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Abstract 
 
A neural network-based community detection algorithm 
 
Complex networks are typically not uniform random networks. Rather, they contain 
inhomogeneities -- densely connected groups of nodes with sparse connections to other 
nodes. Such densely connected sub-networks are known as communities or modules 
(1). The presence of these modules is often an indication of distinct functions performed 
by the network with each module subserving a different function. Parceling functions into 
distinct structures can improve the evolvability of the network. Different functions may be 
selectively optimized without disturbing other aspects of network function.  
 
One approach to detect modules in a network is to optimize a quality function, termed 
modularity, over different partitions of the network (2). In this project, we propose an 
alternative method to detect modules by mapping the dynamics of a neural network (with 
connectivity based on the test network we wish to analyze) to the modular structure of a 
complementary network (3). The neurons will be modeled as simple on-off devices that 
interact with each other in an antagonistic fashion. That is, if a given neuron is on, all the 
neurons connected to it are turned off. A slow time scale (compared to the time scale of 
switching) and transient inputs will be used to switch the state of the neural network. We 
anticipate that the identity of neurons that are synchronously activated will correspond to 
modules of a complementary network. 
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Introduction  
 

 

     Community : A community is a group of vertices in a graph which are more 

connected among themselves than with the rest of the graph. 

 

 
Fig . 1. 

 

 
 
A standard graph is taken where there are 5 different communities . Elements of same community is 

denoted by the same colour.[1] 
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     A dataset is considered. The dataset consists of a set of points. The points have a set of 

properties defined on them. Grouping the points based on similarity of their properties 

into groups is called clustering. Newman’s Clustering[1] makes communities based on a 

value standardized to the original graph. This type of clustering misses some group of 

nodes which should be considered as communities in themselves. A node is a vertex of a 

graph. At the beginning a measure of modularity[1] is introduced. A community of a 

graph consists of vertices which have more dense connections in between themselves 

compared to the rest of the graph. In Newman clustering[1] the modularity of the complete 

graph is zero. The partition of the graph which gives the maximum modularity[1] is taken 

as the group of communities. In reality when composing a graph, when the graph is 

generated under restricted conditions, certain structures can be introduced beforehand 

which already establishes the communities. Under those conditions it can be argued that 

the communities of the graph are already known. In such circumstances for specific cases 

Newman clustering does not provide with the optimal outcome. Two such cases are 

explained as follows : 

 

      Case 1: 
 

     A clique is a complete graph where all the vertices are connected to each other. 

Suppose a complete graph of 5 vertices is taken. Let it be called P in this case. Now 24 

such P’s are connected like pearls in a necklace. By our own creation we already know 

what the total communities are in it.   There should be 24 communities. Each of the 

clique should form a community of it’s own. 

 

 
Fig . 2. 
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Each circle in the figure denotes a complete graph of 5 vertices. They are connected to its neighbouring 

component by one edge. Each eclipse clubbing 2 complete K5  graphs denote the communities from 

Newman Clustering.[3] 

 

 

     Now we run the Newman clustering[1] algorithm on it. The set of communities we find 

is different. It gives 12 communities. Two cliques are clubbed together as one 

community. The modularity value for both those cases are now calculated. When the 

above case has twelve communities the modularity[1] value is 0.8712 . When 

modularity[1] value of 24 such community is considered, as claimed it is less. It is 0.8674. 

Hence we can see in this case the algorithm fails. 

 

 

      Case 2 : 
 

 

      Let us consider another such example. Four complete graphs are taken into 

consideration. Two of them has 20 vertices each. Another two of them has 5 vertices 

each. Let the two complete graphs with 20 vertices each be called B1 and B2. The two 

complete graphs with 5 vertices each is called S1 and S2. B1 is connected to B2 with one 

edge. B2 is connected to S1 and S2 like a triangle. What I mean is that if S1 , S2  and B2 

are considered like vertices, B1 and S1 are connected by one edge, S1 and S2 is 

connected by one edge and also so is B1 and S2. In this situation by architecting the 

graph in a certain way we can claim we already know the communities in them.  
Fig . 3. 

 
 
Km and Kp denote complete graphs of m vertices and p vertices respectively. Here m=20 and p=5. They are 

connected to each other as shown.[3] 
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     Each of the complete subgraphs in this whole graph that we have created should form 

a community as shown in Fig.3. Hence we should have four communities. However when 

we apply the Newman clustering[1] algorithm on it we get a different result. We get three 

communities. The two complete graphs of five vertices gets clubbed into a single 

community. Hence the communities are B1 , B2 and the union of S1 and S2. Once again 

the algorithm gives a different output than our prediction. However while running 

through examples like this we tend to notice a similarity in both cases.  

     This intuition also develops from our understanding of the process of partitioning of 

the graph into communities according to Newman’s clustering[1] algorithm. We see in 

both these cases the smaller communities get clubbed together.  Also those group of 

nodes individually sometimes form a smaller fraction of the total set of nodes. Newman 

modularity[1] value is based on a certain property of a graph. A group of nodes that have 

more interconnection than the rest of the graph will have a higher modularity index. 

However this process is normalized. Moreover to standardize the process, the algorithm 

is set such that the  modularity[1] index when considering the whole graph as a 

community is taken as zero. Hence groups of nodes which are sparsely connected to the 

whole graph and less densely connected among themselves compared to the average 

density of the main graph, although should be considered as communities are not 

partitioned individually by the algorithm. 

     Groups of neurons consisting of no connections in them and inhibitory connections in 

them , tend to synchronize in spiking. Let a group of neurons be considered . They are 

themselves partitioned into various groups on their own under certain conditions. Under 

initial conditions all neurons are of similar quality. Suppose the neurons have no 

connections among them if they are in same partition in the total group. Now if two 

neurons, each from separate group is considered, they are connected to each other. Their 

connection is inhibitory in nature. Each of them when they spike , inhibits the spiking of 

the other neuron it is connected to.  Under such situation we see that the individual 

partitions of neurons each tend to synchronize in spiking individually. Basically after an 

extended period of time the plot of the spiking of the neurons will be similar to individual 

neurons under similar conditions. If number of neurons equal to the number of partitions 

in previous condition is taken. After that all of them are connected to each other through 

inhibitory synapses. After a significant amount of time the spiking pattern of the above 

two conditions will be similar. The change in voltage on the receiving neuron is set to be 

a fraction of the threshold value of the neuron.  On a micro level each spiking basically 

pushes the spiking of the other neuron it is connected to further down the road. The 

neuron which is delayed in spiking however is still closer to spiking than the other 

neuron. Along the way this neuron resets first and similarly delays the spiking of the 

neuron it is connected to. Similarly at the other end Hebb’s rule[2] works. Suppose two 

neurons are named A and B. They are connected to each other by a synapse. The synapse 

is excitatory and affects both ways. Now without loss of generality A spikes first. Then it 

will excite B. This brings B closer to spiking than it would have. Then after B spikes it 

will excite A to spike before it would have for a second time. Gradually after a significant 

amount of time, they will end up firing together. With this concept in mind the plan is to 

make a neural network of the graph. 

 

 
Fig. 4. 
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Group of 10 neurons {0,1,2,3,4,5,6,7,8,9} as denoted. Vertices {0,1,2,3,4} and {5,6,7,8,9} form complete 

graphs. There are a few connections in between these set of vertices. An inhibitory connection is run along 

the complementary network of this graph. The change of membrane potential with time and the raster plot 

of these neurons are shown in these figures respectively . 

 

     The new network will separate the communities in the graph . The elements of the 

communities will also be closer to each other. Hence with the help of a distance matrix 

which we can create from this we will be able to cluster the graph into communities. Now 

to find the distance between them we go to a different concept. For this we are 

introducing a concept called spike distance. In this the graph of voltage vs time for each 

neuron is modified a little. The graph is broken from a continuous to a discontinuous 

graph. The voltage at the threshold during spiking is only taken into consideration. Rest 

of the time the voltage is converted to zero, in order to convert the graph to a spike train. 

For each neuron the graph is converted similarly. Then based on each point of time, a 
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synchronicity is calculated for two spike trains. In my work I have integrated this 

measure over a standard period of time to gain a distance metric I wish. The time is based 

on the neuronal dynamics and the total number of neurons.  

     In Newman clustering[1] we see that it fails to distinguish between communities under 

certain cases. When the density between intra-edges and inter-edges of a community 

comes close, faults tend to arise. This phenomenon is termed as resolution limit[3] . Now 

that we have created a pair-wise distance matrix, we can apply machine learning 

clustering algorithms on it. The main issue that is attempted to be rectified here is to have 

enough clarity between clusters. For resolution of this clustering,  K-means clustering 

method and Agglomerative clustering method has been used .  From the intuition and 

results of various observations only one of them has been chosen eventually. First in the 

model the initial point of each neuron has been randomly chosen with insignificant 

magnitude. This will cause them not to have same time of first spiking . Moreover, a 

maximum amount of magnitude in change for spiking of a neuron to its following neuron 

is calculated. This value will be in relation to other parameters of the model. The primary 

criteria for it would  be  to not destabilize the system. What is meant  by this is that it 

should not cause any neuron to stay in continuous depolarized state of not sending any 

action potential , or even for a lengthy meaningful period of time. It should also not cause 

any neuron to send a continuous stream of action potentials for any time period. Now that 

the whole neural network is created it can be worked upon. However as architected the  

neural network is a disjoint union of excitatory connections and inhibitory connections. 

The magnitude of change in post-synaptic potential due to each type of connection need 

not be similar. Hence the maximum magnitude of change in potential in post-synaptic 

neuron due to generation of action potential graded and broken down to a uniform scale. 

Now the inhibitory post-synaptic input is gradually increased along the units of the scale. 

This is similarly done for the excitatory connection. Hence we get a network where the 

ratio of these dissimilar connections vary all over the points of a two dimensional 

gradient graph. The target is to find the most suitable clustering from all these 

observations. Newman clustering[1] was created on a concept which had a distinct 

mathematical structure given. Hence under deep scrutiny artificially constructed graphs 

could be created where our intuitive division of communities in them which did not 

match with the result of Newman clustering[1]. Moreover even if the communities form 

by connections, they segregate themselves from each other due to lack of connections. In 

Newman clustering[1] no account of that was taken . Hence mostly we can see that the 

overlap between communities were mostly complete union of them in standard examples. 

However we can notice that those mega communities could and should be divided into 

disjoint partitions. But still without any distinct universally defined concept of 

community, any mathematical formulation provided for it will have its setbacks. Hence to 

approach this issue in a different way, a neural network is created based on the graph 

structure which can provide the value for us. The segregation or partitioning of the 

communities are provided by the inhibitory connections. The connectiveness or bonding 

for making the distance of points in between the compact is provided by excitatory 

connections. However as the network is all to all connected the impact of these uni-

dimensionally oppositely directed impact of these connections created from excitatory 

connections along the graph and inhibitory connections along the complementary graph 

also never completely convert the simulation periodic. If such a situation was applicable, 
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the approach would not have been much different from Newman clustering[1]. Yet due to 

the large number of datasets we can argue that the fundamental core nature of the 

network will have the maximum impact on the result .  Now due to this model an 

impression of a large number of ways so that any graph can be grouped into communities 

is created. Each of them can be argued as a clustering based on goal. This method has 

also tried to address the fundamental reason Newman clustering is not applicable in 

certain situations based on intuition. Now along the way it needs to be figured the most 

similar set of observations and justify the core of it which will lead us to our result.  
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Materials and methods 
      

        
     Knowledge and understanding of algorithm is required. A machine that can go 
through any length to run the code is also a necessity. Knowledge of neuronal 
dynamics of integrate and fire model[4] is required. Exponential integrate-and-fire 
models[4] allows us to run neural networks easily as they are simple in terms of 
variables. Exponential integrate-and-fire models[4] are widely used in the field of 
computational neuroscience and spiking neural networks because of  
(i) a solid grounding of the neuron model in the field of experimental 
neuroscience, 
(ii) computational efficiency in simulations of the python packages which run 
these simulations. 
(iii) mathematical clarity in the modules which run these simulations in python. 
     Also a depth in knowledge in graph theory is required. A graph is defined as a 
set of two types of objects. Let G be a graph. ‘G={V,E}’. The set of two types of 
objects are ‘V’ and ‘E’ . ‘V’ and ‘E’ stands for vertices and edges respectively. ‘V’ 
consists of a set of objects.  ‘E’ consists of objects of ‘V’ combined together to 
form an object. Let ordering of objects of ‘V’ to form an object of ‘E’ does not 
matter. The objects of ‘E’ are also only pairs of objects of ‘V’ where ordering does 
not matter. The  objects of ‘E’ do not repeat themselves. Pair of same objects 
from ‘V’ do not form an object of ‘E’. When a Graph qualifies the above 
mentioned conditions it is called a simple graph. 
     Neurons have three different types of potential. They are called resting 
potential, graded  potential and action potential. At resting potential, the potential 
inside the neuron is less than outside the neuron . There are various ions around 
the cell membrane of neuron both inside and outside. However the permeability 
of those ions is different on either side of the cell membrane. There is also 
sodium-potassium pump attached to the cell membrane of the neuron. The 
negatively charged ions on neither side are chlorine and proteins. The positively 
charged ions on either side are sodium and potassium .  The cell membrane has 
various channels which are attached to the cell membrane. The major ones with 
implications to this project are leaky channels and voltage gated channels. The 
negative ions have no means of passing through the membrane.  The electric 
gradient tends to push the  positive ions out of the cell. However the density of 
potassium ions is higher inside the cell than outside the cell. Similarly the density 
of sodium ions is higher outside the cell. However there is a sodium-potassium 
pump. This helps pumping three sodium ions out and two potassium ions  in.  
This tends to keep a varying dynamic equilibrium inside the cell. A graded 
potential is a change in potential that can vary in size. This is caused by 
continuous  exchange in ions across the membrane. They also vary due to the 
input of stimulus from connected neurons. The stimulus may be excitatory and 
inhibitory based on the change in voltage in causes in the affecting neuron. The 
resulting variation when causes a change in voltage  generally, an action 
potential is created. This sends an electrical impulse along the length of the axon 
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to the other end of the neuron. This in turn causes a change in potential in the 
neuron it was connected to.  
     In this project a simple neuron which sends an action potential along specific 
intervals. The change in potential across the membrane of neuron can be 
simplified to  ‘-[(dV/dt)]=(I-V)/tau’ [4] . ‘V’ is the potential difference across the 
membrane . The minus sign can be ignored based on which side of the 
membrane you are considering. ‘I’ is the rise in potential difference required for 
the propagation of action potential. In order to balance the whole equation , ‘tau’ 
is the time constant in this. 
     Now while creating the system the ratio of the numbers are to be taken into 
consideration. The value of effect of stimuli from the preceding neuron to the 
proceeding neuron should not cross ‘I’ or the designated value of action potential 
in this case. Hence if a graph has ‘n’ vertices, the highest value of inhibition or 
excitation for each stimuli should not be more than ‘(I/n)’ in voltage. Also in 
previous section an idea is provide of how the inhibitory connection and 
excitatory connection have an effect on the spiking on the connected pair of 
neurons. Now the main graph is converted to a neural network. The edges of it 
are bidirectional excitatory synapses. Now the complement of the main graph is 
taken . The edges of it are bidirectional inhibitory synapses. When all the vertices 
of the graph is considered  as neurons, all of them are connected to each other 
both ways .  In this process without any external stimulus from other neuron , 
each neuron should periodically fire action potentials after a specific period of 
time. There are ‘n’ neurons .  In order to give all the neurons proper time to have 
effect from other neurons, the total run time of the simulation is of order n.  
     All the coding is done in python. The packages used are  
Brian 2 – For plotting the neural network  
NumPy – For mathematical operations and using data structures like arrays and 
matrices.  
Matplotlib – For plotting all graphs. 
Scikit-learn – For machine learning clustering algorithms.  
SciPy – For clustering algorithms and integrating functions in algorithm. 
Networkx – For generating and drawing graphs.   
Math – For doing mathematical operations.  
Itertools – For creating partitions in sets.  
     Now to undergo clustering a distance matrix is required .  First the graph of 
voltage vs time across the membrane is converted to spike train vs time for each 
neuron. Now for a point of time in the simulation, two different spike trains are 
compared. This creates a similarity or dissimilarity profile for each pairs of spike 
trains at specific instances of time. For ith spike train at a specific instance of 
time the preceding and proceeding spike of that spike train is taken. Let them be 
denoted as  tiP (t)[5] and tiF (t)[5] respectively. The variables notations will change 
accordingly. The preceding and proceeding spikes are called previous and 
following spikes and are similarly denoted. For ith spike the interspike interval at 
time t is the time difference it’s previous and following spike . It is denoted as 
vISI

i(t)[5].  Now two spike trains i and j are considered . The value of difference in 
time for the previous spikes at the given time  is calculated. It is denoted as Δtp(I,j)
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(t)=tPi (t)-tPj (t)[5] . The direction of the vector is important. Similarly it is also 
calculated for the forward spike trains. ΔtF (I,j)(t)=tFi (t)-tFj (t) [5] . It is calculated and 
denoted by the equation in the previous line. For the pair of spike trains ‘i’ and ‘j’ , 
at any specified time , for each spike train two boundary points are established of 
previous and following neuron. Hence for each pair of neurons at any specific 
time four boundary points are defined . Now for each of these boundary points 
the smallest time distance with its neighbours is calculated. Without loss of 
generality let us define this for the previous spike of the ith spike train at time t.  
 
Fig. 5. 

 
Two spike trains 1 and 2 and their spikings at arbitrary point ‘t’  in time is shown .The variables in the 

figure denote their corresponding values. [5] 

 

ΔtPi(t)=min(|tPi (t) – ta|)[5] . Here  ‘ta’  denotes all the other boundary spikes. Now 
the time difference in spike with the specified time in calculated to use as ratio 
while calculating the variables we need. For ‘i’th spike at time ‘t’, for previous 
spike it is calculated as ‘xP

i(t)=t-tPi(t)’ [5] . For ith spike at time ‘t’, for following 
spike it is calculated as ‘xF

i(t)=tFi(t)-t’ [5].  Now for each point in time a local weight 
of the spike train is calculated . Now calculating it at time ‘t’ for ‘i’th spike train at 
time t through with respect to jth spike the following equation.  

Si(t)=(ΔtPi,j(t)xF
i(t)+ ΔtFi,j(t)xP

i(t))/ vISI
i(t)          ...........[1] 

     It is similarly calculated for the ‘j’th spike too. Now enough variables are 
formulated to calculate the dissimilarity between two spikes . Now at a time ‘t’ for 
‘i’th and ‘j’th spike train the dissimilarity value ‘S(t)’ is 

S(t)=(Si(t) vISI
j(t)+ Sj(t) vISI

i(t))/( vISI
i(t)^2+ vISI

j(t)^2)............[2] 

     Now enough variables have been defined to create the distance matrix for 
each pair of neurons. The above variable gives dissimilarity measure between 
two spike trains at a specific point. Hence by integrating it over the entire 
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simulation time, we get a distance measure which can be used as pairwise 
distance for each pair of neurons.  
     Now modularity as explained by Newman[1] is defined. Let the main graph be 
‘G’. The graph is divided into ‘m’ communities. This value of ‘m’ and it’s structure 
is provided by the algorithm itself. Let ‘Q’ be the modularity quotient obtained 
from this partition of ‘G’ ,then  

Q=Σs
n

=1[(ls/L)-(ds/2L)^2][1]
 .          ..............[3] 

      The terms inside the equation will be explained . The variation along the summation 

denotes the communities. Fundamentally, the claim of Newman clustering algorithm is 

that the optimum partition of communities will give the highest value of ‘Q’. Now the 

term inside the community is calculated individually for each partition. Here ‘ls’ denotes 

the number  edges within a module. The module is the partition of nodes denoted by s.  L 

is the total number of nodes in the whole graph . ‘ds’ is the sum of all the degrees of 

nodes in a module. In a graph the sum of all the degrees of all the nodes is twice the value 

of total number of edges in a graph[6]. When the graph has no partitions by definition 

‘ls=L’ . Hence when the graph is not partitioned into communities the value of ‘Q’ 

becomes 0. However later a resolution factor[1] was introduced. It was denoted as ‘γ’ . 

Under its influence the equation becomes 

 Q=Σs
n

=1[(ls/L)- γ (ds/2L)^2][1]
 .          ..................[4] 

    If the value it is given is less than 1 the partition favors larger communities. Intuitively 

we can understand that when the previous condition is satisfied the graph has a positive 

modularity quotient to begin with. Within the summand of the equation, the first term 

increases the modularity while the second term decreases it. The first term increases with 

larger communities. The effect of the second term is diminished due to the value set for  

‘γ’ . Hence we can see why the previous claim works. Similarly when the value of ‘γ’ is 

more than 1 the converse happens. Hence we can see that smaller communities get 

resolved.  

     The model is based on primarily on how neurons vary in voltage over time. It is 

influenced by excitatory connections. It is also influenced by inhibitory connections. The 

inhibitory connections will cause the neurons to send axon potentials at different time to 

each other. Similarly it can be seen  that when two neurons excite each other, they cause 

each other to spike sooner than expected. Spiking of one causes a voltage rise in other 

which makes it spike sooner. Simultaneously the other neuron performs similarly till 

there is no noticeable difference in their variation of membrane potential. Hence under 

this condition a graph which has two vertices and is connected will be similar to a 

community. Also when the graph has two nodes but are not connected , its spike distance 

will have a value distinct and not close to zero.  Now it will be seen that like this set of 

disconnected complete graphs will act as independent communities. The number of 

communities will be equal to the number of elements in the set.  

Choice of clustering 
     When the graph is constructed , the communities are structured and hence should be 

fixed. So in this situation K-means clustering is done. In K-means clustering the set of 

points in distance matrix is optimally clustered into k clusters based on algorithm. First 

randomly k points are taken in the vector space. All the points are clustered to their 

nearest point. In the next step the mean points of these clusters are taken as the initial k 
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points and the algorithm is run again. It is run continually till the elements of clusters do 

not change. In this clustering the process of clustering do not modify the distance 

between points while comparing them. Hence it has been used over Agglomerative 

clustering. Now there are a few ways of determining the optimal number of clusters that 

should be extracted from K-means clustering. Silhouette method and Elbow method are 

used based on the simplicity of their application and the inference of their measure.  

 

 

 

Silhouette Method[7] 

     Suppose there are k clusters . The mean intra-cluster distance of all the clusters is 

calculated . It is designated as a. Now for each cluster the distance with the center of each 

cluster is measured. For each cluster in such a way the distance with its nearest neighbor 

is calculated. It is denoted as b. The Silhouette Coefficient for a sample is (b - a) / max(a, 

b) . The value of k for which it is maximum is our desired number of clusters.  
 

Fig. 6. 

 
Along the y-axis silhouette coefficient is calculated . Along the x-axis the number of clusters are varied for 

an arbitrary example. In this case the optimal number of clusters is 2.[7] 
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Elbow Method[8] 

     In each cluster a centroid is determined. It is the mean point of all the points in the 

space for a cluster . Now like variance with respect to it the square of distance of all the 

points in the cluster is calculated. This value is calculated for all the clusters and summed 

up. This measure is called Within Cluster Sum of Squares or WCSS. For one cluster it is 

maximum. It is zero if the total number of clusters is equal to the number of points. The 

value is plotted against the number of clusters . For a value of k, it’s point in graph is 

connected to the respective points of its neighbors as a straight line. This causes a change 

in slope for the graph at the integral values within its range. The point in the graph which 

has the maximum impact for the change in values should be an optimum point for 

determining the number of clusters. The plot of this graph takes the shape of a folded 

hand of a human. The chosen point is named to be the elbow point for the similarity in 

structure.  In this process only the distance between the communities in the community is 

calculated. This is why this reason is chosen.  

 

 
Fig. 7. 

 
On the y-axis is a measure of WCSS and on the x axis is the number of clusters . At k=3 it is the elbow point 

of this graph based on the requirements of this arbitrary example.[8] 
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Results and Discussion 
 

     While comparing with Newman Clustering[1] it has been noticed the existence of a 

resolution limit[3] which has been mentioned in previous sections. The graph has a certain 

number of edges. Averaging the number of edges over the number of vertices gives us the 

measure of the density of edges. Similarly let it be considered that the graph is already 

segregated into communities. Considering communities as subgraphs in themselves, a 

similar density measure of edges for the communities is achieved. Now as the density 

measure of the edges between graph and the rest of the communities tend to become 

closer, the value of modularity tend to decrease . The variation in modularity is also not 

similar to  linear progression.  

 

 

 

    Now two cases are studied in the results and clustering is applied on them. 

 

 

Case 1 : 

 

Here a graph of 10 vertices is considered . The vertices are numbered 

{0,1,2,3,4,5,6,7,8,9}. The set of vertices {0,1,2,3,4} form one community. The set of 

vertices {5,6,7,8,9} form another community. There are edges in between the two 

communities. It is denoted as ‘InterE’ . Community {0,1,2,3,4} is denoted as A. 

Community {5,6,7,8,9} is denoted as B. Edges inside community A is denoted as 

‘IntraA’ . Edges inside community B is denoted as ‘IntraB’ .  It has been used such that 

the density of edges in community A and density of edges in community B are similar. 

The density of edges in community A and B are denoted as ‘dIntraC’ . Now density of 

edges in ‘InterE’ is considered. It is denoted as ‘dInterE’ . For the graph to have the pre-

specified communities , dIntraC >= dInterE condition should be satisfied. This is because 

communities are more densely connected than the rest of the graph.  

 

a.) dIntraC>=dInterE                       ............[5] 

or, dIntraC-dInterE>=0                    .............[6] 

 

Hence the above mentioned condition can be satisfied by the accordingly .  
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Fig. 8. 
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X-axis denotes variation of j from 0 to required value. Y-axis denotes mean value of modularity based on 

partitioning the desired graph into 2 communities. The mean is calculated for 100 such iterations of the 

graph for each specific combination of p and j. The error bar denotes the standard deviation in such 

circumstances. 
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     These are graphs showing varying probability in x axis and modularity value in y axis. 

The modularity values are for specific randomly generated graphs . The x label is 'p' with 

a number denoting one of the attributes of the randomly generated graph. The graphs are 

drawn in a bipartite setting, with a set of 5 vertices each, but they also have connections 

between them.  For the number accompanying  'p' , which if considered as 'i' , the density 

of edges between the two sets of nodes are (1-(0.1*(i+1))). The x-axis in each such graph 

varies from 0 to 0.9. They denote the density of connections in each individual sets of 5 

nodes each. For x-axis value denoted as 'j' , the density of edges in them is (1-

(j*(0.1*(i+1)))). Hence under all circumstances these graphs have two sets of nodes more 

densely connected than the connections in between them. Also the density of connections 

in between the set of nodes decreases further along the x-axis.  The maximum modularity 

in case of 2 communities is plotted for such graphs along y-axis. The plotted graph shows 

the mean for 100 such simulations, with the error bars showing their standard deviations. 

The curvature of the graph is also analogous to the previous demand stated. 

    The fundamental requirement is to create two communities such that the density 

amongst them is greater than the density.  

  

 

The previous stated condition is now analyzed. 

1. dIntraC = 1-(p*j*0.01) 

2. dInterE = 1-((p+1)*.1) 

 

 

     dIntraC-dInterE 

 =  {1-(p*j*0.01)}-{1-((p+1)*.1)} 

 =  ((p+1)*.1) –(p*j*0.01) 

 =  p*0.01*(10-j) + 0.1         ...............[  j varies from 0 to 9 ] .....[7] 

  

 The evaluated term [p*0.01*(10-j)] is considered ‘jj’ . As ‘jj’ is always positive 

considering it a product of positive numbers , the above sum is always positive. Also in 

this we can observe that ‘jj’ increases with higher values of ‘p’ and decreases with higher 

values of ‘j’ . Based on equation [7] we can conclude that the requirement of equation 

[6] is satisfied. 

 

 

 

 
Fig. 9. 
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The 5 vertices encapsulated in the left are vertices {0,1,2,3,4} and the 5 vertices encapsulated in right are 

vertices {5,6,7,8,9} . The density of edges inside the communities and in-between them are shown 

accordingly. 

 

This above graph shows a pictorial representation of how the density of the edges in 

various parts of the graph is shown. 

 
 

 

 

 

Fig. 10. 

 
The value along x-axis shows the value of p. The value along y-axis shows the value of  j*10. The average 

value of modularity is plotted for such conditions. The mean is calculated for 100 such iterations of the 
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graph for each specific combination of p and j. In case in any repetition , the graph has no edges no value 

is accepted for modularity.  

 

 

This is a contour graph of the previous example put together.   

    At p=9 due to the constraints put in place the graph becomes disconnected and hence is 

completely separate and have visually distinct two communities . Due to the heavy load 

of comparing all the 100 possible variations put in place while comparing Newman 

clustering, it has been only compared them for one such variation. In this algorithm the 

graph has both inhibitory connection and excitatory connection. They are given a unit in 

voltage with relation to the threshold value of the equation. The input due to spiking of 

the preceding neuron to the proceeding neuron is varied in integral multiples of that unit 

from zero to ten. Without taking into consideration the variation where the input due to 

spiking for both excitatory connection and inhibitory connection is zero, there are 

((11*11)-1)= 120 distance matrices for each graph.  

     In the contour graph the combination plot of the above ten graphs are made. Along x-

axis is the probability of bipartite connection in the complement graph or ‘p’ as stated 

previously. The value of density is actually ‘(p+1)*0.1’ . In the complementary graph the 

density  of connection in the predetermined communities is ‘p*j*0.01’ where j varies 

from zero to nine . The value of  ‘j’ is plotted along y axis. We can see that in the contour 

graph . In these graphs whenever a null graph is generated by the graph generator , the 

modularity of that graph is set to NaN or not a number. That is why blank space in the 

contour graph has been observed and arbitrary termination along x-axis for ‘p’=7,8,9. 

When the modularity for those situation is revised and set to zero, the modifications that 

take place are shown below. These two terms ‘p’ and ‘j’ are taken as standard for further 

explanation of similar situation down the line. 

 

 

 

 

 
Fig. 11. 
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X-axis denotes variation of j from 0 to required value. Y-axis denotes value of modularity based on 

partitioning the desired graph into 2 communities. . The mean is calculated for 100 such iterations of the 

graph for each specific combination of p and j. In case in any repetition , the graph has no edges 0 is 

accepted for modularity.  

 

 

 
Fig. 12. 
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The value along x-axis shows the value of p. The value along y-axis shows the value of  j*10. The average 

value of modularity is plotted for such conditions. The mean is calculated for 100 such iterations of the 

graph for each specific combination of p and j. In case in any repetition , the graph has no edges 0 is 

accepted for modularity.  

 

 

     Due to the effect of modularity = 0 on the new revised calculations new variations in 

them are seen. In these settings the target has been made to already create graphs with 

two communities ingrained in them . Moreover of the 10 vertices the set of vertices 

{0,1,2,3,4} and {5,6,7,8,9} should form the two relevant communities. In order to 

achieve this the graphs are constructed such that the density of connection of the edges in 

the two communities is always higher than the connection between them.  

     Now the output of this is compared to the output generated by the process that has 

been done . Due to ease of comparison , in the algorithm introduced here clustering 

process is applied only on one variation of this graph set. So only on the first set of 

graphs generated , this method of clustering is applied and compared with the results 

achieved from this one. However to achieve a comparison in between the both of them a 

new measure of similarity is considered.. For each combination of excitatory connection 

to inhibitory connection , a k-means clustering for two clusters is done. Suppose those 

two clusters are A and B. First A is matched with {0,1,2,3,4} and B is matched with 

{5,6,7,8,9}. The number of elements common in both A and {0,1,2,3,4} is calculated. It 

is similarly done for B and {5,6,7,8,9}. The sum of these two values is measured. This 

value is noted as S1 .Then the reverse is performed . So similarly A is matched with 

{5,6,7,8,9} and B is matched with {0,1,2,3,4} . The value measured from this is noted as 

S2. The maximum of S1 and S2 is calculated. Without loss of generality let it be S1. Now 

the error is denoted as 10-S1. If A is either of {0,1,2,3,4} or {5,6,7,8,9} the outcome is 
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perfectly in line with the predicted outcome. Now the error matrix generated by this due 

to the first set of generated matrices under Newman Clustering[1] is denoted below. 

 

Fig.13 

                

 
p varies along x axis and j along y axis. 

 

 

 

Along the rows ‘p’ is varied . Along the columns ‘j’ is varied . These variables are 

denoted  beforehand for explanation. The density of connection in between the 

communities decreases as p increases. Also the communities are more densely packed as 

j decreases. In accordance with this the error at the lower left end of the matrix is zero or 

negligible. Now for this the minimum error of all the 120 different distance matrices for 

synaptic clustering is checked and shown below. 
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Fig.14 

 
p varies along x axis and j along y axis. 

 

Now we can compare the matrices in both cases. 

• It is observable from these two matrices that Synaptic clustering is able to resolve the 

communities to a reasonable degree. 

• As p value increases the overall density of the graph increases. Under such 

circumstances the resolution is not as clear as hoped . The segregation of 

communities is caused by the inhibitory network. When the network is very dense, 

the effect of excitatory connection dominates . This gives rise to more error. 

• On the flip side for sparse networks, under circumstances it is able to outperform the 

Newman clustering.  

• The comparison for errors is shown in the graph below where for positive values the 

introduced algorithm outperforms. 
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Fig. 15 

 
p varies along x axis and j along y axis. 

 

In the above cases whether the graphs are connected are not taken into consideration . 

Even if the graph is disconnected as long as less than two components are present, the 

comparison is appropriate.  Hence a lot of the favorable results are due to wrong 

interpretation. When all the graphs have less than two components , the results are taken 

again. The updated error values for Newman clustering is now compared. 

        array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], 

       [0., 0., 0., 0., 1., 3., 4., 4., 4., 4.], 

       [0., 0., 0., 5., 1., 2., 1., 2., 4., 4.], 

       [0., 0., 0., 0., 0., 3., 5., 3., 4., 5.], 

       [0., 0., 0., 5., 4., 4., 4., 5., 2., 5.], 

       [0., 0., 0., 0., 1., 3., 5., 2., 4., 3.], 

       [0., 0., 0., 0., 3., 2., 4., 5., 4., 5.], 

       [0., 0., 0., 0., 1., 2., 1., 5., 5., 5.], 

       [0., 0., 1., 1., 1., 5., 5., 5., 5., 5.], 

       [0., 0., 0., 5., 5., 5., 5., 5., 5., 5.]]) 

 The error values which have been changed to 5 from their previous value is due to an 

increase in communities more than 2. 

• For p=1 and j =7,9 Synaptic clustering is able to provide lesser error than Newman 

clustering. 
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• For p=2 and j>3  Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=3 and j>=5 Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=4 and j>4 Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=5 and j>3 Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=6 and j>3 Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=7 and j=9 graph has more than 2 components. 

• For p=8 and j>5 graph has more than 2 components. 

• For p=9 and j>2 graph has more than 2 components. 

• For p=7 and j=4,6,7,8 Synaptic clustering is able to provide lesser error than Newman 

clustering. 

• For p=8 Synaptic clustering is not able to outperform Newman clustering, however 

the error due to synaptic clustering is not significantly higher. For j=3 their errors are 

the same and for other relevant values of j , the error only varies by 1. 

• For p=9 due to the structure of the graph generators , the graph anyway has more than 

one connected component. Under such conditions only for j=0,1,2 they have exactly 2 

connected components {0,1,2,3,4} and {5,6,7,8,9}. Both the clustering algorithms are 

able to resolve such situation equally well. 

• Now it is noticed in cases for higher values of j Synaptic clustering is resolving 

communities more clearly. As claimed before the segregation of communities is 

caused by the inhibitory network. The density of edges decreases in a graph as j 

increases. However in such case there should be absolutely no need in even 

considering an excitatory network. However without external influence each neuron 

periodically spikes due to the equation that controls it. The distance metric is 

measured as an integral of spike distance at each point of time. The effect of only 

inhibitory stimulus will cause spikes in different communities to come closer at least 

some point of time. However if it was connected with an excitatory connection which 

stimulated it beforehand, it’s spiking will happen a little sooner that what would have 

happened only under inhibitory connection. Basically excitatory connection is 

provided to cause the elements of the community to be closer to each other.  

• All the above comparisons are made under the assumption that the pre-determined 

communities are truly the actual communities in the graph. Although the graphs are 

generated with a certain condition, the actual communities formed might turn out to 

be something different. 

 

 

   Case 2 : 

 

 

Now let’s take another example into consideration. The graph which is shown below 

will be used for it. It is denoted as ‘Necklace graph’ for convenience. 
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Fig. 16. 

 

 

 
5 complete graphs each consisting of 5 vertices each are attached in the form of a necklace. 

 

 

Here we can see that the graph has five communities. First  a complete graph of five 

vertices are taken . Five of them are considered. Now considering each of them as a bead 

of a string, they are attached like a necklace. Each complete subgraph is composed of set 

of vertices {0,1,2,3,4},{5,6,7,8,9},{10,11,12,13,14},{15,16,17,18,19} and 

{20,21,22,23,24} . Each such set of vertices has only 2 edges coming out of it. They are 

connected to a different such set of vertices each.  These communities are denoted as pre-

resolved communities. 

     The communities should be accordingly resolved. Now by k-means clustering, setting 

the required clusters to five the resolved communities are checked. 

 

      The communities are resolved for each ratio of inhibitory stimulus to excitatory 

stimulus. The value of excitatory stimulus is varied from 0 unit to 10 units. Similarly the 

value of inhibitory stimulus is varied from 0 unit to 10 units. This gives rise to 

{11*11}=121 different community clusters. From them the original set of nodes which 

should form communities is already known beforehand. So an error matrix is resolved 

from it. The error matrix is derived from decision trees. The communities are numbered 

as [0th ,1st ,2nd ,3rd ,4th ]. The original communities are known beforehand. First from the 

set of original communities it is analysed which of those communities has the greatest 

number of elements of one community derived from Synaptic clustering. Let 

{20,21,22,23,24} has 4 elements of 2nd community. No other pre-resolved community 

has more than 3 elements from one community. Now 4 is subtracted from 25 and the 

algorithm is run again without the elements of 2nd community being considered . If now 

two or more pre-resolved communities have the same value for the greatest number of 
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elements, all of them are considered and the algorithm is run parallelly. Finally the 

outcome which provides with the least value is taken as error. 

      The error matrix documented is shown below. 

Along the rows the value of excitation is varied from 0 to 10 units. 

Along the columns the value of excitation is varied from 0 to 10 units. 

 

 

        

       [[20.0, 12.0, 12.0, 14.0, 14.0, 13.0, 12.0, 13.0, 11.0, 13.0, 13.0], 

        [13.0, 11.0, 12.0, 12.0, 12.0, 13.0, 12.0, 13.0, 11.0, 14.0, 12.0], 

        [13.0, 10.0, 11.0, 14.0, 12.0, 11.0, 12.0, 12.0, 14.0, 13.0, 12.0], 

        [12.0, 13.0, 12.0, 13.0, 14.0, 12.0, 9.0, 11.0, 14.0, 12.0, 13.0], 

        [12.0, 13.0, 12.0, 12.0, 12.0, 14.0, 13.0, 13.0, 13.0, 12.0, 13.0], 

        [12.0, 14.0, 12.0, 14.0, 14.0, 12.0, 13.0, 13.0, 13.0, 12.0, 16.0], 

        [14.0, 12.0, 11.0, 13.0, 14.0, 11.0, 13.0, 13.0, 15.0, 13.0, 15.0], 

        [13.0, 14.0, 13.0, 12.0, 14.0, 13.0, 13.0, 12.0, 13.0, 11.0, 13.0], 

        [13.0, 14.0, 13.0, 13.0, 14.0, 11.0, 11.0, 12.0, 14.0, 12.0, 14.0], 

        [12.0, 14.0, 13.0, 11.0, 13.0, 13.0, 13.0, 11.0, 13.0, 12.0, 13.0], 

        [14.0, 13.0, 13.0, 12.0, 14.0, 13.0, 13.0, 12.0, 12.0, 12.0, 13.0]] 

 
 

 

 

 

 

 

Fig. 17. 

 

 
Along x-axis the value of excitation is varied from value 0 to 10 units and along y-axis the value of 

inhibition is varied from value 0 to 10. The error obtained from such combinations is plotted in 

the graph for the ‘Necklace graph.’  
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     First for no excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now shown. 

The value of inhibition varies from 0 units to 10 units along the rows and this pattern is 

maintained for analysis beyond this matrix too. In this matrix and all the matrices 

following this the pre-resolved communities {0.1.2.3.4}, 

{5,6,7,8,9},{10,11,12,13,14},{15,16,17,18,19} and {20,21,22,23,24} are denoted 

individually under first brackets separately . 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 4 1 0 3 2 4 4 2 2 4 3 0 3 3 0 2 3 4 2 4 1 1 1 1 0 

2 1 2 3 0 3 1 3 3 4 0 0 4 1 0 1 3 0 3 1 0 2 2 2 2 0 

3 1 3 0 2 2 1 2 4 0 2 1 0 0 4 4 2 2 4 0 0 3 3 3 3 1 

4 1 3 0 4 2 2 0 4 1 0 0 4 4 2 2 0 0 1 2 2 3 3 3 3 1 

5 1 2 4 4 3 3 3 4 1 4 1 2 1 2 0 2 0 3 0 3 2 2 2 2 1 

6 0 2 1 4 0 0 0 1 0 1 4 0 0 1 0 4 3 3 0 3 2 2 2 2 4 

7 0 3 2 1 1 1 1 1 0 0 4 0 1 0 4 0 2 2 4 4 3 3 3 3 2 

8 1 3 1 1 0 1 2 1 4 0 4 0 2 2 1 2 2 2 2 4 3 3 3 3 1 

9 3 2 4 3 3 1 1 1 2 3 1 3 2 1 3 1 0 2 1 0 2 2 2 2 2 

10 0 1 4 4 0 4 0 4 0 4 1 4 3 3 2 3 1 4 3 2 1 1 1 1 3 

 

 

Conclusions from excitatory connection of 0 units. 

 

• The first community separation has no connection and hence no communities. 

• In all the community separations the community {20,21,22,23,24} has at least 4 

elements from the same community. For inhibition at 9 units in fact it is 

completely of elements of 2nd community.  

• For inhibition at 8 units {0,1,2,3,4} has 3 elements of 1st community, 

{15,16,17,18,19} has 4 elements of 2nd community and 4 elements of 3rd 

community is in {20,21,22,23,24} . 

•  Other community separations does not provide better significant results. 

 

 

For 1 unit of excitatory connection, the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 3 1 0 2 0 4 3 0 0 3 2 3 0 3 4 0 3 2 2 2 1 1 1 1 0 

1 3 1 0 0 0 3 3 4 3 2 2 2 4 2 0 0 3 4 4 2 1 1 1 1 4 
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2 1 2 0 1 1 3 0 0 3 4 3 1 3 1 3 0 4 1 3 1 2 2 2 2 0 

3 3 2 0 0 3 0 1 4 3 3 4 3 1 1 3 0 0 0 0 3 2 2 2 2 1 

4 3 0 3 4 3 3 1 1 3 2 1 1 2 2 2 3 2 4 1 2 0 0 0 0 2 

5 2 3 0 1 1 2 0 0 1 2 1 1 4 2 2 1 0 4 4 2 3 3 3 3 4 

6 3 2 4 4 1 0 3 3 3 0 4 3 1 0 3 1 1 0 1 0 2 2 2 2 1 

7 4 2 3 4 1 0 1 1 3 3 3 1 4 4 3 1 1 3 3 1 2 2 2 2 0 

8 3 2 1 1 1 4 1 3 3 3 0 1 0 3 0 2 0 0 4 1 2 2 2 2 4 

9 4 2 4 1 0 3 0 4 1 0 1 1 3 1 3 0 4 4 1 1 2 2 2 2 0 

10 4 1 0 4 3 0 3 3 0 3 3 0 4 3 2 0 4 2 3 2 1 1 1 1 3 

 

 

Conclusions from excitatory connection of 1 unit. 

 

 

• Even in this case the vertices {20,21,22,23,24} seem to have 4 elements of same 

community . Specially {20,21,22,23} is always of the same community. 

• For inhibition of 10 units {5,6,7,8,9} has 3 elements of 3rd community too. 

• For inhibition of 9 units {10,11,12,13,14} has 3 elements of 1st community. 

• For inhibition of 8 units {0,1,2,3,4} has 3 elements of 1st community, {5,6,7,8,9} 

has 3 elements of 3rd community,{15,16,17,18,19} has 3 elements of 0th 

community and {20,21,22,23,24} already has 4 elements of 2nd community. 

• For inhibition of 6 units {5,6,7,8,9} has 3 elements of 3rd community and 

{15,16,17,18,19} has 3 elements of 1st community too. 

• For inhibition of 3 units in {15,16,17,18,19} , {15,16,17,18} is of 0th community. 

• For inhibition of 1 unit {0,1,2,3,4} has 3 elements of 0th community, {5,6,7,8,9} 

has 3 elements of 3rd community and {10,11,12,13,14} has 3 elements of 2nd 

community. 

• Rest of the separations does not provide improved results. 

 

For 2 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 2 1 0 3 2 0 2 2 0 2 0 3 0 4 2 2 3 2 2 2 1 1 1 1 0 

1 2 1 4 3 3 4 4 2 4 0 3 3 2 3 2 0 0 0 2 0 1 1 1 1 3 

2 0 2 1 1 1 0 1 0 0 0 3 4 4 3 1 1 4 3 1 0 2 2 2 2 4 

3 3 1 2 4 0 0 0 3 4 4 2 0 3 0 2 4 2 0 2 3 1 1 1 1 4 

4 0 3 2 1 0 0 2 2 0 0 4 4 4 1 1 4 1 0 2 2 3 3 3 3 1 

5 4 3 2 2 2 1 2 0 4 4 0 0 2 1 0 4 0 1 1 4 3 3 3 3 2 

6 0 3 4 2 4 2 0 4 1 2 1 1 0 1 1 1 1 1 4 1 3 3 3 3 4 

7 4 0 2 1 4 1 3 2 3 3 1 2 2 3 4 3 1 2 1 3 0 0 0 0 1 
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8 0 2 4 3 1 3 0 4 0 4 4 3 1 3 1 1 1 0 0 4 2 2 2 2 1 

9 2 3 1 1 0 0 1 2 1 4 4 1 1 1 2 4 4 2 1 4 3 3 3 3 4 

10 3 2 4 1 0 1 0 4 4 1 3 1 3 0 3 1 0 0 0 3 2 2 2 2 3 

 

 

Conclusions from excitatory connection of 2 units. 

 

• Again we observe {20,21,22,23} is in one community in all segregations. 

• For 0 unit of inhibition {5,6,7,8,9} there are 3 elements of 2nd community and 

{15,16,17,18,19} has 4 elements of 2nd community too. 

• For 1 unit of inhibition {5,6,7,8,9} there are 3 elements of 4th community and 

{15,16,17,18,19} has 4 elements of 0th community too. 

• For 2 units of inhibition {0,1,2,3,4} has 3 elements of 1st community and 

{5,6,7,8,9} has 4 elements of 0th community also. 

• For 6 units of inhibition  {15,16,17,18,19} and {10,11,12,13,14} has 4 elements 

of 1st community each also . 

 

 

For  3 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 3 1 4 3 4 0 3 4 0 4 3 3 4 3 4 0 0 4 0 3 2 2 2 2 3 

1 1 2 3 4 3 0 0 0 1 1 3 3 0 1 4 0 3 1 0 1 2 2 2 2 3 

2 3 2 3 3 1 1 0 0 0 0 3 0 0 1 1 1 3 1 1 0 2 2 4 2 3 

3 1 0 1 4 4 1 3 1 1 3 3 1 1 2 1 1 4 3 4 2 0 0 0 0 3 

4 0 2 1 4 1 0 1 4 1 3 0 1 0 1 4 1 3 1 4 3 2 2 2 2 4 

5 1 3 2 4 2 0 2 0 0 1 2 2 4 1 4 0 4 1 1 2 3 3 3 3 4 

6 3 4 3 0 3 3 2 3 0 0 1 1 1 2 2 2 2 2 2 0 4 4 4 4 1 

7 2 3 0 2 4 2 2 2 2 0 1 2 0 1 4 1 4 0 4 4 3 3 3 3 2 

8 3 0 2 2 1 4 2 3 2 1 1 2 2 3 1 3 1 3 4 2 0 0 0 0 4 

9 1 0 2 1 2 2 4 4 2 2 1 1 4 4 4 2 1 2 1 3 0 0 0 0 1 

10 2 0 4 1 3 2 3 2 3 3 3 2 4 2 4 1 4 1 1 2 0 0 0 0 4 

 

 

Conclusions from excitatory connection of 3 units. 

 

• For inhibition of unit 2 {20,21,22,23,24} has 3 elements of 2nd community. Sor all 

other clustering {20,21,22,23,24} has 4 elements of one community. 
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• For inhibition of unit 0 {15,16,17,18,19} has 3 elements of 0th community , 

{10,11,12,13,14} has 3 elements of 3rd community and {2,21,22,23,24} has 4 

elements of 2nd community. 

• For inhibition of unit 2 {5,6,7,8,9} has 4 elements of 0th community and 

{11,12,13,14,10} has 3 elements of first community. 

• For inhibition of unit 3 {5,6,7,8,9} and {10,11,12,13,14} has 3 elements of first 

community each also . 

• For inhibition of unit 6{15,16,17,18,19} has 4 elements of 2nd 

community{10,11,12,13,14 } has 3 elements of  1st community. 

• For inhibition of unit 7 {5,6,7,8,9} has 4 elements of 2nd community , 

{15,16,17,18,19} has 3 elements of 4th community. 

• For inhibition of unit 9 {5,6,7,8,9} has 3 elements of 2nd community , 

{10,11,12,13,14} has 3 elements of 4th community also. 

 

 

For  4 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

        

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 3 1 0 0 3 3 2 2 2 0 0 2 4 3 4 3 4 3 0 0 1 1 1 1 4 

1 0 1 2 4 3 0 4 2 3 2 2 2 0 4 2 3 0 2 3 3 1 1 1 1 3 

2 1 2 0 0 0 4 3 1 0 1 0 0 0 4 4 1 1 0 1 3 2 2 2 2 3 

3 1 3 0 4 0 1 0 1 1 0 2 2 2 1 1 0 2 4 2 1 3 3 3 3 0 

4 3 4 2 3 0 1 3 1 3 0 3 2 2 1 2 1 0 3 2 0 4 4 4 4 0 

5 0 3 1 3 1 0 4 2 2 1 0 2 4 0 2 0 1 4 2 0 3 3 3 3 2 

6 3 2 0 0 0 3 0 1 1 1 0 1 0 3 0 3 3 1 4 0 2 2 2 2 3 

7 1 2 3 3 1 0 1 3 3 4 1 3 0 4 0 4 3 4 3 0 2 2 2 2 4 

8 3 4 2 1 0 3 1 3 2 2 3 3 1 3 2 1 1 2 3 2 4 4 4 4 2 

9 0 3 2 4 2 0 3 1 1 3 2 1 2 1 2 3 2 0 0 0 3 3 3 3 1 

10 3 0 2 4 3 4 1 1 3 3 3 3 1 2 1 3 2 4 2 2 0 0 0 0 2 

 

 

 

 

Conclusions from excitatory connection of 4 units. 

 

 

• Once again we observe that {20,21,22,23} is clustered in one community in 

all of them. 

• For inhibition of unit 1 {10,11,12,13,14} has 3 elements of 2nd community 

and {15,16,17,18,19} has 3 elements of 3rd community too. 



 41 

• For inhibition of unit 2 we see a good match. {0,1,2,3,4} and 

{10,11,12,13,14} has 3 elements of 0th community each, {15,16,17,18,19} has 

3 elements of 1st community. 

• For inhibition of unit 3 {5,6,7,8,9} has 3 elements of 1st community , 

{10,11,1,13,14} has 3 elements of 2nd community too. 

• For inhibition of unit 6 {0,1,2,3,4} and{10,11,12,13,14} has 3 elements of 0th 

community each and {5,6,7,8,9} has 3 elements of 1st community too. 

• For inhibition of unit 9 {10,11,12,13,14} has 3 elements of 2nd community 

and {15,16,17,18,19} has 3 elements of 0th community also. 

 

 

For  5 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 0 1 2 0 4 0 2 2 0 3 0 0 0 3 0 2 4 4 4 3 1 1 1 1 2 

1 4 1 2 2 0 3 4 0 3 0 2 3 4 2 0 2 3 4 2 4 1 1 1 1 3 

2 0 2 4 4 4 1 0 3 1 1 1 3 4 3 0 3 3 4 1 0 2 2 2 2 1 

3 2 3 0 1 0 0 2 0 4 0 2 1 1 0 2 0 0 1 1 0 3 3 3 3 0 

4 0 2 1 3 1 4 4 0 0 1 1 3 4 0 1 0 4 3 4 1 2 2 2 2 4 

5 4 3 0 1 1 4 0 1 2 4 2 2 2 4 2 1 1 4 4 2 3 3 3 3 4 

6 0 2 1 1 1 3 0 0 0 3 1 1 0 0 1 4 3 1 3 0 2 2 2 2 1 

7 1 0 4 2 1 3 2 4 3 3 4 3 2 1 2 4 2 2 1 1 0 0 0 0 2 

8 1 4 1 3 1 3 2 2 0 3 2 3 0 3 1 2 1 2 0 3 4 4 4 4 2 

9 1 0 3 3 2 3 4 4 2 1 1 1 2 1 1 4 3 2 1 3 0 0 0 0 2 

10 4 1 3 2 0 2 3 0 3 1 2 1 0 4 3 0 3 2 4 3 1 1 1 1 3 

 

 

 

Conclusions from excitatory connection of 5 units. 

 

• Once again, we observe that {20,21,22,23} is of same group in all clustering. 

• {10,11,12,13,14} has 4 elements of 0th community and {15,16,17,18,19} has 3 

elements of 4th community. 

• For inhibition of unit 6 {0,1,2,3,4} has 3 elements of 1st community, 

{5,6,7,8,9} has 3 elements of 0th community and {10,11,12,13,14} has 3 

elements of 1st community too. 

 

 For  6 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 
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0 3 0 2 2 4 1 2 3 4 1 1 1 4 3 3 1 3 2 2 3 0 0 0 0 3 

1 4 3 2 2 0 1 0 0 1 0 1 1 2 4 1 4 1 0 2 2 3 3 3 3 1 

2 2 0 4 2 2 1 1 2 4 4 1 3 1 1 1 2 4 1 1 3 0 0 0 0 2 

3 2 1 0 4 3 3 0 3 2 2 2 3 0 0 3 3 0 3 0 0 1 1 1 1 2 

4 1 2 0 1 1 4 3 0 4 0 0 1 1 0 1 0 1 1 4 1 2 2 2 2 4 

5 0 2 1 0 0 3 1 0 1 1 0 1 0 0 1 3 3 3 1 3 2 2 2 2 4 

6 1 3 4 2 2 0 0 1 1 2 1 0 2 1 4 4 1 0 0 0 3 3 3 3 1 

7 2 0 1 4 2 1 3 1 2 4 3 1 3 4 4 2 4 1 1 1 0 0 0 0 3 

8 1 2 1 3 0 0 0 3 4 1 2 0 1 1 4 0 0 4 3 1 2 2 2 2 3 

9 2 0 2 2 1 1 1 0 1 3 4 1 2 2 3 1 2 1 3 0 0 0 0 0 3 

10 1 4 3 0 1 3 1 1 3 2 3 3 2 1 0 2 3 1 1 0 4 4 4 4 2 

 

         

 

 

Conclusions from excitatory connection of 6 units. 

 

• We again observe that {20,21,22,23,24} is always in one community.  

• For inhibition in unit 1 {5,6,7,8,9} has 3 elements in 0th 

community,{10,11,12,13,14} has 3 elements of 1st community too. 

• For inhibition in unit 2 {0,1,2,3,4} has 3 elements of 2nd community and 

{10,11,12,13,14} has  4 elements of 1st community also. 

• For inhibition of unit 4 {0,1,2,3,4} and {15,16,17,18,19} has 3 elements of 1st 

community and also {10,11,12,13,14} has 3 elements of 1st community. 

• For unit 5 of inhibition {0,1,2,3,4} and {10,11,12,13,14} has 3 elements of  0th 

community each. {5,6,7,8,9} has 3 elements of 1st community and 

{15,16,17,18,19} has 4 elements of 3rd community . Moreover {20,21,22,23,24} 

has 4 elements of 2nd community. This is by far the best result observed till now. 

• For inhibition of unit 9 {0,1,2,3,4} has 3 elements of 2nd community , {5,6,7,8,9} 

has 3 elements of 1st community. 

 

 

For  7 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 2 1 3 2 4 4 0 0 2 4 0 3 4 2 4 0 2 4 2 2 1 1 1 1 3 

1 1 2 4 0 3 4 1 0 4 1 3 1 3 0 3 3 4 0 3 1 2 2 2 2 4 

2 1 0 3 1 3 2 4 3 3 4 4 1 2 1 2 3 2 1 4 3 0 0 0 0 2 

3 0 2 3 0 3 1 0 0 4 4 0 3 3 0 1 4 4 4 4 3 2 2 2 2 0 

4 1 0 4 2 3 3 1 4 2 3 4 4 1 3 3 4 2 1 2 3 0 0 0 0 1 

5 1 4 0 0 2 3 3 1 0 1 3 2 2 1 1 0 2 0 2 0 4 4 4 4 0 
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6 0 3 2 2 2 0 1 1 4 2 1 1 0 0 2 1 0 4 1 1 3 3 3 3 0 

7 3 2 3 3 0 1 0 1 0 0 1 1 4 0 0 0 3 4 1 1 2 2 2 2 1 

8 3 4 0 0 0 1 0 0 2 1 1 0 3 1 2 1 2 3 2 1 4 4 4 4 2 

9 0 3 1 1 1 0 1 0 0 1 4 1 2 2 0 0 1 4 4 0 3 3 3 3 1 

10 0 4 2 3 0 1 0 1 2 2 1 0 1 0 0 1 1 0 2 0 4 4 4 4 1 

 

 

 

 

 

Conclusions from excitatory connection of 7 units. 

 

• We again observe that {20,21,22,23,24} is always in one community.  

• For inhibition of 6 units {0,1,2,3,4} has 3 elements of 2nd community, 

{15,16,17,18,19} has 3 elements of 1st community too. 

• For inhibition of 7 units {0,1,2,3,4} has 3 elements of 3rd community, {5,6,7,8,9} 

has 3 elements of 0th community. 

• For inhibition of 9 units {0,1,2,3,4} has 3 elements of 1st community, {5,6,7,8,9} 

has 3 elements of 0th community. 

• For more effects of inhibition and excitation it is being observed that the 

communities are not being clustered more clearly. Although the ratio of them is 

required to get these results, the magnitude of excitation or inhibition due to 

action potential should have been of lesser magnitude. 

 

 

For  8 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 3 0 2 2 1 3 4 4 1 3 3 4 1 4 2 1 1 4 4 3 0 0 0 0 1 

1 3 2 4 1 1 0 4 3 0 1 1 1 3 3 4 3 1 0 1 0 2 2 2 2 0 

2 1 2 4 0 0 1 3 0 1 4 3 1 3 0 3 3 1 4 3 1 2 2 2 2 1 

3 3 1 4 4 4 2 3 0 0 0 4 0 0 0 3 4 4 2 0 4 1 1 1 1 4 

4 3 1 4 0 4 4 4 3 3 2 3 4 2 0 2 3 2 2 0 4 1 1 1 1 0 

5 0 2 1 0 3 0 0 0 1 4 1 3 0 3 3 4 0 4 0 4 2 2 2 2 1 

6 1 2 1 0 1 3 3 1 3 4 0 0 0 3 3 4 3 0 1 0 2 2 2 2 0 

7 4 1 4 1 4 2 2 3 4 3 0 2 2 0 4 2 1 3 4 2 1 1 1 1 0 

8 2 3 1 4 2 2 1 4 1 1 2 1 2 0 2 2 3 1 4 1 3 3 3 3 2 

9 1 2 1 1 1 0 4 0 0 3 0 1 0 0 3 0 3 1 4 0 2 2 2 2 1 

10 0 3 1 2 1 2 4 0 2 0 2 1 1 0 0 1 2 1 2 1 3 3 3 3 0 

 



 44 

         

 

Conclusions from excitatory connection of 8 units. 

 

• We again observe that {20,21,22,23} is always in one community.  

• For inhibition of unit 3 {0,1,2,3,4} has 3 elements of 4th community,{5,6,7,8,9} 

and {10,11,12,13,14} has 3 elements of 0th community each. 

• For inhibition of unit 5 {5,6,7,8,9} has 3 elements of 0th community, 

{10,11,12,13,14} has 3 elements of 3rd community, {15,16,17,18,19} has 3 

elements of 4th community and as stated {20,21,22,23,24} has 4 elements of 2nd 

community. 

• For inhibition of unit 6 {0,1,2,3,4} has 3 elements of 1st community, {5,6,7,8,9} 

has 3 elements of 3rd community and {10,11,12,13,14} has 3 elements of 0th 

community and {20,21,22,23,24} has 4 elements of 2nd community. 

• For inhibition of unit 8 {5,6,7,8,9} has 3 elements of 1st community, 

{10,11,12,13,14} has 3 elements of 2nd community too. 

• For inhibition of unit 9 {0,1,2,3,4} has 4 elements of 1st community ,{5,6,7,8,9} 

has 3 elements of 0th community , {10,11,12,13,14} also has 3 elements of 0th 

community. 

 

 

  Conclusions from excitatory connection of 8 units. 

 

 

For  9 unit of  excitatory connection , the value of inhibitory stimulus in connection is 

varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed. 

 

 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 3 1 4 3 2 4 2 3 0 0 0 0 2 2 2 2 2 3 2 2 1 1 1 1 3 

1 4 2 3 0 1 4 1 3 3 1 0 3 0 3 3 0 3 0 1 1 2 2 2 2 4 

2 1 2 1 0 3 1 0 0 0 4 1 1 4 0 0 3 3 4 1 0 2 2 2 2 3 

3 0 1 2 2 3 2 4 4 2 4 4 4 2 4 0 2 0 0 0 0 1 1 1 1 2 

4 1 3 0 1 1 4 0 1 0 1 4 4 0 0 0 2 0 1 1 0 3 3 3 3 4 

5 3 0 3 3 2 2 1 1 2 4 2 1 4 1 3 2 2 1 3 4 0 0 0 0 1 

6 0 3 1 2 2 4 0 1 0 4 0 1 2 1 1 2 2 0 1 1 3 3 3 3 4 

7 4 1 2 2 2 3 3 0 2 4 4 2 2 4 0 4 0 2 0 0 1 1 1 1 0 

8 3 2 0 1 1 0 0 0 1 1 0 1 3 0 3 1 0 0 4 1 2 2 2 2 1 

9 0 3 2 1 2 2 0 1 0 4 2 2 2 2 1 1 0 0 2 0 3 3 3 3 0 

10 3 0 3 1 4 3 4 1 4 1 1 1 2 4 2 3 1 4 3 3 0 0 0 0 1 
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Conclusions from excitatory connection of 9 units. 

 

• We again observe that {20,21,22,23} is always in one community.  

• For inhibition of unit 0{10,11,12,13,14} and {15,16,17,18,19} has 3 elements of 

2nd community each. 

• For inhibition of unit 3 {5,6,7,8,9} and {10,11,12,13,14} has 3 elements of 4th 

community each and {15,16,17,18,19} has 4 elements of 0th community . 

• For inhibition of unit 4 {0,1,2,3,4} has 3 elements of 1st community , 

{10,11,12,13,14} has 3 elements of 0th community. 

• For inhibition of unit 7 {0,1,2,3,4} 3 elements of 2nd community, 

{15,16,17,18,19} has 3 elements of 0th community. 

• For inhibition of unit 9 {10,11,12,13,14} has 4 elements of 2nd community, 

{15,16,17,18,19} has 3 elements of 0th community. 

 

 

For  10 unit of  excitatory connection , the value of inhibitory stimulus in connection 

is varied from 0 unit to 10. The clustered community matrix resolved from it is now 

analysed 

 

 {0,1,2,3,4} {5,6,7,8,9} {10,11,12,13,14} {15,16,17,18,19} {20,21,22,23,24} 

0 0 1 3 4 2 2 3 2 4 3 3 2 4 0 2 3 0 4 2 0 1 1 1 1 3 

1 4 2 3 1 0 1 4 1 0 1 4 4 3 0 0 3 0 3 0 3 2 2 2 2 3 

2 0 2 1 1 1 0 1 1 1 0 4 0 3 3 1 3 1 3 1 0 2 2 2 2 3 

3 1 3 4 0 4 4 2 1 2 4 1 0 1 0 0 0 2 0 2 0 3 3 3 3 2 

4 2 4 2 0 1 1 2 2 0 0 1 0 2 1 0 0 1 0 2 3 4 4 4 4 0 

5 0 4 1 1 0 1 1 3 3 0 1 1 2 0 3 1 2 1 0 2 4 4 4 4 3 

6 0 2 3 4 1 1 0 0 1 0 0 1 3 0 3 4 4 0 1 3 2 2 2 2 1 

7 1 0 4 1 2 1 1 1 3 2 1 3 1 4 4 3 3 2 3 3 0 0 0 0 4 

8 2 3 2 0 2 0 4 0 0 4 1 1 1 2 0 2 4 1 0 2 3 3 3 3 2 

9 1 0 3 2 2 1 2 4 3 4 4 3 4 3 4 1 4 3 3 3 0 0 0 0 2 

10 4 0 1 2 4 2 3 1 3 2 3 4 1 2 3 2 3 1 1 2 0 0 0 0 3 

 

 

 

 

Conclusions from excitatory connection of 10 units. 

 

• We again observe that {20,21,22,23} is always in one community.  

• For inhibition of 1 unit {5,6,7,8,9} has 3 elements of 1st community and 

{15,16,17,18,19} has 3 elements of 3rd community. 

• For inhibition of 2 unit {0,1,2,3,4} and {5,6,7,8,9} has 3 elements of 1st 

community each. 

• For inhibition of 3 unit {10,11,12,13,14} and {15,16,17,18,19} has 3 elements of 

0th community each. 



 46 

• For inhibition of 7 units {5,6,7,8,9} has 3 elements of 1st community and 

{15,16,17,18,19} has 3 elements of 3rd community. 

• For inhibition of 8 units {0,1,2,3,4} has 3 elements of 2nd community, {5,6,7,8,9} 

has 3 elements of 0th community {10,11,12,13,14} has 3 elements of 1st 

community . 

 

 

• From the above it has been analysed all the community clusters. They are compared 

with what they are supposed to be.  

• Despite the values being not indicative of  lack of resolution, elements of 

community{20,21,22,23,24} always tends to fall under same community. 

Considering the symmetric nature of the graph , it can be argued that with 

introduction of better sophistication in the model, the communities can be more 

clearly resolved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. 
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In both the graphs the x-axis denotes the unit and y-axis denote the error for its defined case. In the first 

graph the value of excitatory stimuli is varied  from 0 to 10 units for synaptic clustering of the ‘Necklace 

Graph’ . The y-axis denote the mean error for the each value of excitatory stimuli for range of inhibitory 

stimuli varying from 0 to 10 units. The error bar is also plotted for it denoting the standard deviation over 

it. For the second  graph the value of inhibitory stimuli is varied  from 0 to 10 units for synaptic clustering 

of the ‘Necklace Graph’ . The y-axis denote the mean error for the each value of inhibitory stimuli for 

range of excitatory stimuli varying from 0 to 10 units. The error bar is also plotted for it denoting the 

standard deviation over it.  
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Conclusions 
 

• For graphs with high degree of connections, Synaptic clustering has been 

unable to provide results which are satisfactory as observed from Case 1 when 

comparing it with Newman clustering. To tackle this values if inhibitory and 

excitatory stimuli should be manipulated to finer values to reduce the chaotic 

nature of the system. This is deduced from Fig.15. 

 

• While clustering introduced in the system was applied on necklace graph, one 

community was consistently resolved over all ratios of inhibitory to excitatory 

stimuli. This is shown in its analysis. 

 

•  Considering the symmetric nature of the graph, with further upgrade on the 

system, it can be used to resolve graphs to finer communities. 
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