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Abstract

This thesis is divided into two parts. The first part concerns generating functions

forM -powers (M � 2) in finite symplectic and orthogonal group. We will be giving

generating functions for the separable, semisimple, cyclic, and regular conjugacy

classes (and hence elements) in the concerned group. This enables us to find the

corresponding probability with the help of generating functions.

The second part is concerned with skew braces corresponding to the groups of

the form Zn oZ2. Fixing this group to be the additive group (resp. multiplicative

group), we find the multiplicative group (resp. additive group), such that they

form a skew brace when n is odd. A complete classification is obtained when we

assume that the radical Ra(n) is a Burnside number.
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Introduction

Waring type problem in the context of groups:

The British mathematician E. Waring, in his paper “Meditationes Algebraicae”

[Wa91], stated that,

every natural number is a sum of at most 9 cubes;

every natural number is a sum of at most 19 fourth powers;

and so on· · ·

Legends are that he believed that, for every natural number n � 2, there exists a

number N(n) such that every positive integer m can be written as sum of N(n)

many n-powers, namely for any x 2 N, there exist ai 2 N [ {0} such that

x =
N(n)X

i=1

an
i
.

This can be generalized in the contexts of groups as follows.

Question 1. Given a group G and n 2 N does there exist N(n) 2 N such that

each element of G is a product of N(n) many n powers?

This can be further generalized, which is known as word problems in group

theory. By a word we mean an element w = w(x1, ..., xd) of the free group Fd on

the free generators x1, ..., xd. Given a word w and a group G, we consider the word

map

w = wG : Gd = G⇥G⇥ · · ·⇥G| {z }
d times

! G, (g1, ..., gd) 7! w(g1, ..., gd).

The image of this map, namely the set of all group elements of the form w(g1, ..., gd)

(where gi 2 G) is denoted by w(G). Two important questions studied extensively
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are: (i) How large w(G) is, and (ii) what is the w-width of G?. Here the w-width

of G is the minimal k such that w(G)k = {x1x2 · · · xk : xi 2 w(G)} = hw(G)i,

namely every element of the subgroup generated by w(G) is a product of length

k of elements of w(G) (there is also a slightly di↵erent definition of width which

allows also inverses of elements of w(G)). Another interesting question is to study

the fibers of the word map w and in particular its kernel, namely the inverse image

of 1. There are several motivations for the research directions described above. One

is related to the classical Waring problem in Number Theory. Hilbert’s solution

to this problem shows that every natural number is a sum of g(k) many k-th

powers, where g is a suitable function. In recent years there has been much interest

in word maps on groups, with various motivations and applications. Substantial

progress has been made and many fundamental questions were solved, using a wide

spectrum of tools, including representation theory, probability, and geometry. For

example, famous Ore’s conjecture (1951) asks whether every element of a non-

abelian finite simple group is a commutator. This was solved by A. Shalev et al

in [LiBrShTi10]. Indeed the authors prove that if G is any quasisimple classical

group over a finite field, then every element of G is a commutator, using character-

theoretic results due to Frobenius. Later they proved results about the product

of squares in finite non-abelian simple group in [LiBrShTi12]. They proved that

every element of a nonabelian finite simple group G is a product of two squares.

For more recent advancements and possible generalization, the survey article by

A. Shalev [Sh13] is a good read.

Another motivation is Serre’s question from the 1960s, whether every finite

index subgroup of a (topologically) finitely generated profinite group is open. Other

motivations for the study of word maps come from the study of residual properties

of free groups, as well as certain questions in subgroup growth and representation

varieties. A useful result proved by Borel in the 1980s states that word maps on

simple algebraic groups are dominant maps [Bo83]. This can be applied in the

study of word maps on finite simple groups of Lie type.
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Power map - A special kind of word map:

To study Question 1, we need to first understand the powers of elements in a group.

Let M � 2 be an integer. Then the map defined as

w : G �! G, g �! gM ,

will be referred to as power map. Thus to answer Question 1, we need to find the

image of this power map first. Hence we ask the following question.

Question 2. Let G be a group and M � 2 be an integer. For which elements

g 2 G, there exists y 2 G such that yM = x?

This question has been answered for symmetric groups in a series of papers in

[Be+Go89], [Bl74], [BoGl80], for GL(n, q) in [KuSi22] and for the wreath product

of groups in [KuMo22]. Asymptotics of the powers in finite reductive group is

studied in [KuKuSi21] and a formula is obtained. The generating functions for

the corresponding probability has been obtained. For example, for M = 2 and

G = Sn, if P2(n) denotes the probability of an element to be a square in Sn, we

have that [Bl74, Lemma 1]

1 +
1X

n=1

P2(n)z
n =

✓
1 + z

1� z

◆ 1
2

1Y

k=1

cosh

✓
u2k

2k

◆
.

For GL(n, q) ifM � 2 is an integer and (q,M) = 1, then the generating function for

probability of a regular semisimple element being M -th power is given by [KuSi22,

Theorem 5.2]

1Y

d=1

✓
1 +

zd

qd � 1

◆NM (q,d)

,

where NM(q, d) denotes the number of M -power polynomials in Fq[t]. The cases

for semisimple, cyclic and general case have also been studied in the same paper.

This motivated the following question.

Main question 1. Let G be one of the finite symplectic and orthogonal groups

over fields of cardinality q. Let M � 2 be an integer. Let g 2 G be either of

regular semisimple, semisimple, cyclic, or regular elements. Then, does there exist

an element h 2 G such that hM = g?
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We have mostly addressed the case (M, q) = 1. Some partial answers for the

case (M, q) 6= 1 have also been mentioned near the end of the first part. We

will use the method of generating functions. Jason Fulman’s [FuNePr05] work on

generating functions for the conjugacy classes is of much help. For example, in

case of the Symplectic group the probability of an element being regular is given

by

1Y

d=1

✓
1 +

zd

qd + 1

◆N
⇤
(q,2d) 1Y

d=1

✓
1 +

zd

qd � 1

◆M
⇤
(q,d)

,

where N⇤(q, 2d) denotes the number of self reciprocal polynomials of degree 2d and

M⇤(q, d) is the number of the polynomials of degree d which are not self reciprocal.

We provide the generating functions for the probability of an element being M -

power, in case the element is regular, regular semisimple, semisimple or cyclic.

Before stating our main results, we will need the following functions.

F+,+1(u, q) =1 +
X

m�1

✓
1

|O+(2m,Fq)|
+

1

|O�(2m,Fq)|

◆
um,

F�,+1(u, q) =1 +
X

m�1

✓
1

|O+(2m,Fq)|
�

1

|O�(2m,Fq)|

◆
um,

F+1(u, q) =1 +
X

m�1

um

|Sp(2m,Fq)|
,

FM

+,�1
(u, q) =1 +

X

m�1

✓
1

|O+(mr(M, q),Fq)|
+

1

|O�(mr(M, q),Fq)|

◆
um

r(M,q)
2 ,

FM

�,�1
(u, q) =1 +

X

m�1

✓
1

|O+(mr(M, q),Fq)|
�

1

|O�(mr(M, q),Fq)|

◆
um

r(M,q)
2 ,

F�1(u, q) =1 +
X

m�1

u
mr(M,q)

2

|Sp(mr(M, q),Fq)|
,

ZO(u) =
1Y

d=1

 
1 +

ud

(qd + 1)(1� (u
q
)d)

!N
⇤
M (q,2d) 

1 +
ud

(qd � 1)(1� (u
q
)d)

!R
⇤
M (q,2d)

,

Z 0
O
(u) =

1Y

d=1

 
1�

ud

(qd + 1)(1 + (u
q
)d)

!N
⇤
M (q,2d) 

1 +
ud

(qd � 1)(1� (u
q
)d)

!R
⇤
M (q,2d)

.

By e(q) we mean the number of square roots of 1 in Fq. The following are our

main results regarding Main Question 1.
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Theorem 1. Let sM
Sp
(n, q) be the probability of an element to be M-power separable

in Sp(2n,Fq) and SM

Sp
(q, u) = 1 +

1P
m=1

sM
Sp
(m, q)um. Then

SM

Sp
(q, u) =

1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

.

Theorem 2. Let sM
O

✏(n, q) be the probability of an element to be M-power separable

in O✏(2n,Fq) with ✏ 2 {±} and sM
O

0(n, q) denotes the probability of an element to

be M-power separable in O0(2n+ 1,Fq). Define

SM

O
+(q, u) = 1 +

1X

m�1

sM
O

+(m, q)um

SM

O
�(q, u) =

1X

m�1

sM
O

�(m, q)um

SM

O
0(q, u) = 1 +

1X

m�1

sM
O

0(m, q)um.

Then

SM

O
+(u2) + SM

O
�(u2) + e(q)uSM

O
0(u2) = (1 + u)o(M,q)SM

Sp
(u2),

SM

O
+(u2)� SM

O
�(u2) = XM

O
0(u2),

where

XM

O
0(q, u) =

1Y

d=1

✓
1�

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

,

e(q) as before and

o(M, q) =

8
<

:
1 if M or q even

2 otherwise
.

Theorem 3. Let ssM
Sp
(n, q) be the probability of an element to be M-power semisim-



xx

ple in Sp(2n,Fq) and SSM

Sp
(q, u) = 1 +

1P
m=1

ssM
Sp
(2m, q)um. Then

SSM

Sp
(q, u) =

 
1 +

X

m�1

um
r(M,q)

2

|Sp(mr(M, q),Fq)|

!e(q)�1 
1 +

X

m�1

um

|Sp(2m,Fq)|

!

⇥

1Y

d=1

 
1 +

X

m�1

udm

|U(m,Fqd)|

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

X

m�1

udm

|GL(m,Fqd)|

!R
⇤
M (q,2d)

⇥

1Y

d=1

Y

e|qd+1

 
1 +

1X

m=1

Ie,2d(2dm)
udm

|U(m,Fqd)|

!N
⇤,e
M (q,2d)

⇥

1Y

d=1

Y

e|qd�1

 
1 +

1X

m=1

Ie,d(dm)
udm

|GL(m,Fqd)|

!R
⇤,e
M (q,2d)

where

r(M, q) =

8
>>>>>><

>>>>>>:

2 if M = 2

s if there exists n such that 2M |(qn + 1), (M, q) = 1

2s 2M - (qn + 1) for any n, (M, q) = 1

r
⇣

2M

(2M,q)
, q
⌘

when (M, q) 6= 1

,

where s 2 N is the smallest number satisfying qs ⌘ 1(mod 2M).

Theorem 4. Let ssM
O

✏(n, q) denotes the probability of an element to be M-power

semisimple in O✏(2n,Fq) with ✏ 2 {±} and sM
O

0(n, q) denotes the probability of an

element to be M-power semisimple in O0(2n+ 1,Fq).

Define

SSM

O
+(q, u) = 1 +

1X

m�1

ssM
O

+(m, q)um

SSM

O
�(q, u) =

1X

m�1

ssM
O

�(m, q)um

SSM

O
0(q, u) = 1 +

1X

m�1

ssM
O

0(m, q)um.
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Then

SSM

O
+(u2) + SSM

O
�(u2) + e(q)uSSM

O
0(u2)

=
�
FM

+,+1
(u2) + uF+1(u

2)
� �

FM

+,�1
(u2) + uF�1(u

2)
�e(q)�1

Y ⇤,M
1

(u2),

SM

O
+(u2)� SM

O
�(u2) = F�,+1(u

2)[FM

�,�1
(u2)]e(q)�1Y ⇤,M

2
(u2).

Theorem 5. Let cM
Sp
(n, q) be the probability of an element to be M-power cyclic

in Sp(2n,Fq) and CM

Sp
(q, u) = 1 +

1P
m=1

cM
Sp
(2m, q)um. Then CM

Sp
(q, u) is given by

 
1

1� u

q

!h(q,M) 1Y

d=1

 
1 +

ud

(qd + 1)(1� ud

qd
)

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

ud

(qd � 1)(1� ud

qd
)

!R
⇤
M (q,2d)

,

if (q,M) = 1,

h(q,M) =

8
>>><

>>>:

0 if (M, q) 6= 1

2 if (M, q) = 1,M = odd, (q, 2) = 1

1 otherwise

and

1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

,

if (q,M) 6= 1.

Theorem 6. Let cM
O

✏(n, q) be the probability of an element to be M-power cyclic

in O✏(2n,Fq) with ✏ 2 {±} and cM
O

0(n, q) denotes the probability of an element to

be M-power cyclic in O0(2n+ 1,Fq). Define

CM

O
+(q, u) = 1 +

1X

m�1

cM
O

+(m, q)um

CM

O
�(q, u) =

1X

m�1

cM
O

�(m, q)um

CM

O
0(q, u) = 1 +

1X

m�1

cM
O

0(m, q)um.
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Then

CO
+(u2) + CO

�(u2) + 2uCO
0(u2) =

 
1 + ⌘(q)u+

u2

1� u2

q

!h(q,M)

ZO(u
2),

where

h(q,M) =

8
>>><

>>>:

0 if (M, q) 6= 1

2 if (M, q) = 1,M = odd, (q, 2) = 1

1 otherwise

and ⌘(q) =

8
<

:
0 if (q, 2) = 1

1 otherwise
,

and

CM

O
+(u2)� CM

O
+(u2) = Z 0

O
(u2).

Theorem 7. For an odd integer q, let rM
O

✏(n, q) be the probability of an element to

be M-power regular in O✏(2n,Fq) with ✏ 2 {±} and rM
O

0(n, q) denotes the probability

of an element to be M-power regular in O0(2n+ 1,Fq). Define

RM

O
+(q, u) = 1 +

1X

m�1

rM
O

+(m, q)um

RM

O
�(q, u) =

1X

m�1

rM
O

�(m, q)um

RM

O
0(q, u) = 1 +

1X

m�1

rM
O

0(m, q)um.

Then

RM

O
+(u) +RM

O
�(u) + 2uRM

O
0(u) =

 
1 +

u

1� u2

q

+
qu2

q2 � 1
+

u4

q2(1� u2

q
)

!h
0
(M)

✓
1 +

u2

2(q � 1)
+

u2

2(q + 1)

◆h
00
(M)

ZO(u
2),

where h0(M) = 1 if M is even and 2 otherwise and h00(M) = 1 if M = 2 and 0

otherwise.
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The first part of the thesis is dedicated to answering the Main Question 1 and

is organized as follows. In Chapter 1 we recall some concepts from the theory

of finite groups of Lie type. The second chapter describes the conjugacy classes

of the concerned group in terms of generating functions. In the third chapter,

we mention the theory of the cycle index. The concept of M⇤-power polynomial

is defined in Chapter 4 and will be used throughout the chapter to answer the

concerned question. A substantial amount of this part has been put into the paper

[PaSi22].

Skew braces:

A set theoretical solution of the Yang-Baxter equation is a pair (X, r) where

r : X ⇥X �! X ⇥X

is a bijective map satisfying

(r ⇥ id)(id⇥ r)(r ⇥ id) = (id⇥ r)(r ⇥ id)(id⇥ r).

The map r is closely related to braid relations in braid group and sometimes

called as braiding. Such a solution will be called non-degenerate if the coordinate

maps are bijective. The solution will be called involutive if r2 is the identity

map. Braces were introduced by W. Rump to study set theoretic non-degenerate

solutions of the Yang Baxter equations, particularly the involutive solution in

[Ru07]. Rump showed that every involutive non-degenerate solution of the Yang-

Baxter equation can be in a good way embedded in a brace, and that on the other

hand, every brace gives a solution of the quantum Yang-Baxter equation. Later,

the classification of non-degenerate involutive set-theoretic solutions of the Yang-

Baxter equation was reduced to the classification of braces by Bachiller, Cedo,

Jespers, and Okninski in [CeJeOk14] and [BaFeJe16]. This was generalized in a

non-commutative setting by L. Guarnieri and L. Vendramin as Skew braces, which

initially appeared in D. Bachiller Ph.D. thesis, were recently studied extensively by

Guarnieri, Smoktunowicz, and Vendramin (also Byott) [GuVe17], [SmVe18]. This

was used further to develop an algorithm to construct and enumerate classical and

non-classical braces of comparatively smaller size, taking into account the work of

Bachiller, Catino and Rizzo.
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Given a skew brace (B, ·, �), we have two associated groups (B, �) and (B, ·)

satisfying some compatibility condition among them. One of such condition can

be given by

(B, ·) ,! Hol(B, �),

where Hol(G) = Goid Aut(G) for a group G. Note that both of (B, ·) and (B, �)

are of same order. Hence it is natural to ask the following question.

Question 3. Let G1 and G2 be two groups of same order k. Then does there exist

a skew brace (B, ·, �), such that (B, ·) ⇠= G1 and (B, �) ⇠= G2?

As k increases, the number of groups also increases significantly and hence it

becomes di�cult to catch hold of two groups, which can fit together to construct

a skew brace.

A much more powerful tool that can be deployed to study this question is

via the theory of Hopf-Galois modules. As we will see in chapter 6, these two

are closely related. We will see that given two groups G,N of the same order,

if there exists a Hopf-Galois structure with group G of type N , then there is a

skew brace (B, ·, �) such that (B, �) ⇠= G and (B, ·) ⇠= N . The method of crossed

homomorphism was introduced by Cindy Tsang in [Ts19]. This was further used

to study the non-existence of Hopf-Galois structure for a certain class of groups.

Using the correspondence between Hopf-Galois structure and skew-braces those

results can be translated in terms of skew braces. For example [Ts22, Theorem

1.6].

If (B, ·, �) is a skew brace such that (B, �) is a cyclic group and (B, ·) is a non-C-

group, then (B, ·) is isomorphic to a group of the form M o↵ P , for some C-group

M of odd order and (P,↵) satisfying one of the following conditions:

1. P = D4 or P = Q8 with ↵(P ) has order 1 or 2;

2. P = D2m with m � 3 or P = Q2m with m � 4 and ↵(r) = IdM ;

where ↵ is the determining homomorphism and r is the rotation in the presentation

of dihedral or quaternion group.

This has motivated the following question.

Main question 2. Let G = Zn o Z2. What are all the skew braces (B, ·, �) such

that either (B, ·) ⇠= G or (B, �) ⇠= G?
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We answer this question in the second part of the thesis, for the case, n being

odd and give some partial result towards the case n ⌘ 2 (mod 4). The main results

are as follows.

Theorem 8. Let N be a group of order 2n, where n is odd and the pair (ZnoZ2, N)

is realizable. Then N ⇠= (Zk o Zl)o Z2 where (k, l) = 1, lk = n.

Theorem 9. Let G be a group of order 2n such that the pair (G,Zn o Z2) is

realizable. Then G = (Zk o Zl)o Z2 for some (k, l) = 1, kl = n.

We will start by recalling the basic concepts of skew braces in Chapter 5.

Thereafter in Chapter 6, we will mention the relation between Hopf-Galois theory

and bijective crossed homomorphisms. The seventh Chapter is concerned with

proof of the main results. This part of the thesis appears in the article [ArPa22b].





Part I

Results in Power Maps
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Chapter 1

Finite groups of Lie type

The exposition here follows closely the texts [MaTe11] by G. Malle, D. Testerman,

[Wi17] by W. A. Gra↵, [Sp09] by T. A. Springer and [Hu75] by J. E. Humphreys.

1.1 Prerequisite from algebraic geometry

Let k be an alebgraically closed field. A subset X ✓ kn is called an algebraic set

if there exists an ideal I ✓ k[x1, x2, · · · , xn] such that

X = {(a1, a2, · · · , an) 2 kn : f(a1, a2, · · · , an) = 0 for all f 2 I}.

The set {(a1, a2, · · · , an) 2 kn : f(a1, a2, · · · , an) = 0 for all f 2 I} is denoted as

V (I) and is called the zero set of the ideal I. Again for a subset S ✓ kn, define

the vanishing ideal

I(S) = {f 2 k[x1, x2, · · · , xn] : f(s) = 0 for all s 2 S}.

Since I(S) is an ideal of k[x1, x2, · · · , xn], the quantity k[x1, x2, · · · , xn]/I(S) makes

sense. This will be called the a�ne algebra of S.

Example 1.1.1. 1. Let t = (t1, t2) 2 k2. Then {t} = V (hx1 � t1, x2 � t2i) is an

algebraic set. The vanishing ideal of {t} is given by hx1 � t1, x2 � t2i ✓ k[x1, x2].

The a�ne algebra is given by k[x1, x2]/hx1 � t1, x2 � t2i.

2. Let

S =

("
t1 t2
t3 t4

#
: ti 2 k, t1t4 � t2t3 6= 0

)
.

3



4

Then S is in bijection with the set U = {(u1, u2, u3, u4, u5) 2 k5 : (u1u4�u2u3)u5 =

1}. Hence S is an algebraic set with vanishing ideal h(x1x4 � x2x3)x5i. The a�ne

algebra of S is given by k[x1, x2, x3, x4, x5]/h(x1x4 � x2x3)x5i.

Considering {S�}, a collection of algebraic sets corresponding to ideals {I�}, it

is routine to check that

S�1 [ S�2 = V (I�1 \ I�2)

S�1 \ S�2 = V (hI�1 [ I�2i).

Hence the collection of algebraic sets corresponds to the collection of closed sets

in topology. This topology on kn will be called as Zariski topology . From now on

kn will be considered as a topological space under this topology and any subset of

kn will be considered with the induced topology. A topological space ; 6= T ✓ kn

will be called reducible if there are nonempty proper closed subsets T1, T2 of T

satisfying T = T1 [ T2. Otherwise, T will be called irreducible. Moreover call T

to be a Noetherian space if any sequence of closed sets T1, · · · , Tn of T satisfies

existence of m such that Tm+i = Tm for all i 2 N. It can be proved [Hu75,

1.3, Proposition B] that there are only finitely many maximal closed irreducible

subsets in a non-empty Noetherian topological space T . These are called irreducible

components of T . Using Hilbert basis theorem we observe that an algebraic set is

Noetherian in Zariski topology. Furthermore, it can be shown that an algebraic

set S is irreducible if and only if the vanishing ideal is a prime ideal [Hu75, 1.3,

proposition C].

Let S ✓ km, T ✓ kn be two algebraic sets. A set theoretic map  : S ! T

is called a regular map if there exist polynomials f1, f2, . . . , fn 2 k[x1, x2, . . . , xm]

such that

 (x) = (f1(x), f2(x), . . . , fn(x)),

for all x = (x1, x2, . . . , xm) 2 S.

1.2 Algebraic groups

Definition 1.2.1. Let G ✓ kn be an algebraic variety. Then G will be called an

algebraic group if the group operations viz. the multiplication map m : G⇥G ! G
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and the inversion map i : G ! G given by m(a, b) = ab and i(a) = a�1 are regular

maps.

Example 1.2.2. 1. Let G = {z 2 C : zm = 1}. Then the group operations

m(x, y) = xy i(x) = xm�1

are both regular maps. Hence this is an algebraic group as G is an a�ne

closed set corresponding to the polynomial tm � 1 2 C[t].

2. LetW be anm-dimensional vector space over k and GL(W ) denote the group

of invertible endomorphisms of W . Take the following set

Cn
2
+1 = {((aij)1i,jn, b) : aij, b 2 k}.

Then we have that

GL(W ) = {((aij), b) : det(aij)b� 1 = 0}

is an a�ne variety. Since the multiplication map and inversion map are

regular maps, we get that GL(W ) is an algebraic group. This will often be

denoted as GL(n, k).

3. Let k does not have characteristic 2. Let G be the subset of GL(2n, k)

consisting of A such that A satisfies the matrix equation

tAJA = J, where J =

0

BBBB@

0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...
...

1 0 · · · 0 0

1

CCCCA
.

Then this is an a�ne variety as it is a zero set of the polynomials determined

by the set of polynomials, which are determined by comparing the matrix

entries of two sides. Also as before, this is an algebraic group.

A topological space X is said to be irreducible if it can not be written as a union

of two proper closed non-empty subsets. For an a�ne variety, it is equivalent to

saying that any two non-empty open subsets intersect non-trivially or to the state-

ment that the ring of functions k[X] is an integral domain [MaTe11, Proposition

1.9]. Given two a�ne varieties X, Y we have that [MaTe11, Proposition 1.10]
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1. If X, Y are irreducible then X ⇥ Y is also irreducible,

2. X is irreducible implies that the toplogical closure X is also irreducible,

3. X has only finitely many irreducible subsets (known as irreducible compo-

nents).

A topological space is called connected if it can not be written as disjoint union

of two proper closed subsets. It can be proved that for an algebraic group the

concept of irreducible and connectedness are equivalent.

Example 1.2.3. 1. Since the ring of functions of the groups Ga and Gm are

k[t], k[t, t�1] respectively, and are integral domain, they are connected (or

irreducible).

2. GLn is a connected algebraic group, since k[GLn], being localization of the

polynomial ring k[tij] at the polynomial det(tij), is an integral domain.

3. The orthogonal group is not connected as det�1({1}) is a closed subgroup of

index 2.

1.3 Jordan Decomposition

Recall that given an element x 2 Mn(k), there exists unique s, n 2 Mn(k), such

that x = s + n and sn = ns [HoKu71, Chapter 7]. The element s is known as

semisimple part and the element n is called the nilpotent part of x. There is

a multiplicative analogue of this result. Given x 2 GLn(k), there exist unique

s, u 2 GLn(k) such that s is semisimple (i.e. diagonalizable) and u is unipotent

(i.e. u � 1 is nilpotent) satisfying x = su = us. The elements s, u are known

as semisimple, unipotent part of x respectively. Now let G be a linear algebraic

group. Then

1. If � is an embedding of G in GLn(k) and g 2 G, then there exist gs, gu 2

G satisfying g = gsgu = gugs such that �(gs) is semisimple and �(gu) is

unipotent [Hu75, Theorem 15.3(a)].

2. The decomposition of g into this product is independent of embedding [MaTe11,

Theorem 2.5].
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3. The semisimple and unipotent parts are preserved under morphism of alge-

braic groups [Hu75, Theorem 15.3(c)].

If G is an algebraic group and g 2 G, then g = gsgu = gugs will be referrred to as

Jordan decomposition of g. We call a group to be unipotent if all the elements are

unipotent.

Example 1.3.1. The group ka =

("
1 a

0 1

#
: a 2 k

)
is a unipotent group.

In general it can be shown that the group

U(n, k) =

8
>>>><

>>>>:

0

BBBB@

1 a12 · · · a1n
1 · · · a2n

. . .
...

1

1

CCCCA
aij 2 k, aij = 0 for all i > j

9
>>>>=

>>>>;

,

is a unipotent group. Also given G ✓ GLn a unipotent group, it can be conjugated

to a subgroup of Un [Hu75, Corollary 17.5]. Since Un is nilpotent, we deduce

that any unipotent linear algebraic group is nilpotent, hence solvable. Jordan

decomposition of elements lead to similar decomposition for commutative algebraic

group. If G is a commutative linear algebraic group, then Gs = {gs : g 2 G} and

Gu = {gu : g 2 G} are closed subgroups of G [MaTe11, Theorem 3.1]. In this case

the product map ⇡ : Gu ⇥Gs �! G is an isomorphism of algebraic groups. Using

this it can be proved that, if G is an algebraic group of dimension 1 then G ⇠= Ga

or G ⇠= Gm [Hu75, Theorem 20.5].

1.4 Semisimple algebraic groups and their clas-

sification

A linear algebraic group of the form Gm⇥Gm⇥ · · ·⇥Gm will be called a torus . A

character (resp. cocharacter) of G is a morphism of algebraic groups � : G �! Gm

(resp. � : Gm �! G). The set of all characters (resp. cocharacters) forms a group

and will be called as character (resp. cocharacter) group. Let T be a torus with

charcater group X, cocharacter group Y . Then the map h, i : X⇥Y �! Z (which

is defined as �(�(t)) = th�,�i) is a perfect pairing, i.e. any homomorphism X �! Z



8

(resp. Y �! Z) is of the form � 7! h�, �i (resp. � 7! h�, �i) for some � 2 Y (resp.

� 2 X).

A maximal closed connected solvable subgroup B of G will be called a Borel

subgroup of G. If G is a linear algebraic group we have that, all Borel subgroups are

conjugate in G [Hu75, Theorem 21.3]. Since tori are contained in Borel subgroups,

we get that all maximal tori are conjugate to each other [Hu75, Corollary 21.3]. By

radical of G, to be denoted R(G) we mean the maximal connected solvable normal

subgroup of G. The set R(G)u is the maximal closed connected normal unipotent

subgroup of G, which is known as unipotent radical of G, which is denoted as

Ru(G). In the case Ru(G) = 1, the linear algebraic group G is called reductive.

When R(G) = 1, the group G will be called semisimple, provided G is connected.

For a k-algebra A, a k-linear map � : A �! A is called a derivation of A if

�(ab) = a�(b) + �(a)b. The set of all derivations of A will be denoted as D(A). A

multiplication in this space can be defined as �1 · �2 = �1�2 � �2�1. The Lie algebra

of G is the subspace of left invariant derivations of k[G], i.e.

Lie(G) = {� 2 D(k[G]) : ��x = �x�},

where �x : k[G] �! k[G] is the map (�x(f))(g) = f(x�1g). The Lie algebra of

G is a vector space and can be classified via the associated combinatorial data,

known as root system. An abstract root system in a finite dimensional real vector

space V is a finite subset � ✓ V such that ↵, c↵ 2 � i↵ c = ±1, for each ↵ there

is s↵ 2 GL(V ) stabilizing �, and for ↵, � 2 � we have that s↵� � � 2 Z↵. A root

system is called indecomposable if it can not be written as a union of two non-

empty proper mutually orthogonal subsets. Via the classification of root systems,

it is known that if � is an indecomposable root system, then up to isomorphism

it is one of the following types [Hu72, Thorem 11.4]:

An(n � 1), Bn(n � 2), Cn(n � 3), Dn(n � 4), E6, E7, E8, F4, G2.

A quadruple (X,�, Y,�_) is called a root datum if

1. X ⇠= Zn ⇠= Y with a perfect pairing h, i : X ⇥ Y �! Z;

2. � ⇢ X,�_
⇢ Y are abstract root system in the real vector spaces generated

by � and �_ respectively;

3. a bijection exists � �! �_ satisfying h↵,↵_
i = 2;
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4. the reflections s↵ of the root system � and s↵_ of �_ are given by

s↵ · � = �� h�,↵_
i↵ for all � 2 X

s↵_ · � = � � h↵, �i↵_ for all � 2 Y.

The root system attached with the Lie algebra of an algebraic group will be called

Lie algebra of G. Let � be the root system of a connected reductive group G with

respect to the maximal torus T . Then setting �_ = {↵_ : ↵ 2 �}, we get that

(X(T ),�, Y (T ),�_) is a root datum. We are now ready to state the classification

result due to Chevalley:

Theorem 1.4.1. Two semisimple linear algebraic groups are isomorphic if and

only they have isomorphic root data.

1.5 Steinberg endomorphism and Classification

of finite groups of Lie type

Given Fq : k �! k defined as Fq(t) = tq, it induces an automorphism of GLn

given by (aij) �! (Fq(aij)). This map is called the standard Frobenius of GLn.

Note that the fixed point group of this action is GLn(Fq). An endomorphism

F : G �! G of a linear algebraic group G is called a Steinberg endomorphism

of G, if for some r � 1, we have that F r : G �! G is Frobenius morphism of

the form Fp↵ . Steinberg proved [St68, Theorem 10.13] that if G is a simple linear

algebraic group, � : G �! G is an endomorphism of G, then either of the following

statements hold:

1. � is an automorphism of G,

2. the group G� := {g 2 G : �(g) = g} is a finite group.

Also, the second case occurs if and only if � is a Steinberg endomorphism. Now if

F : G �! G is a Steinberg endomorphism of a semisimple algebraic group, then

the finite group of fixed points GF will be called a finite group of Lie type.

Now, let G be a connected reductive linear algebraic group and F : G �! G a

Steinberg endomorphism. Then it can be proved [MaTe11, Corollary 21.12] that

there exist a pair T ✓ B consisting of F -stable torus and F -stable Borel subgroup.
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The group W := NG(T )/T is called the Weyl group of G. Note that F acts on the

character group X and cocharacter group Y as follows:

F (�)(t) = �(F (t)) � 2 X, t 2 T

F (�)(c) = F (�(c)) � 2 Y, c 2 k⇥.

Let � ⇢ X be a root system of G with respect to T and B. We fix an isomorphism

u� : Ga �! U� for � 2 X. We further set XR = X ⌦Z R. Note that the Weyl

group NG(T )/T is F -stable which defines a semidirect product W hF i. Thus a

finite group of Lie type (G,F ) is determined upto isomorphism by the root datum

of G, the coset W� and q, where � 2 Aut(XR) stabilizes � ⇢ X,�_
⇢ Y , in

the sense that if (G,F ), (G0, F 0) both correspond to (X,�, Y,�_,W�) and same q,

there is an isomorphism � : G �! G0 satisfying F 0
� � = � �F . The ordered tuple

(X,�, Y,�_,W�) is known as a complete root datum. The complete root datum

along with the prime power q completely determines the finite group GF up to

isomorphism [MaTe11, Corollary 21.8].

Example 1.5.1. Recall that the orthogonal group O2n, preserving the quadratic

form x1x2n+ · · ·+xnxn+1 on Fq

2n

. Then O(2n,Fq) is stable under standard Frobe-

nius map Fq(x) = xq. We write O(2n,Fq)+ := O(2n, q)Fq is the orthogonal group

of + type.

Example 1.5.2. It can be shown that there exists a Steinberg endomorphism F 0
q
,

which induces non-trivial graph automorphism of order 2 on the Dynkin diagram

of O2n [MaTe11, Example 22.9]. The fixed point of this is known as the orthogonal

group of � type.



Chapter 2

Conjugacy classes and centralizer

This chapter follows the expositions in [Ta1], [Ta2] by D. E. Taylor, [Sh80] by K.

Shinoda, [Mi69] by J. Milnor and the classic [Wa63] by G. E. Wall. The counting

of the special polynomials is taken from the work [FuNePr05] by J. Fulman, P. M.

Neumann, and C. Praeger.

2.1 Polynomials and partitions

The dual of a monic degree r polynomial f(t) 2 k[t] satisfying f(0) 6= 0, is the

polynomial given by f ⇤(t) = f(0)�1trf(t�1). The polynomial f will be called ⇤-

symmetric if f = f ⇤. Note that f(t) = a0 + a1t+ · · ·+ td is ⇤-symmetric if an only

if

a0 = ±1 and ad�i = a0ai for 0 < i < d.

We call f to be ⇤-irreducible or self reciprocal if it is ⇤-symmetric and has no proper

⇤-symmetric factors. It can be proved that if f is a monic ⇤-irreducible polynomial

of odd degree then f = t ± 1. In the even degree case we get that [Ta1, Lemma

1.5]:

1. if f is irreducible then f(t) = tdg(t+ t�1) for an irreducible polynomial g of

degree d,

2. if f is reducible then f = gg⇤, for some irreducible polynomial g satisfying

g 6= g⇤.

11
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A partition of a number ⇤ is a sequence of non-negative numbers �1,�2, · · ·

satisfying �1 � �2 � · · · � 0, and ⇤ =
P
�i. Considering the multiplicities of the

parts of � we can write it as 1m12m2 . . ., removing imi , whenever mi = 0.

Definition 2.1.1. A symplectic signed partition is a partition of a number

k, such that the odd parts have even multiplicity and even parts have a sign ±

associated with it. The set of all symplectic signed partitions will be denoted as

DSp.

Definition 2.1.2. An orthogonal signed partition is a partition of a number

k, such that all even parts have even multiplicity, and all odd parts have a sign

associated with it. The set of all orthogonal signed partition will be denoted as

DO.

Example 2.1.3. 1. The partition 6+2342�312 is a symplectic signed partition

of 32.

2. The partition 7+27�23+3261�2 is an orthogonal signed partition of 51.

It can be shown that characteristic polynomial of symplectic or orthogonal ma-

trix is ⇤-symmetric (or self reciprocal). Indeed if � is a root of the characteristic

polynomial of a symplectic (or orthogonal) matrix, so is ��1. We follow J. Mil-

nor’s terminology [Mi69] to distinguish between the ⇤-irreducible factors of the

characteristic polynomials. We call a ⇤-irreducible polynomial f to be

1. Type 1 if f = f ⇤ and f is irreducible polynomial of even degree;

2. Type 2 if f = gg⇤ and g is irreducible polynomial satisfying g 6= g⇤;

3. Type 3 if f(t) = t± 1.

Let N⇤(q, n) denotes the number of monic irreducible self-reciprocal polynomial

f(t) of degree n over Fq and let R⇤(q, n) denotes the number of unordered conjugate

pairs {f, f ⇤
} of monic irreducible polynomials of degree n, over Fq such that f 6= f ⇤.

We have the following result about the quantities N⇤(q, n) and R⇤(q, n) [FuNePr05,

Lemma 1.3.16].

Lemma 2.1.4. Let n be a positive integer.
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1.

N⇤(q, n) =

8
>>>><

>>>>:

e(q) if n = 1

0 if n is odd and n > 1

1

n

X

r|n,r odd

µ(r)(q
n
2r + 1� e(q)) if n is even

,

2.

M⇤(q, n) =

8
>>><

>>>:

1

2
(q � e(q)� 1) if n = 1

1

2
N(q, n) if n is odd and n > 1

1

2
(N(q, n)�N⇤(q, n)) if n is even

,

3.

N⇤(q, 2n) =

8
>>><

>>>:

M⇤(q, n) + 1 if n = 1

M⇤(q, n) if n is odd and n > 1

M⇤(q, n) +N⇤(q, n) if n is even

.

Note that here e(q) is the number of square root of 1 in the concerned field.

2.2 Symplectic group

The symplectic group of Lie rank n is defined to be a subgroup of GL(2n,Fq),

which preserves a non-degenerate alternating form on F2n

q
. We will be taking the

alternating form to be
⌦
(xi)2ni=1

, (yj)2nj=1

↵
=

nP
j=1

xjy2n+1�j �

n�1P
i=0

x2n�iyi+1. Fixing

the usual basis of F2n

q
, the matrix of the form is J =

 
0 ⇤n

�⇤n 0

!
where ⇤n =

0

BBBB@

0 0 · · · 0 1

0 0 · · · 1 0
...

...
...

...
...

1 0 · · · 0 0

1

CCCCA
. Then a square matrix A of size 2n is said to be symplectic if

and only if tAJA = J . Since all the alternating forms are equivalent over Fq, we

have that Symplectic groups are unique up to conjugacy inside GL(2n,Fq). We

will be denoting the symplectic group by Sp(2n,Fq) (of Lie rank n).
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According to [Wa63, Example 2.6, case B], [Mi69, Theorem 3.2], the conjugacy

classes of Sp(2n,Fq) are parametrized by the functions � : � ! P
2n
[D

2n

Sp
, where �

denotes the set of all monic, non-constant, irreducible polynomials, P2n is the set

of all partitions of 1  k  2n and D
2n

Sp
is the set of all symplectic signed partitions

of 1  k  2n. Such a � represents a conjugacy class of Sp(2n,Fq) if and only if

1. �x = 0,

2. �'⇤ = �',

3. �' 2 D
n

Sp
i↵ ' = x± 1 (we distinguish this �, by denoting it �±),

4.
X

'

|�'|deg(') = 2n where |�'| denotes the sum of the parts of the partition.

The data corresponding to the assignment will be denoted by {(f,�f )} and will

be called the combinatorial data attached to conjugacy class . Class representative

corresponding to given combinatorial data attached to conjugacy class can be found

in [Ta1], [Ta2], [GoLiBr] and we will mention them whenever needed. Without

proof, we mention the following results about the conjugacy class size (and hence

the size of the centralizer) of elements corresponding to given data, which can be

found in [Wa63].

Lemma 2.2.1. [Wa63, pp. 36] Let X 2 Sp(2n,Fq) be a matrix corresponding

to the data �X = {(�,��) : � 2 �X ⇢ �}. Then the conjugacy class of X in

Sp(2n,Fq) is of size
|Sp(2n,Fq)|Q

�

B(�)
where B(�) and A(��) are defined as follows

A(��) =

8
>>>>><

>>>>>:

|U(m�, Q)| if �(t) = �⇤(t) 6= t± 1

|GL(m�, Q)|
1
2 if � 6= �⇤

|Sp(m�,Fq)| if �(t) = t± 1, � odd

|q
1
2m�O✏(m�,Fq)| if �(t) = t± 1, � even

,

where ✏ gets determined by the sign of the corresponding partition, Q = q|�|, m� =

m(��) and

B(�) = Q

P
�<⌫

�m�m⌫+
1
2

P
�
(��1)m

2
�
Y

�

A(��).
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2.3 Orthogonal group

The orthogonal groups are defined to be a subgroup of GL(n,Fq) which preserves

a non-degenerate quadratic form Q on Fn

q
.

If n = 2m for some m � 1, upto equivalence of forms over Fq (under action of

GL(n,Fq)), there are two such forms. If a 2 Fq is such that t2 + t + a 2 Fq[x] is

irreducible, then the two non-equivalent forms are given by

1. Q+((xi)ni=1
) =

mP
i=1

x2i�1x2i and

2. Q�((xi)ni=1
) = x2

1
+ x1x2 + ax2

2
+

mP
i=2

x2i�1x2i.

The orthogonal group preserving Q+ will be denoted as O+(n,Fq), whereas the

orthogonal group preserving Q� will be denoted as O�(n,Fq).

If n = 2m + 1, then for q even there is only one (upto equivalence) quadratic

form, namely Q((xi)ni=1
) = x2

1
+

mP
i=1

x2ix2i+1 and hence there is only one (upto

conjugacy) orthogonal group. If q is odd, then upto equivalence there are only two

non-degenerate quadratic forms given by

1. Q1((xi)ni=1
) =

nP
i=1

x2

i
and

2. Q�((xi)ni=1
) = �

nP
i=1

x2

i
, where � 2 Fq \ F2

q
.

But these two forms give isomorphic orthogonal groups. Thus, in case n = 2m+1,

up to conjugacy there exists only one orthogonal group. This will be denoted as

O0(n,Fq). We will use the notation O✏(n,Fq) to denote any of the orthogonal group

in general, with ✏ 2 {�,+, 0}. If we take J0 =

0

B@
0 0 ⇤m

0 ↵ 0

⇤m 0 0

1

CA, J+ =

 
0 ⇤m

⇤m 0

!

and J� =

0

BBB@

0 0 0 ⇤m�1

0 1 0 0

0 0 �� 0

⇤m�1 0 0 0

1

CCCA
, with ↵ 2 F⇥

q
, � 2 Fq \ F2

q
, then A 2 O✏(n,Fq)

if and only if tAJ✏A = J✏. Adapting the notations of [FuNePr05] we define the type

of an orthogonal space as follows.
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Definition 2.3.1. The type of an orthogonal space (V,Q) of dimension n is

⌧(V ) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

✏1 if n is even and V has type ✏,

1 if n is odd and q is even,

1 if n is odd, q ⌘4 1, Q ⇠
P

x2

i
,

�1 if n is odd, q ⌘4 1, Q ⇠ b
P

x2

i
,

◆n if n is odd, q ⌘4 3, Q ⇠
P

x2

i
,

(�◆)n if n is odd, q ⌘4 3, Q ⇠ b
P

x2

i
,

where ◆ 2 C satisfies ◆2 = �1, b 2 Fq \ F2

q
.

Remark 2.3.2. If V has orthogonal decomposition V1�V2� · · ·�Vl, then ⌧(V ) =
lQ

i=1

⌧(Vi).

From [Wa63, Example 2.6, case C], [Mi69, Theorem 3.2], we find out that

similar kind of statement is true for the groups O✏(n,Fq). The conjugacy classes

of O✏(n,Fq) are parametrized by the functions � : � ! P
n
[D

n

O
, where � denotes

the set of all monic, non-constant, irreducible polynomials, Pn is the set of all

partitions of 1  k  n and D
n

O
is the set of all symplectic signed partitions of

1  k  n. Such a � represent a conjugacy class of Sp(2n,Fq) if and only if

1. �(x) = 0,

2. �'⇤ = �',

3. �' 2 D
n

O
i↵ ' = x± 1 (we distinguish this �, by denoting it �±),

4.
X

'

|�'|deg(') = n.

Lemma 2.3.3. [Wa63, pp. 39] Let X 2 O✏(n, q) be a matrix corresponding to the

data �X = {(�,��) : � 2 �X ⇢ �}. Then the conjugacy class of X in O✏(n, q)

is of size
|Sp(2n,Fq)|Q

�

B(�)
where B(�) and A(��) are defined as before, except when

�(t) = t± 1,

A(��) =

8
<

:
|O✏

0
(m�, q)| if � odd

q�
1
2m� |Sp(m�, q)| if � even

,
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where ✏0 in O✏
0
(m�, q) gets determined by the corresponding sign of the part, of the

partition.

2.4 Central Join

Suppose A =

 
P Q

R S

!
2 Sp(2n,Fq) where P,Q,R, S are n ⇥ n matrices and

B 2 Sp(2m,Fq). Then A satisfies the equation tAJ2nA = J2n, whence P,Q,R, S

satisfy

�
tR⇤nP + tP⇤nR = 0,

�
tR⇤nQ+ tP⇤nS = ⇤n,

�
tS⇤nP + tQ⇤nR = �⇤n,

�
tS⇤nQ+ tQ⇤nS = 0.

Also B satisfies tBJ2mB = J2m. Let us define

A �B =

0

B@
P 02m Q

02m B 02m
R 02m S

1

CA .

Then

t(A �B)J2m+2n(A �B) =

0

B@

tP 02m tR

02m tB 02m
tQ 02m tS

1

CA

0

B@
0n 02m ⇤n

02m J2m 02m
�⇤n 02m 0n

1

CA

0

B@
P 02m Q

02m B 02m
R 02m S

1

CA

=

0

B@
�

tR⇤n 02m tP⇤n

02m tBJ2m 02m
�

tS⇤n 02m tQ⇤n

1

CA

0

B@
P 02m Q

02m B 02m
R 02m S

1

CA

=

0

B@
�

tR⇤nP + tP⇤nR 02m �
tR⇤nQ+ tP⇤nS

02m tBJ2mB 02m
�

tS⇤nP + tQ⇤nR 02m �
tS⇤nQ+ tQ⇤nS

1

CA

= J2m+2n.

Thus A �B 2 Sp(2(m+ n),Fq).

Definition 2.4.1. [Ta1, pp 21] Given A 2 Sp(2n,Fq), B 2 Sp(2m,Fq), we call the

matrix A �B to be symplectic central join of A and B.
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Now suppose the matrices A,B are in two orthogonal groups preserving sym-

metric bilinear forms with matrices J1, J2 respectively. Then

 
A 0

0 B

!
preserves

 
J1 0

0 J2

!
. But note that the matrix

 
J1 0

0 J2

!
is not of standard shape. Thus

we will be needing functions that can convert the diagonal shape to the standard

shape. This is achieved by orthogonal central join [Ta2, pp. 21], taking into con-

sideration di↵erent Witt types of the bilinear forms. We will be considering the

simplest case, when Witt type of J1 is h0i. Then we have that J1 is of the form 
0 ⇤m

⇤m 0

!
for some m. Let A be a matrix of size 2m ⇥ 2m and B a matrix of

size n⇥ n. We can write

A =

 
P Q

R S

!
.

Define

A �B =

0

B@
P 0 Q

0 B 0

R 0 S

1

CA .

Note that if X =

0

B@
Im 0 0

0 0 Im
0 In 0

1

CA, we have that X�1

 
J1 0

0 J2

!
=

0

B@
0 0 ⇤m

0 J2 0

⇤m 0 0

1

CA.

With this it can be easily shown that X�1

 
A1 0

0 A2

!
= A1 �A2, and that A1 �A2

belongs to the orthogonal group of Witt type as same as J2.

Using the central join of matrices, first, the study can be done for a block

corresponding to a polynomial of the form fm for some ⇤-irreducible polynomial

f , and later be put together to get the answer in the general case. This follows

from the following result.

Lemma 2.4.2. Let A,B be two elements of the symplectic group (or orthogonal

group). Then for an integer M � 2, we have that (A �B)M = AM
�BM .

Proof. See [Ta1], [Ta2].



Chapter 3

Generating functions and Cycle

index

3.1 Generating function

By definition a generating function attached to a sequence (an) is the Taylor series

in variable z, given by
1P
n=0

anzn. For example the generating function for the

sequence (an = 1)n�0 is given by

1 + z + z2 + . . . =
1

1� z
.

If am = P (m) denotes the number of partitions of m, then it can be shown that

1 +
1X

m=1

amz
m =

1Y

n=1

1

1� zn
.

Notation 3.1.1. For a given matrix X 2 G(m,Fq), where G(m,Fq) is either the

symplectic or orthogonal group over Fq of Lie rank m, we will use

1. �X to denote the attached combinatorial data,

2. cX(t) to denote the characteristic polynomial of X,

3. mX(t) to denote the minimal polynomial of X.

We will be describing here the generating functions for the number of di↵erent

conjugacy classes (elements), viz. separable, semisimple, regular, cyclic in case of

19
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finite orthogonal and symplectic groups. Recall the definitions for the same. A

matrix A will be called (a) Separable if cA(t) has distinct roots, (b) Semisimple if

mA(t) has distinct roots, (c) Cyclic if mA(t) = cA(t) (d) Regular if its centraliser in

the corresponding algebraic group over the algebraic closure of Fq has dimension

equal to the Lie rank of the group. Now we will describe the generating functions

for the probability of an element being of a specific type in the concerned group.

We start with the symplectic group, as the generating functions in the case of

orthogonal groups will be given in terms of the generating function in the case of

the symplectic group.

Symplectic group:

Let SSp(u) be the generating function for the probability of an element to be

separable in Sp(2m, q) (to be denoted by sSp(2m,q)). Hence we have

SSp(z) := 1 +
X

m�1

sSp(2m, q)zm.

Then we have that this quantity factorizes [FuNePr05, Theorem 2.2.1] and we have

the equality

SSp(z) =
1Y

d=1

✓
1 +

zd

qd + 1

◆N
⇤
(q,2d) 1Y

d=1

✓
1 +

zd

qd � 1

◆M
⇤
(q,d)

.

Similarly we have the following for cyclic matrices [FuNePr05, Theorem 2.2.7]

CSp(z) =

0

B@
1

1�
z

q

1

CA

2

1Y

d=1

 
1 +

zd

(qd + 1)(1� zd

qd
)

!N
⇤
(q,2d)

⇥

1Y

d=1

 
1 +

zd

(qd � 1)(1� zd

qd
)

!M
⇤
(q,d)

,

for semisimple matrices [FuNePr05, Theorem 3.1.5]

SSSp(z) =

 
1 + 2

1X

m=1

zm

|Sp(2m,Fq)|

!2

⇥

1Y

d=1

 
1 +

1X

m=1

zdm

|U(m,Fqd)|

!N
⇤
(q,2d) 1Y

d=1

 
1 +

1X

m=1

zdm

|GL(m,Fqd)|

!M
⇤
(q,d)

,

where CSp and SSSp denote the generating functions for the probability of an

element to be cyclic, and semisimple respectively in the Symplectic group.
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Orthogonal group:

Define the following functions for di↵erent orthogonal groups;

SO
+(z) = 1 +

1P
m=1

sO+(2m, q)zm, SO
�(z) = 1 +

1P
m=1

sO�(2m, q)zm,

SO
0(z) = 1 +

1P
m=1

sO0(2m+ 1, q)zm

to denote the generating functions for the probability of an element to be separable

in respective orthogonal groups. We define

XO(z) :=
1Y

d=1

✓
1�

zd

qd + 1

◆N
⇤
(q,2d) 1Y

d=1

✓
1 +

zd

qd � 1

◆M
⇤
(q,d)

.

This leads to the equalities [FuNePr05, Theorem 2.3.1]

1. SO
+(z2) + SO

�(z2) + 2zSO(z2) = (1 + z)2SSp(z2)

2. SO
+(z2)� SO

�(z2) = XO(z2).

Further, define

X 0
O
(z) :=

1Y

d=1

0

BBBB@
1�

zd

(qd + 1)

 
1 +

✓
u

q

◆d
!

1

CCCCA

N
⇤
(q,2d)

1Y

d=1

0

BBBB@
1 +

zd

(qd � 1)

 
1�

✓
u

q

◆d
!

1

CCCCA

M
⇤
(q,d)

.

Then in the case of cyclic matrices, we get [FuNePr05, Theorem 2.3.9]

1. CO
0(z) =

✓
1�

z

q

◆
CSp(z),

2. CO
± =

1

2

 ✓
1�

z

q

◆2

+ z

!
CSp(z)±

1

2
X 0

O
(z).

For regular elements we have [FuNePr05, Theorem 3.2.2] that, for orthogonal

groups of odd dimension

RO(z) =

✓
1 +

z

q(q2 � 1)
�

z2

q2(q2 � 1)

◆
CSp(z),

and for orthogonal groups of even dimension we have two equations, i.e.
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1. RO
+(z) +RO

�(z) =

 ✓
1 +

z

q(q2 � 1)
�

z2

q2(q2 � 1)

◆2

+ z

!
CSp(z),

2. RO
+(z)�RO

�(z) =

✓
1 +

z

q2 � 1

◆2

X 0
O
(z).

To write down the generating functions for the semisimple case, we will need the

following functions.

Y ⇤
1
(z) =

1Y

d=1

 
1 +

1X

m=1

zdm

|U(m,Fqd)|

!N
⇤
(q,2d) 1Y

d=1

 
1 +

1X

m=1

zdm

|GL(m,Fqd)|

!M
⇤
(q,d)

,

Y ⇤
2
(z) =

1Y

d=1

 
1 +

1X

m=1

(�1)mzdm

|U(m,Fqd)|

!N
⇤
(q,2d) 1Y

d=1

 
1 +

1X

m=1

zdm

|GL(m,Fqd)|

!M
⇤
(q,d)

,

F (z) = 1 +
1X

m=1

zm

|Sp(2m,Fq)|
,

F+(z) = 1 +
1X

m=1

✓
1

|O+(2m,Fq)|
+

1

O�(2m,Fq)

◆
zm,

F�(z) = 1 +
1X

m=1

✓
1

|O+(2m,Fq)|
�

1

O�(2m,Fq)

◆
zm.

Then we have [FuNePr05, Theorem 3.1.7] that

SSO
+(z2) + SSO

�(z2) + 2zSSO(z
2) = (F+(z

2) + zF (z2))2Y ⇤
1
(z2)

SSO
+(z2)� SSO

�(z2) = F�(z
2)2Y ⇤

2
(z2).

Note that these results are the cases M = 1. We will be generalizing these

ideas, to answer the cases M � 2. This line of study has been previously done in

the work by Kundu and Singh in [KuSi22], for the group GL(n,Fq). We mention

some of the results here, before moving to the next subsection.

Theorem 3.1.2. [KuSi22, Theorem 5.2] Let M � 2 be an integer and (q,M) = 1.

For the group GL(n,Fq), the generating function for regular and regular semisimple

classes which are M-th power is

1. 1 +
1X

n=1

c(n, q,M)rgu
n =

1Y

d=1

(1� ud)�NM (q,d);
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2. 1 +
1X

n=1

c(n, q,M)rsu
n =

1Y

d=1

(1 + ud)NM (q,d),

where c(n, q,M)rg and c(n, q,M)rs denote the number of regular and regular semisim-

ple conjugacy classes in GL(n,Fq) respectively, NM(q, d) is the number of M-power

polynomial of degree d over Fq.

Theorem 3.1.3. [KuSi22, Theorem 6.2] Let M = ra be a prime power and

(q,M) = 1. Then, we have the following generating function:

1 +
1X

n=1

c(n, q,M)ssu
n =

aY

i=0

Y

d�1

(1� ur
i
d)�N

i
M (q,d),

where c(n, q,M)ss denotes the number of semisimple conjugacy classes in GL(n, q)

and N i

M
(q, d) is the number of irreducible polynomials f 2 � of degree d with the

property that all irreducible factors of f(tM) are of degree dri.

3.2 Cycle index

A cycle index of a groupG is a polynomial in several variables, defined in a way that

information about how a group of permutations acts on a set can be found from

the coe�cients and exponents. We are interested in the cycle index of particular

group action, viz. the conjugation action of a group G on itself. Note that in that

case the orbits are the conjugacy classes and the stabilizers are the centralizer of an

element. Polya first introduced the concept of cycle index for the symmetric group

Sn in [PoRe87]. This can be briefly described as follows. For ⇡ 2 Sn, let ai(⇡)

denote the number of i-cycles in ⇡. Recall that in Sn, the number of elements with

ai many i-cycles is given by n!/
Q

n

i=1
ai!iai . This along with the Taylor expansion

of ez gives that

1X

n=0

un

n!

X

⇡2Sn

Y

i

xai(⇡)

i
=

1Y

m=1

exmu
m
/m.

Kung [Ku81] and Stong [St88] later developed a cycle index for the finite general

linear group GL(n,Fq), which can be described as follows. Let xf,� be variable

corresponding to the pair (f,�) where f 2 k[t] and � is a partition of a number.
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Then the cycle index of GL(n,Fq) is given by

1 +
1X

n=1

un

|GL(n,Fq)|

X

↵2GL(n,q)

Y

f 6=t

xf,�f (↵)
=
Y

f 6=t

X

�

xf,�

u|�| deg(f)

cGL,f,q(�)
,

where

cGL,f,q(�) =
Y

i

miY

k=1

(qdeg(f)di�q
deg(f)(di�k)

)

with di = m11 +m22 + · · ·+mi�1(i� 1) + (mi +mi+1 + · · ·+mj)i.

We will be concerned with the cycle indices in the case of symplectic and orthogonal

groups, which were developed in the Ph.D. thesis [Fu97] of Jason Fulman. Define

the cycle index of the symplectic group to be

1 +
1X

n=1

u2n

|Sp(2n,Fq)|

X

↵2Sp(2n,q)

Y

f=t±1

x
f,�

±
f (↵)

Y

f 6=t±1

xf,�f (↵)
.

By the work of J. Fulman we have that this quantity factorizes as follows [Fu99,

Theorem 12];

Y

f=t±1

 
X

�pm

xf,�±
u|�±|

cSp,f,q(�±)

!
Y

f=f
⇤

f 6=t±1

 
X

�

xf,�

(�(udeg f ))|�|

cGL,t�1,�(qdeg f/2)(�)

!

⇥

Y

{f,f⇤}
f 6=f

⇤

 
X

�

xf,�xf⇤,�
u2|�| deg f

cGL,t�1,qdeg f (�)

!
.

In case of orthogonal groups, we take sum of the cycle indices of the di↵erent

orthogonal groups of same rank together (note that for odd case O+ = O�) and

define the cycle index to be as follows:

1 +
1X

n=1

0

@ un

|O+(n,Fq)|

X

↵2O+
(n,Fq)

Y

f=t±1

x
f,�

±
f (↵)

Y

f 6=t,t±1

xf,�f (↵)

1

A

+
1X

n=1

0

@ un

|O�(n,Fq)|

X

↵2O�
(n,Fq)

Y

f=t±1

x
f,�

±
f (↵)

Y

f 6=t,t±1

xf,�f (↵)

1

A ,

and this factorizes as follows [Fu99, Theorem 14]:
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Y

f=t±1

 
X

�±

xf,�±
u|�±|

cO,f,qdeg f (�±)

! 
X

�

xf,�

(�(udeg f ))|�|

cGL,t�1,�qdeg f/2(�)

!

Y

{f,f⇤},f 6=f⇤

 
X

�

xf,�xf⇤,�
u2|�| deg f

cGL,t�1,qdeg f (�)

!
.
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Chapter 4

Generating functions for M-th

powers

In this chapter, we will find the desired generating functions. We start with the

concept of M -power and M⇤-power polynomials. The number of such polynomials

has been counted in later sections. These polynomials play a key role in determin-

ing the generating functions for symplectic and orthogonal groups. In subsequent

sections, we provide the generating functions for a number of theM -th power regu-

lar semisimple, semisimple, cyclic, and regular classes in orthogonal and symplectic

groups.

4.1 M-power and M ⇤-power polynomial

Following the definitions of [KuSi22] we note down the following, which will be in

further use:

Definition 4.1.1. A monic irreducible polynomial f 2 Fq[x] of degree k, k � 1, is

said to be an M-power polynomial if and only if f(xM) has a monic irreducible

factor g 2 Fq[x], of degree k. Denote the set of M -power polynomials (6= x) by

�M .

We recall the following theorem from [MeGo90].

Lemma 4.1.2. [MeGo90, Theorem 1]

27
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1. Each Self reciprocal irreducible monic (SRIM) polynomial of degree 2n (n �

1) over Fq is a factor of the polynomial

Hq,n(x) := xq
n
+1

� 1 2 Fq[x], (4.1.1)

2. Each irreducible factor of degree � 2 of Hq,n(x) is a SRIM-polynomial of

degree 2d, where d divides n such that n

d
is odd.

Example 4.1.3. 1. The SRIM polynomials of degree 4 over F5, are factors of

x26
� 1 2 F5[x]. Using SAGE, it can be found out that in F5[x], we have

x26
�1 = (x+1)(x+4)(x4+x3+4x2+x+1)(x4+2x3+2x+1)(x4+2x3+x2+

2x+1)(x4+3x3+3x+1)(x4+3x3+x2+3x+1)(x4+4x3+4x2+4x+1). Hence

the degree 4 SRIM polynomials over F5 are (x4+x3+4x2+x+1), (x4+2x3+

2x+1), (x4 +2x3 + x2 +2x+1), (x4 +3x3 +3x+1), (x4 +3x3 + x2 +3x+1)

and (x4 + 4x3 + 4x2 + 4x+ 1).

2. Also using SAGE, we have that in F2[x] the polynomial x2
6
+1

� 1 factorizes

as (x+1)(x4+x3+x2+x+1)(x12+x8+x7+x6+x5+x4+1)(x12+x10+x7+

x6+x5+x2+1)(x12+x10+x9+x8+x6+x4+x3+x2+1)(x12+x11+x9+x7+

x6+x5+x3+x+1)(x12+x11+x10+x9+x8+x7+x6+x5+x4+x3+x2+x+1).

This provides the list of SRIM polynomials of degree 12 over the field of order

2.

Definition 4.1.4. A SRIM polynomial f 2 Fq[x] of degree 2k, k � 1, is said to

be an M⇤-power SRIM polynomial if and only if f(xM) has an SRIM factor

g 2 Fq[x], of degree 2k. Denote the set of M⇤-power SRIM polynomials (of degree

� 2) by �⇤
M
.

Example 4.1.5. 1. Consider F5 and the polynomial x4 +3x3 +3x+1 2 F5[x].

Then x8 + 3x6 + 3x2 + 1 = (x4 + 2x3 + x2 + 2x+ 1)(x4 + 3x3 + x2 + 3x+ 1).

Hence x4 + 3x3 + 3x+ 1 is a 2⇤-power SRIM polynomial.

2. Consider F5 and the polynomial x4 + 3x3 + 1x2 + 3x + 1 2 F5[x]. Then

x8 + 3x6 + x4 + 3x2 + 1 = (x4 + 2x3 + x2 + 3x+ 1)(x4 + 3x3 + x2 + 2x+ 1).

Thus it is a 2-power polynomial but not a 2⇤-power SRIM polynomial.
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Proposition 4.1.6. Let N⇤
M
(q, 2k) denote the number of M⇤-power SRIM poly-

nomial of degree 2k, k � 1. Then

N⇤
M
(q, 2k) =

1

2k(M, q2k � 1)

X

l=odd

l|2k

µ(l)(M(q2k/l � 1), qk + 1). (4.1.2)

Proof. Let f be an M⇤-power SRIM polynomial of degree 2k. Then f(xM) has a

SRIM factor g of degree 2k. Consider f, g 2 Fq2k [x]. Then f =
2kY

i=1

(x � ↵i), g =

2kY

i=1

(x � �i). As discussed before, without loss of generality we may assume that

�M

i
= ↵i. Considering the map ✓M : Fq2k ! Fq2k , we have ↵i 2 im(✓M), for all i.

Since f is SRIM, using 4.1.2 we have that ↵q
k
+1

i
= 1 for all i. Thus �i for all i,

satisfies �M(q
2k�1)

i
= �q

k
+1

i
= 1 and �M

i
= ↵i generates Fq2k over Fq.

Conversely, suppose ↵ satisfies ↵q
k
+1 = 1 and generates Fq2k over Fq. If ' is

the monic minimal polynomial of ↵, then ' is of degree 2k. Also if ⌘ is any root of

', then ⌘ = ↵q
l
, for some l, whence ⌘q

k
+1 = 1. Thus ' is SRIM. So, if N⇤

M
(q, 2k)

denotes the number of M⇤-power SRIM polynomial of degree 2k, then

N⇤
M
(q, 2k) =

1

2k
|{↵ 2 Fq2k : ↵q

k
+1 = 1,↵ = ✓M(⌘) for some ⌘ 2 Fq2k ,Fq2k = Fq(↵)}|,

(4.1.3)

as sets of roots, of distinct irreducible polynomials, are disjoint. Since |✓�1

M
(1)| =

(M, q2k � 1), we have that,

N⇤
M
(q, 2k) =

1

2k(M, q2k � 1)
|{↵ 2 Fq2k : ↵q

k
+1 = 1,Fq2k = Fq(↵

M)}|.

To ensure Fq2k = Fq(↵M), we should have that ↵M /2 Fql for any l|2k, l > 1. Since

↵q
k
+1 = 1, we have that ↵q

k
l +1 if and only if l is odd (because xm+1 divides xn+1

if and only if n

m
is odd). Thus ↵M

2 Fq2k/l if and only if l is odd. For l odd, define

El = {↵ 2 Fq2k : ↵q
k
+1 = 1,Fq2k/l = Fq(↵M)}. Then |El| = (M(q2k/l � 1), qk + 1),

whence by inclusion-exclusion principle the proof is done.

This settles down the case, when a single block is an M -power. Note the follow-

ing example, where A has single block but A73 has 3 blocks with same conjugacy

class data.
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Example 4.1.7. Let A be a matrix corresponding to the conjugacy class data

(x12 + 2x11 + 2x10 + 2x9 + x8 + x6 + x4 + 2x3 + 2x2 + 2x+ 1, 1) in Sp(12, 3), then

A73 has conjugacy class data (x4 + x3 + x2 + x+ 1, 13).

Now we consider the case when A has more than one block of type 1 but is an

M -th power of some ↵. Since we are interested in the image of the map x 7! xM ,

we will be considering the case when any M -th root of A (if exists) has single

Jordan block of type 1. Thus if the minimal polynomial of A (of degree 2n/k for

some odd k), has root �, we have that M -th root of � must exist in Fq2n and not

in any proper subfield of Fq2n . Thus we want to calculate the number of SRIM

polynomials of degree 2n/k, over Fq such that if f(↵) = 0 for some ↵ 2 Fq2n/k ,

then there exists � 2 Fq2n such that minFq(�) is SRIM polynomial of order 2n. Let

N⇤
M
(q, 2n, 2n/k) denotes the number of SRIM polynomial of degree 2n

k
such that

if f(↵) = 0 for some ↵ 2 Fq2n/k then any M -th root of ↵, say � lies in Fq2n with

the property that Fq2n = Fq[�] and �q
n
+1 = 1.

Proposition 4.1.8. We have

N⇤
M
(q, 2n, 2n/k) =

1

2k

X

s<k

s=odd,s|k

µ(s)
1

(M, q
2n
s � 1)

X

l=odd
l| 2nk

µ (l)
�
M

�
q

n
kls + 1

�
, q

n
s + 1

�
.

(4.1.4)

Proof. For k odd and k|2n, consider the set

E2n,2n/k =
�
↵ 2 Fq2n/k |↵

n
k+1 = 1,↵ = �M , � 2 Fq2n , �

q
n
+1 = 1, [Fq(↵) : Fq] = 2n/k

 
.

To enumerate this set let us find the number of � 2 Fq2n , such that �M
2 E2n,2n/k.

Then � satisfies the equations �q
n
+1 = 1, �M(

n
k+1) = 1. Number of � satisfy-

ing these two equations is given by (M(q
n
k + 1), qn + 1). But we should have

that [Fq(�M) : Fq] = 2n/k. Hence �M
62 F

q
2n
kl
, l > 1 being odd. Hence by

inclusion-exclusion principle, the number of � 2 Fq2n , such that �M
2 E2n,2n/k is

P
l=odd

l| 2nk

µ (l)
�
M

�
q

n
kl + 1

�
, qn + 1

�
. Since |✓�1

M
(1)| = (M, q2n � 1) where ✓M : Fq2n !

Fq2n is the map ✓M(x) = xM , we have that

|E2n,2n/k| =
1

(M, q2n � 1)

X

l=odd

l| 2nk

µ (l)
�
M

�
q

n
kl + 1

�
, qn + 1

�
.
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Now we want to consider only those ↵ 2 E2n,2n/k such that it doesn’t have

any M -th root in any proper subfield of Fq2n . Since an M -th root, say � also has

minimal polynomial to be SRIM (by hypothesis), we have that � 2 F
q
2n
s

if and

only if s is odd. Hence � 2 E2n,2n/k \
S
s<k

s=odd,
2n
k | 2ns

E2n/s,2n/k. Thus we have that

N⇤
M
(q, 2n, 2n/k) =

1

2k

X

s<k

s=odd,s|k

µ(s)
1

(M, q
2n
s � 1)

X

l=odd

l| 2nk

µ (l)
�
M

�
q

n
kls + 1

�
, q

n
s + 1

�
,

since the sets of roots of irreducible polynomials are disjoint.

Definition 4.1.9. For a divisor k of n, we will call a polynomial f(x) 2 Fq[x]

of degree n

k
which is not an M -power polynomial, to be degenerate (M,n, n

k
)

polynomial if and only if minimal polynomial of � over Fq is of degree n, where

f(�M) = 0. Denote the set of degenerate (M,n, n
k
) polynomials ( 6= x) by �u

M,n,
n
k
.

Denote by �⇤,u
M,n,

n
k
the subset of SRIM polynomials having same property.

Remark 4.1.10. The quantity N⇤
M
(q, 2n, 2n/k) counts the number of degenerate

(M, 2n, 2n
k
) SRIM polynomials over Fq.

Remark 4.1.11. We have that N⇤
M
(q, 2r) = N⇤

M
(q, 2r, 2r).

In case a polynomial is degenerate (M,n, n
k
) polynomial, there are M -th roots

of ↵, where f(↵) = 0, which lies in Fqn and not in any proper subfield of it. But

there might be other M -th roots which lie in other extensions, as illustrated by

the following examples.

Example 4.1.12. 1. Using SAGE, we have that x132 +2x77 + x66 +2x55 +1 =

(x12 + x11 + x10 + x9 +2x6 + x3 + x2 + x+1)(x60 + x58 +2x57 +2x56 +2x55 +

2x54+2x53+x51+x49+x48+2x46+x45+x44+2x43+2x42+x41+x40+x39+

x38+2x36+x34+x32+2x31+x30+x27+x26+2x25+x23+2x21+2x19+x17+

x16+x15+x13+2x11+2x7+2x5+2x4+2x3+2x2+2x+1)(x60+2x59+2x58+

2x57 +2x56 +2x55 +2x53 +2x49 + x47 + x45 + x44 + x43 +2x41 +2x39 + x37 +

2x35+x34+x33+x30+2x29+x28+x26+2x24+x22+x21+x20+x19+2x18+

2x17+x16+x15+2x14+x12+x11+x9+2x7+2x6+2x5+2x4+2x3+x2+1)

in F3[x]. Note that there are two di↵erent 60 degree irreducible factors of

the polynomial, which shows that the 60-th roots are in di↵erent subfields.
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2. Using SAGE, we have that x88 + 2x66 + x44 + 2x22 + 1 = (x4 + x3 + 2x +

1)(x4 + 2x3 + x + 1)(x20 + 2x18 + x17 + 2x16 + 2x15 + 2x12 + 2x11 + 2x10 +

2x9 + 2x7 + x6 + x5 + 2x2 + 2x+ 1)(x20 + 2x18 + 2x17 + 2x16 + x15 + 2x12 +

x11 +2x10 + x9 + x7 + x6 +2x5 +2x2 + x+1)(x20 + x19 +2x18 +2x15 + x14 +

x13 + x11 + 2x10 + x9 + 2x8 + x5 + 2x4 + 2x3 + 2x2 + 1)(x20 + 2x19 + 2x18 +

x15 + x14 + 2x13 + 2x11 + 2x10 + 2x9 + 2x8 + 2x5 + 2x4 + x3 + 2x2 + 1) in

F3[x]. Note that here there are two irreducible factors of degree 4 and four

irreducible factors of degree 20. Hence the roots are in di↵erent subfields.

Now assume that f(�M) = 0 for some � 2 Fqk , where f 2 Fq[x] is a SRIM

polynomial of degree 2n. Then minimal polynomial of � must divide f(xM). Hence

to determine all possible k, we should know about the irreducible factors of f(xM).

From [But55] we know that the irreducible factors of f(xM) solely depends on the

degree and the exponent of the irreducible polynomial, which is defined to be the

multiplicative order of a root of f in the splitting field of f . Since all the roots

are conjugate to each other, we have that the exponent is unique data attached to

the polynomial f . This necessitates finding the number of irreducible polynomials

which has exponent e. We have the following

Lemma 4.1.13. Let N⇤,e
M

(q, 2n) denote the number of SRIM polynomials of degree

2n and exponent e which are not M⇤-power SRIM polynomial. Then we have

N⇤,e
M

(q, 2n) =
1

2n

X

l=odd

l|2n

µ(l)�(e)�
1

2n(M, q2n � 1)

X

l=odd

l|2n

µ(l)(M(q2n/l � 1), e)

Proof. Let us first find out the number of SRIM polynomials of degree 2n and

exponent e in Fq[x]. Note that e must divide qn +1 as ↵q
n
+1 = 1 (by 4.1.2). Since

F⇤
q2n

is cyclic group the number of elements of order e is given by �(e). But we

want to have that such an element should not belong to any proper subfield of Fq2n

i.e. e should not divide any q
n
l + 1 where l is odd. Since we are considering SRIM

polynomials, by inclusion-exclusion we have that number of primitive elements in

Fq2n of exponent e is
X

l=odd

l|2n

µ(l)�(e), whence number of irreducible polynomials of

degree 2n and exponent e in Fq[x] is
1

2n

X

l=odd

l|2n

µ(l)�(e).

Next we find out the number of M⇤-power SRIM polynomial of degree 2n

and exponent e. As in the remarks preceding 4.1.6, replacing ↵q
n
+1 = 1 by the
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condition ↵e = 1, we have that number of M⇤-power SRIM polynomial of degree

2n and exponent e is
1

2n(M, q2n � 1)

X

l=odd

l|2n

µ(l)(M(q2n/l � 1), e). Hence the result

follows.

By a similar line of arguments and the fact that x 2 Fqn if and only if xq
n�1 = 1,

we have the following lemmas, which will help us in counting. These are some

generalized results of [KuSi22].

Lemma 4.1.14. [KuSi22, Proposition 3.3] Let NM(q, k) denote the number of

M-power polynomial of degree k. Then

NM(q, k) =
1

k(M, qk � 1)

X

l|k

µ(l)(M(qk/l � 1), qk � 1). (4.1.5)

Lemma 4.1.15. Let k|n and NM(q, n, n/k) denote the number of irreducible monic

polynomial f over Fq of degree n/k, such that any M-th root of ↵ (where f(↵) = 0)

lies in Fqn, but not in any proper subfield of Fqn. Then

NM(q, n, n/k) =
1

k

X

s<k,
n
k |

n
s

µ(s)
1

(M, q
n
s � 1)

X

l| 2nk

µ (l)
�
M

�
q

n
kls � 1

�
, q

n
s � 1

�
. (4.1.6)

Proof. Same as in Proposition 4.1.8.

Lemma 4.1.16. Let N e

M
(q, n) denote the number of polynomials of degree n and

exponent e which are not M-power polynomial. Then we have

N e

M
(q, n) =

1

n

X

l|n

µ(l)�(e)�
1

n(M, qn � 1)

X

l|2n

µ(l)(M(qn/l�1), e).

Proof. Same as in Lemma 4.1.13.

Let R⇤
M
(q, 2n) denote the number of pairs {�,�⇤

}, where � ( 6= �⇤) is an ir-

reducible monic polynomial of degree n � 2 and � is an M -power polynomial.

Then

R⇤
M
(q, 2n) =

8
<

:

1

2
NM(q, n) n is odd

1

2
(NM(q, n)�N⇤

M
(q, n)) n is even

.
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Let k|n and R⇤
M
(q, 2n, 2n/k) denote the number of pairs {�,�⇤

}, where � ( 6= �⇤) is

an irreducible monic polynomial irreducible monic polynomial f over Fq of degree

n/k, such that any M -th root of ↵ (where f(↵) = 0) lies in Fqn , but not in any

proper subfield of Fqn . Then

R⇤
M
(q, 2n, 2n/k) =

8
<

:

1

2
(NM(q, n, n/k)�N⇤

M
(q, n, n/k)) n is even, k is odd

1

2
NM(q, n, n/k) otherwise

.

Let R⇤,e
M
(q, 2n) denote the number of pairs {�,�⇤

}, where � ( 6= �⇤) is an irre-

ducible polynomial of degree n � 2, which is not an M -power polynomial. Then

we have

R⇤,e
M
(q, 2n) =

8
><

>:

1

2
N e

M
(q, n) n is odd

1

2
(N e

M
(q, n)� 1

n(M,qn�1)

X

l|k

µ(l)(Mqe, q
n
l + 1) n is even .

With the counting in hand, we now move to the next section, where we calculate

the generating functions in the indeterminate u.

Before proceeding further, we note down the following lemma, which helps in

defining the indicator function (see Definition 4.1.19) corresponding to a class of

irreducible polynomials having the same degree and exponent.

Lemma 4.1.17. Let f1, f2 2 Fq[x] be monic irreducible polynomials of degree n

and exponent e. Then f1(xM) has a SRIM factor of degree 2l if and only if f2(xM)

has a SRIM factor of degree 2l.

Proof. Since f1 and f2 are of same degree and same exponent, by [But55] the roots

of f1(xM) and f2(xM) have same order. Hence the result follows from 4.1.2.

Now we want to calculate the number of M⇤-power SRIM polynomial, which

contributes to finding out the generating function for the number of separable

conjugacy classes in Sp(2n,Fq).

Definition 4.1.18. For a polynomial f 2 Fq[x], define M-power spectrum of

f to be the set of degrees, of the irreducible factors of f(xM). Denote the set

M -power spectrum of f by DM(f). Define the M⇤-power spectrum of f to be

the set {l 2 DM(f) : f(xM) has a SRIM factor of degree l}, which will be denoted

as D⇤
M
(f).
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We have that f is an M -power polynomial (or M⇤-power polynomial) if and

only if M 2 DM(f).

Definition 4.1.19. For a non M⇤-power SRIM polynomial f , define the infinite

product

Gf (u) =
1

Q
i2D⇤

M (f)

⇣
1� u

i
2

⌘ Q
j2DM (f)\D⇤

M (f)

(1� uj)
.

Define the indicator function corresponding to f be the function IM(f) :

N ! {0, 1} as follows

IM(f)(k) =

8
<

:
1 if coe�cient of uk in Gf (u) 6= 0

0 otherwise
.

Remark 4.1.20. Because of 4.1.17 the indicator function is same for all irreducible

polynomial f of degree n and exponent e. Hence we will denote it by In,e.

Lemma 4.1.21. Let f be an SRIM polynomial of degree 2k, k � 1. Then ↵M =

Cf , has a solution in Sp(2n, q) if and only if f(xM) has an SRIM factor of degree

2k.

Proof. Let f be a SRIM polynomial of degree 2d over Fq. Hence f(t) = 1 + a1t+

a2t2+· · ·+ad�1td�1+td(ad+ad�1t1+ad�2t2+· · ·+a1td�1+td). Then considering Cf 2

Sp(2d,Fq2d) we have that Cf is conjugate to the matrix

0

BBBBBBBBB@

�1
. . .

�d

��1

d

. . .

��1

1

1

CCCCCCCCCA

,

where {�±1

i
}
d

i=1
is the set of roots of f . Let ↵M = Cf for some ↵ 2 Sp(2d,Fq).

Since ↵ is conjugate to the matrix

0

BBBBBBBBB@

↵1

. . .

↵d

↵�1

d

. . .

↵�1

1

1

CCCCCCCCCA

in Sp(2d,F2d

q
),
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where {↵±1

i
}
d

i=1
is the set of roots of minFq(↵), we have that ↵M

i
= �j(i). Without

loss of generality, we may assume that ↵✏M
i

= �✏
i
, ✏ = ±1. Hence f(↵±M

i
) = 0 for

all i. Considering G(x) = f(xM), we see that G(↵±1

i
) = 0 for all i, in particular

g = minFq(↵) divides G. Since ↵ 2 Sp(2d,Fq), we have that g is self reciprocal

monic polynomial. If g = g1g2 for nontrivial factors g1, g2 of g, then minFq(↵
M) = f

is not irreducible. Thus we conclude that g is a SRIM polynomial.

We aim to show that CM

g
is conjugate to Cf , where g is SRIM factor of de-

gree 2k, of f(xM). This is equivalent to showing that the sets A = {↵M

i
: i =

1, 2, · · · , 2k} and ⇤ = {�i : 1, i = 1, 2, · · · , 2k} are in bijective correspondence,

where {↵i}
2k

i=1
is the set of roots of g and {�i}2ki=1

is the set of roots of f . Since f

is separable, we have that |⇤| = 2k.

Note that in Fq2k , we have f(x) =
2kY

i=1

(x � �i), g(x) =
2kY

i=1

(x � ↵i). Since g(x)

divides f(xM), we have that, for all j, 0 = f(↵M

j
) =

2kY

i=1

(↵M

j
� �i). Hence ↵M

1
= �i

for some i. After some permutation, we may assume that i = 1. Note that if h is

the characteristic polynomial of CM

g
, then h(↵1) = 0. Since minimal polynomial of

↵1 is f , we have that f = h. Since f is separable, we have that |A| = |⇤| = 2k.

Corollary 4.1.22. Let A 2 Sp(2n,Fq) has characteristic polynomial f , which is

SRIM of degree 2n. Then ↵M = A, has a solution in Sp(2n,Fq), if and only if f

is M⇤-power SRIM polynomial.

Remark 4.1.23. Recall from Example 4.1.5 that the matrix A 2 Sp(4, 5) corre-

sponding to the combinatorial data {(x4 +3x3 + x2 +3x+1, 1)} has a square root

GL(4, 5) but not in Sp(4, 5). This exhibits an example of a matrix that shows that

having a square root (more generally an M -th root) in general linear group does

not imply the existence of a square root in symplectic group.
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4.2 Separable matrices

Proposition 4.2.1. Let csM
Sp
(n, q) be the number of M-power separable conjugacy

classes in Sp(2n,Fq) and cSM

Sp
(q, u) = 1 +

1P
m=1

csM
Sp
(m, q)um. Then

cSM

Sp
(q, u) =

1Y

d=1

�
1 + ud

�N⇤
M (q,2d)

1Y

d=1

�
1 + ud

�R⇤
M (q,2d)

. (4.2.1)

Proof. Let X 2 Sp(2n,Fq) be a separable matrix. Then cX(t) is separable and

is product of ⇤-irreducible polynomials. Since cX(t) is separable we have that

each of the factor in cX(t) occurs exactly once. Considering the fact that X has

determinant 1, any ⇤-irreducible polynomial of type 3 must occur twice. Hence

none of the polynomial t ± 1 is a factor of cX(t). Let �X = {(f,�f ) : f 2 �}.

Then �X represents a separable class if and only if

1. �t±1 = 0,

2. �f = �f⇤ 2 {0, 1},

3.
P
f |cX

deg f = 2n.

Hence using 4.1.22, we have that X is an M -th power separable element if and

only if

1. for all (f, 1) 2 �X and f = f ⇤, f 2 �⇤
M

2. for all (f, 1) 2 �X and f 6= f ⇤, f 2 �M

Thus cX(t) =
rQ

i=1

fi
sQ

j=1

gjg⇤j , where fi is anM⇤-power SRIM polynomial and gj 6= g⇤
j

is an M -power polynomial. Considering the fact that each of the factors fi and

gjg⇤j is of even degree, we have that

cSM

Sp
(q, u) =

Y

f2�⇤
M

⇣
1 + u

deg f
2

⌘ Y

g2�M\�⇤
M

�
1 + udeg g

� 1
2

=
1Y

d=1

�
1 + ud

�N⇤
M (q,2d)

1Y

d=1

�
1 + ud

�R⇤
M (q,2d)

.
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Theorem 4.2.2. Let sM
Sp
(n, q) be the probability of an element to be M-power

separable in Sp(2n,Fq) and SM

Sp
(q, u) = 1 +

1P
m=1

sM
Sp
(m, q)um. Then

SM

Sp
(q, u) =

1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

. (4.2.2)

Proof. From 2.2.1 and 2.3.3, it follows that

1. for X 2 Sp(2n,Fq), if cX(t) is SRIM polynomial then the centraliser of X

inside Sp(2n,Fq) is of order qn + 1,

2. for X 2 Sp(2n,Fq), if cX(t) is ⇤-irreducible polynomial of type 2 then the

centraliser of X inside Sp(2n,Fq) is of order qn � 1.

Hence using 4.2.1 and the fact that the centralizer of a general block diagonal

matrix is a direct sum of each of the corresponding centralizers, we have

SM

Sp
(q, u) =

1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

.

The next theorem is proved along the same line of proof of Theorem 2.3.1 of

[FuNePr05].

Theorem 4.2.3. Let sM
O

✏(n, q) be the probability of an element to be M-power

separable in O✏(2n,Fq) with ✏ 2 {±} and sM
O

0(n, q) denote the probability of an

element to be M-power separable in O0(2n+ 1,Fq). Define

SM

O
+(q, u) = 1 +

1X

m�1

sM
O

+(m, q)um

SM

O
�(q, u) =

1X

m�1

sM
O

�(m, q)um

SM

O
0(q, u) = 1 +

1X

m�1

sM
O

0(m, q)um.

Then

SM

O
+(u2) + SM

O
�(u2) + e(q)uSM

O
0(u2) = (1 + u)o(M,q)SM

Sp
(u2), (4.2.3)

SM

O
+(u2)� SM

O
�(u2) = XM

O
0(u2), (4.2.4)
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where

XM

O
0(q, u) =

1Y

d=1

✓
1�

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

,

e(q) as before and

o(M, q) =

8
<

:
1 if M or q even

2 otherwise
.

Proof. The proof is similar to that of 4.2.2. But if X is a separable orthogonal

matrix, then t ± 1 can divide cX(t). The multiplicity of t ± 1 in cX(t) can be at

most 1, because cX(t) is separable. Since center of O✏(m,Fq) is {±1}, we have

that the block corresponding to t+1, of size 1⇥ 1 is an M -th power if and only if

M is odd. Now suppose M is even or q is even. Consider the product

(1 + u)
1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

.

If q is even then the factor 1 + u appears for the possibility of t � 1 dividing

cX(t). In this case the centraliser of the corresponding block has size 1. For the

case M being even, write (1 + u) as (1 + u

2
+ u

2
) and this tracks the possibility

of t � 1 dividing cX(t). Each term u

2
, appears for the distinct conjugacy classes

corresponding to t�1, each having order of centraliser 2. Note that in this case �1

is not an M -th power. Hence e(M, q) = 1. Now for n even positive, the coe�cient

of un is sM
O

+(n, q) + sM
O

�(n, q), where as for n being odd positive the coe�cient is

e(q)sM
O

0(n, q) for e(q) many types of forms over Fn

q
.

For the case M being odd and q being odd, consider the product

(1 + u)2
1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

.

Then writing (1 + u) as (1 + u

2
+ u

2
) we get the possibility of t� 1 dividing cX(t).

But there are two such conjugacy classes each having centraliser of size 2. The

same argument applies for the polynomial t+ 1 as well. Hence the power 2. This

proves the first equation.

We will prove the second equation by modifying the first one. For each of

the factor 1 + �fu2d in the right hand side of the first equation, where �f is the
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reciprocal of the size of the corresponding centraliser, replace it by 1 + ⌧f�fu2d,

where ⌧f = ⌧(Vf ) and Vf denotes the component of V corresponding to f , in

the primary decomposition as a Fq[X] module. Then since for q odd, each of

the term u

2
corresponds to the conjugacy class with ⌧f values being negative to

each other, the term (1 + u) vanishes. For q even, we omit (1 + u), because

we are dealing with even dimensional spaces only. Now, since ⌧f = �1, when

f is of type 1 and ⌧f = +1, when f is of type 2, the factors 1 +
u2d

qd + 1
are

replaced by 1 �
u2d

qd + 1
, whereas the factor 1 +

u2d

qd � 1
remains as it is. Hence

the product becomes
1Y

d=1

✓
1�

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

, which on

expanding gives SM

O
+(u2)� SM

O
�(u2) because of 2.3.2.

Proposition 4.2.4. Let csM
O

✏(n, q) denote the probability of a conjugacy class to

be M-power separable in O✏(2n,Fq) with ✏ 2 {±} and csM
O

0(n, q) denotes the prob-

ability of a conjugacy class to be M-power separable in O0(2n+ 1,Fq). Define

cSM

O
+(q, u) = 1 +

1X

m�1

csM
O

+(m, q)um

cSM

O
�(q, u) =

1X

m�1

csM
O

�(m, q)um

cSM

O
0(q, u) = 1 +

1X

m�1

csM
O

0(m, q)um.

Then

cSM

O
+(u2) + cSM

O
�(u2) + e(q)ucSM

O
0(u2) = (1 + 2u)o(M,q)cSM

Sp
(u2), (4.2.5)

cSM

O
+(u2)� cSM

O
�(u2) = cXM

O
0(u2), (4.2.6)

where

cXM

O
0(q, u) =

1Y

d=1

�
1� ud

�N⇤
M (q,2d)

1Y

d=1

�
1 + ud

�R⇤
M (q,2d)

.

4.3 Semisimple matrices

Before moving towards the determination of generating functions for semisimple

cases, we find out the cases where M -th root of �1 exists. This is certainly true,
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whenever M is odd. The next lemma discusses the scenario when M is even.

Lemma 4.3.1. Let q 6= 2j and r(M, q) denote the least size of matrix �I such that

it has an M-th root in Sp(r(M, q), q). Then

r(M, q) =

8
>>>>>><

>>>>>>:

2 if M = 2

s if there exists n such that 2M |(qn + 1), (M, q) = 1

2s 2M - (qn + 1) for any n, (M, q) = 1

r
⇣

2M

(2M,q)
, q
⌘

when (M, q) 6= 1

,

where s 2 N is the smallest number satisfying qs ⌘ 1(mod 2M).

Proof. First of all, note that r(M, q) is always even as any matrix in Sp(2n,Fq)

has determinant 1. Let M = 2, then

 
0 �1

1 0

!2

=

 
�1 0

0 �1

!
implies that �12k

has an M -th root for all k � 1.

Now consider the case M 6= 2 and q 6= 2l (as in this case |±1| = 1)and �1l
has an M -th root in Sp(2n,Fq), say ↵. Let � be a root of minFq(↵). Then � is

a primitive 2M -th root of unity. Hence minFq(↵) divides the 2M -th cyclotomic

polynomial Q2M over Fq. From [LiNi97], it is known that in case (q, 2M) = 1

(which is true as q 6= 2s and (q,M)=1), Q2M factors into �(2M)

d
(where � is the

Euler’s totient function) distinct monic irreducible polynomial in Fq[x], of same

degree d, where d is the least positive integer satisfying qd ⌘ 1(mod 2M).

If any of the irreducible factor is of type 1, then d is the required value of

r(M, q) (as we are considering the case of Sp(2n,Fq)), otherwise r(M, q) = 2d.

For the case (q, 2M) 6= 1, let (q, 2M) = q0 then (q, 2M
q0 ) = 1. Then replacing

2M , by 2M

q0 we get the result, as q is odd.

Corollary 4.3.2. The matrix �12n⇥2n has an M-th root in Sp(2n,Fq) if and only

if r(M, q)|2n.

Proof. Follows from the factorization of the cyclotomic polynomial Q 2M
(q,2M)

2 Fq[x],

as all of the irreducible factors have same degree.

Remark 4.3.3. The value r(M, q) in the lemma above is always even.
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Proposition 4.3.4. Let cssM
Sp
(2n, q) denote the number of M-power semisimple

conjugacy classes in Sp(2n,Fq) and cSSM

Sp
(q, u) = 1 +

1P
m=1

cssM
Sp
(2m, q)um. Then

cSSM

Sp
(q, u) is given by

1

(1� ur(M,q))e(q)�1(1� u)

1Y

d=1

(1� ud)�N
⇤
M (q,2d)

1Y

d=1

(1� ud)�R
⇤
M (q,2d)

1Y

d=1

Y

e|qd+1

 
1 +

1X

m=1

Ie,2d(2dm)udm

!N
⇤,e
M (q,2d) 1Y

d=1

Y

e|qd�1

 
1 +

1X

m=1

Ie,d(dm)udm

!R
⇤,e
M (q,2d)

where r(M, q) is as in 4.3.1 and Ie,d is as mentioned in Remark 4.1.20.

Proof. Let X 2 Sp(2n,Fq) be semisimple. Then mX(t) is a product of distinct

⇤-irreducible polynomials. Considering that X has determinant 1, we have that

(t + 1) has even multiplicity in cX(t). This forces t � 1 to have even multiplicity

in cX(t). Let �X = {(f,�f ) : f 2 �}. Then X is semisimple if and only if

1. �t+1 2 {0, 12r1}, �t�1 2 {0, 12r�1},

2. �f = �f⇤ 2 {0, 1lf},

3.
P

|�f | = 2n,

where r1, r�1, lf 2 Z>0. Hence using 4.1.22 and discussion preceding 4.1.13, X is

an M -th power if and only if

1. �t�1 2 {0, 12r1}, r1 2 Z>0,

2. �t+1 2 {0, 12r�1}, where r�1 2 r(M, q)Z>0 (follows from 4.3.2),

3. for f , an M⇤-power SRIM polynomial of degree d we have �f 2 {0, 1m : m 2

Z>0},

4. for f ( 6= f ⇤), an M -power polynomial of degree d we have �f = �f⇤ 2 {0, 1m :

m 2 Z>0},

5. for f , a type 1 polynomial which is not an M⇤-power polynomial, �f 2

{0, 1m : m 2
P

i2DM (f)

Z�0i},
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6. for f , a type 2 polynomial which is not an M -power polynomial, �f = �f⇤ 2

{0, 1m : m 2
P

i2DM (f)

Z�0i}.

Hence cSSM

Sp
(q, u) is given by

 
1 +

1X

m=1

um

! 
1 +

1X

m=1

um
r(M,q)

2

!e(q)�1

Y

f=f
⇤

f2�⇤
M

 
1 +

1X

m=1

um
deg f

2

!
Y

{f 6=f
⇤}

f2�M

 
1 +

1X

m=1

um deg f

!

Y

f=f
⇤

f 62�⇤
M

Y

e|q
deg f

2 +1

 
1 +

1X

m=1

IM(f)(m deg f)u
deg f

2 m

!

Y

{f,f⇤}
f 6=f

⇤
,f 62�M

Y

e|qdeg f�1

 
1 +

1X

m=1

IM(f)(m deg f)um deg f

!

where

1. the first term accounts for the polynomial t� 1,

2. the second term accounts for the polynomial t + 1, which vanishes when

(q, 2) 6= 1 and hence the power e(q)� 1,

3. the third and fourth term appear for the polynomials in �⇤
M

and �M respec-

tively,

4. the fifth term appears for the type 1 polynomial which are not M⇤-th power

SRIM. Note that in this case f(xM) has factors of degrees belonging to

DM(f). Suppose ki 2 DM(f) and gki be a factor of f(xM), of degree ki with

i = 1, 2, · · · . Then clearly deg f |ki and (f, 1
ki

deg f ) is an M -th power for all

ki 2 DM(f). Then for any integer m 2

X

ci2Z�0

ci
ki

deg f
, the class (f, 1m) is an

M -th power.

In this case, two kinds of polynomials can occur in the factorization of f(xM).

It can be of either type 1 or type 2. For this the function Gf (see Definition
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4.1.19) has two components corresponding to each type. Hence we associate

the function IM(f) which indicates whether m 2

X

ci2Z�0

ci
ki

deg f
or not.

5. the sixth term appears for the type 2 polynomials which are not M -th power

(applying similar kind of argument as in the previous case).

Hence plugging in the formulae for number of each kind of polynomials and taking

into consideration 4.1.17 we get the result, as 1 +
1P

m=1

um = (1� u)�1.

Theorem 4.3.5. Let ssM
Sp
(n, q) be the probability of an element to be M-power

semisimple in Sp(2n,Fq) and SSM

Sp
(q, u) = 1 +

1P
m=1

ssM
Sp
(2m, q)um. Then

SSM

Sp
(q, u) =

 
1 +

X

m�1

um
r(M,q)

2

|Sp(mr(M, q),Fq)|

!e(q)�1 
1 +

X

m�1

um

|Sp(2m,Fq)|

!

1Y

d=1

 
1 +

X

m�1

udm

|U(m,Fqd)|

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

X

m�1

udm

|GL(m,Fqd)|

!R
⇤
M (q,2d)

1Y

d=1

Y

e|(qd+1)

 
1 +

1X

m=1

Ie,2d(2dm)
udm

|U(m,Fqd)|

!N
⇤,e
M (q,2d)

1Y

d=1

Y

e|(qd�1)

 
1 +

1X

m=1

Ie,d(dm)
udm

|GL(m,Fqd)|

!R
⇤,e
M (q,2d)

where e(q), r(M, q) are as in 4.3.4.

Proof. Since ±I2n are in the center of Sp(2n,Fq), their centralisers are Sp(2n,Fq)

itself. From 2.2.1 and 2.3.3, we have that

1. if f 2 �⇤ is of degree 2k and µf = 1m, then centraliser ofX inside Sp(2km,Fq)

is of order |U(m,Fqk)| ,

2. if f 2 � \ �⇤ is of degree k and µf = 1m, then centraliser of X inside

Sp(2dm,Fq) is of order |GL(m,Fqd)|.

Hence using 4.3.4 and the fact that the centralizer of a general block diagonal

matrix is a direct sum of each of the corresponding centralizers, we have the result.



45

The next theorem is proved along the same line of proof of the Theorem 3.1.6

of [FuNePr05].

Definition 4.3.6. We define the following functions for simplifying the statements

in the case of orthogonal groups.

Y ⇤,M
1

(u, q) =
1Y

d=1

 
1 +

X

m�1

udm

|U(m,Fqd)|

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

X

m�1

udm

|GL(m,Fqd)|

!R
⇤
M (q,2d)

1Y

d=1

Y

e|qd+1

 
1 +

1X

m=1

Ie,2d(2dm)
udm

|U(m,Fqd)|

!N
⇤,e
M (q,2d)

1Y

d=1

Y

e|qd�1

 
1 +

1X

m=1

Ie,d(dm)
udm

|GL(m,Fqd)|

!R
⇤,e
M (q,2d)

,

Y ⇤,M
2

(u, q) =
1Y

d=1

 
1 +

X

m�1

(�1)mudm

|U(m,Fqd)|

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

X

m�1

udm

|GL(m,Fqd)|

!R
⇤
M (q,2d)

1Y

d=1

Y

e|qd+1

 
1 +

1X

m=1

Ie,2d(2dm)
(�1)mudm

|U(m,Fqd)|

!N
⇤,e
M (q,2d)

1Y

d=1

Y

e|qd�1

 
1 +

1X

m=1

Ie,d(dm)
udm

|GL(m,Fqd)|

!R
⇤,e
M (q,2d)

,

F+,+1(u, q) =1 +
X

m�1

✓
1

|O+(2m,Fq)|
+

1

|O�(2m,Fq)|

◆
um,

F�,+1(u, q) =1 +
X

m�1

✓
1

|O+(2m,Fq)|
�

1

|O�(2m,Fq)|

◆
um,

F+1(u, q) =1 +
X

m�1

um

|Sp(2m,Fq)|
,

FM

+,�1
(u, q) =1 +

X

m�1

✓
1

|O+(mr(M, q),Fq)|
+

1

|O�(mr(M, q),Fq)|

◆
um

r(M,q)
2 ,

FM

�,�1
(u, q) =1 +

X

m�1

✓
1

|O+(mr(M, q),Fq)|
�

1

|O�(mr(M, q),Fq)|

◆
um

r(M,q)
2 ,

F�1(u, q) =1 +
X

m�1

u
mr(M,q)

2

|Sp(mr(M, q),Fq)|
.



46

Theorem 4.3.7. Let ssM
O

✏(n, q) denotes the probability of an element to be M-

power semisimple in O✏(2n,Fq) with ✏ 2 {±} and sM
O

0(n, q) denotes the probability

of an element to be M-power semisimple in O0(2n+ 1,Fq).

Define

SSM

O
+(q, u) = 1 +

1X

m�1

ssM
O

+(m, q)um

SSM

O
�(q, u) =

1X

m�1

ssM
O

�(m, q)um

SSM

O
0(q, u) = 1 +

1X

m�1

ssM
O

0(m, q)um.

Then

SSM

O
+(u2) + SSM

O
�(u2) + e(q)uSSM

O
0(u2)

=
�
FM

+,+1
(u2) + uF+1(u

2)
� �

FM

+,�1
(u2) + uF�1(u

2)
�e(q)�1

Y ⇤,M
1

(u2),

SM

O
+(u2)� SM

O
�(u2) = F�,+1(u

2)[FM

�,�1
(u2)]e(q)�1Y ⇤,M

2
(u2).

Proof. Using similar argument as in 4.2.3, the proof follows.

4.4 Cyclic matrices

Before giving the generating function for the cyclic conjugacy classes we first find

out which matrices with eigenvalue 1 (or �1) are M -th power. Note that two

matrices A and B are conjugate if and only if �A and �B are conjugate. Hence

conjugacy classes of matrices with eigenvalue 1 are in bijection with conjugacy

classes of matrices with eigenvalue �1. Recall that an element X 2 Sp(2n,Fq) is

cyclic if and only if cX(t) = mX(t). Hence we concentrate on single Jordan block

with eigenvalue 1. Since Jordan blocks of odd size should occur even times, they

do not contribute to cyclic elements (refer [GoLiBr, Section 2.4]). In general, we

have the following

Lemma 4.4.1. Let q = pr, for some prime p. An element A 2 Sp(2n,Fq) is

unipotent if and only if order of A is ps, for some s 2 N.
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Proof. Let A 2 Sp(2n,Fq) be of order ps. Then A satisfies the polynomial xp
s
�1 =

(x � 1)p
s
. Thus characteristic polynomial of A should divide (x � 1)p

s
. Hence it

has all the eigenvalues to be 1. Conversely, suppose A is an unipotent element.

Then A is an element of the group of upper triangular matrices UP(2n,Fq), whence

Aq

n(n�1)
2 = 1.

Corollary 4.4.2. If (M, q) = 1, then every unipotent conjugacy class is an M-th

power.

Let us denote the matrix UCf ,n
=

0

BBBBBBBBB@

Cf 1

Cf 1

Cf 1
. . . . . .

Cf 1

Cf

1

CCCCCCCCCA

of size n deg f⇥

n deg f by UCf ,n
(with all other entries to be 0), where f is a monic irreducible

polynomial and Cf is the standard companion matrix of f . Now we want to find

the structure of semisimple part ↵s of ↵, where ↵M = Ut+1,n and ↵ 2 GL(n, q).

We have the following

Lemma 4.4.3. Let (M, q) = 1 and there exist ↵ 2 GL(n,Fq) satisfying ↵M =

Ut+1,n. Then the semisimple part ↵s is a scalar matrix.

Proof. Let ↵ be conjugate to UCf ,n
for some monic irreducible polynomial f . Then

since (M, q) = 1, we have that ↵M is conjugate to UCM
f ,n. Now ↵M = Ut+1,n implies

that CM

f
= �1, whence UCf ,n

is conjugate to �IUt�1, where Cf is denoted as � (as

it is a 1⇥ 1 matrix). So ↵s = �I, is a scalar matrix, as claimed.

Corollary 4.4.4. Let (M, q) = 1 and USp

t+1,n
2 Sp(2m,Fq) where U

Sp

t+1,n
is conjugate

to Ut+1,n in GL(2m,Fq). Then USp

t+1,n
is an M-th power in Sp(2m,Fq) if and only

if M is odd.

Proof. Let M be odd. Note that �USp

t+1,n
is a unipotent element and hence has an

M -th root, say ↵. Then (�↵)M = USp

t+1,n
.

Conversely suppose ↵M = USp

t+1,n
for some ↵ 2 Sp(2m,Fq). Also USp

t+1,n
and

↵ 2 GL(2m,Fq) implies that ↵s is a scalar matrix. Then we have that ↵s = �1,

since Sp(2m,Fq) contains only the scalar matrices {±1}. Hence M should be

odd.
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Corollary 4.4.5. Let (M, q) = 1. Any matrix X 2 Sp(2n,Fq) with combinatorial

data (t+ 1,m±) is an M-th power if and only if M is odd.

Proof. This follows from 4.4.2 and proof of 4.4.4.

From [BuGi16, Section 3.4] we use tensor product construction to study the ±1-

potent conjugacy classes and denote them by [J b,✏

a
]. From Lemma 3.4.7 [BuGi16],

we have

Lemma 4.4.6. A unipotent element of type [J b,✏

a
] fixes a pair of complementary

maximal totally isotropic subspaces of the natural Sp
ab
(Fq)-module if and only if

✏ = +.

Corollary 4.4.7. We have that [J b,✏

a
]M = [J b,✏

a
].

Proof. Let ✏ = +. Then there are complementary maximally totally isotropic

subspaces W1,W2 of dimension b

2
such that Ja⌦Ib fixes U⌦W1 and U⌦W2. Then

JM

a
⌦ IM

b
fixes U ⌦W1 and U ⌦W2 and hence the result follows in this case.

For ✏ = �, on the contrary assume [J b,�
a

]M has the property that it fixes a pair

of complementary maximally totally isotropic subspaces. Since [J b,�
a

] has power

coprime to M , we have that [J b,�
a

] fixes a pair of complementary maximally totally

isotropic subspaces, which is a contradiction.

Corollary 4.4.8. For M odd, we have that [�J b,✏

a
]M = [�J b,✏

a
].

Proposition 4.4.9. Let ccM
Sp
(2n, q) denote the number of M-power cyclic conju-

gacy classes in Sp(2n,Fq) and cCM

Sp
(q, u) = 1+

1P
m=1

ccM
Sp
(2m, q)um. Then cCM

Sp
(q, u)

is given by
✓

2

1� u
� 1� u

◆h(q,M) 1Y

d=1

(1� �ud)��N
⇤
M (q,2d)

1Y

d=1

(1� �ud)��R
⇤
M (q,2d), (4.4.1)

where

h(q,M) =

8
>>><

>>>:

0 if (M, q) 6= 1

2 if (M, q) = 1,M = odd, (q, 2) = 1

1 otherwise

and

� =

8
<

:
1 if (M, q) = 1

�1 if (M, q) 6= 1
.
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Proof. Let X 2 Sp(2n,Fq) be cyclic. Then cX(t) = mX(t). Since the space F2n

q
,

considered as an X-module is cyclic, we have that the primary decomposition of

F2n

q
should be of the form

L
f2�

Fq[t]

f(t)a
, with each f 2 � occurring at most once. Let

�X = {(f,�f ) : f 2 �}. Then �X represents a cyclic class if and only if

1. �t±1 is an even integer,

2. �f = �f⇤ 2 Z�0.

We divide the proof into two cases depending on the value of (M, q).

We start with the case when (M, q) = 1. In this case using the fact that UM

Cf ,n

is conjugate to UCM
f
, we have that X is an M -th power cyclic matrix if and only if

1. �t�1 is an even integer,

2. �t+1 is an even integer if M is odd and �t+1 = 0 if M is even,

3. (f,�f ) 2 �X , f is of type 1 and �f 6= 0, then f 2 �⇤
M
,

4. (f,�f ) 2 �X , f is of type 2 and �f 6= 0, then f 2 �M \ �⇤
M
.

We should keep in mind that there are two conjugacy classes corresponding to the

polynomials t± 1. Hence, we have that

cCM

Sp
(q, u) =

 
1 + 2

1X

m�1

um

!h(q,M) Y

f2�⇤
M

 
1 +

1X

m�1

um
deg f

2

!
Y

g2�M\�⇤
M

 
1 +

1X

m�1

um deg g

! 1
2

,

where

1. the first term accounts for the terms corresponding to t± 1, with a power 1

if q = 2s or M is even and 2 if M is odd,

2. the second term accounts for polynomial of type 1 and

3. the third term accounts for polynomial of type 2, with a power 1

2
, as for each

g 6= g⇤, the term (1 +
1P

m�1

um deg g) occurs twice.

Then grouping the polynomials with same degree of type 1 or 2, the result follows

for the case (M, q) = 1. The case (M, q) 6= 1 goes on the same lines and therefore

omitted.
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Theorem 4.4.10. Let cM
Sp
(n, q) be the probability of an element to be M-power

cyclic in Sp(2n,Fq) and CM

Sp
(q, u) = 1+

1P
m=1

cM
Sp
(2m, q)um. Then CM

Sp
(q, u) is given

by

 
1

1� u

q

!h(q,M) 1Y

d=1

 
1 +

ud

(qd + 1)(1� ud

qd
)

!N
⇤
M (q,2d) 1Y

d=1

 
1 +

ud

(qd � 1)(1� ud

qd
)

!R
⇤
M (q,2d)

,

(4.4.2)

if (q,M) = 1, where h(q,M) is as in 4.4.9 and by

1Y

d=1

✓
1 +

ud

qd + 1

◆N
⇤
M (q,2d) 1Y

d=1

✓
1 +

ud

qd � 1

◆R
⇤
M (q,2d)

, (4.4.3)

if (q,M) 6= 1.

Proof. For (M, q) 6= 1, the result is same as 4.2.2. Hence let us assume (M, q) = 1.

Then it follows from 2.2.1 and 2.3.3, that

1. for m � 2, the cyclic matrices corresponding to t±1, in Sp(2m,Fq) form two

conjugacy classes, with each of the corresponding centraliser of order 2qm,

2. if f is of type 1 of degree 2m, then order of the centraliser in Sp(2ml,Fq) of

a matrix X, with �X = {(f, l)} is q2d(l�1)(qd + 1),

3. if f is of type 2 of degree m, then order of the centraliser in Sp(2ml,Fq) of

a matrix X, with �X = {(f, l), (f ⇤, l)} is q2d(l�1)(qd � 1).

Hence using 4.4.9 and the fact that the centralizer of a general block diagonal

matrix is a direct sum of each of the corresponding centralizers, we have the result.

Analogous statements as in 4.4.4, 4.4.9 are true in case of O✏(n,Fq), whenever

(M, q) = 1. Hence we consider the case when (q, 2) = 1 6= (M, q). From [GoLiBr,

Section 2.5], we know that for unipotent elements of O✏(m,Fq) all even Jordan

block sizes occur with even multiplicity. Hence for cyclic �1-potent element (i.e.

elements X with cX(t) = (t + 1)k), we consider unipotent elements which have

odd Jordan block size, with multiplicity 1. The corresponding conjugacy class has
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representative

A" = �

0

BBBBBBBBBBBBBBBBBBB@

1

1 1
...

...
. . .

1 1 · · · 1

1 1 · · · 1 1

�✏ �✏ · · · �✏ �2✏ 1

�1 1

�1
. . .

1

1

CCCCCCCCCCCCCCCCCCCA

,

where ✏ = 1 or is a non-square in Fq. But then AM

"
is not cyclic �1-potent element.

Also considering the representative for (q, 2) 6= 1, from Section 3 of [GoLiBr], we

have,

Lemma 4.4.11. Let (M, q) 6= 1. Then none of the matrices X 2 O✏(m,Fq), with

combinatorial data �X = {(t± 1, (2k + 1)±)} with |k| � 1, is an M-th power.

Before writing down the generating functions for the cyclic elements, let us

introduce the following functions:

Definition 4.4.12. We define

ZO(u) =
1Y

d=1

 
1 +

ud

(qd + 1)(1� (u
q
)d)

!N
⇤
M (q,2d) 

1 +
ud

(qd � 1)(1� (u
q
)d)

!R
⇤
M (q,2d)

,

Z 0
O
(u) =

1Y

d=1

 
1�

ud

(qd + 1)(1 + (u
q
)d)

!N
⇤
M (q,2d) 

1 +
ud

(qd � 1)(1� (u
q
)d)

!R
⇤
M (q,2d)

.

Theorem 4.4.13. Let cM
O

✏(n, q) be the probability of an element to be M-power

cyclic in O✏(2n,Fq) with ✏ 2 {±} and cM
O

0(n, q) denotes the probability of an element
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to be M-power cyclic in O0(2n+ 1,Fq). Define

CM

O
+(q, u) = 1 +

1X

m�1

cM
O

+(m, q)um

CM

O
�(q, u) =

1X

m�1

cM
O

�(m, q)um

CM

O
0(q, u) = 1 +

1X

m�1

cM
O

0(m, q)um.

Then

CO
+(u2) + CO

�(u2) + 2uCO
0(u2) =

 
1 + ⌘(q)u+

u2

1� u2

q

!h(q,M)

ZO(u
2), (4.4.4)

where h(q,M) is as in 4.4.9 and ⌘(q) =

8
<

:
0 if (q, 2) = 1

1 otherwise
, and

CM

O
+(u2)� CM

O
+(u2) = Z 0

O
(u2). (4.4.5)

Proof. We divide the proof in several cases. The first case is when M , q are odd

and (M, q) = 1. Then consider the product

 
1 +

u

1� u2

q

!2 1Y

d=1

 
1 +

u2d

(qd + 1)(1� (u
2

q
)d)

!N
⇤
M (q,2d) 

1 +
u2d

(qd � 1)(1� (u
2

q
)d)

!R
⇤
M (q,2d)

.

SinceM is odd, all of cyclic unipotent or �1-potent elements areM -th power. Now

if for a cyclic orthogonal matrix X, cX(t) has factor t ± 1, then the multiplicity

should be odd. There are two conjugacy classes corresponding to each polynomial

(t ± 1)2l+1, with size of centraliser equal to 2ql. Hence each of (t ± 1)2l+1, has

generating function 1 + 2u

2
+ 2u

3

2q
+ 2u

5

2q2
+ · · · = 1+

u

1� u2

q

. Hence using arguments

similar to 4.2.3, we have that the product on expansion gives CO
+(u2)+CO

�(u2)+

2uCO
0(u2).

Next assume that q is even, (M, q) = 1. Hence M is odd, whence all unipotent

elements are M -th power. In this case the cyclic unipotent matrix can be of order

1⇥ 1 or 2m⇥ 2m. In the first case, order of the centraliser is 1. In the later case,
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there are two conjugacy classes each having centraliser of order 2qm�1. Hence in

this case CO
+(u2) + CO

�(u2) + 2uCO
0(u2) is given by

 
1 + u+

u2

1� u2

q

! 1Y

d=1

 
1 +

u2d

(qd + 1)(1� (u
2

q
)d)

!N
⇤
M (q,2d) 

1 +
u2d

(qd � 1)(1� (u
2

q
)d)

!R
⇤
M (q,2d)

.

Next suppose q is odd and M is even. Then all the cyclic unipotent matrices

are M -th power, where as none of the cyclic �1-potent are M -th power. Since

unipotent component in cyclic matrices have odd size, we see that none of the

cyclic matrices in O±, has unipotent part. This along with arguments as before,

we have that in this case CO
+(u2) + CO

�(u2) + 2uCO
0(u2) is given by

 
1 +

u

1� u2

q

! 1Y

d=1

 
1 +

u2d

(qd + 1)(1� (u
2

q
)d)

!N
⇤
M (q,2d) 

1 +
u2d

(qd � 1)(1� (u
2

q
)d)

!R
⇤
M (q,2d)

.

For the final case of (M, q) 6= 1, since none of the cyclic unipotent or �1-potent

elements are cyclic, we have that, CO
+(u2) + CO

�(u2) + 2uCO
0(u2) is given by

1Y

d=1

 
1 +

u2d

(qd + 1)(1� (u
2

q
)d)

!N
⇤
M (q,2d) 

1 +
u2d

(qd � 1)(1� (u
2

q
)d)

!R
⇤
M (q,2d)

.

For the last equation argument similar to 4.2.3 does the job.

4.4.1 Regular elements

Since in case of Sp(2n,Fq), an element X 2 Sp(2n,Fq) is regular if and only if

X is cyclic [NePr95], we concentrate on the case of O✏(m,Fq). We will need the

following definition from [FuNePr05].

Definition 4.4.14. Let U be a finite dimensional vector space over Fq and X 2

Aut(U,') and cX(t) = (t�µ)n where, ' is an orthogonal form and µ = ±1. Then

call X to be nearly cyclic if and only if either U = {0} or there is an X-invariant

orthogonal decomposition U = U0 �
? U1, in which dimU0 = 1 and U1 is a cyclic

X-module.

To understand the structure of regular conjugacy classes we state Theorem

3.2.1 from [FuNePr05], which is as follows.
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Theorem 4.4.15. Let q be odd and X 2 O✏(m,Fq). Then X is regular if and only

if

1. for every monic irreducible polynomial � other than t ± 1, the �-primary

component of X is cyclic,

2. for µ = ±1, the t� µ component of X is cyclic if it is odd dimensional and

nearly cyclic if it is even dimensional.

Theorem 4.4.16. Assume q to be odd and let rM
O

✏(n, q) be the probability of an

element to be M-power regular in O✏(2n,Fq) with ✏ 2 {±} and rM
O

0(n, q) denotes

the probability of an element to be M-power regular in O0(2n+ 1,Fq). Define

RM

O
+(q, u) = 1 +

1X

m�1

rM
O

+(m, q)um

RM

O
�(q, u) =

1X

m�1

rM
O

�(m, q)um

RM

O
0(q, u) = 1 +

1X

m�1

rM
O

0(m, q)um.

Then

RM

O
+(u) +RM

O
�(u) + 2uRM

O
0(u) =

 
1 +

u

1� u2

q

+
qu2

q2 � 1
+

u4

q2(1� u2

q
)

!h
0
(M)

✓
1 +

u2

2(q � 1)
+

u2

2(q + 1)

◆h
00
(M)

ZO(u
2),

where h0(M) = 1 if M is even and 2 otherwise and h00(M) = 1 if M = 2 and 0

otherwise.

Proof. This follows the line of proof as in [FuNePr05, Theorem 3.2.2]. Note that

RM

O
+(u2) +RM

O
�(u2) + 2uRM

O
0(u2) = FM

1
(u)FM

�1
(u)ZO(u

2),

where the functions FM

1
, FM

�1
have to be determined. Let us start with the case

of M being odd. Corresponding to the polynomial t � 1, the component in the

primary decomposition is either cyclic (odd dimensional) or nearly cyclic (even

dimensional). Both of the cases can have ± types. Note that for the odd number
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2m+1, there exists a single conjugacy class of unipotent cyclic elements of O0(2m+

1,Fq) with centralizer having order 2qm and this is always an M -th power. There

is a single class of nearly cyclic unipotent elements in O✏(2,Fq) consisting of 1 with

order of the centralizer 2(q � ✏1), ✏ 2 {±}. This class is also an M -th power. For

m � 2, there are two classes of nearly cyclic unipotent matrices in O✏(2m,Fq),

✏ 2 {±}. For each class, the corresponding primary decomposition has one 1

dimensional space and the other is a cyclic X-module. In this case, these are also

M -th power. The centralizer in this case has order 4qm. Hence

FM

1
(u) = 1 +

✓
u

1
+

u3

q
+

u5

q2
+ · · ·

◆
+

✓
u2

2(q � 1)
+

u2

2(q + 1)
+ 4

u4

4q2
+ 4

u6

4q3
+ · · ·

◆

=

 
1 +

u

1� u2

q

+
qu2

q2 � 1
+

u4

q2(1� u2

q
)

!
.

Using same argument and 4.4.9, we find that

FM

�1
(u) =

8
>>>>>><

>>>>>>:

 
1 +

u

1� u2

q

+
qu2

q2 � 1
+

u4

q2(1� u2

q
)

!
if M odd

1 +
u2

2(q � 1)
+

u2

2(q + 1)
M = 2

1 otherwise

.

Hence multiplying the obtained functions, the result follows.
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Chapter 5

Further plans

In this part, we have come up with the generating functions for the probability of

an element g being an M -th power in the case of g being separable, semisimple,

regular, and cyclic where g 2 Sp(2m, q),O(m, q)✏ with ✏ 2 {±, 0}. Most of the

cases have been answered using the assumption (M, q) = 1.

In our future work, we will be working with the case (M, q) 6= 1 and also the

general case. We are in the stage of finding a cycle index analogue of the generating

functions. Recall that such cycle index has been provided in work of Jason Fulman.

For example recall that

1 +
1X

n=1

u2n

|Sp(2n, q)|

X

↵2Sp(2n,q)

Y

f=t±1

x
f,�

±
f (↵)

Y

f 6=t±1

xf,�f (↵)

=
Y

f=t±1

 
X

�pm

xf,�±
u|�±|

cSp,f,q(�±)

!
Y

f=f
⇤

f 6=t±1

 
X

�

xf,�

(�(udeg f ))|�|

cGL,t�1,�(qdeg f/2)(�)

!

⇥

Y

{f,f⇤}
f 6=f

⇤

 
X

�

xf,�xf⇤,�
u2|�| deg f

cGL,t�1,qdeg f (�)

!
.

We would like to ask the following question:

Question 4. Does the cycle index for M-th powers in finite symplectic or orthog-

onal group factorizes as above?

Question 5. What will be the asymptotic values of the probability
GM

cc

|G|
where GM

cc

is the number of M-th power element of a particular type (for example semisimple,

regular semisimple)?
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Note that we have mostly concentrated on the cases (M, q) = 1. The case

(M, q) 6= 1 seems more tricky and di�cult. So a question which naturally arises

here is the following.

Question 6. Is there any analogue for the case (M, q) 6= 1 to the results obtained

in this thesis?





Part II

Results in Skew Braces
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Chapter 6

Skew braces

The Yang-Baxter equation first appeared in theoretical physics and statistical me-

chanics in the works of Yang [Ya67] and Baxter [Ba71]. Let A be an associative

algebra over a field, with unit and R be an invertible element of A ⌦ A. For

i, j 2 {1, 2, 3} fix algebra homomorphisms  i,j : A ⌦ A �! A ⌦ A ⌦ A. Then

Yang-Baxter equation for R is given by

R12R13R23 = R23R13R12,

where Rij =  i,j(R). A set theoretic solution to the Yang-Baxter equation is a pair

(X, r), where

r : X ⇥X �! X ⇥X given by (x, y) 7! (⌧x(y), �y(x))

is a bijection, satisfying

(r ⇥ Id)(Id⇥ r)(r ⇥ Id) = (Id⇥ r)(r ⇥ Id)(Id⇥ r).

A solution is said to be involutive if r2 is the identity map. Drinfield proposed

to study the set-theoretic solutions to the Yang-Baxter equation, in an attempt

to classify all the solutions to the Yang-Baxter equation. Note that if (X, r) is a

set-theoretic solution to the Yang-Baxter equation, then it naturally induces a map

from V ⌦2 to itself, where V is the vector space with basis X. Initially, this was

studied by adjoining two groups, namely the structure group and the permutation

group of a solution. Later these two were put together by Rump [Ru07] in a more

natural setting, known as left brace.
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6.1 Skew brace

A left brace is an algebraic structure (B,+,⇥) such that (B,+) is an abelian group

and (B,⇥) is a group, satisfying the left brace property

a⇥ (b+ c) = a⇥ b� a+ a⇥ c,

for all a, b, c 2 B. A solution of Yang Baxter equation also gives some invariants of

links. But if the solution is involutive, it gives a trivial invariant. Thus finding non-

involutive solutions are of much importance. To study the non-involutive solutions

of the Yang-Baxter equation, a parallel theory of left braces was proposed later.

This was further generalized to define a new structure called the left skew brace.

A left skew brace is an algebraic object (B, ·, �) such that both (B, �), (B, ·) are

groups satisfying

a � (b · c) = (a � b) · a�1
· (a � c),

for all a, b, c 2 B where a�1 denotes the group theoretic inverse of a in the group

(B, ·).

Example 6.1.1. 1. Let (G,+) be a group. If we take · = +, then (G,+,+) is

a skew brace.

2. Let (G, ·) be a group. Taking a � b = b · a, we have for all a, b, c 2 G

a � b · (a�1) · a � c = b · a · a�1
· c · a

= b · c · a

= a � (b · c).

Hence (G, ·, �) is a skew brace.

3. [GuVe17, Example 1.5] Let M and N be two groups and � : M �! Aut(N)

be a group homomorphism m 7! �m. Take B = M ⇥N with

(m,n) · (m0, n0) = (mm0, nn0), (m,n) � (m0, n0) = (mm0, n�m(n
0)).

Then note that

(m,n) � ((m0m00, n0n00)) = (mm0m00, n�m(n
0n00)),
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and

((m,n) � (m0, n0))(m�1, n�1)((m,n) � (m00, n00))

=(mm0, n�m(n
0))(m�1, n�1)(mm00, �m(n

00))

=(mm0m00, n�m(n
0)n�1�m(n

00))

=(mm0m00, n�m(n
0n00)),

which shows that (M ⇥N, ·, �) is a skew brace.

4. [SmVe18, Lemma 2.12, Example 2.13] LetA be a group and � : A �! Aut(A)

be a map such that �a�a(b) = �a�b for all a, b 2 A. Then a�b = a�a(b) provides

a skew brace. Setting G = S3 and � : G �! SG given by

�id = �(123) = �(132) = id

�(12) = �(23) = �(13) = c(23),

we get a skew brace of order 6.

Let (B, ·, �) be a skew brace. Then it can be shown that the identity of both

groups (B, �) and (B, ·) are same [SmVe18, Remark 2.4]. Also the following holds

[SmVe18, Lemma 2.14]:

a � (b�1c) = a(a � b)�1(a � c)

a � (bc�1) = (a � b)(a � c)�1a,

for all a, b, c 2 B. For each b 2 B define the map

�b : B �! B, a 7! b�1(b � a).

Then this map is bijective. We have the following.

Theorem 6.1.2. [GuVe17, Proposition 1.9] Let G be a set such that (G, ·) and

(G, �) are two groups. Assume the existence of a map � : G �! SG satisfying

�g(h) = g�1
· (g �h) for all g, h 2 G. Then the following statements are equivalent:

1. G is a skew brace.

2. �g�h(a) = �g�h(a) for all g, h, a 2 G.

3. �g(hh0) = �g(h)�g(h0) for all g, h, h0
2 G.
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Corollary 6.1.3. [GuVe17, Corollary 1.10] Let (G, ·, �) be a skew left brace. Then

the map given by

� : (G, �) �! Aut(G, ·)

g 7! �a,�a(b) = a�1(a � b),

is a group homomorphism.

Suppose A,G are two groups and A is a left G-space by automorphisms. A

bijective 1 cocycle is a bijective map ⇡ : G �! A satisfying

⇡(gh) = ⇡(g)(g⇡(h)),

for all g, h 2 G. Then we have the following

Proposition 6.1.4. [GuVe17, Proposition 1.11] Over a group (A, ·) the following

are equivalent:

1. A group G and a bijective 1 cocycle from G to A

2. A skew left brace structure over A.

Example 6.1.5. Let

D = hr, s : r4 = s2 = srsr = 1i

Q = {±1,±i,±j,±k}

be the dihedral and quaternion groups respectively of order 8. Define the following

map ⇡ : Q �! D

1 7! 1,�1 7! r2,�k 7! r3s, k 7! rs,

i 7! s,�i 7! r2s, j 7! r3,�j 7! r.

Then it can be easily seen that ⇡ is a bijective 1-cocycle.

6.2 Solution to Yang-Baxter equation

Given a skew brace (B, �, ·), let us denote the inverse of b in (B, �) by b. Then we

have the map �a : B �! B from Theorem 6.1.2. Define another map for b 2 B,

to be denoted as ⌧b : B �! B given by

⌧b(a) = �a(b) � a � b.
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Then it can be easily seen that ⌧b is a bijection for all b 2 B. We have the following

theorem

Theorem 6.2.1. [SmVe18, Theorem 4.1] Let B be a skew left brace and r : B ⇥

B �! B ⇥ B be given by

r(a, b) = (�a(b), ⌧b(a)),

for all a, b 2 B. Then (B, r) is a solution to the Yang-Baxter equation.

An another way of producing solution to the Yang-Baxter equation is given by

the following theorem.

Theorem 6.2.2. [GuVe17, Proposition 1.9] Let A be a skew left brace. Define

r : A⇥ A �! A⇥ A, r(a, b) = (�a(b),�
�1

�a(b)
((a � b)�1a(a � b))),

for all a, b 2 A. Then (A, r) is a non-degenerate solution of the Yang-Baxter

equation. Furthermore, r is an involutive solution if and only if (A, ·) is an abelian

group.

Example 6.2.3. Consider a non-abelian group G and consider the skew left brace

(G, ·, ·). Then from the previous theorem a set theoretic solution to the Yang-

Baxter equation is given by (G, r) with

r : G⇥G �! G⇥G, r(a, b) = (b, b�1ab).
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Chapter 7

Connection with Hopf-Galois

structure

Let R be a commutative ring with unity and let H be an R-bialgebra. Then

H will be called an R-Hopf algebra if there is an R-module homomorphism � :

H ! H (the antipode map), which is both an R-algebra and an R-coalgebra

antihomomophism such that:

�(h⌦ h0) = �(h)⌦ �(h0),

��(h) = (�⌦ �)⌧�,

µ(1⌦ �)� = i✏ = µ(�⌦ 1)�,

where � is the comultiplication map, ⌧ is the switch map ⌧(h1 ⌦ h2) = h2 ⌦ h1,

i : R ,! H is the unit map and ✏ : H ! R is the counit map. Now assume

that H is commutative. An R-Hopf algebra H is called a finite algebra if it is

finitely generated and a projective R-module. Now if S is an R-algebra which is

an H-module, then S is called an H-module algebra if

h(st) =
X

h(1)(s)h(2)(t) and h(1) = ✏(h)1

for all h 2 H, s, t 2 S, where �(h) =
P
(h)

h(1)⌦h(2) 2 H⌦H according to Sweedler’s

[Sw68] notation and ✏ : H ! R is the co-unit map.

Then S, a finite commutative R-algebra is called an H-Galois extension over

R if S is a left H-module algebra and the R-module homomorphism

j : S ⌦R H ! EndR(S),
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given by j(s ⌦ h)(s0) = sh(s0) for s, s0 2 S, h 2 H, is an isomorphism. Now we

define a Hopf-Galois structure on a Galois field extension. Assume that K/F is a

finite Galois field extension. An F -Hopf algebra H, with an action on K such that

K is an H-module algebra and the action makes K into an H-Galois extension,

will be called a Hopf-Galois structure on K/F .

7.1 Greither-Pareigis theory and Byott’s trans-

lation

Given a group G we define the holomorph of G as a semidirect product G o 

Aut(G), where  is the identity map. The holomorph of a group G (denoted by

Hol(G)) sits inside Perm(G) (set of permutations on G) as follows

Hol(G) = {⌘ 2 Perm(G) : ⌘ normalizes �(G)}

where � is the left regular representation. We also recall that a subgroup ⇤ ✓

Perm(⌦) is called regular if |⇤| = |⌦| and ⇤ acts freely on ⌦. The following result

is due to Greither and Pareigis.

Proposition 7.1.1. [Ch00, Theorem 6.8] Let K/F be a Galois extension of fields

and � = Gal(K/F ). Then there is a bijection between Hopf-Galois structures on

K/F and regular subgroups G of Perm(�) normalized by �(�) where � is the left

regular representation.

In the proof of the above proposition, given a regular subgroup G  Perm(�)

normalized by �(�), the Hopf-Galois structure on K/F corresponding to G is

K[G]�. Here � acts on G by conjugation inside Perm(�) and it acts on K by

field automorphism, which induces an action of � on K[G]. This G is called the

type of the Hopf-Galois extension. Although Greither-Pareigis theory simplifies

the problem of counting the number of Hopf-Galois structure for a given Galois

extension, the size of Perm(�) is large (|�|!) in general. The next theorem (also

known as Byott’s translation) further simplifies the problem by considering regular

embeddings in Hol(G), which is comparatively smaller in size. From the proof of

[By96, Proposition 1] we have the following:

Let � be a finite group and G be a group of order |�|. Then there is a bijection

between the following sets:
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1. {↵ : G ! Perm(�) a monomorphism, ↵(G) is regular}

2. {� : � ! Perm(G) a monomorphism }.

Let e(�, G) be the number of regular subgroups in Perm(�) isomorphic to G which

is normalized by �(�) i.e. the number of Hopf-Galois structures on K/F of type

G. Let e0(�, G) denote the number of subgroups �⇤ of Hol(G) isomorphic to �,

such that the stabilizer in �⇤ of 1G is trivial. Then we have the following result.

Theorem 7.1.2. [By96, Proposition 1] With the notations as above we have,

e(�, G) =
|Aut(�)|

|Aut(G)|
e0(�, G).

The proof of this theorem explains the relationship between skew braces and

Hopf-Galois structures. We will briefly mention it here.

Let G and N be two groups of same order. Take �G : G �! SG be the left

regular representation. Call an embedding of N in SG to be regular if ↵ : N �! SG

is injective and ↵(N) is a regular subgroup of SG. Then a regular embedding

produces a bijection

↵⇤ : N �! G, n 7! ↵(n) · 1G.

Then the map � : G �! SN given by �(g) = ↵�1

⇤ �G(g)↵⇤ is a regular embedding.

Thus we have a bijection between the sets:

N = {regular embeddings ↵ : N �! SG},

G = {regular embeddings � : G �! SN}.

By Childs’ work [Ch00, pp. 48], this restricts to a bijection among the following

two sets:

N0 = {↵ 2 N : ↵(N) is normalized by G},

G0 = {� 2 G : �(G) ✓ Hol(N)}.

The action of Aut(N) on N0 translates to action on G0, by conjugation inside SN .

Two elements of G0 correspond to the same regular subgroup if and only if they are

in the same orbit under the aforementioned action. Thus the Hopf-Galois structure

with pair of groups (G,N) onK/F correspond bijectively to the Aut(N)-conjugacy

classes of G0. We now state the following result
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Theorem 7.1.3. [SmVe18, Proposition A.3] Let B be a group. Then there is a

bijective correspondence between the classes of regular subgroups of Hol(B) of same

order under Aut(B)-conjugation and the isomorphism classes of skew braces with

additive group B.

Thus we have that for a pair of group (G,N), there exists a Hopf-Galois struc-

ture with Galois group G and type N , if and only if there is a skew brace with N

additive group and G being multiplicative group. In such a case we say that the

pair of group (G,N) is realizable.

Example 7.1.4. 1. [SmVe18, Example A.7] Let G = Cp2 the cyclic group of

order p2. In this case it has been proved that if N is of order pn and Hol(N)

has an element of order pn, then N is cyclic. Using this we have that every

Hopf-Galois structure has cyclic type. Hence for skew brace with multiplica-

tive group Cp2 , the additive group is also Cp2 . Note that the result holds for

any odd prime p and n 2 N.

2. It has been proved that if G is a quasisimple group and (G,N) is realizable

then N ⇠= G [Ts19, Theorem 1.3]. Thus we have that if a skew brace has

simple group as the multiplicative group, then the additive group should be

isomorphic to the group and hence simple group.

7.2 Bijective crossed homomorphism

Let G,N be two groups of same size. Given f 2 Hom(G,Aut(N)), a map g 2

Map(G,N) will be called a crossed homomorphism with respect to f, if it satisfies

g(gh) = g(g) · f(g)(g(h)), for all g, h 2 G.

We denote by Z1

f (G,N), the set of all such bijective maps. Then we have the

following result.

Proposition 7.2.1. [Ts19, Proposition 2.1] For f 2 Map(G,Aut(N)) and g 2

Map(G,N), define

�(f,g) : G �! Hol(N) by g 7! (⇢(g(g)), f(g)).
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Then we have that the regular subgroups of Hol(N) isomorphic to G are given by

the set

{�f,g : f 2 Hom(G,Aut(N)), g 2 Z1

f (G,N)}.

Furthermore, each Hopf-Galois structure arises this way,

Example 7.2.2. 1. Let f0 2 Hom(G,Aut(N)) be the trivial homomorphism.

Then any g 2 Z1

f (G,N) satisfies g(ab) = g(a)g(b). This implies that g is a

group homomorphism. Since g is a bijection , we conclude that

Z1

f (G,N) =

8
<

:
; when G 6⇠= N

Aut(G) otherwise
.

Hence we get that (G,G) is realizable.

2. Let f 2 Hom(G,Aut(N)). Given any n 2 N , consider the principal crossed

homomorphism

gn(a) = n�1
· f(a)(n).

Then gn is injective if and only if Stab(n) = 1G.

We close this chapter by mentioning the following result.

Proposition 7.2.3. [Ts22, Proposition 2.2] Let G,N be two groups such that

|G| = |N |. Let f 2 Hom(G,Aut(N)) and g 2 Z1

f be a bijective crossed homomor-

phism (i.e. (G,N) is realizable). Then if M is a characteristic subgroup of N and

H = g�1(M), we have that the pair (H,M) is realizable.
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Chapter 8

Realizability of Zn o Z2

We start with an elementary observation.

Proposition 8.0.1. Let G be a group of order 2n such that n is odd. Then G has

a unique subgroup of order n.

Proof. Let g 2 G be an element of order 2 (this exists by Cauchy’s theorem).

Consider the following compositions of the maps:

G
�
�! Perm(G)

sgn

��! {±1},

where � represents the left regular representation and sgn is the sign represen-

tation of symmetric group. Note that �(g) = (a1, ga1)(a2, ga2) . . . (an, gan) for

a1, a2, . . . , an 2 G such that gkal 6= am for all k, l,m. Since n is odd, we have

that sgn(�(g)) = �1 and hence sgn � � is surjective. Thus H = ker(sgn � �) is a

subgroup of order n.

To prove that H is unique subgroup of order n, on the contrary assume that

there is another subgroup H 0
6= H of order n. Then consider the following group

homomorphism

' : G �! (G/H)� (G/H 0) ⇠= Z2 � Z2.

Since H 6= H 0, we have that G surjects into Z2 ⇥ Z2. Then 4 divides the order of

the group, which is a contradiction.

Corollary 8.0.2. Let G be a group of order 2kn such that 2 6 |n. If the Sylow-2-

subgroup of G is cyclic then G has subgroups of order 2ln for all 0  l  k.
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Proof. Follows by induction, Proposition 8.0.1 and observing that a subgroup of a

cyclic group is cyclic.

Definition 8.0.3. A finite group G is called a C�group if all the Sylow subgroups

are cyclic. A group G is called almost Sylow-cyclic if its Sylow subgroups of odd

order are cyclic, while either the Sylow-2-subgroup is trivial or they contain a cyclic

subgroup of index 2.

We have the following theorem from Burnside’s work [But55].

Proposition 8.0.4. [But55] Let G be a finite group. Then all the Sylow subgroups

are cyclic if and only if G is a semidirect product of two cyclic groups of coprime

order.

In recent work realizability of Cyclic groups has been characterized by the

following two results. We mention them here as this will be the key ingredient to

classify the same in case of groups of the form Zn o Z2.

Proposition 8.0.5. [Ts22, Theorem 3.1] Let N be a group of odd order n such

that the pair (Zn, N) is realizable. Then N is a C-group.

Proposition 8.0.6. [Ru19, Theorem 1] Let G be a group of order n such that

(G,Zn) is realizable. Then G is solvable and almost Sylow-cyclic.

8.1 On Zn o Z2 skew braces

Proposition 8.1.1. Let N = D2n and (G,N) is realizable. Then G is solvable.

Proof. The non-trivial proper characteristic subgroups of D2n = hr, s : rn = s2 =

srsr = 1i are given by

hrdi, where d|n.

Then for all ↵|n the groupG has a subgroup of order ↵, sayH↵ such that (H↵, hr
n
↵ i)

is realizable. Since G has order 2n and Hn is a subgroup of index 2, then Hn is a

normal subgroup of G. Let n = p�1
1
p�2
2
. . . p�k

k
. Now consider the series

G � Hn � Hn/p1 � Hn/p21
� . . . � H

n/p
�1
1 p

�2
2 ...p

�k�1
k

� 1.

Then each of H↵/H↵/pj is cyclic, hence abelian.
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Theorem 8.1.2. Let N be a group of order 2n, where n is odd and the pair

(Zn o Z2, N) is realizable. Then N ⇠= (Zk o Zl)o Z2 where (k, l) = 1 and lk = n.

Proof. By Proposition 8.0.1, N has a unique and hence characteristic subgroup

Hn of order n. Then by Proposition 7.2.1 there exists a bijective crossed homo-

morphism g 2 Z1

f (Zn o Z2, N) for some f 2 Hom(Zn o Z2,Aut(N)). Hence, by

Theorem 7.2.3 the pair (g�1Hn, Hn) is realizable. Note that Zn o Z2 has unique

subgroup of order n, which is cyclic. It follows that g�1Hn = Zn. This implies that

(Zn, Hn) is realizable. Hence by Proposition 8.0.5 we get that Hn is a C-group,

whence it follows from [But55] that Hn = Zk o Zl for (k, l) = 1, kl = n.

Theorem 8.1.3. Let G be a group of order 2n such that the pair (G,Zn o Z2) is

realizable. Then G = (Zk o Zl)o Z2 for some (k, l) = 1, kl = n.

Proof. Given that the pair (G,ZnoZ2) is realizable, by Proposition 7.2.1 there ex-

ists a bijective crossed homomorphism g 2 Z1

f (G,ZnoZ2) for some f 2 Hom(G,Aut(Zno
Z2)). Since Zn is a characteristic subgroups of Zn o Z2, we get that g�1(Zn) is a

subgroup of G and (g�1(Zn),Zn) is realizable. Then by Proposition 8.0.6, we have

that g�1(Zn) is almost Sylow-cylic. Hence by [But55] g�1(Zn) = Zk o Zl. Hence

the result follows.

Corollary 8.1.4. Let n be an odd number such that Ra(n) is a Burnside number.

Assume that |G| = |N | = 2n and (G,N) is realizable. Then G = Zn o' Z2 if and

only if N = Zn o Z2, where ', : Z2 �! Aut(Zn) are group homomorphisms.

Proof. Let r1, r2 2 N be two numbers such that (r1, r2) = 1 and Ra(r1r2) is a

Burnside number. Then (r1,�(r2)) = 1 (by definition), where � is the Euler’s

totient function. Take i 6= j and i, j 2 {1, 2}. Then the group homomorphism

 : Zri ! Aut(Zrj)

is trivial, which shows that Zri oZrj = Zri �Zrj = Zr1r2 . Hence the result follows

from previous two Theorems.

Remark 8.1.5. It was shown in [ArPa22a, Theorem 1.3], that if G = D2n then

for any � 2 Hom(Z2,Aut(Zn)) the pair (D2n,Zn o� Z2) is realizable. This along

with the previous theorem implies that when Ra(n) is a Burnside number (recall

that m 2 N is called a Burnside number if (m,'(m)) = 1 where ' is the Euler’s

totient function), these are all possible realizable pairs.
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Corollary 8.1.6. Let L/K be a finite Galois extension with Galois group iso-

morphic to D2n where n is odd such that Ra(n) is a Burnside number. Then the

number of Hopf-Galois structures on L/K is

e(D2n) =
nX

m=0

2m�(n�m),

where �(w) is the coe�cient of xw in the polynomial
Q

pu2⇡(n)
(x+ p↵u

u
).

Proof. This follows from Theorem 8.1.4 and [ArPa22a, Corollary 4.1]. Then the

result follows from Theorem 8.1.4 and Remark 8.1.5.

Theorem 8.1.7. Let n 2 N such that n ⌘ 2 (mod 4). Suppose (G,D2n) is realiz-

able. Then there exists a short exact sequence

0 �! Zl o Zk �! G �! Z2 �! 0,

for some (k, l) = 1, kl = 2n.

Proof. Given that the pair (G,D2n) is realizable, we get that there exists f 2

Hom(G,Aut(D2n)) and g 2 Z1

f (G,D2n) corresponding to the regular embedding

of G in Hol(D2n). Take M = hri ✓ D2n, which is a characteristic subgroup of

D2n. Then the pair (g�1M,Zn) is realizable. Hence we have that g�1M ⇠= Zl oZk

for some (k, l) = 1, kl = 2n. Since g�1M is a subgroup of index 2, the result

follows.



Chapter 9

Further plans

In this part, we have mentioned results on skew braces such that one of the additive

or the circle group is isomorphic to Zn o Z2 for the case of n being odd. In the

future we would like to extend our work for the other case, i.e. n being even. We

will be hoping to solve a more intricate question which is as follows.

Question 7. Let G = Zn o Zp where p is a prime. Classify all the groups H of

order np such that (G,H) is realizable or (H,G) is realizable.

77



78



Index

⇤-irreducible polynomial, 11

⇤-symmetric polynomial, 11

M -power polynomial, 27

M -power spectrum of f , 34

M⇤-power SRIM polynomial, 28

M⇤-power spectrum of f , 34

H-Galois extension, 67

H-module algebra, 67

R-Hopf algebra, 67

Abstract root system, 8

A�ne algebra of S, 3

Algebraic group, 4

Algebraic set, 3

Bijective 1 cocycle, 64

Borel subgroup, 8

Byott’s translation, 68

Character, 7

Character group, 7

Co-character, 7

Co-character group, 7

Combinatorial data, 19

Combinatorial data attached to

conjugacy class, 14

Complete root datum, 10

Conjugacy classes of O✏(n,Fq), 16

Conjugacy classes of Sp(2n,Fq), 14

Crossed homomorphism, 70

Cycle index, 23

Cycle index for GL(n,Fq), 24

Cycle index for Sp(2n,Fq), 24

Cycle index for orthogonal groups, 24

Cyclic element, 20
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k
) polynomial, 31
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Finite algebra, 67
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Generating function, 19
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Hopf-Galois structure, 68
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Involutive solution to YBE, 61
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Jordan decomposition of an element,
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Left brace, 62

Left skew brace, 62

Lie algebra of an algebraic group, 8,

9

Noetherian space, 4

Orthogonal central join, 18

Orthogonal group, 15

Orthogonal signed partition, 12

Partition, 12

Radical, 8

Realizable, 70

Reducible subset, 4

Reductive group, 8

Regular element, 20

Regular map, 4

Regular subgroup, 69

Root datum, 8

Self reciprocal polynomial, 11

Semisimple element, 20

Semisimple group, 8
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Separable element, 20

Set theoretic solution to YBE, 61
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Steinberg endomorphism, 9
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Symplectic group, 13

Symplectic signed partition, 12
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Type 1 polynomial, 12
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Unipotent radical, 8
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Yang-Baxter equation, 61
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