
Timetabling by Coloring and
Clustering by Neuronal Networks

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

MS (by Dissertation) Degree

by

Pranav Niturkar

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

May, 2022

Supervisor: Dr. Collins Assisi

© Pranav Niturkar 2022

All rights reserved

Certificate

This is to certify that this dissertation entitled Timetabling by Coloring and Clustering by

Neuronal Networks towards the partial fulfilment of the MS (by Dissertation) Degree at

the Indian Institute of Science Education and Research, Pune represents study/work

carried out by Pranav Niturkar at Indian Institute of Science Education and Research

under the supervision of Dr. Collins Assisi, Dr. Soumen Maity and Dr. M. S.

Madhusudhan during the academic year 2021-2022.

Dr. Collins Assisi

Committee:

Dr. Collins Assisi

Dr. Soumen Maity

Dr. M. S. Madhusudhan

This thesis is dedicated to the

Shoonya Vāsini, Trinetrini, Sarva Janani :

Linga Bhairavi

Declaration

I hereby declare that the matter embodied in the report entitled Timetabling by Coloring

and Clustering by Neuronal Networks are the results of the work carried out by me at the

Indian Institute of Science Education and Research, Pune, under the supervision of Dr.

Collins Assisi and the same has not been submitted elsewhere for any other degree.

Pranav Niturkar

Acknowledgments

Many thanks to my supervisor, Dr. Collins Assisi, for providing the much needed support

at crucial junctures. Thanks to Dr. Soumen Maity for allowing me to learn at my own pace.

A special thanks to the Computational Neurobiology Lab for absorbing my nuisance. I also

wish to express my gratitude to the int.PhD committee, Dr. Kaneenika Sinha and others,

for their patience and understanding.

Thanks to all those who tolerated my loong or irrelevant e-mails. Many thanks to my

parents and sisters for their encouragement, without which this would not be possible. And

last but not the least, thanks to my friends or enemies and random IISERites for the engaging

conversations which kept me going.

ix

x

Abstract

Designing a university course timetable requires assigning events(course lectures, tutorials,

colloquia) to locations(on/off-line classrooms) and time slots, while avoiding clashes - for

example, lectures of two courses that a particular student subscribes to cannot run concur-

rently. In designing the timetable, we can consider the events(or classes) as the vertices of

a graph and the conflicts between them as edges between the corresponding vertices. This

formulation allows us to state the university timetabling problem as a graph vertex coloring

problem. Vertices with the same colour, in any colouring of such a graph, can give us the

set of events that can share the same time-slot, while different colours represent groups of

events that must be assigned different time-slots.

We propose using the dynamics of neuronal networks to solve the graph colouring prob-

lem. We will assign neurons to each vertex of the constraint graph and interactions between

them will be inhibitory. Inhibitory neurons compete with each other, when one fires, it

prevents those connected to it from firing. Therefore, vertices with the same color do not

compete and can fire synchronously. In earlier work[1], this idea was used to arrive at solu-

tions of the Sudoku puzzle which can also be mapped to a vertex coloring problem. Here

we propose using this approach to solve a particular instance of the university timetabling

problem.

xi

xii

Contents

Abstract xi

1 Introduction 1

1.1 Designing University Timetables . 1

1.2 IISER Pune Timetabling . 3

1.3 Grouping the Courses . 5

2 Greedy Coloring 9

2.1 Reductions . 11

2.2 Enumeration . 12

2.3 D.T.F. 16

3 Clustering 21

3.1 Community Structure Detection . 22

3.2 Newman’s Optimal Modularity . 23

3.3 Application to Karate Club Network . 24

4 Competitive Neuronal Networks 29

4.1 Synchrony and Chaos . 30

4.2 E-I Balance for Karate Club Network . 31

4.3 Network Clustering Plots . 33

5 Further Discussion 37

xiii

xiv

Chapter 1

Introduction

1.1 Designing University Timetables

A University Course Timetable can be thought of as an assignment of lectures, tutorials, or

exams of courses to a given number of rooms and time-slots satisfying a set of constraints.

A timetabling problem can contain a host of different constraints making it complex(or

beautiful !).

Aimed at generating new approaches to the timetabling problems by attracting users

from all areas of research, the Second International Timetabling Competition(ITC2007) was

organised in 2007, by a group of timetabling researchers from different European Universities.

Timetabling can be classified into two categories: Examination Timetabling and Course

Timetabling. Further, course timetabling can be based on curriculum or post enrolment[2].

In recent times, significant advancements have been made in research areas by attracting

multi-disciplinary approaches and comparing them on a common ground. Another important

goal of the competition is to close the existing gap between research and practice within this

important area of operational research. Although for the sake of the competition, all aspects

of the real world problem are not included, recent developments are taken into consideration

providing significant depth and complexity[3].

1

1.1.1 Types of Constraints

The constraints of the timetabling problem can be split into two types: hard and soft.

Hard constraints are mandatory, since a teacher or a student can not be present at two

different locations at the same time! If all hard constraints are satisfied, we have a feasible

solution. Whereas soft constraints can help us define a criteria from which a timetable could

be considered good, enhancing the experiences of the people who will have to use it[2].

Some examples of soft constraints:

1. Students should not attend three or more classes consecutively in a day;

2. Students should not attend just one class in a day;

3. They should not be required to attend in the last time-slot of each day.

Note: We will be focusing only on the hard constraints.

1.1.2 Two-Stage Approach

Timetabling at IISER Pune is done in two stages, pre-registration and registration.

(1.) Students do pre-registration for the courses they want in the upcoming semester.

According to those students choices, the courses are then grouped. The grouping must

either satisfy all choices or when that does not happen, minimize the dis-satisfaction.

(2.) These groups are then permuted among the available time-slots for timetabling.

Note: Once the groups are formed, students can not register for two courses from the

same group.

2

1.2 IISER Pune Timetabling

Fig.1: IISER Timetable consists of 8 x 5 = 40 time-slots.

Fig.1 shows that IISER Pune has 40 time-slots and since each course has three(or two)

lectures per week, we need 13(or 14) groups of courses, occupying 13 x 3 = 39 time-slots +

1 for seminar or colloquium.

Given the students pre-registration(enrolment) data, we wish to group the courses into

k(= 13 or 14) groups, such that

(a.) each student gets to choose all the courses that one has done pre-registration for, or

(b.) minimize the dis-satisfaction, or overlap between courses chosen from the same group

by students.

3

The Conflicts Matrix:

A problem instance is given by

• lectures l = l1, l2, ..., ln for n courses,

• time-slots t = t1, t2, ..., t40,

• set of students s = s1, s2, ..., s|s|,

• rooms r = r1, r2, ..., r|r|,

• room features f = f1, f2, ..., f|f |,

• and room capacity c(ri) ∀ ri ∈ r.

Attends matrix A has aij = 1 if student si is due to attend lecture lj, 0 otherwise;

Room Features matrix T has tij = 1 if room ri has feature fj, 0 otherwise;

Lecture Features matrix M has mij = 1 if lecture li requires feature fj, 0 otherwise;

Lecture Availability matrix S has sij = 1 if lecture li can be assigned time-slot tj, 0 otherwise;

and now the Conflicts matrix C can be defined by cij = 1 if

∃ sk ∈ s : (ali = 1 ∧ alj = 1)

i.e., two lectures share a student in common; or

∄ tl ∈ t : (sil = 1 ∧ sjl = 1)

i.e., two lectures have mutually exclusive subsets of available time-slots; or

two lectures require the same room, i.e., they satisfy room capacity and feature requirement;

and 0 otherwise.

(Refer [2], pg. 199-200, for more details)

4

1.3 Grouping the Courses

There’s an underlying Graph Coloring Problem for most timetabling problems. This allows

us to apply the concepts of graph coloring from the literature of theoretical computer science

to the timetabling problem.

A coloring with k colors, which is a solution for the graph colouring problem of the

constraints graph, corresponds to k groups of courses satisfying all students choices.

Why? Since assignment of the same color implies absence of an edge between corre-

sponding nodes, which in turn means that no student has chosen both.

One way to approach the problem, is to construct the constraints graph from given

student choices and try coloring it. If an algorithm gives us the desired number of groups,

great! Otherwise we apply some reductions until we get the size of grouping we want and

later merge the output of multiple iterations in a way that minimizes dis-satisfaction.

The Constraints Graph: We will construct the constraints graph where each course is

represented by a node and there is an edge between two nodes corresponding to two courses,

if both of them have been chosen by at least one student.

Further, if multiple students have chosen both the courses, then the number of students

doing so is the weight of the edge between corresponding nodes of the courses.

5

1.3.1 Graph Coloring

Definition 1.3.1. Let G =(V, E) be a graph; V is a set of n vertices and E is a set of

m edges. We wish to assign a color c(v) ∈ {1, 2, ..., k} to each vertex v ∈ V , such that:

c(v) ̸= c(u),∀(v, u) ∈ E; with minimum k(number of colors).

Fig.2: Coloring of a graph with 3 nodes.

Fig.2 demonstrates, what we mean by a graph coloring.

(A) shows the node in the centre colored Red. Which implies that its neighbors can’t be

colored Red and need a different color.

(B) shows one way of coloring the other two nodes. But since there’s no edge between them,

both of them can get same color(anything other than Red).

(C) shows the coloring with minimum(2) colors as desired.

6

1.3.2 Clustering

For k ⩾ 3, k colour-ability of a graph is known to be NP-complete. And determining the

existence of a feasible solution for our timetabling problem with k time-slots, is equivalent

to the graph k-colouring problem. Hence, our time-tabling problem is also NP-hard.

But a problem being NP-hard or practically unsolvable, doesn’t mean we’re done; it

still needs to be solved somehow! If not optimally, then at least approximately to whatever

extent possible.

Another way of approaching the timetabling problem is to look at the complement

of the constraint graph and detect clusters in it. In the complement graph, each color

group(independent set of nodes) from the original graph, will form an all-to-all connected

sub-graph(clique).

But clique detection is hard, hence we relax the notion to a cluster and proceed. We tried

the Newman’s clustering algorithm and a neural network algorithm to cluster the constraint

network.

7

8

Chapter 2

Greedy Coloring

Fig.3: The constraints graph(G) from student choices, January 2022 semester, IISER.

The Greedy algorithm takes vertices one by one, according to some(random) ordering

and assigns the first available colour to each vertex. A solution produced by the Greedy

algorithm need not be optimal, but it can be made optimal for any graph(yes, any graph!)

by choosing thecorrect ordering[2]. We will use the ordering obtained by sorting vertices by

their degrees in a descending order. We apply this to the constraints graph(See Fig.3) to

obtain a grouping of courses(See Fig.5).

9

Fig.4: The list of courses offered in January 2022 semester at IISER, Pune.

Fig.5: A grouping given by greedy algorithm for the constraint graph G(seen before),

indices stand for courses listed in Fig.4.

10

2.1 Reductions

Applying the greedy coloring algorithm to our constraint graph(G) with decreasing degree

sequence, we get a 19 coloring giving us 19 groups, but we need k(= 13).

Note: A k(= 13) coloring may exist but we couldn’t get it through decreasing degree

sequence for Greedy algorithm.

Since we couldn’t satisfy all students choices, we now turn our attention towards mini-

mizing dis-satisfaction. We can apply reductions to the graph with some minimization rule

up to a point where the reduced graph gives us a k(= 13) grouping.

Chromatic Number and Its Bounds

Definition 2.1.1. The Chromatic Number of a graph χ(G) is the smallest k for which G

can be colored using k colours.

Some well known bounds on the chromatic number are as follows[3]:

Let ∆(G) = maximum degree of any vertex in G

and δ(G) = minimum degree of any vertex in G.

χ(G) ⩽ ∆(G) + 1 follows from the greedy algorithm;

χ(G) ⩽ δ(G)

for simple connected graphs which are not complete and don’t have odd cycle;

and χ(G) ⩽ 4 for planar graphs.

11

2.2 Enumeration

Suppose the highest weight of an edge in the(constraint) graph is 185. But that doesn’t

mean the graph has edges of all weights from 1 to 185, hence we need to enumerate all edge

weights in a variable Enum for applying reduction. However, one can observe that if there

are 100 edges of weight 1 and 40 edges of weight 2, then 1 x 100 = 100 is greater than 80

= 2 x 40. We would like to delete minimum value first and we do so by sorting Enum in an

ascending order according to the product of weight value and its number of occurrences.

Note: Enum2 is not necessarily better than weight value-wise deletion Enum in general,

since the sum of weights of all deleted edges may vary. Refer to Fig.6 for flowchart of

Enum(/2) Merge Algorithm.

Fig.6: Flowchart for Enum(/2) Merge Algorithm.

12

Reductions can be done in the following ways: Keep deleting lower weight edges(See

Fig.7 and Fig.8) until

1. all connected components of the graph have k(= 13) vertices left, which can then be

colored with k(= 13) colors, one each vertex. Later combining outputs from multiple

iterations, minimizing overlaps; or

2. every connected component has maximum degree of vertices to be k-1(= 12), then

χ(G) ⩽ ∆(G) + 1 gives a coloring of size ⩽ k(= 13) from the greedy algorithm. Later

combining outputs from multiple iterations, minimizing overlaps; or

3. the greedy algorithm with decreasing degree sequence gives a k(= 13) coloring. Later

combining outputs from multiple iterations, minimizing overlaps.

Fig.7: Reduction of the constraint graph G from top left to fewer edges,

deleting all edges of a particular weight each iteration, according to the Enum2 list.

13

Fig.8: Reduction of the constraint graph G from top left to fewer edges,

deleting all edges of a particular weight each iteration, according to the Enum list.

14

Or

Apply greedy coloring algorithm to the main constraint graph and then merge the groups

in a way that minimizes dis-satisfaction of constraints until only k(= 13) groups are left(call

it Greedy Merge Algorithm). Refer to Fig.9 below for the flowchart of algorithm.

Fig.9: Flowchart for Greedy Merge Algorithm.

15

2.3 D.T.F.

Definition 2.3.1. D.T.F., Distance To Feasibility of a grouping is the sum of the weights

of the edges connecting courses in the same group(or same colored vertices).

The grouping which was implemented for January 2022 semester at IISER Pune(See

Fig.11) has DTF = 67, while the grouping obtained by the Greedy Merge algorithm for

the same(See Fig.12) has DTF = 31. As the following chart(in Fig.10) shows, the Greedy

Merge Algorithm gives groupings of lowest DTF values and hence is recommended.

Fig.10: DTF values of the groupings for different semesters by different algorithms.

16

Fig.11: The grouping which was in implementation for January 2022 semester.

Fig.12: The Greedy Merge grouping for January 2022 semester.

17

Hamming Distance

Fig.13: A 2-D MDS plot of hamming distance between courses.

From the pre-registration data, we can obtain a matrix where each row represents a

student and each column, a course. If student i has picked course j in the pre-registration,

then the(i, j)th entry of matrix is set to 1, otherwise 0. From this matrix, we can compute the

hamming distance between any two courses by computing the hamming distance between

the corresponding columns. Intuitively, the farther away any two courses are in the 2-D

MDS plot(See Fig.13), the more reliability there is in putting them in the same group.

18

Choices as Nodes

Fig.14: Reductions on the graph with distinct student choices as nodes.

So far we’ve looked at the constraint graph which had courses as nodes and edges in-

dicating student(s) having them both. However, we now construct a graph in which each

distinct student choice represents a node. The number of courses in common between them

can be considered as weights of edges between corresponding nodes. Fig.14 shows reduc-

tion applied on one such graph for January 2022 semester data of IISER Pune, where lowest

weight edges are removed each iteration.

Students(choices) with larger overlap of courses will form clusters as iterations progress.

We can gain insights into the spread and distribution of student choices from this graph. For

instance, the occurrence of a sub-graph that seems like a clique in the middle plot(Fig.14)

has an interesting story to tell!

19

20

Chapter 3

Clustering

Definition 3.0.1. Clusters in a network, are sets of nodes that have greater density of edges

within themselves and there are comparatively fewer edges between nodes from different sets.

See Fig.15 below.

Fig.15: A network with 3 color-coded clusters.

21

3.1 Community Structure Detection

As it turns out, simply counting edges is not enough for capturing the intuitive concept of

community structure. Quoting Newman(2006): A good division of a network into communi-

ties is not merely one in which there are few edges between communities; it is one in which

there are fewer than expected edges between communities [5].

Definition 3.1.1. Modularity is, up to a multiplicative constant, the difference between

the number of edges within groups and

the expected number of edges in an equivalent network with edges placed at random.

Q =
∑

ij(Aij −
kikj
2m

)

where the summation runs over all pairs of vertices i, j that fall in the same group

Aij is the adjacency matrix;

ki and kj are degrees of the vertices i and j, respectively

and the total number of edges is m =
1

2

∑
i(ki).

Q can be either positive or negative. Positive values indicate the possibility of community

structure being present. One can search for community structure by looking for the partition

of a network with positive(possibly large) values of modularity.

Community structure detection differs from graph partitioning problem since:

1. The number and size of the groups are determined by the network itself; and

2. The methods may indicate a lack of good division of the network.

22

3.2 Newman’s Optimal Modularity

We shall now focus on the problem of finding the division of a network into just two com-

munities, if such a division exists.

Definition 3.2.1. The Modularity Matrix B is given by:

Bij = Aij −
kikj
2m

Aij is the number of edges between vertices i and j; and

when edges are placed at random,

the expected number of edges between vertices i and j are
kikj
2m

.

Now, the expression for modularity becomes

Q = sT B s

where s is the column vector whose elements are given by

si = 1, if vertex i belongs to group 1 and si = -1, if it belongs to group 2.

Newman’s Spectral Modularity Maximization method: For maximizing the modu-

larity(Q), we compute the leading eigenvector of the modularity matrix(B) and divide the

vertices in the network into two groups according to the signs of the elements in this vector,

meaning if ith entry is positive, ith vertex goes in group one

and if jth entry is negative, jth vertex goes in group two.

23

3.3 Application to Karate Club Network

Fig.16: The adjacency matrix of the graph of the karate club network.

The karate club network of Zachary(with adjacency matrix in Fig.16) has become some-

thing of a standard test for community detection algorithms. It shows the pattern of friend-

ships between the members of a karate club at an American university in the 1970s[5].

This particular example is interesting because, shortly thereafter the club split in two

as a result of an internal dispute. Applying Newman’s algorithm to the network, we find

the division indicated by the dotted line(See Fig.17). It coincides exactly with the known

division of the club in real life, indicated by the shapes of the vertices.

24

Fig.17: Application of the eigenvector-based method to the karate club network[5].

25

More

Newman’s Clustering with γ factor

Newman’s clustering algorithm has a γ factor variation for greater sensitivity to community

structure. The default value of gamma is 1 and setting it to 1, we get back the earlier

expression. The modularity matrix is given by:

Bij = Aij − γ
kikj
2m

Note:
∑

j Bij =
∑

j Aij −
ki
2m

∑
j kj = ki −

ki
2m

2m = 0

γ works like a tuning knob for detection of clusters locally(more clusters, γ > 1) and

globally(fewer clusters, γ < 1). For application to karate club network, see Fig.18

Fig.18: γ(X-axis) vs total number of groups(Y-axis).

26

Neighborhood Diversity

Neighborhood diversity, as the name suggests, is a classification of vertices based upon their

neighbors, i.e., the vertices they are adjacent to. How do we get a grouping? We check nodes

with same neighbors, including or excluding each other. In Fig.19 (A), nodes 33 and 34(in

bold) have same neighbors listed to their left(in yellow circles), the same goes for nodes 1

and 2. So we merge them with their neighbors and get groups.

Fig.19:(A) Groups from the Karate club via neighborhood diversity

and(B) 2 groups using Newman’s Clustering, γ = 0.5.

Fig.19 shows the similarities in grouping of nodes by neighborhood diversity and New-

man’s clustering. Fig.20 shows the groups by neighborhood diversity, in the network plot.

Fig.20: Neighborhood Diversity for karate club network.

27

28

Chapter 4

Competitive Neuronal Networks

A bipartite network(See Fig.21) for which minimum two colors were required to partition the

graph, only one 2-coloring was possible. Simulations showed that, when we add inhibitory

interactions given by adjacency matrix in Fig.21 (a), the connected neurons did not fire

together and nodes within the same partition did not synchronize either[1]. We introduce

the missing excitatory interactions given by adjacency matrix in Fig.21 (b).

For this network when the ratio of excitatory to inhibitory input was large, the ex-

citation within and across groups drove all the oscillators to fire together(See Fig.21 (c),

bottom panel). Whereas lower ratio meaning more inhibition drives the system to chaotic

firing(See Fig.21 (c), top panel). And when E-I(Excitation-Inhibition) balance happens, we

see periodic firing of 2 groups corresponding to 2 colors(See Fig.21 (c), middle panel).

Fig.21:(a) and(b) Adjacency matrices of the inhibitory and excitatory networks;

(c) Response of the bipartite network for low excitation(top panel),

balanced one(middle panel) and for one with high excitation(bottom panel)[1].

29

4.1 Synchrony and Chaos

Synchrony: Let us consider an integrate-and-fire model of neurons with all connections

excitatory. When a given oscillator fires, it pulls up those connected by a fixed amount(ϵ) or

makes the corresponding neurons fire, if the threshold is attained or exceeded. It has been

observed that for almost all initial conditions, the population evolves to a state in which all

the oscillators are firing synchronously. See Fig.22.

Fig.22: Total number of neurons firing(on Y-axis) vs time(on X-axis).

Chaos: We know that excitatory interactions synchronize the oscillators. Since each

excitatory pulse advances the phase of the receiving oscillator towards the threshold until

the spike times of both eventually coincide. However a pair of inhibitory oscillators spike at

different phases which progressively separate over multiple iterations. See Fig.23.

Fig.23: Two oscillators dynamics with excitatory and inhibitory connections.

Lines denote the time when pulses are emitted crossing threshold(red line)[1].

30

4.2 E-I Balance for Karate Club Network

Consider the problem of finding clusters in the Karate Club network seen earlier. For every

edge in the graph, we add an inhibitory connection. This means, when a neuron fires,

those connected to it will get a downward push(negative ϵ or ϵinh). Whereas, for every two

nodes not connected in the graph, there is an excitatory connection between them(positive

ϵ or ϵexc). Fig. 24 shows the periodic firing of neurons in groups when E-I balance occurs.

Fig.24: Raster plot for the Karate Club network with

ϵexc = 2.2 x 10−6 and ϵinh = 1.06 x 10−3.

What γ does for Newman’s algorithm(seen earlier),

ϵexc and ϵinh do for our neural network algorithm.

31

Increasing Excitation: With an increase in ϵexc, the number of groups decreases as

larger groups absorb the smaller ones. Fig.25 below demonstrates one such instance.

Fig.25: Raster plot for the Karate Club network with

fixed ϵinh = 1.05 x 10−3, ϵexc = 2.3 x 10−6(left) and 2.4 x 10−6(right).

Increasing Inhibition: Increasing ϵinh, as one expects, the number of groups increases

as larger groups break down to smaller ones. Fig.26 below demonstrates one such instance.

Fig.26: Raster plot for the Karate Club network with

fixed ϵexc = 2.2 x 10−6, ϵinh = 1.06 x 10−3(left) and 1.10 x 10−3(right).

32

4.3 Network Clustering Plots

Fig.27: Newman’s clustering into 4 groups(lines indicate 2 groups).

Fig.27 depicts the four groups obtained by Newman’s algorithm with γ = 1,

while the bold line splits the graph into two groups obtained by setting γ = 0.5.

33

Fig.28: I.F. neuron model grouping for the Karate Club network with

ϵexc = 2.2 x 10−6 and ϵinh = 10−3(lines indicate Newman’s clusters).

Fig.28: Nodes in circles have corresponding neurons doing their own thing and those

enclosed in a set are firing together. Neuron for node 10 couldn’t get over inhibition, and

hence it wasn’t firing at all.

The color-bar on the right indicates the sequence of firing of groups through the color-

scale. Therefore, this figure shows that our neural network gives decent grouping as compared

to those given by Newman’s.

34

Fig.29: I.F. neuron model grouping for the Karate Club network with

ϵexc = 2.3 x 10−6 and ϵinh = 10−3(lines indicate Newman’s clusters).

Fig.29 and Fig.30 show similar groupings for different values of ϵinh and ϵexc .

Fig.30: I.F. neuron model grouping for the Karate Club network with

ϵexc = 2.4 x 10−6 and ϵinh = 10−3(lines indicate Newman’s clusters).

35

36

Chapter 5

Further Discussion

Taking a Closer Look

The constraints graph that we considered has courses as nodes and edge weights account for

the number of students choosing both the courses corresponding to those nodes. Here the

number of students signing up for a particular course does not show up anywhere.

In the Greedy Merge Algorithm, when there are multiple lowest merging groups, we have

chosen the ones which give smallest group size after merging. But considering a possibility

that one may desire the courses with higher number of students to stay in different groups,

one can modify the criterion for a tie-break accordingly.

Whenever we say Greedy Algorithm, we’ve used it only with the decreasing degree se-

quence of vertices! Better results may be obtained by altering the sequence, or trying out

luck by using multiple random ones. However, for the general scenario, there’s no guarantee

of a better outcome in doing so.

37

Neuronal Network Dynamics

Taking cue from biological neuronal networks in the olfactory system and the hippocampal

formation, we can use oscillatory drive and noise to explore the possible dynamical states of

the network. These states, in turn, may be mapped to different colorings of the constraint

graph.

Extension to General Setup

In our constraint graph, since we are using a two-stage approach of grouping then permuting,

we had only one vertex for each course and that suffices our need. However, in the general

setup for the post enrolment-based course timetabling problem(ITC2007) with k time-slots,

the groups will be the time-slots themselves.

If a course has three events, viz. lectures and/or tutorials, every week then they will

appear as three different nodes in the graph. The graph will have additional edges for

constraints like no multiple lectures of the same course are to be allowed on the same day.

If a coloring of this new graph of events is a k-coloring, we put those groups in k time-slots

and obtain our solution.

38

Bibliography

[1] Chowdhary, S. and Assisi, C., Maximizing the coding capacity of neuronal networks,
BioRxiv 673632, 2019.

[2] Lewis, R.M.R., A Guide to Graph Colouring: Algorithms and Applications, 2016.

[3] PATAT - International Conference on the Practice and Theory of Automated
Timetabling(patatconference.org/communityService.html).

[4] Wikipedia, the free encyclopedia(https://wikipedia.org).

[5] M. E. J. Newman, Modularity and community structure in networks, PNAS, 2006.

[6] Renato E. Mirollo and Steven H. Strogatz, Synchronization of Pulse-Coupled Biological
Oscillators, SIAM Journal on Applied Mathematics(Vol. 50, pp. 1645-1662), 1990.

39

