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Abstract 
 

 

The laws of nature, in the Quantum domain is markedly different from the 

statistical laws that scientists have developed for classical systems in the field 

of thermodynamics or information theory. One of the main differences in the 

quantum domain is the presence of uncertainty relations, which  ensures certain 

properties of a system cannot be fundamentally measured to arbitrary degrees 

of precision. Entropy is one of the most fundamental properties of quantum 

systems that gives these kinds of relations called Entropic Uncertainty Relations 

(EUR). These EURs provide a fundamental tool in the development of many 

Quantum Computing algorithms such as teleportation. In a world where 

Quantum Computing looks more and more promising to break the barriers of 

traditional computing, EUR proves to play a cru cial role in developing and 

strengthening the protocols needed for the paradigm shift.  

One of the main problems with the use of quantum technologies is that they are 

rarely robust in the presence of noise, while our immediate operative 

surroundings have a plethora of noise. So, it becomes increasingly important to 

study EURs in the presence of noisy channels. In this project we study the 

development of simple EURs and their behaviour in the presence of noise.  
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Introduction 
 

Origins of Uncertainty Relations 
 

During the developmental days of Quantum Mechanics, there was a major focus 

on the study of fundamental particles which were considered the building 

blocks of matter. 

Therefore, given a Quantum system A comprising of individual particles, the 

most important properties that required measurements were Position(P) and 

Momentum (Q). So, it is not surprising that the very first uncertainty relation 

that was proposed was by Heisenberg, stating the ina bility to accurately predict 

the P and Q measurables of a system. This relation knowns as the Heisenberg 

Uncertainty Relation, was later mathematically formalized by the works of 

Kennard, E. H. (1927)  who used the standard deviation approach to quantify 

the relation.  

This formulation was further advanced by the works of Robertson[ Robertson, H. 

P. (1929)], who gave a more general equation for standard deviation 

uncertainty relation (SDUR) 

The Robertson SDUR for two general measurements A and B for any give n 

system was derived as  

𝛥𝐴 𝛥𝐵 ≥  
1

2
| < [𝐴, 𝐵] > | 

 

Where 𝛥𝐴 gives the variance of the measurement operator 𝐴, while [𝐴, 𝐵] is the 

general commutator term for the measurements.  

 

The major drawback of the the uncertainty relation mentioned above is that it 

shows marked dependence with the state of the system that we are measuring. 

So if the prepared state is an eigenstate of any of the two operators 𝐴, 𝐵 then 

the right hand side of the equation is reduced to zero. That means the 

inequality becomes trivial and we get no fundamental knowledge about the 

measurement spread of the system.  

A further improvement of the relation was done by the famous physicist Erwin 

Schrodinger (Schrödinger, E. (1930)) who added another state dependent anti 

commutator term which although strengthened the relation, did no t overcome 

the main major defect mentioned above.  
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Improvement of the Standard Deviation Approach  

  The general form of the uncertainty relation derived through the 

standard deviation approach remained unchanged for a long period of time till 

Maccone and Pati (Maccone, L., and A. K. Pati (2014)) derived a stronger set of 

inequalities that were usable for  a more general set of states. This uncertainty 

relation can be thought of as a combination of two separate uncertainty 

inequalities.  

𝛥𝐴2  +  𝛥𝐵2  ≥  𝑚𝑎𝑥(𝛽1 + 𝛽2) 

Where the separate inequalities are 

 𝛽1 = ±𝑖<[𝐴, 𝐵]> +  |< 𝜓| 𝐴 ±  𝑖𝐵 |𝜓𝑝 >| 

 𝛽2 = 
1

2
|< 𝜓𝑝𝑜| 𝐴 ±  𝐵 |𝜓 >|2 

Here the state 𝜓𝑝 is defined as any state perpendicular to the state of 𝜓. 

Whereas 𝜓𝑝𝑜 is another state of the form |𝜓𝑝𝑜 >= (𝐴 + 𝐵 − <𝐴 + 𝐵>)|𝜓 >.  

The advantages of using these particular inequalities along with their proof is 

discussed below. 

Proof: Let us redefine two operators, C and D as the difference of A and B from 

their respective expectation values. We would use the parallelogram inequality 

which states that for two random vectors f and g on a Hilbert space H, the 

following inequality always holds.  

 

||𝑓 −  𝑔||
2

+ ||𝑓 +  𝑔||
2

2
≤  ||𝑓 ||

2
+ ||𝑔 ||

2
 

 

 

Replacing the vectors f and g with the vectors 𝐶, 𝛼𝐷 𝑤ℎ𝑒𝑟𝑒 𝛼 𝜖 ℂ ||𝛼|| = 1 we get 

the inequality  

||𝐶 +  𝛼𝐷||
2

+ ||𝐶 −  𝛼𝐷||
2

= 2(𝛥𝐴2 +  𝛥𝐵2) 

Now from the definition of the operators C and D and replacing  𝛼 = 1 we get the 

equation  

𝛥(𝐴 + 𝐵)2 ≤ 2(𝛥𝐴2 +  𝛥𝐵2) 
The LHS of the equation is equivalent to 𝛽2. 

Putting 𝛼 = 𝑖 we get the LHS of the equation equal to 𝛽1, proving the EURs.  

The RHS of this SDUR is markedly different from the previously proposed SDUR, 

because these do not give trivial results when the state is an eigenstate of 

either of the measurement operators. But this does still, give a trivial result 

when the state is an eigenstate of the summation of the observables in 

question.  
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Irrespective of state dependence, the standard deviation approach to 

Uncertainty relations led to some fundamental questions on whether it was the 

best possible measure of uncertainty in Quantum systems. The root cause for 

the dispute was the counter intuitive behaviour of the standard deviation 

function when applied to simple systems, which we will discuss in the next 

section.  

 

 

Problems with Standard Deviation 

While measuring the uncertainty in Quantum Systems there were multiple 

major issues that scientists faced with. One of them was the fact that not all 

systems had a related uncertainty that could be assigned a numerical 

significance. One of the most prominent example is that of neutrinos, where the 

flavour of the neutrino can be modelled as a probabilistic event with different 

end results. It is not possible to assign a standard deviation to such system s, 

but the system still can have the concept of uncertainty.  

 

The other main issue with the standard deviation as a measure of uncertainty 

was captured by Rudnicki [Rudnicki, Ł., Z. Puchała, and K. Życzkowski (2014) ]. A 

simple example would be to imagine two small boxes in which a particle may be 

located separated by a large distance L. There is no correlation between the 

probabilities associated with the two boxes. On further separation of the boxes 

the uncertainty of the system should not vary according to our common sense, 

while the standard deviation as a measure is found to be proportional to the 

distance between the two boxes.  

This highlights that the standard deviation is  extremely biased toward values 

which are further away from the mean of the spread and hence does not give an 

accurate representation of the finer structures of the distribution.   

 

 

 

 

 

Fig: Unimodal and Bimodal distributions with same Std Dev 
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For example, the difference between a unimodal distribution and bimodal 

distribution like the blue and red curves above is not expressed through the 

standard deviation model.  

    

  

Due to these major issues, scientists proposed entropy as a more suitable 

quantity as a measure of uncertainty. According to the work of Friedland and 

Gour [Friedland, S., V. Gheorghiu, and G. Gour (2013) ], the two major 

properties of a good measure for uncertainty are:  

• The uncertainty of a system cannot decrease  under random 

relabelling of the coordinates. This is another property that  

is not followed if we use standard deviation as our chosen 

measure.  

• The uncertainty of a system cannot decrease if a subsystem 

containing information to the system is lost.  

These two major properties are followed by Shannon and Von Neumann 

entropy, which makes them better candidates as a measure for uncertainty.  

 The language of entropy also enables us to borrow ideas and theorems already 

established in the field of information theory. These come  handy in the use of 

data compression or quantum key distribution as discussed later. This brought 

up the idea of Entropic Uncertainty Relations as discussed in the next section.  
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Entropic Uncertainty Relations (EUR) 

The concept of information was first linked to entropy by Claude Shannon in his 

seminal work of 1948 [Shannon, C. (1948), Bell System Technical Journa]. He 

argued that any event that has a probabilistic spread of outcomes can be 

deemed to have an information content. The information content of the event 

is strictly determined by the probability distribution and not by the numerical 

values of the outcomes themselves. For an example we take the event of 

tossing a coin. If we consider this as an event which ha s two distinct outcomes, 

the coin landing on its face and the coin landing on its side. It is obviously 

highly more probable that the coin would land on it’ face and not on the side . 

Thus the information content from that event would be minimal, as we woul d 

already know what the possible outcome would be. Whereas, if the two possible 

outcomes of the event were the coin landing tails up or heads up, the 

probability of them would be almost equal. In that case the information content 

of the even would be higher, since we have little hope of guessing what the 

possible outcome of one realisation of the event would be.   

 

Therefore for an event with outcome space 𝑋 = {𝑥1, 𝑥2 , 𝑥𝑛} and Probability 

distribution  𝑃(𝑋) = {𝑝1, 𝑝2 , 𝑝𝑛} we needed a measure for quantifying uncertainty 

which would satisfy the following properties:  

 

• The measure would depend on the set 𝑃(𝑋) and not on the set 𝑋. 

• The measure would be minimised when the event was certain, which 

means 𝑝𝑘 = 1 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘 , 𝑝𝑛 = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑛 

• If the outcomes set can be fragmented into successive outcome sets, then 

the measure would be the weighted sum of the measu re of the successive 

outcomes. 

• The measure is continuous on the event outcome space.  

 

 The function that allows all three above properties is known as the Shannon 

Entropy and is defined as  

𝐻(𝑋) = − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥) 

 Although there were different other forms of entropies and uncertainty 

relations associated with them, we would mostly focus on Shannon Entropy  and 

it’s quantum counterpart the Von Neumann Entropy  in the context of EUR.  
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Von Neumann Entropy 

  

The Von Neumann Entropy is the extension of the Shannon Entropy for 

Quantum Systems. The mathematical expression for this is  

 

𝐻(𝜌) = −𝑇𝑟(𝜌ln(𝜌)) 

 

Where 𝜌 is the density matrix of the system.  

A basis change in Quantum Mechanics can be represented with an unitary 

transformation U. But 𝐻(𝜌) is invariant under the transformations of the form 

𝜌
𝑢  
→ 𝑈′𝜌𝑈 

This is an important property of a desirable uncertainty measure as we have 

mentioned before.  

The Von Neumann entropy is minimal for a pure state and maximizes for a 

maximally mixed state.  

It also captures the inherent uncertainty of quantum systems, unlike Shannon 

entropy. For example, a system comprising of a collection of two spin half 

particles in the𝑧+ state and 𝑥+ state, would give a Shannon entropy of 1. While 

the Von Neumann entropy calculated from the corresponding density matrix is 

different.  

 

Development of EUR 
 

One of the first EUR, was due to the work by Maassen and Uffink  (Maassen, H., 

and J. Uffink (1988)) who improved on the work of Deutsch and gave the 

following Uncertainty Relation for a system A, and observables P and Q  

𝐻(𝑃)  +  𝐻(𝑄)  ≥  −𝑙𝑜𝑔 𝑐 

Where c is the maximum overlap function of the two observables  defined by  

𝑐 = 𝑚𝑎𝑥 𝑐𝑥𝑧  𝑎𝑛𝑑 𝑐𝑥𝑧 =  |<𝑃|𝑄>|2 

 

The major benefit of the Maassen Uffink EUR is that unlike the standard 

deviation based approach, here the inequality is not dependent on the state of 

preparation of the system A. From the equation it is evident that the inequality 

becomes trivial when the two measurement bases have a common vector as the 

value of c becomes unity.  
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The other extreme end is when the two measurements are mutually unbiased. 

This is defined as when knowledge about one measur ement implies zero 

knowledge about the other. Two bases are said to be mutually unbiased when 

they follow the relation: 

|<𝑃|𝑄>|2 =
1

𝑑
    

Here d is the dimension of the associated Hilbert space .  

 

Now to use this in the context of quantum information we needed to reform the 

above ideas in the context of a guessing game, which is the preferred setting in 

many problems of information theory. A guessing game is usually played by two 

or more players where one performs some operation on the syst em of which 

the other player has incomplete knowledge of. The idea is to find an optimal 

strategy for the second player to guess the outcome.  

In the context of EUR, we consider a two player game between Alice and Bob  

who have access to a system A in state 𝜌𝐴. Bob performs either P or Q 

measurement on the system and gets an outcome C.  

Now he sends back to Alice his choice of measurement. The game is to find the 

optimal probability that Alice has of guessing the measurement outcome C.  

 

 

 

 

 

 

 

                 

 Using the Massen Uffink EUR on the conditional probability distribution   and 

dividing both sides by 2 we get the relation  

 

𝐻(𝐾| 𝑃)  + 𝐻(𝐾| 𝑄)

2
 ≥  

𝑞𝑀𝑈

2
 

 

Now because of the property of entropy we can consider the event as choosing 

either of the measurement with probability 
1

2
 and then condition the entropy on 

the chosen measurement  

𝐻(𝐾| 𝑃, 𝑄)  =
𝐻(𝐾| 𝑃)  + 𝐻(𝐾| 𝑄)

2
  

Alice Bob 
P / Q 

C 

Fig : In this particular game, Bob has an outcome C that Alice has to 

guess, given the choice of measurement 

                     based on her knowledge of the measurement P or Q. 
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So we infer that  𝐻(𝐾| 𝑃, 𝑄) ≥  
𝑞𝑀𝑈

2
  which implies that the probability of Alice 

guessing the outcome is non zero as long as the maximum overlap function is 

non zero.  

 

 

Tighter inequalities have been developed based on this guessing game by 

Schaffner[Schaffner, C. (2007)] who related the minimum and binary entropy of 

the observables to the probability of winning the guessing game.  

It is important to be noted that all the EUR discussed are by definition , 

preparation uncertainty relation, which means the fundamental uncertainty is 

not caused due to some local disturbances caused by measurements. There is 

another class of measurement uncertainty relations which we have not 

discussed here.  

The main drawback of the Maassen Uffink EUR was that it was not a tight EUR, 

so there were many attempts that were further introduced to improve upon the 

bounds of the inequality. Two such approaches were the majorization approach 

and the assisted memory approach.  

 

One important aspect of the EUR that we have discussed till now is t hat they do 

not deploy the use of classical or quantum memory. In the context of our 

guessing games a memory can be thought of as any system that has ancillary 

knowledge which can be used to guess the influence of the player. The 

information itself can be classical or quantum, both of which we will 

investigate. 
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Memory assisted EUR 

 

Conditional Entropy 

The conditional entropy of a bipartite system 𝜌𝐴𝐵, conditioned on B is given by 

  

𝐻(𝐴│𝐵) = 𝐻(𝐴𝐵) − 𝐻(𝐵) 

 

It is a good measure of the uncertainty in A when B is given.  

For a classical system the conditional entropy is always positive, but the same 

cannot be said about quantum systems. Cerf and Adami  [N. J. Cerf, C. Adami, 

1997]   proved that for systems showing entanglement the conditional entropy 

can take on negative values. Negative values of 𝐻(𝐴│𝐵) is a sufficient but 

unnecessary condition for entanglement.    

 

 

Classical and Quantum Memory  

 

The presence of a memory for Alice, can help improve the guessing probability.  

Imagine a simple system quantum system prepared in state 𝑥𝑖  , where all  

𝑥𝑖   are mutually orthogonal, depending on the roll of dice 𝑑𝑖. Now for joint state 

𝜌𝑥𝑑 = ∑ 𝑥𝑖 𝑑𝑖 , if Bob has the access to the classical dice, then he can with 

certainty guess the state 𝑥𝑖. This shows, that classical memory can help improve 

the probability of guessing. The limitation for a classical memory is, that with if 

Alice does the measurement in some other basis complementary to X, the 

knowledge of the classical memory doesn’t help improv e the guessing 

probability.  

For a quantum state  𝜌𝑥, and classical memory Y we have the conditional 

entropy. 

𝐻(𝑋|𝑌)  = ∑ 𝑃(𝑦)𝐻(𝑋 |𝑌 = 𝑦)

𝑦

 

Now, from Maassen Uffink EUR we know, for a set of measurements 𝑋𝑛 we have 

the EUR 

∑ 𝐻(𝑋𝑛)

𝑛

≥  𝑞 

Where the term q is independent of initial preparation.  Now, since this EUR 

applies for all quantum states, it also holds for states where 𝑌 = 𝑦 in the 

classical memory.  Therefore 

https://arxiv.org/search/quant-ph?searchtype=author&query=Cerf%2C+N+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Adami%2C+C
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∑ 𝑃(𝑦)

𝑦

∑ 𝐻(𝑋𝑛 |𝑌 = 𝑦)

𝑛

≥  𝑞 

Which is the extension of the EUR, in the presence of classical memory.  

 

In the presence of a quantum memory, we can think of our previous guessing 

game as Alice preparing a system with a quantum memory that she retains with 

herself. Bob performs the measurement and sends her, the choice of 

measurement. Let us take the example of a Bell state of the form 

  |𝛹 >=
|0>|1>+|1>|0>

√2
 . Here one can think of the second qubit to be quantum 

memory that Alice retains while the first qubit is sent to Bob. Now after Bob  has 

made his measurement and communicated his choice, Alice can with probability 

1 guess the outcome of the measurement.  

 

 

This shows that the presence of quantum entanglement between the memory 

and the system has effect on the EUR. So it is natural that  any EUR would have a 

term quantifying the amount of the corelation between the system and the 

memory. This conjecture was proved by Christandl and Berta [Berta, M., M. 

Christandl, R. Colbeck, J. M. Renes, and R. Renner (2010) ] who gave the 

modified EUR in presence of quantum memory for a  compound state 𝜌𝐴𝐵  with B 

being the quantum memory as  

 

𝐻(𝑌|𝐵) + 𝐻(𝑋|𝐵)  ≥  𝑞𝑋𝑌 + 𝐻(𝐴|𝐵) 

 

 

We see that the value of 𝐻(𝐴|𝐵) = -log d, when the memory is maximally 

entangled. Since the overlap function  𝑞𝑋𝑌 also has the maximum value of log d, 

we see the RHS reduces to zero as in our previous example.  

While, if the memory B and A are not corelated at all, the extra term goes to 

zero and we retrieve our original Maassen Uffink EUR.  This improvement comes 

at the cost that now the EUR is again dependent on the state of the system as 

the term 𝐻(𝐴|𝐵) is state dependent. 

  

 

Further improvement on the bounds of memory assisted EUR was done recently 

by Pati [Pati, A. K., M. M. Wilde, A. R. U. Devi (2012) ].  

Their main argument was that classical correlations and quantum discord of a 

system can be effectively used to further tighten the inequalities.  

For a composite system state   𝜌𝐴𝐵   the mutual information of the two 

subsystems A and B is defined as  
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𝐼(𝜌𝐴:𝐵) = 𝑆(𝜌𝐴) + 𝑆(𝜌𝐵) − 𝑆(𝜌𝐴𝐵) 

 

This is a measure of the total correlations of the compound system AB. The 

classical correlation of the compound system is defi ned by   

 

𝐽𝐴(𝜌𝐴𝐵) = 𝑚𝑎𝑥𝑋 𝐼(𝑋: 𝐵) 

Where the maximisation is done over all possible POVM measurements on the 

system A.  The measure of the quantum corelations between the two 

subsystems can be expressed as the difference between the classical correlation 

and the mutual information.  

𝐷𝐴(𝜌𝐴𝐵) ≡ 𝐼(𝐴: 𝐵) − 𝐽𝐴(𝜌𝐴𝐵) 

 

This quantity is called quantum discord.  The EUR proposed by Pati et.al relates 

the quantum discord and the classical correlations to the conditional entropy by  

𝐻(𝑋|𝑌) + 𝐻(𝑋|𝐵) ≥  𝑞𝑋𝑌 + 𝐻(𝐴|𝐵) + 𝐷𝐴(𝜌𝐴𝐵) − 𝐽𝐴(𝜌𝐴𝐵) 

The proof of this relation has been added in Appendix A.  

 

 

Effect of Noise on EUR 
 

In practicality most Quantum Systems are never completely isolated from the 

environment. The effective noise on the quantum systems can be due to 

multiple reasons, like thermal noise or faulty quantum channel. Therefore, 

there is a need to explore the behaviour of the Entropic Uncertainty Relations  

in presence of various kinds of noisy channel.  

 

Noise is modelled in quantum information as Kraus operators. For any quantum 

operation  𝛺  on a state 𝜌 , we can express the effect of the operation as  

𝛺(𝜌) = ∑ 𝐾𝑖
∗𝜌𝐾𝑖

𝑖

 

Where the 𝐾𝑖 are called the Kraus matrices of the corresponding operation  if 

they follow the condition ∑ 𝐾𝑖
∗𝐾𝑖𝑖 = 1.  

In Quantum information theory, these operators are also called noise operators 

because they are used to introduce noise into the system.  

Let us modify the guessing game introduced earlier to show the effect of noise.   
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1. Alice prepares a compound state 𝜌𝐴𝐵  with a quantum memory B and 

sends it to Bob. 

2. The Quantum memory B is free from any error, while the system A, 

experiences some noise.  

3. Bob makes a measurement in one of two basis σi or σj and sends the 

choice of measurement back to Alice again through a classical noise less 

channel.  

4. Alice has to guess the measurement outcome with the help of memory B 

and the received choice of the measurement basis.  

 

The noise induced can be of any form in our noise channels. But let us focus on 

few of the more simpler noise channels in Quantum Information.  

 

Bit Flip channel: The bit flip is a noise channel that flips the two bases  based on 

some probability p.  

 

𝐵(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋 

 

 

 

Phase shift channel: This channel changes the relative phases of the state. That 

is 𝛼|0 > +𝛽|1 >→
𝑃

𝛼|0 > −𝛽|1 >. The representation for this channel is  

 

𝑃(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑍𝜌𝑍 

 

Phase and bit shift channel: This channel changes both the relative phase and 

flips the bit with some probability p.  

𝐵𝑃(𝜌) = (1 − 𝑝)𝜌 + 𝑝𝑌𝜌𝑌 
 

Effect of noise on Maassen Uffink EUR  

The effect of these quantum noise channels on the Massen Uffink EUR was 

investigated by [Xu et al. 2010] 

The best initial choice of the state of the system is to prepare it in the Bell 

Diagonal state, which are states that can be expressed as the convex 

combination of the Bell states.  

The general form of a Bell diagonal state is given by  

𝜌𝑏𝑑 = 𝜈1|𝜓+ >< 𝜓+| + 𝜈2|𝜙 >< 𝜙+| + 𝜈3|𝜓− >< 𝜓−|  + 𝜈4|𝜙− >< 𝜙−| 
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Let the compound state created by Alice in one such state. The state can be expressed in the 

form 
𝕀𝐴⊗𝕀B +∑ Cσj(σj

A⊗σj
B)

j<3

j
 

4
  

Where the Cσj are related to the eigenvalues of the Bell states 𝜈𝑖.  

There are major advantages of creating the initial state in Bell Diagonal state.  

Few of the properties of them are:  

• The state is completely separable if all of the eigenvalues 𝜈𝑖 is less than 

0.5 

• Subsystems of 2 qubit bell diagonal states are maximally mixed . 

[Quantum Information, M Wilde]. 

• The space of the Bell diagonal states can be visualise d as a tetrahedron 

with the diagonal elements as the Cσj. 

 

 

Given that the state is initially prepared in a bell diagonal form, we will try and 

find the condition that it hits the lower bound in the Maassen Uffink EUR.  

After the measurement of the qubit A in 𝜎𝑥, the conditional entropy of the state 

becomes  

 

𝐻(𝜎𝑥|𝐵) = 𝐻𝑏𝑖𝑛(
1 + 𝐶𝜎𝑥

2
) 

Similarly for 𝜎𝑦  we have  

 

𝐻(𝜎𝑦|𝐵) = 𝐻𝑏𝑖𝑛(
1 + 𝐶𝜎𝑦

2
) 

 

Where 𝐻𝑏𝑖𝑛 is the binary entropy function given by H(p)=–(1-p)log2(1 − p)-

plog2(p). [M. A. Nielsen and I. L. Chuang 2000). ]. 

The c value for any pair of Pauli matrices would be 0.5.  

Now the RHS of the Maassen Uffink uncertainty relation is  

 −log2(c) +  𝐻(𝐴|𝐵) 

≈ 1 + 𝐻(𝐴𝐵)-𝐻(𝐵) 

≈ 1 + 𝐻(𝐴𝐵)-1 

Where we have used the property of the Bell diagonal states that the 

subsystems of 2 qubit states are maximally mixed.  

≈ 𝐻(𝐴𝐵) 
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By the expansion of Shannon entropy this can be written as  

≈ − ∑ 𝑣𝑖𝑖 log
2
(𝑣𝑖) 

 

This equals the RHS of the Maassen Uffink inequality 𝐻𝑏𝑖𝑛(
1+𝐶𝜎𝑦

2
) + 𝐻𝑏𝑖𝑛(

1+𝐶𝜎𝑥

2
)  

for a special combination of 𝑣𝑖. Mapping that to the corresponding 𝐶𝜎𝑖
, the 

bound is only satisfied for the special set of condition  

𝐶𝜎𝑖
= −𝐶𝜎𝑗

∗ 𝐶𝜎𝑘
  

Xu describes this condition as SPMC condition of state preparation under which 

the lower bound of the EUR is reached.  

 

When the first qubit is passed through the noisy channel , we assume one of the 

three noise channel acts on it. Then the coefficients of the new state 𝐷𝜎𝑖
 are 

mapped to old 𝐶𝜎𝑖
 as 

  𝐶𝜎𝑖
= 𝐷𝜎𝑖

   

  𝐷𝜎𝑚
= (1 − 2𝑝)𝐷𝜎𝑚

  

Where p is the probability of the error channel acting on the state.  

 

 

Now the condition of 𝐷𝜎𝑚
 satisfying the SPMC condition after going through the 

noisy channel is given by  

𝐷𝜎𝑖
= −(1 − 2𝑝)2𝐷𝜎𝑗

𝐷𝜎𝑘
 

Given that p is a small number less than 1, this is only satisfied by the condition 

that p = 0. So the lower bound for measurement 𝜎𝑦𝜎𝑧 is reachable when the 𝜎𝑥  

noise or the bit flip noise is not present. The same argument holds for all other 

pairs of the Pauli matrices.  

 

Huang et. al [], has also shown that for unital noise channels such as the  bitflip 

phase flip and bit phase flip, the EUR increases and gradually flattens off with 

time. This is in line with our intuition that with time, the quantum correlations 

would gradually decrease, increasing the measurement spread.   

  

But in the presence of non unital noise such as the amplitude dam ping channel, 

it has been shown that the behaviour of the EUR is markedly different. On 

tweaking the nature of the noise, it is possible to bring the entropy even lower 

than the bound predicted by the Maassen Uffink EUR.  
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Conclusion and Discussion 
 

From this project I have learnt about the historical development of Uncertainty 

relations from standard deviation approach to entropic approach. Then we 

focused effect of additional quantum and classical memory on the Maassen 

Uffink EUR to strengthen the bounds of the inequality. The cause for this effect 

is the quantum entanglement between the memory and the system which leads 

to negative relative conditional entropy. The motivation to study Entropic 

Uncertainty principles come because they find usage in areas of Quantum 

Randomness generator and Entanglement Witness.  

 

Quantum Randomness: Randomness as a mathematical tool is used in many 

scientific models ranging from cryptography to micro finance. But due to the 

deterministic structure of the generator used in most cases, the resultant 

quantity is often mostly pseudorandom. Quantum Mechanics, due to its 

inherent uncertainty, lays the path to the production of information 

theoretically secure random numbers.  

Entropy can be thought of as a measure of randomness, and providing lowering 

bounds of measurement entropy through EUR can help quantify randomness.  

 

Entanglement Witness: Entanglement is one of the uniquely special properties 

of a quantum system, and hence the study and measurement of e ntanglement 

becomes a part of quantum information processing. Entanglement witness 

refers to the ability of identify if the particles being emitted from a source are 

entangled or separable. This is usually achieved through identifying a relation 

that is satisfied for separable states and then showing that the particle  source 

violates the relation. (Berta et al. (2010))  Entropic relations are useful in this 

context, because as we have seen, the entanglement measure and quantum 

discord are linked to the EUR. So, measurement of the spread of the outcomes 

often gives us an indication of the presence of entanglement between system 

and memory.  
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Appendix A  
 

Proof of the relation  

𝐻(𝑌|𝐵) + 𝐻(𝑋|𝐵) ≥  𝑞𝑋𝑌 + 𝐻(𝐴|𝐵) + 𝐷𝐴(𝜌𝐴𝐵) − 𝐽𝐴(𝜌𝐴𝐵) 

 

Taking the LHS of the equation 

> 𝐻(𝑌|𝐵) + 𝐻(𝑋|𝐵) = 𝐻(𝑋𝐵) + 𝐻(𝑌𝐵) − 𝐻(𝐵) − 𝐻(𝐵) − 𝐻(𝑋|𝐵)  

>  𝐻(𝑌|𝐵) + 𝐻(𝑋|𝐵)= H(X) + H(Y)− 𝐼(𝜌𝑋:𝐵) − 𝐼(𝜌𝑌:𝐵) 

 

This follows from the definition of 𝐼(𝜌𝑌:𝐵) 

> 𝐻(𝑋|𝑌) + 𝐻(𝑋|𝐵) ≥  𝐻(𝑋)  +  𝐻(𝑌) − 2𝐽𝐴(𝜌𝐴𝐵)    

This inequality follows from the fact that X and Y are not the maximising 

observables on J.  

> 𝐻(𝑋|𝑌) + 𝐻(𝑋|𝐵) ≥ 𝑞𝑋𝑌 +  𝐻(𝐴) − 2𝐽𝐴(𝜌𝐴𝐵)  

 

 Using the Maassen Uffink EUR 

> 𝐻(𝑋|𝑌) + 𝐻(𝑋|𝐵) ≥  𝑞𝑋𝑌 + 𝐻(𝐴|𝐵) + 𝐷𝐴(𝜌𝐴𝐵) − 𝐽𝐴(𝜌𝐴𝐵) 

 

The last relation follows from the definition of Quantum disco rd as  

𝐷𝐴(𝜌𝐴𝐵) ≡ 𝐼(𝐴: 𝐵) − 𝐽𝐴(𝜌𝐴𝐵) 

 

Whenever the quantity 𝐷𝐴(𝜌𝐴𝐵) − 𝐽𝐴(𝜌𝐴𝐵) is higher than zero, we get a stronger 

EUR than the basic Maassen Uffink EUR. Together, the complete EUR is 

𝐻(𝑌|𝐵) + 𝐻(𝑋|𝐵) ≥  𝑞𝑋𝑌 + 𝐻(𝐴|𝐵) + max(0, 𝐷𝐴(𝜌𝐴𝐵) − 𝐽𝐴(𝜌𝐴𝐵)) 
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