
Quantum Simulations with
Unitary & Nonunitary Controls:

NMR implementations

A thesis

Submitted in partial fulfillment of the requirements

Of the degree of

Doctor of Philosophy

By

Swathi S Hegde

20103089

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE

July, 2016





Certificate

Certified that the work incorporated in the thesis entitled “Quantum Simulations with

Unitary and Nonunitary Controls: NMR implementations”, submitted by Swathi S Hegde

was carried out by the candidate, under my supervision. The work presented here or any

part of it has not been included in any other thesis submitted previously for the award

of any degree or diploma from any other University or institution.

Date Dr. T. S. Mahesh

i



ii



Declaration

I declare that this written submission represents my ideas in my own words and where

others’ ideas have been included, I have adequately cited and referenced the original

sources. I also declare that I have adhered to all principles of academic honesty and in-

tegrity and have not misrepresented or fabricated or falsified any idea/data/fact/source

in my submission. I understand that violation of the above will be cause for disciplinary

action by the Institute and can also evoke penal action from the sources which have

thus not been properly cited or from whom proper permission has not been taken when

needed.

Date Swathi S Hegde

Roll No.- 20103089

iii



iv



Acknowledgements

All through the years of my PhD life, I have been very fortunate for having met and

worked with a lot of wonderful people.

I am immensely grateful to my supervisor Dr. T S Mahesh for guiding and teaching

me so patiently and consistently ever since I joined his lab. His spontaneous creative

ideas during almost every discussion have always motivated me to learn to think outside

the box. I am lucky to have worked with him as his student. His expertise in the field

of NMR QIP has been a great source to students like me, and this thesis would not have

been possible without his support.

Collaboration with Dr. Arnab Das was a very fruitful experience and I thank him for

introducing me to many exciting theoretical results. I am inspired by his deep love for

physics and his enthusiasm in explaining new results.

I thank my RAC members - Dr. Arijit Bhattacharyay and Dr. T. G. Ajitkumar - for

monitoring my yearly work progress and for suggesting new experiments. I also thank

the IISER family, both academic and administration, for the excellent lab facilities and

financial support.

My first NMR experiments in the lab were done with the help of Soumya. His experi-

ence and his ability to respond quickly to many NMR related questions have helped me

greatly during the early part of my PhD. I thank him for teaching me the basics of NMR

experiments. I was also lucky to have Abhishek as my senior whose patience has always

inspired me. The never ending arguments with him that ranged from physics to politics

v



were quite refreshing. Working with the matlab expert Hemant was a very pleasant ex-

perience. I learnt a good deal by discussing with my other collaborators too - Koteswar,

Anjusha and Ravishankar - and I thank them for involving me actively. I am glad to have

Sudheer as my labmate - he was always available to answer and discuss any difficult

problem with a great clarity (don’t be surprised if you find him in lab at 3am!). I also

thank my other juniors - Anjusha, Deepak and Soham - who are super cool, both per-

sonally and academically, and who are responsible for a very healthy lab environment.

Outside the lab, but within the academic circle, it was a great relief to share the mutual

miseries (and of course mutual happiness sometimes!) with my batchmates - Mubeena,

Snehal, Sunil, Koushik and Arindam.

Bhavani, my friend since seven years (and counting), has always been very dear and

kind to me. The saturday outings, movies, treks, walks, and discussions over “anything"

have made my years in IISER extremely enjoyable. Miss B, I owe you for sharing these

amazing activities - I will certainly cherish these moments in the future. Cheers to our

eternal friendship!

The love and encouragement from my family has been the greatest strength and

inspiration to me. It is with a profound love (infinite I wish!) that I dedicate this thesis

to my Amma, Appa and Ruthu.

vi



Publications

1. Ravi Shankar, Swathi S. Hegde, and T. S. Mahesh,

Quantum simulations of a particle in one- dimensional potentials using NMR,

Physics Letters A 378, 10 (2014).

2. Swathi S. Hegde and T. S. Mahesh,

Engineered Decoherence: Characterization and Suppression,

Phys. Rev. A 89, 062317 (2014).

3. Swathi S. Hegde, Hemant Katiyar, T. S. Mahesh, and Arnab Das,

Freezing a Quantum Magnet by Repeated Quantum Interference: An Experimental

Realization,

Phys. Rev. B 90, 174407(2014).

4. T. S. Mahesh, Abhishek Shukla, Swathi S. Hegde, C. S. Sudheer Kumar, Hemant

Katiyar, Sharad Joshi, and K. R. Koteswara Rao,

Ancilla assisted measurements on quantum ensembles: General protocols and appli-

cations in NMR quantum information processing,

Current Science, 109, 1987 (2015).

5. Anjusha V. S., Swathi S. Hegde, and T. S. Mahesh,

NMR simulation of the Quantum Pigeonhole Effect,

Phys. Lett. A, 380, 577 (2016).

vii



6. Swathi S. Hegde, K. R. Koteswara Rao, and T. S. Mahesh,

Pauli Decomposition over Commuting Subsets: Applications in Gate Synthesis, State

Preparation, and Quantum Simulations,

arXiv:1603.06867 (2016).

viii



Contents

Certificate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I Background 1

1 Overview 3

1.1 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Introduction 11

2.1 Quantum information processing and computation . . . . . . . . . . . . . 12

2.1.1 Quantum States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.1 Single qubit . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1.2 Multiple qubits . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1.3 Density operator formalism . . . . . . . . . . . . . . . . . 14

2.1.1.4 Reduced density operator . . . . . . . . . . . . . . . . . . 15

2.1.1.5 State types . . . . . . . . . . . . . . . . . . . . . . . . . . 15

ix



Contents

2.1.2 Quantum gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2.1 State evolution . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2.2 Single qubit gates . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2.3 Two-qubit gates . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2.4 Universal gates . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.3.1 Projective measurements . . . . . . . . . . . . . . . . . . 21

2.1.3.2 Ensemble average measurements . . . . . . . . . . . . . 22

2.2 NMR QIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Nuclear magnetic resonance . . . . . . . . . . . . . . . . . . . . . . 22

2.2.2 NMR qubits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2.1 Single qubits . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2.2 Multiple qubits . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 NMR States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 NMR gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4.1 Single qubit gates . . . . . . . . . . . . . . . . . . . . . . 27

2.2.4.2 Two qubit gates . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.5 NMR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 NMR quantum computers vs Di Vincenzo criteria . . . . . . . . . . . . . . 34

II Unitary Control 37

3 Experimental realization of “dynamical many-body freezing” 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Quantifying freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Experimental challenges . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.2 Overcoming the challenge . . . . . . . . . . . . . . . . . . . . . . 45

x



Contents

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.1 Raw experimental results . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Inverse decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Theory vs experiments . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusions and future outlook . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Pauli Decomposition over Commuting Subsets: Applications in Gate Synthe-

sis, State Preparation, and Quantum Simulations 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 PDCS of quantum gates and circuits . . . . . . . . . . . . . . . . . 62

4.3.2 Quantum state preparation . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Conclusions and future outlook . . . . . . . . . . . . . . . . . . . . . . . . 69

III Non-unitary Control 71

5 Engineered decoherence: Characterization and suppression 73

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Decoherence models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.1 Zurek’s decoherence model . . . . . . . . . . . . . . . . . . . . . . 75

5.2.2 Simulation of decoherence . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Suppressing Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 Hahn Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.2 CPMG DD sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xi



Contents

5.3.3 Uhrig DD sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Characterizing decoherence . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.1 Noise spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.2 Quantum process tomography . . . . . . . . . . . . . . . . . . . . 83

5.5 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5.1 Emulation of decoherence . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.2 Suppression of decoherence . . . . . . . . . . . . . . . . . . . . . . 86

5.5.3 Characterization of decoherence . . . . . . . . . . . . . . . . . . . 87

5.6 Conclusions and future outlook . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



List of Figures

1.1 Quantum simulation protocol. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Bloch sphere representation of the single qubit state |ψ〉. . . . . . . . . . . 13

2.2 Single qubit Hadamard gate. Here the rotations are of the form of Eq.

2.14 and are implemented from left to right. . . . . . . . . . . . . . . . . . 18

2.3 A general two qubit gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Two qubit CNOT gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Zeeman splitting of a spin-1/2 nuclei. Here |0〉 corresponds to m = 1/2

and |1〉 corresponds to m = −1/2. . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Energy levels of an n qubit spin-1/2 nuclei. . . . . . . . . . . . . . . . . . . 25

2.7 Pulse sequences for refocusing (a) coupling strength (b) chemical shifts

(c) both chemical shifts and coupling strength over a time τ. The RF

pulses with rotation angles π about x-axis are represented by Rπx. . . . . . . 30

2.8 (a) Energy lelvel diagram of a weakly coupled two qubit system at thermal

equilibrium. (b) NMR read-out of the transitions corresponding to (a). . . 33

xiii



List of Figures

3.1 Classical (top row) and quantum (bottom row) systems under the in-

fluence of external periodic drive corresponding to high frequency (ω)

regime. Each face represents the composite many-body system. The hori-

zontal axis corresponds to the drive frequency (ω). The superscripts (‘z’s)

refer to the response - the strength of freezing increases with the num-

ber of ’z’s. The classical systems freeze for all high frequencies but the

quantum systems freeze and respond non-monotonically. . . . . . . . . . 40

3.2 The non-monotonic behaviour of Q with ω for finite and infinite spin chain

in the high frequency regime. The simulation is done for the parameters

corresponding to h0 = 5π and J = h0/20, both in units of rad/s, that are

consistent with strong (h0 � J) and fast (ω � 2J) drive scenario. . . . . 43

3.3 Numerical simulation of the evolution of magnetization for ω = 8.4 and in

the presence of errors for h0 = 5π and J = h0/20 starting from an initial

state ρ(0) =
∑3

i Xi/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Numerical simulation for Q vs ω by incorporating errors for h0 = 5π and

J = h0/20 starting from an initial state ρ(0) =
∑3

i Xi/2. . . . . . . . . . . . 45

3.5 Molecular structure of trifluoroiodoethylene. The quantum simulator con-

sists of F1, F2 and F3. Their chemical shifts (diagonal elements) and the

scalar couplings (off diagonal elements) in the units of Hz are shown at

the right (Figure from [30]). . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Thermal equilibrium spectra of F1, F2 and F3 (left to right respectively). . 47

3.7 The optimized control field values for ω = 5.61 rad/s as generated by

GRAPE for one cycle (corresponding to U(τ) with τ = 2π/ω). The blue

and red plots correspond to the the x and y components of the control

field u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiv



List of Figures

3.8 19F spectra for ω = 24.54 rad/s (left) and ω = 5.61 rad/s (right) cor-

responding to non-freezing and freezing case respectively starting from

mx(0) = 1. Here j = t/τ indicates the number of unitary operations on 19F

spins starting from j = 0 that corresponds to the equilibrium case. . . . . 51

3.9 Inverse decay method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10 Magnetization evolution for various ω values corresponding to freezing

and non-freezing cases. All the plots correspond to an initial magnetiza-

tion mx(0) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.11 Q vs ω in the high frequency regime for the case of mx(t) = 1. . . . . . . . 55

3.12 Q vs ω in the high frequency regime for the case of mx(t) = 0.5. . . . . . . 56

4.1 The flowchart describing PDCS algorithm for unitary decomposition (left)

and state preparation (right, dashed). . . . . . . . . . . . . . . . . . . . . 60

4.2 PDCS of some standard quantum gates: (a) single-qubit Hadamard, (b)

c-NOT, (c) c-Z, (d) c-S, (e) SWAP, (f) 2-qubit Grover iterate, (g) Toffoli,

(h) c2-Z, (i) Fredkin, and (j) 3-qubit Grover iterate. The individual rotors

are represented by dots, triangles, and heptagons depending on number

of Pauli operators (indicated at the vertices) in each rotor. The corre-

sponding rotation angles are indicated by subscripts. . . . . . . . . . . . . 63

4.3 PDCS of (a) 2-qubit Quantum Fourier Transform (QFT), (b) 4-qubit ap-

proximate QFT (AQFT), and (c) 7-qubit Shor’s circuit for factorizing 15.

In (b), each S gate acts on a pair of qubits as indicated by the subscripts. . 64

4.4 PDCS of some state to state transfers: (a) polarization transfer (INEPT)

and (b-d) preparation of Bell, GHZ, and W states respectively starting

from pure states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xv



List of Figures

4.5 Dibromofluoromethane consisting of three nuclear spin qubits 1H, 13C and

19F. The tables display the values of indirect spin-spin coupling constants

(J) in Hz, and the relaxation time constants (T1, and T ∗2) in seconds. . . . 67

4.6 PDCS of Us(τ) = exp(−iHsτ) for J123 = 5 Hz and τ = 0.8 s. . . . . . . . . . . 68

4.7 Magnetization vs time. The first point is the initial state magnetization.

The second and the subsequent points correspond to the application of

the operator Us for k times with k = 1 · · · 20 respectively. The decay in the

experimental results are due to the decoherence and other experimental

imperfections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Fidelity (Fm) vs number (m) of rotors for three different types of decom-

positions of Us. As seen, the decompositions corresponding to PDCS con-

verge faster towards fidelity 1. Here the fidelity is with respect to the

rotors and Us. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Evolution of the net magnetization (indicated by arrows) under the Hahn

echo sequence. The dotted arrows represents slow precessing spins and

the solid arrows represents fast preseccing spins. In this case, the pre-

cession of the magnetization about the z-axis is assumed to be clockwise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 CPMG DD pulse sequence for a cycle time of tc and for N = 7 where N is

the number of π pulses in one cycle. The solid bars indicate the π pulses

that are applied on the system qubit. τ indicates the duration between

the consecutive π pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 UDD pulse sequence for a cycle time of tc and for N = 7 where N is the

number of π pulses in one cycle. The solid bars indicate the π pulses that

are applied on the system qubit. . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Pulse sequence to measure S (ω). . . . . . . . . . . . . . . . . . . . . . . . 82

xvi



List of Figures

5.5 13C1HCl3 as NMR quantum simulator. The resonance offsets of 1H and

13C are 104.7 Hz and 0 Hz respectively. The J-coupling between the two

is 209.4 Hz. The T1 for 1H and 13C is 4.1s and 5.5s respectively, and T2 for

the same is 2.9s and 0.8s respectively. . . . . . . . . . . . . . . . . . . . . 85

5.6 Method to introduce artificial decoherence. The filled bar on the system

qubit corresponds to the RF pulse with rotation angle 90◦ about y-axis.

This pulse prepares the system qubit in the required initial state. The ver-

tical lines on the environment qubit are the random kicks applied for time

tc. The inset in the lower right corner represents the expected magnetiza-

tion decay wherein the solid line corresponds to inherent decay and the

dotted line corresponds to the inherent decay as well as decay due to the

artificial decoherence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Decay of Mx(t) under various cases. The numbers in the legend represent

the T2 values for the corresponding cases. The kick parameters are εm =

[0◦, 1◦], Γ = 25 kicks/ms, and tc = 22.4 ms and τ = 3.2 ms. (Figure from

[36]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 The top and bottom figures correspond to the CPMG and Uhrig DD pulse

sequence in the presence of kicks for a cycle time of tc and for N = 7. The

solid bars indicate the π pulses that are applied on the system qubit and

the vertical lines indicate the kicks on the environment qubit. . . . . . . . 88

5.9 Measuring NS in the presence of kicks. The pulses on 1H is basically

CPMG sequence to measure T2. . . . . . . . . . . . . . . . . . . . . . . . . 88

5.10 Spectral density distribution for various kick parameters. . . . . . . . . . 89

5.11 The experimental S (ω) (dots) vs the theoretical S (ω) (solid curve) corre-

sponding to the kick parameters Γ = 25 kicks/ms and εm ∈ [0◦, 2◦]. . . . . 89

xvii



List of Figures

5.12 QPT for various kick parameters. The top row corresponds to the abso-

lute value of χ matrix elements. The bottom corresponds to the enlarged

version of χzz components. (Figure from [36]) . . . . . . . . . . . . . . . 90

xviii



Part I

Background

1





Chapter 1

Overview

“Nature isn’t classical, dammit, and if you want to make a sim-

ulation of nature, you’d better make it quantum mechanical,

and by golly it’s a wonderful problem, because it doesn’t look so

easy”.

- Richard Feynman, 1982 [1].

1.1 Quantum simulation

The origin of the quantum physics dates back to the year 1900 when Max Planck tried

to give an explanation for the properties of the black-body radiation [2]. This quantum

theory was further developed by Schrödinger, Dirac and other eminent physicists leading

to the understanding of quantum mechanics as we now know [3, 4, 5]. More than

a century since its inception, we still believe that quantum mechanics is the correct

description of the present understanding of nature. Yet this subject is so counter-intuitive

that it has never ceased to surprise us even now.

Quantum mechanics has a lot of applications in the present day science and tech-

nology. For example, it is an indispensable tool to understand the structure of atoms,

molecules and their interactions; the invention of magnetic resonance imaging has rev-

3



Chapter 1. Overview

olutionized the field of medicine; lasers are heavily used in medicine, communication,

industries, etc; and the list goes on. This thesis deals with one other application of

quantum physics, i.e, quantum information processing (QIP) and quantum computation

(QC).

Quantum computers are believed to be capable of solving certain physical and math-

ematical problems much more efficiently than the classical computers [6, 7, 8]. The

main reason for this efficiency is the phenomenon of quantum superposition that offers

computational parallelism and is beyond the classical paradigm.

Coupled quantum particles that can be precisely addressed, controlled and measured

form the basic hardware of a quantum computer. Moreover, in order to implement

quantum computation, Di Vincenzo gave certain criteria that the quantum computer

should possess [9]. These requirements are as follows:

1. Scalable and well defined quantum systems.

2. Ability to initialize the quantum systems to a desired initial state.

3. Long coherence times of the quantum systems so as to implement specific gate

operations.

4. A set of quantum gates which are universal.

5. Ability to perform a qubit-specific measurement.

Three different classes of quantum algorithms are believed to be solvable on a quan-

tum computer much more efficiently than on a classical computer. The first class of

algorithm is based on quantum Fourier transform such as the Deutsch-Jozsa algorithm

and Shor’s algorithm [10, 11]. The quantum computer uses only n2 steps to Fourier

transform 2n numbers but a classical computer uses n2n steps for the same. The sec-

ond class of algorithm is based on quantum search algorithm [12]. Suppose the goal is

to search an specific element in the search space of size 2n. In these cases, a classical

4



1.1. Quantum simulation

computer requires about 2n operations while a quantum computer does the job by using

only about
√

2n operations. Finally, another class of algorithm is the quantum simula-

tion [1, 13]. This field of quantum simulations is the primary subject of this thesis and

is described below.

A quantum computer that can simulate the dynamics of other quantum systems is

a quantum simulator [1]. A typical quantum simulation protocol is explained in Fig.

1.1 [14]. The upper box represents the dynamics of a quantum system that we wish to

study. Here the quantum system in the initial state |φ(0)〉 evolves to a final state |φ(t)〉

under the action of an operator U. The lower box corresponds to an accessible and

controllable quantum simulator that is used to simulate the above evolution. The way

to implement quantum simulation protocol is by encoding |φ(0)〉 into the initial state

|ψ(0)〉 of the quantum simulator via a linear map φ followed by the application of U′

on |ψ(0)〉. The operator U′ has a one-to-one correspondence with U and is related by

the transformation U′ ≈ φUφ−1. The read-out of the final state |ψ(t)〉 of the quantum

simulator encodes the information corresponding to |φ(t)〉.

Quantum System

|Φ(0)>
U

|Φ(t)>|Φ(0)>

|Ψ(0)> |Ψ(t)>
      U' ≈ ΦUΦ-1 

Quantum Simulator

Φ Φ-1

Figure 1.1: Quantum simulation protocol.
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Chapter 1. Overview

In most of the cases, the problem of interest is the final state or the expectation

value of an operator in the corresponding state. Even when the required output is the

expectation value of an operator, a classical computer has to calculate the state of the

quantum system as a prerequisite step. However, the memory required to store the

probability amplitudes of the basis states of the quantum system grows exponentially

with the number (n) of the quantum systems [13] (see section. 2.1.1.2). For example,

for n 2-level coupled quantum systems, a computer has to store 2n complex numbers in a

vector and multiply it by a unitary matrix consisting of 22n complex numbers. Although

most of the quantum systems can be efficiently simulated using classical computers for

small n, the same class of problems become intractable for large n. For example when

n = 50, a classical computer has to store 250 parameters and has to be multiplied by a

unitary matrix consisting of 2100 complex numbers which is beyond the reach of present

day supercomputers. Thus owing to this huge memory requirement, simulating quantum

systems using a classical computer is a challenging problem. As a possible solution to

this limitation of classical computers, Feynman in 1982 proposed the concept of quantum

simulator to perform quantum simulations [1]:

“Let the computer itself be built of quantum mechanical ele-

ments which obey quantum mechanical laws.”

The major advantage of using quantum simulators is that the Hilbert space of the com-

posite quantum systems with n qubits is inherently capable of storing all the 2n complex

amplitudes simultaneously. Thus the quantum simulation of an n qubit system can be

simulated using only n qubit quantum simulator.

1.2 Implementations

Since a couple of decades various quantum devices are believed to be promising can-

didates for quantum simulations. Among them are the nuclear spins [15, 16], elec-
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1.2. Implementations

tron spins in quantum dots [17], neutral atoms [18], trapped ions [19], supercon-

ducting circuits [20], etc, each with strengths and challenges as shown in table 1.1

[13]. As of now, the number of small-scale quantum simulation problems that are

experimentally implemented or are proposed to be implemented is almost exhaustive

[21, 22, 23, 24, 25, 26, 27, 28, 29]. However, large-scale quantum simulators are yet

to become a reality. The main obstacles for this are the scalability, precise control of the

dynamics and decoherence.

In this thesis, I will explain our work on quantum simulations using both unitary and

nonunitary controls. While these works indicate successful implementations of the quan-

tum simulations, they also address the problems of quantum control and decoherence.

Although we used nuclear spin 1/2 systems in a liquid state NMR setup as our quan-

tum simulators, most of the concepts are general and are applicable elsewhere. The

experimental implementations of these aspects that are a part of this thesis are briefly

explained below:

1. Chapter 3 describes the unitary control, the methodology, and one particular quan-

tum simulation realized using the advanced optimal quantum control techniques.

I will first describe the phenomenon of dynamical quantum many-body localiza-

tion, wherein a spin-chain freezes its dynamics for certain specific frequencies of

external drive [30]. Unlike classical systems, the quantum systems freeze and re-

spond non-monotonically with the frequency of the external drive. Here I will

Quantum simulators Strength Challenges
Nuclear spins Well established, Scaling,

readily available technology individual control
Electron spins Individual control, readout Scaling
Neutral atoms Scaling Individual control,

readout
Trapped ions Individual control, readout Scaling

Superconducting circuits Individual control, readout Scaling

Table 1.1: Strengths and challenges of a few quantum simulators.
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Chapter 1. Overview

describe the first experimental observation of quantum exotic freezing using an

NMR system consisting of three mutually interacting spin 1/2 nuclei [31]. I will

also describe the importance of robust unitary control over spin-dynamics. Par-

ticularly, I will describe the implementation of GRadient Ascent Pulse Engineering

(GRAPE) protocol for robust unitary control.

2. Chapter 4 addresses the problem of decomposition of an arbitrary unitary operator

in terms of simpler unitaries. Here we propose a general numerical algorithm,

namely Pauli Decomposition over Commuting Subsets (PDCS), to decompose an

arbitrary unitary operator in terms of simpler rotors [32]. Each rotor is expressed

as a generalized rotation over a mutually commuting set of Pauli operators. Using

PDCS, we decomposed several quantum gates and circuits and also showed its

application in designing quantum circuits for state preparation. We hypothesize

the decomposition method to scale efficiently with the size of the system, and

propose its application in quantum simulations. As an example, I will describe

quantum simulation of three-body interaction using a three-spin NMR system and

monitor the dynamics with the help of overall magnetization.

3. In practice, quantum systems are affected by their interactions with the environ-

ment leading to an undesirable nonunitary process known as decoherence. This

process is accompanied by the loss of information in the quantum processors and

is a major obstacle in experimental quantum information processing and compu-

tation. One of the ways to fight this process is to understand decoherence. Tek-

lemariam et al., in 2003 [33], described a way of introducing the artificial deco-

herence on a closed quantum system by randomly perturbing an ancillary system.

Recently, in a different context, Alvarez et al. and Yuge et al., have independently

proposed noise spectroscopy to characterize the noise acting on a quantum system

[34, 35]. In Chapter 5, I will describe the experimental implementation of such
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an engineered noise introduced by random RF pulses on an ancillary spin using an

NMR spin-system. I will also describe the characterization of the engineered noise

by both noise spectroscopy and quantum process tomography. Further, we sup-

pressed this induced noise using dynamical decoupling (DD) which is a process of

suppression of decoherence by systematic modulation of system state. Chapter 5

also describes the first experimental study of competition between the engineered

decoherence and DD [36].

1.3 Thesis structure

Fig. 1.2 gives the pictorial representation of the thesis structure.

1. Overview

    2. Introduction
Part I

3. Dynamical many-body
    Freezing.

4. Unitary decomposition

Part II

5. Engineered decoherencePart III

Unitary control

Nonunitary control

Background

Figure 1.2: Structure of the thesis.

The thesis consists of the following parts:

• The part I consists of chapter 1 and 2. Chapter 1 gives a brief overview of this

9



Chapter 1. Overview

thesis. Chapter 2 deals with the basic terminology and theory of quantum

information processing. It includes the description of quantum states, their

evolution and measurement schemes. These form the platform to understand

a quantum simulation protocol as mentioned in Fig. 1.1. Chapter 2 also

explains the basics of nuclear magnetic resonance (NMR) and how nuclear

spins in NMR can be used as quantum simulators.

• The part II is about the implementations of quantum simulations using uni-

tary control. It consists of two related works and are explained in chapters 3

and 4.

• Finally, part III deals with the implementations of non-unitary dynamics and

the related work is explained in chapter 5.

To summarize, three different works that are explained in detail in chapters 3 to 5

form the backbone of this thesis [31, 32, 36]. The abstracts of these three chapters

were given in the section 1.2.
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Introduction

This chapter gives a brief introduction to the theory of quantum information processing

(QIP) and nuclear magnetic resonance (NMR) QIP with a goal to provide a few useful

techniques for implementing quantum simulations. A typical quantum computation al-

gorithm consists of an input, processing and an output. Below is a brief summary of

these three major steps:

1. State initialization: A quantum state |ψ(t)〉 contains the entire description of the

quantum system. As an input of any quantum algorithm, it is required that any

given quantum system is initialized to a known state |ψ(0)〉.

2. Gate implementation: Processing of the information is done using quantum gates.

A quantum gate is realized by the unitary operator U(t) that evolves the initial state

|ψ(0)〉 to the final state |ψ(t)〉.

3. Measurements: The final state |ψ(t)〉 or the expectation value of any hermitian

operators Â in the state |ψ(t)〉 that encodes the solution to the algorithm is obtained

by a measurement process.

With reference to the above steps, this chapter first concentrates on the theory of state

description, gate operation and measurements. The latter parts of the chapter deal with
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Chapter 2. Introduction

the same for a specific quantum device, namely nuclear spins in liquid state NMR set up.

For extensive details about these topics it is recommended to refer to [6, 7, 37, 38, 39].

2.1 Quantum information processing and computation

2.1.1 Quantum States

This section explains the basic terminology and properties of the quantum states.

2.1.1.1 Single qubit

A qubit is a quantum counterpart of a classical bit. Physically, any two level quantum

system is a qubit. Mathematically, the most general state of a qubit is represented as

|ψ〉 = α|0〉 + β|1〉, (2.1)

where α, β are the probability amplitudes with |α|2 + |β|2 = 1, and |0〉, |1〉 are the orthog-

onal states and form a computational basis.

The geometric representation of a single qubit state (Eq. 2.1) is visualized by Bloch

sphere as shown in Fig. 2.1. Here α = cos( θ2 ) and β = eiφ sin( θ2 ) where θ = [0, π] and

φ = [0, 2π] are the points on the unit sphere. The state |ψ〉 can exist anywhere in the

sphere.

Thus as seen from Eq. 2.1, a qubit can exist in a linear superposition of |0〉 and |1〉.

The complex numbers α and β have the information of the basis states and thus a qubit

can store infinite amount of information until measured. This is in contrast with the

classical bits that can be either 0 or 1 and can have only one bit of information at a

time. This property of superposition enables quantum parallelism that renders quantum

computers more powerful than classical computers in terms of the computational speed

and storage capacity.
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|ψ>θ
φ

|0>

|1>

0

y

x

z

0

x

Figure 2.1: Bloch sphere representation of the single qubit state |ψ〉.

2.1.1.2 Multiple qubits

As discussed in section 1.1, a typical quantum computer requires multiple interacting

qubits. Apart from the phenomenon of quantum superposition, such quantum systems

exhibit one of the most powerful properties called entanglement.

Suppose there are two qubits described by the states |ψ1〉 = α1|0〉 + β1|1〉 and |ψ2〉 =

α2|0〉+ β2|1〉 where |α1|
2 + |β1|

2 = 1 and |α2|
2 + |β2|

2 = 1. The state of the composite system

is represented by

|ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |ψ1ψ2〉, (2.2)

where ⊗ is the tensor product. Hence |ψ〉 = α1α2|00〉 + α1β2|01〉 + β1α2|10〉 + β1β2|11〉 with

|α1α2|
2 + |α1β2|

2 + |β1α2|
2 + |β1β2|

2 = 1 and is described by 22 = 4 complex numbers. The

states {|00〉, |01〉, |10〉, |11〉} form the computational basis of this two qubit system.

In a similar way, an n-qubit system is represented by the state

|ψ〉⊗n = |ψ1ψ2 · · ·ψn〉, (2.3)

One can observe that a total of 2n basis states are required to describe an n-qubit state.
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Thus in order to describe an n-qubit state, one requires 2n probability amplitudes indi-

cating an exponential growth with n.

2.1.1.3 Density operator formalism

Quantum state for an ensemble of quantum systems is generally described by using the

density operators [40]. In this section, I will introduce density operator formalism.

A density operator of an n-qubit system is defined as

ρ =

n∑
i

pi|ψi〉〈ψi|, (2.4)

where |ψi〉 is the state of the ith sub-system and pi’s are the probabilities of finding the ith

sub-system in the state |ψi〉 such that
∑n

i pi = 1.

The geometrical description of a single qubit density operator expressed in Pauli

operator basis is given by

ρ =
1
2

(I + r · σ), (2.5)

where I is the Identity operator, r is the 3-dimentional unit vector and σ ∈ {X,Y,Z} are

the Pauli operators defined by:

X =

 0 1

1 0

 ; Y =

 0 −i

i 0

 ; Z =

 1 0

0 −1

 ; (2.6)

Also, in the matrix representation

ρ =

 ρ00 ρ01

ρ10 ρ11

 . (2.7)

It is important to note that the diagonal elements ρ00, ρ11 correspond to the populations

and the off-diagonal elements ρ01, ρ10 correspond to the coherences of the state. It should

14



2.1. Quantum information processing and computation

be noted that the populations add up to one and ρ01 = ρ?10 since ρ is hermitian.

One can also express the density operator of the composite system as ρ = ρ1 ⊗ ρ2 ⊗

· · · ⊗ ρn.

Most importantly, any operator ρ should satisfy the following properties:

• Tr[ρ] = 1.

• ρ should be a positive operator (i.e., it should have non-negative eigenvalues).

• ρ should be hermitian. i.e., ρ = ρ†.

2.1.1.4 Reduced density operator

A reduced density operator describes the state of the sub-system when the density oper-

ator of the composite system is known.

Suppose the composite system is in the state ρ12 which contains two sub-systems

namely 1 and 2. Then the sub-system states are given by

ρ1 = tr2(ρ12), (2.8)

ρ2 = tr1(ρ12), (2.9)

where the operation tri, with i = 1, 2, is called as partial trace. For example, when

ρ12 = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|, the partial trace over the sub-system 1 is defined as

ρ2 = tr1(ρ12) = tr1(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|) = |ψ2〉〈ψ2|tr(|ψ1〉〈ψ1|) = |ψ2〉〈ψ2|〈ψ1|ψ1〉.

2.1.1.5 State types

A state can be either pure, mixed, separable or entangled depending on the following

properties.
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When all the sub-systems are in the same state |ψ〉, the composite system is known

to be in pure state. It is a required assumption that the individual sub-systems in Eq.

2.4 are pure but the composite system may not always be pure. When different sub-

systems have different states, the composite system is known to be in a mixed state. The

condition for the composite state ρ to be either pure or mixed is defined as follows:

• Pure state: Tr[ρ2] = 1.

• Mixed state: Tr[ρ2] < 1.

Geometrically, the states on the surface of the bloch sphere of Fig. 2.1 are pure states

and any other states inside the surface of the bloch sphere are the mixed states.

An interesting consequence of ensemble quantum systems is the property of entan-

glement. If an n-qubit density matrix is expressed as

ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (2.10)

then such a state is known to be separable state. And if

ρ , ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn, (2.11)

then such a state is known as entangled state.

It should be noted that suppose the composite system is described by a separable

state then its reduced density operator will be a pure state and if the composite system

is described by an entangled state then its reduced density operator will be a mixed

state.

2.1.2 Quantum gates

A quantum gate is an operation that evolves the quantum state from a specific initial

state to a final state.
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2.1.2.1 State evolution

Any closed quantum system with initial state |ψ(0)〉 evolves under a time dependent

Hamiltonian H(t) according to

|ψ(t)〉 = U(t)|ψ(0)〉, (2.12)

where U(t) = T e−i
∫ t

0 H(t′)dt′ is a unitary operator. Here ~ is set to unity and T is the time

ordering operator.

Similarly, for time independent Hamiltonian, the evolution of the state in terms of

n−qubit density operator ρ(0) is obtained by combining equations 2.4 and 2.12 and is

described as

ρ(t) =

n∑
i

pi[U(t)|ψi(0)〉][〈ψi(0)|U(t)†],

ρ(t) = U(t)ρ(0)U(t)†. (2.13)

One of the main features of unitary operators is that they preserve the purity of the

quantum states over time. In other words, unitarity imposes reversibility criteria which

means that one should be able to get back the initial state ρ(0) starting from ρ(t):

U(t)†ρ(t)U(t) = U(t)†[U(t)ρ(0)U(t)†]U(t) = ρ(0),

since UU† = U†U = I.

In the language of quantum computation, a unitary operator U(t) corresponding to

the transformation

ρ(0)
U(t)
−−−→ ρ(t)

is a quantum gate. Below, I will explain the quantum gates with reference to the circuit

model of quantum computation.
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2.1.2.2 Single qubit gates

Any unitary U transforms the quantum system from one state to another. Geometrically,

U rotates any state vector |ψ(0)〉 to |ψ(t)〉 in the bloch sphere. Thus each single qubit U

corresponds to a rotation about an axis n̂ and is given by

Rθn̂ = e−iθn̂·~σ/2 = cos
(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ), (2.14)

where n̂ = {nx, ny, nz} is the 3-dimensional unit vector, σ = {X,Y,Z} is the Pauli operator

and θ is the rotation angle.

Any single qubit operator can be constructed using Eq. 2.14. Some standard quan-

tum gates like Hadamard (H) and phase gate (S ) are listed below:

H =
1
√

2

 1 1

1 −1

 ; S =

 1 0

0 i

 ; (2.15)

Quantum operators with multiple non-commuting rotations should be carefully im-

plemented in a specific time order. For convenience, the operators are acted from left

to right in a quantum circuit. For example, as shown in Fig. 2.2, H corresponds to the

rotation about X-axis with θ = π followed by a rotation about Y-axis with θ = π/2. Thus,

H = Rπ/2y Rπx.

H  =
 

R
X

π
R

Y

π/2 0| |+
√2 

Figure 2.2: Single qubit Hadamard gate. Here the rotations are of the form of Eq. 2.14
and are implemented from left to right.
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2.1.2.3 Two-qubit gates

A two qubit gate U12 exploits the knowledge of single qubit gates as well as the interac-

tion between the two qubits. Such gates play an important role in quantum computation

as they can entangle the qubits. The circuit representation of U12 is shown in figure 2.3.

U
12

Figure 2.3: A general two qubit gate.

For example, a standard two qubit gate is a controlled-NOT (CNOT) gate and is given

by

UCNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.16)

Figure 2.4 gives the circuit representation of UCNOT . Qubit 1 is the control and the

qubit 2 is the target with A and B as inputs. In convention, a filled circle indicates

1

2

A

B

A

B ⊕ A
Figure 2.4: Two qubit CNOT gate.
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control and the plus indicates the target. The action of UCNOT is written as

|A, B〉 −→ |A, B ⊕ A〉,

where A, B ∈ {0, 1} and ⊕ is the addition modulo 2. The effect of CNOT gate is to flip the

state of the target qubit when the control qubit is in state |1〉 and to do nothing when the

control qubit is in state |0〉.

2.1.2.4 Universal gates

In order to realize arbitrary computation, one needs a universal set of gates. Just like

a combination of NAND gates is universal in classical computation, there exists a set of

quantum gates which are universal.

Any arbitrary single qubit gates along with CNOT gates form a universal set of quantum

gates.

Specifically, one can consider Hadamard, phase gate, CNOT and pi/8 gates as a set

of universal quantum gates. A more general observation is that any arbitrary single and

two qubit gates can form universal quantum gates.

2.1.3 Measurements

Measurements are an important part of any algorithm and is a necessary step to extract

any useful information. This step requires that the measuring device interacts with the

quantum system and thus treats the quantum system as an open quantum system. In

general, measurements operations are nonunitary.

Suppose {Mm} is the set of measurement operators that act on the state space of

the system being measured. Here m is the measurement outcome of the operator that

is measured. Let |ψ〉 be the state just before the measurement and the action of the
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measurement operators on |ψ〉 is defined as

|ψ〉
′

=
Mm|ψ〉
√

p
, (2.17)

where |ψ〉
′

is the state after the measurement and p = 〈ψ|M†mMm|ψ〉 is the probability of

obtaining the outcome m. Here
∑

m p(m) = 1, and
∑

m M†mMm = I.

2.1.3.1 Projective measurements

Another class of measurements are projective measurements which is described by Her-

mitian operator M as

M =
∑

m

mPm, (2.18)

where Pm = |m〉〈m| with {|m〉} being the eigenstates of M and m are its eigenvalues.

The probability of obtaining the outcome m after |ψ〉 is measured is given by

p(m) = 〈ψ|Pm|ψ〉, (2.19)

and thus the post-measurement state has the form

Pm|ψ〉√
p(m)

. (2.20)

Further it should be noted that for projective measurements, Pm should satisfy the

following conditions:

•
∑

m P†mPm = I.

• PmPm′ = δm,m′Pm.

Measurements are non-unitary operations. For example, the measurement operators for

single qubit are |0〉〈0| and |1〉〈1|. One can verify that each of these operators is Hermitian

but not unitary.
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2.1.3.2 Ensemble average measurements

In many cases, one is interested in obtaining the expectation value of an arbitrary op-

erator A. The way to measure such an operator is to prepare a large number of quan-

tum systems in the same initial states and the outcome corresponds to the probability

weighted eigenvalues of A in some final state. It is defined as follows:

〈A(t)〉 = Tr[A(t)ρ(t)], (2.21)

where ρ(t) is the normalized state at time t. It is important that the operator A is hermi-

tian since one expects that the measurement outcomes are real.

2.2 NMR QIP

The previous sections dealt with the mathematical descriptions of the quantum states,

quantum gates and measurements. In this section, I will describe the same but with

reference to their physical realization using nuclear spins in liquid state NMR. Below, I

will introduce to the phenomenon of NMR and how this phenomenon can be exploited

to realize quantum simulators [37, 38, 39].

2.2.1 Nuclear magnetic resonance

When a quantum particle with non-zero nuclear spin angular momentum is placed in

an external static magnetic field (B0), there is an interaction between the particle and

the field. This interaction leads to the splitting of the spin energy levels of the quantum

particle, a phenomenon known as “Zeeman effect”. Thus in the presence of B0 along the

z−axis, the splitting of the levels correspond to the following quantized energy levels:

Em = −γ~mB0. (2.22)
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Here γ is the gyromagnetic ratio of the nuclei and m = [−I,−I + 1, · · · , I − 1, I] is the

magnetic quantum number that takes 2I + 1 values where I is the nuclear spin quantum

number.

The energy difference between the states m and m + 1 can be obtained by calculating

∆E = Em+1 − Em using Eq. 2.22 and the corresponding frequency ω0 = ∆E/~ is given by

ω0 = −γB0. (2.23)

This frequency is known as the Larmor frequency and plays a major role in addressing

different nuclear spin species. A resonant absorption of energy is achieved when such

nuclear spins with definite ω0 is perturbed by an external electromagnetic field with

same frequency as ω0. This phenomenon is called as nuclear magnetic resonance.

Nuclei which exhibit this phenomenon are called as NMR active nuclei. Some com-

mon examples include 1H,13C,14N,19F, etc and their intrinsic properties are listed in table

2.1. A few examples of NMR samples are chloroform, trifluoroiodoethylene, 1-bromo-

2,4,5-trifluorobenzene, crotonic acid, aspirin, etc.

Nucleus I γ (T s)−1

1H 1/2 2.6752 × 108

13C 1/2 6.728 × 107

14N 1 1.934 × 107

19F 1/2 2.5181 × 108

31P 1/2 1.0841 × 108

Table 2.1: NMR active nuclei and their intrinsic properties.

2.2.2 NMR qubits

This thesis deals with nuclear spins corresponding to I = 1/2. In the following, I will

explain the physical realization of single and multiple qubits using NMR.

23



Chapter 2. Introduction

2.2.2.1 Single qubits

A single NMR active nuclei with I = 1/2 in a molecule that is placed in B0 has a unique

ω0 and represents a qubit as shown in figure 2.5. The internal Hamiltonian of such a

B
0

ΔE=ћω
0

NMR Qubit

|1>

|0>

  Sample

Figure 2.5: Zeeman splitting of a spin-1/2 nuclei. Here |0〉 corresponds to m = 1/2 and
|1〉 corresponds to m = −1/2.

single qubit system is given by

H0 = −ω0Iz, (2.24)

where the spin operator Iz = Z/2. The eigenstates and eigenvalues of H0 are given

by {|0〉, |1〉} and {ω0/2,−ω0/2} respectively. This corresponds to the energy difference of

∆E = ~ω0.

Typically, in liquid state NMR, a sample consisting of NMR active molecules are dis-

solved in an NMR silent solvent. In a dilute solution the intermolecular interactions are

negligible and hence one can treat the sample as an ensemble of single spin systems.

2.2.2.2 Multiple qubits

A molecule may contain multiple coupled spin-1/2 nuclei. These spins in a molecule

can be either of the same or different species and are categorized as homonuclear

or heteronuclear molecules respectively. In isotropic liquids state, the inter-molecular
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B
0

|1...1>

|0...0>

 |0...1>

2n levels

Figure 2.6: Energy levels of an n qubit spin-1/2 nuclei.

and intra-molecular dipolar couplings are averaged out due to the rapid, random and

isotropic motions of the molecules and thus only the scalar couplings that are medi-

ated by the electrons in the intra-molecular nuclear bonds survive. Thus the internal

Hamiltonian for multiple qubits in the lab frame is given by

H0 =

n∑
i=1

ωiIi
z + 2π

n∑
i< j

Ji jIi · I j, (2.25)

where n is the number of qubits, Ji j is the scalar coupling and ωi is the larmor frequency.

If |ωi − ω j| � 2π|Ji j| then the NMR qubits are weakly coupled, otherwise they are

strongly coupled. Under the weak coupling limit, Eq. 2.25 reduces to

H0 =

n∑
i=1

ωiIi
z + 2π

n∑
i< j

Ji jIi
zI

j
z . (2.26)

2.2.3 NMR States

Physical qubits are not perfectly isolated from the environment and the NMR qubits are

surrounded by the lattice which is at a temperature T . Their interactions with the lattice
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lead to a thermal equilibrium state at T and such a state is given by

ρeq =
e−H0/kBT

Tr[e−H0/kBT ]
, (2.27)

where H0 is the internal Hamiltonian. For example, for a single qubit case, the above

equation in the eigenbasis of Z is equivalent to

1∑1
i=0 e−Ei/kBT

 e−E0/kBT 0

0 e−E1/kBT

 , (2.28)

where E0 = ω0/2 and E1 = −ω0/2. The diagonal elements indicate the populations

and thus, from Eq. 2.28, it can be observed that the populations follow the Boltzmann

distribution.

At high temperature, Ei � kBT and ρeq can be expanded using first order Taylor

series:

ρeq ≈
I − H0/kBT

Tr[I − H0/kBT ]
≈
I − H0/kBT

Tr[I]

≈
I

2n −
H0

2nkBT
, (2.29)

where 2n is the dimensionality of the n qubit system. The first term neither contributes

to the NMR signal nor evolves under unitary operations. The traceless second part is

known as the deviation density matrix and is given by

ρI ≈ −

2n−1∑
i=0

~ω0i

2nkBT
Ii
z. (2.30)

Here, ε =
~ω0i

2nkBT is the spin polarization. At room temperature and at typical B0 strengths,

ε ≈ 10−5 for n = 1. This suggests that the population difference between the energy

levels is extremely low. Certain consequences due to the small ε values in liquid state
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NMR are summarized as below:

1. NMR states are highly mixed. However, it was shown that one can prepare pseudo-

pure states from ρI that can effectively mimic the pure states. Several methods

like spatial averaging, logical labeling, temporal averaging have been proposed to

realize pseudo-pure states [41, 42, 43, 44, 45, 46].

2. A typical NMR signal is proportional to ρI. Since ε is inversely proportional to 2n,

the signal intensity drops exponentially with n. This limits the NMR qubits to the

small scale quantum simulators.

3. As seen in Eq. 2.29, the NMR state has a dominant contribution from the mixed

state. It was shown by Peres that the state is entangled if the eigenvalues of its par-

tial trace are negative [47]. Also a more general study of n-qubit pseudo-entalged

state was given by Braunstein et. al. [48]. They showed that a pseudo-pure states

can be non-seperable if ε > 1/(1+2n/2). However at room temperature, NMR states

do not reach this non-seperable region. An entangled state obtained from the NMR

pseudo-pure state is always a pseudo-entalged state.

NMR states are not limited to the thermal equilibrium states. Various states can be

prepared be the application of suitable quantum gates on ρI.

2.2.4 NMR gates

The mathematical description of quantum gates is given in section 2.1.2. In this section,

I will explain the physical implementation of a unitary operator U in the context of NMR.

2.2.4.1 Single qubit gates

A typical NMR nuclei has energy differences in the radio frequency (RF) range and hence

any single qubit gate can be realized by an RF pulse. Such an RF pulse is defined by its

amplitude, phase and duration.
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The single qubit Hamiltonian in the lab frame under the action of an RF field is

H(t) = H0 + Hr f

= ω0Iz + ω1[Ix cos(ωr f t + φ) + Iy sin(ωr f t + φ)], (2.31)

where ω1 = −γB1 is the RF amplitude with B1 being the amplitude of the applied field,

ωr f is the RF frequency and Ix, Iy, Iz are the spin operators.

In many cases, it is customary to transform the time dependent H(t) to a time inde-

pendent Hamiltonian. This transformation is obtained by the operator U = e−iωr f Izt and

the effective time independent Hamiltonian is given by

He = ΩIz + ω1[Ix cos(φ) + Iy sin(φ)], (2.32)

where Ω = ω0 − ωr f is the offset frequency.

An initial state ρ(0) evolves under this He as

ρ(τ) = e−iHeτρ(0)eiHeτ. (2.33)

For example, an on-resonant RF pulse with Ω = 0 and for φ = 0 corresponds to an

operator e−iω1Ixτ. Here the amplitude and duration of the pulse is ω1 and τ respectively.

The pulse can also be represented as e−iθIz where θ = ω1τ is the rotation angle and thus

has the form of a general rotation operator given by Eq. 2.14.

A convenient way to represent the evolution of any density operator is given by

product operator formalism [37]. Any state, such as the following, evolves for a time t
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under ΩIz as follows

Iz −→ Iz.

Ix −→ Ix cos(Ωt) + Iy sin(Ωt).

Iy −→ Iy cos(Ωt) − Ix sin(Ωt). (2.34)

Similarly, the states under the action of the RF pulse given by θIx evolve as

Ix −→ Ix.

Iy −→ Iy cos(θ) + Iz sin(θ).

Iz −→ Iz cos(θ) − Iy sin(θ). (2.35)

and under the action of θ1Iy evolve as

Ix −→ Ix cos(θ1) − Iz sin(θ1).

Iy −→ Iy.

Iz −→ Iz cos(θ1) + Ix sin(θ1). (2.36)

A simple NOT gate corresponds to an on-resonant RF pulse with θ1 = π in Eq. 2.36.

Similarly, any single qubit gate can be realized by various values of θ, θ1 and Ω.

2.2.4.2 Two qubit gates

The internal Hamiltonian of a two qubit system is shown in Eq. 2.26. A two qubit gate

is realized by the evolution of the qubits under the action of the coupling strength J as

well as the external RF pulses. The action of RF pulses is the same as in Eqs. 2.35 and

2.36. However, the evolution of the density operators under the action of the two qubit

coupling Hamiltonian 2πJIzS z (where I and S are the spin angular momentums of two
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different qubits) is given by

Ix −→ Ix cos(Θ) + 2IyS z sin(Θ),

Iy −→ Iy cos(Θ) − 2IxS z sin(Θ),

Iz −→ Iz,

2IxS z −→ 2IxS z cos(Θ) + Iy sin(Θ),

2IyS z −→ 2IyS z cos(Θ) − Ix sin(Θ),

2IzS z −→ 2IzS z, (2.37)

where the rotation angle Θ = πJt. While J is fixed in any NMR system, any effective

rotation angle can be realized by changing the pulse time t.

In addition, it is also possible to effectively cancel the evolution of the states under

the chemical shift Hamiltonian and the coupling Hamiltonian. This technique is called

as refocusing scheme and the corresponding pulse sequences are shown in Fig. 2.7. Fig.

2.7(a) is the standard Hahn echo sequences (also see section 5.3.1).
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Figure 2.7: Pulse sequences for refocusing (a) coupling strength (b) chemical shifts (c)
both chemical shifts and coupling strength over a time τ. The RF pulses with rotation
angles π about x-axis are represented by Rπ

x.

A standard two qubit gate is the CNOT gate as represented in Eq. 2.16. The corre-

sponding NMR pulse sequence is given by

UCNOT = (Rπ/2z )I(R
−π/2
z )S (Rπ/2x )S U(

1
2J

)(Rπ/2y )S , (2.38)
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where U(t) = e−i2πJIzS zt and the operator Rθn̂ is the rotaion of the spins about the axis n̂

with rotation angle θ.

Generally, the pulses that we normally implement are hard pulses. These correspond

to short duration pulses and hence cover a larger frequency range. However in many

cases, selection of a specific spin or its transition with a precise frequency is important.

Although, it might be possible to use long duration shaped pulses (e.g. Gaussian), they

are not universally applicable and are prone to RF inhomogeinity. In such cases, it is

recommended to use optimal control algorithms to design selective and robust quantum

gates. Such algorithms maximize the fidelity between the desired opererator and the RF

operator by optimizing the control parameters such as rf amplitudes, phases,durations,

delays, etc. Fidelity is the overlap between the two operators and is a measure of how

close the operators are. The fidelity F between the operators U1 and U2 is defined as

F = |Tr[U1U†2]|/2n. (2.39)

Among many such optimal control algorithms are the strongly modulated pulses [49,

50, 51], GRAPE [52], bang-bang control [53] etc. In this thesis, we have used GRAPE

and bang-bang control.

In principle, any effective Hamiltonian can be realized using the internal Hamiltonian

and RF Hamiltonian.

2.2.5 NMR measurements

The average of the magnetic moments µ of the nuclei in thermal equilibrium at static

magnetic field in the sample produces a bulk magnetization. Upon the perturbation of

the nuclei by an external RF field, the bulk magnetization precess about the static mag-

netic field B0 with a frequency ω0 and produces a time varying magnetic field. This time

varying magnetic field produces an electromotive field in the coils placed near the sam-
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ple in accordance with the Faraday’s law of induction. In the conventional NMR set up,

the orientation of B0 and the coils allows the detection of the transverse magnetization

precessing about B0. The signal that we observe corresponds to the bulk transverse mag-

netization of the sample and thus NMR quantum computers are regarded as ensemble

average quantum computers.

The bulk magnetization that is recorded in the NMR experiment is given by

M(t) ∝ Tr[ρ(t)D], (2.40)

where M(t) = Mx(t)+ iMy(t), ρ(t) is the instantaneous state of the qubits and D =
∑n

j=1(I j
x +

iI j
y) is the detection operator. The fourier transform of Eq. 2.40 gives the signal in the

frequency domain.

As an example, Fig. 2.8 shows the read-out of the equilibrium spectra of a two

qubit weakly coupled NMR system represented by spins I, S . The Hamiltonian H0 of

such a system is given by Eq. 2.26 with n = 2. Fig. 2.8(a) shows the eigenstates of

H0 that are given by |00〉, |01〉, |10〉, |11〉 and the corresponding populations are given by

p00, p01, p10, p11 respectively. Here, the first and the second spins are represented by I and

S respectively. Only the transitions for which ∆m = ±1 are allowed and thus only four

different transitions can be observed in this system. The labels |0,+〉, |1,+〉 indicate the

transitions of spin S when spin I is in state |0〉, |1〉 respectively and |+, 0〉, |+, 1〉 indicate

the transitions of spin I when spin S is in state |0〉, |1〉 respectively. Fig. 2.8(b) shows

the NMR signal with D =
∑

j I j
x for the transitions shown in Fig. 2.8(a). The positions of

the peaks are given by the eigenvalues of H0 in frequency units. ωI , ωS are the larmor

frequencies of spins I, S respectively and J is the coupling between them.

In general, an n qubit weakly coupled system will have 2n energy levels and a total

of n2n−1 transition lines can be observed. The area under the spectra gives the bulk

transverse magnetization Mx(t) of the corresponding spins. Although, the conventional
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Figure 2.8: (a) Energy lelvel diagram of a weakly coupled two qubit system at thermal
equilibrium. (b) NMR read-out of the transitions corresponding to (a).

NMR signal gives Mx/y(t), it is also possible to measure the expectation values of any

Hermitian operators, e.g, Moussa protocol [54, 55].

By systematically measuring the transverse magnetization, the state at any instant

can be reconstructed using the quantum state tomography (QST) [45, 56, 57]. As an

explict demonstration, QST for a single qubit is explained below. A general single qubit

state is represented by

ρ =

 a c + id

c − id 1 − a

 , (2.41)

where a, (1 − a) are the populations and c, d are real numbers. Here, the single quantum

coherence terms are the off-diagonal terms that can be directly observed. The goal of

QST is to recontruct 2.41 and it involves obtaining the values of a, c and d. This requires

two experiments:

1. The real part of the spectra gives the value of c and the imaginary part (that is

obtained by a changing the spectrum phase by π/2) gives the value of d.

2. Application of the pulse field gradient that destroys the coherence terms followed
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by a Rπ/2x pulse give the values of a.

This method can be generalized to n qubits [58].

2.3 NMR quantum computers vs Di Vincenzo criteria

As mentioned in chapter 1, it is important for any quantum computer to follow Di Vin-

cenzi criteria. In the following, I will briefly explain how well NMR quantum computers

follow these criteria.

1. The NMR signal intensity exponentially decreases with the number of qubits. This

poses a severe challenge in realizing a scalable quantum computer. As of present,

the maximum number of NMR qubits that are realized in the lab is 12 [59]. Al-

though, an estimate of about one hundred qubits is necessary to realize a large

scale quantum computer, the problem of scalability persists in most of the present

day quantum technologies.

2. Due to very low spin polarization, NMR states are highly mixed as shown in Eq.

2.30. However, it is possible to mimic the pure states by preparing pseudo pure

states [41, 42, 43, 44, 45, 46].

3. The NMR qubit life times are characterized by the time scales called spin-lattice

relaxation (T1) and spin-spin relaxation (T2). While T1 refers to the energy re-

laxation, T2 refers to the coherence decay of the qubits. Typically, these decay

constants are of the orders of a few seconds. Since the gates are realized by RF

pulses, the typical gate implementation times range from a few microseconds to

milli seconds. This allows to implement hundreds of gates before the coherences

decay.

4. Any effective Hamiltonian can be realized by the system Hamiltonian, and RF

Hamiltonian, and thus NMR gates are universal.
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5. The average transverse magnetization can be directly measured. From this data,

one can reconstruct the quantum state (QST) or even measure the expectation val-

ues of other operators. However, it is difficult to perform projective measurements

in NMR.

Despite the challenges, NMR systems are widely used as efficient test beds for small

scale quantum computers. Various algorithms have been successfully implemented using

NMR since the concept of pseudo pure states has been put forth. The first quantum al-

gorithm that was experimentally demonstrated using NMR was Deutsch algorithm [60].

Later Deutsch Jozsa algorithm was implemented in [61, 62, 63]. Grover’s algorithm

was implemented for the first time in [64]. Other related works were carried out by

[65, 66, 67]. One of the famous experiments was the Shor’s factorization algorithm that

factored the number 15 using a 7 qubit NMR system [68]. The experimental quantum

simulations were performed for the first time by [69] in 1999. Since then a large number

of quantum simulations were experimentally performed using NMR [14, 70, 71, 72]
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Chapter 3

Experimental realization of

“dynamical many-body freezing”

In this chapter, I will explain the experimental work on the quantum simulation of a new

phenomenon known as dynamical many-body freezing (DMF) using unitary controls

[31].

3.1 Introduction

Consider a classical system perturbed by external periodic drive with frequencies much

higher than the characteristic frequencies of the system. In this high frequency regime,

it is intuitive to note that the system does not get sufficient time to adjust itself within

the drive period and hence does not respond to the external drive. This phenomenon

of no-response is known as freezing and this reason behind freezing has already been

adopted in various important results in classical as well as quantum physics [73, 74, 75,

76, 77, 78, 79, 80, 81].

However, recent theoretical studies have shown that this intuitive mechanism of

freezing of quantum many-body systems, which implies strong freezing effects for higher
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drive frequencies, may fail in certain cases due to the quantum interference of excitation

amplitudes [30, 82, 83, 84, 85, 86]. It was shown by A. Das in 2010 [30] that when a 1-

dimensional spin chain was driven by high drive frequencies, the spin chain exhibited a

peculiar response behaviour as opposed to the classical case: while the classical systems

showed a monotonic response to the drive, the quantum systems showed a peak-valley

response behaviour indicating a non-monotonic response. Further, it was shown that

for specific drive parameters, the spin chain froze for all times and for arbitrary initial

states. This phenomenon is known as dynamical many-body freezing (DMF) [31].

The comparison between the classical and quantum case in high frequency regime is

shown in Fig. 3.1.

Freezing of the particle under the action of external periodic drive was previously

observed. Examples include dynamical localization of a single particle [87] and co-

herent destruction of tunneling of a single particle [88]. However the phenomenon of

dynamical many-body freezing differs from the above as follows: (1) it is a quantum
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Figure 3.1: Classical (top row) and quantum (bottom row) systems under the influence
of external periodic drive corresponding to high frequency (ω) regime. Each face rep-
resents the composite many-body system. The horizontal axis corresponds to the drive
frequency (ω). The superscripts (‘z’s) refer to the response - the strength of freezing
increases with the number of ’z’s. The classical systems freeze for all high frequencies
but the quantum systems freeze and respond non-monotonically.
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many-body extension of dynamical localization and (2) the freezing occurs for all times

and for arbitrary initial states for specific drive parameters.

In this chapter, I will explain the experimental demonstration of this phenomenon

that was carried out in our lab [31]. The motivation to demonstrate this phenomenon is

two fold:

1. The field of driven quantum many-body systems is still largely unexplored. Despite

the experimental challenges, we successfully simulated this phenomenon using a

3-qubit NMR simulator for the first time.

2. The experimental feasibility of controlling the quantum systems by tuning the drive

parameters opens up the possibilities of a novel quantum control technique.

Below, I will explain the basic outline of the phenomenon of DMF, and present theo-

retical, and numerical results that encodes the non-monotonicity in the response of the

driven quantum many-body systems. I will also numerically show how the main quantity

of interest deviates in the presence of experimental errors and how it can be overcome.

3.2 Quantifying freezing

This section gives the necessary details required to quantify the amount of freezing. We

consider a quantum many-body system in one dimension that is evolving under a specific

Hamiltoninan starting from an arbitrary initial state. By monitoring the magnetization

corresponding to the instantaneous states at regular intervals, we quantify the amount

of freezing for specific Hamiltonian parameters by calculating the long time average

of the magnetization, called as dynamical order parameter Q [30]. We see that the

non-monotonic response of the driven quantum many-body system by a periodic field is

captured by Q.

Consider an infinite one dimensional Ising spin chain subjected to a transverse peri-
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odic field. Such a system is described by the Hamiltonian

H(t) = −
1
2

[J
n−1∑

i

ZiZi+1 + h0 cos(ωt)
n∑
i

Xi], (3.1)

where n = ∞ is the number of spins, J is the coupling between the nearest neighbouring

spins, h0 is the drive amplitude and ω is the drive frequency.

Starting from an initial state ρ(0), the infinite one dimensional spin chain evolves un-

der the action of the Hamiltonian H(t). The final state is ρ(t) and we study the response

of the system in terms of its transverse magnetization mx(t). As previously mentioned,

the quantity that characterizes the strength of freezing is Q which is defined as a long

time average of mx(t) and is given by

Q = lim
T→∞

1
T

T∫
0

mx(t)dt, (3.2)

where T is the total evolution time.

The freezing case requires that mx(t) remains the same as mx(0) for all times t. Thus

it implies that Q = 1 for the freezing case. However, when mx(t) oscillates, Q < 1 and

thus corresponds to the non-freezing case.

A closed form for Q was analytically derived by A. Das [30] for an infinite spin Ising

chain under the periodic boundary condition and is given by

Q∞ =
1

1 + |J0(2h0/ω)|
, (3.3)

where J0 is the zeroth order Bessel’s function. Thus the non-monotonic feature of J0

imposes non-monotonicity in Q.

Fig. 3.2 shows the numerical plot for Q vs ω. The dotted line corresponds to the

n = ∞ case. This plot considers the high frequency regime where ω values are much

higher than the maximum characteristic frequency of the system that is given by 2J .
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Figure 3.2: The non-monotonic behaviour of Q with ω for finite and infinite spin chain
in the high frequency regime. The simulation is done for the parameters corresponding
to h0 = 5π and J = h0/20, both in units of rad/s, that are consistent with strong
(h0 � J) and fast (ω � 2J) drive scenario.

Similarly, the analytical form for Q for a finite spin chain (n = 3) was shown to be

[31]

Q3 =
1 + |J0(2h0/ω)|

1 + 3|J0(2h0/ω)|
. (3.4)

As seen from Fig. 3.2, the Q vs ω plot for n = 3 is similar to that of the infinite spin chain.

This feature of Q being independent of n as is reflected in Eq. 3.3 and 3.4 allowed us to

study this phenomenon using a small scale 3-qubit NMR quantum simulator.

3.2.1 Experimental challenges

The heart of quantum simulation protocol lies in the efficient implementation of the

dynamics corresponding to a specific Hamiltonian. Here, the Hamiltonian of interest is

given by Eq. 3.1 and the corresponding unitary operator is U(t) = T e−i
∫ t

0 H(t′)dt′ where

T is the time ordering operator. In NMR setup, this U(t) is realized by RF pulses with

definite amplitudes and phases. However, in practice, realizing U(t) for a specific imple-
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Figure 3.3: Numerical simulation of the evolution of magnetization for ω = 8.4 and
in the presence of errors for h0 = 5π and J = h0/20 starting from an initial state
ρ(0) =

∑3
i Xi/2.

mentation time t is a challenging problem due to the external imperfect pulses caused

by RF inhomogeinity and inherent decoherence. These lead to the faster decay of mag-

netization and is undesirable.

Fig. 3.3 shows the numerical simulation of mx(t) in the presence of errors. Typically,

NMR systems experience RF inhomogeneities that vary from 10% to 20% depending

on the type of spectrometer probe. Specific to our probe, on which the experiments

were performed, the RF inhomogeneity was measured to be upto 20%. The standard

protocol to measure such probe specific RF inhomogeneities is done by measuring the

Rabi oscillations - this is done by measuring the magnetization intensities for various

pulse durations. These oscillations do not decay in the ideal scenario, however, with

RF inhomogeneities the oscillations tend to decay. The fourier transform of the decayed

oscillation corresponds to the RF inhomogeneity distribution. Also as shown in [89],

RF inhomogeneities can be mapped quantitatively with the help of Torrey oscillations.

This means that quantum operations on some percent of the sample will differ from the

ideal intended operations. Thus by incorporating 20% RF inhomogeneity and a decay

constant with T2 = 10s, we see that the non-freezing point corresponding to ω = 8.4

rad/s is adversely affected by the errors with no sign of oscillations in mx(t).
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Similarly, Fig. 3.4 shows how the effect of RF inhomogeneity changes the freezing

points. While the plots with only T2 decay still captures the response correctly, the

plots with T2 decay and RF inhomogeneity show an erratic response. This indicates that

the adverse effects caused by pulses imperfections is much worse than that due to the

decoherence effects.

Thus experimental implementation of this phenomenon demands for an efficient control

technique that is robust against RF inhomogeneities.

3.2.2 Overcoming the challenge

In order to circumvent the above problem, we used an optimal control algorithm called

GRadient Ascent Pulse Engineering (GRAPE) [52]. This algorithm generates robust,

high fidelity amplitude and phase modulated RF pulses.

Consider an n- qubit NMR system defined by the Hamiltonian:

H(t) = H0 +

m∑
k=1

uk(t)Hk, (3.5)

where H0 is the internal Hamiltonian, Hk is the RF Hamiltonian and uk(t) correspond to
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Figure 3.4: Numerical simulation for Q vs ω by incorporating errors for h0 = 5π and
J = h0/20 starting from an initial state ρ(0) =

∑3
i Xi/2.
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the RF amplitudes that can be changed and controlled. Let ρ(0) be the initial state and

the evolution of the state ρ(t) under this Hamiltonian is given by

ρ̇(t) = −i[H(t), ρ(t)]. (3.6)

The GRAPE algorithm aims to find the optimal uk(t) values that take the state ρ(0) to

ρ(T ) by maximizing the performance function Φ0 between the the final state ρ(T ) with

the desired target state C. The performance function is given by

Φ0 = 〈C|ρ(T )〉 = Tr[C†ρ(T )]. (3.7)

Let the total time be discretized into N equal steps, each of duration ∆t = T/N and

the control amplitudes uk are assumed to be constant in each time step. The propagator

corresponding to the jth step is given by

U j = e−i∆tH(t). (3.8)

The final state is ρ(T ) = UN · · ·U1ρ(0)U†1 · · ·U
†

N and Φ0 becomes

Φ0 = 〈C|UN · · ·U1ρ(0)U†1 · · ·U
†

N〉 = 〈λ j|ρ j〉, (3.9)

where λ j = U†j+1 · · ·U
†

NCUN · · ·U j+1 is the backward propagated target operator and ρ j =

U j · · ·U1ρ(0)U†1 · · ·U
†

j is the density operator at time j∆t.

Let uk for the jth step be uk( j). Suppose uk( j) is changed to uk( j) + δuk( j) where δ is

the small perturbation. It was shown in [52] that Φ0 could be increased if the change in

uk( j) was such that

uk( j) −→ uk( j) + ε
δΦ0

δuk( j)
, (3.10)

where δΦ0
δuk( j) = −〈λ j|i∆t[Hk, ρ j]〉 and ε is the small step size.
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The first step of the algorithm is to initialize uk( j) to guess values. This is followed

by calculating ρ j where ρ j = U j · · ·U1ρ0U†1 · · ·U
†

j for j ≤ N. The next step is to calculate

λ j starting from λN = C. Using this λ j, calculate δΦ0
δuk( j) and update all the values of uk( j)

according to Eq. 3.10. With these updated uk( j), repeat the algorithm starting from the

calculation of ρ j until the desired fidelity is achieved.

3.3 Experiments

We considered the three 19F nuclear spins in the molecule trifluoroiodoethylene as NMR

quantum simulator and its properties are shown in Fig. 3.5. The molecule is dissolved

in acetone-D6 and all the experiments were carried out in Bruker 500 MHz NMR spec-

trometer at an ambient temperature of 290 K.
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Figure 3.5: Molecular structure of trifluoroiodoethylene. The quantum simulator con-
sists of F1, F2 and F3. Their chemical shifts (diagonal elements) and the scalar couplings
(off diagonal elements) in the units of Hz are shown at the right (Figure from [30]).
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Figure 3.6: Thermal equilibrium spectra of F1, F2 and F3 (left to right respectively).
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The internal Hamiltonian for this NMR system is given by

H0 = −π

3∑
i=1

νiZi +
π

2

3∑
i=1
i< j

Ji jZiZ j, (3.11)

where the first term is the Zeeman Hamiltonian and the second term is the spin-spin

interaction Hamiltonian. The chemical shifts νi in the rotating frame and the scalar

couplings Ji j are shown in Fig. 3.5

3.3.1 Quantum simulation

The basic idea of quantum simulation is to use the NMR simulator along with the exter-

nal controls to mimic the dynamics of a quantum many-body system evolving under Eq.

3.1. The simulation protocol for the 3-qubit simulator involves the following main steps:

1. Initial state preparation:

We performed two sets of experiments with different initial states i.e., for ρ1(0) =∑3
i Xi/2 and for ρ2(0) =

∑3
i [Xi/2 + Zi

√
3/2]. These correspond to the initial trans-

verse magnetization values mx(0) = 1 and mx(0) = 0.5 respectively since mx(0) =

Tr[ρ(0)(
∑3

i Xi/2)].

Experimentally, the states ρ1(0) and ρ2(0) were prepared by applying RF pulses on

the three 19F spins with rotation angles π/2 and π/6 respectively about the y-axis.

2. Unitary implementation:

In order to be consistent with the fast drive, we specifically chose the Hamiltonian

parameters as follows: h0 = 5π, J = h0/20. Note that ω � 2J , where 2J is the

maximum characteristic frequency of the model system.

Consider a particular value of ω in the high frequency regime. For these specific

values of h0, J and ω, we constructed H(t). We implemented this dynamics by

generating the corresponding U(τ) for a time τ = 2π/ω. Since the terms in H(t)
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do not commute with each other, the simulation under U(t) requires discretization

of t into smaller time intervals. We discretized τ into 11 equal intervals and thus

U(τ) = U11 · · ·U2U1 where each U j = e−iH(m)m with m = τ/11. Thus the dynamics

was realized by implementing U(τ) j times with j = 0, 1, · · · ,N where N = 30 for a

total time of T = jτ. Thus ρ(0) evolves under U( jτ) as

ρ( jτ) = U( jτ)ρ(0)U( jτ)† = U(τ) jρ(0)[U(τ)†] j. (3.12)

Three important steps contribute in simulating H(t): The first step is to cancel

the evolution under the Zeeman Hamiltonian in Eq. 3.11. The second step is to

to realize an effective interaction Hamiltonian with strength J . The final step

is to implement an periodic drive [−h0/2] cos(ωt) about the x-axis. All in all, the

simulation problem boils down to the realization ofH(t) using H0 and external RF

controls.

We realized all the operators U(τ) by low power GRAPE pulses with durations

ranging from a 5ms to to 10ms that were optimized by considering 20% RF in-

homogeneity. We considered the following RF inhomogeneity distribution: 4.31%

of the sample gets an RF inhomogeneity of 0.8, 0.81% of the sample gets an RF

inhomogeneity of 0.9, 75.32% of the sample gets no RF inhomogeneity, 8.01% of

the sample gets an RF inhomogeneity of 1.1, 4.26% of the sample gets an RF inho-

mogeneity of 1.2. The GRAPE algorithm first finds an optimized unitary for each

of these sample volumes subjected to specific RF inhomogeneity. We calculated

the average of these fidelity between the optmized unitary and the target unitary.

The average fidelity for all the pulses were greater than or equal to 0.99. Fig. 3.7

shows the GRAPE pulse for a specific unitary as explained in the caption.

3. Read-out:
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Figure 3.7: The optimized control field values for ω = 5.61 rad/s as generated by
GRAPE for one cycle (corresponding to U(τ) with τ = 2π/ω). The blue and red plots
correspond to the the x and y components of the control field u.

We measured mx( jτ) at regular intervals t = jτ with j = 0, 1, · · · ,N which is given

by

mx( jτ) = Tr[ρ( jτ)
3∑
i

Xi/2], (3.13)

and hence Q becomes

Q =
1

N + 1

N∑
j=0

mx( jτ). (3.14)

3.4 Results

3.4.1 Raw experimental results

Fig. 3.8 shows the experimental 19F spectra corresponding to two different drive fre-

quencies. The spectra are observed at different instants of time corresponding to Eq.

3.13 for certain j values. Starting from the thermal equlibrium state (bottom spectra)

with j = 0, the evolution of the magnetization for different j is indicated in the figure.

The left column correspond to the non-freezing case with ω = 24.54 rad/s and the right

column correspond to the freezing case with ω = 5.61 rad/s. While the spectra at the left
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oscillate with j, the spectra at the right remains the same for all j. However an overall

decay can be seen in both the cases. This decay is due to the phenomenon of decoher-

ence, transverse relaxation of the nuclear spin and RF inhomogeneities. Here the term

‘raw’ refers to the direct experimental results without incorporating any corrections by

using numerical processing.

The sum of the area under the spectra of all the three 19F spins is proportional to

the magnetization mx(t). The evolution of mx(t) for different freezing (ω = 5.61 and

12.88 rad/s) and non-freezing (ω = 8.40 and 24.54 rad/s) cases is shown in Fig. 3.10.

The solid circles indicate the raw experimental results and the solid line indicates the

numerical simulation. The decay in magnetization as explained with reference to Fig.

3.8 is reflected in the solid circles. This decay is corrected by processing the experimental
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Figure 3.8: 19F spectra for ω = 24.54 rad/s (left) and ω = 5.61 rad/s (right) corre-
sponding to non-freezing and freezing case respectively starting from mx(0) = 1. Here
j = t/τ indicates the number of unitary operations on 19F spins starting from j = 0 that
corresponds to the equilibrium case.
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results and is explained in the below subsection.

3.4.2 Inverse decay

In any physical set-up, the interaction of the system qubits with the environment is un-

avoidable. This leads to the loss of coherence and is called as decoherence (see chapter

5). The decoherence time scales are characterized by T2 values and theses values for the

nuclei F1, F2, F3 are found to be 2.8 s, 3.1 s, 3.3 s respectively.

The decoherence process, longer pulse implementation times, lower fidelity gates

and RF inhomogeneities result in the decay of magnetization as seen in Fig. 3.8, despite

the fact that the gates were optimized for shorter durations with fidelities above 99%

and the pulses were made robust even in the presence of 20% RF inhomogeneity.

Fig. 3.9 shows the evolution of mx(t) for freezing and non-freezing case. The dots

are the experimental mx(t) values and it can be noted that the decay corresponds to the

decay of amplitude and an overall decay of mx(t). Below, I will explain the decay model

and its correction using inverse decay method using two steps that we implemented in

our work.

1. Suppose Td is the relaxation time due to all the contributing factors. The decay of

mx(t) is modeled as

mx(t) = α + [β + γ cos(ct)]e−t/Td , (3.15)

where α, β, c and Td are the fitting parameters. We calculated these values by

fitting the experimental results to Eq. 3.15. The solid lines connecting the dots in

Fig. 3.9 correspond to the fit.

2. Consider an ideal case where there is no relaxation, i.e., Td → ∞. In this limit,

we processed the evolution of mx(t) by using the values of α, β and c that were

calculated in step 1. The solid triangles connected by dotted lines indicate the

decay corrected mx(t) values.
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Figure 3.9: Inverse decay method.

3.4.3 Theory vs experiments

In this section, I will show how the experimental results match with the theory.

Fig. 3.10 shows the behaviour of the magnetization evolution for various ω values

in the high frequency regime. mx(t) plots in each row of Fig. 3.10 are plotted such that

ω increases from top row to the bottom row. The first row corresponds to the freezing

case. Intuitively, one should have expected freezing of mx(t) for all the higher ω values.

However, interestingly, as seen in the figure, mx(t) shows freezing as well as non-freezing

(oscillations) response for specific values of ω. Also, the experimental results that are

corrected for the decay show similar profiles as that of the theory.

Figs. 3.11 and 3.12 are the final results of this work that capture the peak valley

structure of the response of the one dimensional spin chain that is driven by external

field in the high ω regime. These correspond to the two different initial states with

mx(0) = 1 and mx(0) = 0.5 respectively. The quantity Q is the long time average of mx(t)

and is calculated using Eq. 3.14. The solid circles are the raw experimental results.
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Figure 3.10: Magnetization evolution for various ω values corresponding to freezing
and non-freezing cases. All the plots correspond to an initial magnetization mx(0) = 1.

Although, the experimental profiles match with the theory, these values are lower than

that of the theory due to the relaxation process as explained in section 3.4.2. However,

the decay corrected experimental results fairly match with the theory.

As seen in the figure, the striking match between the theory, raw experiments and

the decay corrected experimental results reveal the successful demonstration of the dy-

namical many-body freezing.

3.5 Conclusions and future outlook

Using a 3-qubit NMR simulator, we demonstrated the first experimental implementation

of the phenomenon of DMF. As is proven in [30], the phenomenon of DMF is indepen-

dent of the system size and thus allowed us to simulate DMF even on a 3-qubit system.

The main set up consisted of a quantum many-body system that is driven out of equi-

librium by an external periodic drive. Under this set up, we observed the response of
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Figure 3.11: Q vs ω in the high frequency regime for the case of mx(t) = 1.

the system by systematically monitoring the transverse magnetization. We considered

one dimensional transverse ising spin chain as our model quantum many-body system.

By tuning the external drive frequency to some specific values, we observered the non-

monotonicity in the response of the system [30, 31]. We showed that the phenomenon

is true for all times and for all states by separately demonstrating the experiments for

two arbitrary initial states. Although DMF can be observed with small systems, it would

be no less interesting to observe the phenomena in large systems. However, the experi-

mental implementation with larger systems would not be easy. This is because (1) NMR

systems are not scalable with the increasing number of qubits (2) Coherent control is

difficult. e.g GRAPE algorithm to realize a specific operation might take longer times

to converge to a desired fidelity. (3) A system with long T2 value to accommodate the

complex unitaries should be considered.
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Figure 3.12: Q vs ω in the high frequency regime for the case of mx(t) = 0.5.

It was theoretically shown that despite the presence of disorder in the system, the

quantum many-body systems under DMF retain long coherence times [90]. This indi-

cates that the freezing points are robust and hence can be used as efficient quantum

memories. The future experimental plan is to simulate this problem to further under-

stand DMF and to see how it can be efficiently used as a novel control technique to

manipulate and preserve the states of quantum computers.
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Chapter 4

Pauli Decomposition over

Commuting Subsets: Applications

in Gate Synthesis, State

Preparation, and Quantum

Simulations

4.1 Introduction

Quantum devices have the capability to perform several tasks with efficiencies beyond

the reach of their classical counterparts [6, 7]. An important criterion for the physical

realization of such devices is to achieve precise control over the quantum dynamics

[9]. The circuit model of quantum computation is based on the realization of a desired

unitary in terms of simpler quantum gates. However, arbitrarily precise decomposition
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of a general unitary UT in the form

UT = Um · · ·U2U1, (4.1)

is a nontrivial task. Here each of the U j’s is either of lower complexity or acts on smaller

subsystems.

The decomposition of a unitary operator corresponding to a Hamiltonian H = HA +

HB, where [HA,HB] = 0, is trivial, i.e., UT = e−iH t = e−iHAte−iHBt. When [HA,HB] , 0,

one can discretize the time, δ = t/m, and use the Trotter’s formula [91]

UT =
[
e−iHAδe−iHBδ

]m
+ O(δ2) (4.2)

or its symmetrized form [92]

UT =
[
e−iHAδ/2e−iHBδe−iHAδ/2

]m
+ O(δ3). (4.3)

For a time-dependent HamiltonianH(t), one needs to use Dyson’s time ordering operator

or the Magnus expansion, and then decompose the time discretized components [93].

However, for a given unitary UT , such a decomposition may not be obvious or even after

the decomposition, the individual pieces themselves may involve matrix exponentials of

non-commuting operators thus failing to reduce the complexity.

Several advanced decomposition routines have been suggested for arbitrary unitary

decomposition. Barenco et al. have shown that XOR gates along with local gates are

universal, and in terms of these elementary gates they have explicitly decomposed sev-

eral standard quantum operations [94]. Tucci presented an algorithm to decompose an

arbitrary unitary into single and two-qubit gates using a mathematical technique called

CS decomposition [95]. Khaneja et al. used Cartan decomposition of the semi-simple

lie group SU(2n) for the unitary decomposition [96]. A method to realize any multiqubit
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gate using fully controlled single-qubit gates using Grey code was given by Vartiainen

et al. [97]. Möttönen et al. have presented a cosine-sine matrix decomposition method

synthesizing the gate sequence to implement a general n-qubit quantum gate [98]. Re-

cently, Ajoy et al. also developed an ingenious algorithm to decompose an arbitrary uni-

tary operator using algebraic methods [99]. More recently, this method was utilized in

the experimental implementation of mirror inversion and other quantum state transfer

protocols [25]. Manu et al have shown several unitary decompositions by case-by-case

numerical optimizations [100].

In this work, we propose a general algorithm to decompose an arbitrary unitary upto

a desired precision. It is distinct from the above approaches in several ways. Firstly, our

method considers generalized rotations of commuting Pauli operators which are more

amenable for practical implementations via optimal control techniques. Secondly, be-

ing a numerical procedure, it considers various experimentally relevant parameters such

as robustness with respect to fluctuations in the control parameters, minimum rotation

angles etc. Besides, the procedure can be extended for quantum circuits, quantum sim-

ulations, quantum state preparations, and probably in some cases even for nonunitary

synthesis.

The chapter is organized as follows: A detailed explanation of the algorithm for

arbitrary unitary decomposition is presented in section 4.2. Section 4.3 deals with the

applications of the algorithm with explicit demonstrations involving the decomposition

of standard gate-synthesis, quantum circuit designs, certain quantum state preparations,

and for quantum simulations. Finally the chapter ends with a conclusion in section 4.4.

4.2 Algorithm

In the following, I will describe an algorithm for Pauli decomposition over commuting

subsets (PDCS) for arbitrary unitary operators. Although for the sake of simplicity we
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utilize 2-level quantum systems, the protocol applies equally well to any d-level quantum

systems.

Let UT be the desired unitary operator of dimension N = 2n to be applied on an

n-qubit system. We seek an m-rotor decomposition Wm = VmVm−1 · · ·V1 ≈ UT , where the

decomposed unitaries V j with j ∈ [1,m] have the form

V j = e−i
∑
β P(β)

j φ
(β)
j . (4.4)

W0 = 1 

Rj = UTWj-1
† 

fj = Tr[Rj Pj
()] 

{Pj , j}  

is the PDCS 

Fj  > Fth ? 

    Select Pj having maximum fj  and  

construct Wj  = Vj…V1  

YES 
NO 

j  = Wj-1 0Wj-1
† 

fj = Tr[j Pj
() T] 

Fj = Tr[UTWj
†] Fj = Tr[j½ T j½] 

optimize j by maximizing Fj 

NO 

W0 = 1 

Algorithm for a 
unitary decomposition 

Algorithm for 
state preparation 

Figure 4.1: The flowchart describing PDCS algorithm for unitary decomposition (left)
and state preparation (right, dashed).
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Here {P(β)
j } ≡ P j is a maximally commuting subset of n− qubit Pauli operators, {φ(β)

j } ≡ Φ j

is the set of corresponding rotation angles, and the index β runs over the elements of P j.

In general, for an n-qubit case, a maximal commuting subset P j can have at most N − 1

elements. The fidelity Fm of the decomposition, defined by

Fm = 〈UT |Wm〉 = |Tr[U†T Wm]/N |, (4.5)

should be larger than a desired threshold Fth.

The flowchart for the PDCS algorithm is shown in Fig. 4.1. I will now describe an

algorithm to build Wm in m steps. To begin with, we start with W0 = 1. The jth step of

the algorithm consists of the following processes:

1. Calculate the residual propagator R j = UT W†j−1.

2. Selection of the commuting subsetP j having the maximum overlap f j =
∑
β Tr[R jP

(β)
j ]

with the residual unitary R j.

3. Setting up the decomposition W j and numerically optimizing the rotation angles

{Φ1, · · · ,Φ j} by maximizing the fidelity F j = 〈W j|UT 〉, where W j = V j · · ·V1.

These steps can be iterated upto m-steps until the fidelity Fm > Fth of a desired value is

reached.

In general, the solutions to the decomposition may not be unique. However, it is

desirable to attain a decomposition that is most suitable for experimental implementa-

tions. In this regard, we look for solutions with minimum rotation angles {Φ j}, which

can be obtained by using a suitable penalty function in step 3 of the above algorithm.
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4.3 Applications

4.3.1 PDCS of quantum gates and circuits

In this section I will illustrate PDCS of several standard quantum gates. As described in

Eq. 4.4, the jth decomposition is expressed in terms of the commuting Pauli operators

P j and the corresponding rotation angles Φ j. Further, a specific operator P(β)
j ∈ P j can

be expressed as a tensor product of single-qubit Pauli operators X, Y, Z, and the identity

matrix 1.

Exact PDCS of several standard quantum gates are shown in Fig. 4.2. For a single-

qubit Hadamard operation (Fig. 4.2(a)), we obtain a decomposition with two noncom-

muting rotations, as is well known [6]. Here P1 = X, P2 = Y and the corresponding

rotation angles Φ1 = −π/2, Φ2 = −π/4, are indicated by the subscripts.

In the two-qubit case, the maximal commuting subset can have only three Pauli op-

erators and there are only 15 such subsets. Figs. 4.2(b-e) describe decompositions of

several two-qubit gates namely c-NOT, c-Z, c-S, and SWAP gate. Here Z =

 1 0

0 −1


and S =

 1 0

0 i

. It is interesting to note that each of these gates needs a single subset

of commuting Pauli operators. Such a rotation can be obtained by a single matrix ex-

ponential and can be thought of as a single generalized rotation in the Pauli space. We

refer to such a generalized rotation as a rotor, and since it consists of three operators, we

represent it by a triangle. In practice, the individual components of a single rotor can be

implemented either simultaneously, or in any order. We find that even a 2-qubit Grover

iterate, i.e., G = 2|ψ〉〈ψ| − 1, where |ψ〉 = (|00〉 + |01〉 + |10〉 + |11〉)/2, can be realized as a

single rotor (Fig. 4.2(f)).

For three-qubits, the maximal commuting subset can have only seven commuting

Pauli operators and there are 135 distinct subsets. Figs. 4.2(g-j) describe Toffoli, c2-Z,
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Figure 4.2: PDCS of some standard quantum gates: (a) single-qubit Hadamard, (b)
c-NOT, (c) c-Z, (d) c-S, (e) SWAP, (f) 2-qubit Grover iterate, (g) Toffoli, (h) c2-Z, (i)
Fredkin, and (j) 3-qubit Grover iterate. The individual rotors are represented by dots,
triangles, and heptagons depending on number of Pauli operators (indicated at the
vertices) in each rotor. The corresponding rotation angles are indicated by subscripts.

Fredkin, and 3-qubit Grover iteration respectively. Again we find that a single heptagon

rotor suffices for realizing each of the standard gates. Similarly, in the case of four-

qubits, a maximal commuting subset can have 15 operators and one can verify that a

basic gate such as c3-NOT, c3-Z, etc. can be realized by a single rotor.

It is always possible to decompose a multi-qubit quantum circuit in terms of single-

and two-qubit gates [94]. As examples, we consider PDCS of a few quantum circuits
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Figure 4.3: PDCS of (a) 2-qubit Quantum Fourier Transform (QFT), (b) 4-qubit ap-
proximate QFT (AQFT), and (c) 7-qubit Shor’s circuit for factorizing 15. In (b), each S
gate acts on a pair of qubits as indicated by the subscripts.

based on Quantum Fourier Transform (QFT) (Fig. 4.3). QFT is an important algorithm in

quantum computation since it takes only n2 steps to Fourier transform 2n numbers unlike

a classical computer that takes n2n steps for the same. The two-qubit QFT circuit can

be exactly decomposed into three rotors as shown in Fig. 4.3(a). As another example,

PDCS of the 4-qubit approximate QFT (AQFT) circuit [101] results in only single-qubit

and two-qubit rotors as shown in Fig. 4.3(b). An example based on QFT is shor’s

circiut that is used to find the prime factors of a given number [11]. PDCS of the

7-qubit Shor’s circuit for factoring the number 15 involves at most three-qubit rotors

as shown in Fig. 4.3(c) [68]. Although these circuits are mentioned in the respective

references, we implemented PDCS algorithm on the corresponding individual operations

to aid experimental implementations. In this sense, PDCS of multiqubit quantum gates

and quantum circuits is scalable with increasing system size.

4.3.2 Quantum state preparation

Here the goal is to prepare a target state ρT starting from a given initial state ρ0. In

general the unitary operator, connecting the initial and target states, itself is not unique.

The procedure is similar to that described in the previous section, and is summarized in
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Figure 4.4: PDCS of some state to state transfers: (a) polarization transfer (INEPT)
and (b-d) preparation of Bell, GHZ, and W states respectively starting from pure states.

the flowchart shown in Fig. 4.1. Here the selection of commuting Pauli operators P j is

based on the overlap f j =
∑
β Tr[ρ jP

(β)
j ρT ], where ρ j = W jρ0W†j is the intermediate state

after jth decomposition. As explained before, we select the commuting subset P j having

the maximum overlap f j and optimize the phases Φ j by maximizing the Uhlmann fidelity

F j = 〈ρ j|ρT 〉 = Tr[ρ1/2
j ρTρ

1/2
j ]. (4.6)

Again, m iterations are carried out until Fm ≥ Fth is realized.

Fig. 4.4 displays PDCS of some standard state to state transfers. The polarization

transfer in a pair of qubits (popularly known as INEPT [37]) requires a single rotor

having a pair of bilinear operators (Fig. 4.4(a)). The preparation of a Bell and GHZ

states respectively from |00〉 and |000〉 states also require a single rotor (Fig. 4.4(b-c)).

However, the preparation of a three-qubit W-state is somewhat more elaborated, and

requires two rotors (Fig. 4.4(d)). Although these decompositions are not unique, it is

possible to optimize them based on the experimental conditions. Here one can notice
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that although a maximal commuting subset can have up to N − 1 elements, it is often

possible to decompose a multi-qubit operation over a smaller commuting subset.

4.3.3 Quantum simulation

Utilizing controllable quantum systems to mimic the dynamics of other quantum sys-

tems is the essence of quantum simulation [1]. Various quantum devices have already

demonstrated quantum simulations of a number of quantum mechanical phenomena

(for example, [21, 23, 29, 31]). An important application of the decomposition tech-

nique described above is in the experimental realization of quantum simulations. To

illustrate this fact, we experimentally carryout quantum simulation of a three-body in-

teraction Hamiltonian using a three-qubit system. While such a Hamiltonian is physically

unnatural, simulating such interactions has interesting applications such as in quantum

state transfer [102]. Specifically, we simulate the dynamics under the Hamiltonian

HS = X11 + 1X1 + 11X + J123ZZZ, (4.7)

where J123 is the three-body interaction strength. A slightly different three-body Hamil-

tonian simulated earlier by Cory and coworkers [14] consisted of only the last term. The

presence of other terms which are noncommuting with the 3-body term necessitates an

efficient decomposition of the overall unitary.

We use three spin-1/2 nuclei of dibromofluoromethane (Fig. 4.5) dissolved in acetone-

D6 as our three-qubit system. All the experiments are carried out on a 500 MHz Bruker

NMR spectrometer at an ambient temperature of 300 K. In the triply rotating frame at

resonant offsets, the internal Hamiltonian of the system is given by

Hint = [JHFZZ1 + JHCZ1Z + JFC1ZZ] π/2, (4.8)

and the values of the indirect coupling constants {JHF, JHC, JFC} are as in Fig. 4.5. This
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JHF = 49.7 
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H 13.7 0.4  

F 5.2 0.2 

C 1.9 0.5 

Figure 4.5: Dibromofluoromethane consisting of three nuclear spin qubits 1H, 13C and
19F. The tables display the values of indirect spin-spin coupling constants (J) in Hz, and
the relaxation time constants (T1, and T ∗2) in seconds.

internal Hamiltonian along with the external control Hamiltonians provided by the RF

pulses are used in the following to mimic the three-body Hamiltonian in Eqn. 4.7.

The traceless part of the thermal equilibrium state of the 3-qubit NMR spin system is

given by ρeq = (Z11 + 1Z1 + 11Z)/2 [37]. The initial state ρ(0) = (X11 + 1X1 + 11X)/2

is prepared by applying a 90◦ RF-pulse about Y. The goal is to subject the three-spin

system to an effective three-body Hamiltonian HS and monitor the evolution of its state

ρ(t) = US (t)ρ(0)US (t)†, where US (t) = e−iHS t. We choose to experimentally observe the

transverse magnetization

Mx(kτ) = Tr[ρ(kτ)(X11 + 1X1 + 11X)/2] (4.9)

for J123 = 5 Hz at discrete time intervals kτ, where k = {0, · · · , 20} and τ = 0.8 s.

The PDCS of US shown in Fig. 4.6 consists of two rotors: a hexagon followed by

a triangle. We utilized bang-bang (BB) control technique for generating each of the

two rotors [53]. The duration of each BB-sequence was about 7 ms and fidelities were

above 0.98 averaged over a 10% inhomogeneous distribution of RF amplitudes. The

results of the experiments (hollow circles) and their comparison with numerical sim-

ulation of the PDCS (triangles) and exact numerical values (stars) are shown in Fig.

4.7. The first experimental data point was obtained after a simple 90 degree RF pulse

and was normalized to 1. The kth point is obtained by k iterations of the BB-sequence
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Figure 4.6: PDCS of Us(τ) = exp(−iHsτ) for J123 = 5 Hz and τ = 0.8 s.

for US (τ). While the experimental curve displays the same period and phase as that of

the simulated curve, the steady decay in amplitude is mainly due to decoherence and

other experimental imperfections such as RF inhomogeneity and nonlinearities of the RF

channel.

To compare the efficiency of PDCS with that of Trotter decomposition (in Eq. 4.2

and 4.3), we calculate the fidelities (F) of the decomposed propagator with the exact

propagator US (τ) as a function of number m of rotors (see Fig. 4.8). It can be observed

that, with increasing number of rotors, PDCS fidelity converges faster than the Trotter.
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Figure 4.7: Magnetization vs time. The first point is the initial state magnetization.
The second and the subsequent points correspond to the application of the operator Us

for k times with k = 1 · · · 20 respectively. The decay in the experimental results are due
to the decoherence and other experimental imperfections.
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Figure 4.8: Fidelity (Fm) vs number (m) of rotors for three different types of decom-
positions of Us. As seen, the decompositions corresponding to PDCS converge faster
towards fidelity 1. Here the fidelity is with respect to the rotors and Us.

4.4 Conclusions and future outlook

In this work we proposed a generalized numerical algorithm based on Pauli decompo-

sition over commuting subsets (PDCS). The aim of the algorithm is to decompose an

arbitrary target unitary into simpler unitaries, referred to as rotors. Each rotor consists

of only commuting subset of Pauli operators. These rotors are optimized to be robust

against experimental errors by minimizing the rotation angles and by considering other

control errors. Thus apart from providing an intuitive and topological representation of

an arbitrary quantum circuit, the method is also useful for its efficient physical realiza-

tion.

We demonstrated the robustness and efficiency of the decomposition using numerous

examples of quantum gates and circuits. It is interesting to note that several standard

quantum gates correspond to single rotors. We also discussed the applications of PDCS

in quantum state-to-state transfers and illustrated it using several examples.

Another important application of PDCS is in quantum simulations. As an example,

we described the quantum simulation of a three-body interaction. We used PDCS al-

gorithm to decompose the unitary corresponding to such a Hamiltonian and found it
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to be more efficient than Trotter decomposition in terms of the number of rotors. Fur-

ther, we have demonstrated the quantum simulation by experimentally monitoring the

evolution of magnetization using a three qubit NMR system. The experimental results

matched with the numerical simulations upto a decay factor arising predominantly due

to decoherence.

The decompositions can be made robust against noise. This can be done by incorpo-

rating the noise in the algorithm wherein the first decomposition optimizes against this

noise and the next iteration considers this operator to optimize the next operator, again

in the presence of noise. Further, this algorithm can also be generalized to decompose

nonunitary operators. We also believe such unitary decomposition strategies combined

with sophisticated optimal control techniques will greatly assist in efficient quantum

control.
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Chapter 5

Engineered decoherence:

Characterization and suppression

5.1 Introduction

Quantum devices which are perfectly isolated from their environment follow unitary dy-

namics wherein the purity of the density operators are preserved throughout the state

evolution. Although this ideal case is strongly desired in the field of quantum compu-

tation and communication, in practice, no quantum device is perfectly isolated from

its environment. This leads to inevitable interactions between a quantum system and

the environment which ultimately entangles the two. For sufficiently large times and for

large environmental size, the evolution of quantum system becomes non-unitary leading

to an irreversible information transfer from the quantum system to the environment.

The most common information losses correspond to the coherence decay, also known

as phase decoherence, and energy dissipation of the quantum systems. The decay con-

stants T1 and T2 are associated with energy dissipation and decoherence processes re-

spectively, that are borrowed from NMR terminology [37]. In general, T1 > T2 which

implies that the quantum systems lose phase information faster than their energy. Hence
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in any quantum information protocol it is important to implement the gates within the

time scale of T2. The very fact that the phenomenon of decoherence has been a severe

threat to the physical realization of a quantum computer has lead towards several theo-

retical and experimental studies on decoherence [33, 103, 104, 105, 106, 107, 108].

In this chapter, I will explain our work that deals with the understanding of phase

decoherence and is organized into three parts [36]:

1. We experimentally simulated artificial phase decoherence. Although, in practice,

one does not have any control over the environment, emulation of decoherence

gives a direct control over it. By systematically controlling the environment one

can study its effects on the system coherences.

2. We suppressed the induced decoherence using standard dynamical decoupling

(DD) sequences. The simultaneous competition between the DD sequences and

the decoherence process might give insight into the decoherence process and ways

to improve DD sequences.

3. We characterized the amount of the induced decoherence in the system qubits

using noise spectroscopy (NS) and quantum process tomography (QPT). NS gives

the frequency distribution of the noise and QPT gives the entire information of the

noise process for a specific noise frequency.

We implemented the above steps using a 2-qubit NMR simulator. The model con-

sidered one qubit as a system qubit and the other as an environment qubit. Additional

decoherence, apart from the inherent decoherence, was induced using random classi-

cal fields on the environment qubit [33]. We studied the effect of controlled noise on

the system qubit. In the following sections, I will introduce to decoherence model, DD

sequences, NS, QPT, experiments and results.
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5.2 Decoherence models

In this section, I will explain the phase decoherence model with ZZ type system-environment

interaction.

5.2.1 Zurek’s decoherence model

This model was given by Zurek [109] and is explained below.

Consider an n qubit composite system consisting of two subsystems. One qubit is

considered as the system of interest and the rest of the qubits are considered as the envi-

ronment. The total Hamiltonian and the corresponding unitary operator are respectively

given by

HS E =

n∑
j=2

J1 jZ1Z j and US E(t) = e−iHS E t. (5.1)

Here J1 j is the coupling between the system (represented by subscript 1) and the envi-

ronment (represented by subscript j). Zurek showed that such a Hamiltonian with ZZ

type system-environment interaction leads to phase decoherence.

Let the combined system start with a separable state:

|ψ(0)〉S E = |ψ(0)〉S ⊗ |ψ(0)〉E . (5.2)

Here the pure state |ψ(0)〉S = a|0〉1 + b|1〉1 with |a|2 + |b|2 = 1 is the system state and

|ψ(0)〉E = ⊗n
j=2(α j|0〉 j + β j|1〉 j) with |α j|

2 + |β j|
2 = 1 is the environment state.

The evolution of |ψ(0)〉S E under the US E entangles the system and the environment

as below:
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|ψ(t)〉S E = US E(t)|ψ(0)〉S E

= a|0〉1 ⊗n
j=2 (α je−iJ1 jt|0〉 j + β jeiJ1 jt|1〉 j)

+ b|1〉1 ⊗n
j=2 (α jeiJ1 jt|0〉 j + β je−iJ1 jt|1〉 j). (5.3)

The corresponding density operator is given by ρS E(t) = |ψ(t)〉S E〈ψ(t)|S E and the system

density operator ρS (t) is obtained by tracing out the environment subsystem from ρS E(t),

i.e., ρS (t) = TrE[ρS E(t)]. The quantity that we are interested in is the coherence part of

the density operator. As was already mentioned in Eq. 2.7, the off-diagonal term ρ01
S

encodes the coherence information and this matrix element in Z basis is given by

ρ01
S (t) =1 〈0|ρS E(t)|1〉1

= ab · Πn
j=2(|α j|

2e−2iJ1 jt + |β j|
2e2iJ1 jt)

= ab · z(t), (5.4)

where {|0〉1, |1〉1} are the basis states of the system qubit and z(t) is called as the deco-

herence factor. As seen from the above equation, |z(t)| → 0 implies the decay in the

coherences of the initial system state |ψ(0)〉S after time t. Further, it can also be noted

that irreversible decoherence can occur when n → ∞, i.e., when the environmental size

is large.

5.2.2 Simulation of decoherence

As was already discussed, Zurek’s decoherence model requires large environmental size

for irreversible phase damping. However, one question in experimental realization is

whether one can still simulate the same process using only finite sized environment. In

this section, I will give a brief review of the methods given by Teklemariam et al. [33]
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to emulate artificial decoherence even when the environment size is finite. Such finite

sized decoherence simulation allows for the direct control over the environment that can

be easily implemented in laboratory with a goal to study the decoherence process.

The model given by Teklemariam et al. differs from the Zurek’s model as follows:

Suppose, the dimension of the Hilbert space of the quantum system is 2n. The model

considers its interaction with environment described by a maximum Hilbert space di-

mension of 22n. This greatly restricts the size of the environment for very small n but

favors experimental studies on decoherence. Further, in order to mimic infinite sized

environment and to induce irreversible phase damping on the system qubits, this model

uses additional stochastic classical fields on the environment.

For the sake of simplicity, consider a two qubit system-environment model initially

in the product state,

ρS E(0) = ρS (0) ⊗ ρE(0), (5.5)

Initially the composite system is assumed to be a closed system and the total Hamiltonian

is given by

H = π(νS ZS + νEZE +
J
2

ZS ZE), (5.6)

where νS and νE are the resonant frequencies of the system (S) and the environment (E)

qubits respectively, and J is the strength of the coupling between the two. We consider

the Hamiltonian in the rotating frames where νS = νE = 0. The state ρS E(0) evolves

under the propagator U(T ) for a total time T which is given by

U(T ) = e−iHT (5.7)

that entangles S and E as was discussed in section 5.2.1.

Suppose, E is perturbed by random classical fields without externally disturbing S .

These perturbations are called as kicks and each kick operator Km corresponds to the
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rotation of E with an arbitrary rotation angle εm about y-axis. For the mth kick, we have

Km = IS ⊗ e−iεmYE where IS is the Identity on the system and εm is chosen randomly

between [−α, α] with α being a small angle.

The kicks are assumed to be instantaneous with the kick rate Γ = k/T where k is

the total number of kicks. Under this action, Eq. 5.7 is modified to incorporate its

dependency on the random angles εm and is given by

Uk(T ) = KkU(δ)Kk−1U(δ) · · ·K1U(δ); δ =
T
k
. (5.8)

A state ρS E(0) evolves under this operator as ρS E(T ) = Uk(T )ρS E(0)Uk(T )† and the sys-

tem and environment states are given by ρS (T ) = TrE[ρS E(T )] and ρE(T ) = TrS [ρS E(T )]

respectively.

An ensemble realization over many random εm ∈ [−α, α] leads to an average behavior

represented by

ρ̄s(T ) =

∫ α

−α

dεk

2α
· · ·

∫ α

−α

dε1

2α
TrE[UkρS (0)U†k ]. (5.9)

Teklemariam et al. showed that [33],

ρ̄S (T ) =
∑

r,s=0,1

Drs(k,T )ρrs
S (0)|r〉〈s|, (5.10)

with |r〉, |s〉 ∈ {|0〉, |1〉} being the eigenstates of ZS and Drs(k,T ) is the decoherence factor

which is given by

Drs(k,T ) = TrE[Ok(ρE(0))]. (5.11)

Here O is the superoperator that is neither trace preserving nor Hermitian and its action

is defined as O(ρE) = cVKρEVK +dYVKρEVKY with VK = e−iπJδZE/2, c+d = 1, c−d = γ, and

γ = sin(2α)/(2α). This indicates that for a specific value of ε, J and γ, one can simulate a

unique type of phase decoherence.

Teklemariam et al. showed that for smaller ε’s and for lower Γ, the decoherence rate
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1/T2 was proportional to Γ. However, for certain Γ value, 1/T2 saturated and for a much

higher Γ value, 1/T2 decreased exponentially with Γ. Thus the former case correspond to

the decoherence inducing effect while the latter case corresponded to noise decoupling

effect [110]. This latter case was not explored in our work due to the experimental

limitations considering the fact that the pulses with very high kick rates could damage

the RF-coils in NMR setup.

5.3 Suppressing Decoherence

Preserving the qubit information against noise is one of the most crucial steps in quan-

tum information processing. Different techniques have been developed to suppress de-

coherence like dynamical decoupling (DD) [111, 112], quantum error correction [113],

use of robust approaches such as adiabatic quantum computation [114], or encoding

quantum information in decoherence-free subspaces [115]. In this chapter, I will ex-

plain two standard DD techniques that are utilized in our work in order to suppress the

inherent as well as induced artificial decoherence. One of the major advantages of this

technique is that, unlike the other techniques, DD does not require extra qubits and it can

be combined with other quantum gates leading to fault tolerant quantum computation

[116, 117].

I will first explain a way to suppress the static noise, a technique known as Hahn

echo sequence. However, in general, the noise is time-dependent. I will explain two

standard DD techniques for suppressing time-dependent noise, namely CPMG and Uhrig

DD sequences. All these techniques are explained in the case of NMR setp-up.

5.3.1 Hahn Echo

A technique to suppress time-independent noise in a single qubit was given by Hahn

[118]. Suppose the static magnetic field B0 has a spatial inhomogeneity (NMR set-up).
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Figure 5.1: Evolution of the net magnetization (indicated by arrows) under the Hahn
echo sequence. The dotted arrows represents slow precessing spins and the solid arrows
represents fast preseccing spins. In this case, the precession of the magnetization about
the z-axis is assumed to be clockwise.

This small change in B0 changes the larmor frequencies of the nuclei and hence different

nuclei experience different larmor frequencies. However the desired scenario is the case

wherein all the nuclei precess with the same larmor frequency. In order to achieve this,

Hahn gave a sequence as shown in Fig. 5.1.

The effect of the Hahn echo pulse sequence is explained as follows: The spins evolve

freely for a time τ during which different nuclei will pick up different larmor frequen-

cies in the presence of B0 inhomogeneity. The nuclei fan-out with a range of larmor

frequencies. The slow moving components are represented by dotted arrows and the

fast moving components are represented by solid arrows. A π pulse about the x-axis

rotates the spins and during the free evolution for time τ, the faster moving components

catch-up with the slower moving components. Finally, at time 2τ, all the spins are along

the x-axis.

5.3.2 CPMG DD sequence

The term CPMG refers to Car-Purcell-Meiboom-Gill, named after the people who came

up with a decoherence suppression technique when the noise is time-dependent [111].

This method is similar to Hahn echo except that CPMG DD consists of a train of equidis-

tant π pulses that are applied on the system qubit as shown in Fig. 5.2. The π pulses are

applied at regular intervals τ.

A CPMG sequence with a τ value much shorter than the noise correlation time can
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Figure 5.2: CPMG DD pulse sequence for a cycle time of tc and for N = 7 where N is the
number of π pulses in one cycle. The solid bars indicate the π pulses that are applied
on the system qubit. τ indicates the duration between the consecutive π pulses.

suppress the corresponding noise. In general, the smaller the value τ, the larger the

bandwidth of noise that is suppressed, and thus increases the efficiency of DD.

It is important to note that the phases of π pulses are chosen such that the initial state

is stationary under the pulses, so that the DD sequence is robust against pulse errors. In

other words, if the magnetization just before the CPMG sequence is about x-axis then

the π pulses in Fig. 5.2 are applied about the x-axis and vice versa.

5.3.3 Uhrig DD sequence

Uhrigh DD (UDD) is another technique to suppress low-frequency noise [112]. Unlike

CPMG DD, here the π pulses are not equidistant but the π pulse spacing is given by

t j = tc sin2
[

π j
2(N + 1)

]
, (5.12)

where N is the total number of π pulses, and tc is the cycle time. Fig. 5.3 shows the pulse

sequence for N = 7.

(a)

(b)

(c)

(d)

(e)

t1 t2 t3 t4 t5 t6 t7 tc0

t1 t2 t3 t4 t5 t6 t7 tc0

tc

tc
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0
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0

time 

/2 3 /2 5 /2 7 /2 9 /2 11 /2 13 /2

/2 3 /2 5 /2 7 /2 9 /2 11 /2 13 /2

Figure 5.3: UDD pulse sequence for a cycle time of tc and for N = 7 where N is the
number of π pulses in one cycle. The solid bars indicate the π pulses that are applied
on the system qubit.
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5.4 Characterizing decoherence

In this section, I will show how decoherence can be characterized using two techniques,

i.e. by NS and QPT. NS gives the noise information in the qubit for different noise fre-

quencies. Recently, NS has emerged to be of particular interest in quantum information

processing due to its use in optimizing the DD sequences [119, 120, 121]. QPT gives

the entire process. In our work, the process is decoherence process at particular noise

frequency. This technique also quantifies the type of induced noise, e.g. bit flip or phase

flip.

5.4.1 Noise spectroscopy

NS gives the frequency distribution of the noise which essentially contains the informa-

tion about qubit noise content. Yuge et al. [35] and Alvarez et al. [34] independently

proposed the method to experimentally measure the noise spectrum. Noise spectrum is

defined by the quantity S (ω) which is a function of noise frequency ω.

We utilize the method given by Yuge et al.. Fig. 5.4 shows the pulse sequence to

measure S (ω). This sequence is basically CPMG sequence and is used to measure the

decay constant T2. By varying τ, one can have a distribution of T2 values. Further, it was

shown that [35]

S (ω) ≈
π2

4T2(ω)
, (5.13)

    1H
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Figure 5.4: Pulse sequence to measure S (ω).
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where ω = π/τ. Thus by scanning a range of ω and by measuring T2(ω), one can obtain

S (ω).

5.4.2 Quantum process tomography

QPT is a technique to reconstruct the entire quantum process [6].

Consider a quantum operation E which transforms the initial state ρ to a final state

ρ′ as follows:

ρ′ = E(ρ). (5.14)

E can be any process which can either be unitary or non-unitary. The goal of quantum

process tomography is to determine E [6, 122].

Suppose,

E(ρ) =
∑

j

E jρE†j ; where E j =
∑

m

e jmẼm. (5.15)

Here Ẽm are the fixed set of operators and e jm are the complex numbers. Hence

E(ρ) =
∑
mn

ẼmρẼ†nχmn; χmn =
∑

j

e jme∗jn. (5.16)

Thus one can see that for a fixed set of operators Ẽ j, one needs to determine the coeffi-

cients of χ. This is known as χ matrix representation.

After some algebra, one can deduce that

∑
mn

βmn
pqχmn = λpq (5.17)

where,

• λpq = Tr[ρ
′

pρq].

• βmn
pq = Tr[ẼmρpẼnρq].
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In order to calculate λpq, one needs to know the final state ρ′. This characterization

of ρ′ is done by using quantum state tomography (QST) [6, 123, 124]. For the sake of

simplicity, I will briefly explain this procedure for a single qubit case.

As already mentioned in equation 2.5, a single qubit density operator has the form

ρ =
1
2

(I +
∑

i

riσi); where ri = 〈σi〉 = Tr[ρσi].

Here, σi ∈ {X,Y,Z}. For the spin operators I/2, X/2, Y/2 and Z/2, it follows that

ρ =
Tr[ρ]I + Tr[Xρ]X + Tr[Yρ]Y + Tr[Zρ]Z

2
. (5.18)

Thus characterizing ρ involves the measurements of the average value of the operator

corresponding to X, Y and Z which are given by Tr[Xρ], Tr[Yρ] and Tr[Zρ] respectively.

5.5 Experiments and results

The experiments were carried out on 13C1HCl3 molecule dissolved in CDCl3 at an am-

bient temperature of 300 K. The nuclei 13C and 1H form the two qubit system. The

molecule and its properties are shown in Fig. 5.5.

We chose 1H as our system qubit and 13C as our environment qubit. Here, I will

explain the three parts of our experimental work, i.e., introducing artificial phase de-

coherence in 1H by randomly perturbing 13C, Suppressing the decoherence in 1H and

finally characterizing the decoherence process that is induced in 1H.

The NMR Hamiltonian is similar to Eq. 5.19 and is given by

H = π(νHZH + νCZC +
J
2

ZHZC), (5.19)

where νH and νC are the chemical shifts of the system (1H) and the environment (13C)

84



5.5. Experiments and results

1H 
  (Hz)

13C 
(Hz)

   T
 

    (s)

T
 

 (s)

1H 104.7
(ν

s
) 

209.4 
(J)

   4.1 2.9

13C 0
(ν

e
)

   5.5 0.8

1

1

13

2  

Figure 5.5: 13C1HCl3 as NMR quantum simulator. The resonance offsets of 1H and
13C are 104.7 Hz and 0 Hz respectively. The J-coupling between the two is 209.4 Hz.
The T1 for 1H and 13C is 4.1s and 5.5s respectively, and T2 for the same is 2.9s and 0.8s
respectively.

qubits respectively, and J is the scalar coupling.

We prepared 1H qubit in the initial state ρH(0) = IH/2+ pHXH by applying a π/2 pulse

about the y-axis on the thermal equilibrium state IH/2 + pHZH. Here pH ∼ 10−5 is the

spin polarization. Also 13C qubit was prepared in the initial thermal equilibrium state

ρC(0) = IC/2 + pCZC where pC ∼ 10−5 .

5.5.1 Emulation of decoherence

Evolution under the action of kicks as explained in section 5.2.2 was realized by perturb-

ing the 13C qubit. These kicks were RF-pulses with random rotation angles and random

phases. The experimental realization of artificial decoherence as explained in [33] is

shown in Fig. 5.6.

We performed different sets of experiments with kicks corresponding to εm ∈ [0, 1◦],

[0, 2◦] and random phases between 0 and 2π, while allowing the 1H qubit to evolve freely.

A large number of random pulses (with random angles and phases) were numerically

generated and were then fed to the spectrometer to implement the consecutive pulses.

These random pulse applications over many realizations of εm and phases were used to

emulate decoherence.
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Figure 5.6: Method to introduce artificial decoherence. The filled bar on the system
qubit corresponds to the RF pulse with rotation angle 90◦ about y-axis. This pulse pre-
pares the system qubit in the required initial state. The vertical lines on the environment
qubit are the random kicks applied for time tc. The inset in the lower right corner repre-
sents the expected magnetization decay wherein the solid line corresponds to inherent
decay and the dotted line corresponds to the inherent decay as well as decay due to the
artificial decoherence.

Decoherence is observed by measuring the transverse magnetization (averaged over

many experiments with random kick angles and phases) Mx(mtc) = Tr[ρH(mtc)XH] after

m cycles each of duration tc with m = 0, 1, · · · ,N where N is total number of cycles. Fig.

5.7 shows the results of the experiment for εm ∈ [0◦, 1◦] and Γ = 25 kicks/ms (indicated

by stars). As can be seen from the figure, the decay of magnetization is higher than

that without kicks (indicated by filled circles) indicating that we introduced additional

decoherence apart from the natural relaxation processes.

5.5.2 Suppression of decoherence

After emulating decoherence in 1H, we suppressed it by using CPMG DD and UDD se-

quences. Fig. 5.8 shows the pulses sequences for implementing CPMG and Uhrig DD in

the presence of kicks.

While the π pulses were applied on 1H, the kicks were applied on 13C simultaneously.

The experimental results as shown in Fig. 5.7 (indicated by open circles and boxes)

show that the DD sequences were successful in suppressing decoherence even in the
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Figure 5.7: Decay of Mx(t) under various cases. The numbers in the legend represent
the T2 values for the corresponding cases. The kick parameters are εm = [0◦, 1◦], Γ = 25
kicks/ms, and tc = 22.4 ms and τ = 3.2 ms. (Figure from [36])

presence of kicks. It may be noted that detailed comparative studies of CPMG and UDD

under natural relaxation processes have been studied elsewhere [125, 126]

5.5.3 Characterization of decoherence

As the last step, we characterized decoherence using NS and QPT. The way to measure

S (ω) as given in section 5.4.1 but in the presence of kicks on 13C is shown in Fig. 5.9. T2

of 1H for each τ is obtained by fitting the experimental magnetization values to the decay

model given by Mx(t) = Mx(0)e−t/T2 , where Mx(0) is the initial transverse magnetization.

By vayring τ, we measured T2(ω) where ω = π/τ for various kick parameters.

Fig. 5.10 shows the noise spectral density distribution for various kick parameters.

For comparison, we have also measured S (ω) in the absence of kicks (indicated by filled

triangles). As expected, the S (ω) plot in the presence of kicks has higher values than that

due to the inherent decay indicating that the effect of kicks is to induce noise. Generally,

the noise spectra for the inherent noise has a Gaussian profile [127] and the results agree

in the case of S (ω) of inherent decay. However, an interesting characteristic features
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Figure 5.8: The top and bottom figures correspond to the CPMG and Uhrig DD pulse
sequence in the presence of kicks for a cycle time of tc and for N = 7. The solid bars
indicate the π pulses that are applied on the system qubit and the vertical lines indicate
the kicks on the environment qubit.

in the noise spectral density at higher kick-rate (50 kicks/ms) was observed. Similar

features were earlier observed by Suter and co-workers due to a decoupling sequence

being applied on environment spins [34].

Fig. 5.11 shows the comparison between the theoretical S (ω) using the methods

given by Teklemariam et al. and Yuge at el. vs the experiemental S (ω) for kick-rate of

25 kicks/ms and kick-angles in the range 0 to 2 degrees. To obtain the experimental

S (ω) due to kicks alone, we subtracted the intrinsic spectral density of the system qubit
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Figure 5.9: Measuring NS in the presence of kicks. The pulses on 1H is basically CPMG
sequence to measure T2.
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Figure 5.10: Spectral density distribution for various kick parameters.

(with no kicks) from the total spectral density with kicks. A fair agreement between the

numerically simulated curve and the experimental data confirms the relevance of the

model in low Γ regime as given in [33].

We also characterized the induced phase decoherence by QPT and the general pro-
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Figure 5.11: The experimental S (ω) (dots) vs the theoretical S (ω) (solid curve) corre-
sponding to the kick parameters Γ = 25 kicks/ms and εm ∈ [0◦, 2◦].
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tocol was given in section 5.4.2. The single qubit QPT protocol consisted of the ini-

tial preparation of the four states as follows: ρ j = |ψ j〉〈ψ j|, with |ψ j〉 ∈ {|0〉, |1〉, (|0〉 +

|1〉)/
√

2, (|0〉−i|1〉)/
√

2}. The fixed set of operators Ẽp were chosen from the set {E, X,−iY,Z},

where E is the identity matrix and X, Y, Z are the Pauli matrices. The goal is to obtain

the χ matrix which corresponds to kick induced noise process.

Fig. 5.12 shows the experimental QPT of the phase decoherence process for various

kick parameters. The top figures correspond to the entire χ matrix expressed in the basis

of {E, X,−iY,Z}. Among these figures are QPT of NOOP which is an Identity operator, i.e.,

no kicks and no DD, only kicks, UDD with kicks and CPMG DD with kicks. As evident,

the Identity process has only EE component while the QPT in the presence of kicks has

additional components in the χ matrix. As was already explained in section 5.2.1, the

system-environment interaction of the type ZZ gives rise to phase decoherence which

corresponds to ZZ components in the figure, thus indicating that the decoherence that
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we induced and studied was indeed phase decoherence. The extra components like

EX, XE and XX arise due to the nonidealities in the π pulses in the DD sequences that

introduce NOT operations. All in all, we see that the DD sequences were successful in

suppressing the decoherence with CPMG out-performing UDD due to the flat spectral

density profile as shown in Fig. 5.10 [125].

5.6 Conclusions and future outlook

One of the main challenges in the physical realization of quantum computers is the phe-

nomenon of decoherence. Our work addressed this phenomenon and is a step towards

understanding phase decoherence. We simulated decoherence using the method given

by Teklemariam et al. [33] which involved the process of perturbation of the environ-

ment qubits by random classical fields. Using this approach we were able to vary the

noise parameters in a controlled way. We showed that the amount of decoherence in-

duced was related to the kick parameters - stronger kick angles realized over many such

realizations with higher kick rates applied for longer times proved to be effective to

emulate decoherence which is also intuitive. We showed that we introduced additional

decoherence apart from the inherent decoherence. After introducing decoherence, our

main contribution was in suppressing and characterizing decoherence. Suppression of

decoherence was achieved by standard DD sequences, i.e., CPMG and UDD. Character-

ization of decoherence was done using NS and QPT. While the NS gave the spectral

density distribution, QPT revealed the entire phase decoherence acted on the system

qubit. Besides, CPMG outperformed UDD as expected from the broad spectral density

profiles revealed by NS.

We believe that characterizing noise by the above methods not only provide an im-

portant platform for designing new robust optimized DD sequences, but also furnish

insights into the origin of quantum noise.
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