which did not have microsaccades. The difference in ERP persisted in 

 trials where there are no microsaccades, this confirms that the difference in ERP is not due to 

 MS but to difference in perception. 

 Next, we established the existence of an optimal phase by looking at the link between neural 

 response (which reflects perception) and the prestimulus phase. As shown in section 3.1.1, 

 perception and ERP amplitude are related. There is a significant difference between the hit and 

 miss ERP within the first 100 ms of target onset. Here the single trial behavioral outcome or 

 monkey’s response - hit or miss is a proxy for perception. If an optimal phase for information 

 processing exists, then the prestimulus phase would predict perception. Since ERP amplitude 

 and perception are related, then  post-stimulus  ERP  amplitude and prestimulus phase should 

 also be related. In this project, we tried to find if an optimal phase for processing exists and 

 whether it is linked to neural response or ERP (which is linked to perception). To do so we 

 looked at whether the trial-to-trial variability in post-stimulus ERP in a target detection task is 

 linked to the prestimulus phase of ongoing neural oscillations. We did this analysis by calculating 

 the circular-linear correlation between prestimulus phase and ERP amplitude, and observed 

 significant correlations for a few channels in the frequency range of 6 to 10 Hz. This analysis 

 was done for four different prestimulus time points and significant correlations were observed till 

 about 100ms before stimulus onset. The correlation becomes better when only intermediate 

 difficulty levels are considered. Apart from this, on taking average correlation for channels, we 

 observed significant correlation in the 6 to 10Hz range. A human EEG study by Busch and 

 VanRullen in 2010 also showed that the detection performance (which represents perception) 

 fluctuated with the prestimulus phase of oscillations in the theta frequency band (~7 Hz) for the 
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 attended stimuli. Our study used the neural response instead of performance of the animal 

 which is a continuous measure of perception and showed that the perception is dependent on 

 the prestimulus phase. 

 For the correlation analysis, trials with one location and all (or multiple) difficulty levels were 

 pooled. The significant correlations map might get better after doing a regression analysis to 

 control for difference in signal due to different difficulty levels. The statistical analysis was also 

 done across frequencies for each time point, in the future we would like to do statistical analysis 

 across time and frequencies to obtain time and frequency at which correlation is significant. 

 Statistical analysis across frequency and channels also needs to be done to check which part of 

 the array and which depths show significant correlations. The correlation analysis could be done 

 for different locations which might give us more information about transition of the effect in time 

 and space. 

 The correlation between ERP amplitude and prestimulus phase shows that perception is linked 

 to the prestimulus phase which indicates that the optimal phase of processing might exist. This 

 can also be checked by looking at whether hit trials are associated with the prestimulus phase; 

 this analysis will be done in the future. Next, we can look at the role of traveling waves in 

 attentional scanning. If the traveling waves are used to scan different object locations, then the 

 optimal phase of neighboring neuronal populations will be systematically shifted in cortical space 

 because of the retinotopic organization of V4. This project was a step towards exploring the 

 attentional scanning hypothesis which can help us understand possible mechanisms using 

 which attention can scan different items. 
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 5. Conclusions and Further Plans 

 We showed that the difference in detection is reflected in the visually evoked responses (both in 

 MUA and LFP) and in the LFP power in the lower gamma band. Miss trials show a higher MS 

 rate just after target onset.  These results are based on the analysis of all sessions. We also 

 showed that the phase of the ongoing LFP activity before the target onset is systematically 

 correlated to ERP amplitude which is related to perception. This points towards the existence of 

 an optimal phase. Next we will look at whether this phase is systematically shifted between 

 neighboring recording sites. If that is the case, it would suggest the existence of a traveling wave 

 which would help us explore the role of traveling waves in attentional scanning. 

 We saw differences in the rate and direction of microsaccades around the time of target onset 

 and this suggests that microsaccades might have a role to play in how well the target is 

 detected. To explore this further we will look at the phase relation of MS with ongoing oscillation. 

 We also plan on analyzing pupil size differences around target onset for different conditions. 
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