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1 ABSTRACT

1 Abstract

The quantum kicked rotor (QKR) is a quintessential model for quantum chaos in floquet systems,
with potential applications in quantum computing and quantum sensor development. In this
semester project report, we investigate the relation between the evolution of the QKR at quantum
resonance conditions and a continuous-time quantum walk in one dimension. We show that the
dynamics of a quasi-periodic rotor at resonance can be realised by temporally varying the transition
probabilities of a continuous-time quantum walk. This correspondence can be used to engineer
initial states of a QKR to realise experimentally relevant distributions for downstream quantum
information processing. To probe the quantum advantage by using the QKR as a system for search
algorithms, we use a projective measurement approach to investigate the statistics of first detection
times (FDT) with the detector placed at desired target sites. For the QKR-continuous-time
quantum walk, the probability of first detection decays like (time)−3 with superimposed oscillations,

while in the classical random walk, the FDT distribution decays monotonically like (time)−
3
2 . We

further show that this advantage can be suppressed in the presence of noisy kicks.
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2 INTRODUCTION

2 Introduction

Periodically driven physical systems have been extensively used to study various phenomena in
nonlinear dynamics, quantum chaos, atomic physics, condensed matter physics, and quantum
information. The classical kicked rotor model, representing a particle constrained to move along
a ring with a time-periodic gravitational kick, can be non-dimensionalized and mapped to the
standard (Chirikov) map, which displays a transition from integrability to chaos for K (kicking
strength) ≥ 0.97 under periodic boundary conditions in phase-space. The corresponding quantum
version, the quantum kicked rotor (QKR) model and its variants, obtained by applying the
correspondence principle, yields two non-dimensional parameters: the kicking strength, K, and
the scaled plank’s constant: h̄s [1]. Under stroboscopic, unitary time-evolution, these systems
display rich-physical phenomena and can be used to study the origin of quantum chaos, dynamical
(or Anderson) localization in condensed matter physics, and recently in the context of quantum
information and computation. With the advent of modern, and increasingly precise measurement
techniques in atom-interferometry and cold-atoms, it is now possible to conduct experiments to
investigate and verify these theoretical predictions.

The theory of Quantum-walks (QWs) plays an essential role in developing novel quantum algorithms.
Quantum walks utilize the quantum mechanical postulates of unitary evolution and property of
superposition to quantize classical random walks, and under certain conditions, endow a quadratic
speed-up over their classical counterpart. Based on the type of temporal evolution, we have
discrete-time (DTQW) and continuous-time quantum walks (CTQW), where-in the former uses
the notion of position-space and coin-space operators, while the latter solely relies on the unitary
evolution of position-space probability amplitudes. There is a deep connection between the
dynamics of the QKR and QWs. At resonance conditions, a quantum kicked rotor performs
a continuous-time quantum walk in the momentum space with the kicking strength of the QKR
linearly proportional to the transition probabilities of a CTQW. In this project, we study the
dynamics of a CTQW determined by the hamiltonian of the kicked rotor in one dimension, derive
a relation in higher dimensions, explore the advantage of using the quantum kicked rotor as a tool
for quantum search protocols, and investigate the quantum advantage using the first-detection
time distribution.
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3 KICKED ROTOR MODEL

3 Kicked Rotor Model

3.1 Classical Kicked rotor

A classical kicked rotor represents a classical point-particle constrained to move on a ring, subjected
to periodic gravitational kicking. We model the external kicking as periodic delta function
potentials (‘Dirac combs’). Between any two successive kicks, the particle undergoes free-particle
dynamics. The Hamiltonian of the system is given by:

H(p, q, t) =
p2

2I
+mgl cos (q)

∑
n∈Z+

δ(t− nτ) (1)

By non-dimensionalization and setting I=1, this reduces to:

H(P,Q, T ) =
P 2

2
+K cos (Q)δτ (t)

The Hamilton’s equation of motion corresponding to the above equation can be found analytically
by integration and further discretized as a difference equation (See Appendix 12.1). This difference
equation is the standard map or Chirikov map first proposed by Boris Chirikov [2].

Pn+1 = Pn +K sinQn (2)

Qn+1 = Qn + Pn+1

Modifying the non-linearity parameter K transitions the system from periodic motion to quasi-periodic,
to local chaos (mixed phase-space) and global chaos. The map transforms to be completely chaotic
for K > Kc ∼ 0.9716, and the diffusion constant (D) is proportional to K2. A more thorough
analysis of the classical kicked rotor is found in [1]

3.2 Quantum Kicked rotor

By applying the correspondence principle to the classical hamiltonian (p → p̂ = −ih̄∇) and
(x→ x̂), the time-independent schrodinger equation for the quantum kicked rotor is given by:

ih̄∂tψ(z, t) = Ĥψ(z, t) =
(
L2
z/2I + V (θ)

)
ψ(z, t)

ih̄
∂

∂t
ψ(z, t) =

(
− h̄

2

2I

∂2

∂z2
+ k cos(θ)

∑
n

δ(t− nτ)

)
ψ(z, t) (3)

where the operators Lz and θ correspond to the z-component of the angular momentum and the
angular direction in the perpendicular plane of the rotor; I is the inertia moment, and τ is the
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3.2 Quantum Kicked rotor 3 KICKED ROTOR MODEL

kicking period. By transforming variables (t → t̃τ/I ), we can identify two quantum-mechanical
parameters, namely, the kicking strength: κ = k/h̄ and the scaled Planck’s constant hs = h̄τ/I.
Without loss of generality we can set I=1 and using these scaled units the nondimensional
Hamiltonian is given by:

Ĥ =
p̂2

2
+ k cos x̂δ1(t) such that [x̂, p̂] = ih̄s (4)

The periodic nature of the potential endows discrete time-translation symmetry to the problem,
and allows us to incorporate floquet theory to describe the unitary dynamics. The evolution
operator for one time period T = 1, can be described by the Floquet unitary operator F [3]:

F = UkickUfree = e−iκ cosxe−ih̄sp
2/2 (5)

|ψ(t+ 1)⟩ = F|ψ(t)⟩

In momentum representation, the eigenvalues of the operator p̂ are integer numbers n ∈ Z, and
the basis functions are the kets |n⟩ satisfying:

p̂|n⟩ = n|n⟩; ⟨x|n⟩ = einx√
2π

(6)

Using [5,6], the Floquet operator in the angular momentum basis {|n⟩, |m⟩} becomes:

⟨n|F |m⟩ = ⟨n|e−iκ cos ze−ip2/2h̄s|m⟩ =
∫ 2π

0

⟨n|x⟩⟨x|e−iκ cosxe−ip2/2h̄s|m⟩

=
e−im

2/2h̄s

2π

∫ 2π

0

ei(m−n)xe−iκ cos(x)

= exp

(
−ih̄sm2

2

)
im−nJm−n(κ) (7)

where Jn(k) is the Bessel function of order n : Jn(z) = (1/2πin)
∫ 2π

0
eiz cosϕeinϕdϕ.

Two principal phenomena studied with the QKR as a model are the dynamical-localization of the
wave function observed in the classically chaotic regime and the condition of quantum resonance.
An insight into the former can sought through the observation that the floquet operator is a
toeplitz matrix i.e, effectively a banded matrix with the matrix elements Jnm(z) → 0 as |m − n|
becomes large. The eigenstates of such a matrix exhibit significant contributions from only a
narrow band of basis states, implying localized excitations, and localization in momentum basis
under time evolution. While extensive literature is available on the former [4, 5], in this work, we
are interested to study the later.
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4 QUANTUM WALKS

3.2.1 Quantum resonances

In the non-dimensionalized hamiltonian of the QKR [4], when h̄s = 4π, the unitary operator that
corresponds to free-evolution (Ufree) becomes equal to unity, and the evolution is only governed
by Ukick. In such a case, the role of Ukick is to impart an additional phase to any initial state
in position basis, such that at every timestep any measurement in the position basis would yield
the initial state. Such a condition is called the primary quantum resonance. The general case of
quantum resonance condition is given by:

h̄s = 4πl; l ∈ 1, 2, .. (8)

The above condition can be physically understood as arising from the following argument: The
energy of the unperturbed rotor is En = n2h̄2/2, where n is the wave number. Transitions between
any two unperturbed levels can take place if energy ∆En = En+1 −En = l′h̄2/2 (l′ = 2n+ 1 is an
integer) is supplied from an external source that supplies photons with energy 2h̄/τ , where τ is
the period of kick. If the energy supplied by l photons matches ∆En, then the quantum resonance
condition (h̄s = h̄τ = 4πl/l′) is satisfied assuming incommensurate l and l′. This is the general
condition for quantum resonance, of which Eq 8 is a special case. An operational choice available
to achieve quantum resonance is via tuning either the planck’s constant h̄ or by tuning kick period
τ . Furthermore, at resonance conditions, the quasi-energies (spectrum of the floquet operator)
exhibit a continuous spectrum which leads to an unbounded increase in energy with time [6].

If h̄s = (2l+1)2π , then quantum anti-resonance can be observed. In this case, if n0 = 2l+1 is an
odd integer, then the time-evolving wavefunction ψ(x, t) acquires a phase that is annihilated at
a successive steps. The initial wavefunction is obtained at intervals of one-time step. Under this
condition, the mean energy oscillates instead of displaying any growth in time (See Fig(??)).

4 Quantum walks

The term “quantum random walks” was first introduced by Y. Aharonov et al., to describe the
quantized analogs of classical random walks or classical Markov chains [7]. A classical Markov chain
is a stochastic process that assumes values in a discrete set and obeys the Markovian property:
the next state of the chain/process only depends on the current state, i.e. it is not influenced by
the past states. Based on the nature of the time variable, classical Markov chains can be of two
types: (1) Discrete-time Markov chains and (2) Continuous-time Markov chains. By quantizing
these markovian chains and allowing for unitary evolution, we can define the quantum versions of
these Markov chains: (1) Discrete-time quantum walks and (2) Continuous-time quantum walks.
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4.1 Discrete-time quantum walk 4 QUANTUM WALKS

4.1 Discrete-time quantum walk

The discrete-time quantum walk is the quantum analog of a discrete-time Markov chain or a
discrete-time random walker. Before we elucidate the quantum case, we briefly discuss classical
random walks. As an example, consider a random walker on a connected-graph: G = (V,E) with
n-vertices (|V | = n) and e-edges (|E| = e). Initially, the walker starts at a particular vertex V0
with deg(V0) = E0 and tosses an E0-dimensional coin. Based on the result of the coin toss, the
walker decides to move to another vertex or continues to stay at V0. At each step, the random
walker has an associated probability distribution, which is the set of probabilities of the walker
being in the vertices or states. The probability distribution for the location of the random walker
at time ‘t’ is described by a vector of the form:

[p1(t), p2(t), ....., pn(t)]
T

where p1(t) is the probability of the walker being at vertex x1 at time t. In a Markov chain,
we cannot precisely tell where the walker will be in the future. However, we can determine
the probability distribution, if we know the transition matrix M, also called probability matrix or
stochastic matrix. If the probability distribution is known at the time ‘t’, we obtain the distribution
at time ‘t+ 1’ by employing the relation: p(t+ 1) =

∑n
j=1Mijpj(t). The matrix M must satisfy

the following properties: all entries must be non-negative real numbers and sum of each column
must be equal to 1. In vector form, we have:

p⃗(t+ 1) = M ⃗p(t)

The quantum walk is constructed by the process of quantization (p → −ih̄∇, E → ih̄∂t). The
state of the quantum system is described by a vector in a Hilbert space and the evolution of
the system is unitary. In the quantum case, the walker’s position n, labels a vector in a Hilbert
space HP with the computational basis {|n⟩ : n ∈ Z}. The evolution of the walk depends on a
“quantum coin” and the associated Hilbert space is HC. The Hilbert space of the system is then
H = HC ⊗HP . At the beginning of the quantum walk,analogous to tossing a coin in the classical
case, we apply the coin operator C to the initial state. C produces a rotation of the coin state. If
the coin is initially described by one of the states of the computational basis, the result may be a
superposition of states. Each term in this superposition will generate a shift in one direction. We
then apply a conditional-shift operator S that results in translation in HP . For a 1D quantum
walk on a line-graph, these operators are given by:

U = S(C ⊗ I) where S = |0⟩⟨0| ⊗

(
∞∑

n=−∞

|n+ 1⟩⟨n|

)
+ |1⟩⟨1| ⊗

(
∞∑

n=−∞

|n− 1⟩⟨n|

)
In Fig(3), we observe that quantum walks display ballistic motion. The standard deviation is
found to be proportional to time ‘t’. Furthermore, the probability distribution for the quantum
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4.2 Continuous-time quantum walk 4 QUANTUM WALKS

walk is spread in the interval [−t/
√
2, t/

√
2], while the classical distribution is a Gaussian centered

at the origin.

4.2 Continuous-time quantum walk

We obtain continuous-time quantum walks by quantizing the classical continuous-time-Markov
chains (CTMC). For a CTMC, if the initial distribution is p⃗(0) and the transition matrix is M,
then p⃗(t) is given by: p⃗(t) = M(t)p⃗(0) whereM can be written as exp(−Ht), whereH is called the
generator of M. For the quantum case, since evolution is constrained to be unitary, we define the
unitary operator as U(t) = exp(−iHt) such that |ψ(t)⟩ = U(t)|ψ(0)⟩ and the probability density
at site ‘k’: pk = |⟨k|ψ(t)⟩|2

Elucidation of a general case:
Consider a random walker on a connected graph G = (V , E) where V(G) is the vertex set and
E(G) is the edge set of the graph G. When time is a continuous variable, the walker can jump
from vertices xi → xj given (xi, xj) ∈ E(G) at any time. We assume a constant transition rate
γ between all vertices to immediate neighbours connected its edges (homogenous and isotropic).
Consider a time evolution, t → t + ϵ. If initially at time ‘t’, the walker is at vertex xi, then at
‘t + ϵ’, the probability that the walker is at one of the xi’s neighbours is γϵdi where ‘di’ is the
degree of vertex xi. The probability of staying back at xi is (1−diγϵ). In the continuous case, the
transition matrix Mij(t) denotes the probability of a random walker at vertex xj to go to xi in a
time interval(t). So for an infinitesimal timestep, ϵ, we have eq[9]. We can also define the auxiliary
matrix “H” for an infinitesimal timestep ‘ϵ’, called the generating matrix as the following:

Mij(ϵ) =

{
1− djγϵ+O(ϵ2), if i = j
γϵ+O(ϵ2), if i ̸= j

Hij =


djγ, if i = j
−γ, if i ̸= j but (i, j) ∈ E(G)
0, if i ̸= j but (i, j) /∈ E(G)

 (9)

Since the process is Markovian, it is possible to show that M(t) = e−Ht (See Appendix 12.2)
So if p⃗(t) = M(t)p⃗(0) then p⃗(t) = e−Htp⃗(0). To obtain the quantum analog of the classical
walk, we recast the vector that describes the probability distribution to a state vector and the
transition matrix to an equivalent unitary operator (U = e−iHt). If the initial condition is |ψ(0)⟩,
the quantum state at time t is ψ(t) = U(t)ψ(0) and the probability distribution is pk = |⟨k|ψ(t)⟩|2.
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5 QUANTUM KICKED ROTOR AS A CONTINUOUS-TIME QUANTUM WALK

5 Quantum kicked rotor as a continuous-time quantum

walk

Consider the case of a continuous-time quantum walk on a line graph. The vertices of such a
regular graph can be labelled by integer points and equation [9] reduces to:

Hγ = −γ
∞∑

n=−∞

|n− 1⟩⟨n| − 2|n⟩⟨n|+ |n+ 1⟩⟨n| (10)

In Appendix 12.3, we derive an analytical expression for the Hγ|0⟩. Further, using [10], we can
compute U(t) = e−iHt and the probability distribution at a general time ‘t’. Here we prove
the equivalence between the QKR at the resonant condition and the CTQW on a 1D line. A
primary observation is that the QKR’s evolution operator at quantum resonance after t kicks can
be interpreted as being generated by a Hamiltonian Hκ = κ cos(θ) acting continuously for a time
‘t’. Using cos θ = (1/2)(exp(iθ) + exp(−iθ)), the similarity with the nearest-neighbour couplings
of the CTQW becomes equivalent. Using momentum eigenstates, the Hamiltonian Hk has matrix
elements:

⟨m|Hk|n⟩ =
1

2π

∫ 2π

0

dθe−imθκ cos θe−inθ =

{
κ/2, if m = n± 1
0, otherwise

}
(11)

Comparing equations [9, 11], for dj = 2, we see that if we choose κ = 2γ, the following relation
holds for the CTQW Hamiltonian Hγ and the “effective” kick hamiltonian Hk, at integer t:

H̄γ = 2γI − H̄κ (12)

We now focus on the probability of being in the nth momentum eigenstate, given the initial state
was |ψ(0)⟩, after t kicks of our QKR, we have:

Pκ(n, t) = |⟨n|U t|ψ0|2 = |⟨n|e−iHκt|ψ0⟩|2

= |⟨n|e−i(2γI−Hγt)|ψ0⟩|2

= |⟨n|eiHγt)|ψ0⟩|2 = Pγ(n,−t)

The probability Pγ(n, t) that the CTQW starting from the same state leads to the same momentum
eigenstate is then, for γ = κ/2 and using Equations.

Pγ(n, t) = Pk(n,−t)

Thus, choosing γ = κ/2 produces a CTQW with a time-reversed probability distribution with
respect to the evolution induced by the QKR, independent of the initial condition. If κ = 2γ is
chosen instead, the two probability distributions would be equal. Thus the probability distribution
of a CTQW, Pγ(n, t), is equal to the one of the QKR at resonance, Pκ(n, t), at κ = 2γ. Therefore,
the simple QKR at principal resonance conditions directly implements a CTQW in the momentum
space.
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7 QUANTUM STATE PREPARATION WITH QKR-CTQW

6 CTQW with a time-dependent hamiltonian

The dynamics of a 3-dimensional kicked rotor can be realised from the 1-dimensional quantum
kicked rotor by temporally varying the kicking strength with incommensurate frequencies [8]. The
kicking strength is varied as :

κ̃ = κ(t) = κ0(1 + ϵ cos(ω2t+ ϕ2) cos(ω3t+ ϕ3)) (13)

while Ĥκ̃ = p2/2+ κ̃ cos(x)δτ (t). Such a quasi-periodic kicked rotor (QPKR) is numerically easier
to simulate since it requires only one spatial dimension, but displays all properties of 3D systems.
In the previous section, we derived the equivalence relation between the QKR and a CTQW. Here,
we develop a relation between the QPKR at resonance and the CTQW by temporally varying the
transition probability, γ(t).
Consider a series of time-modulated kicks (κ1, κ2, ...κT−1) supplied to a QKR at resonance until
time T. Such a QKR exhibits the dynamics of a QPKR and condition(12) is satisfied between two
consecutive kicks. Then the total unitary operator till an integer timestep T for the QKR is given
by:

U(T ) = U(T − 1)U(T − 2)...U(1)
= exp(−iHκ̃(T − 1)) exp(−iHκ̃(T − 2))... exp(−iHκ̃(1))

= exp(−2iγ(T − 1)I − iHγ̃(T − 1)) exp(−2iγ(T − 2)I − iHγ̃(T − 2))... exp(−2iγ(1)I − iHγ̃(1))

=
(
ΠT
l=1 exp(−2iγ̃(l)I)

) (
ΠT
t=1 exp(−iHγ̃(t))

)
= exp

{
−2i(

T−1∑
t=1

γ̃(t))I

}
exp

{
i
T−1∑
t=1

Hγ̃(t)

}
= exp {−2iΓI} exp

{
iH̃γ̃

}
= exp

{
−i(2ΓI − H̃γ̃)

}
Thus, under the condition of 2γ̃ = κ̃, the dynamics of a QPKR at resonance can be realised by
sinusoidally varying the transition probabilities of a CTQW given by the QKR hamiltonian in
momentum space.

7 Quantum state preparation with QKR-CTQW

The probability distributions after some time-evolutions of the QKR at resonance conditions,
or equivalently of a CTQW on the line, show interesting interference patterns, which can be
controlled by the relative phases in the initial states. This allows us to realize various kinds of
final distributions based on initial configurations in the walker’s space. In fig(6), we show how
the probability distribution changes by choosing different values for the respective coefficients.

9



8 DETECTION TIME FOR A QKR-CTQW

Since the symmetry of the delta-function initial state is broken, the parity properties of the Bessel
functions suppress the two external peaks. This leads to a strong interference of the participating
momentum states. In general, the CTQW, or the equivalent QKR evolution at resonance, can be
steered, biased towards one direction, and be made more localized or broader depending only on
the specific choice of the initial state.
Consider the initial state:

ψ0(C̄) =
1

3

1√
2π

(C−1| − 1⟩+ C0|0⟩+ C1|1⟩)

⟨p|ψ0(C̄)⟩ =
1

3

1√
2π

(C−1e
−iθ + C0 + C1e

iθ) (14)

We consider a thermal distribution over three states with all coefficients chosen to be modulus
equal to one ie Cj = eiϕj while setting C0 = 1 by the choice of the global phase.

P1 = J2
n(2γt) + J2

n1(2γt) + J2
n+1(2γt)

P2 = Im[C0C1]Jn(2γt)Jn1(2γt)

P3 = Im[C0C1]Jn(2γt)Jn+1(2γt)

P4 = Re[C1C1]Jn1(2γt)Jn+1(2γt)

P(γ,C̄)(n, t) =
1

3
(P1 + 2P2 − 2P3 − 2P4) (15)

whereP(γ,C̄)(n, t) represents the probability of finding the walker at state ‘n’ at time ‘t’. Delvecchio
et al show how the coefficients in the initial state can be optimized in order to obtain a target
distribution after a given number t of kicks [9]. In particular, any target distribution over N basis
states can be realised, given that a generic superposition of only a few states can be experimentally
realized as the input state. The obtained distributions are of particular relevance for realizing a
quantum search protocol. The initial state C for such a distribution can be obtained by minimizing
the difference between the time-evolved distribution of the QKR at resonance and the desired
target distribution. The maximal width after t kicks can be estimated to be N ≈ πκt and the
final distribution can directly be engineered given the choice of the initial coefficients, the coupling
parameter κ(2γ), and the number of evolution steps.

8 Detection time for a QKR-CTQW

The distribution of first arrival times or hitting times of a classical random walker was first
characterized by Schrodinger through the renewal equation that relates the probability of the first
arrival at a site and the occupation probabilities [10]. For the simple case of an unbiased random

10



8 DETECTION TIME FOR A QKR-CTQW

walker on a 1D lattice, the first-passage time follows a Lévy distribution, decaying like t−
3
2 , and has

immense applications in varied fields like electronics, financial modeling, etc [11–13]. Contrary to
classical random walks, quantum walks (under certain conditions) can provide a quadratic speedup,
and investigating the first arrival times for such walks is paramount to characterize the running
times of quantum search algorithms. Further, recent advances in experimental atom-optics,
single-particle quantum tracking, and measurement have made it possible to realize quantum
walks with larger coherence times and higher dimensionality [14].

To discuss the first-arrival times in quantum walks, we need to distinguish between arrival vs
detection times. Even in the classical case, the two times are different since the time of the
first detection does not imply that the particle first arrived at the site if the sampling was not
continuous. In the quantum case, the postulate of unitary evolution forbids any random motion
while projective measurements necessitate the collapse of the wavefunction post-measurement.
Since we cannot obtain the trajectory of a quantum particle, the problem of arrival times becomes
ill-defined. Therefore, we treat the problem of first detection times under repeated stroboscopic
measurements. In the following sections, we derive the recently proposed quantum-renewal equation
to obtain the statistics of first detection times[15, 16] and apply it to the quantum-kicked rotor
system at resonance.

Measurement protocol
Consider a particle that performs a CTQW governed by the hamiltonian in equation.10 on a line
graph (like a tight-binding model). Our goal is to detect the wave function at a site of interest,
say ‘x’ by performing stroboscopic measurements at a sampling rate of τ .
We start with an initial wavefunction |ψ(0)⟩ and evolve it until time τ . Then, the detection of the
particle at the target site is attempted, and with probability P1 the first measurement is also the
first detection. Computationally, there are two ways to simulate such a procedure: either consider
a fixed threshold probability of detection or consider a uniform random number between (0, 1) and
compare this with the detected probability. The former relies on the fact that the detector samples
continuously with a fixed accuracy and is only used to probe the system at the sampling times
(nτ) while the latter models a more general case. If the particle is detected, the measurement time
is τ . If the particle is not detected, we compute P2 using the quantum renewal equation (12.4).
Then, at time 2τ either the particle is detected with probability P2 or not. Thus, the probability
of measuring the particle for the first time after n = 2 attempts is F2 = (1−P1)P2 . This process
is repeated until a measurement is recorded, and such a measurement is logged as the random
first detection event. To construct the first detection probability, we initialize an ensemble of such
particles and apply the described procedure.

11
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8.1 Fixed detection threshold

Here, we fix a detection threshold (ϵD), and consider the particle to be detected at n such that
px(c̄, nτ) ≥ ϵD where C̄ is the initial wave-function as described in equation.14, x is the detection
site, τ is the sampling time, and ϵD is the detection threshold (characteristic of the detection device
and calibration technique). We sample over different initial states since under unitary evolution, a
fixed initial condition and detection threshold, always yield the same detection time. We consider
a thermal state ψ(0) ∼ [0. . . C−1, 1, C1, . . . ] such that |C−1|2 = |C1|2 = 1. Each Ci can be given
by eiϕ where ϕ ≈ U(0, 2π). We thus obtain a distribution of detection times for QKR-CTQW
over different initial conditions due to the interference of the competing waves from the initial
conditions. [Fig 7]

8.2 Threshold independent detection

The purpose of a threshold for detection probability can be justified by the knowledge of the exact
measurement technique employed. However, a more general threshold-independent detection can
be performed by sampling from a uniform distribution between (0,1) and comparing this value
with the detected probability Pn ie we want {n|pk(nτ) > U(0, 1)} using the quantum renewal
equation[20,21]. Such a process mimics the desired probabilities of Fn = (1−P1)(1−P2)..Pn since
the probability of detection of being more than P1 is equal to the probability of obtaining more than
P1 from a U(0, 1) sampling. In Fig 8, we plot a few results from simulating a threshold-independent
detection process for a quantum-kicked rotor at resonance. We observe a n−3 decay when the
detection is performed at the target site |0⟩.

8.2.1 Detection times in the presence of noise

Quantum walks can be steered to obtain a desired average momentum distribution by sampling
the kicking strengths from a narrow distribution with Bose-Einstein condensates [17]. In Fig 9, we
plot at distribution of detection times when the kicking strengths for the kicked rotor is sampled
from a narrow gaussian distribution as a proxy for small detunings from quantum resonance.

9 Conclusions and Outlook

We have studied the quantum resonance phenomena in periodically-kicked quantum rotor systems
and how such a system can be mapped to a continuous-time quantum walk model in momentum
space. Using the scheme proposed in section 7, such a mapping is useful to dynamically engineer
initial states to obtain desired target distributions through unitary evolutions. When the initial
state violates parity symmetry, a ratchet effect can be seen where the walk is directed towards
one direction and suppressed in the other. The parameter space plots like Fig?? can be used to

12
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prepare thermal states and choose kicking strengths to optimize the detection times at a desired
state. Furthermore, we characterize the condition for quantum advantage in searching for encoded
momentum states using the first detection-time distribution (FDTD). However, such an advantage
is suppressed or lost when the kicks delivered to the rotor are drawn from a narrow gaussian
distribution.
Future work can be focussed in two specific directions. The first involves the investigation of the
behaviour of the FDTD, for example, at long timescales does the noisy kicked-QKR at resonance
display similar behaviour with classical walks? How does the FDTD behave for a time-dependent
kicking strength? What happens to the FDTD when initial states violate parity? Are their
any universal features? The second direction would be two use the QKR-CTQW as a tool for
quantum computing taks. Since discrete-time quantum walks are a model for universal quantum
computation, can we augment the CTQW-QKR-at resonance with a coin-space where the phase
of state |0⟩ can be flipped as a coin at discrete times? The dynamics and entanglement features
of manybody-kicked rotors can be studied. In the context of searching for states, can we learn
the sequence of unitaries to be applied to the QKR-at-resonance to obtain a desired average
momentum state? How should we choose the initial state that breaks parity symmetry for such a
task? We feel that these questions can be addressed within the interdisciplinary fields of quantum
computing, quantum chaos and machine learning.
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12 Appendix

12.1 Chirikov map for classical rotor

The non-dimensionalised form of the classical rotor is : H(p, q, t) = p2/2 − κ cos(q)δ1(t). Using
Hamilton’s equations of motion we get: (1) ṗ = −∂qH = −κ(q)δ1(t) and q̇ = ∂pH = p. Now we
integrate both these equations between two successive kicks: (τn, τn+1).

lim
β→0

∫ τn+1−β

τn−β
dp = − lim

β→0
κ sin q

∫ τn+1−β

τn−β
δ1(t)dt

lim
β→0

[p(τn+1 − β)− p(τn − β)] = −κ sin q

using β → 0, we get:

p(τn+1)− p(τn) = −κ sin(q)

Now we integrate q between successive kick timings:

lim
β→0

∫ τn+1−β

τn−β
dq = lim

β→0

∫ τn+1−β

τn−β
pdt

lim
β→0

[q(τn+1 − β)− q(τn − β)] = lim
β→0

[p(τn+1 − β)(τn+1 − β)− p(τn − β)(τn − β)]

(We use the fact that between two kicks, momentum is conserved.)

q(τn+1)− q(τn) = τn+1p(τn+1)− τnp(τn) = p(τn+1)

Combining both the results, we obtain the Chirikov map:

pn+1 = pn + κ sin(qn) (16)

qn+1 = qn + pn+1 (17)
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To find the general expression for ⟨(∆p)2⟩: From the standard map, we know that p(n) = p(0) +
κ
∑n

i=0 sinxi . Then:

⟨(∆p)2⟩ = ⟨(p(n)− p(0))2⟩

= κ2(
n−1∑
i=0

⟨sin2(xi)⟩+
∑
i ̸=j

⟨sin(xi) sin(xj)⟩

The first average on the RHS evaluates to 1/2 while the second average is equal to 0. Thus we
obtain the diffusive behaviour relation: ⟨(∆p)2⟩ = 1

2
κ2n

12.2 Generator of Transition Matrix

Let M be the stochastic matrix for a continuous time random walk. Due to the property of
markovity, a time-evolution of ϵ can be decomposed into:

Mij(t+ ϵ) =
∑
k

Mik(t)Mkj(ϵ)

= Mij(t)Mjj(ϵ) +
∑
k ̸=j

Mik(t)Mkj(ϵ)

= Mij(t)[1−Hjj] +
∑
k ̸=j

Mik(t)Hkj(t)

1

ϵ
(Mij(t+ ϵ)−Mij(t)) = −Hjj +

1

ϵ

∑
k ̸=j

Mik(t)Hkj

lim
ϵ→0

dMij(t)

dt
= −

∑
k

HkjMik(t)

Thus, we can write M = e−Ht

12.3 Calculations for the Distributions of CTQW

In this section we calculate explicitly the distribution of the CTQW for the system initialized in
the zero momentum state |0. As an exercise, we leave it to the reader to verify the following by
mathematical induction:

H̄t
γ|0⟩ = γt

t∑
n=−t

(−1)n
(

2t

t− n

)
|n⟩
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Our aim is to compute U(t)|0⟩. We begin by expanding the operator as:

U(t)|0⟩ = e−iH̄γt =
∞∑
k=0

(−iH̄γt)
k

k!
=

∞∑
k=0

(−it)k

k!

(
γk

k∑
n=−k

(−1)n
(

2k

k − n

)
|n⟩

)
This can be solved by interchanging the summation orders are rewriting as:

U(t)|0⟩ =
∞∑

n=−∞

∞∑
k=|n|

(−iγt)k

k!
(−1)|n|

(
2k

k − n

)
|n⟩

=
∞∑

n=−∞

exp(i
π

2
|n|) exp(iπ

2
|n|)

∞∑
k=|n|

(−iγt)k

k!
(−1)|n|

(
2k

k − n

)
|n⟩

We now use the Bessel function identity:

exp(−2iγt)J|n|(2γt) = exp(i
π

2
|n|)

∞∑
k=|n|

(−iγt)k

k!
(−1)|n|

(
2k

k − n

)

we obtain: U(t)|0⟩ =
∞∑

n=−∞

exp(i
π

2
|n| − 2iγt)J|n|(2γt)|n⟩

From this expression, we can evaluate the probability distribution at a general time ‘t’ as :

Pγ(n, t) = |⟨n|U(t)|0⟩|2 = |Jn(2γt)|2

12.3.1 Initial states for obtaining distributions

We have used the following initial states to obtain the distributions in Fig??. We work with a
basis size of 256x256. The unitary matrix is obtained using equation7. Each Ci is the values of
the initial state phase described in equation14.

C1 = [1] C2 = [1, 1,−1] C3 = [1j, 1,−1j]

C4 = [1j, 1, 1j] C5 = [exp(−iπ/5), 1, exp(−iπ/5)]) C6 = [1, 1, 1,−1, 1]

C7 = [0.40, 0.75, 0.52, 0.06] C8 = [0.23, 0.67, 0.67, 0.23] C9 = [0.48, 0.73, 0.48]

12.4 Quantum renewal equation

In this section, we investigate the probability of detecting a quantum particle undergoing a
continuous time quantum walk according to equation 10. We perform stroboscopic measurements
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at the target site ‘x’ at discrete times: {τ, 2τ, ...nτ} until the detector records the particle. The
measurement provides two possible outcomes: either the particle is at the target site or not.
Initialy, the system is prepared in a state |ψ(0)⟩. Consider the first measurement, at time τ .
At τ− = τ − ϵ with ϵ → 0 being positive, the wave function is |ψ(τ−⟩ = U(τ)|ψ(0)⟩ where
U = exp(−iHt/h̄). Putting h̄ = 1, the probability of finding the particle at ‘x’ is given by:
P1 = |⟨x|ψ(τ−)⟩|2. If the measurement is positive, then the particle is said to be found at
‘x’, and the first detection time (FDT) is tf = τ . If the particle is not detected (occurs with
probability 1 − P1), then the quantum system is evolved for another sampling time τ . Post this
measurement, the state of the system is |ψ(τ+)⟩ = (1−|x⟩⟨x|)/(

√
1− P1)|ψ(τ−)⟩. In essensce, the

measurement nullifies the wave functions on ‘x’ and maintains the relative amplitudes of finding the
particles outside the spatial domain of measurement device. Now, just before the time of second
measurement, the state of the system is: ψ(2τ−) = U(τ)|ψ(τ+)⟩. The probability of finding the
particle at ‘x’, given that the first measurement returned null is: P2 = |⟨x|U(τ)|ψ(τ+)⟩|2.
To obtain a more general expression, we define the projection operator, D̂ = |x⟩⟨x|. This enables
us to write : P2 =

|⟨x|U(τ)(1−D̂)U(τ))|ψ(0)⟩|2
1−P1

. This iteration can be continued to obtain the expression:

Pn =
|⟨x|[U(τ)(1− D̂)]n−1U(τ)|ψ(0)⟩|2

Πn−1
i=1 (1− Pi)

(18)

We define the first detection wave function as:

|θn⟩ = U(τ)[1− D̂U(τ)]n−1|ψ(0)⟩ (19)

or θn⟩ = U(τ)[1 − D̂]n−1|θ1. This leads us to a general expression for Pn, the probability of first
detection at the ‘n’ measurement, given the first ‘n-1’ measurements as null.

Pn =
⟨θn|D̂|θn⟩

Πn−1
j=1 (1− Pj)

(20)

To simulate this process, we sample a uniform random number between (0,1) and compare it with
P1, if the particle is detected, the measurement time is τ . If the particle is not detected, we
compute P2. We perform the procedure again to comapre a random number from U(0,1) with P2,
if P2 is larger, the first detection time is 2τ . The probability of measuring the particle for the first
time after n = η attempts is then : Fη = (1− P1)(1− P2)...Pη = ⟨θη|D̂|θη⟩.
We define the amplitude of first detection as ϕn = ⟨x|θn such that Fn = |ϕn|2. Using the expression
for θn, we get: ϕ1 = ⟨x|U(τ)|ψ(0)⟩, ϕ2 = ⟨x|U(τ)|ψ(0)−ϕ1⟨x|U(2τ)|x⟩, and by induction we obtain,
our main result, the quantum renewal equation.:

ϕn = ⟨0|U(nτ)|ψ(0)−
n−1∑
j=1

ϕj⟨0|U [n− j]τ ]|x⟩ (21)
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ϕn is the amplitude for being at site ‘x’ at time nτ in the absence of measurements, from which
we subtract n − 1 terms related to the previous history of the system. The intuitive idea is that
the condition of non-detection in previous measurements translates into subtracting wave sources
at the detection site |x⟩ following the jth detection attempt. The evolution of that wave source
from the jth measurement onwards is described by the free Hamiltonian, hence, ⟨x|U [(n− j)τ ]|x⟩
which yields the amplitude of first detection at ‘x’ in the time interval (jτ, nτ).
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13 Figures

Figure 1: Evolution of the Quantum kicked rotor for different h̄s. When h̄s is an integral
multiple of 4π, quantum resonance is observed and the initial state |0⟩ spreads ballistically. For
incommensurate values of h̄s/4π, we observe dynamical localisation of states.
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Figure 2: Dynamics of Quantum kicked rotor at resonance. At resonance, the floquet spectrum
is continuous and this leads to a quadratic growth in average energy of the system ⟨E⟩.
For incommensurate h̄/4π, the average energy saturates due to localization. For the case of
anti-resonance, the average energy oscillates between two values since successive evolutions yield
the initial state.

21



13 FIGURES

Figure 3: Left:Probability distribution after 100 steps of a quantum walk with the Hadamard
coin starting from the initial condition: ψ(0)⟩ = (2/

√
2)(|0⟩ − i|1)|n = 0⟩. Right: Probability

distribution after 100 steps of a quantum walk with the Hadamard coin starting from the initial
condition |ψ(0)⟩ = |0⟩. (Source: [18])
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Figure 4: Top: The probability distributions of the CTQW and the QKR at resonance. For κ = 2γ
and h̄s = 4π, both systems follow the same dynamics and the resultant probability distributions
superpose. Bottom: The standard deviation in a CTQW is ∝ t indicative of ballistic motion.
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Figure 5: Time-dependent QKR-CTQW. Here the kicking strength κ = 2γ is time-dependent and
given by eq13. By choosing the optimum values of ϵ, γ0, almost any target distribution can be
realised. The dynamics can is analogous to the quasiperiodic kicked rotor system.
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Figure 6: Quantum state preparation with QKR-CTQW. Using different initial conditions, the
desired target distribution can be obtained after certain unitary evolutions. Values of each Ci is
mentioned in Appendix(12.3.1)
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13 FIGURES

Figure 7: Distribution of detection times for different initial configurations of the form:
[0, ...C−1, 1, C1, ...0]. We parameterize C−1 = exp iϕ−1 and C1 = exp iϕ1. Each plot corresponds to
different kicking strengths (2γ0), the same target state |n⟩ = 80, and detection strength ϵ = 0.0013.
The heatmap shows the distribution of hitting times with the initial phases {ϕ−1, ϕ1. Thse plots
can be used to design initial states to optimize the detection times.
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Figure 8: Detection time distribution for a QKR at resonance using the renewal equation. We
detection the probability of measuring the particle at the origin after each sampling time (Here,
we use τ = 3). We obtain a power law decrease with an exponent of ≈ −2.86. To obtain points
beyond detection time > 28, we need to solve larger systems, for higher sampling times. Such a
behaviour was first characterised in [19]
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13 FIGURES

Figure 9: Detection time distribution for a QKR at resonance when the kicking strength is coherent
and when sampled from a narrow Gaussian distribution with mean γ = π/6 and σ = 0.01. We
observed strong oscillations for noisy kicks. Such systems can be studied for longer measurement
times to verify if they also exhibit quantum advantage.
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13 FIGURES

Figure 10: Detection time distribution for a target state i.e the detector is placed at the target
state and the initial state is |ψ(0)⟩ = |0 (Top: |n⟩ = 20) for noisy and coherent kicks. The second
graph is obtained from a more comprehensive study [19]. ξ represents the target state. A universal
behavior for detection times can be observed by rescaling Fn/ξ in the bottom plot.
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