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Abstract

This thesis addresses the out-of-equilibrium physics of the one-dimensional Z3 chiral
clock model. The model is the Z3 symmetric generalization of the quantum Ising
model. Jordan-Wigner transformation maps the model to parafermions similar to the
mapping to fermions of the Ising model, however, this does not make the model exactly
solvable. The interplay of chirality, multiple domain wall flavors, and integrability of
the chiral clock model reflects in the quantum dynamics; we explore this using the
matrix product states technique.

We drive the chiral clock model out of equilibrium through three di�erent protocols
- periodic boundary drive, quench, and through coupling to two thermal baths of
unequal temperature. For the slow boundary periodic drive of the critical Z3 clock
chain, we argue using Kibble-Zurek mechanism and critical scaling properties that the
Loschmidt echo scales with frequency as a power law whose exponent depends on the
functional form of the boundary perturbation. We demonstrate this using large scale
matrix product states calculations.

For weak quenches from an ordered state, we showed that the system thermalizes
in the bulk, but the boundary fails to thermalize in the chiral case but thermalizes in
the non-chiral system. We present an understanding in terms of entanglement growth
due to domain wall dynamics and scattering properties at the boundaries.

Lastly, we present the energy transport properties of the model and explore its
dependence on chirality. Non-equilibrium steady-state energy transport arising in
response to a thermal gradient is modeled by using the Lindblad master equation
implemented. We show that energy transport is ballistic at the integrable points and
superdi�usive otherwise. In addition to the results on Z3 chiral clock model, we also
discuss the temporal order observed in a nearly-Z2-symmetric realization of interacting
spin-half degrees of freedom in an NMR system . The system shows robust period two
response when driven out of equilibrium by approximate fi-pulse sequences.
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Chapter 1

Introduction

Closed quantum many-body systems driven out-of-equilibrium generally relax under
their own dynamics at long times. The long time averages of local observables in typical
interacting many-body systems approach the values expected from the thermal density
matrix [11]. Unitary evolution governs the dynamics of a closed quantum system.
Unitary evolution and thermalization are contradictory concepts as the former preserves
the information about the initial state while it is lost in the latter. The eigenstate
thermalization hypothesis (ETH)[12–14] is the most widely accepted mechanism to
reconcile the apparent inconsistency between observed thermalization and the unitary
dynamics. The validity of the ETH has been verified numerically [15, 16] for many
generic quantum systems. However, there are a few exceptions where a quantum
system can escape the eventual fate of thermalization. An integrable system which has
an extensive number of conserved quantities relaxes to a generalized Gibbs ensemble
[17, 18]. Many-body localized phase for a system with quenched disorder [19–22] can
also violate ETH by retaining initial state information at long times. General principles
that govern the relaxation process and time scale [23–26] for general quantum systems
are still active areas of research.

The field of quantum systems out-of-equilibrium is driven by the quest to understand
the route and mechanism for relaxation from a microscopic level. Advances made
in experimental and numerical techniques in the past two decades have drastically
changed the research landscape in the field. On the experimental front, ultracold
atoms and trapped ion systems provide an unprecedented level of control needed
to explore out-of-equilibrium dynamics. Several out-of-equilibrium phenomena like
quantum Newton’s cradle [27, 28], quantum scars [2, 29], time crystals [30, 31] have been
realized in such cold atom systems. Emergence of realistic quantum computing systems
are also motivating radically new questions, ideas and means of probing quantum
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many body dynamics [32–35]. With the increase in classical computational power and
development of techniques like Density Matrix Renormalization Group (DMRG) [36],
tensor network-based methods (Matrix product states [37], Projected entangled pair
states [38], time-dependent variational principle [39]) have enabled us to study the
non-equilibrium dynamics for a longer time as well as for larger system sizes. Aided by
these techniques, numerical experiments in specific quantum many-body systems such
as Hubbard models, XXZ model reveal rich quantum dynamical phenomena.

This thesis explores the out-of-equilibrium dynamics of a model beyond these -
namely a quantum three-state model that belongs to a larger class of models called
Zn clock models. A large number of studies have focused on the non-equilibrium
dynamics of n = 2 case of Zn clock model called the Transverse Field Ising Model
(TFIM) [40]. TFIM is the paradigmatic model to study quantum phase transitions,
dynamics etc. owing to its exact solvability. Several studies also explore two-state
models other than TFIM. However, there are few studies on higher spin systems. This
thesis ventures away from these and analyze some of the out-of-equilibrium properties
of the three-state model called Z3 chiral clock model, which is the simplest non-trivial
Zn clock model beyond the exactly solvable TFIM.

This chapter is structured in the following manner. We start with a summary of
the TFIM in Sec. 1.1. Then we review the lattice boson model in Sec. 1.2. The lattice
boson model has a ground state phase diagram with the phase transitions belong to
the chiral clock model universality class. Then we introduce the model that is the
central theme in this thesis i.e Chiral clock model in Sec. 1.3. Problems studied in
this thesis are summarised in Sec. 1.4

1.1 Transverse field Ising model
The transverse field Ising model [40], also called as quantum Ising model, has the
Hamiltonian

H = ≠J
ÿ

i

‡z

i
‡z

i+1 ≠ f
ÿ

i

‡x

i
(1.1)

Here ‡x and ‡z are Pauli spin-half operators. The model has an Ising interaction
between the z-components of adjacent spins, and a transverse field in the x-direction
whose strength is quantified by f . The model has global Z2 symmetry associated
with the parity P = r

i ‡x

i
which rotates all the spins by fi around the x-axis. The

ground-state phase diagram has two phases - ferromagnetic (J > f) and paramagnetic
(J < f). A local order parameter È‡z

i
Í distinguishes the two phases. The ferromagnetic
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phase has a dominant ZZ coupling term resulting in nonzero È‡z

i
Í while the local order

parameter is zero in the paramagnetic phase. Ferromagnetic and paramagnetic phases
are also called symmetry broken, and symmetric phases as the symmetry P is broken
and preserved in these phases, respectively. There is a second-order quantum phase
transition at point f = J belonging to the Ising universality class with central charge
c = 1/2.

This model is solvable using the Jordan-Wigner transformation,

‡x

i
= 1 ≠ 2c†

i
ci, ‡z

i
=

Ÿ

j<i

(1 ≠ 2c†
j
cj)(ci + c†

i
) (1.2)

which non-locally maps the spin degrees of freedom to fermionic degrees of freedom
followed by a Bogoliubov transformation. Fermionic operators cÕs satisfy the following
anticommutation relations.

{ci, c†
j
} = ”i,j, {ci, cj} = {c†

i
, c†

j
} = 0 (1.3)

In the fermionic language, Eq. 1.1 has the following form

H = ≠J
ÿ

i

(c†
i
ci+1 + c†

i
c†

i+1 + H.c) + 2f
ÿ

i

c†
i
ci (1.4)

The commutation relation of the operators c and c† with the Hamiltonian gives

[H, ci] = J(c†
i≠1 + ci≠1 + c†

i+1 + ci+1) ≠ 2fci

[H, c†
i
] = J(c†

i≠1 + ci≠1 + c†
i+1 + ci+1) + 2fc†

i

(1.5)

The commutation action of H are linear in the fermionic operators {c, c†}. This makes
the system solvable in terms of fermionic ladder operators obtained by diagonalizing
this linear action.

1.2 Lattice boson model
Superfluid-Mott transition of Bose-Hubbard model was experimentally realized in
an ultracold atom setup in [41]. This landmark experiment lead to the study of
Hamiltonians which can be realized in such controlled artificial environments. With
the motivation of designing a Hamiltonian with multiple competing ground states
which can be studied experimentally, Fendley et al. proposed the lattice boson model
in Ref. [1]. One dimensional lattice boson model is a kinetically constrained model



4 Introduction

Fig. 1.1 Phase diagram of the lattice boson model proposed by Fendley et. al. Figure
reproduced with permission from Ref. [1]

for hardcore bosons. This model has constraint that simultaneous occupation of two
consecutive sites is prohibited

Ènjnj+1Í = 0 (1.6)

Here nj = b†
j
bj is the bosonic occupation number operator for bosons created and

annihilated by b†
j

and bj. The above constraint is also known as a one-site blockade.
Hamiltonian of the lattice boson model is given by

H =
ÿ

j

≠w(bj + b†
k
) + Unj + V njnj+2 (1.7)

This model has an interesting ground state phase diagram. The system has four
phases, namely Z2 ordered, Z3 ordered, disordered and incommensurate phase as shown
in Fig. 1.1. We have a disordered phase for large U/w which is translationally invariant
and has a finite density of bosons. For negative U/w with large and negative V/w,
each second site is filled with a boson in the ground state, giving a Z2 ordered state.
For negative U/w with large and positive V/w, we have a Z3 ordered state with each
third site occupied. Ground-state properties of an equivalent 2D classical model, which
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is of interacting hard squares on a square lattice, is studied in [42]. Equation 1.7 can
be obtained by taking the limit of the transfer matrix of this model. The hard square
model is integrable along the line

w2 = UV + V 2 (1.8)

Along this integrable line, there are single points where the phase transition belongs
to Ising tricritical and three-state Potts universality class. A particular case of the
Hamiltonian (Eq. 1.7) also describes the ground state physics of the Bose-Hubbard
model with tilted external potential [43]. PXP model [44] which is a very well-known
model in the context of quantum scars, is also a particular case of Eq. 1.7.

The Hamiltonian shown in Eq. 1.7 was realized [2] in a cold atom system of
neutral Rydberg atoms. Each atom in the chain of atoms can be in two possible states
represented by |gÍ and |rÍ. Here |gÍ is the ground state and |rÍ is the excited state.
The Hamiltonian describing the dynamics of the trapped cold atom system is

H =
ÿ

i

�i

2 ‡x

i
≠

ÿ

i

�ini +
ÿ

i<j

Vijninj (1.9)

The parameters � and � are detuning parameters and Rabi frequency decided by
the driving laser pulse. Here ni = |riÍÈri| is the occupation in the excited state and
‡x

i
= |giÍÈri| + |riÍÈgi|. Two atoms at sites i and j separated by Rij repel each other

with Van der Waals interaction Vij = C/R6
ij

if both atoms are in their excited states.
Here C > 0 is the Van der Waals coe�ecient. The Rydberg blockade implements kinetic
constraints of the Hamiltonian Eq. 1.7 in this experimental setup. In this cold atom
setup, varying the separation between atoms tunes the range of the Rydberg blockade.
The range of blockade is called blockade radius denoted by Rb. The phase diagram
of the Hamiltonian Eq. 1.9 is shown in Fig. 1.2 as a function of parameters �/�
and interaction range characterized by ratio of blockade radius Rb and trap spacing a.
Realization of Z3 ordered phase in the chain of 51-atoms motivated theoretical and
numerical works to study the properties of transitions in Z3 chiral clock model. From
earlier studies, the exact phase boundaries critical exponents were not known exactly,
and these were addressed in the [45, 46, 3] numerically.



6 Introduction

Fig. 1.2 Phase diagram of the Hamiltonian Eq. 1.9 as a function of Hamiltonian
paramters �/� and blockade radius defined in units of trap spacing a by Rb/a. Figure
reproduced with permission from Ref. [2]

.

1.3 Z3 Chiral Clock Model
The Z3 analog of the TFIM for the chain of N spins with open boundary condition
has Hamiltonian

H = ≠Jeÿ◊

N≠1ÿ

i=1
‡i‡

†
i+1 ≠ feÿ„

Nÿ

i=1
·i + H.c. (1.10)

The chain has 3 dimensional Hilbert space at each site. Operators ‡ and · are the
generalizations of the Pauli matrices ‡z and ‡x in the three dimensional Hilbert space
with a representation

‡ =

Q

cca

1 0 0
0 Ê 0
0 0 Ê̄

R

ddb · =

Q

cca

0 1 0
0 0 1
1 0 0

R

ddb (1.11)

where Ê = eÿ2fi/3. Operator ‡ measures the spin, and · rotates the spin in a clockwise
direction in the argand plane. ·i introduces the local quantum fluctuation in the
system, and the relative value of parameters J and f decide the strength of the
fluctuation (J, f Ø 0 without loss of generality). Note that the name “spin” is used
in a general sense and the three dimensional Hilbert space has no direct relation to a
spin-1 representation of SU(2).
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Fig. 1.3 Schematic representation of the e�ect of ◊ on eigenstates of the two spin
interaction: Eigenvalues of eÿ◊‡i‡

†
i+1 are plotted as vectors in the argand plane. These

are labelled by the values of ‡i‡
†
i+1 for the same states. In the boxed panel, states of

the spin on site i and i + 1 that can result in these eigenvalues 1, Ê and Ê̄ for ‡i‡i+1
are shown.

The operator algebra is

‡3 = · 3 = 1, ‡† = ‡2

· † = · 2, ‡· = Ê̄·‡
(1.12)

1.3.1 Classical Ground states at f = 0

Setting f = 0 in Eq. 1.10 removes all the quantum fluctuation resulting in the
eigenstates which are direct products of the eigenstates of the local operator ‡i. In this
section, we will discuss the role of the parameter ◊ in the nature of the ground states
in the f = 0 limit. Content of this subsection closely follows the discussion of the
classical states of chiral clock model in Ref. [47]. We have the following Hamiltonian

Hclassical = ≠
ÿ

i

(Jeÿ◊‡i‡
†
i+1 + Je≠ÿ◊‡†

i
‡i+1) (1.13)

To understand the role of parameter ◊ on the ground state we will focus on the
individual term eÿ◊‡i‡

†
i+1 for the site i and i + 1 of Hclassical. Possible eigenvalues of

‡i‡
†
i+1 are 1, Ê and Ê̄. These are rotated anti-clockwise by an angle ◊ when considering

the eigenvalaues of eÿ◊‡i‡
†
i+1 (visualized as vectors in Fig. 1.3). For each possible value

of ‡i‡
†
i+1, there are three possible spin configurations at site i and i + 1 which is shown

in Fig. 1.3. Energy eigenvalues of these states are ≠2J times the real part of the
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vectors. Ground states are the configurations with the largest real part. For ◊ = 0, the
rightmost vertex labeled by 1 in Fig. 1.3 minimizes the energy. A nonzero ◊ results in
broken spatial parity as the configurations |1ÊÍ and |Ê1Í have di�erent energies.

‡i‡
†
i+1 = 1 has minimum energy for ≠fi/3 < ◊ < fi/3. For fi/3 < ◊ < fi, vertices

with ‡i‡
†
i+1 = Ê̄ are the configurations with minimum energy. Similarly for ≠fi <

◊ < ≠fi/3, states with ‡i‡
†
i+1 = Ê have the minimum energy. ◊ = fi/3 corresponds to

an antiferromagnetic ground state as we have two values of ‡i‡
†
i+1 that minimize the

energy. ◊ = ±fi/6 and ±fi/2 correspond to symmetric cases in which for every state
with energy E we have a state with energy ≠E.

1.3.2 Symmetries of Chiral Clock Model

Understanding the symmetries present in the system simplifies the analytical and
numerical treatment of the problem. A transformation U is a symmetry of a system if
it leaves the Hamiltonian invariant under its action. According to Wigner’s theorem
the transformation U can be both unitary or anti-unitary. Chiral clock Hamiltonian Eq.
1.10 has following symmetries namely Z3 parity P , charge conjugation C, time-reversal
T and spatial inversion S. Among these symmteries, time reversal is anti-unitary while
the remaing are unitary operations. The parity P is a symmetry in all parameter
regimes; presence of the remaining symmetries depend on the values of ◊ and „.

Z3 parity symmetry is implemented by

P =
Ÿ

i

·i (1.14)

It is similar to the Z2 parity symmetry in TFIM with ‡x replaced by the · operator. It
has three possible eigenvalues 1, Ê and Ê̄. P rotates all spins by 2fi/3 in the clockwise
direction. Under the parity P operators ‡i and ·i transform as

P‡iP† = Ê‡i, P·iP† = ·i (1.15)

Charge conjugation C swaps the states |ÊÍ and |Ê̄Í on all sites. C can be written as
product of local operations Ci i.e C = �iCi and matrix representation of Ci is

Ci =

Q

cca

1 0 0
0 0 1
0 1 0

R

ddb (1.16)
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Under the charge conjugation operation, operators transform as

C‡iC† = ‡†
i
, C·iC† = · †

i
(1.17)

and satisfies the relation C2 = 1. Under the time reversal symmetry T , operators ‡

and · operators transform as

T ‡T † = ‡†, T ·T † = · (1.18)

Spatial inversion interchanges the states at sites i and N ≠ i + 1. All three symmetries
are present at ◊ = „ = 0 while the model has only spatial inversion symmetry when
◊ = 0 and „ ”= 0. None of the three symmetries T , C and S are present when both
◊ and „ are non-zero. For „ = 0 and ◊ ”= 0, the individual symmetries C and S are
broken but their product is preserved. Hamiltonian is also time-reversal symmetric for
◊ ”= 0 and „ = 0.

At ◊ = „ = 0, the Hamiltonian Eq. 1.10 is invariant under uniform permutation S3

of the states on each site. This S3 symmteric Hamiltonian is equivalent to three-state
quantum Potts model [48].

1.3.3 Phase Diagram

Similar to the Z2 case, Z3 chiral clock model also has two gapped phases called trivial
and ordered phases. The trivial phase corresponds to J π f . The ground states are
non-degenerate and are Z3 parity eigenstates i.e P|GSÍ = |GSÍ. Since the ground
states are parity eigenstates, the trivial state is also called the symmetric phase. The
other extreme case of the Hamiltonian parameter f/J π 1 is an ordered phase with the
triply degenerate ground states (with three di�erent parity eigenvalues). The ground
state in this phase does not preserve the Z3 parity symmetry and hence is a symmetry
broken phase. Note that the three fold degeneracy is not always present at finite energy
eigenstates. The ordered phase has been shown to be a related to a topological phase
of a parafermion chain [49] based on quantum numers of the reduced density matrices.
Parafermions are the higher dimensional generalization of the Majorana fermions, and
this is briefly discussed separately in a separate subsection 1.3.4.

Other than the two phases mentioned above, chiral clock model also has a critical
incommensurate phase separating the topological and trivial phases. This incommen-
surate phase is not present in the TFIM, or the TFIM with the chiral interactions
[50].
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Fig. 1.4 Phase diagram of the chiral clock model using J = 1 ≠ f in Eq. 1.10 showing
phase boundary between trivial, topological and incommensurate phase as function of
parameters f , ◊ and „. Figure reproduced with permission from Ref. [3].

In the phase diagram of the Z3 chiral clock model, puzzle of whether the transition
between the topological and trivial phase is direct or not has been resolved recently.
Using the entanglement entropy as diagnostic, Zhuang et.al [3] mapped out the whole
phase diagram of Z3 chiral clock model as a function of parameters J = 1 ≠ f , ◊ and
„; the summary of this is shown in Fig. 1.4. The transition between the topological
and trivial phase can be direct or indirect depending the the parameters ◊, „ and f .

We have three di�erent phase transitions in the whole phase diagram, and all
belong to di�erent universality classes. Quantum phase transition between the gapped
topological and trivial phase belongs to the Z3 universality class. At the same time, the
disorder-incommensurate and the ordered-incommensurate transition are of Kosterlitz-
Thouless and Pokrovski-Talapov type [51], respectively. The nature of phase transition
is discussed in detail in Ref. [46]. The phase diagram also has a tricritical Lifshitz
point expected to be at f = J and ◊ = „ = fi/6.

For ◊ = „ = 0, chiral clock model exhibits a continuous quantum phase transition
at f = J with the dynamical critical exponent z = 1. This transition is in the same
universality class as the classical three-state Potts model. For the nonzero ◊ and „, the
direct transition between the ordered-disordered phase has z ”= 1. The aforementioned
is the only known transition between gapped phases known for the strongly coupled
system with z ”= 1 [46, 52].
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Fig. 1.5 Trivial (J = 0) and topological phase (f = 0) in the parafermionic representa-
tion of chiral clock model Hamiltonian. Here the solid black lines represent the coupled
parafermionic terms of the Hamiltonian. Parafermionic edge modes ‰1 and ÂL are
encircled for f = 0 case.

1.3.4 Parafermions and Edge zero modes

Analogous to the Jordan-Wigner transformation[53] from spin-half system to a system
of fermions, the three state model can be mapped to a system with parafermion degrees
of freedom. We have two parafermionic operators ‰i and Âi for each site i defined as

‰j =
3 j≠1Ÿ

i=1
·i

4
‡j, Âj = Ê

3 j≠1Ÿ

i=1
·i

4
‡j·j (1.19)

Parafermionic operators for a particular site j satisfy the algebra

Â†
j

= Â2
j
, ‰†

j
= ‰2

j

‰3
j

= Â3
j

= 1, ‰jÂj = ÊÂj‰j

(1.20)

and the following relations are satisfied by operators acting on two di�erent sites i

and j where i < j

‰i‰j = Ê‰j‰i

ÂiÂj = ÊÂjÂi

‰iÂj = ÊÂj‰i

(1.21)

Note that parafermions acting on di�erent sites neither commute nor anti-commute.
The chiral clock model Hamiltonian in the parafermionic language is

H = ≠Jeÿ◊
ÿ

i

Ê̄Âi‰
†
i+1 ≠ feÿ„

ÿ

i

Ê̄‰†
i
Âi + H.c (1.22)
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Let us look at the extreme limits of the Hamiltonian for parameters J and f in the
parafermionic representation. For J=0, Hamiltonian Eq. 1.22 becomes

HJ=0 = feÿ„
ÿ

i

Ê̄‰†
i
Âi + H.c (1.23)

Here, parafermionic operators associated with di�erent sites get decoupled, schemat-
ically shown in Fig. 1.5. In the other extreme limit where we have f = 0, the
Hamiltonian has form

Hf=0 = ≠Jeÿ◊

L≠1ÿ

i=1
Ê̄Âi‰

†
i+1 + H.c (1.24)

For open boundary conditions, modes ‰1 and ÂL are absent from the Hamiltonian Eq.
1.24 which means ‰1 and ÂL commute with the Hamiltonian. This is schematically
shown in Fig. 1.5. Modes ‰1 and ÂL are special and are parafermionic edge zero-modes.
These modes do not commute with P. The combined algebra of ‰1, ÂL, P and H

implies that each eigenvalue should be three-fold degenerate with each state having
di�erent parity. This also means that the spectrum of H must be identical in all the Z3

parity sectors. Because of the degeneracies across the whole spectrum, such edge zero
modes are referred to as “Strong edge zero modes”. TFIM in the Majorana language is
a system hosting strong edge zero modes. ‰1 and ÂL are strong edge zero modes in
the limit f = 0 for chiral clock model.

For the topological phase in 1D, we only require degeneracy in the ground state, so
it is useful to introduce the idea of “weak edge zero-mode” to deal with the topological
phase. A weak zero mode di�ers from strong modes in the sense that degeneracy is
present only in the low energy subspace but at higher energies there is no degeneracy.

Interestingly topological phase in chiral clock model has strong and weak edge
zero modes in distinct parameter regimes [54]. For nonzero f , it is shown in [47]
chirality is needed for existence of strong zero modes and the nonchiral Hamiltonian
(◊ = 0) only has weak zero modes. Presence and absence of the strong edge modes can
be understood using iterative construction of zero-mode [47] and from analyzing the
domain wall dynamics [4]. Discussion of the domain wall dynamics for the zero modes
is in the subsection 1.3.5.

We summarise the iterative construction of the edge zero-mode here. For f ”= 0,
edge modes ‰1 and ÂL get modified to form ‰1 + . . . and ÂL + . . . , iterative construction
intends to find those additional term (. . . ). To get the additional term, we start with
splitting the Hamiltonian Eq. 1.22 in the form H = JV + fF . We will focus on ‰1,
but the same line of arguments is followed for ÂL. Parafermions ‰1 commutes with
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Fig. 1.6 Figure summarises the features of zero modes on basis of splitting in first
excited state for ◊ œ (0, fi/3)

the V but not with the F part of Hamiltonian. So we have [H, ‰1] = f [F, ‰1] which
is nonzero. Next we find X such that [F, ‰1] = [V, X] giving us the first term in the
correction to ‰1 which is ‰1 ≠ (f/J)X. Now we have [H, ‰1 ≠ (f/J)X] which is of
order (f/J)2. This repeated process gives edge zero-mode � as a power series in terms
of dimensionless parameter f/J sin 3◊ having the form

� = ‰1 ≠ f

J sin 3◊
X +

3
f

J sin 3◊

42
Y + . . . (1.25)

The radius of convergence of the expansion is dependent on ◊. For sin 3◊ = 0 the Eq.
1.25 blows up which proves that strong modes do not exist for the ◊ = 0 and fi/3.

The parafermionic description presented here is not essential for understanding the
results of our work. However, we note that some of the results in Chapter 4 can also
be understood in terms of strong zero-edge modes appearing in the parafermionic dual
to the chiral clock model.

1.3.5 Domain wall picture

Using the iterative construction of edge modes, we saw that strong modes do not exist
for ◊ = 0 and ◊ = fi/3 for nonzero f . For the ◊ ”= 0 edge modes features are complex,
and careful analysis of domain wall dynamics shows that there exist critical values ◊c1

and ◊c2, below and above this values, edge modes of the chiral clock model are weak.
This statement is summarized in diagrammatic form in Fig. 1.6. The domain wall
analysis presented here follows the discussion in [4]

In the chiral clock model we will treat the spin spin coupling term ≠Jeÿ◊‡i‡
†
i+1 +h.c

as our unperturbed Hamiltonian and f· +h.c is treated as the perturbing term. We will
restrict in the range ◊ œ [0, fi/3]. Ground state of unperturbed Hamiltonian is triply
degenerate in the symmetry broken phase which are as follows - |AÍ = |111 . . . 11Í,
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Fig. 1.7 Spectrum features of the Hamiltonian Eq. 1.10 for f = 0. Ground states are
triply degenerate for both ◊ = 0 and ”= 0. First excited state for non-chiral Hamiltonian
is with single domain wall with both positive and negative chirality states having same
energy i.e. E+

1≠domain = E≠
1≠domain. For the chiral case, degeneracy of positive and

negative chirality one domain wall states is broken. Figure reproduced with permission
from Ref. [4].

|BÍ = |ÊÊÊ . . . ÊÊÍ and |CÍ = |Ê̄Ê̄Ê̄ . . . Ê̄Í. We have six flavors for the excited state
with single domain walls which are |A|BÍ, |B|AÍ, |B|CÍ, |C|BÍ, |C|AÍ and |A|CÍ. In
this domain wall state notation for example for state |A|BÍ, on the left of domain wall
we have |AÍ and on its right we have |BÍ. We divide the single domain wall states
into two separate classes on the basis of their chirality. The positive chirality class
are |A|BÍ, |B|CÍ and |C|AÍ whereas the negative chirality states are |B|AÍ, |A|CÍ and
|C|BÍ. We represent their energies by E+

1≠domain and E≠
1≠domain

E±
1≠domain = 2J [cos ◊ ≠ cos(2fi/3 ± ◊)] (1.26)

For a spin chain with an open boundary condition of length L, each flavor has L ≠ 1
possible positions. For the ◊ = 0 case, all six flavors have equal energy and are separated
by a gap of 3J from the ground state. For the ◊ ”= 0 degeneracy among the states with
flavors of opposite chirality e.g |A|BÍ and |B|AÍ is lifted and is separated by energy
gap of 2

Ô
3J sin ◊. The spectrum features are shown in Fig. 1.7

Perturbing field f causes mixing of unperturbed eigenstates by domain wall creation,
annihilation, and hopping processes as the local ·i operators cause rotation of spin
at site i. We will study the splitting of energy levels in ground and excited states
separately after turning on the field f . For this energy splitting calculation using
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the perturbative analysis, we will focus on the processes arising because of field f

through which an unperturbed state can convert into another unperturbed eigenstate
with the same energy. We are interested in these conversion processes because they
are responsible for the degenerate perturbation theory’s finite-size energy splitting for
degenerate energy levels.

Splitting of ground state energy

Let us look at the ground state first. For the nonchiral case, we want the processes we
can go from, let us say, |AÍ to |BÍ. This conversion is not possible without leaving the
ground state subspace. The simplest possible mechanism is to create a domain wall of
flavor |A|BÍ at the right end of the chain by flipping the boundary spin at the right
end of the chain and then traversing the domain wall from right to left end. At the left
end, the domain wall will be annihilated, giving the state |BÍ. The mentioned process
is shown in panel a of Fig. 1.8 involving the creation, hopping, and annihilation of
domain walls, all achievable by local field f in multiple steps. In the perturbation
theory connecting two degenerate states involves a macroscopic number of perturbation
steps, as we have seen, giving the energy splitting of

�EGS ≥ f
3

f

3J

4(L≠1)
(1.27)

Energy splitting also has the same exponential form as Eq. 1.27 for the chiral case.
with the modified denominator. The denominator in the Eq. 1.27 get modified to �,
where � is the energy di�erence between the ground state and first excited state. This
exponential splitting shows that ground state degeneracy is forwarded to the nonzero
f for chiral and nonchiral Hamiltonian.

Splitting of excited state energy

Above mechanism becomes interesting in the case of single domain wall states or first
excited states for f = 0. Unlike the ground state we can go from a 1-domain wall state
to another 1-domain wall state without leaving the degenerate space. For converting a
state of flavor |A|BÍ to |B|CÍ, starting with flavor |A|BÍ domain wall can be moved
to the right end where boundary scatters domain wall |A|BÍ to flavor |A|CÍ. Then the
new domain wall of flavor |A|CÍ has to be moved to the right end where after reaching
the boundary, flavor |A|CÍ will be converted to |B|CÍ. This mechanism is shown in
panel b of Fig. 1.8.
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Fig. 1.8 Figure shows the simplest possible mechanism of inter-conversion of degenerate
states at the level of the ground and excited state in panels a and b, respectively.
Y-axis is the perturbation step, and the x-axis is the position in the chain. A solid line
drawn is the domain wall location in the chain, which is changing with time because of
the hopping process. Figure reproduced with permission from Ref. [4].
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To understand the splitting in the excited state, we project the Hamiltonian Eq. 1.10
in the single domain wall subspace denoted by H1≠domain. This projected Hamiltonian
is equivalent to six-coupled tight binding chains [4] for six flavors of particles, each
length L ≠ 1 with periodic boundary conditions. Chirality of the domain wall flavor
decides the onsite energy of each tight-binding chain which results in two excitation
branches whose band energies are given by

E±(k, ◊) = E±
wall(◊) ≠ 2f cos k (1.28)

Each energy band is threefold degenerate belonging to the single domain wall states of
the same chirality. Single domain wall band energies are shown in Fig. 1.9. Comparative
values of bandwidth 4f and the band separation energy which is E+

1≠domain≠E≠
1≠domain =

2
Ô

3J sin ◊ gives rise to two di�erent scenario shown in Fig. 1.9 (a) and (b). Domain
walls behave as a particle in this e�ective Hamiltonian description. For our convenience
we define the parameter ⁄ =

Ô
3J sin ◊/2f .

For ⁄ > 1, the energy bands for positive and negative chirality particles are well
separated as shown in Fig. 1.9(b). In particular there is energy gap between opposite
chirality states e.g. |A|BÍ to |A|CÍ. Particles in the bottom band can not transition
to the upper band, and the particle remains here for a macroscopic number of steps
leading to the exponential splitting of the energy in the perturbative analysis of the
excited state with system size L.

Exponential splitting changes to power law at critical value ⁄ ¥ 1. The energy
bands of opposite chirality starts to overlap for ⁄ Æ 1 as shown in Fig. 1.9(a) resulting
to continuous change of particle flavor as it moves around the closed chain. This
continuous change of flavor of particle results in power law splitting of excited states for
non-zero f which implies the weak zero modes for ⁄ Æ 1 or ◊ Æ ◊c1 = sin≠1(2f/

Ô
3J).

When ◊ is closer to fi/3, energy of positive chirality domain wall states becomes
larger than two domain wall states |C|B|AÍ, |A|C|BÍ and |B|A|CÍ for f = 0. Here
the splitting changes its behavior from power law to an exponential with L at the ◊c2

given by
◊c2 = fi/3 ≠ sin≠1

1 2fÔ
3J

2
(1.29)

This analysis does not ensure that edge modes are strong for ◊c1 < ◊ < ◊c2 as the
higher excited states can have the power-law splitting for the finite f .
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Fig. 1.9 Single domain wall band energies for positive and negative chirality states is
shown in blue and orangle color respectively. Two di�erent scenarios are shown ◊ < ◊c1
and ◊ > ◊c1 which explains the exponential and power law splitting of the degenerate
excited states.

1.4 Problems addressed
In this chapter we have discussed the broad ideas and features of the chiral clock
model specifically its ground state phase diagram, symmetries and its connection to
di�erent experimentally realizable Hamiltonians. This thesis addresses the features
of nonequilibrium quantum dynamics of the model. In this section, we outline the
contents of the remaining chapters.

Since chiral clock model is a strongly interacting model and is di�cult to tackle
using simple numerical methods, we have extensively used the matrix product state
based techniques for studying the dynamics. A basic overview of MPS formalism is
presented in Chapter 2.

In Chapter 3 we report our findings on the boundary-driven critical clock model for
step, sinusoidal and triangular drive. This study is motivated by a previous study [5]
which showed that Loschmidt echo has universal scaling for Z2 case in the slow driving
regime which can be explained using combined arguments from from conformal field
theory and the Kibble-Zurek mechanism. We have extended the validity of results to
the case of Z3 clock model. This Chapter is based on our work - Scaling of Loschmidt
echo in a boundary-driven critical Z3 Potts model, Naveen Nishad and G. J. Sreejith,
Phys. Rev. B 101, 144302 (2020).
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Chapter 4 is about the entropy dynamics after the quench in ferromagnetic phase.
Here we studied the entropy dynamics for the two kinds of subsystems considered
at the boundary and bulk of the chain. The subsystem at boundary has di�erent
qualitative features in entropy dynamics for chiral and nonchiral quench. Di�erent
entropy dynamics also implies di�erent thermalization features in the boundary and
bulk. In particular boundary spins has long coherence time for the chiral quench. This
chapter is based on our work - Post quench entropy growth in a chiral clock model,
Naveen Nishad, M. Santhosh, and G. J. Sreejith, Phys. Rev. B 103, 195141 (2021).

Chapter 5 discusses the open quantum system, precisely using the Lindblad master
equation. This chapter outlines the matrix product states implementation of Lindblad
master equation to study the dynamics of an open quantum system. Then in chapter 6,
we study the energy transport in the chiral clock model using the MPS implementation
of the Lindblad master equation. Using the finite-size scaling of steady-state current, we
show that energy transport is ballistic at the integrable points and otherwise di�usive
for non-integrable points. Content of this chapter is taken from Energy transport in
Z3 chiral clock model, Naveen Nishad and G. J. Sreejith, New Journal of Physics 24,
013035 (2022).

We digress from the chiral clock model in chapter 7 to time crystalline order, a
non-equilibrium phase of matter observed in star-shaped clusters of spin-half particles
in our study. We show that a star-shaped cluster where satellite spin interacts with
central with Ising-like interaction shows temporal order in magnetization when driven
with fi-pulses. This temporal order is robust against additional perturbation and
inaccuracy in the fi-pulse. Content of this chapter is based on Temporal order in
periodically driven spins in star-shaped clusters, Soham Pal, Naveen Nishad, T. S.
Mahesh, and G. J. Sreejith, Phys. Rev. Lett. 120, 180602 (2018). Soham Pal and T.
S. Mahesh did the experimental work. Naveen Nishad and G. J. Sreejith did numerics
and analytical explanation of this work.

Finally, we conclude this thesis with our summary of work and open questions in
Chapter 8.





Chapter 2

Matrix Product States and
Operators

2.1 Physical corner of the Hilbert space
For most physicsl quantum many-body system of interest, interactions between the
constituents are local which means all constituents interact only with their finite number
of neighbors.The locally interacting gapped systems have ground states with short-
range correlations, and weak entanglement between their subsystems. The statement
has been more rigorously argued in one dimension[55]. Matrix product states (MPS)
formalism is an e�ecient way of representing these locally entangled states. MPS was
originally formulated for ground state search however the technique can be extended to
time evolution, excited states and density matrices [56]. A brief summary of the ideas
of the MPS formalism which is central numerical technique of this thesis is provided in
this chapter. This chapter also standardizes the notion, convention and ideas used in
rest of the thesis.

A local Hamiltonian H can be written as

H =
ÿ

i

hi (2.1)

here each term hi has finite support on a finite number of sites. The distance between
the farthest site over which hi acts is also finite. The e�ect of the locality of Hamiltonian
is reflected in the behavior of correlation functions for the ground state. For the gapped
models, correlation functions decay exponentially with distance with a characteristic
length › for the ground state. Correlation functions can decay algebraically with
distance for the gapless models and have a diverging correlation length.
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Fig. 2.1 Panel a conveys the idea of area law scaling of entanglement betweent the
subsystem A and B. States obeying the area law occupies only a tiny fraction of the
Hilbert space H as shown in panel b.

A similar e�ect of locality is also seen in the entanglement entropy of the subsystem.
For a system bipartitioned into subsystems A and B, von-Neumann entropy is the
widely used measure of entanglement defined as

S(flA) = ≠Tr(flA log(flA)) (2.2)

where flA is the reduced density matrix for the subsystem A. If subsystems A and B

are unentangled S(flA) = 0 which means state of full system fl can be written as direct
product of state of subsystem A and B i.e fl = flA¢flB. Subsystem of entangled systems
have positive entropy and is bounded by the maximum value S(flA) Æ |A| log2(d) where
d is the Hilbert space dimension of local degrees of freedom and |A| is the size of the
smaller subsystem. Entanglement entropy of the ground state of a one-dimensional
local gapped Hamiltonian is independent of the subsystem size, which is the area law
for entanglement entropy in 1D. For a one-dimensional gapped quantum system, this
has been proved in Ref. [55]. Area law does not hold for the ground state of the gapless
Hamiltonian [57–60]. Conditions for validity of area law in higher dimensional gapped
Hamiltonian is an open problem [61].

Majority of the eigenstates of a generic Hamiltonian follows volume law [62, 63]
for entanglement. However the ground state follows area law, such states occupies a
tiny fraction of the Hilbert space H. This tiny fraction has been called the “physical”
corner of the H (in the sense that when studying low energy physics, the system is
likely to be found in a small part of the Hilbert space). The methods based on tensor
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Fig. 2.2 Pictorial representation of a scalar, vector and rectangular matrix is shown in
(a), (b) and (c) respectively. Dual of a vector v is shown as vú in (b). Typically the leg
of the dual tensor is flipped. Matrix-vector and matrix-matrix multiplication operation
are shown in panel (d) and (e).

network formalism like Matrix product states (MPS) for 1D, Projected entangled pair
states (PEPS), and Multiscale entanglement renormalization ansatz (MERA) for higher
dimensions, etc. e�eciently exploits the area law property of the ground state and low
lying states.

2.2 Tensor representation
This section discusses the pictorial representation of the tensors and their operations
which is used throughout this thesis for visual representation of the MPS.

A tensor is a multi-dimensional mathematical object with complex valued entries
that generalizes the ideas of arrays. The number of indices of a tensor is called its
rank or order. In the pictorial notation, any tensor is denoted by a square or circle
with as many indices as its rank or order. We start with the simplest tensor i.e a
scalar denoted by s. It is tensor of rank 0, and in pictorial notation, it has no legs, as
shown in Fig. 2.2(a). Similarly a vector vi and a matrix Mij are tensors of rank 1 and
2 respectively. Their equivalent pictorial representation is shown in Fig. 2.2(b) and
(c) respevtively. Dual of a vector vi is denoted by vú with entries of v being complex
conjugated is shown in Fig. 2.2(b). For a vector vi in a n dimensional Hilbert space,
value of index i varies from 1 to n.
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Fig. 2.3 Coe�ecient of many-body wavefunction c‡1‡2...‡N shown as a tensor of rank N .

Tensors can be modified to another tensor using di�erent operations. The simplest
would be the multiplication of a matrix M with a vector u resulting in a new vector
v = M · u. Another example of such tensor operation would be the multiplication of
two matrices Aij and Bjk giving another matrix C = A · B. In the Einstein summation
convention, the index j got contracted, and C = A · B can be written as Cik = Aij · Bjk

Pictorial notation of matrix-vector multiplication and matrix-matrix multiplication
operations are shown in the Fig. 2.2(d) and (e) respectively.

A many-body wavefunction for a system of N spins with local Hilbert space of
dimension d is given by

|ÂÍ =
dÿ

‡1...‡N =1
c‡1‡2...‡N |‡1‡2 . . . ‡NÍ (2.3)

In the above equation, the coe�cient of the wavefunction is a tensor of rank N with
each index of dimension d, and ‡i are the single-particle basis. Its visualization is
shown in Fig. 2.3. The vertical legs representing indices ‡’s are called physical indices
as they correspond to physical degrees of freedom of the spin chain.

2.3 Singular Value Decomposition
Matrix product states represent quantum states in the form of the product of matrices,
as evident from its name. Singular value decomposition (SVD), a technique from linear
algebra, is fundamental to the MPS representation of quantum states. Any complex
rectangular matrix M of dimension NA ◊ NB can be decomposed in the form

M = USV † (2.4)

where matrices U, S and V † have the following properties. The above decomposition
is called the SVD of matrix M .
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Fig. 2.4 Diagramatic notation for the MPS representation of Eq. 2.3 open and periodic
boundary condition.

• U and V are of dimension (NA ◊ ⁄) and (NB ◊ ⁄) resepectively with orthonormal
columns. U and V satisfy U †U = V †V = 1 where dimension of identity matrix is
(⁄ ◊ ⁄). Here ⁄ = min(NA, NB)

• S is a diagonal matrix of dimension (⁄ ◊ ⁄) with real non-negative entries. The
diagonal entries are called singular values

2.4 Matrix Product States
The general idea of MPS involves taking the tensor of higher rank , i.e., c‡1‡2...‡N and
breaking it down into several tensors of smaller rank using SVD. These smaller tensors
when contracted gives back the original tensor. MPS representation of coe�cient
c‡1‡2...‡N of any arbitrary pure state |ÂÍ of spin chain with N spins with open boundary
condition is given by

c‡1‡2...‡N =
ÿ

–

T ‡1
–1 T ‡2

–1,–2 . . . T ‡N≠1
–N≠2,–N≠1T ‡N

–N≠1 (2.5)
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Here the summation over – means summation over all –i indices where i = 1, . . . , N .

c‡1,(‡2‡3) = U‡1,–1S–1,–1V †
–1,‡2‡3 = T ‡1

–1 Q–1,‡2‡3

= T ‡1
–1 Q–1‡2,‡3 = T ‡1

–1 U–1‡2,–2S–2,–2V †
–2,‡3

= T ‡1
–1 T ‡2

–1,–2Q–2,‡3 = T ‡1
–1 T ‡2

–1,–2T ‡3
–2

(2.6)

We will illustrate the decomposition of wavefunction c‡1‡2‡3 in Eq. 2.6 for chain of 3
spins. We start with rearrangement of indices of c‡1‡2‡3 to c‡1,(‡2‡3) then we do the SVD.
From SVD we get tensors U‡1,–1 , S–1,–1 and V †

–1,‡2‡3 . We get T ‡1
–1 from rearrangement of

indices ‡1 and –1 of tensor U‡1,–1 . Tensors S–1,–1 and V †
–1,‡2‡3 is assimilated into a new

tensor Q–1,‡2‡3 . We repeat the rearrangement of indices and SVD for the new tensor
Q–1,‡2‡3 from which tensor T ‡i ’s are constructed. The last tensor T ‡3

–2 is constructed
somewhat di�erently from contracting S–2,–2 and V †

–2,‡3 and rearrangement of resultant
tensor.

For a pure state with closed boundary condition, MPS representation modifies to

c‡1‡2...‡N =
ÿ

–

T ‡0
–0,–1T ‡2

–1,–2 . . . T ‡N≠1
–N≠2,–N≠1T ‡N

–N≠1,–0 = Tr
1
T ‡1T ‡2 . . . T ‡N≠1T ‡N

2
(2.7)

Tensor diagrammatic notation of Eq. 2.5 and 2.7 are shown in Fig. 2.4(a) and (b)
respectively. The di�erence between the MPS representation of the state in open and
closed boundary conditions can be seen at the first and last tensor. In open boundary
condition the first and last tensor i.e T ‡1

–1 and T ‡N
–N

are 2 rank tensor. In this thesis we
only deal with system with open boundary condition. It is assumed that the contracted
horizontal bonds have bond dimension D (internal dimension) for the approximate
description of the low entanglement states. The vertical bands are physical degrees of
freedom and have bond dimension d.

MPS representation reduces the number of variational parameters of the state |ÂÍ
drastically if it is a low entanglement state. In Eq. 2.3 tensor c‡1‡2...‡N has dN number of
variational parameters while we have O(NdD2) parameters in the MPS representation
in Eq. 2.5. The number of variational parameters for the MPS representation can be
understood in the following way. We have roughly N number of tensors of rank three
corresponding to each spin in the chain. For each tensor, there are three indices - one
physical index with dimension d and two horizontal indices with dimension O(D) of
each, which gives dD2 parameter for each three-legged tensor. Since we have N such
tensor, the number of variational parameters is O(NdD2). For a fixed D, the number
of variational parameters change from exponential in d to linear in d when we switch
to MPS representation. The bond dimension D can be exponential in d for the highly
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Fig. 2.5 Diagramatic notation for understanding the gauge degree of freedom in MPS
representation arising from the invariance of state |ÂÍ after insertion of product of
tensors Xi+1X

≠1
i+1 in between the consecutive local tensor T

entangled statess such as volume law states, and hence MPS representation does not
always reduce the complexity of state representation.

Gauge degrees of freedom and Canonical form

MPS representation of a pure state has a large gauge degrees of freedom, which can be
seen as follows. Under the transformation

T̃ ‡i
—i≠1,—i

= (X≠1)(i)
—i≠1,–i≠1T ‡i

–i≠1,–i
X(i+1)

–i,—i
(2.8)

for choice of {X(1), . . . , X(N≠1)} invertible matrices with suitable dimensions, we have

ÿ

–

T ‡1
–1 T ‡2

–1,–2 . . . T ‡N≠1
–N≠2,–N≠1T ‡N

–N≠1 =
ÿ

—

T̃ ‡1
—1 T̃ ‡2

—1,—2 . . . T̃ ‡N≠1
—N≠2,—N≠1T̃ ‡N

—N≠1 (2.9)

Equivalence in Eq. 2.9 shows the non-unique MPS representation of a state. Tensor
diagram for Eq. 2.8 is shown in Fig. 2.5. For a given pure state |ÂÍ all the possible
MPS representation of it forms a manifold. In this manifold of gauge equivalent MPS
representation, we are interested in a particular MPS form called canonical form, which
is very helpful in numerical implementation of MPS because of its useful properties.
There are three types of canonical form - left, right and mixed. In the left canonical
representation c‡1‡2...‡N is given by

c‡1‡2...‡N =
ÿ

–

A‡1
–1A‡2

–1,–2 . . . A‡N≠1
–N≠2,–N≠1A‡N

–N≠1 (2.10)

The tensors A are “left-normalized” and satisfies the property

ÿ

‡i

ÿ

–i≠1

A‡i†
–i≠1,–

Õ
i
A‡i

–i≠1,–i
= ”–i,–

Õ
i

(2.11)
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Fig. 2.6 Property of the left and right canonical form mentioned in Eq. 2.11 and 2.13
is shown in the tensor diagramatic notation in (a) and (b) respectively.

This is schematically shown in Fig. 2.6 (a). The right-canonical form represents the
state in the form

c‡1‡2...‡N =
ÿ

–

B‡1
–1B‡2

–1,–2 . . . B‡N≠1
–N≠2,–N≠1B‡N

–N≠1 (2.12)

The tensors B are “right-normalized” and satisfies the property

ÿ

‡i

ÿ

–i

B‡i†
–

Õ
i≠1,–i

B‡i
–i≠1,–i

= ”–
Õ
i≠1,–i≠1 (2.13)

Tensor diagramatic notation of the right normalization condition is shown in Fig. 2.6(b).
Mixed canonical form is consturcted using both right and left normalized tensors and
its has representation

c‡1‡2...‡N =
ÿ

–

A‡1
–1 . . . A‡l

–l≠1,–l
B‡l+1

–l,–l+1 . . . B‡N
–N≠1 (2.14)

Using a suitable gauge any MPS representation can be converted to any of the
three canonical form.

2.5 Matrix Product Operators
The idea of MPS can be straightforwardly generalized to the operators, and the
analogous construction for operators is called Matrix Product Operators (MPO). Here
we have two sets of physical indices i.e incoming indices ‡

Õ
i

and outgoing indices ‡i. A
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Fig. 2.7 Diagramatic notation for the MPO representation of opertor Ô

general operator Ô can be written in MPO form as follows

Ô =
ÿ

‡,‡Õ
W

‡1‡
Õ
1

[1]—1
W

‡2‡
Õ
2

[2]—1,—2
. . . W

‡N ‡
Õ
N

[L]—N
|‡1‡2 . . . ‡NÍÈ‡Õ

1‡
Õ
2 . . . ‡Õ

N
| (2.15)

Diagrammatic representation of MPO is shown in Fig. 2.7. It is di�erent from MPS
in the sense that it has two vertical bonds corresponding to ‡ and ‡Õ. Another way
to think of MPO is that W ’s are rank 2 tensors with operator values entries (In this
manner of thinking, local 2 rank tensors of MPS has vector as its entry). To clarify we
will illustrate the MPO representation of the anisotropic Heisenberg model, which has
Hamiltonian

H = J
ÿ

i

(‡x

i
‡x

i+1 + ‡y

i
‡y

i+1 + �‡z

i
‡z

i+1) ≠ h
ÿ

i

‡z

i
(2.16)

‡Õ s are the Pauli spin operators, � is the anisotropy parameter, and h is the constant
local field in the z direction. In the tensor product notation, it can be written as

H = J
1
‡x

1 ¢ ‡x

2 ¢ · · · ¢ I ¢ I + I ¢ ‡x

2 ¢ ‡x

3 ¢ · · · ¢ I ¢ I + . . .

+ ‡y

1 ¢ ‡y

2 ¢ · · · ¢ I ¢ I + I ¢ ‡y

2 ¢ ‡y

3 ¢ · · · ¢ I ¢ I . . .

+ �‡z

1 ¢ ‡z

2 ¢ · · · ¢ I ¢ I + . . .
2

≠ h‡z

1 ¢ I ¢ · · · ¢ I ¢ I ≠ hI ¢ ‡z

2 ¢ I ¢ · · · ¢ I ¢ I . . .

(2.17)

Corresponding MPO representation of the above Hamiltonian is

W[i] =

Q

cccccccca

I 0 0 0 0
‡x 0 0 0 0
‡y 0 0 0 0
‡z 0 0 0 0

≠h‡z J‡x J‡y �‡z I

R

ddddddddb

(2.18)
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Fig. 2.8 Finite state automaton representation of MPO of Hamiltonian Eq. 2.16.

At left and right boundaries, the W Õs are given by

W[1] =
1

≠h‡z J‡x J‡y �‡z I
2

, W[L] =

Q

cccccccca

I
‡x

‡y

‡z

≠h‡z

R

ddddddddb

(2.19)

Here MPO is of bond dimension 5. An elegant approach to constructing MPO is
thinking it as finite-state machines [64]. We summarise the MPO construction as a
finite state machine here. Lets start with the tensor product notation mentioned in Eq.
2.17 for Hamiltonian in Eq. 2.16.

Each individual term in this Eq. 2.17 will be treated as a string which is constructed
using the four operators I, ‡x, ‡y, ‡z. We will start from the right end of string. We
can divide a string construction in three parts - no encounter of the interaction (string
of I on the left), encountering a interaction and completion of interaction or local
field. We introduce the concept of state for each bond in the string to incorporate
the construction step mentioned before. For this particular example we need only five
states.

State 1 corresponds to all operators being I to the left. When we encounter
the interaction term in the string for which we need three states here 2, 3 and 4
corresponding to encountering operators ‡x, ‡y and ‡z. We need another state 5 to
complete the interaction. For any arbitrary bond in the string the possible transitions
and their corresponding weights are shown in the Fig. 2.8. The information encoded in
the finite state machine shown in Fig. 2.8 is equivalent to MPO representation shown
in Eq. 2.18.
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MPO for chiral clock Hamiltonian

For convenience we will mention the chiral clock Hamiltonian again here

H = ≠J
N≠1ÿ

i=1
(eÿ◊‡i‡

†
i+1 + e≠ÿ◊‡†

i
‡i+1) ≠

Nÿ

i=1
(feÿ„·i + fe≠ÿ„· †

i
) (2.20)

MPO representation of the above Hamiltonian is

W[i] =

Q

ccccca

I 0 0 0
‡† 0 0 0
‡ 0 0 0
� ≠Jeÿ◊‡ ≠Je≠ÿ◊‡† I

R

dddddb
(2.21)

here � = ≠feÿ„· ≠ fe≠ÿ„· †. At left and right boundaries, the W Õs are given by

W[1] =
1

� ≠Jeÿ◊‡ ≠Je≠ÿ◊‡† I
2

, W[L] =

Q

ccccca

I
‡†

‡

�

R

dddddb
(2.22)

2.6 Computing Expectation values
For a local operator Ô[l] local on site l, its expectation value with respect to state |ÂÍ
is ÈÂ|Ô[l]|ÂÍ. In the MPS representation, expression for the expectation value is

ÈÂ|Ô[l]|ÂÍ =
ÿ

‡,‡Õ

ÿ

–,–Õ
T ‡1

–1 T ‡1†
–

Õ
1

. . . T ‡l
–l≠1,–l

Ô[l]‡l,‡
Õ
lT

‡
Õ
l†

–
Õ
l≠1,–

Õ
l
. . . T ‡N

–N
T ‡

Õ
N †

–N
(2.23)

The above complicated-looking expression can be easily evaluated using the canonical
form. Among the right, left, and mixed canonical forms, mixed form simplifies Eq.
2.23 the most. We pick a particular site called the orthogonality center in mixed
canonical form. Here we choose gauge transformation such that on the left (right) of
the orthogonality center, all the local tensors are in the left (right) canonical form. In
this canonical form, expression for ÈÂ|Ô[l]|ÂÍ is
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Fig. 2.9 Figure showing simplification of the calculation of the expectation value by
using mixed canonical form.

ÈÂ|Ô[l]|ÂÍ =
ÿ

‡,‡Õ

ÿ

–,–Õ
A‡1

–1A‡1†
–

Õ
1

. . . B‡l
–l≠1,–l

Ô[l]‡l,‡
Õ
lB

‡
Õ
l†

–
Õ
l≠1,–

Õ
l
. . . B‡N

–N
B‡N †

–
Õ
N

(2.24)

=
ÿ

‡l,‡
Õ
l

ÿ

–,–Õ
B‡l

–l≠1,–l
Ô[l]‡l,‡

Õ
lB

‡
Õ
l†

–
Õ
l≠1,–

Õ
l
”–l≠1,–

Õ
l≠1

”–l,–
Õ
l

(2.25)

In the simplification of the Eq. 2.25, we have used the property of the canonical
form mentioned in Eq. 2.11 and 2.13. The minimum computational complexity of the
evaluation of the tensor network is shown in Fig. 2.9 is O(NdD3) while for the network
shown in Fig. it is O(dD2). This shows the significance of choosing the appropriate
canonical form.

2.7 Ground state search
The ground state search problem looks for the state |ÂÍ, which minimizes the

E = ÈÂ|Ĥ|ÂÍ
ÈÂ|ÂÍ (2.26)

This is done in the MPS language by introducing the Lagrange multiplier ⁄, which
extremizes

ÈÂ|Ĥ|ÂÍ ≠ ⁄ÈÂ|ÂÍ (2.27)

while preserving the norm ÈÂ|ÂÍ. Search for the |ÂÍ that extremizes the Eq. 2.27
is a highly non-linear optimization problem. In the MPS representation, instead of
optimizing all the local tensors A‡i simultaneously. The optimization retains the spirit
of ground-state search using the Density Matrix Renormalization Group (DMRG)
sweeping. The optimization procedure is being started with a random MPS state given
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Fig. 2.10 Equation 2.30 can be visualized by the tensor network diagram shown.
Darkened circle represents the local tensor M̨‡i and the Heff is the rest of the tensor
network after excluding M̨‡i in network shown in left hand side.

by
|ÂÍ =

ÿ

–

A‡1
–1A‡2

–1,–2 . . . A‡N≠1
–N≠1,–N

A‡N
–N

|‡1‡2 . . . ‡NÍ (2.28)

In the optimization, one of the local tensors is fixed denoted by M‡i and treated as a
variational parameter. M‡i is treated as a vector, and the new minimization equation
is

M̨‡i
†
HeffM̨‡i ≠ ⁄M̨‡i

†
N M̨‡i (2.29)

Equation 2.29 is then minimized with respect to M̨‡i which leads to genralized eigen-
value problem

HeffM̨‡i = ⁄N M̨‡i (2.30)

The above equation is solved using standard eigenvalue packages. Tensor diagramatic
notation for equation 2.30 is shown in Fig. 2.10. Index i in M̨‡i which corresponds to
a physical site in the chain is varied from one end to another end of the chain in back
and forth manner. In each iteration of the optimization, the rest of the local tensors
are kept constant. This sweeping is continued till desirable convergence is achieved for
energy.

2.8 Time evolution
Two main techniques are used to implement the time evolution (real or imaginary) in
the MPS framework. The first one involves the approximating the matrix exponential
, i.e., e≠ÿHt using Suzuki-Trotter decomposition and then applying the approximated
MPO to |ÂÍ which needs to be evolved. Another technique is called the time-dependent
variational principle (tDVP), which relies on the variational manifold of uniform MPS.
We will discuss the first technique as this is the method we have used in the works
mentioned in this thesis.
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Fig. 2.11 Time evolution of an MPS |Â(0)Í using the MPO’s estimated by first order
Suzuki-Trotter decomposition mentioned in Eq. 2.32. After contracting MPO with
MPS we get the time evolved state |Â(t)Í.

We start with splitting the Hamiltonian H into two parts Hodd and Heven such that

H = Hodd + Heven (2.31)

Hodd and Heven are the terms of the H which acts on the odd and even bonds of the
chain. Both Hodd and Heven are of the form q

i hi which satisfies the condition that
[hi, hj] = 0. Then the time evoution operator e≠ÿH”t is approximated in terms of Hodd

and Heven using Suzuki-Trotter decomposition which is explained below. A nth order
approximant of e≠ÿH”t constructed using Suzuki-Trotter decomposition is acurate till
O(”tn). For example first order trotter decomposition is

e≠ÿH”t = e≠ÿHodd”te≠ÿHeven”t + O(”t2) (2.32)

Individual matrix exponentials in Eq. 2.32 can be further written as following because
of the commuting properties of the individual terms in the Hodd and Heven

U(”t) = e≠ÿHodd”te≠ÿHeven”t = �ie
≠ÿh

odd
i ”t�je

≠ÿh
even
j ”t (2.33)

Each term in Eq. 2.33 is then expressed as MPO and then applied on |ÂÍ. After
applying the MPO, the bond dimension of the resultant MPS increases, which is then
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Fig. 2.12 Often in initially weakly entangled states, subsystem entanglement S(t) grows
linearly with time and the bond dimension Dmin needed to accurately describe the
state increases exponentially with time. Figure shows exponential growth of minimum
bond dimension Dmin with time results in entanglement barrier when Dmin crosses the
bond dimension D0.

set to desirable dimension D by the compression procedure [37]. The diagrammatic
notation is shown in Fig. 2.11.

We are primarily interested in the dynamics implemented by successive application
of U(”t). For the reliable study of dynamics, we need our time evolution operator to be
as accurate as possible. There two ways to do this - using higher order approximants
or using smaller ”t. Using smaller ”t involves more iterative steps to reach same time t.
This leads to additional computational cost and the error acumulation associated with
MPS truncation steps will be faster in the intermediate steps. The computational cost
is smaller and error accumulation is slower if we use the higher order approximants with
larger ”t as there are less steps involved. We have used the fourth-order approximant
of U(”t) in our work. The time-dependent version of the fourth-order approximant of
U(”t) is constructed using the fractal decomposition, which is discussed in Sec. 3.5 of
Chapter 3. The time-independent version is discussed in Sec. 5.5 of Chapter 5.

Time evolution using the MPS formalism becomes inaccurate and expensive due to
exponentially increasing bond dimension [65–67]. There is a limit to the maximum
bond dimension D0 till we can go in our simulation which is decided by our computer’s
hardware. So the entanglement puts a barrier for the time until we can e�ciently do
the time evolution using MPS. This goes by the name of entanglement barrier and is
schematically shown in Fig. 2.12.
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2.9 Density matrices
Density matrices are the more generic representation of any quantum state as both pure
and mixed states can be expressed using it. In Ref. [56] concept of Matrix Product
Density Operator (MPDO) was introduced, which generalizes the MPS formalism from
pure to mixed states. An MPDO for N spins with d local degrees of freedom is defined
as

fl =
dÿ

{s,sÕ}=1
(M s1,s

Õ
1

1 . . . M
sN ,s

Õ
N

N
)|s1, . . . , sNÍÈsÕ

1, . . . , sÕ
N

| (2.34)

where tensor M are related to local tensor A by

M s,s
Õ

k
=

dkÿ

a=1
As,a

k
¢ (As

Õ
,a

Õ

k
)ú (2.35)

A are local tensors of some pure state which lives in the extended local Hilbert space
{s, a} with a being the auxiliary physical degrees of freedom. This way of construction
of MPDO is inspired by local purification and ensures the positivity of the resultant
density matrix. Finite temperature states fl— = e≠—H/Z can also be constructed [37]
using the similar local purification technique by associating an auxiliary degree of
freedom to each spin.

There is another way of representing the density matrices, which was introduced in
[68]. This representation is based on the trick called Choi Isomorphism and represents
the fl in the form of MPS by clubbing the ket and bra indices of density matrix and
treating it as a new ket index. We have used this MPS representation in our work
which is discussed in detail in Sec. 5.4 of Chapter 5.

2.10 Conclusion
We have discussed the broad ideas involved in the MPS technique, which is used
extensively to study non-equilibrium dynamics in this thesis. MPS ansatz e�ficiently
and accurately represents the states with low entanglement. The dynamics can be
studied in the MPS framework until the time scale set by entanglement barrier. We have
discussed the implementation of time evolution using the Suzuki-Trotter decomposition
of the time evolution operator U(”t). Finer details of the fourth-order approximant
used are discussed in Chapter 3 and 5.



Chapter 3

Boundary Driving a Critical Z3
Clock Chain

Low frequency perturbations at the boundary of critical quantum chains can be
understood in terms of the sequence of boundary conditions imposed by them, as has
been previously demonstrated in the Ising and related fermion models. Using extensive
numerical simulations, we explore the scaling behavior of the Loschmidt echo under
longitudinal field perturbations at the boundary of a critical Z3 Potts model. We
show that at times much larger than the relaxation time after a boundary quench,
the Loschmidt-echo has a power-law scaling with time as expected from interpreting
the quench as insertion of boundary condition changing operators. Similar scaling is
observed as a function of time-period under a low frequency square-wave pulse. We
present numerical evidence which indicate that under a sinusoidal or triangular pulse,
scaling with time period is modified by Kibble-Zurek mechanism, again similar to the
case of the Ising model. Results confirm the validity, beyond the Ising model, of the
treatment of the boundary perturbations in terms of the e�ect on boundary conditions.

3.1 Introduction
The search for robust phenomena in interacting many body quantum systems far
out of equilibrium has seen a recent surge of activity motivated by the increasing
ability to probe quantum dynamics in artificial many body systems [69, 70], and by
the improvement in computational techniques that can reliably simulate dynamics
in very large quantum many body systems[71, 72, 37, 73]. Attempts at developing
general guiding principles like in equilibrium systems have prompted the investigation
of tractable models and protocols for out of equilibrium systems.[74, 75]. Systems
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out of equilibrium due to time-periodic Hamiltonians are among the simplest of such
tractable systems. The constant stroboscopic unitary time evolution operators in such
systems allow natural extensions of equilibrium notions such as steady state ensembles
and quasienergies [76, 77, 77], while at the same time demonstrating dynamical aspects
that di�er from equilibrium systems. Creative applications of Floquet physics[78, 79]
have already lead to the demonstration or prediction of many out of equilibrium
phenomena including Floquet localization[80, 80], freezing [81, 82], time crystals
[83, 30, 84, 9, 85], topological phases [86–91], non adiabatic charge pumping[92],
Floquet edge modes[93–95] etc. Periodic driving in generic interacting systems however
leads to heating[96, 97], taking the system ultimately to a featureless time steady state.
This fate can nevertheless be delayed in certain systems with long prethermalization
times, strong disorder etc.[98–101]

A periodic drive wherein the time dependent part of the Hamiltonian is local could
also lead to interesting physics in the long time limit, heating being avoided here due
to dissipation into the surrounding medium. Lack of translational invariance as well as
a need for large system sizes make analytical and numerical studies of such systems
di�cult. Local periodic drives at the boundary of critical 1D semi-infinite quantum
system are nevertheless tractable in the long-time limit, owing to the possibility of
mapping the problem to scenarios in 2D classical boundary critical phenomena[102].
From the point of view of numerical experiments, long chains can be used to mimic
semi-infinite systems allowing simulations of the system su�ciently long before finite
size corrections appear, allowing access to long time scaling properties.

In this spirit, critical quantum transverse field Ising model subjected to a periodic
longitudinal field (of amplitude hb) was explored in Ref-[5]. It was demonstrated that
at low frequencies (Ê = 2fi/T , where T much larger than the relevant relaxation times)
the Loschmidt echo | ÈÂ(0)|Â(NT )Í |2 after N time steps has a frequency dependence
of the form (Êh≠‹)N“. When the time dependent boundary field has a square wave-
form, the exponent “ = 4hBCC where hBCC is the scaling dimension of the boundary
condition changing operator corresponding to the change of boundary condition (for
example from a up-spin to down-spin). This exponent “ is corrected by Kibble Zurek
mechanism[103–105] to 4hBCC

1+‹
when the boundary field has a triangular or sinusoidal

waveform. Numerical simulations of the Ising model with integrability breaking pertur-
bations suggested that the scaling is robust in the presence of interactions. Similar
scaling was also observed in fermionic models related to the Ising model[106].

In this work, we explore the quantum critical Z3 Potts model under similar boundary
perturbations. The Z3 quantum Potts model generalizes the Ising model, and has
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a conformal critical point at the transverse field induced transition from the Z3

ordered phase to the paramagnetic phase. The Ising model following a Jordan Wigner
transformation maps to a fermion problem[40] with a quadratic Hamiltonian and linear,
exactly-solvable Heisenberg equations of motion allowing extensive analytical and
numerical studies of its dynamics. The Potts model under a similar transformation,
maps to a parafermion model with a quadratic Hamiltonian, which nevertheless does
not yield linear equations of motion[107–109, 47]. We therefore rely on matrix product
states(MPS) time evolution [73] to simulate the Potts chain and explore the scaling
properties of Loschmidt echo.

The chapter is structured as follows. In section 3.3 we introduce the Potts model,
describe the protocol for periodic drive and summarize the scaling relations expected.
Details of the numerical simulations are presented in section 3.4. Results of the
numerical simulation and their discussion are presented in section 3.6.

3.2 Boundary driven critical Ising chain
Hamiltonian of the Ising model with the boundary floquet drive studied in Reference
[5] is given by

H(t) = ≠
ÿ

iØ0

1
J‡z

i
‡z

i+1 + h‡x

i
+ �‡x

i
‡x

i+1
2

≠ hb(t)‡z

0 (3.1)

Parameters J and h are set to 1 as Ising model is critical at this parameter value.
Strength of the boundary field is hb(t) which is time dependent and periodic satisfies
hb(t) = hb(t+nT ) for any integer n. � quantifies the strength of additional perturbation.
Relaxation time tb can be thought of as correlation length in the time direction along the
boundary and is given by tb = |h≠‹b

b
|. Exponent ‹b is decided by the scaling dimension

of the boundary field hb. There are three relevant energy scales in the problem which
are single particle bandwidth � = 2J = 2, relaxation time tb and driving frequency
Ê = 2fi/T . Universality features in the low frequency drive was characterised by the
scaling features of the Loschmidt echo L = ÈÂ0|Â(t)Í, where |Â0Í is the ground state of
Hamiltonina at t = 0.

In the slow driving regime time scales are in the order Ê π t≠1
b

π �. Universal
features observed in this regime can be explained using the arguments borrowed from
CFT and Kibble-Zurek mechanism. We are interested in the universality arising when
boundary of system is perturbed around the critical point by varying the boundary
field hb. If boundary field is changed sharply then this change is equivalent to insertion
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of boundary condition changing (BCC) operators „BCC. Loscmidt echo at later time t

when boundary field is quenched from ±hb to ûhb at t = 0 is given by

L(t) ≥
---
e
„BCC(t = 0)

f--- = cN

A
t

tb

B≠“

(3.2)

For cases where boundary field is varied periodically with time period T , L after the N

cycles of drive times is equivalent to calculating the expectation of 2N point function
made up of BCC operators

L(NT ) ≥
-----

K 2N≠1Ÿ

n=0
„BCC(nT/2)

L-----

2

= cN

A
T

tb

B≠“N

(3.3)

Universal exponent “ depends on the scaling dimenson h+≠ of „BCC. For step drive
with boundary field changing between ±hb and ûhb, exponent “ = 4h+≠. This was
verified for both non-integrable (� ”= 0)and integrable case (� = 0).

Exponent “ is dependent on the driving protocol. For driving protocols where hb(t)
crosses the criticial point i.e hb = 0 slowly rather than suddenly like in the step drive,
Kibble-Zurek time scale comes into the picture leading to modification of the exponent
“ discussed in next subsection.

Kibble Zurek Scaling

According to adiabatic theorem when for any arbitrary Hamiltonian, if its parameter f

is varied slowly enough system prepared in ground state will remain in the ground state
manifold. But this theorem fails when we are close to the critical point fc. Closer to
the critical point relaxation time · varies as |f |≠z‹ for fc = 0 and it diverges as we get
closer to the critical point. Here z is dynamcial critical exponent and ‹ is correlation
length critical exponent. Kibble-Zurek time tKZ is the characterisitic time scale below
which system is not adiabatic for a process where Hamitonian is parameter is varied
smoothly with time.

For a linear ramp across the critical point fc as shown in Fig. 3.1 where |f(t)| = ⁄t,
tKZ can be estimated using

tKZ = ·(f(t)) (3.4)

Using ·(f(t)) = |f(t)|≠z‹ we get
tKZ = ⁄

≠z‹
1+z‹ (3.5)
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Fig. 3.1 Figure showing adibatic and frozen region resulting from divergence of relaxation
time near the critical point fc as Hamiltonian paramter f is varied. Kibble-Zurek time
seperates the adiabatic and frozen region.

Kibble-Zurek mechanism expresses the non-equilibrium dynamics closer to the phase
transition in terms of equilibrium critical exponents evident from Eq. 3.5. For a generic
periodic drive with period T where the parameter varies as f(t) = f

--- t

T

---
r

sgn(t) closer
to the critical point fc = 0, we have

tKZ ≥ T
rz‹

1+rz‹ f≠ z‹
1+rz‹ (3.6)

For step drive we have r = 0 and for triangular or cosine drive r = 1. Drives where
critical point is crossed smoothly the tKZ is the relevant time scale and replaces tb in
Eq. 3.3 as we are in the frozen region. Replacing tb by tKZ gives

L(NT ) ≥ cN(Thb)≠ “N
1+rz‹ (3.7)

3.3 Model and description of scaling
In this section, we describe the Potts model and summarize the results that we borrow
from boundary conformal field theory. The arguments, following Ref. [5] for the scaling
behavior of the Loschmidt echo specialized to the scenarios considered in this paper
are also presented. The Z3 Potts model is described by the Hamiltonian

H0 = ≠f
ÿ

i

·i ≠ J
ÿ

i

‡i‡
†
i+1 + h.c (3.8)
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Fig. 3.2 (a) Overlap of the time evolved state |Â(t)Í = e≠ıHBt |0AÍ with the initial state
|0AÍ shown schematically. In complex time, this is the partition function on a strip
with the fixed state |0AÍ at the top and bottom ends of the strip. (b) Since |0AÍ is
the ground state of HA, this can be interpreted as the state evolved after a long time
from an arbitrary state under complex time evolution under HA. (c) Identifying the
arbitrary initial and final states maps the overlap to a partition function on a cylinder
with Hamiltonians HB and HA in two regions. (d) E�ect of the two Hamiltonians can
be approximated as enforcing two boundary conditions in the corresponding regions. (e)
The changing boundary conditions can be interpreted as insertion of suitable boundary
condition changing operators. Figure reproduced with permission from Ref. [6].
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‡ and · are Z3 generalizations of the Pauli matrices ‡z and ‡x given by

‡ =

Q

cca

1 0 0
0 Ê 0
0 0 Ê2

R

ddb , · =

Q

cca

0 1 0
0 0 1
1 0 0

R

ddb (3.9)

where Ê is exp(2fi

3 ı). ‡ and · satisfies the algebra ‡3 = · 3 = 1 and ·‡ = Ê‡· at
each site, generalizing the algebra of Pauli matrices. The Hamiltonian Eq 3.8 is Z3

symmetric as it commutes with the generalized parity operator P = r
N

i=1 ·i. There is
a continuous phase transition at f = J from a three fold symmetry broken ordered
phase (f < J) to a paramagnetic phase f > J . The transition point is a conformal
critical point, with the operators in the model related to the M(6, 5) minimal model
and a non-diagonal modular invariant as the partition function.[110, 111]

In this work, we study the Potts model with a boundary field. The Hamiltonian of
the chain is time-dependent due to the boundary field and has the following form:

H = ≠h(t)m + H0 where m = ‡0 + ‡†
0

2 (3.10)

For a positive h(t), the ground state of the system has the boundary spin pointing
in the È‡0Í ≥ 1 state (fixed boundary condition) and for negative h(t), the boundary
spin in the ground state is in a mixed state of È‡0Í = Ê and È‡0Í = Ê2 (mixed
boundary condition). Two other fixed and mixed boundary conditions are obtained
if the boundary term is replaced with h‡0 + h.c. and arg(h) is ±2fi/3 and fi ± 2fi/3
respectively. The fixed boundary conditions are RG fixed points in the parameter
plane of the complex boundary field. Mixed boundary conditions under perturbation
of h flow into nearby fixed boundary condition points.[112]

We consider a scenario where a time-periodic boundary field h(t) toggles between
positive and negative values. Initially, the chain is assumed to be in the ground state
of the initial Hamiltonian. We will study the fate of the Loschmidt echo defined as the
overlap of the time evolved state with the initial state L = | ÈÂ(0)|Â(t)Í |2.

Consider the scenario where the boundary field is quenched from +hb to ≠hb (hb > 0).
The Loschmidt echo after this quench is given by L(t) = | È0A| exp(≠ıtHB)|0AÍ |2 where
|0AÍ is the ground state of the initial Hamiltonian HA = H0 ≠hbm, and HB is H0 +hbm.
In order to map the problem to a 2D classical system, we can analytically continue to
the complex time. The initial state upto proportionality constants can be identified
with limsæŒ exp (≠HAs) |–Í where – is a generic state with non-zero overlap with the
ground state (schematically shown in Fig 3.2). Summing over all such states – maps
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the Loschmidt echo to

L(≠ı·) ≥ lim
sæŒ

Tr
Ë
e≠sHAe≠·HB e≠sHA

È
(3.11)

This can be identified with the partition function of a 2D classical system with
periodic boundary conditions (Fig 3.2 c) and with a boundary field ≠hb along a tiny
duration/distance along the imaginary time of · , and +hb otherwise. Following the
idea introduced in Ref. [5] we can approximate the e�ect of the boundary field to be
to pin the boundary condition. Accordingly, the partition function can be replaced
with that of a system with fixed boundary condition (labelled A in Fig 3.2d) whenever
h > 0 and mixed boundary condition whenever h < 0 (labelled B in Fig 3.2d). A
key result from boundary conformal field theory is that such a change in boundary
condition can be interpreted as insertion (Fig 3.2e) of certain boundary condition
changing operators.[113, 102, 110] The partition function in Fig 3.2d is interpreted as
the correlation function of these operators separated by a distance · . The dominant
scaling dimension hBCC of the operator that changes the boundary condition between
the free and mixed boundary conditions can be inferred to be 2/5. The Loschmidt
echo L(ı·) scales in the same manner as the square of the correlation function at a
distance along the boundary · giving the result L(t) ≥ |t|≠4hBCC .

The above approximation is valid once the boundary spins have relaxed (over a
time scale h≠‹z

b
where z = 1 for the Potts model and ‹ is the boundary field correlation

length exponent) in response to the boundary field quench. Treating this as the short
time scale in the problem, the Loschmidt echo scales as L(t) ≥ |th‹

b
|≠4hBCC . For the

Potts model, it was argued in Ref-[114] that the spin-spin correlation function scales
with distance as 1/r÷|| where ÷|| = 4

3 . Comparing this with 2d ≠ 2/‹ (for d = 1
dimensional boundary), we infer the correlation length exponent along the boundary to
be ‹ = 3. Loschmidt echo under square-wave boundary field (amplitude hb, period T )
will now be an N point correlation function which scales with T as ≥ (Th‹)≠4NhBCC .
Note that the prefactors of the relation will have an N dependence in general which is
not captured by these arguments, though this was absent in the Ising model.

For a periodic perturbation such as a sinusoidal or triangular wave that crosses
h = 0 at a finite slope, unlike the square-wave, the short time scale is replaced by the
Kibble Zurek time scale ≥ ⁄≠ z‹

1+z‹ (z = 1 for our system) where ⁄ ≥ hb/T is the rate
at which the boundary field crosses the gapless system appearing at h(t) = 0. With
this the Loschmidt echo scales with time as ≥ (Th‹

b
)≠4N

hBCC
1+‹ .

In summary, for the cases studied here, after a quench from h = +hb to ≠hb the
Loschmidt echo should scale with time as L(t) ≥ (th3

b
)≠“ where “ = 8/5. Loschmidt
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echo scales with the time period as L(t) ≥ (Th3
b
)≠“N where “ = 8/5 for square wave

and “ = 2/5 for a triangular or sinusoidal wave.

3.4 Numerical methods
We use a matrix product representation of the states and Trotter decomposed time
dependent unitary time evolution operators represented as matrix product operators
to calculate the Loschmidt echo.[37] Ground state calculation was done using DMRG
implementation in MPS language. The time evolution was performed in steps of
�t = 10≠3. The unitary time evolution was implemented as a sequence of two site
gates using a time-dependent Suzuki-Trotter fourth order (per step) approximant [115]
. The bond dimension of 300 was used for the calculations presented. Calculations
were performed with bond-dimensions 150 and 100 in addition, to ensure that the
Loschmidt echo curves (upto t = 26/J) have converged. In general the required bond
dimensions were higher than 300 for simulations with hb < 0.2 i.e. closer to the critical
system, and therefore we have relied on data from hb Ø 0.4. J = h = 1 was used for
all the calculations presented. Chains of size L = 180, 220, 260 and 300 were studied
and we have presented the data for the largest system size L = 300. Finite size e�ects
sets in as the wavefronts from the change in boundary condition propogates into the
chain. In order to avoid finite size e�ects, time evolution only for N = 1 could be
reliably verified. In this work, we have restricted to the investigation of boundary
fields that cause changes between fixed and mixed boundary conditions. Due to large
bond dimensions, study of quenches into or from free boundary condition (h = 0) is
unreliable. While the expected scaling dimenion hBCC = 1/4 was accurately obtained
in those simulations, correlation length exponent ‹ which determines relaxation time
scale showed significant system-size and bond-dimension dependence.

3.5 Fourth order approximant for time evolution
Calculation of the Loschmidt echo L(t) essentially breaks down to problem of estimating
the matrix exponential of form e(A+B)t. In Eq. 3.10 the time dependent Hamiltonian
H(t) we have time dependent boundary field h(t) and the critical Hamiltonian H0

which is time independent. We can see that H(t) is of the form A + B. First we will
discuss approximant for the matrix exponential of the case when the both matrices A

and B are time independent as it will be needed for the time dependent case which is
of relevance for our work.
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Fig. 3.3 (a) Loschmidt echo after a quench of the boundary field from hb to ≠hb plotted
as a function of the rescaled time t/· = th3

b
for system size L=300. Inset shows the

same data as a function of time. (b) Same as panel (a) but after filtering out the
oscillatory components of the Loschmidt echo. (c) Exponent “(t, hb) estimated near
specific times t plotted as a function of hb. “(t, hb) is estimated from the slope of
log L(t) vs log t shown in panel (b). Comparison with data from L = 120, 180 indicate
saturation to the expected exponent 8/5 at large Th3 in large systems. (d) Same as
panel (c) but plotted as a function of rescaled time. Figure reproduced with permission
from Ref. [6].
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Using the Taylor expansion we can write e(A+B)t as

e(A+B)t = 1 + (A + B)t + t2

2 (A2 + AB + BA + B2) + O(t3) (3.12)

similarly we can get the expression for eAteBt

eAteBt = 1 + (A + B)t + t2

2 (A2 + 2AB + B2) + O(t3) (3.13)

so from Eq. 3.13 it is clear that eAteBt is good first order approximant denoted by
S1(t) (expression which is correct till first order in t) for e(A+B)t if [A, B] ”= 0 and it
will also be the good second order approximant if [A, B] = 0. For [A, B] ”= 0, Equation
3.12 and 3.13 are related by

S1(t) = eAteBt = e(A+B)t+O(t2) (3.14)

Above decomposition is known as Suzuki-Trotter decomposition or exponential product
formula. Our objective is to generalize the Eq. 3.14 to the following form which is
correct till desirable order in t

Sm(t) = eAp1teBp2teAp3teBp4t . . . eBpM t = e(A+B)t+O(tm+1) (3.15)

To get the second order approximant we will use the following symmteric expression

S2(t) = e
t
2 AetBe

t
2 A = e(A+B)t+t

3
R3+... (3.16)

This kind of symmetric approximants satisfies the following property that

S2(t)S2(≠t) = I (3.17)

Due to property there will be no even order correction terms(e.g t4R4) in eq 3.16.
Using eq 3.16 we can construct the fourth order approximant in the following manner.

S4(t) = S2(s2t)2S2((1 ≠ 4s2)t)S2(s2t)2

= e
s2
2 tAes2tBes2tAes2tBe

1≠3s2
2 tAe(1≠4s2)tBe

1≠3s2
2 tAes2tBes2tAes2tBe

s2
2 tA

= [es2t(A+B)+s
3
2t

3
R3+O(t5)]2e(1≠4s2)t(A+B)+(1≠4s2t)3

R3+O(t5)[es2t(A+B)+s
3
2t

3
R3+O(t5)]2

= et(A+B)+[4s
3
2+(1≠4s

3
2)]t3

R3+O(t5)
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Since we want our expression to be correct till fourth order term 4s3
2 + (1 ≠ 4s3

2) has to
be zero. Otherwise it will contribute to t3 terms. On solving 4s3

2 + (1 ≠ 4s3
2) = 0 we

get the following solution

s2 = 1
4 ≠ 3Ô4

= 0.414490771... (3.18)

Whenever we have terms in the exponential which are time dependent we have to
deal time ordered exponential

U(t2; t1) = T
5
exp

3
≠i

⁄
t2

t1
H(s)ds

46
(3.19)

For the analysis we need the shift-time operator · = i
Ω≠
ˆ

ˆt
which acts on the function

on the left. It’s action can be understood from the following equation

F (t)e≠i�tT G(t)e≠i�tT H(t) = F (t + �t)G(t)e≠i�tT H(t)
= F (t + 2�t)G(t + �t)H(t)

We can express eq 3.19 in terms of T also which is finally going to be helpful for the
trotter decomposition of U(t + �t; t)

T

C

exp
A

≠i
⁄

t+�t

t

H(s)ds

BD

= lim
næŒ

e≠i
�t
n H(t+�t)e≠i

�t
n H(t+ n≠1

n �t)...e≠i
�t
n H(t+ 1

n �t)

= lim
næŒ

e≠i
�t
n H(t)e≠i

�t
n T e≠i

�t
n H(t)e≠i

�t
n T ...e≠i

�t
n H(t)e≠i

�t
n T

= lim
næŒ

1
e≠i

�t
n H(t)e≠i

�t
n T

2n

= e≠i�t(H(t)+T )

So we have the final expression

U(t + �t; t) = e≠i�t(A(t)+B(t)+T ) (3.20)

First order approximant denoted by G1(t + �t; t)for the RHS of the eq 3.20 is given by

G1(t + �t; t) = e≠ÿ�tA(t)e≠ÿ�tB(t)e≠ÿ�tT

= e≠ÿ�tA(t+�t)e≠ÿ�tB(t+�t) (3.21)
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Time dependent version for the second order approximant which is generalization of
Eq. 3.16 is given by

G2(t + �t; t) = e≠ ÿ
2 �tT e≠ ÿ

2 �tA(t)e≠ÿ�tB(t)e≠ ÿ
2 �tA(t)e≠ ÿ

2 �tT

= e≠ ÿ
2 �tA(t+ �t

2 )e≠ÿ�tB(t+ �t
2 )e≠ ÿ

2 �tA(t+ �t
2 )

(3.22)

Fourth order approximant can be constructed by the symmetrized arrangement of
approximants G2

G4(t + �t; t) = (G2(t + s2�t))2G2(t + (1 ≠ 4s2)�t)(G2(t + s2�t))2

= e≠ ÿs2
2 �tA(t+ (2≠s2)�t

2 )e≠ÿs2�tB(t+ (2≠s2)�t
2 )e≠ ÿs2

2 �tA(t+ (2≠s2)�t
2 )

◊ e≠ ÿs2
2 �tA(t+ (2≠3s2)�t

2 )e≠ÿs2�tB(t+ (2≠3s2)�t
2 )e≠ ÿs2

2 �tA(t+ (2≠3s2)�t
2 )

◊ e≠ ÿ(1≠4s2)
2 �tA(t+ �t

2 )e≠ÿ(1≠4s2)�tB(t+ �t
2 )e≠ ÿ(1≠4s2)

2 �tA(t+ �t
2 )

◊ e≠ ÿs2
2 �tA(t+ 3s2�t

2 )e≠ÿs2�tB(t+ 3s2�t
2 )e≠ ÿs2

2 �tA(t+ 3s2�t
2 )

◊ e≠ ÿs2
2 �tA(t+ s2�t

2 )e≠ÿs2�tB(t+ s2�t
2 )e≠ ÿs2

2 �tA(t+ s2�t
2 )

(3.23)

Above fourth order approximant was used for the time-evolution implementation.

3.6 Numerical results
In this section we present the numerical results for dynamics of Loschmidt echo under
boundary perturbations. Figure 3.3 summarizes the results for Loschmidt echo as a
function of time t after a quench from H+ = H0 ≠ hbm to H≠ = H0 + hbm, with the
system starting from the ground state of the initial Hamiltonian. Results are presented
for the largest system studied (L = 300). The Loschmidt echo (inset-a) approaches a
power law scaling for t larger than the relaxation time scale · = h≠3

b
, however for very

large t, finite size e�ect sets in leading to deviation from power-law scaling behavior.
For the small hb Æ 0.4, the relaxation time is large and comparable to the time scale
for onset of finite size e�ects, as a result a scaling region is not evident in this case. A
power-law regime emerges for larger boundary fields where · is smaller i.e. when hb

increases. However, as the boundary field approaches the local energy scale of J = 1,
the power-law gets masked by an oscillatory component. Empirically we find that these
oscillations decay with time and have a constant frequency. Figure 3.3(b-inset) shows
the same data after filtering out a oscillatory component, and reveals a power-law
scaling in the backdrop of the oscillations. The Loschmidt echo trace L(t) for di�erent
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Fig. 3.4 (a) Loschmidt echo L(T ) at the end of one drive cycle is plotted as a function
of rescaled time period T/· = Th3

b
for a triangular-wave boundary field for system

size L=300 in the low frequency regime. (b) L(T ) plotted as a function of the time
period. (c) Scaling exponent “(T ) estimated using data at fixed T by calculating
the slope of ln L vs ln Th3

b
. Large T limit of “ is obtained by fitting the data to

“(T ) = “(Œ) + axT
≠x

1+aT ≠x . Figure reproduced with permission from Ref. [6].
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hb shows a scaling collapse when the time t is rescaled by the relaxation time scale
(Fig 3.3(a)). Similar collapse is also seen in the Loschmidt echo after filtering out the
oscillatory components.

Figure 3.3(c) shows the negative of the slope in the log-log plot of the filtered
data as a function of hb at di�erent fixed times t. The slopes approach “ = 8/5 with
increasing t as well as with increasing hb (decreasing ·). Empirically, we find that the
slopes approach the saturation values as a function of th3

b
(Fig 3.3 (d)). For small

systems, finite size e�ect sets in before the slope saturates. This can be seen from the
slopes for L = 120, 180, 300 at t = 15 shown in Fig 3.3 (c). With increasing L, the
time-scale when finite size e�ect sets in increases and saturation of the slope is evident.

Under a square-wave boundary perturbation oscillating between H± = H0 + ûhbm,
when the initial state is the ground state of the initial Hamiltonian H+, the Loschmidt
echo after a single time period T namely |

e
Â(0)|e≠ıH+T/2e≠ıH≠T/2|Â(0)

f
|2 is the same

as the Loschmidt echo after a time T/2 following a quench. Thus L(T, hb) ≥ (Thb)≠“

where “ = 8/5.
Figure 3.4 summarizes the results for the Loschmidt-echo under a triangular wave

like boundary perturbation after a single time-period. The initial state is the ground
state of the Hamiltonian H = H0 ≠ hbm. The Hamiltonian is linearly changed to
H = H0 + hbm and then linearly back to H = H0 ≠ hbm over a total time T . Figure
3.4(b) shows the Loschmidt echo for di�erent values of T and hb. The data at di�erent
values of T and hb collapse when expressed as a function of Th3

b
(Figure 3.4(a)). The

slope estimated from the largest values of Th3
b

was 0.41 ± 0.02. Exponent “ obtained
by fitting the data to L(T, hb) = A(Th3

b
)≠“ separately for each value of T is shown in

Fig 3.4(c). “(T ) approaches 0.4 as T increases. To get the estimate of the asymptotic
value of the slope, we fitted the data to “(T ) ¥ “(Œ)+ cT ≠d to get “(Œ) = 0.36±0.06.
These values are consistant with the expected value of “ = 4hBCC

1+‹
= 2

5 .
Figure 3.5 shows the results for the Loschmidt-echo under a sinusoidal wave bound-

ary perturbation after a single time-period T . The initial state is again the ground state
of the Hamiltonian H = H0 ≠ hbm. The Hamiltonian is changed to H = H0 ≠ hbm and
then back to H = H0 + hbm in a sinusoidal manner. The data at di�erent values of T

and hb (Fig 3.5(b)) collapse when expressed as a function of Th3
b

(Figure 3.5(a)). Slope
estimated from the largest values of Th3

b
was 0.46 ± 0.03. We believe the deviation

is due to T not being large enough. Exponent “ obtained by fitting the data at each
fixed T to L(T, hb) = A(Th3

b
)≠“ again drifts towards 0.4 at large T . From fitting this

data to “(T ) © ≠ d ln L
d ln T

¥ “(Œ) + cT ≠d, “(Œ) was found to be 0.39 ± 0.04, which is
again consistant with the expected value of 2/5.
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Fig. 3.5 Loschmidt echo for a sinusoidal wave perturbation for system size L=300 in
the low frequency regime. Loschmidt echo at the end of one drive cycle (N=1) as a
function of rescaled time period T/· = Th3

b
is shown in panel (a). Panel (b) shows

the same data as a function of T . Scaling exponent “(T ) estimated from data at fixed
time period T . Asymptotic value is estimated by fitting to “(Œ) + axT

≠x

1+aT ≠x . Figure
reproduced with permission from Ref. [6].
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3.7 Conclusions
We have presented the results of dynamics of Loschmidt echo from numerical experi-
ments on low frequency boundary fields on large, but finite, quantum critical Z3 Potts
chains. The results obtained after single time period are in close agreement with what
is expected from interpreting the fields as simply imposing a corresponding set of
boundary conditions: Loschmidt echo scales with frequency as (Êh≠‹

b
)“ where “ is

determined by (i) the boundary condition changing operators corresponding to the
sequence of boundary condition changes imposed by the boundary field and (ii) the
manner in which the boundary field crosses the h = 0 point. Unlike most results on
Floquet systems that hold in the high-frequency regime derived from some variant of
the Magnus expansion, the scaling results explored here hold in the lowest frequency
regime. It will be useful to extend the result beyond Loschmidt echo and to physically
measurable correlations of energy and magnetization.

Scaling of L in the model studied here was tractable due to the mapping to the
classical 2D conformal critical system. The Potts model can be generalized to a broader
class of chiral Z3 symmetric models[50, 116, 47] with z ”= 1, lacking a simple mapping
to a 2D classical conformal critical point.[46, 117, 118, 52] It will be interesting to
explore whether similar scaling properties apply to boundary field quenches within
these models and if they do what dictates the scaling exponents? Our initial numerical
experiments on boundary quenches in the chiral models indicated a steeper decay of
the Loschmidt echo with time, therefore demanding a higher order of accuracy in the
time evolution.





Chapter 4

Post quench entropy dynamics

We numerically study quenches from a fully ordered state to the ferromagnetic regime
of the chiral Z3 clock model, where the physics can be understood in terms of sparse
domain walls of six flavors. As in the previously studied models, the ballistic spread of
entangled domain wall pairs generated by the quench lead to a linear growth of entropy
with time, upto a time ¸/2vg in size-¸ subsystems in the bulk where vg is the maximal
group velocity of domain walls. In small subsystems located in the bulk, the entropy
continues to further grow, approaching ln 3, as domain walls traverse the subsystem
and increment the population of the two oppositely ordered states, restoring the Z3

symmetry. The latter growth in entropy is seen also in small subsystems near an open
boundary in a non-chiral clock model. In contrast to this, in the case of the chiral model,
the entropy of small subsystems near an open boundary saturates. We rationalize the
di�erence in behavior in terms of qualitatively di�erent scattering properties of domain
walls at the open boundary in the chiral model. We also present empirical results for
entropy growth, correlation spread, and energies of longitudinal-field-induced bound
states of domain wall pairs in the chiral model.

4.1 Introduction
Quantum many-body dynamics in isolated systems has been an active area of contem-
porary research due in large part to realizations of tunable, almost isolated systems of
long enough coherence times in cold atom experiments [27, 119–126] A key notion in
this context is the entanglement between the subsystem and environment. Though
not as easily measurable in experiments[127, 128] as local observables and correlation
functions, entanglement in the eigenstates and its dynamics in general states give
conceptual insights into broad questions of relaxation dynamics, dephasing, quantum
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measurements, thermalization, etc.[12, 13, 129–132]. Entanglement is also relevant
to practical considerations in quantum engineering and in designs of algorithms for
quantum many-body dynamics. [37]

A quench, in which an initial state with uncorrelated local observables undergoes
a global change of the Hamiltonian, is a paradigmatic scenario that has been used
to understand entanglement dynamics.[133] Under the new Hamiltonian, the initial
state generically has a finite energy density above the ground state. The initial state,
which in general is not an eigenstate of the new Hamiltonian, evolves with time. A
large body of work on quenches in specific one dimensional systems has provided a
semiclassical picture of the mechanism[134] for the entanglement growth during this
time evolution.[135–145] Immediately after a quench, entangled quasiparticle pairs
generated within short distances propagate away from each other. When these pairs
are separated across the boundary between the subsystem and the environment, the
subsystem e�ectively becomes entangled with its environment. The spreading of
quasiparticles lead to decay of order parameters and induces correlations between
initially uncorrelated local quantities in di�erent parts of the system.[146–148] Thus
the quasiparticle dynamics is closely connected to the growth of entanglement and
correlations. The entanglement growth in a subsystem of length ¸ is encoded in the
following expression[134]

S(t) ≥ 2t
⁄

v(k)< ¸
2t

dkv(k)f(k) + ¸
⁄

v(k)> ¸
2t

dkf(k) (4.1)

where v(k) represents the velocity of the quasiparticle indexed by quantum number k,
and f(k) is a function that depends on the amount of such quasiparticles produced at
the time of the quench. If the dominant contribution to the integrals comes from a
narrow range of k(with a velocity vm), the first term produces a linear-in-time growth
in entanglement till a time ¸/2vm. At large times the second term dominates, and
as the slowest quasiparticles cross the subsystem boundary, this term saturates to a
constant proportional to ¸.

Studies on the 1D quantum transverse field Ising model (TFIM) and perturbations
to this model have been crucial to guiding our intuition about post quench dynamics
and relaxation in quantum chains.[147, 146, 148, 149]. Ref-[149] considered the non-
equilibrium dynamics of a ferromagnetically ordered initial state, under a TFIM
Hamiltonian with a longitudinal field perturbation aligned with the Ising order. Even
a weak longitudinal field perturbation led to a strong suppression of the entanglement
growth. The qualitative change in the entanglement dynamics could be attributed to the
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longitudinal field creating bound states of two di�erent domain-wall-like quasiparticles
of the Ising chain, preventing the original quasiparticles from spreading away from
each other.

The TFIM is a Z2 symmetric member of a broad class of Zn symmetric models with
nearest neighbor interactions.[47] Simplest among these beyond the TFIM is the Z3

symmetric clock model. The Z3 model shares several features with the TFIM, such as
a phase diagram with an ordered and paramagnetic phase and a continuous transition
between them. The model can be transformed into a quadratic Hamiltonian of Z3

parafermions reminiscent of the quadratic Majorana Hamiltonian obtained following a
Jordan Wigner transformation of the TFIM. The model generically has a chirality and
has a richer set of domain wall flavors than the TFIM.

In this study, we numerically explore the dynamics after a weak quench in a Z3

symmetric chiral clock model with the goal of understanding the manner in which
aspects of quench dynamics learned from TFIM extend to the Z3 chiral clock model,
which has multiple domain wall flavors and chirality. Being non-integrable, we expect
the clock model to thermalize [150, 14, 105]. However, we will not focus on questions
of long-time behavior and thermalization and instead explore the e�ect of chirality on
entanglement growth at short times that can be reliably studied using numerical tools.
We will work with weak quenches of a fully ordered state to a final Hamiltonian that is in
a ferromagnetic regime of the model, where the low energy quasiparticles are long-lived
domain walls. We will also explore the e�ect of the longitudinal field perturbations
motivated by observations made in Ref-[149]. This being a numerical study, we
focus on attributes easily accessible in the computational basis. The generation of
entangled quasiparticle pairs can be pictured in the expansions in computational basis
as generation of finite amplitudes, after quench, for states with flipped spin domains
of various sizes centered around all points of the system. Domain walls flank these
flipped spin domains. Dispersion of these domain walls and their scattering properties
at the boundary will be used to understand the dynamics of the subsystem entropy.

The clock model is parametrized by a parameter ◊ that determines the chirality of
the model, with ◊ = 0 representing the non-chiral model. After a quench, domain walls
in the model, for any ◊, are produced in opposite chirality pairs (such as ...AAABBB..

and ...BBBAAA...), therefore opposite chirality domain walls are equally abundant.
As we show, the domain walls propagate with a velocity independent of ◊ or the
chirality of the domain walls. As a result, we find that qualitative features of the
entanglement growth in the bulk of the system are same for the non-chiral and the
chiral model. Chirality however influences the scattering properties of domain walls at
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the open boundaries and hinders symmetry restoration in subsystems located close
to the boundaries, preventing regions near the boundaries from thermalizing. The
magnetization decays with time in the bulk of the system after a quench from the
fully ordered state, indicating restoration of the Z3 symmetry in the final steady state.
However, the magnetization at the boundary retains the initial value even in the
steady-state. This can be related to a qualitatively di�erent entanglement growth in
small subsystems located in the bulk and at the boundary. Entanglement entropy of
small subsystems in bulk continues to grow for times beyond the expected saturation
time of ¸/2vg (vg being the maximal group velocity of the domain walls), whereas at the
boundary, the entanglement entropy saturates after a time scale ¸/vg. The robustness
of magnetization near the boundary can also be interpreted in terms of long coherence
times near the boundary in systems with strong zero modes.[151, 152] Our work gives
a complementary microscopic perspective for the same physics.

We describe the Z3 chiral clock model in Sec. 4.3. For weak transverse fields,
dynamics at low energies can be described in terms of far separated domain walls.
Scattering properties of the domain walls at an open boundary are described in this
limit. We will use this description to explain the contrasting behaviors of entropy
growth in the small subsystems located near an open boundary of the system. Section
4.4 briefly describes the numerical time evolution calculations. Results of the numerical
simulations in the non-chiral and the chiral models are presented following this in Sec.
4.5 and Sec. 4.6 respectively. We conclude with a summary of the results in Sec. 4.7.

4.2 Quench in TFIM
E�ect of integrability on the thermalization was experimentally studied thorugh quan-
tum Newton’s cradle for quasi 1D bosonic gas clouds in Ref. [27]. It was shown that
qunatum integrable systems can escape the fate of thermalization because of presence
of extensive number of conserved charges in the system. Failure of thermalization
for the integrable means that their steady state attained at long times can not be
explained by the thermal density matrix instead it is satisfies another ensemble call
Generalized Gibbs Ensemble (GGE) [17]. TFIM is one of the paradigmatic model to
understand the features of quantum phase transition, dynamics, e�ect of integrability
etc. because of its exact solvability.

Exact analytical results on the steady state properties after the generic quench were
studied in [147, 148, 146]. For a generic quench it is analytically proved in Ref. [147]
that steady state reduced density matrix at large times is described by appropriate
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GGE. Using deteminant and form factor approach the steady state value of one and
two point correlations for local and non-local spin operators (in equivalent fermionic
representation) is calculated in [148]. Entanglement dynamics after the quench in
TFIM is shown [135] to be perfectly in accordance with Calabrese-Cardy quasi-particle
picture.

4.3 Model
This study explores the growth of entanglement after a fully ordered initial state (all
spins in the same direction) undergoes a weak quench to a Hamiltonian with finite
transverse field and small non-zero chirality (as described further below). Domain wall
pairs are nucleated from every part of the chain after the quench. These domain walls
propagate under the dynamics induced by the transverse field and lead to correlations
between local properties of di�erent parts of the chain. Introducing chirality in the
model modifies the dynamics by creating a di�erence between energies of di�erent
domain wall flavors and modifies the scattering properties of domain walls at an open
boundary. We aim to explore how chirality a�ects the entropy growth, correlation
spread and magnetization.

Here we begin by describing the model. The Z3 chiral clock model in one dimension
[50, 116, 109, 47] has the following Hamiltonian

H = ≠Jeı◊
ÿ

i

‡i‡
†
i+1 ≠ feı„

ÿ

i

·i + h.c. (4.2)

where operators ‡i and ·i located at the ith site are

‡ =

Q

cca

1 0 0
0 Ê 0
0 0 Ê̄

R

ddb · =

Q

cca

0 1 0
0 0 1
1 0 0

R

ddb . (4.3)

Here Ê = exp(2fiı/3) and Ê̄ = exp(≠2fiı/3). The algebra satisfied by the above
operators: ‡3

i
= · 3

i
= 1 and ‡i·j = ”ijÊ̄·j‡i presents a Z3 analogue of the algebra of

Pauli matrices ‡z and ‡x; and the Hamiltonian forms a Z3 symmetric analogue of the
Z2 symmetric spin-1

2 transverse field Ising model.[40] The Hamiltonian commutes with
the Z3 generalization of the parity operator namely P = r

·i, which allows labeling
of energy eigenstates with parity eigenvalues 1, Ê, or Ê̄. For simplicity we will work
with systems with „ = 0 and will use units where ~ = 1. The chirality of the model
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is determined by ◊ and can be assumed to take values in the range [0, 2fi/3], as the
physics at ◊ can be related to ◊ + 2fi/3 through a local unitary transformation by r

i · i

i
.

In the absence of a transverse field (f = 0), energy eigenstates are direct products
of ‡i eigenstates at each site with energies ≠2J

q
i cos(◊ + –i,i+1) where –i,i+1 œ

{0, ±2fi/3} is arg(È‡iÍ/È‡i+1Í). For ◊ in [0, fi/3], the ground state is described by
– = 0, corresponding to all spins pointing in the same direction (1, Ê or Ê̄). The
simplest excitations are localized domain walls. In the non-chiral model the opposite
chirality domain walls (...AABB... and ...BBAA...) as well as domain walls at di�erent
locations are degenerate. The ground state is ferromagnetic in the entire range [0, fi/3]
but finite ◊ causes an energy di�erence 2J

Ô
3 sin ◊ between domain walls of opposite

chirality. The ground states in the regime ◊ > fi/3 have a twisted ordering with
adjacent spins È‡iÍ di�ering by a factor of Ê. These domain walls disperse if the
transverse field is non-zero, lifting the degeneracy of di�erent domain wall states.

We will consider quenches to Hamiltonians with finite f , and a non-zero ◊ œ (0, fi/6],
i.e. in the regime where the classical ground state is still ferromagnetic but ◊ influences
the dynamics by inducing a chirality to the domain walls. We find that quenches
to larger ◊ result in more complex domain wall dynamics due to the possibility of a
domain wall splitting into two as discussed later in this section.

The non-chiral model (◊ = 0) is ferromagnetic for f < J and exhibits a continuous
phase transition to a paramagnetic phase (f > J).[47, 49] The ground state in the
ferromagnetic phase is three-fold degenerate (forming a parity multiplet) - with a
splitting that decays exponentially with system size; but the excited states (for f ”= 0)
have parity multiplets that show a power law decay of the splitting with system
size.[47, 4] The chiral model with finite ◊ also shows a transition from a Z3 symmetry
broken phase to the paramagnetic phase at some fc . J .[3, 46, 52] Unlike the non-
chiral case, the excited states in the broken Z3 symmetry phase have multiplets with
a splitting that exponentially decays with system size. For weak transverse fields
(2f < J

Ô
3 sin ◊), this degeneracy can be attributed to a weak zero-energy parafermion

mode localized at the boundary in the Jordan Wigner transformed dual model.[47]
The power law decay with system size of the splitting in the non-chiral model can

be understood as arising from the scattering properties at the boundary.[4] We present
a simplified form of this model here and will use this as a basis to rationalize the
entropy growth in subsystems near the boundary. In the limit of low energy densities,
the states in the model can be understood in terms of a dilute set of domain walls,
and interaction between domain walls may be neglected. For the discussions below, we
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will assume that transitions to the zero-domain-wall and two-domain-wall states are
suppressed by an energy gap.

Now we focus on the dynamics of a single domain wall in the vicinity of a boundary.
We denote by |AB, iÍ a direct product state representing a domain wall on the bond
i separating regions of È‡Í = A to the left and È‡Í = B to the right. There are six
possible domain wall types, but an incoming domain wall, say of type 1Ê (with È‡Í = 1
to the left of i all the way to ≠Œ) that approaches a boundary on the right, can be
reflected only as a 1Ê or 1Ê̄ domain wall types at the boundary. Transition to any of
the other domain walls such as Ê1 will require global changes in the spin states.

The Hamiltonian projected into the space of these states can be written as

PHP = H1Ê + H1Ê̄ + Hboundary. (4.4)

Here the Hamiltonian for each flavor of the domain wall is given by

H1Ê = µ+
ÿ

i

|1Ê, iÍÈ1Ê, i| ≠ f
ÿ

i

|1Ê, iÍÈ1Ê, i + 1| + h.c.

H1Ê̄ = µ≠
ÿ

i

|1Ê̄, iÍÈ1Ê̄, i| ≠ f
ÿ

i

|1Ê̄, iÍÈ1Ê̄, i + 1| + h.c.

where
µ± = 2J [cos ◊ ≠ cos(◊ û 2fi/3)] (4.5)

Away from the boundaries, and away from each other, the Hamiltonian imparts a
dispersion of ‘±

k
= µ± ≠ 2f cos(k) to the domain walls. The boundary scatters between

the two relevant domain wall types:

Hboundary = ≠f |1Ê, L ≠ 1ÍÈ1Ê̄, L ≠ 1| + h.c.

The Hamiltonian is a tridiagonal matrix shown in Fig. 4.1(a). Relabeling the basis states
as Îx = iÍ = |1Ê, iÍ and ||x = 2L ≠ i ≠ 1Í = |1Ê̄, iÍ, this represents the Hamiltonian
of a particle with kinetic energy ≠2f cos(k) traveling across a potential jump � =
|µ+ ≠ µ≠| = 2

Ô
3J sin ◊ at the position L. In the relabeled form, states propagating

away on the right of L represent, physically, a 1Ê̄ domain wall reflecting back towards
the left from the boundary. For ◊ = 0, gap � is zero and the particle tunnels across with
unit probability; i.e. there is a complete reflection of the 1Ê to a 1Ê̄ domain wall.[153]
For larger ◊ such that the bandwidth is smaller than the gap, i.e. 2

Ô
3J sin ◊ > 4f the

domain wall bounces back without any change in its flavor.
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Fig. 4.1 Panel a shows the Hamiltonian matrix in the one-domain-wall space after
relabeling 1Ê̄ domain wall at bond number i < L as x = 2L ≠ i ≠ 1 and 1Ê domain
wall at bond number i < L as x = i. E�ective dispersions of opposite chirality (the
two colors represent the bands for the two di�erent chiralities) domain walls are shown
schematically for the case of small ◊(panel b) and large ◊(panel c). Panels d and f
schematically show the fate of a domain wall wave-packet that bounces o� a boundary
in a system with small ◊. Panel d shows the incoming packet and panel f shows the fate
after collision with the boundary. Incoming domain wall has one chirality (indicated
in orange) whereas the reflected domain wall is primarily of opposite (blue) chirality.
Panels e and g are similar but for a case where ◊ is larger. Here the domain wall
bounces back without change in the flavor. Figure reproduced with permission from
Ref. [7].
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Boundary mediated tunneling from one domain wall flavor to another results in an
increased energy splitting in excited states of the non-chiral model.[4] The nature of
the zero mode and the analysis of the energy splitting are not directly related to the
present work, but we will use the above e�ective model to make sense of the numerical
results.

As ◊ approaches fi/6, Eqn. 4.5 suggests that µ+ ≥ µ≠/2; so the energy of a domain
wall of the form 1Ê̄ is same as that of a pair of domain walls of opposite chirality
1Ê and ÊÊ̄. Thus the 1Ê̄ can evolve into a domain wall pair of the form 1ÊÊ̄. We
restrict to a discussion of the regime where the domain wall is stable. In the rest of
this manuscript, we describe the results from numerical simulations of the quenches in
the limit of small f , ◊ < fi/6, and „ = 0 regime of the clock model.

4.4 Numerical simulation of the time evolution
States and operators are represented as matrix product states and matrix product
operators [37] respectively, with a maximum bond dimension of 300. Time evolution of
the states were implemented by using fourth order Suzuki-Trotter approximant [115]
to represent exp(≠ıH”t) with time steps ”t = 10≠3. This approximant decomposes
the unitary operator as a sequence of two site gates acting on adjacent sites. Further
details of the numerical implementation for the approximant is similar to that used
in Ref [6] and has been summarized in the Appendix. We use J=1 in all numerical
calculations.

4.5 Numerical results: Quench into the non-chiral
model

In this section, we describe the dynamics after an initial state Â0, in which all sites are
in the È‡Í = 1 direction, is quenched to the non-chiral Hamiltonian at finite transverse
field. After the quench, the system evolves into a linear combination of the initial state
and (with small amplitudes) domain wall pair states of the form 1Ê1 and 1Ê̄1. The
flipped spin domains are nucleated from every part of the chain, and domain walls on
the opposite sides of the flipped spin domain propagate in opposite directions with a
characteristic velocity corresponding to the maximal group velocity vg = 2f (Sec. 4.3)
of the domain walls; thereby expanding the flipped spin domains. This is schematically
represented in Fig 4.2.
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Fig. 4.2 Schematic representation of the state of the system after a weak quench. State
after the quench is, to a good approximation, a linear combination of the ordered
state and 1Ê1 and 1Ê̄1 type two domain wall states. The vertical direction represents
the time evolution of domains in each term. Flipped spin domains are nucleated
from all parts of the chain forming di�erent terms of the linear combination in the
computational basis. The domains expand as the domain walls propagate. In a system
with non-linear dispersion, the domain walls of di�erent momenta propagate at di�erent
group velocities. Dashed vertical lines demarcate a subsystem. For each cone, spins
flipped to Ê and Ê̄ inside the subsystem are shown in blue and orange colors. The
flipped spins outside the system are colored gray irrespective of direction of the spins
inside them. Figure reproduced with permission from Ref. [7].
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Fig. 4.3 Panel a shows the total probability of domain wall pair states that occur with
non-zero probabilities after the quench from a fully ordered state to a final Hamiltonian
with f = 0.1 and ◊ = 0. System size is L = 40. Panel b shows the probabilities but
in a system with an additional longitudinal field h = 0.02 in the final Hamiltonian.
In Panel a and b, domain wall types 1Ê1 and 1Ê̄1 have equal probabilities and the
corresponding lines (orange and blue) completely overlay over one another. Similarly,
lines corresponding to domain wall configurations 1ÊÊ̄, Ê̄Ê1, 1Ê̄Ê and ÊÊ̄1 also overlay
over each other. Panels (c,d) show the corresponding results for the three domain wall
states of the form ABCA. Figure reproduced with permission from Ref. [7].
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Fig. 4.4 Scattering dynamics of a domain wall of flavor . . . ÊÊ11 . . . localized at bond
x = 5 is shown here for quench Hamiltonian parameters f = 0.1 and ◊ = 0.0. From
panel (a) to (f) in alphabetical order, probability of single domain wall flavors 1 ≠ Ê,
Ê ≠ 1, 1 ≠ Ê̄, Ê̄ ≠ 1, Ê ≠ Ê̄ and Ê̄ ≠ Ê localized at bond x at time t is plotted with t
and x on y and x axis respectively. In the panel (b) and (d) we can see that domain
wall of flavor . . . ÊÊ11 . . . changes its flavor to . . . Ê̄Ê̄11 . . . after scattering from the
boundary for the nonchiral quench.
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Figure 4.3a presents the total probability weight (over all positions) of two domain
wall states of di�erent types, showing that among these, the 1Ê1 and 1Ê̄1 are equally
populated. Small domains of size 1 (where domain walls are separated by a distance of
1 lattice unit) show rapid oscillations and have been omitted. As time progresses, the
domain wall pair states of the form 1Ê1 (1Ê̄1) formed in the vicinity of the left-hand-
side boundary reflect o� the boundary as a Ê̄Ê1 (ÊÊ̄1) domain wall pair states (as
described in Sec 4.3). On the right hand side boundary, the domain walls scatter from
the 1Ê1 (1Ê̄1) state into 1ÊÊ̄ (1Ê̄Ê) state. Since the domain walls reach the boundary
with a characteristic rate vg, there is a linear rate of decrease of the population of the
1Ê1 and 1Ê̄1 states as shown in Fig 4.3a. Correspondingly the population of the states
of the types 1ÊÊ̄, 1Ê̄Ê, and ÊÊ̄1, Ê̄Ê1 linearly increase with time.

In the presence of an additional longitudinal field in the final Hamiltonian,

Hlongitudinal = ≠h(‡ + ‡†) (4.6)

the energy of the flipped spin domains have an (positive) energy contribution that
grows linearly with the domain size. The domain wall pairs now appear to attract with
an energy linear in the distance between them [149]. With this constrained domain
wall dynamics, scattering processes at the boundary are suppressed as indicated by a
constant probability on an average of the 1Ê1 and 1Ê̄1 states in Fig 4.3b. (as opposed
to a linear decay in the absence of h).

4.5.1 Magnetization

Here we present the results regarding local magnetization in the bulk of the system.
Magnetization ÈMÍ = È‡ + ‡†Í/2 is 1 in the initial state. After a time t from the
quench, domain walls that originate within a neighborhood of radius ≥ vgt around a
site i cross this site at time t thereby reducing the local population of the state 1 at
the site and increasing population of Ê or Ê̄; and decreasing the local magnetization at
i linearly with time as shown in Fig 4.5a.

The instantaneous magnetization can be expressed in the eigenbasis of the Hamil-
tonian as

ÈMÍ = ÈÂ(t)|M |Â(t)Í =
ÿ

i,j

c̄icje
ıt(Ei≠Ej)Mij. (4.7)

Here ci are the coe�cients in the expansion of the initial state in the eigenbasis of the
Hamiltonian and Mij is the matrix element of a local magnetization in the eigenbasis
of the Hamiltonian. This indicates that the power spectrum of the time dependent
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Fig. 4.5 Magnetization as a function of time for quenches to di�erent final Hamiltonians
is shown in panel a. Panel b shows the power spectrum of magnetization for a specific
example where the final non-chiral Hamiltonian has f = 0.1, h = 0.1. The peaks
correspond to the masses mi of the domain wall bound states or the di�erences between
the masses mij = |mi ≠ mj|. Variation of first three masses with longitudinal field h is
shown in panel c. System size used is L = 40. Figure reproduced with permission from
Ref. [7].
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oscillations of the magnetization carries the information of the gaps between finitely
populated energy eigenstates. Peaks in this power spectrum occur at frequencies equal
to the gaps between parts of the energy spectrum with a large energy-density-of-states
(such as the bottom of the domain wall dispersion) or eigenstates with a large population
(such as the ground state). Consistent with this, we find that the oscillatory part of
the magnetization has a frequency peak equal to the gap between the ground state
and the minimal kinetic energy of domain wall pairs:

m2(◊ = 0) = ‘+
k=0 + ‘≠

k=0 = 6J ≠ 4f (4.8)

In the presence of a longitudinal field, confinement of domain wall pairs prevents
decrease in magnetization as shown in Fig 4.5a. The attractive interaction results in
bound states of domain wall pairs. The energy minima of the dispersion of bound
domain-wall-pairs (or equivalently the masses of bound domain wall pairs) can be
extracted from the spectral peaks in the oscillatory part of the magnetization. The
power spectrum of the magnetization oscillations at a finite longitudinal field is shown
in Fig 4.5b. The peaks depend on h. A set of peaks split o� from the one at m2(◊ = 0)
as h is increased from 0 to finite values; these frequencies are labeled m1, m2, m3 . . .

and can be associated with the masses of di�erent domain wall bound pairs. The
frequencies of the peaks located at the lower end of the power spectrum match with
the di�erences between these masses. Figure 4.5c shows the variation of the bound
pair energies as a function of the longitudinal field h.

4.5.2 Two point correlations

We now consider the connected, equal time, correlations between local operators at
spatially separated pair of points in the bulk. In particular we focus on C(r, t) =
ÈÂ(t)|‡0‡†

r
|Â(t)Íc. We expect qualitative features of spread of correlations between other

generic local operators to be the same; we focus on this as its imaginary component
shows a non-zero (zero) value in a quench to the chiral (non-chiral) Hamiltonian.

The correlation C is zero everywhere in the initial state. The correlation C expanded
in the computational basis shows that C(r, t) is non zero if there are flipped spin domains
that extend from 0 to r. The first among such domains appear when the domain wall
pairs nucleated from r/2 at time 0 reach positions 0 and r at time t = r/2vg. As a
result the correlations C(r, t) spread with a velocity 2vg ≥ 4f . Correlation functions
plotted in Fig 4.6a show the linearly expanding region with finite correlations. As
expected from confinement of domain wall pairs, the presence of the longitudinal field
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Fig. 4.6 Panel a shows the absolute value of the connected correlations as a function of
position and time in the case of a quench to the non-chiral clock model. The lines show
constant height contours and have a slope of 1.0/0.38 consistent with the expected
correlation spread rate of 2vg = 4f ≥ 0.4. Panel b shows same quantity in the case
where the final Hamiltonian has an additional longitudinal field constraining the spread
of domains. System size used is L = 40. Figure reproduced with permission from Ref.
[7].

suppresses the spread of correlations (Fig 4.6b). In all cases we find that the imaginary
part of the correlation is zero (this is guaranteed by translation symmetry of the initial
state and final Hamiltonian in the bulk, and spatial parity symmetry).

4.5.3 Entanglement entropy

In this section, we present the numerical results for entanglement entropy growth
in small subsystems after the system initially in the fully ordered state |...1111...Í
is quenched to a non-chiral Hamiltonian at finite f . The subsystems are initially
unentangled. Shortly after the quench, the time evolved state is a linear combination
of the fully ordered initial state and, with small amplitudes, states with flipped spin
domains of typical size ≥ 2vgt that were nucleated from every part of the chain at time
t = 0 (Fig 4.2).

In order to evaluate the reduced density matrix of a contiguous segment A of size ¸,
the complementary region is traced out. Initially the subsystem is in a pure state with
only the fully ordered state |...111...ÍA populated. The entanglement entropy increases
with time as progressively more flipped spin domains nucleated near the boundary
of A (on either side of the boundary) cross the boundary. As time progresses more
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Fig. 4.7 Panel a shows entanglement growth in a subsystem in the bulk after a quench
to the non-chiral Hamiltonian from a fully ordered initial state. The results for a
subsystem at the boundary of the system is shown in panel d. Panels b and e show
the corresponding results for the case of a quench to a Hamiltonian with an additional
longitudinal field, demonstrating the suppression of entanglement growth. Panels c and
f show the entropy growth in the bulk and near the boundary in a scenario where the
initial state is the parity eigenstate |11...1Í+ |ÊÊ...ÊÍ + |Ê̄Ê̄...Ê̄Í. System size simulated
is L = 40. Figure reproduced with permission from Ref. [7].
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states of the form |ÊÊ...Ê11...1ÍA, |Ê̄Ê̄..Ê̄11...1ÍA, |1...11ÊÊ..ÊÍA, and |1...11Ê̄Ê̄..Ê̄ÍA

are populated. Number of such states that are populated grow linearly with time
initially. This results in a growth of entropy that is linear in time. Fig 4.7a shows
entropy as a function of time in a small subsystem in the bulk. A rough estimate
of the entanglement growth rate can be obtained from the data presented in Fig
4.3a. Probability p associated with domain walls nucleated from each point in space
can be estimated to be 1/L times the total domain wall probabilities. As domain
walls propagate into the subsystem previously unpopulated state of the subsystem is
populated with a probability weight p. This adds an entropy of s = ≠p ln p. Counting
two kinds of domains (1Ê1 and 1Ê̄1) crossing the two boundaries in either directions at
a typical rate ≥ vg, the entropy growth rate is ⁄ = 8vgs. From Fig 4.3, p ¥ 0.009/40,
resulting in ⁄ = 0.003 which is close to the numerically obtained value in Fig 4.7a. This
estimate ignores that the group velocity is not the same for all domain wall momenta
and that there are o�-diagonal entries in the density matrix.

At time t = ¸/2vg, the domain wall pairs that originated in the vicinity of the center
of A exit the subsystem. For t > ¸/2vg, this equals the number of new domain walls
that enter the system, resulting in a saturation of this mechanism of entanglement
growth at an entropy value that is proportional to ¸.

In a system that is initially prepared in the fully ordered ...1111... state, the exit of
domain wall pairs that commence at t = ¸/2vg results in conversion of a fraction of the
initial state |..1111...ÍA into the oppositely ordered states |...ÊÊÊ...ÍA or |...Ê̄Ê̄Ê̄...ÍA.
Populations of these two oppositely ordered states increase with time as more and
more domain walls exit the subsystem. This results in a further increase in the entropy
after the expected saturation time of ¸/2vg. We expect that the entropy of the small
subsystem grows into that of a mixed state of all three ordered states with an entropy
of ≥ ln 3. For large systems and for larger f , where the saturation entanglement is
much larger than ln 3, the latter growth will only provide a subleading contribution to
total entanglement.

The saturation of the initial mechanism of entanglement growth at a time ¸/2vg

(where the maximal group velocity vg is ≥ 2f) as well as further growth of entanglement
can be seen in Fig 4.7a. Approach to ln 3 is, unfortunately, not verifiable within the
timescales of the simulations. As expected, entanglement growth is strongly suppressed
even in the presence of a small longitudinal field (Fig 4.7b).

In contrast, entropy after a quench from an initial system prepared in one of the
three fully ordered parity eigenstates starts from ln 3 and increases with time linearly
until the entropy saturates at the time t = ¸/2vg. The above mentioned process
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Fig. 4.8 Illustration of an ¸ = 4 site subsystem located at the boundary (a) and one
located in the bulk of the system (b). The entanglement entropy of these subsystems
with the rest of the system are labeled as Sboundary

¸
and Sbulk

¸
. Figure reproduced with

permission from Ref. [7].

which converts the population of |...11111...ÍA into the oppositely ordered state in A

is compensated by the reverse process resulting in no growth of entanglement after a
time t = ¸/2vg. This can be seen in simulations of the entropy growth after quench
from the initial state |...11...Í + |...ÊÊ...Í + |...Ê̄Ê̄Ê̄...Í, presented in Fig 4.7c.

For a subsystem located in the bulk, the entanglement growth occurs due to all
domain walls that cross either one of the two boundaries of the subsystem. A subsystem
located at the boundary of a system (Fig 4.8) on the other hand shows entanglement
growth at half the rate as domain walls cross only one boundary. The saturation of this
entropy growth occurs at a time when a domain wall pair nucleated at the boundary of
the system exits the subsystem. This happens at the time t = ¸/vg when the domain
wall pairs nucleated at the edge of the system at t ≥ 0 reach the inner boundary of the
subsystem. Fig 4.7d shows the entropy growth in a subsystem near the boundary for
the same quench as in Fig. 4.7a. As expected, the entanglement growth rate at the
boundary (Fig 4.7d) is half of that in the bulk (Fig 4.7a) and saturates in twice the
time. Similar results hold in the case of parity eigenstate (Fig 4.7f).

4.6 Numerical results: Quench into the chiral Hamil-
tonian

Now we focus on dynamics in the system after a quench from the initial, fully ordered
state, into the chiral Hamiltonian with finite f and ◊. As mentioned in Sec 4.3, we
focus on ◊ < fi/6, where the classical ground state (i.e. the Hamiltonian ignoring the
transverse field) is ferromagnetic and the domain walls are well defined. The main
e�ect of chirality then is to induce di�erent energies to the domain walls of opposite
chirality.

We will begin with a discussion of the probabilities of the domain wall flavors
generated after the quench. Figure 4.9a presents the total probabilities of two domain
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Fig. 4.9 Panel a shows the total probability (over all positions) of two domain wall
states corresponding to the ones in Fig 4.3a after a quench to a Hamiltonian with
◊ = fi/8 and f = 0.1. Unlike the non-chiral case, the domain walls do not scatter into
other forms at the boundary resulting in a steady probability. Panel b shows the same
but with a final Hamiltonian that has an additional longitudinal field h. Panels c and
d shows the probability weight of three domain wall states of type ABCA. Unlike
the non-chiral case, the probabilities of 1ÊÊ̄1 and 1Ê̄Ê1 states occur with di�erent
probabilities. Note that in Panels a and b lines corresponding to 1Ê̄Ê,1ÊÊ̄, Ê̄Ê1 and
ÊÊ̄1 overlap on each other. Same is true of 1Ê1 and 1Ê̄1 lines. In panels c and d lines
corresponding to ÊÊ̄1Ê, Ê̄Ê1Ê, Ê1Ê̄Ê and Ê1ÊÊ̄ overlap with each other. System size
is L = 50. Figure reproduced with permission from Ref. [7].
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Fig. 4.10 Scattering dynamics of a domain wall of flavor . . . ÊÊ11 . . . localized at bond
x = 5 is shown here for quench Hamiltonian parameters f = 0.1 and ◊ = 0.26. From
panel (a) to (f) in alphabetical order, probability of single domain wall flavors 1 ≠ Ê,
Ê ≠ 1, 1 ≠ Ê̄, Ê̄ ≠ 1, Ê ≠ Ê̄ and Ê̄ ≠ Ê localized at bond x at time t is plotted with t and
x on y and x axis respectively. In the panel (b) we can see that domain wall of flavor
. . . ÊÊ11 . . . retains its flavor after scattering from the boundary for the chiral quench.

wall states similar to the Fig 4.3a. Only the 1Ê1 and 1Ê̄1 domain walls are generated
and these two occur with equal probabilities. The locality of the Hamiltonian does
not allow for the formation of ABC domain wall pairs in the bulk. The post quench
Hamiltonian considered here has ◊ = fi/8 and f = 0.1. Using the results at the
end of Sec 4.3, we see that the gap between the domain wall bands (between the
bottom of the upper domain wall band and the top of the lower domain wall band) is
2
Ô

3J sin ◊ ≠ 4f > 0 and therefore the domain walls bounce back from the boundary
without change in its flavor. As a result the total probability of the 1Ê1 and 1Ê̄1
domain walls remain steady as seen in Fig 4.9a. This is unlike the non-chiral model
discussed previously (Fig 4.3a).

Figure 4.9c shows the probabilities of ABCA type three domain wall states. The
1ÊÊ̄1 states are generated with higher probability than the opposite chirality 1Ê̄Ê1
type domain walls which has a higher energy. As discussed in Sec 4.3, as ◊ approaches
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Fig. 4.11 Energy of bound domain wall pairs extracted from the power spectrum of
magnetization in the same manner as in Fig 4.5. Panel a shows the masses as a function
of the longitudinal field for a fixed ◊. Panel b shows the dependence of the masses on
◊ for fixed h. Spectra are calculated from magnetization time series upto time t = 90
in a system of size L = 40. The scatter in the data is primarily caused by the finite
frequency resolution in a Fourier transformation of data over a finite range of time.
Figure reproduced with permission from Ref. [7].

fi/6, the energy of the 1Ê̄ domain wall becomes close to that of a pair of domain walls
1ÊÊ̄. As a result two domain walls can evolve into three domain wall states. Numerics
show that the three domain walls proliferate as ◊ æ fi/6. We will leave the analysis of
this regime for later studies.

4.6.1 Magnetization

As in the case of the non-chiral model, magnetization decays linearly with time at
short times (Fig 4.5a) with a small oscillatory component of (angular) frequency given
by the total mass of a pair of opposite chirality domain walls, namely

m2(◊) = ‘≠
k=0 + ‘+

k=0 = 6J cos ◊ ≠ 4f. (4.9)

Upon adding a longitudinal field, bound domain wall pairs are formed whose masses
can be inferred from the magnetization oscillations as described in the Sec 4.4. Fig
4.11 summarizes the dependence of the masses on ◊ and h; masses appear to increase
linearly with h and decrease monotonically with ◊ in the ranges considered.
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Fig. 4.12 Panels a and b show the real and imaginary parts of the correlator C(i, t)
after the fully ordered state is quenched to a final Hamiltonian with f = 0.1, ◊ = fi/8.
Straight lines overlayed in the figure showing the rate of spread of correlations are
obtained by fitting to constant C contours. The slope of the line is consistent with the
expected rate of spread of correlations 2vg = 4f . Panel c shows the rate of spread as a
function of f for di�erent ◊ values. The dotted line shows the expected dependence 4f .
In Panel d, ImÈ‡0‡

†
i
Íc(t) as a function of position is shown for di�erent ◊ values and

a fixed time slice t (corresponding to the time slice indicated by the horizontal line
in panel b). System size used for the calculation is L = 40. Figure reproduced with
permission from Ref. [7].
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Fig. 4.13 Panels a and d show the entanglement entropy as a function of time for
subsystems located in the bulk and at the edge of the system. Panels b and e show
the same for the cases where the final Hamiltonian has an additional longitudinal
field. Panels c and f show the results for the case where the initial state is a parity
eigenstate of the form |..1111...Í + |...ÊÊÊ...Í + |...Ê̄Ê̄Ê̄...Í. Above results are obtained
in a system of size L = 40 and for a final Hamiltonian with f = 0.1 and ◊ = fi/8.
Figure reproduced with permission from Ref. [7].



4.6 Numerical results: Quench into the chiral Hamiltonian 79

4.6.2 Two point correlations

The connected two point correlations at equal times C(r, t) = ÈÂ(t)|‡0‡†
r
|Â(t)Í is shown

in Fig 4.12. Since the domain wall velocities are independent of ◊ (vg ≥ 2f), the rate
of spread of correlations (2vg) remain the same as in the non-chiral model (Fig 4.12c).

Spatial parity is not a symmetry of the dynamics, therefore the imaginary part of
the correlations is not necessarily zero. An expansion of the Â(t) in the computational
basis (i.e. eigenbasis of ‡) together with the results in Fig 4.9 indicates that the
complex part of the correlations (Fig 4.12b) arise due to an excess occurrence of three
domain wall states of one chirality over the other. Since the three domain wall states
have low abundance, the imaginary part of the correlations is much smaller than the
real part (Fig 4.12a,b). The di�erence between probabilities of opposite chirality three
domain wall states increases with ◊. This manifests in the increase with ◊ of the
imaginary part of the correlations (Fig 4.12d).

4.6.3 Entanglement entropy

Now we describe the results for entanglement entropy growth after a quench into the
chiral Hamiltonian. The entropy of small subsystems in the bulk (Fig 4.13a) grows
linearly with time until t ≥ ¸/2vg (where vg ≥ 2f). This regime is, as explained in Sec
4.6, described by population of new states with flipped spin domains. Following the
saturation of this mechanism, the two oppositely ordered states are populated as the
domain walls exit the system, resulting in further growth of the entropy. As in the
case of the non-chiral model, when the initial state is a parity eigenstate, the entropy
grows linearly from ln 3 (entropy of subsystems of a parity eigenstate) and saturates at
a time t ≥ ¸/2vg (Fig 4.13f). The growth is strongly suppressed in the presence of a
longitudinal field (Fig 4.13b).

Entanglement entropy of small subsystems located at the boundary of the system
grows linearly with time till ¸/vg at a rate half that of the subsystems in the bulk.
This is shown in Fig 4.13d. In the case of the quench to the non-chiral model, the
entanglement entropy in the subsystem located at the boundary continues to grow after
time ¸/vg. In contrast, here the entanglement entropy saturates to a constant (Fig
4.13d). This can be understood to arise from scattering properties at the boundary.
In the chiral case, the domain walls of the form AB that reach the right hand side
boundary are reflected back as a domain wall of the type AB. When the domain walls
exit the subsystem, they leave the subsystem in the same state as the initial state
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Fig. 4.14 Rate of change of entropy in a subsystem located at the edge at an instant
(Jt = 60) after the saturation time ¸/vg is shown as a function of ◊ for di�erent f in
the final Hamiltonian. The arrows are crossover ◊c estimated for each f based on Eqn
4.10. Entropy saturates for ◊ > ◊c. Figure reproduced with permission from Ref. [7].

|...1111...ÍA. There is no increment in the population of the oppositely ordered states.
This is unlike the non-chiral model.

In the non-chiral case, the incoming AB domain wall reflects at the open boundary
as an AC domain wall. AB æ AB type scattering (as opposed to AB æ AC) occurs
if the opposite chirality domain walls have bands (Sec 4.3 and Fig 4.1b,c) that do not
overlap i.e. if

2
Ô

3J sin ◊ > 4f. (4.10)

This is verified in Fig. 4.14 which shows the rate of change of entropy after the expected
saturation time ¸/vg in the subsystems located at the system edge, plotted as a function
of ◊. The rate of change is 0 for large ◊ and non-zero at small ◊ with an f -dependent
crossover ◊c that is consistent with the above estimate (◊c(f) ≥ sin≠1 2fÔ

3J
, marked in

the figure with arrows).

4.7 Summary and Conclusion
In this work, we have explored post quench domain wall dynamics in the ferromagnetic
chiral clock model. Using finite size simulations, we have addressed the evolution
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of magnetization expectation values, equal time two point correlation functions, and
entanglement growth, and a microscopic picture based on e�ective dynamics of single
domain walls has been presented.

Entanglement growth and spread of correlation happen through evolution of domain-
wall-pair states. Irrespective of ◊, domain-wall-pair states of the type 1Ê1 and 1Ê̄1
form with equal probability from all points in the system immediately after the quench.
Domain walls propagate with a maximal group velocity vg = 2f independent of the
chirality parameter ◊. As a consequence there is no qualitative di�erence between
the non-chiral and chiral model in the entanglement and correlation spread in the
bulk. In the non-chiral model, total probability of 1Ê1 and 1Ê̄1 states decay linearly
with time as the domain walls scatter at the boundary and convert to 1ÊÊ̄, 1Ê̄Ê due
to collisions with the right boundary and to Ê̄Ê1 and ÊÊ̄1 due to collisions on the
left. In the chiral model, there is no such scattering to di�erent domain wall types.
Three-domain-wall states of the form 1ÊÊ̄1 and 1Ê̄Ê1 are also generated with smaller
probabilities compared to two-domain-wall states. In the chiral model the two types of
three-domain-wall states are generated with unequal probabilities.

Magnetization decays linearly with time at short times accessible within our sim-
ulations. Oscillations around the linear decay have a frequency equal to the energy
cost of two domain walls namely 6J cos ◊ ≠ 4f . In the presence of a longitudinal field
that couples to ‡ + ‡†, domain wall pairs form bound states of energies that appear to
increase linearly with the field and decrease with the chirality.

Equal time two point correlations spread with the same speed 2vg ≥ 4f in both the
chiral and non-chiral models. Imaginary part of the specific correlation È‡0(t)‡r(t)†Íc

reflects the relative abundances of the opposite chirality three-domain-wall states. It is
zero for the non-chiral model and increases in magnitude with ◊.

Entanglement entropy in subsystems located in the bulk shows a linear growth,
and saturates at a characteristic time scale ·s ¥ ¸/2vg. In small subsystems located in
the bulk, a subleading growth of entanglement is seen after this time. In the non-chiral
model, the similar behavior is seen even in the subsystems located at the boundary
of the system (till a time ·s ¸/vg). In the chiral models, with the chirality parameter
◊ > sin≠1 2fÔ

3 , the entanglement saturates to a constant.
We find that a linear-in-time entanglement growth is seen even outside the fer-

romagnetic regime of ◊ that we have studied. However, a simple isolated domain
wall description is not su�cient to understand the behavior. At larger values of ◊

above fi/3 where the ground state is not ferromagnetic, chirality in the ground state
magnetization will have a more complex interplay with a longitudinal field than in the
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small ◊ cases we have studied. The second parameter in the model („) will act as an
e�ective magnetic field to the domain wall particles, bringing in richer structures in
the quenches in the model. We leave the exploration of the dynamics in the extended
parameter space of the model for future studies.

The saturation of entanglement in the small subsystems at the edge of the system
points to the inability of the spreading domains to thermalize the spins at the boundary
of the system into an equally probable mixture of 1, Ê and Ê̄. As a consequence the
initial magnetization survives at long times after quench. Careful accounting of the
domain walls at the boundary after the saturation time indicates that the density of
flipped spins near the boundary linearly changes with distance from the boundary.
Consequently the post quench magnetization in the chiral model shows a linear decay
of magnetization away from the boundary (Fig 4.15).

In contrast, the non-chiral model shows a magnetization that appears to decay to
0 at the boundary. Thus the ◊ dependent boundary scattering presents a peculiar
scenario of a non thermal steady state near the boundary of this chain. Such a
mechanism for failure of thermalization is related to the long coherence times of
boundary spins in models carrying boundary zero modes in Jordan Wigner transformed
dual description.[151, 152]
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Fig. 4.15 Magnetization profile in the chain with open boundary conditions at the left
and right ends. The magnetization at the boundary of the chain decays with time in
the non-chiral model (panel a), whereas it saturates to constant in the chiral model
(panels b,c). The saturation values vary linearly with distance from the boundary.
Panel d shows the magnetization at a fixed position near the edge as a function of time
for three di�erent values of ◊. Figure reproduced with permission from Ref. [7].





Chapter 5

Lindblad Master Equation
implementation using MPS

5.1 Open Quantum System
An open quantum system S is a subsystem of a bigger closed quantum system repre-
sented by S + B and the rest of the system dennoted by B is referred as environment
or bath. In the rest of the chapter we refer S as system and S + B as composite system.
The Hamiltonian Htot for S + B is given by

Htot = H ¢ I + I ¢ HB + HI (5.1)

where H and HB are the Hamiltonian of the system and environment, respectively. HI

is the system bath interaction Hamiltonian.
Since the composite system S + B forms a closed quantum system, its dynamics is

unitary, and the dynamics of the state fltot of the composite system is given by the
Liouville-von Neumann equation.

dfltot(t)
dt

= ≠ÿ[Htot, fltot(t)] (5.2)

with the assumption that Htot is time-independent. We are interested in S part of the
composite system. At any instant, everything that can be known about system from
measurment within the system can be inferred from the density matrix. At any instant
state of the system represented by fl can be calculated from fltot(t) by tracing out the
bath degrees of freedom i.e

fl(t) = TrBfltot(t) (5.3)
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Fig. 5.1 Pictorial representation for a composite closed quantum system comprised of
system and bath. Interaction between system and bath makes the system an open
quantum system.

Equation of motion for fl(t) can be derived using the above Eq. 5.1, 5.2 and 5.3.
This equation of motion for fl(t) is known as Quantum Master Equations (QME).
Depending on the approximations involved like weak coupling, Markovianity, secular
approximation, etc., a di�erent form of QME can be derived e.g Redfield Master
equation, Born-Redfield Master equation, etc. Broad introduction of the Master
equations can be found in Ref. [154]. We are mainly interested in the Lindblad form
of the Master equation, which is discussed in the next section.

5.2 Lindblad Master Equation
For a composite quantum system comprised of system and bath, the most general form
of Quantum Master Equation (QME) local in time is

ˆtfl(t) = ≠ÿ[H, fl(t)] + D[fl(t)] (5.4)

Here H is the system Hamiltonian, and fl is the system’s density matrix. The first term
is the Eq 5.4 refers to the usual unitary time evolution of the system in the absence
of bath. The second term D[fl] called a dissipator incorporates the dissipative e�ect
induced by the bath because of system-bath interaction.

The hermiticity, trace preservation and positivity properties of fl along with the
requirement that the dynamics of composite system should be a unitary puts a strong
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restriction on the form of the dissipator in Eq 5.4. Aforementioned four conditions are
also knows as Completely Positive and Trace Preserving (CPTP) condition. QME which
is local in time and is CPTP is known as Lindblad Master Equation (LME)[155, 156]
given by

ˆtfl(t) = ≠ÿ[H, fl(t)] +
ÿ

–

“–

1
L–fl(t)L†

–
≠ 1

2{L†
–
L–, fl(t)}

2
(5.5)

L–’s are called jump operators and “– quantifies the system-bath coupling. Equation
5.5 also goes by the name of Gorini-Kossakowski-Sudarshan-Lindblad QME.

The jump operators L– can be hermitian or non-hermitian. In terms of action over
the real space, they can be local or non-local. The local form of jump operators is
used in our later work to study the energy transport in the Z3 chiral clock model. The
main disadvantage of LME over another form of QME is that given a thermal bath, it
is tough to find the form of the jump operators L–, which can imitate the actual bath
e�ect.

5.3 Microscopic derivation of LME
The Lindblad form of the master equation can be derived from microscopic equations of
motion. We will work on the interaction picture for this derivation. In the interaction
picture, the Liouville-von Neumann equation is

dfl̃tot(t)
dt

= ≠ÿ[HI(t), fl̃tot(t)] (5.6)

The solution of the above di�erential equation is

fl̃tot(t) = fl̃tot(0) ≠ ÿ
⁄

t

0
ds[H̃I(s), fl̃tot(s)] (5.7)

Inserting the above solution in Eq. 5.6 and tracing out the bath degrees of freedom
gives the integro-di�erential equation for fl

dfl̃(t)
dt

= ≠
⁄

t

0
dstrB[H̃I(t), [H̃I(s), fl̃(s) ¢ fl̃B]] (5.8)

with the assumption that
trB[H̃I(t), fl̃tot(0)] = 0 (5.9)

Moreover, the coupling between the system and bath is assumed to be weak. This is
called a Born approximation. The weak coupling approximation is given by the tensor
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product.
fl̃tot(t) ¥ fl̃(t) ¢ flB (5.10)

This approximation implies that at all times there is no entanglement between system
and bath. Equation 5.8 is not local in time and rate of change of density matrix at
time t depends on the state at time s < t which makes solving it intractable both
theoretically and numerically. We make it local by replacing fl̃(s) by fl̃(t), we assume
that time evolution of fl̃(t) at time t depends only on fl̃(t) but not on previous instances
which gives us the Redfield Master Equation.

dfl̃(t)
dt

= ≠
⁄

t

0
dstrB[H̃I(t), [H̃I(s), fl̃(t) ¢ fl̃B]] (5.11)

The above Eq. 5.11 is not Markovian as the dynamics of fl̃ depend on the choice of
the initial state of the whole system. The issue of Markovianity can be resolved by
replacing s with t ≠ s and changing the upper limit of the integral in Eq. 5.11 by Œ.
The above last two substitution is allowed for the scenarios when the time scale of
bath relaxation ·B is much quicker than the time scale of variation in the system state
, i.e., s ∫ ·B. The substitution mentioned gives the Markovian Master equation

dfl̃(t)
dt

= ≠
⁄ Œ

0
ds TrB[H̃I(t), [H̃I(t ≠ s), fl̃(t) ¢ fl̃B]] (5.12)

We are still not at the Lindblad form of the master equation, and a further approxima-
tion called secular approximation is needed. To explain the approximation, we consider
that the interaction Hamiltonian HI in the Schrodinger picture is of the form.

HI =
ÿ

–

U– ¢ V– (5.13)

Where U and V are hermitian operators acting on the system and bath, respectively.
We can write the system operator U– in the frequency space Ê using the eigenstates of
HS

U–(Ê) =
ÿ

‘Õ≠‘=Ê

�(‘)U–�(‘Õ) (5.14)

where �(‘) is the projector into the state |‘Í. In the Ê space, we can write the
interaction Hamiltonian as

H̃I =
ÿ

–,Ê

U–(Ê) ¢ V– =
ÿ

–,Ê

U–(Ê)† ¢ V †
–

(5.15)
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We assume that fl̃B is the stationary state of the bath which means [HB, fl̃B] = 0.
Putting Eq. 5.15 in the Redfield Master equation and after some algebra, we have

dfl̃(t)
dt

=
ÿ

Ê,ÊÕ

ÿ

–,—

eÿ(ÊÕ≠Ê)t�–,—(Ê)
1
U—(Ê)fl̃(t)U †

–
(ÊÕ) ≠ U †

–
(ÊÕ)U—(Ê)fl̃(t)

2
+ h.c (5.16)

where �–,—(Ê) is the bath-bath correlation function defined as

�–,—(Ê) =
⁄ Œ

0
dseÿÊsÈV †

–
(t)V—(t ≠ s)Ífl̃B (5.17)

The system has two important time scales, which play an important role in the secular
approximation. The first one is its intrinsic time scale ·S defined by the typical
frequency spacing , i.e., |Ê ≠ ÊÕ| involved in the eigen spectrum of HS. Another
important time scale is relaxation time ·R of the open system. When ·S ∫ ·R then
the terms in Eq. 5.16 with Ê ”= ÊÕ may be neglected giving us the following equation

dfl̃(t)
dt

=
ÿ

Ê

ÿ

–,—

�–,—(Ê)
1
U—(Ê)fl̃(t)U †

–
(Ê) ≠ U †

–
(Ê)U—(Ê)fl̃(t)

2
+ h.c (5.18)

Bath-bath correlation function �–—(Ê) can be written as sum of hermitian and anti-
hermitian function, “–—(Ê) and S–—(Ê) respectively as

�–—(Ê) = 1
2

1
“–—(Ê) + ÿS–—(Ê)

2
(5.19)

Function “–—(Ê) is given by

“–—(Ê) = �–—(Ê) + �ú
—–

(Ê)

=
⁄ Œ

≠Œ
dseÿÊsÈV †

–
(s)V—(0)Í

(5.20)

and S–—(Ê) is
S–—(Ê) 1

2ÿ

1
“–—(Ê) ≠ “ú

—–
(Ê)

2
(5.21)

Using the above functions, Eq. 5.18 is finally recast into the Lindblad form

dfl̃(t)
dt

= ≠ÿ[HLS, fl̃(t)] + D[fl̃(t)] (5.22)
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where HLS is called the Lamb-shift Hamiltonian given by

HLS =
ÿ

Ê

ÿ

–,—

S–—(Ê)U †
–
(Ê)U—(Ê) (5.23)

and the D[fl̃(t)] is the dissipative part given by

D[fl̃] =
ÿ

Ê

ÿ

–—

“–—(Ê)
1
U—(Ê)fl̃U †

–
(Ê) ≠ 1

2{U †
–
(Ê)U—(Ê), fl̃}

2
(5.24)

5.4 Choi Isomorphism
We saw in the section 5.2 that in the presence of both the dissipative dynamics of the
system state represented by density matrix fl is given by Eq. 5.5. For the concreteness
of the state representation, we consider a spin chain with N spins, and its local
Hilbert space dimension is d. Hence fl acts on the Hilbert space of dimension dN .
In the tensor network formalism, Equation 5.5 can be simulated using MPO alone.
The MPO representation for the density matrices is called Matrix Product Density
Operators (MPDO). MPDO is di�erent from the usual MPO because of the additional
trace-preserving property that trfl = 1.

LME can also be simulated using the MPS formalism. Choi Isomorphism is the
mathematical tool that lets us represent the fl in the form of MPS. It states that we
can rewrite the coe�cients of a matrix in the form of a vector by converting the bra
index to ket index. The pictorial way to look at this vectorization process is shown in
Fig. 5.2. The transformation can be thought of as reshaping the bra indices into ket
indices and then merging with the original ket indices. We denote the new coupled
indices by µi (= ‡i‡Õ

i
). The vectorized version of the fl is denoted by |flÍ and is given by

|flÍ =
dÿ

‡1,‡
Õ
1=1

· · ·
dÿ

‡N ,‡
Õ
N =1

A
‡1‡

Õ
1

1 . . . A
‡N ‡

Õ
N

N
|‡1‡

Õ
1 . . . ‡N‡Õ

N
Í (5.25)

=
d

2ÿ

µ1=1
· · ·

d
2ÿ

µN =1
Aµ1

1 . . . AµN
N

|µ1 . . . µNÍ (5.26)

In the vectorized density matrix |flÍ, it should be noted that after the vectorization
now, the dimension of the physical indices has been bumped to d2 from d because of
the fusion of bra and ket indices. The trace preservation condition for the vectorized
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Fig. 5.2 Figure showing vectorization process of the density matrix fl into vector |flÍ in
the tensor network representation. The primed indices corresponds to the bra indices
is transformed to ket indices and then both primed and non primed ket indices are
fused into a single index µi.

density matrix |flÍ is given by

dÿ

‡1,‡
Õ
1=1

· · ·
dÿ

‡N ,‡
Õ
N =1

A
‡1‡

Õ
1

1 . . . A
‡N ‡

Õ
N

N
”‡1,‡

Õ
1
. . . ”‡N ,‡

Õ
N

= 1 (5.27)

LME after the vectorization is

d|flÍ
dt

= L|flÍ (5.28)

where L is superoperator called Liouvillian, and In the LME, it has the form

L = ≠ÿ(H ¢ I ≠ I ¢ HT ) +
ÿ

–

1
L– ¢ Lú

–
≠ 1

2L†
–
L– ¢ I ≠ 1

2I ¢ Lú
–
LT

–

2
(5.29)

Here I is the Identity operator on the Hilbert space of dimension dN . After the
vectorization process, the operators acting on the |flÍ is of the form A ¢ B. Here, A

acts on the ket indices, the non-primed ones, and B acts on the bra indices, which are
primed in our notation. The operator acting on the |flÍ acts on the extended Hilbert
space of dimension d2N rather than the actual Hilbert space of our physical system.

For the time independent Liouvillian |fl(t)Í at any time t is given by

|fl(t)Í = eLt|fl(0)Í (5.30)

Any system in a non-equilibrium setting, when modeled using an LME, at large
twill lead to a steady-state. This steady-state is usually termed a Non-equilibrium
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Steady-state (NESS). Mathematically NESS is given by the condition

d|flÍNESS
dt

= L|flÍNESS = 0 (5.31)

Which means that NESS is the fixed point of the LME, or alternatively, NESS is the
right eigenstate of the Liouvillian operator with zero eigenvalues. It is not always clear
that state with zero eigenvalues are unique but we will assume that. This means that
for a given non-equilibrium setting, NESS can be estimated in two ways. The first way
is to evolve the |flÍ for very large t, which will give us the approximate NESS. The
second way is to calculate the eigenstate with zero eigenvalue of the superoperator L
which is computationally very costly when dealing with larger system sizes.

5.5 MPS implementation of time evolution
This section will discuss the MPS implementation of the LME after the vectorization.
For the sake of concreteness, we will explain the construction in the context of Z3

chiral clock model, but the construction can be generalized to any other model.
For the Z3 chiral clock model the local hilbert dimension d = 3. After the

vectorization of density matrix, state |flÍ which can be represented in the form of MPS
has the dimension of the physical indices d2 = 9. The states represented by the new
index are 11, 1Ê, 1Ê̄, Ê1, ÊÊ, ÊÊ̄, Ê̄1, Ê̄Ê and Ê̄Ê̄. The basis states are of the form ij

where i is the primed index of the density matrix fl (not |flÍ) and the j corresponds to
the non primed index.

Now on the density matrix fl, any arbitrary operator O can act on it from both
right and left sides, as shown in the fig. 5.3 (c) and (d). If the operator O acts on fl

from the left, then the primed index gets contracted, and the action from the right
leads to contraction of the non-primed index. So for every possible operator needed in
our calculation, we constructed its two MPO form for the |flÍ. The two di�erent forms
of the MPO constructed are shown in the figure 5.3. In the vectorized notation, the
expectation value of operator O is estimated using the expression

ÈOÍ = ÈI|O|flÍ (5.32)

Here I is the Identity matrix. In the MPS language Eq. 5.32 the order of the contraction
process plays a central role, heavily a�ecting the computational time. If the O|flÍ
is estimated first and is then contracted with ÈI| then this way of calculating the
expectation value is a prolonged process. It is slow because O and |flÍ are very dense



5.5 MPS implementation of time evolution 93

Fig. 5.3 Left and Right action of operator O on the fl contracting with non primed
and primed index is shown in Panel (a) and (b) respectively. Two di�erent versions of
the O are needed for its action on the |flÍ as shown in Panel (c) and (d). Version of O
for the left and right action over the |flÍ are shown in green and yellow color in (e) and
(f).
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tensors resulting in a computationally costly contraction process. While if ÈI|O is
evaluated first and is then contracted with |flÍ, this is computationally very fast because
contraction of ÈI| with O results in a very sparse tensor as ÈI| is highly sparse.

From Eq. 5.30 it is clear that L is the generator of the time translation for |flÍ. Time
evolution of the |flÍ is implemented using the fourth-order approximant for the eLt. The
fourth-order approximant we used was first discussed in the following work [157, 158].
The central principle is still the same for deriving higher-order approximants, which is
a higher-order approximant for matrix exponential is constructed using the product of
lower-order approximants. Approximant of any desired order of a matrix exponential
can be estimated using the following expression

W II(·1)W II(·2) . . . W II(·n) = exp(H·) + O(· p) (5.33)

where W II’s are the first order approximant and · ’s are complex number. The form of
W II(·) is 1 ≠ H· . For any given p in Eq. 5.33, the approximant constructed is correct
till order p ≠ 1 in · .

For a desired approximant of order p ≠ 1, the · ’s on LHS of Eq. 5.33 is obtained
by equating the coe�ecients of · till order p ≠ 1 on both sides of Eq. 5.33. For second
order approximant we need only two W II’s i.e n=2 and the · ’s are

·1 = 1 + ÿ

2 ·

·2 = 1 ≠ ÿ

2 ·

Third-order approximant needs n = 4 terms, and the · ’s are

·1 = 1
4

1
≠ 1 + ÿÔ

3
+ 1 + ÿ

2
·

·2 = ÿ·1

·3 = ≠ÿ·̄1

·4 = ·̄1
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Fourth-order approximant can be obtained using 7 · ’s, and they are

·1/· = 0.2588533986109182 + 0.0447561340111419ÿ

·2/· = ≠0.0315468581488038 + 0.2491190542755632ÿ

·3/· = 0.1908290521106672 ≠ 0.2318537492321061ÿ

·4/· = 0.1637288148544367
·5 = ·̄3

·6 = ·̄2

·7 = ·̄1

5.6 Lindblad Dissipators
In this section, we will review the Lindblad dissipators typically used in the context of
an open quantum system to study the transport properties. There are two types of
LME, namely Global and Local Master Equations which are usually employed to study
the transport properties. These master equations are named based on the features of
the dissipators used in the Lindblad master equation.

In energy transport studies, the global master equation was firstly used in a
numerical work [159] by Saito to study the normal heat transport in the quantum spin
half chain. For the global master equation, we denote the corresponding dissipator by
DG[fl]. The general form of global dissipator DG[fl] is

DG[fl] = [X–, R–fl] + [X–, R–fl]† (5.34)

Here X– is the system operator acting on the site which is directly attached to the
reservoirs. Information about the e�ect of bath is contained in the operator R– and is
defined as

R– =
ÿ

i,j

Ei ≠ Ej

e—–(Ei≠Ej) ≠ 1Èi|X–|jÍ · |iÍÈj| (5.35)

Ei and |iÍ are the eigen energies and eigenstates of the system Hamiltonian HS. The
advantage of using a global dissipator is that the thermal temperature is set at the
level of all system eigenstates. However, the downside in its numerical implementation
is that all eigenstates are needed, which makes it very hard to use DG[fl] for the larger
system sizes.
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In Ref. [160], Prosen et.al came up with the interesting idea of using local Lindblad
dissipators Dl to study the transport properties. Since in the global master equation
is knowing all the eigenstates and eigenspectrum. They proposed the idea of local
dissipators that act on a few degrees of freedom of the system. These dissipators set
the temperature over these few degrees of freedom under some local Hamiltonian hi.
This local Hamiltonian hi are dominant terms of HS which has support at the site i of
the chain.

Local Lindblad dissipators are of the following form so that LME satisfies the CPTP
condition

Dl =
ÿ

j

[Lj

l
, flLj†

l
] + [Lj

l
, flLj†

l
]† (5.36)

where Lj

l
are the local Lindblad operators and sum q

j is over all the local Lindblad
dissipators indexed by j which act only on the eigenstates of hl to set the temperature
locally. If the system Hamiltonian HS has conserved quantities like total magnetization
etc. other than the usual total energy, then the Dl can be designed accordingly to
study the transport properties of these other conserved quantities also.

Ref. [160] studied the spin transport in the XXZ spin half chain using single and
two site-local Lindblad dissipators. Single site Lindblad operator Ll

i
, – acting on the

site i used to study the spin transport is as follows

Ll

i,–=1 = 1
2

Ò
�+‡+, Ll

i,–=2 = 1
2

Ò
�≠‡+

�± =
Û

1 û tanh µi

1 ± tanh µi

Sites over which these Lindblad operators Ll

i,–
are acting induces local magnetization

È‡z

i
Í ¥ ≠ tanh µi. By carefully choosing the µ for each end of one-dimensional quantum

spin chains, the desirable spin gradient is introduced in the system to study the spin
transport.

This local spin bath setup has been used extensively to study the spin transport
in one dimensional clean and a disordered spin-1/2 system like XXZ Hamiltonian,
where total magnetization is a good quantum number for a closed system. Spin bath
setup similar to used in [160] to study the spin and energy transport in XXZ chain
in [161–164]. For the Heisenberg model, spin transport is studied in [162]. Transport
regimes of the Aubry-André-Harper model are studied in [165] using a similar spin
bath. The spin bath mentioned above is also used for fermionic Hamiltonian like the
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Hubbard model. In [166] spin and charge transport are studied at the high-temperature
regime of the Hubbard model.

We mentioned in the section 5.2 that LME does not represent the actual thermal
baths but is the most used form of Master equation to study the transport properties.
Generically the LME has been found to correctly describe the transport regimes,
whether ballistic or di�usive etc. But in [167, 168] LME derived in the weak coupling
regime along with secular approximation was found to be inaccurate for describing the
Non-equilibrium steady states because of non-vanishing energy current resulting from
violation from local conservation laws.





Chapter 6

Energy transport in Z3 chiral clock
model

We characterize the energy transport in a one dimensional Z3 chiral clock model. The
model generalizes the Z2 symmetric transverse field Ising model (TFIM). The model is
parametrized by a chirality parameter ◊, in addition to f and J which are analogous
to the transverse field and the nearest neighbour spin coupling in the TFIM. Unlike
the well studied TFIM and XYZ models, does not transform to a fermionic system.
We use a matrix product states implementation of the Lindblad master equation to
obtain the non-equilibrium steady state (NESS) in systems of sizes up to 48. We
present the estimated NESS current and its scaling exponent “ as a function of ◊ at
di�erent f/J . The estimated “(f/J, ◊) point to a ballistic energy transport along a
line of integrable points f = J cos 3◊ in the parameter space; all other points deviate
from ballistic transport. Analysis of finite size e�ects within the available system sizes
suggest a di�usive behavior away from the integrable points.

6.1 Introduction
Though energy transport has been studied for a long time, a microscopic description of
energy transport in interacting quantum and classical systems is still under development,
with many recent insights on connections between chaos and transport aided by the
improved simulation methods. In classical systems, chaos is neither necessary nor
a su�cient condition[169] for di�usive transport. Fermi-Pasta-Ulam problem has a
positive Lyapounov exponent, but does not exhibit di�usive heat conduction in any
parameter regime.
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An extensive amount of work on high temperature transport focusing on spin-
half models in one dimensional (1D) quantum systems [159, 170–178] have shown
that breaking integrability generally leads to di�usive energy transport. It has been
analytically argued that integrability in clean systems typically leads to ballistic energy
transport [179, 174]. Interestingly, the relation does not extend to other conserved
currents [160, 180, 162, 181, 164]. The XXZ chain in its zero-magnetization sector
shows ballistic energy transport in all phases but spin transport is ballistic in the
easy plane phase, di�usive in the easy axis phase, and super-di�usive at the isotropic
point.[162, 175]. Both spin and energy transport are found to be ballistic in other
magnetisation sectors.[174, 182, 163] On the other hand the same model, with a local
longitudinal field, is non-integrable but shows ballistic spin transport[164]. Disorder
further enriches transport physics in such systems [163].

In this work, we step away from the well-studied spin-1/2 model and explore a
model with a three dimensional local Hilbert space, namely the Z3 symmetric chiral
clock chain[50, 116, 109] which generalizes of the Z2 symmetric TFIM[40]. The latter
which is mappable to free fermions is integrable and exhibits ballistic energy transport
[183]. The Z3 clock model Hamiltonian is integrable in a fine tuned set of parameters
but not in general. While the model shares several features with the TFIM, it is not
mappable to a free fermionic Hamiltonian. We aim to address the question of how
energy transport is a�ected by the model parameters, in particular how integrability
a�ects transport in this model. Transport through the chain is simulated using the
Lindblad master equation (LME) approach implemented using matrix product state
(MPS) techniques [160, 184, 162, 178].

This chapter is structured as follows. In Sec. 6.3, we describe the chiral clock model
and present the details of the Lindblad dissipators. We then describe the details for
the MPS implementation of the LME in Sec. 6.5. We find that under a change of
basis, the LME and transport properties in one part of the parameter space can be
related to that in another part, reducing the parameter space to be studied. This is
described in Sec. 6.4. Results for the simulations are presented in the Sec. 6.6 and
conclude with Sec. 6.8.

6.2 Transport in spin-1/2 Models
Spin half chains are the simplest systems to study the energy transport in the context of
quantum spin chains. Models like TFIM, XXZ and XYZ are the most studied cases as
they are the integrable systems [185]. Extensive analytical as well as numerical studies
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have been done on these mentioned models. Several interesting transport features like
rectification, negative di�erential conductivity, One-way street phenonmenon etc. has
been already been observed in the di�erent regimes of these models. We will mainly
summarise the spin and energy transport behavior known in the di�erent regimes of
the models.

The energy transport behavior in TFIM is studied in the [177] for both clean and
disordered case in the weak coupling regime. TFIM is an integrable model with no
additional conserved quantities other than the global parity. In this analytical work
complemented with numerics using the Monte carlo wavefunction approach. It is shown
that the clean TFIM chain shows ballistic energy transport while the disordered chain
exhibits the di�usive transport.

The most studied spin-1/2 integrable model is the XXZ model. This model
is the archetypal model for studying the spin and energy transport because of its
Bethe ansatz integrability. This model is also a testing ground for the principles of
generalized hydrodynamics. Even though this model is integrable transport features
are understood only in the high temperature regime. Total magnetization M = q

‡z

i
is

a conserved quantity which allows studying the spin transport in this model. This total
magnetization conservation arises from U(1) rotational symmetry of the model about
an axis. In high temperature regime, this model exhibits ballistic energy transport
in all parameter regime and magnetization sector. In Ref. [162] spin transport was
studied using the time dependent DMRG simulations in the zero magnetization sector.
Spin transport was reported to be the ballistic in the easy plane (� < 1), superdi�usive
at the isotropic point (� = 1) and di�usive along the easy axis (� > 1). In the nonzero
magenetization sector, spin transport is ballistic in all parameter regimes.

Ref. [176] studied the e�ect of disorder on the spin transport in the zero magne-
tization sector. The disorder in the model was incorporated in the additional field
in the z-direction acting on all the sites. In the presence of disorder both di�usive
and subdi�usive spin transport is seen depending on the disorder strength. Using the
disorder scaling it was also reported that the characteristic length Nú in the disordered
case is given by 1/h1.33, where h is disorder strength. For the correct estimation of the
NESS it was pointed out that for N < Nú system behave like a clean system, so larger
system is needed to see the e�ect of disorder.

In the zero magentization sector, energy and spin transport have di�erent behavior
while in the nonzero magnetization sector both energy and spin have similar transport
behavior. The e�ect of the disorder on the similar (dissimilar) behavior of spin and
energy transport in the nonzero (zero) magnetization sector is studied in Ref. [163]
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numerically using time dependent DMRG. Comparative qualitative behavior of spin
and energy transport in di�erent magnetization sector was found to be unscathed in
the disordered limit. Note that in both above mentioned works, it was ensured that
system is in the ergoidic phase.

E�ect of breaking the U(1) symmetry is studied in the Ref. [175]. It is broken
using the parameter ÷ in the Hamiltonian given by

H =
ÿ

i

Ë
(1 + ÷)‡x

i
‡x

i+1 + (1 ≠ ÷)‡y

i
‡y

i+1 + �‡z

i
‡z

i+1
È

+
ÿ

i

hi‡
z

i
(6.1)

Within the ergodic phase it was shown that with increase in disorder strength, energy
transport changes from di�usive to subdi�usive and the critical disorder strength for
this transition increases with increase in parameter ÷.

6.3 Model
The Z3 chiral clock model for a chain of N spins in 1D, is described by the Hamiltonian[50,
116, 109, 47]

H(◊, „) = ≠Jeÿ◊

N≠1ÿ

i=1
‡i‡

†
i+1 ≠ feÿ„

Nÿ

i=1
·i + H.c. (6.2)

Each spin has a three dimensional Hilbert space, and the local operators ‡ and · have
the following matrix representation

‡ =

Q

cca

1 0 0
0 Ê 0
0 0 Ê̄

R

ddb · =

Q

cca

0 1 0
0 0 1
1 0 0

R

ddb (6.3)

where Ê = exp(2fiÿ/3). We will represent the single site eigenstates of the ‡ operator as
|1Í, |ÊÍ and |Ê̄Í. Operators ‡ and · satisfy the algebra ‡3

i
= · 3

i
= 1, ‡i·i = Ê̄·i‡i, and

‡i·j = ·j‡i for i ”= j. This algebra is a Z3 analog of the algebra of Pauli matrices ‡z and
‡x. Interplay between f, ◊ and „ results in a rich ground state phase diagram[3, 46, 117]
hosting trivial, topological and incommensurate phases.

The model has a global Z3 parity symmetry associated with the operator P = �i·i.
Apart from the global parity symmetry, the model can have other symmetries[186]
namely time reversal T , charge conjugation C, and spatial inversion S depending on the
values of parameters ◊ and „. Under these symmetry transformations, ‡ and · operators
transform as T †‡T = ‡†, T †·T = · , C†‡C = ‡†, and C†·C = · †. Charge conjugation
swaps the states |ÊÍ and |Ê̄Í. Spatial inversion changes site index i æ N ≠ i + 1. All
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three symmetries are present at ◊ = „ = 0 while the model has only spatial inversion
symmetry when ◊ = 0 and „ ”= 0. None of the three symmetries are present when
both ◊ and „ are non-zero. In this work we will focus on the models with „ = 0 for
simplicity. For „ = 0 and ◊ ”= 0, the individual symmetries C and S are broken but
their products are preserved.

At f = 0, all the eigenstates of Hamiltonian can be chosen to be direct products
of eigenstates of ‡i. Energy of each eigenstate is ≠2J

q
i cos(◊ + –i), where –i =

arg(È‡iÍ/È‡i+1Í) which take values from {0, ±2fi/3}. When ◊ œ (≠fi/3, fi/3), all the
spins in ground state are aligned in the same direction, either in 1, Ê or Ê̄. Ground
state for ◊ œ (±fi/3, ±fi) has consecutive spins oriented at relative angle of ±2fi/3.
Parameter f tunes quantum fluctuation in the model. At large f , the ordered phase is
destroyed forming a paramagnetic phase. A second order phase transition separates
the Z3 symmetry broken phase (small f) and Z3 symmetric phase(large f). The model
was shown to be integrable along the line f = J cos 3◊ inside the ordered phase[187].

There has been limited studies of transport properties in the model. Non-equilibrium
current in Z3 chiral clock chain with alternating sites are di�erent temperatures have
been studied in Ref [188]. At the critical integrable point described by f = J and
◊ = 0, energy transport between a ground state and high energy state was studied
in a generalized hydrodynamics framework in Ref. [189]. We will study the energy
transport in the ferromagnetic (f < J) regime and at varying values of ◊.

A natural framework for investigation of transport properties is to attach baths
with di�erent characteristic temperatures at the opposite ends of the chain. This
temperature di�erence creates an energy gradient and energy flow from high to low
temperature end. In Ref.[160], Prosen et al. introduced the idea of using few-site jump
operators to study transport properties under the dissipative dynamics of LME. This
strategy provides computational simplicity and speedup leading to its extensive use
for studying spin and fermionic chains[164, 162, 163, 165, 184, 178, 176, 190]. It has
been argued that the local Lindblad approximations cannot faithfully reproduce the
coherences produced by coupling to an actual quantum environment [168]. The local
Lindblad operators we use are intended to maintain local energy densities at the ends
of the chain rather than to mimic a realistic quantum bath. We assume that the
transport properties are independent of the manner in which the local energy density
is realized.

Dissipative dynamics of the system with bath attached at both ends is given by
the LME[155]

ˆtfl(t) = ÿ[fl(t), H] + D[fl(t)] (6.4)
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(a)

(b) (c)

Fig. 6.1 Pictorial representation of the bath system setup is shown in panel (a). Action
of the jump operators L|11Íæ|1ÊÍ and L|1ÊÍæ|11Í are shown for the ferromagnetic regime
for dissipators D0 and D◊ is shown in (b) and (c). Figure reproduced with permission
from Ref. [8].

where fl is the density matrix of the system and D[fl] is the Lindblad dissipator. The
dissipator acts on the two sites at each end of the chain

D[fl] = D1,2(—L)[fl] + DN≠1,N(—R)[fl] (6.5)

where —L and —R parametrize the inverse temperature for left and right end of the
chain respectively. We define two site boundary dissipative term Di,j(—)[fl] acting on
the spin at site i and j using jump operators Laæb = |bÍÈa| as

Di,j(—)[fl] = ⁄
ÿ

ab

�+(—)[Laæb, flLbæa] + �≠(—)[Laæb, flLbæa]† (6.6)

Here ⁄ quantifies the coupling strength between the system and the bath. The two-
site states |aÍ and |bÍ are the eigenstates, with energy eigenvalues Ea and Eb, of a
two-site Hamiltonian hi,j acting on sites i and j. The transition rates are given by
�± = eû—(Eb≠Ea)/2 as shown in Fig. 6.1(b). hi,j contains the dominant terms of the full
Hamiltonian restricted to the ends of the chain.

In this manuscript, we have used two types of local boundary dissipators denoted
by D0

i,j
and D◊

i,j
, constructed using two di�erent choice of the two-site Hamiltonians

h0
i,j

and h◊

i,j
.

1. D0
i,j

is defined using the two-site Hamiltonian h0
i,j

= ≠J‡i‡
†
j

+ H.c. The ground
state of h0 is three fold degenerate (|11Í, |ÊÊÍ, and |Ê̄Ê̄Í) and its excited state is
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six-fold degenerate with an energy gap of 3J between them. We have included
Lindblad jump operators only between the non-degenerate eigenstates of h0. We
note that due to the ferromagnetic nature of h0, use of D0

i,j
makes sense only

when ◊ œ (≠fi/3, fi/3) where the ferromagnetic states have a lower energy.

2. The dissipator D◊

i,j
is constructed using h◊

i,j
= ≠Jeÿ◊‡i‡

†
j
+ H.c. The ground state

of h◊ is still three fold degenerate. These are the ferromagnetically aligned states
when ◊ œ (≠fi/3, fi/3) and When ◊ œ (fi/3, fi) the ground states are |1ÊÍ, |ÊÊ̄Í,
and |Ê̄1Í. Similarly, when ◊ œ (≠fi, ≠fi/3), |1Ê̄Í, |Ê̄ÊÍ, and |Ê1Í are the ground
states. Introduction of the eÿ◊ prefactor in the local Hamiltonian breaks the six
fold degeneracy of the excited states (except when ◊ is a multiple of 2fi/3). In
defining the dissipator, we have included transitions between degenerate states
of h◊.

A schematic representation of the jump operators in D0
i,j

and D◊

i,j
are shown in Fig.

6.1(b) and Fig. 6.1(c) respectively. The e�ective local temperatures generated by
the two di�erent dissipators as well as the length scales for thermalization near the
boundary will be di�erent for the two choice of dissipators. However we expect that
qualitative features of transport will be similar in the two cases if the results are
independent of the precise form of the bath. We indeed find this to be the case.

For finite dimensional systems, the LME has at least one fixed point (See Sec 4.2.2
of Ref. [191]). In small systems of upto 5 sites, we diagonalized the Liouvillian and
found that it has a unique 0-eigenvalue state. Assuming the uniqueness to be true in
larger systems, the time evolution under the above LME should approach a unique
non-equilibrium steady state (NESS) defined as

fl◊

NESS = lim
tæŒ

fl(t) (6.7)

To obtain the NESS, we integrated the LME till large t and used saturation of local
observables - energy current, energy density and magnetization on each site to check
approach to steady state.

The local energy density E◊

i
at site i is chosen to be the three site operator

E◊

i
= ≠J

2 eÿ◊(‡i≠1‡
†
i

+ ‡i‡
†
i+1) ≠ f·i + H.c (6.8)
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The current operator on the bond between sites i and i + 1 can be written as I◊

i
=

ÿ[E◊

i+1, E◊

i
]. We evaluate this to be

I◊

i
= ÿ

fJeÿ◊

2 (I(1)
i

+ I(2)
i

) + H.c (6.9)

where

I(1)
i

= (Ê ≠ 1)‡i(·i + ·i+1)‡†
i+1

I(2)
i

= (Ê̄ ≠ 1)‡i(· †
i

+ · †
i+1)‡

†
i+1

The energy and current operators satisfy the discrete continuity equation

dE◊

i

dt
= ÿ[H(◊, 0), E◊

i
] = I◊

i
≠ I◊

i≠1 (6.10)

The expectation value ÈIiÍthermal = Tr(e≠—HIi)/Z = 0 of the chosen form of the
current operator is zero in the thermal state. This can be seen as follows. It can be
checked that the unitary symmetry transformation operator CS introduced in Sec. 6.3
commutes with the Hamiltonian H(◊, 0) and anticommutes with I◊. Now consider the
expectation value of the symmetry transformed current:

Tr[e≠—H(CS)†I◊(CS)] = ÈI◊Íthermal

Tr[e≠—H(CS)†I◊(CS)] = ≠ÈI◊Íthermal (6.11)

suggesting that the current as defined is zero in the the thermal state. In the first
equality we have used the cyclic property of the trace and the commutation of CS with
H. In the second equality, we have used the anticommutation property with I.

Fick’s law can be generalized to all transport regimes using an empirical exponent
“ as

ÈIÍ = Ÿ ◊ (ÈENÍ ≠ ÈE1Í) (6.12)

where Ÿ is steady state energy conductance which scales as 1/N“ with system size N .
Ballistic and di�usive transport are characterized by “ = 0 and 1 respectively. Systems
exhibiting a conduction with 0 < “ < 1 and “ > 1 are said to have super-di�usive and
sub-di�usive transport. We characterize the transport in the clock model from the
scaling of ÈIÍ with N allowing us to estimate the exponent “.
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6.4 NESS currents at ◊, ◊ + 2fi/3 and ≠◊

In this section, we show that, under the time evolution (Eq 6.4) with the dissipator
D◊, the NESS current at ◊ is same as that at ≠◊ and ◊ + 2fi/3. Using this equivalence
of transport behavior at di�erent ◊, we can reduce the parameter region to be studied
from ◊ œ [0, 2fi) to [0, fi/3]. To see the equivalence, we consider the unitary operators
U1 = �i· i

i
and U2 = �iCi. These transform the Hamiltonian as follows

U †
1H(◊, 0)U1 = H(◊ + 2fi/3, 0)

U †
2H(◊, 0)U2 = H(≠◊, 0) (6.13)

Transformation of the dissipator D◊[fl] under the unitaries U1 and U2 is given by

U †
1D◊[fl]U1 = D◊+2fi/3[U †

1flU1]
U †

2D◊[fl]U2 = D≠◊[U †
2flU2] (6.14)

With these, it can be checked that the stationary solution flNESS to the LME (Eq. 6.4)
at ◊ + 2fi/3 and at ≠◊ are related to the solution at ◊ by

U †
1fl◊

NESSU1 = fl◊+2fi/3
NESS

U †
2fl◊

NESSU2 = fl≠◊

NESS (6.15)

Note that we have implicitly assumed that there is only one NESS at each ◊. The
energy density E◊

i
and current I◊

i
transform similarly to H(◊, 0) under U1 and U2.

The thermal expectation value of the current at ≠◊ is given by

ÈI≠◊Í = Tr[fl≠◊I≠◊] = Tr[U †
2fl◊U2U †

2I◊U2] = Tr[fl◊I◊] = ÈI◊Í (6.16)

Similarly, we find that ÈE◊

i
Í = ÈE≠◊

i
Í = ÈE◊+2fi/3

i
Í and ÈI◊

i
Í = ÈI≠◊

i
Í = ÈI◊+2fi/3

i
Í. These

symmetries in the current and energy as a function of ◊ were verified in our numerical
implementation of the LME. In Fig 6.2 symmetry in NESS current is shown for system
size N = 14 and f/J = 0.4 using the dissipator D◊. These results allow us to use the
transport properties evaluated in ◊ œ [0, fi/3] to infer the transport properties in the
whole range [0, 2fi].

Similar arguments for the case of the dissipator D0 shows that the energy and
currents at ◊ and ≠◊ are equal to each other.
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Fig. 6.2 Plot of the NESS current I◊ as a function of ◊ for its full range of values from
0 to 2fi showing the equivalence of transport properties at ◊, ≠◊ and ◊ + 2fi/3. Data
is shown for the system size N = 14, with the dissipator D◊ at model parameters
f/J = 0.4. Vertical lines show multiples of fi/3. Inverse temperatures used for left
and right baths are —L = 0.133 and —R = 0.266 respectively. Figure reproduced with
permission from Ref. [8].

6.5 Numerical Implementation
Evolution under the LME (Eq. 6.4) was implemented using the Matrix Product State
(MPS) formalism where we represent fl as an MPS of the form

|flÍ =
ÿ

‡,‡Õ
A‡1‡

Õ
1A‡2‡

Õ
2 . . . A‡N ‡

Õ
N |‡1‡2 . . . ‡NÍ|‡Õ

1‡
Õ

2 . . . ‡
Õ

N
Í (6.17)

Each tensor A has physical indices of dimension 9. The MPS is normalized such that
the density matrix satisfies the trace preserving condition:

ÿ

‡‡Õ
A‡1‡

Õ
1A‡2‡

Õ
2 . . . A‡N ‡

Õ
N ”

‡1‡
Õ
1
”

‡2‡
Õ
2
. . . ”

‡N ‡
Õ
N

= 1 (6.18)

In the LME (Eq. 6.4) operators can act on the density matrix fl either from the left or
right. Equivalent matrix product operator for the right and left action of operators on
fl contracts with non primed and primed indices respectively. We can write Eq. 6.4 in
the super-operator form

ˆt|flÍ = L̂|flÍ (6.19)
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where L̂ is a time independent super-operator called Liouvillian operator. The solution
to Eq. 6.19 which can be formally written as |fl(t)Í = eL̂t|fl(0)Í can be evaluated using
a fourth-order approximant to MPO similar to those used in Refs. [158, 157]. Matrix
exponential approximant of any order can be expressed as product of several first order
approximants W II(·) = I + ·L as

W II(·1)W II(·2)...W II(·n) = exp(Lt) + O(tp+1) (6.20)

where · ’s are complex numbers proportional to t. To obtain an approximant correct
till order p, we match coe�cients of t of each order up to p on both sides of Eq. 6.20.
The ·i are solutions of these p simultaneous nonlinear equations.

Assuming that the fixed point is unique, the choice of initial state should not a�ect
the NESS. For completeness we describe the initial state preparation. We started with
an infinite temperature state and time evolved it under the following Liouvillian LÕ[fl]

LÕ[fl] © ÿ[H, fl] +
N≠1ÿ

i=1
Di,i+1(—i)[fl] (6.21)

with Lindblad dissipators Di,i+1 (Eq. 6.6) connected to all sites with inverse temperature
at each site linearly varying with site number between —L and —R. The steady state
of the time evolution under LÕ(t) is later used as an initial state for the actual time
evolution. The initial state as well as the time evolved states are in equal mixtures of
the three Z3 parity quantum numbers.

The inverse temperatures at the left and right ends are —L = 0.133 and —R = 0.266
respectively. The spin coupling is set to be J = 1 and the coupling to the Lindblad
dissipators is set to ⁄ = 0.05. Simulations were performed for systems with f = 0.4
and for a set of ◊ in the range [0, fi/3]. Calculations were separately performed using
the two di�erent Lindblad dissipators D0 and D◊. In all of our calculations, bond
dimension ‰ being used is 200. For a select set of parameters we increased the bond
dimension to 800, and no significant change was observed beyond 200 in the local
observables.

6.6 Results
In this section we report the main results of the numerical simulations. The estimated
current and energy density in the NESS, and the scaling exponent “ of the current as



110 Energy transport in Z3 chiral clock model

(a) (b) (c)

Fig. 6.3 NESS current ÈI◊Í as a function of ◊ in the ferromagnetic regime. Panel (a)
shows the current when the Liouvillian is defined using the dissipator D◊ and f/J = 0.4.
Panel (b) and (c) show the current for the case of the dissipator D0 with f/J = 0.4
and f/J = 0.2 respectively. Di�erent lines indicate di�erent system sizes. The peak
current appears at the integrable point ◊ = cos≠1(f/J)/3 shown by vertical dashed
lines in all cases. Inverse temperatures used for left and right bath are —L = 0.133 and
—R = 0.266 respectively. Figure reproduced with permission from Ref. [8].

a function of system size are presented. In addition, we also present the level spacing
statistics and the operator space entanglement entropy in the NESS.

6.6.1 NESS Current and Conductance

The mean NESS energy current ÈI◊Í = q
iÈI◊

i
Í/N as a function of the chiral parameter

◊ is shown in Fig 6.3 (results do not change if the current at the center of the chain
is used instead) Panel (a) shows the NESS current obtained using the dissipator D◊

for parameter f/J = 0.4. Panels (b) and (c) show the same for the dissipator D0 for
model parameter f/J = 0.4 and 0.2 respectively. In all cases we find a peak current
at the ◊ where we expect the system to be integrable. When the model parameters
are changed from f/J = 0.4 to f/J = 0.2, the ◊ at which the model is integrable
changes. Accordingly the location of the peak current also changes. The NESS current
is independent of the system size at the integrable point, consistent with it exhibiting
a ballistic transport. The current decreases with the system size at other ◊. These
qualitative features are the same for both choice of dissipators.

At each value of ◊, the system size dependence of the NESS current can be
parametrized using “ obtained by fitting the NESS current measured in di�erent
system of sizes from N = 14 to N = 48 to the form I◊(Ne�) = AN≠“(◊)

e� . Ne� is the
e�ective length of the chain which is N ≠ 4 as two spins from each end is associated
with the Lindblad dissipators. Figure 6.4(a) shows the current as a function of system
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(a)
(b)

(c)

Fig. 6.4 Panel (a) presents I◊(N) (rescaled by the current in the smallest system size)
vs N ≠ 4 in log-scale for fixed values of ◊ for f/J = 0.4 and using the dissipator
D◊. Panels (b) and (c) show the scaling exponent “ estimated from the system size
dependence of the NESS current I◊(N). Estimated “ is plotted as function of ◊ in
panels (b) and (c). In panel (b), we compare the exponent “ obtained from the two
di�erent choice of dissipators D0 and D◊. In panel (c) we compare the estimated “
obtained using the same dissipator D0 but for f/J = 0.2 and f/J = 0.4. Inverse
temperatures used for left and right bath are —L = 0.133 and —R = 0.266 respectively.
Figure reproduced with permission from Ref. [8].

size for a representative set of values of ◊. Within the range of system sizes accessible,
we are able to fit the data to the power law form.

We present the estimated “(◊) as a function of ◊ in panels (b) and (c) of Fig. 6.4. The
estimates suggest a clear ballistic energy transport only at the integrable point where
“ ¥ 0. In Panel (b) of Fig. 6.4, scaling exponents computed using the two di�erent
dissipators show qualitatively the same behavior, and the two estimates quantitatively
agree except in a region near small ◊. We suspect that the di�erence at the small
◊ may be a consequence of di�erent length scales associated with thermalization at
the boundary, resulting in di�erent e�ective lengths for the chain. In Fig. 6.4(c) “

is plotted for NESS obtained using the dissipator D0 for f/J = 0.2 and 0.4, showing
ballistic transport at the expected value of ◊ = 1

3 cos≠1(f/J).
Studies in disordered spin-1/2 systems have suggested large length scales at weak

disorder leading to super-di�usive behavior being observed in finite size calculations
[175, 176]. We cannot rule out a similar possibility - that a di�usive behavior emerges
in larger systems - with the results from the currently accessible system sizes. Spatial
profiles of the energy density and current in the NESS for the super-di�usive and
ballistic cases are shown in Fig. 6.5. As expected the energy density is independent of
the position in the bulk in the case of the ballistic system.

The analysis in this section relies on the scaling of the current with system size. This
yields “ provided that the energy densities at the ends of the chain are independent of
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(a) (b) (c)

(d) (e) (f)

Fig. 6.5 Spatial profile of energy density and current for system sizes N=14, 20, 24,
and 28 with position shown on the x-axis rescaled by a factor of 1/(N ≠ 2). Profiles
for Hamiltonian parameters ◊ = 0.2 in panel (a) and (d), ◊ = 0.38 in panel (b) and
(e), and ◊ = 0.2 in panel (c) and (f). ◊ ≥ 0.38 is close to the integrable point. Inverse
temperatures used for left and right bath are —L = 0.133 and —R = 0.266 respectively.
Figure reproduced with permission from Ref. [8].
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Fig. 6.6 Energy density as a function of the position in the NESS obtained after
attaching only one bath to a chain. The two di�erent lines indicate the energy densities
realized upon attaching baths with parameters —R and —L. Di�erent overlapping lines
of di�erent thicknesses show the data for di�erent system sizes. Figure reproduced
with permission from Ref. [8].

the system sizes (such that conductance is proportional to the current). In very large
systems this can be true, but in small systems the energy densities can be a�ected
by the bath at the other end, resulting in an energy di�erence that is system size
dependent. An estimate of the local energy density that will be realized at the ends if
there were local equilibration near the bath can be obtained by attaching only bath
to the system. We performed this calculation for each of the two baths. Figure 6.6
presents the results one of these calculations. Figure 6.7 shows examples of energy
densities as a function of position for di�erent system sizes and parameter regimes
(sites very close to the baths have been excluded). The estimates of the expected
energy densities if the baths had locally equilibrated with the ends of the chain are
shown in dotted lines.

At the ◊ very close to the integrable point (Fig. 6.7 panel (b)), the energy
densities are midway between the bath energy densities (dotted lines). The energies
are approximately independent of the position and system size. In the case of the ◊

larger than the integrable value (panel (d) of Fig 6.7), the energy densities realized in
the chain are very close to the bath energy densities (indicated by the dotted lines).
In the case of ◊ smaller than that of the integrable point, the energy densities are
position dependent but are far from the estimated bath energy densities. The system
size dependence of these energy density di�erence may then need to be taken into
account to make a correct estimate of “.
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Fig. 6.7 Each panel shows the energy densities as a function of the position for di�erent
system sizes. Position on the x-axis has been rescaled and shifted that center of the
chain is at 0 and the 4th spin from the ends are at ±0.5. The two dotted lines show
the expected energy densities had the each one of the baths fully equilibrated with the
chain (See Fig 6.6). The four panels show the data for four di�erent cases. Panels (a)
and (c) show results for ◊ less than that of the integrable point. Panel (b) shows the
data at a ◊ very close to the integrable point. Panel (d) shows the same at ◊ larger
than that of the integrable point. Inverse temperatures used for left and right bath are
—L = 0.133 and —R = 0.266 respectively. Figure reproduced with permission from Ref.
[8].
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Fig. 6.8 In panel (a) and (b), log(I◊(N)/�E) vs log(N ≠7) is shown for both dissipators
D0 and D◊. Scaling exponent “ is obtained by linearly fitting log(I◊(N)/�E) vs
log(N ≠ 7) data and is plotted as function of ◊ in panels (c) and (d). ◊ in the
vicinity of integrable points (vertical dashed line) are not shown as the numerically
obtained conductance Ÿ show wild oscillations due to vanishing energy gradient. Figure
reproduced with permission from Ref. [8].
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Fig. 6.9 (a) Rescaled current Irescaled of NESS as a function of ◊ and f/J is plotted.
Comparison of numerically estimated ◊ballistic and the integrable line ◊ = cos≠1(f/J)/3
is shown in (b). Figure reproduced with permission from Ref. [8].

In Fig. 6.8 we show the results of the “ estimated from the scaling with system
size of the conductance. In order to define the conductance, we have assumed that
the energy density di�erences are proportional to temperature di�erences, taking the
ratio of the current to the energy density di�erence between the 4th site from either
ends of the chain, distance between them being N ≠ 7. The scaling exponent obtained
by fitting the conductance to N≠“(◊) in the panels (c) and (d). The results indicate a
larger value of “ than what was obtained from scaling of current.

For ◊ larger than that of the integrable point, the sites near the ends appear to have
nearly equilibrated with the bath (Fig. 6.7(d)). In these cases we find the scaling “ to
be very close to that of a di�usive system. For smaller ◊, where the energy gradients are
smaller and much larger system sizes may be needed in order to reliably estimate the
true scaling properties. We have not shown the conductance scaling in the vicinity of
the integrable points as the energy gradients are nearly zero and numerically estimated
conductances show wild variations.

We now discuss a broader range of f values. For not too small system sizes, we
expect the peak current and conductance Ÿ to occur at the ◊ values exhibiting ballistic
transport. We may therefore use the peak conductance at each f as a proxy to identify
the values of ◊ at each f exhibiting ballistic transport. Figure 6.9 shows the estimated
current re-scaled and shifted by f -dependent constants chosen such that for each f , the
maximum value of Irescaled is 1 and minimum is 0. Within the numerical uncertainties
due to the finite resolution of ◊ values, we find that the peak current occurs along the
expected line f/J = cos(3◊) of integrable points [187, 47].
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(a) (b)

Fig. 6.10 Operator space entanglement entropy Si plotted as a function of the bond
location i. All data are for system size N = 32 and at f/J = 0.4. The two panels
show the entropy for the NESS obtained under the dissipators D0 and D◊. Figure
reproduced with permission from Ref. [8].

6.6.2 Operator space entanglement

Analogous to the notion of entanglement between di�erent bipartitions of many body
states, one can define an operator space entanglement entropy (OSEE) [192, 193] from
the MPS representation of the density operator. From the Schmidt decomposition
of the state across a partition located at bond i, the entropy can be computed as
Si = ≠TrRi log Ri where Ri is the reduced density matrix obtained as the partial trace
Trj>i |flÍÈfl|. OSEE of the NESS at di�erent locations of the partition is shown for
system size N = 32 and f/J = 0.4 is plotted in Fig.6.10. Empirically we find that at
the integrable points, away from the edges, the OSEE is independent of the location of
the partition, and for the non-integrable points, Si shows weak position dependence.

The singular values from which the OSEE was constructed also is weakly position
dependent in the case of the integrable points. Translation invariance of the entropy as
well as of the expectation values of the local operators - energy density and current - at
the integrable point suggest the possibility of a translation invariant MPS approximation
for the NESS at the integrable points similar to Ref [194].

6.7 Level spacing statistics
To verify the connection between energy transport and quatnum chaos which has already
been reported in the earlier works, we used the level spacing statistics and ratio[21].
Proper evaluation of the spacing statistics involves two major steps - Eigenspectrum of
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Hamiltonian in a given symmetry sector and unfolding of the spectrum. Each of this
steps are explained in subsequent subsections.

6.7.1 Spectrum through Exact Diagnoalization

Chiral clock Hamiltonian is invariant under the symmetries P, T and CS for ◊ ”= 0
and „ = 0. For the correct numerical evaluation of the level spacing statistics we want
the spectrum of the Hamiltonian which is from one of the symmetry sector of above
mentioned symmetries. For spin chain of length N , when working in the eigenbasis
of · operator, we have 3N many-body basis states in total. Under the global parity
symmetry P , eigenbasis can be split into three subsets of equal sizes i.e 3N≠1. Each of
these subsets are indexed by the parity eigenvalue 1, Ê or Ê̄. We decided to work in the
eigenbasis of · operator because it provides major convenience in state representation
of the parity eigenstates. The eigenstates of the · operator are as follows

|OÍ = |1Í + |ÊÍ + |Ê̄ÍÔ
3

|W Í = |1Í + Ê|ÊÍ + Ê̄|Ê̄ÍÔ
3

|W̄ Í = |1Í + Ê̄|ÊÍ + Ê|Ê̄ÍÔ
3

with the eigenvalues 1, Ê and Ê̄ respectively. From the properties of operators T and
C, it is easy to see that eigenstates of · operator transform as follows - T |OÍ = |OÍ,
T |W Í = |W̄ Í, T |W̄ Í = |W Í, C|OÍ = |OÍ, C|W Í = |W̄ Í and C|W̄ Í = |W Í.

When working in the · eigenbasis of the form |ÂÍ = |·1 ¢ ·2 ¢ · · · ¢ ·NÍ, each basis
state belongs to the one of the parity eigensector from the three possible parity sectors.
The parity sector has the following properties under the operators T and CS

• Parity sector with P = 1 can be further divided into subsectors under the
symmetries T and CS

• Parity sector with P = Ê or Ê̄ can not be further divided into subsectors under
the symmetries T and CS. As the action of T and CS on the parity basis states
in these sectors changes the parity of the state from Ê to Ê̄ and vice-versa

Because of the above mentioned properties of the each parity sectors, It is su�cient to
work in parity sectors with parity P = Ê or Ê̄ as no further symmetries are presented
in these sectors.
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6.7.2 Unfolding Procedure

In the level spacing distribution of the spectrum of a Hamiltonian, we are interested
in fluctuations in the energy levels of the spectrum. For the comparison of the level
spacing of two di�erent Hamiltonian, we can not compare them if they have di�erent
average spacings. Even for the di�erent parts of a spectrum, comparison of level spacing
can not be done if they have di�erent average spacings. Unfolding is the procedure
which enable us to make these comparisons by rescaling the eigenvalues through setting
the local mean spacing to 1.

There is not a unique way to unfold a spectrum. We will describe the unfolding
procedure that we have used in our work. We started with the ordered eigenvalues
i.e E1 < E2 . . . En in increasing order of energy. Around 10 percent of the eigenvalues
are thrown away from each end of the spectrum. Then we calculated the cumulative
spectral function ÷(E) which is

÷(E) =
nÿ

i=1
�(E ≠ Ei) (6.22)

where n is the number of eigenvalues remained after throwing some o� and � is
Heaviside step function. Equation 6.22 essentially indexes the ordered eigenvalues.
Cumulative spectral function ÷(E) can be decomposed into the following form

÷(E) = ›(E) + ÷fl(E) (6.23)

where ›(E) is the smooth part and ÷fl(E) is the fluctuating part. The smooth part of
the function is obtained by fitting the ›(E) to polynomial of degree 15.

Level spacing statistics (within a symmetry sector of Z3 parity) computed in a finite
system of size N = 11 (Fig. 6.11) show Poisson statistics at the integrable point and a
mixture of GOE and Poisson distributions at other values of ◊. The distribution is
closer to GOE away from the integrable points. Consistent with this, the estimates of
“ increase away from the integrable points, however it does not indicate fully di�usive
behavior in any region of ◊.

6.8 Conclusion
A large body of studies on quantum transport in spin chains performed primarily on
spin-half models have indicated that integrable systems show a ballistic energy transport
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Fig. 6.11 Level spacing distributions for ◊ = 0.1 and ◊ = 0.456 (close to the ballistic
point) are shown in panels (a) and (b) respectively. In (c), variation of mean level
spacing ratio ÈrÍ is plotted versus ◊ showing change in level spacing statistics from
GOE to Poissonian at the integrable point cos≠1(f/J)/3. Figure reproduced with
permission from Ref. [8].

and deviations from integrability generally lead to a di�usive behavior[173, 172, 170]
with possible exceptions[164].

In this work we have studied the transport properties of the Z3 clock model that
goes beyond the spin half chains. At the integrable points in the model parameter
space, NESS shows a system size independent current, suggesting a ballistic energy
transport. At all other values of the parameters the current decreases with the system
size. The transport scaling exponent “ estimated from scaling of the current alone
shows indicates a super-di�usive behavior. Careful analysis of the energy density
profiles suggests that this is likely to be a consequence of finite size e�ects in the system.
System size dependence of the energy gradient also needs to be taken into account.
The scaling exponent inferred from the conductance instead shows the values closer to
di�usive behavior. The results demonstrate the connection between integrability and
ballistic transport in a larger class of models beyond the well-studied spin half chains.

We have used local Lindblad coupling to the edges of a finite chain of chiral Z3

clock to approximately model the coupling of the system to the bath. Within this
approach, we obtained similar results when di�erent dissipator models were used at the
edge, suggesting a robustness of the results to the precise nature of the coupling of the
system to the bath. Direct computation of the Drude weights can be an independent
approach to verify the characterization of transport properties in the model [195–199].



Chapter 7

Temporal order in periodically
driven spins in star-shaped clusters

We experimentally study the response of star-shaped clusters of initially unentangled
N = 4, 10 and 37 nuclear spin-1

2 moments to an inexact fi-pulse sequence, and show
that an Ising coupling between the centre and the satellite spins results in robust
period-two magnetization oscillations. The period is stable against bath-e�ects but
the amplitude decays with a time scale that depends on the inexactness of the pulse.
Simulations reveal a semiclassical picture where the rigidity of the period is due to a
randomizing e�ect of the Larmor precession under the magnetization of surrounding
spins. The time scales with stable periodicity increase with net initial magnetization
even in the presence of perturbations, indicating a robust temporal ordered phase for
large systems with finite magnetization per spin.

7.1 Introduction
Spontaneous symmetry-breaking is a central notion in many body physics, allowing us to
explain several natural phenomena such as formation of a magnet or ice crystals. While
there are many systems in which the underlying spatial symmetries are broken resulting
in various crystalline phases, and a few classical systems that exhibit spontaneous
temporal oscillations, it was only recently that the possibility of spontaneous breaking
of time translation symmetry in quantum systems was considered. The initial proposals
[200] for realizing a spontaneous breaking of continuous time translation symmetry
were later shown to be forbidden in static equilibrium systems [201, 202]. However,
in the attempt to understand quantum thermodynamics of driven systems, it was
realized that an externally driven, disordered, interacting spin system can stabilize a
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phase which spontaneously break the discrete time translation (Z) symmetry of the
system to a subgroup nZ [99, 84, 203, 204]. The phenomenon was soon experimentally
realized in trapped cold-atom systems that mimic a long range interacting disordered
spin-half chain [30], and in dense collections of randomly interacting nitrogen vacancy
spin impurities embedded in diamond [83, 205]. While this work was under review,
similar observations were also realized in other solid NMR experiments[85].
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Fig. 7.1 Molecules used in the experiments - acetonitrile (a), trimethyl phosphite (TMP)
(b) and tetrakis(trimethylsilyl)silane (c) with the 4, 10 and 37 NMR active nuclei
encircled. (d) Experimentally measured magnetization ÈSz

i
Í of satellite spins of TMP

for the pulse sequence in Eq. 7.1 with JT/~ = 6.5 and ◊ = fi ≠ 0.1. Red/green dots
show the magnetization at odd/even time steps. For visibility in the plot, the y axis has
been rescaled at every 100th time step. (e) Blue line shows experimentally measured
magnetization oscillations of free/non-interacting spins of protons in acetonitrile which
contain a spinless C ≠ 12 central spin, at a pulse angle ◊ = fi ≠0.27. Gray lines indicate
the expected response in the absence of a bath. Figure reproduced with permission
from Ref. [9].
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In this work, we report on the observation of robust period two oscillations of
magnetization in a cluster of nuclear spins in a simple star-shaped geometry with
a central spin interacting with N surrounding satellite spins via Ising interactions
mediated by the electron cloud in the molecule. The satellite spins do not interact
with each other. Spins in each molecule show magnetization oscillations of period-two,
as expected, when subjected to a sequence of transverse fi-pulses (pulses that rotate
every up/down spin by fi radians). However the Ising interactions within the cluster
result in the period rigidly locking on to two, even under a sequence of inexact fi

pulses (pulses that rotate by an amount fi ≠ e). Simulations of an isolated cluster
show that the period is robust even in the presence of small perturbations and disorder
that break the symmetries of the model. For the present work we perform nuclear
magnetic resonance (NMR) experiments on acetonitrile, trimethyl phosphite (TMP)
and tetrakis(trimethylsilyl) silane (TTSS) containing 4, 10 and 37 spins [Fig 7.1 (a-
c)] [206]. The experiments are performed on ensembles of ≥ 1015 molecules with
a distribution of initial states, described by a direct product density matrix. High
precision ensemble average magnetization measurements of central/satellite spins can be
performed using free-induction decay signals. Period-two oscillation of individual spins
result in corresponding oscillations of the ensemble average magnetization. Control
experiments performed on molecules that contain a spinless isotope at the center show
oscillations with frequencies that linearly vary with the deviation e, showing that
the robustness of the period originates from interaction with the central spin. In the
following, unless units are made explicit, frequencies are in units where the time period
T = 1.

7.2 Model and numerical results
The unitary operator evolving the state of the cluster between successive steps is given
by

U (J, ◊; t) = exp
5
≠ ıJt

~ Sz

0
q

N≠1
i=1 Sz

i

6
for t œ [0, T ) (7.1)

U (J, ◊; T ) = exp
Ë
≠ı◊

q
N≠1
i=1 Sx

i

È
exp

5
≠ ıJT

~ Sz

0
q

N≠1
i=1 Sz

i

6

where J , T and ◊ are the Ising interaction strength, time period and the rotation angle
characterizing the pulse. Sµ

i
are spin operators. Site index i = 0 labels the central spin

(See Ref [207, 208] for a description of liquid-state NMR which realizes the unitary)
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Fig. 7.2 Numerical simulations of spins in the rotating basis. (a-b) Time dependence
of the expectation values of the three spin components of a satellite (a) and central (b)
spin for a system with N = 8 spins, JT

~ = 4 and pulse angle ◊ = e = 0.4. Initial state
is the fully z-polarized state. (c) Entanglement entropy of the central spin. (d) Bloch
sphere representing the spin components of a central spin (of a 6 spin cluster) at times
t = 0, T +, 2T ≠ and 2T +; +/≠ labels the time just after/before the pulse. Sequence of
intermediate dots track the evolution between time t = T and 2T . (e) Same as (d) but
for a satellite spin. (f) Bloch vectors for a single isolated spin at successive time steps.
Figure reproduced with permission from Ref. [9].

We will label the deviation from fi pulse by e = fi ≠ ◊. To simplify the discussion
below, it is useful to temporarily switch to a toggling frame of reference in which the
basis of every spin rotates by an angle fi about the x-axis after each pulse. On account
of the Z2 symmetry of the model, the unitary operator in the rotating basis retains the
same form as in Eq. 7.1 but with a reduced pulse angle e = fi ≠ ◊, i.e., the spins in
the rotating basis see a unitary operator U(J, ≠e; t). A constant z-magnetization of all
spins in the rotating basis picture corresponds to a period-two oscillation of all physical
spins. Numerical simulations indeed show that a finite magnetization is maintained
under a sequence of weak pulses (pulse angle ≠e). Presented below is a semiclassical
picture inferred from numerical simulations (Fig 7.2).
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For simplicity, we will consider the time evolution starting from a fully polarized
initial state under a sequence of small pulses ◊ = ≠e (corresponding to ◊ = fi ≠ e

experienced by the physical spins). During 0 < t < T , the spins do not evolve as the
state is an eigenstate of the unitary evolution (Eq. 7.1). At time t = T , the pulse
rotates every spin by an angle e away from z-axis as shown on the Bloch sphere (see
Fig. 7.2). During T < t < 2T , the central spin which is tilted away from the z-axis
evolves under the Hamiltonian H ¥ ≠J ÈMsÍ Sz

0 where Ms is the net z magnetization
of the satellite spins resulting in a Larmor-like precession as shown in Fig. 7.2(d). The
orientation of the central spin at t = 2T ≠ depends on the amount of precession JT ÈMsÍ

~ .
The e pulse at t = 2T now brings the spin vector to a polar angle 0 < ◊ < 2e. Owing
to the precession, the successive e pulses can now cancel each other. In contrast, in a
set of non-interacting spins the angles always add constructively leading to a steady
increase in the polar angle (ne after n pulses - Fig. 7.2(f) ). Thus the randomizing
e�ect of the interaction induced Larmor precession, causes the polarization of the
central spin to survive longer than that of an isolated spin. We expect the same
e�ect to be seen also on the surrounding spins except that they precess under the
magnetization of the central spin alone resulting in a slower precession of the satellite
spins compared to the central spin (Fig. 7.2(f)). Constant sign of the Bloch-vector
component ÈSzÍ in the rotating basis implies a period two oscillation of the physical
spin orientation (Fig. 7.2(a,b)). Such a semiclassical picture assumes that the central
spin is not maximally entangled with the surrounding spins, as otherwise the Bloch
vector may vanish in length even when the polar angle is conserved. As shown in Fig.
7.2(c), the von Neumann entropy of the central spin stays below maximum ensuring
finite Bloch vectors. Simulations of the small systems at much longer time scales using
exact diagonalization indicate that entanglement of the system does not rise for time
scales that increase exponentially with system size (Fig. 7.3(c,d)).

In the following, we will use the physical spin basis. To explore the stability of the
period to perturbations other than e, we numerically simulated a pure spin system with
a time independent perturbation to the Hamiltonian of the form q

i hx

i
Sx

i
+ hz

i
Sz

i
. The

quenched disorder hx

i
and hz

i
were picked uniformly from [≠”/2, ”/2] and [0, ”] (in units

where T/~ = 1). To compare the response of di�erent system sizes, we fix the average
magnetization per spin. We found that in all cases, the time scale in which there was
a dominant period-two oscillation appeared to grow exponentially with system size
(Fig. 7.3(b)). Similar increase in time scales were also observed in simulations with
disorder free perturbations of the form hz

q
Sz

i
and Jx

q
Sx

i
Sx

i+1[208]. The time scales
with stable period are higher when the initial state of the spin cluster had a larger
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Fig. 7.3 (a,b) Time dependence of cross correlation (multiplied by (≠1)t) between the
central spin Sz

0 and a satellite spin Sz

i
from simulations of systems of di�erent sizes

(JT/~ = 4, e = 0.05, Â = Rx(fi/8) |øø . . . Í, Rx(fi/8) being the rotation of all spins
by fi/8 about x). Disorder strengths are 0 (a,c) and 0.5 (b,d). (c,d): Entanglement
entropy of the central spin. Disorder averaging has been performed in (b,d). Figure
reproduced with permission from Ref. [9].
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total magnetization. Slow heating and stability in this disorder free system is likely to
be associated with a prethermal regime similar to that in Ref [[100, 209]]. However,
unlike the high frequency case discussed there, the experiments here are performed
at low frequencies (JT > 1). Cross correlation between the central and satellite spins
(Fig. 7.3(a,b)) show that di�erent spins oscillate in synchrony suggesting that the
robustness of the period is a collective behavior of all spins.

For small e and the Z2 symmetric unitary (Eq. 7.1), origin of the period-two
oscillations at finite deviation e can be understood in a manner similar to that described
in Ref [84]. The Floquet unitary describing the periodic drive commutes with the
parity operator P = r 2Sx

i
and therefore the quasienergy eigenstates have a parity

quantum number ±1. The quasienergy states of the system at ◊ = 0 occur in degenerate
quasienergy pairs of opposite parity Â± = |‡0, mÍ ± |≠‡0, ≠mÍ, where |‡0, mÍ is a state
with central and satellite spins in an eigenstate of Sz

0 and q
N≠1
i=1 Sz

i
with eigenvalues

‡0 and m. At small finite pulse angle ◊ = e, the quasienergy-degeneracy is broken in
a manner that depends on the magnetization |m| as ≥ e2|m|+1. In the presence of a
sequence of inexact fi pulses ◊ = fi ≠ e, the unitary is U(J, fi ≠ e; T ) = PU(J, ≠e; T )
for which the states Â± have quasienergies separated by fi + O(e2|m|+1). A polarized
direct product initial state |‡0, mÍ is a symmetric or antisymmetric linear combination
of the states Â±. As a result, the unitary for inexact fi pulses acts on such a polarized
state to flip the orientation of all the spins at each time step:

U |‡0, mÍ = U(Â+ ± Â≠) ≥ Â+ ± e≠ıfi Â≠ = |≠‡0, ≠mÍ

resulting in a period-two magnetization oscillation. Better degeneracies of the higher
magnetization initial states explains why initial states with larger magnetization shows
stable periodicity for longer time scales. Subleading ocillations of other frequencies
originate from mixing of Â± with states of smaller magnetizations.

7.3 NMR setup:
The spin systems used for the experiments - Acetonitrile, TMP and TTSS are prepared
in the solvents dimethyl sulfoxide/deuterated chloroform. The experiments are carried
out at 300 K in a Bruker 400 MHz NMR-spectrometer equipped with an UltraShield
superconducting magnet of strength 9.39 T. The unitary of Eq. 7.1 is realized in a
doubly rotating frame [207, 208]. The ◊ pulses are realized by simultaneous resonant,
short duration radio-frequency pulses on all spins. The pulse duration can be tuned to
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control ◊. Interaction parameter JT/~ can be set by tuning the time period T . After n

pulses, any residual transverse magnetization is destroyed using a pulsed-field-gradient
(PFG) and the final magnetization ÈSzÍ is rotated into the transverse direction with
the help of a fi/2 detection pulse. The NMR signal is then detected as the oscillatory
emf induced in a probe coil due to the precessing transverse magnetization about
the Zeeman field [210, 208]. During each period, the measurement was performed
immediately after the pulse.

Initial states in the experimental ensemble of ≥ 1015 molecules can be descibed by
mixed state of the form fl = r

N≠1
i=0 ¢fli, where fli = 1

2(I + ‘‡z

i
), and the purity ‘ ¥ 10≠5,

‡z being the Pauli matrix. The purity is inferred from the thermal equilibrium
distribution at the magnetic field strength inside the spectrometer. Note that while
the ensemble average magnetization is small, the ensemble contains subensembles
of all possible initial magnetizations ≠N/2 Æ M Æ N/2, with a marginally higher
fraction (parameterized by ‘) with positive sign. Clusters with finite magnetization
|M | show stable periodic-two oscillations which collectively reflect in the ensemble
average measurements.

7.4 Results and discussion
: Fig. 7.4 shows the measured satellite spin magnetizations in TMP and acetonitrile
for an interaction parameter JT

~ = 20.7 (J/h = 11 Hz, T = 0.3 s). Magnetization
oscillations on TMP (Fig. 7.4 (a,b,c)) show a clear peak at frequency half (subharmonic
peak), whose height decreases with increase in the deviation e, vanishing at e ¥ 0.4fi

in agreement with the simulations. There are no discernible peaks in the spectrum at
frequencies fi±e

2fi
expected from non-interacting spins. Fourier transforms were taken

using standard FFT algorithms applied to the data from the chosen time window. For
comparability, magnetization data was normalized such that initial magnetization was
1.

The RF pulses have ±5% distribution of ◊ values around the nominal value, due
to the spatial inhomogeneity of the RF field over the volume of the sample. The
experimental system su�ers from decoherence due to coupling to an external thermal
bath. This could explain the decay of the oscillation amplitudes with time [211]. Apart
from this decay, the magnitude of the subharmonic peaks in each time window match
the simulations. Interestingly the decay time decreases steadily with e (Fig 7.4 (c)).

Acetonitrile sample contains a mixture with 99% of the molecules carrying a
spinless C-12 and 1% of the molecules containing spinful C-13 atom in the methyl
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Fig. 7.4 Experimentally measured satellite spin magnetization q
N≠1
i=1 ÈSz

i
Í. (a,d): Mag-

nitude of the subharmonic peak upon varying e in TMP and Acetonitrile. Solid
continuous lines show results from simulations. Di�erent markers indicate Fourier
transforms of experimental measurements in di�erent time windows. (b): Waterfall
plot of the Fourier spectrum (time-window 0 < t < 80T ) of the experimentally ob-
serverd magnetization of TMP at di�erent deviations e. Dashed blue lines indicate
the location of peaks expected for a free spin. (c): Variation of the decay time of the
experimentally observerd magnetization amplitude with e for TMP. (e,f): Same as (b)
but for acetonitrile with a spinfull C-13 (e) and spinless C-12 (f) atom at the center.
Figure reproduced with permission from Ref. [9].

group. Although NMR signal has contributions from the satellite spins of both isomers,
their contributions can be separated in the frequency domain of the induced emf
oscillations during the final measurement process thanks to the presence or absence of
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Fig. 7.5 Experimental values of central spin magnetization ÈSz

0Í in TTSS. (a): Subhar-
monic peak strength as a function of the deviation e. Di�erent markers indicate Fourier
transforms in di�erent time windows. (b): Waterfall plot of the Fourier spectrum of
the experimentally observed central spin magnetization at di�erent e. Blue dashed line
shows the location of the Fourier peaks expected for free spins. (c): Decay time scale
as a function of e. Inset shows a semi log plot of the amplitude of magnetization as a
function of time. Figure reproduced with permission from Ref. [9].

interaction with the central spin, and thus they can be analysed separately. Experiments
on acetonitrile were performed at the parameter JT

~ ¥ 17.1 (J/h = 136Hz, T = .02s).
Figure 7.4(e) shows the Fourier transforms of magnetization of the satellite spins in
acetonitrile that contain a spinfull C-13 central atom. Figure 7.4(f) shows the Fourier
transform of the magnetization of the satellite spins in molecules containing a spinless
C-12 central atom. In the absence of a central spin with which the satellites can
interact, they oscillate like isolated spins with a frequency that varies linearly with e.
Absence of stable period in this non interacting system clearly shows that the stability
of period observed in other clusters arise from interactions. Fig. 7.5 shows the results
for magnetization measurements of the central Si-29 spin of the TTSS molecule which
has N = 36 satellite spins around the central atom. Experiments were performed at
JT/~ ¥ 4 (J/h = 2.5Hz, T = 0.25s).

7.5 Conclusion
We have experimentally demonstrated that stable temporal order can be realized
in NMR spin-clusters. Absence of a stable period in the control experiment in C-
12 acetonitrile shows that stability of the period requires interactions between the
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spins (as in C-13 acetonitrile). Though bath e�ects and other perturbations in the
experiment lead to a magnetization decay with time, interestingly the period appears
to be una�ected. Stability of the period in the spin cluster improves with increase in
total initial magnetization. Therefore large systems with finite initial magnetization
per spin, should show a stable temporal ordered phase. The stability of the oscillations
in such systems can be interpreted as an error-correction on the pulse sequence and
may find potential applications towards robust quantum information processing [212].
Eq.





Chapter 8

Conclusion

Interacting quantum many-body systems driven out-of-equilibrium exhibits a rich set
of physical phenomena. Explorations in the field has helped us refine our description of
the emergent macroscopic world, such as mechanisms for thermalization, equilibration,
and decoherence. About a century of research into principles governing quantum
and classical many-body systems in equilibrium have revealed a fascinating range
of emergent structures in these systems. Spurred by the developments in quantum
computing systems, precision experimental probes of quantum many-body dynamics,
and a rapidly developing set of computational tools, there is increasing interest in
understanding robust guiding principles applicable in the out-of-equilibrium settings.

The advent of DMRG and MPS formalisms for quantum many-body systems has
led to the possibility of highly precise simulations of relatively long-time dynamics
of large quantum many-body systems. In this work, we have analyzed aspects of
dynamics in a specific interacting quantum system using MPS and related techniques.
The works presented in this thesis are among the few which have attempted to explore
out-of-equilibrium physics in models with local Hilbert space bigger than that of
spin-1/2 particles. The larger Hilbert space, while resulting in richer structures such
as more complex domain walls and richer phase diagram, also makes the calculations
harder due to the faster growth of Hilbert space. Therefore, the power of the MPS
formalism was crucial to the studies presented here. In addition to elucidation of
the dynamical features in the chiral clock model, the e�ort put in this work has also
resulted in developing local expertise in the broad range of techniques which can be
applied to a strongly interacting quantum systems.

A quantum system can be driven out of equilibrium in various ways. Quenches,
ramping, and periodic driving are the simplest methods employed to drive a closed
system out of equilibrium. The system can also be connected to dissipative baths,
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making it an open quantum system. We have studied such out-of-equilibrium settings
in context of a specific model namely chiral clock model.

Using insights from conformal field theory and Kibble-Zurek mechanism [103] it
was shown that dynamics of Loschmidt echo follows the following universal scaling [5]
for critical quantum Ising model under boundary Floquet drive in slow driving regime
(T >> h≠‹

b
)

L(NT ) = cN(Th≠‹

b
)≠N“ (8.1)

where N is an integer quantifying the number of Floquet drives, T is the time period
and hb is the magnitude of longitudinal field acting on the boundary spins. Scaling
exponent “ depends on details of the drive sequence around the critical point. In
chapter 3, we numerically studied the applicability of the arguments in the context of
critical Z3 clock model [6] which is also described by CFT. We find that scaling Eq.
8.1 and the arguments derived from CFT and Kibble-Zurek mechanism indeed holds
true for the non-trivial interacting model like Z3 clock model.

E�ect of chirality specifically on entanglement dynamics after weak quenches is
discussed in chapter 4. Chirality as well as multiple domain wall flavors in the makes
physics richer than the Ising case. Relaxation in quantum quenches is understood
in terms of the spread of domain walls as they are the carrier of energy. Unusual
domain wall dynamics is seen at the boundary of the finite size chain because of
the interplay between chiral parameter ◊ and f/J . At the boundary, the domain
wall changes its flavor when parameter ◊ is less than critical value ◊c for the quench
Hamiltonian. The domain wall flavor is preserved after scattering for ◊ larger than
◊c. This ◊ dependent scattering of domain walls from the boundary leads to di�erent
entanglement dynamics for the chiral and non-chiral quenches when the subsystem is
considered at the boundary [7]. Long coherence time or slow relaxation observed for
the boundary spins for chiral quenches is also related to ◊ dependent scattering [151].

In Chapter 6 we studied the energy transport in chiral clock model connected to
dissipative baths modeled using local Lindblad dissipators. We have addressed the
dependence of energy transport behavior on the Hamiltonian parameters ◊ and f/J .
We found out that the chiral clock model shows ballistic energy transport on the
integrable line f/J = cos(3◊) and di�usive transport otherwise [8].

Through large scale numerical calculations we have explored range of questions
pertaining to chiral clock model and parallelly developed numerical tools in the process.
There are several aspects and parameter regimes of the chiral clock model which were
unexplored in our studies. We have explored some aspects of it in the works discussed
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earlier. Summary of the partial results along with the open questions are addressed
below.

E�ect of the parameter „, which acts as a uniform magnetic field for the domain
walls and breaks time reversal symmetry makes physics richer, which needs to be
explored. In the quenching problem, it will be interesting to see the e�ect of „ in the
quench protocol from the ordered initial state on the dynamics of the domain wall,
entanglement, local magnetization, etc. Characterizing the energy transport for the
non-zero „ in the phase diagram is still an open question. Our analysis of energy
transport in the chiral clock model can su�er from finite size e�ects. Our results can be
verified by the numerical calculation of Drude weight.Transition between the gapped
phases have dynamical critical exponent z ”= 1 for non-zero ◊ and „, therefore it is
unlikely to be described by conformal field theory. Boundary Floquet drive around
such critical points with z ”= 1 makes an interesting problem to check the universal
scaling of quantities like Loschmidt echo, entropy, etc.

Another way to look at thermalization is from the information perspective. Even
though the dynamics of a closed quantum system is unitary, we know that quantum
ergodic systems relax to a thermal state. In other words, by doing local measurements,
we can not know from which state system started with i.e localized information is lost
at large t because of information scrambling. Out-of-time order correlator (OTOC)
is a useful quantifier to understand information scrambling in quantum and classical
systems. OTOC essentially exploits the non-commutativity of local operators at
di�erent sites with time as Heisenberg operators are no more spatially local as time
progresses. For a non-localized phase, OTOC has ballistic traveling wavefront at the
late time with a rapid increase in front of the wavefront and saturation behind the
wavefront. For the Z3 chiral clock model with some additional next nearest neighbour
interaction, it was shown that there is an asymmetric flow of information using OTOC
by tuning Hamiltonian parameters [213]. For the chiral clock model, the e�ect of
parameters ◊ and „ on the behavior of OTOC and information propagation is still
an open question. We have some preliminary results on the OTOC, which we will
summarise. For a closed quantum system with Hamiltonian H, OTOC Fij(t) is defined
using the Heisenberg operator Ô(t) = eÿHtÔe≠ÿHt as

Fij(t) = ÈÔ†
i
(t)Ô†

j
(t)Ôi(0)Ôi(0)Í— (8.2)

where Ôi = ‡i and Ôj = ‡j are operators localized at site i and j. È. . . Í— is the thermal
expectation value at inverse temperature —. It is more convenient to use relative OTOC
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Fig. 8.1 Panels a and d show the heatmap for the relative OTOC F r

ij
versus operator

separation distance i ≠ j for parameter „ = 0.0 and 0.1 respectively. we have ◊ = 0.3
for the all the plots presented here. Asymmtery inside the light cone between +(i ≠ j)
and ≠(i ≠ j) is clearly visible when we use the lineplots with F r

ij
and t plotted in y and

x axis respectively. Asymmtery inside the light cone can be seen for (◊, „) = (0.3, 0.1)
which is plotted in panel (e) while inside of light cone is symmetric for (◊, „) = (0.3, 0.0)
which is plotted in panel (b). Velocity dependent Lyapunov exponent ⁄v [10] is ploted
as a function of velocity v for cases (◊, „) = (0.3, 0.0) and (◊, „) = (0.3, 0.1) in panels
(c) and (f). Data presented here is obtained using Krylov subspace technique.
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defined as
F r

ij
(t) = |Fij(t) ≠ Fij(0)|

Fij(0) (8.3)

For the chiral clock model, we studied the e�ect of parameters ◊ and „ at infinite
temperature state using the Krylov subspace-based methods till |i ≠ j| = 10. The
results are also verified with MPS calculation.

Our empirical observation is that outside the light cone, there is no asymmetry in
the operator spreading for every value of ◊ and „. We observe that inside the light
cone for ◊ ”= 0 and „ ”= 0, there is asymmetry in the operator spread which can be
seen in the line plots for di�erent |i ≠ j| in fig. 8.1 (b) and (e). This asymmetry is
otherwise absent for „ = 0 and ◊ ”= 0.
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