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Abstract

The objective of this project is to examine the literature on the pricing of American options
in some theoretical market models. The initial motivation was to examine the pricing of
American options in a semi-Markov regime-switching model, which did not become possible
due to the time constraints. This thesis presents a survey of literature I have covered in
this regard. In the first chapter, some theorems and results from stochastic calculus, needed
for understanding the literature, are summarised. In the second chapter contingent claims,
hedging, and stochastic representations of option prices are examined. The third chapter
examines literature about pricing American options under a regime-switching model. Since it
is often a difficult task to get closed-form solutions for pricing options, certain approximation
methods are listed.
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Definitions

Definition 0.1. A filtered probability space is a probability space (Ω,F , P ) with a filtration
defined on it. A filtration {Ft}t is a family of sub-σ-algebras of F indexed by t ∈ R+ for
which s ≤ t =⇒ Fs ⊆ Ft holds true.

Definition 0.2. Let (Ω,F , {Ft}t, P ) be a filtered probability space. A process X = {Xt}t
defined on it is called a Ft martingale if the following hold for all 0 ≤ s ≤ t <∞
(1) X is {Ft}t-adapted (2) E(|Xt|) <∞ (3) E(Xt | Xs) = Xs almost surely.
X is called a sub(super)-martingale if (1) and (2) hold and the following holds.
(4)E(Xt | Xs) ≥ (≤) Xs almost surely.

Definition 0.3. Consider a measure space (Ω,F , P ). Consider a family of real valued
measurable functions f = (f)i∈I defined on it. A real valued measurable function g is called
the essential supremum of f , if g ≥ fi (a.s.) ∀i ∈ I, and for another real valued measurable
function h, h ≥ fi (a.s.) ∀i ∈ I implies h ≥ g almost surely.

Definition 0.4. Let (Ω,F , {Ft}t, P ) be a filtered probability space. A non-negative valued
random-variable τ is called a stopping time with respect to the filtration {Ft}t if τ−1([0, t]) ∈
Ft, ∀0 ≤ t <∞.

Definition 0.5. Let (Ω,F , {Ft}t, P ) be a filtered probability space. For 0 ≤ t ≤ T ≤ ∞,
St,T denotes the family of Ft-stopping times τ that satisfy t ≤ τ ≤ T almost surely.

Definition 0.6. Let (Ω,F , {Ft}t, P ) be a filtered probability space. An Ft- adapted process
X = {Xt}t is called a local martingale if there exists a sequence of non-decreasing stopping
times (τn)n∈N which satisfies the following.
(1) P ( lim

n→∞
τn = ∞) = 1.

(2) The stopped process Xτn. given by Xτn
t = Xmin(t,τn), is an {Ft}-martingale for all n ∈ N.
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Definition 0.7. Let (Ω,F , {Ft}t, P ) be a filtered probability space. An Ft- adapted process
X = {Xt}t is called a semi-martingale if it admits the following decomposition

Xt =Mt + At

here M = {Mt}t is a local martingale, and A = {At}t is a Ft-adapted RCLL process of
bounded variation.
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Introduction

A contingent claim is a tradeable financial entity whose value, as the name suggests, is
contingent on something else. Usually, this ‘something else’ is a stock. Since the behavior
of the stock prices themselves are, to the most extent, unpredictable, it becomes a challenge
to determine the price of a contingent claim with a stock as the underlying asset. One can,
however, assume a specific mathematical distribution of stock prices and try to evaluate the
price of a contingent claim. Under certain mathematical conditions imposed on the market
model that make economic sense, it is a challenging problem to price the contingent claims.
We look at two types of contingent claims here, namely European contingent claims and
American contingent claims. Each claim is defined by a time of maturity, a payoff function,
and an exercise criterion. Options are particular types of claims that interest us. European
options can only be exercised at the time of maturity. In contrast, an American option can
be exercised on or before maturity. This makes the problem of pricing an American option
mathematically interesting due to the added layer of complexity with the early exercise
option. Pricing of American options also has practical significance due to their extensive
trading in real security markets.

A well-accepted theoretical framework for pricing the options was first developed for
European-style options by Black, Scholes, and Merton [4, 18]. The first one to explicitly
present a rigorous pricing theory for American-styled claims was Bensoussan [2]. The earlier
works in this direction include McKean [17] and Moerbeke [19]. Bensoussan, in his paper,
presented a set of properties motivated by an economic sense to be satisfied by the value
process of the contingent claim, and showed that they characterize one and only one value
function. Using “penalisation method,” the optimal stopping problem for the exercise time
was addressed. Unfortunately, this method limited the scope by putting restrictions on the
regularity and boundedness of the payoff function that excluded even a simple American call
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option. Karatzas [15] built up on this model and employed the “martingale” treatment of
the optimal stopping problem(refer to [9] for details). They presented a hedging strategy
for American contingent claims where the fair value of the claim was the smallest value of
wealth that allowed the construction of the said hedging strategy.

Extensive research has been done to study the extension of Black-Scholes-Merton market
models with Markov-modulated regime switching. Regime-switching models allow certain
simplistic random variability of market parameters within finitely many possible states.
Such models have been heavily studied in finance literature following the influential work of
Hamilton [12]. In these, generally, the market parameters are modeled using Markov pure
jump processes, whose states correspond to various Market regimes. Moreover, if the asset
price evolves as a geometric Brownian motion (GBM) during the inter-transition period, such
processes are called Markov-modulated geometric Brownian motion (MMGBM). This model
gives rise to an incomplete market, where the fair price of a derivative is not unique. Many
authors have studied European style options under such a market model, including [1, 6, 8,
10]. The fair pricing of American-style options has also been addressed by several authors,
including [5, 23, 14]. [5] provides an approximate solution to the pricing of American options.
Zhang [23] gives an exact closed-form solution for a perpetual American put option with
regime switching, an option with no expiry date. There are also some further generalizations
of asset dynamics, considered by several authors by introducing jump discontinuities in the
asset price process, with or without Markov regimes. See, for example, Merton [18], and [22]
for pricing European style options on such market model. On the other hand, Huyên Pham,
[20], and Zhang [24], for example, evaluate the price of an American option when the price
of the underlying asset follows a jump-diffusion model.

Original contribution In this thesis we mention in detail certain parts of the litera-
ture mentioned above. We have tried to fill in small gaps of proofs that are left for one’s
own understanding, and provide corrections wherever we have found mathematical inaccu-
racies. We have compiled the results of stochastic calculus and the literature on American
option pricing that would serve as an introduction to one trying to understand the pricing
of American contingent claims.
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Chapter 1

Pertinent Theorems and Results of
Stochastic Calculus

1.1 Girsanov theorem.

Throughout this theorem we assume (Ω,F , {Ft}, P ) to be a probability space equipped with
a filtration which satisfies the usual conditions. All the processes are defined on it unless
said otherwise.
We define some processes W , X, Z as below:

• W = {W (1)
t , . . . ,W

(d)
t ,Ft; 0 ≤ t <∞} is a d-dimensional Brownian motion.

• X = {X(1)
t , . . . , X

(d)
t ,Ft; 0 ≤ t < ∞} is a vector valued measurable and adapted

process which satisfies P
[∫ T

0
(X

(i)
s )2ds <∞

]
= 1 for all 1 ≤ i ≤ d, ∀ 0 ≤ T <∞.

• Define, ∀ 0 ≤ t < ∞, Zt(X) = exp
[∑d

i=1

∫ t

0
X

(i)
s dW

(i)
s − 1

2

∫ t

0
||Xs||2ds

]
. Set Z =

{Zt(X)}t.
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Note that the term in the exponent is a semi-martingale, so Ito’s rule applied on {Zt(X)}
with F (x) = ex gives us :

Zt(X) = 1 +

∫ t

0

d∑
i=1

Zs(X)X(i)
s dW (i)

s +

∫ t

0

Zs(X)

(
−1

2
||Xs||2

)
ds+

1

2

∫ t

0

Zs(X)||Xs||2ds.

(1.1)

Hence Z satisfies,

Zt(X) = 1 +

∫ t

0

d∑
i=1

Zs(X)X(i)
s dW (i)

s (1.2)

for all 0 ≤ t < ∞, and so is a continuous local martingale. It can be shown that if X is
bounded then, {Zt(X)} is in fact a continuous martingale.

• Assume {Zt(X)} is a martingale. Define, for each T with 0 ≤ T <∞ a new probability
measure P̃ on (Ω,FT ) as follows:

∀ A ∈ FT , P̃ (A) = E(1AZT (X)) (1.3)

we can check it is indeed a probability measure as E(Zt(X)) = E(Z0(X)) = 1 for all
0 ≤ t <∞.

Theorem 1.1. Given that {Zt(X)} is a martingale, define W̃ = {W̃ (1)
t , . . . , W̃

(d)
t ,Ft; 0 ≤

t <∞} as follows:

W̃
(i)
t ≜ W

(i)
t −

∫ t

0

X(i)
s ds 1 ≤ i ≤ d, 0 ≤ t <∞.

Then for each T ∈ [0,∞), {W̃t,Ft; 0 ≤ t ≤ T} is a d-dimensional Brownian motion on
(Ω,FT , P̃ ).

Lemma 1.2. Assume {Zt(X)}t is a martingale. Let, ẼT (.) be the expectation operator under
the measure P̃T (.), then for 0 ≤ s ≤ t ≤ T , for a Ft measurable random variable Y , which
is integrable with respect to the measure P̃T (.) the following holds:

ẼT [Y | Fs] =
1

Zs(X)
E [Y Zt(X) | Fs] , a.s. P and P̃T . (1.4)
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Proof. Consider A ∈ Fs, we have:

ẼT

{
1A

1

Zs(X)
E [Y Zt(X) | Fs]

}
= E

{
1A
ZT (X)

Zs(X)
E [Y Zt(X) | Fs]

}
= E

{
E

{
1A
ZT (X)

Zs(X)
E [Y E[ZT (X) | Ft] | Fs] | Fs

}}
= E

{
1A

1

Zs(X)
E [Y ZT (X) | Fs]E {ZT (X) | Fs}

}
= E {1AE [Y ZT (X) | Fs]}
= E [1AY ZT (X)] = ẼT [1AY ] .

Since A was chosen arbitrarily from Fs, by the definition of conditional expectation the
lemma holds.

Lemma 1.3. Let M c, loc
T be the set of all continuous local martingales M = {Mt,Ft ; 0 ≤

t ≤ T} on (Ω,FT , P ) with M0 = 0 almost surely. Let M̃ c,loc
T be defined the same way, but

on (Ω,FT , P̃ ).
Claim 1. Fix 0 ≤ T <∞. If M ∈ M c,loc

T , then the process M̃ , given by

M̃t ≜Mt −
d∑

i=1

∫ t

0

X(i)
s d

〈
M,W (i)

〉
s
,Ft; 0 ≤ t ≤ T (1.5)

is in M̃ c,loc
T .

Claim 2. If N ∈ M c,loc
T and

Ñt ≜ Nt −
d∑

i=1

∫ t

0

X(i)
s d

〈
N,W (i)

〉
s
; 0 ≤ t ≤ T, (1.6)

then
⟨M̃, Ñ⟩t = ⟨M,N⟩t; 0 ≤ t ≤ T, a.s. P and P̃T . (1.7)

Here the proof is provided for the case where X, Z(X), M and N are bounded in t and ω.
M andN are also assumed to have bounded quadratic variations. For the proof of the general
case one can refer to [16].
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Proof. From Kunita Watanabe theorem, [16]

∣∣∣∣∫ t

0

X(i)
s d

〈
M,W (i)

〉
s

∣∣∣∣ ≤ (∫ t

0

1.d⟨M⟩t
) 1

2

·
(∫ t

0

(
X(i)

s

)2
d⟨W (i)⟩s

) 1
2

, (1.8)

∣∣∣∣∫ t

0

X(i)
s d

〈
M,W (i)

〉
s

∣∣∣∣2 ≤ ⟨M⟩t ·
∫ t

0

(
X(i)

s

)2
ds. (1.9)

Thus, t 7→
∣∣∣∫ t

0
X

(i)
s d

〈
M,W (i)

〉
s

∣∣∣ is bounded. Since, M̃t ≜Mt−
∑d

i=1

∫ t

0
X

(i)
s d

〈
M,W (i)

〉
s
, M̃

is also bounded. Consider the process Z(X)M̃ . From integration by parts formula we have
for each 0 ≤ t <∞:

Zt(X)M̃t =

∫ t

0

Zu(X)dMu +
d∑

i=1

∫ t

0

M̃uX
(i)
u Zu(X)dW (i)

u . (1.10)

Due to the boundedness of Z, M andX, the process Z(X)M̃ as is a P -martingale. Therefore,
for 0 ≤ s ≤ t ≤ T , we have from Lemma 1.2:

ẼT

[
M̃t | Fs

]
=

1

Zs(X)
E
[
Zt(X)M̃t | Fs

]
= M̃s, a.s. P and P̃T . (1.11)

Thus, M̃ is a P̃ -martingale. Which implies, M̃ ∈ M̃ c, loc. .

From integration by parts formula we have for each 0 ≤ t <∞

M̃tÑt − ⟨M,N⟩t =
∫ t

0

M̃udNu +

∫ t

0

ÑudMu −
d∑

i=1

[∫ t

0

M̃uX
(i)
u d

〈
N,W (i)

〉
u

+

∫ t

0

ÑuX
(i)
u d

〈
M,W (i)

〉
u

] (1.12)

almost surely, we also have:

Zt(X)
[
M̃tÑt − ⟨M,N⟩t

]
=

∫ t

0

Zu(X)M̃udNu +

∫ t

0

Zu(X)ÑudMu

+
d∑

i=1

∫ t

0

[
M̃uÑu − ⟨M,N⟩u

]
X(i)

u Zu(X)dW (i)
u .

(1.13)

This last process is a P -martingale as Zs, Ñ , M̃ are bounded. We have from Lemma 1.2 for

8



0 ≤ s ≤ t ≤ T ,

ẼT

[
M̃tÑt − ⟨M,N⟩t | Fs

]
= M̃sÑs − ⟨M,N⟩s; a.s. P and P̃T . (1.14)

Hence, we have ⟨M̃, Ñ⟩t = ⟨M,N⟩t; 0 ≤ t ≤ T , a.s. P̃T and P .

We now give the proof of the Theorem 1.1 ( following [16]).

Proof. We show that the continuous process W̃ on
(
Ω,FT , P̃T

)
satisfies the hypotheses of

P. Lévy’s criteria for being a d-dimensional Brownian motion [16].
W̃ = {W̃ (1)

t , . . . , W̃
(d)
t ,Ft; 0 ≤ t < ∞} is a continuous Rd-valued process adapted to the

filtration Ft by definition, as each component of W̃ is defined as :

W̃
(k)
t ≜ W

(k)
t −

∫ t

0

X(k)
s ds 1 ≤ k ≤ d, 0 ≤ t <∞. (1.15)

For each component 1 ≤ k ≤ d the process M̃ (k)
t is defined as follows :

M̃
(k)
t = W̃

(k)
t − W̃

(k)
0

= W̃
(k)
t .

From Lemma 1.3 we have, {W̃ (k)
t } is a {Ft} adapted continuous local martingale. Lemma

1.3 also implies that the cross variations of the components is :

〈
W̃ (j), W̃ (k)

〉
t
=
〈
W (j),W (k)

〉
t
= δj,kt; 0 ≤ t ≤ T a.s. P̃T and P. (1.16)

Thus, for each T ∈ [0,∞), {W̃t,Ft; 0 ≤ t ≤ T} is a d-dimensional Brownian motion on
(Ω,FT , P̃ ).

9



1.2 Doob’s regulartiy theorem

Theorem 1.4. Consider a filtered probability space (Ω,F , {Ft}t, P ) with a filtration that
satisfies usual conditions. Let Y = {Yt}t≥0 be a {Ft} adapted supermartingale defined on it.
If the map t 7→ E(Yt) is right continuous for t ≥ 0, then there exists a version of Y whose
paths are right continuous almost surely.

The proof of the above theorem will be presented at the end of this subsection. First
let’s define a few terms and notations.

For a ≥ b ∈ R, let lim
a⇊b

be the notation for the right limit, limit as a approaches b from

the right. Similarly lim
a⇈b

for left limits with a ≤ b ∈ R.

A function F : Q+ → R is regularisable if

a)lim
u⇊t

Fu exists for all t ≥ 0

b)lim
u⇈t

Fu exists for all t > 0.

Let G = {ω ∈ F : the map t 7→ Yt(ω)is regularisable}. Define X = {Xt}t≥0 as follows:

Xt(ω) =

 lim
u⇊t

Yu if ω ∈ G

0 otherwise
(1.17)

It can be shown that P (G) = 1. Check Theorem 65.1 of [21] for the proof.

Lemma 1.5. Let {q(n) : n ∈ −N} be a sequence of rationals and q(n) ⇊ t as n ⇊ −∞.
With Y defined as in Theorem 1.4. The following holds:

lim
q(n)⇊t

Yq(n) exists a.s. and in L1(P ). (1.18)

Proof. Notice that (Yq(n),Fq(n)) is a supermartingale with sup
n
E(Yq(n)) finite. Thus we can

apply Levy-Doob downward lemma (Lemma 63.7 in [21]) to the supermartingale Yq(n). The
result follows.

10



Proof of Theorem 1.4. We first prove X as defined above is a Ft adapted supermartignale.
Next we show that Xt = Yt almsot surely.

Consider v ≥ t ∈ R and a sequence q(n) of rational numbers v > q(n) ⇊ t.

E(Yv | Fq(n)) ≤ Yq(n) (as Y is a supermartingale)

=⇒ E(Yv | Ft+) ≤ lim
q(n)⇊t

Yq(n) = Xt (from Lemma 1.5)

=⇒ E(Yv | Ft) ≤ Xt (from right continuity of Ft).

Now consider u ≥ t ∈ R and a sequence q(n) of rational numbers u ≤ q(n) ⇊ u. Again using
Lemma 1.5 and L1 right-continuity of conditional expectation we get from above

lim
n→−∞

E(Yq(n) | Ft) ≤ lim
n→−∞

Xt

E( lim
n→−∞

Yq(n) | Ft) ≤ Xt

E(Xu | Ft) ≤ Xt.

Thus, X is a {Ft} supermartingale.

Consider u ≥ t ∈ R we have,

E(Yu | Ft) ≤ Yt

lim
u→t

E(Yu | Ft) ≤ lim
u→t

Yt

E(lim
u→t

Yu | Ft) ≤ Yt

E(Xt | Ft) ≤ Yt.

Since X is an Ft adapted process, we get Xt ≤ Yt almost surely.

11



Given that t 7→ E(Yt) is right continuous and by Lemma 1.5, we have, for t ∈ [0,∞)

lim
u⇊t

E(Yu) = E(Yt) and

lim
u⇊t

E(Yu) = E(Xt)

=⇒ E(Xt) = E(Yt). (1.19)

From equation (1.19) and the result that Xt ≤ Yt almost surely, we get Xt = Yt almost
surely. By construction X has all paths right continuous. Thus the theorem is proved.
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1.3 Fakeev’s results on optimal stopping

Theorem 1.6. Consider a filtered probability space (Ω,F , {Ft}t, P ), and a right continuous
adapted process X defined on it. Assume X satisfies, E(X−

t ) <∞, where X− = max [0,−X]

is the negative part of the process. Let, Ss denote the class of stopping times with respect to
{Ft}t that satisfy s ≤ τ(ω) < ∞ almost surely. Let, f denote the minimal right continuous
supermartingale process that satisfies ft ≥ Xt almost surely, for all 0 ≤ t <∞. The following
hold:

fs = es.sup
τ∈Ss

E(Xτ |Fs) (1.20)

sup
τ∈Ss

E(Xτ ) = E(fs). (1.21)

Lemma 1.7. A family of functions is said to admit needle-like variation if the functions
{hi}i∈I satisfy the following condition: for any hl and hk in the family, and any B ∈ F , the
function hd = hl1B + hk1Bc is also in the family. Here 1B represents the indicator function
on a set B.
Consider a family of integrable functions {hi}i∈I admitting needle-like variation defined on
a measure space (Ω,F , P ). Let, P (Ω) <∞. Then, Π(A), A ∈ F , as defined below

Π(A) = sup
i∈I

∫
A

hi(x)dP (x), (1.22)

is a σ-additive, P -continuous set function on F . The Radon-nikodym derivative dΠ/dP is
the essential upper bound of (hi)i∈I :

dΠ

dP
= es. sup

i∈I
hi(x). (1.23)

Proof. We will first prove the result for hi that are uniformly bounded from above: hi(x) ≤
K <∞. We get,

−∞ <

∫
A

hi(x)dP (x) ≤ Π(A) ≤ KP (A) <∞. (1.24)

Hence, Π(A) is finite for all A ∈ F , which implies the σ-finiteness. It is trivially P -
continuous. For additivity, let A ∩B = ∅. Then,

Π(A ∪B) = sup
i

∫
A∪B

hidP ≤ sup
i

∫
A

hidP + sup
i

∫
B

hidP = Π(A) + Π(B). (1.25)
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For the reverse inequality consider, arbitrary hi and hj. We have, hk = 1Achi + 1Ahj also in
the family by construction.∫

A

hidP +

∫
B

hjdP =

∫
A∪B

hkdP ≤ Π(A ∪B), (1.26)

Since this holds for any arbitrary hi and hj we choose, it follows,

Π(A) + Π(B) ≤ Π(A ∪B), (1.27)

this implies Π is additive. The additivity, P-continuity, and σ-finiteness of Π(A) imply that
Π(A) is a σ-additive set function. Thus from Radon-Nikodym theorem we get a measurable
function f(x) for which the following holds.

Π(A) =

∫
A

f(x)dP (x) (1.28)

for all A ∈ F . We see (1.9) is true for any A ∈ F , thus, we have f(x) ≥ hi(x) (a.e.) for all
i ∈ I.

Consider another function ψ(x) ≥ hi(x) (a.e.) ∀ i ∈ I, then for some A ∈ F∫
A

ψdP ≥ sup
i

∫
A

hidP =

∫
A

fdP. (1.29)

By monotonicity of Lebesgue integrals we have ψ(x) ≥ f(x) (a.e.). Thus f = es.sup
i∈I

hi(x).

For the general case, we define new functions by putting bounds on the functions hi as
follows.

For n ∈ N, define h[n]i = min(hi, N) and f
[n]
i = es.sup

i∈I
h
[n]
i (x). Lemma holds for these

functions as they are bounded. That is, ∀A ∈ F , sup
i∈I

∫
A
h
[n]
i dP =

∫
A
f [n]dP.

Taking limits on both side as n→ ∞, we get

lim
n→∞

(
sup
i∈I

∫
A

h
[n]
i dP

)
= lim

n→∞

(∫
A

f [n]dP

)
. (1.30)
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Notice that for n1, n2 ∈ N with n1 > n2, h
[n1]
i ≥ h

[n2]
i for all ω ∈ Ω. Thus,∫

A

h
[n1]
i dP ≥

∫
A

h
[n2]
i dP (1.31)

=⇒ sup
i∈I

∫
A

h
[n1]
i dP ≥ sup

i∈I

∫
A

h
[n2]
i dP (1.32)

due to the monotonicity of integrals.
This implies,

lim
n→∞

(
sup
i∈I

∫
A

h
[n]
i dP

)
= sup

n∈N

(
sup
i∈I

∫
A

h
[n]
i dP

)
. (1.33)

Thus, we can rewrite (1.30) as

= sup
n∈N

(
sup
i∈I

∫
A

h
[n]
i dP

)
= lim

n→∞

∫
A

f [n]dP

= sup
i∈I

(
sup
n∈N

∫
A

h
[n]
i dP

)
= lim

n→∞

∫
A

f [n]dP

= sup
i∈I

(
lim
n→∞

∫
A

h
[n]
i dP

)
= lim

n→∞

∫
A

f [n]dP.

Since h[n]i s differ from his only in the domain where h[n]i s take positive values, the integrals can
be separated into positive and negative parts. This allows us to apply monotone convergence
theorem on the limits to get,

sup
i∈I

∫
A

hi(x)dP (x) =

∫
A

fdP (1.34)

where f = es.sup
i∈I

hi(x).

Proof of the Theorem 1.6. Notice that by the definition of conditional expectation we can
write

sup
τ∈Ss

E(Xτ ) = sup
τ∈Ss

∫
Ω

E(Xτ |Fs). (1.35)

It can be shown that the family of integrable functions (E(Xτ |Fs))τ∈Ss
admits needle-like

variation. Thus, by Lemma 1.7 above equation can be written as

sup
τ∈Ss

E(Xτ ) =

∫
Ω

es.sup
τ∈Ss

E(Xτ |Fs). (1.36)
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If we define es.sup
τ∈Ss

E(Xτ |Fs) ≜ fs we get

sup
τ∈Ss

E(Xτ ) = E(fs) (1.37)

To prove f is a supermartingale, consider s ≥ t and A ∈ Ft. Then,∫
A

fsdP = sup
τ∈Ss

∫
A

XτdP ≤ sup
τ∈St

∫
A

XτdP =

∫
A

ftdP.

Thus, ft ≥ E (fs | Ft) a.e. and (ft,Ft) is a supermartingale.

Now we prove the minimality and right continuity of the supermartingale f . We first
prove the results for when Xt, t ≥ 0 is bounded by an integrable function B(ω). Later, for
the general case we bound X by n ∈ N, and prove the results hold as n→ ∞.

By Theorem 1.4, to prove the right continuity of the paths of f we only need to prove
right continuity of the function vt : t 7→ E(ft). Since, f is a supermartingale, vt is non-
increasing. So, v+t ≤ vt. Here v+t denotes the right limit of the function vt. We need to prove
the reverse inequality.

Note that from equation (1.37) vt = sup
τ∈St

E(Xτ ). Thus, for any ϵ > 0 we can find a

stopping time τϵ ∈ St such that
vt < EXτϵ +

ϵ

2
. (1.38)

For n ∈ N define τ [n]e as follows:

τ [n]e =
i

2n
if
i− 1

2n
≤ τε <

i

2n
. (1.39)

τε[n] is a stopping time belonging to the family St[n] and limn→∞ τ
[n]
ϵ = τϵ (a.e.). Since,

τ
[n]
ϵ > τε for each n ∈ N, τ [n]ϵ approach τϵ from right. From the right continuity of X we

have,
lim
n→∞

X
τ
[n]
ϵ

= Xτϵ . (1.40)

Since {|Xt| , t ≥ 0} is bounded by an integrable function B(ω), we have from bounded con-
vergence theorem

lim
n→∞

E
(
X

τ
[n]
ϵ

)
= E (Xτϵ) . (1.41)
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Thus there exists n0 ∈ N, such that for all n > n0∣∣∣E(X
τ
[n]
ϵ
)− E(Xτϵ)

∣∣∣ < ε

2
. (1.42)

Thus, equations (1.42) and (1.38) imply,

vt < E(X
τ
[n]
ϵ
) + ϵ ≤ vt+ + ϵ. (1.43)

Since this holds for any ϵ > 0, we have vt ≤ v+t . This proves the right continuity of f .

To prove the minimality of f , consider g = g(t, ω), a right continuous supermartingale
that majorizes xt. Then,

gt ≥ xt ≥ E [Y | Ft] , (1.44)

where Y (ω) = − suptX
−
t (ω). By the regularity of the right continuous supermartingale gt,

for any τ ∈ St, we have,

gt ≥ E (gτ | Ft) ≥ E (xτ | Ft) (a.e.). (1.45)

Since, equation (1.45) holds for any τ ∈ St, from (1.37) we get gt ≥ ft almost everywhere.
Thus, minimality is proved.

For the general case with the condition E(X−
t ) <∞, for n ∈ N we put

Xt(n) = min (Xt, n) , ft(n) = es.sup
τ∈St

(E (xτ (n) | Ft)) . (1.46)

For each n ∈ N, |Xt| is bounded by the integrable random variable max(n,X−
t ), thus from

the previous result ft(n) is right continuous. We have lim
n→∞

ft(n) = ft (a.e.). Since the
limit of monotonously increasing right continuous supermartingales is a right continuous
supermartingale, right continuity of f is proved. The minimality is proved the same as for
the bounded case mentioned above.

Remark 1.8. Given a t > 0, in Theorem 1.6, the class St has been introduced. In light
of Definition 0.5, St = ∪T≥tSt,T . Let S∗

t := St,∞ denote the class of stopping times τ (not
necessarily finite) such that P (τ ≥ t) = 1. We state the following results from [9].

• Theorem 1.6 holds true even when the class of stopping times St is replaced by S∗
t .
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• If the process X satisfies the additional conditions that
(a) E(sup

t
|Xt|) < ∞ and (b) the map t 7→ Xt is continuous almost surely then the

random variable

τ0 ≜

 inf(s ≥ t : fs = Xs)

∞ if there is no such s

is the optimal stopping time. That is E(Xτ0) = sup
τ∈S∗

t

E(Xτ ).
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Chapter 2

Fair Pricing and Hedging of Option
Contracts

The goal of this chapter is to introduce the concept of hedging, mainly for two specific types
of contingent claims: European and American contingent claims. In the first section, we
present some terminologies and their mathematical descriptions, which will serve as tools
for building the language to talk about options. We also introduce the market models and
asset price dynamics in this section. In the second section, we use the general structure
built for the hedging in the previous section to address the specific problem of pricing a
European option and arrive at the famous Black-Scholes equation. The third section will
have the details of the concept of Hedging as introduced in [15] for European and American
contingent claims. The optimal stopping problem for the exercise of the American option
will be analysed through a martingale approach.

2.1 Asset Price Dynamics, Wealth Process, and Hedging

2.1.1 Asset Price Dynamics

Consider a filtered probability space (Ω,F , {Ft}t, P ) . Let W be a d-dimensional Brownian
motion: {W (t) = (W1(t), . . . ,Wd(t))

∗ ,Ft; 0 ≤ t <∞} defined on it, where * denotes trans-
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position. While defining the filtration, Ft is chosen such that it is the P -augmentation of
the filtration generated by the Brownian motion. This will be the space on which all the
processes in this chapter will be defined unless mentioned otherwise.
Consider a market where financial entities called assets are traded. Each asset has a price at
which the asset can be bought or sold at any time t ≥ 0. Our market consists of d+1 assets,
where d is a positive integer. We will define some terms and parameters of the market and
specify the restrictions on those below.

1. One of the assets is called the bond. It represents a money market account that allows
one to invest in or get a loan from an ideal bank at the instantaneous interest rate,
r(t) at time t. The price of the bond is denoted by P0(t).

2. The remaining d assets are termed stocks. These are the ‘risky’ assets.

3. {r(t); 0 ≤ t <∞} is the interest rate of the bond.

4. {bi(t); 0 ≤ t <∞} is the appreciation rate of the ith stock for each 1 ≤ i ≤ d.

5. {µi(t); 0 ≤ t <∞} is the dividend rate of the ith stock for each 1 ≤ i ≤ d.

6. {σij(t); 0 ≤ t <∞} is the dispersion coefficient of the ith stock due to the jth compo-
nent of the Brownian motion for each 1 ≤ i, j ≤ d.

7. We define matrices σ(t) = {σij(t)}i≤i,j≤d and D(t) = σ(t)σ∗(t). We assume there
exists ϵ > 0 such that, the condition

x∗D(t, ω)x ≥ ε∥x∥2, ∀x ∈ Rd, (2.1)

holds for every (t, ω) ∈ [0,∞)× Ω.

8. The appreciation rates, the dividend rates, the dispersion coefficients, and the interest
rate are all assumed to be {Ft} adapted measurable processes that are uniformly
bounded in (t, ω) ∈ [0, T ] × Ω, for every finite T > 0. These will be termed as
“coefficients of the market model" henceforth.

The price of the bond follows the equation:

dP0(t) = r(t)P0(t)dt, P0(0) = p0 = 1. (2.2)
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It determines the discount factor β(t) given by: β(t) = (P0(t))
−1. The prices of the stocks

are assumed to follow time in-homogeneous geometric Brownian motions. The SDE is given
below.

dPi(t) = Pi(t)

[
bi(t)dt+

d∑
j=1

σij(t)dWj(t)

]
, 0 ≤ t <∞,

Pi(0) = pi > 0, 1 ≤ i ≤ d.

(2.3)

A direct derivation shows that the discounted stock prices obey the following equation

d [β(t)Pi(t)] = β(t)Pi(t)

[
(bi(t)− r(t)) dt+

d∑
j=1

σij(t)dWj(t)

]
, 0 ≤ t <∞. (2.4)

2.1.2 Portfolio-Consumption Processes and Wealth Process

Definition 2.1. An Rd-valued, {Ft}-adapted, measurable process
π = {π(t) = (π1(t), . . . , πd(t))

∗ ,Ft; 0 ≤ t ≤ ∞} is called a portfolio process if

d∑
i=1

∫ T

0

π2
i (s)ds <∞ a.s. P (2.5)

is satisfied for all 0 ≤ T <∞.

Definition 2.2. A progressively measurable, {Ft}-adapted process C = {Ct,Ft; 0 ≤ t <∞}
taking values in [0,∞) is called a consumption process if the following conditions hold.

(i) C0(ω) = 0.

(ii) For P -a.e. ω ∈ Ω, the path t 7→ Ct(ω) is nondecreasing and right-continuous.

Now we shall construct a wealth process. Consider an investor whose investments are
not big enough to affect the changes in the prices. If Ni(t) is the number of ith asset the
investor holds at time t, i = 0, 1, . . . , d, then the wealth, given by X at time t is

Xt =
d∑

i=0

Ni(t)Pi(t), 0 ≤ t <∞. (2.6)
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Note that we assume that partial stocks can be held. Thus, Ni(t) ∈ R+. Let Ct denote the
cumulative consumption by the investor from his wealth till time t. If the investor decides
to redistribute their wealth among the assets by consumption after an increment h in time,
the change in wealth will be

Xt+h −Xt =
d∑

i=0

Ni(t) [Pi(t+ h)− Pi(t)] + h

d∑
i=1

Ni(t)Pi(t)µi(t)− (Ct+h − Ct) . (2.7)

Let the amount invested in the ith asset be denoted by πi(t) ≜ Ni(t)Pi(t), i = 0, 1, . . . , d and
let the Rd valued process π ≜ {π(t) = (π1(t), . . . , πd(t))

∗}. We can then write the continuous-
time version of (2.7) with the help of (2.3), (2.2) and (2.6) as

dXt =

[
r(t)Xt +

d∑
i=1

πi(t) (bi(t) + µi(t)− r(t))

]
dt− dCt

+
d∑

i=1

d∑
j=1

πi(t)σij(t)dWj(t); 0 ≤ t <∞.

(2.8)

Definition 2.3. Given, a portfolio process π and a consumption process C, the solution to
(2.8), the wealth process corresponding to (π,C), can be written as

Xt = Po(t)

[
x+

∫ t

0

β(s)π∗(s)(b(s) + µ(s)− r(s)1)ds−
∫ t

0

β(s)dCs

+

∫ t

0

β(s)π∗(s)σ(s)dW (s)

]
, 0 ≤ t <∞.

(2.9)

Here b(s) = (b1(s), b2(s), . . . , bd(s))
∗ is the column vector of appreciation rates. µ(s) is also

defined the same way. 1 is the vector in Rd with all it’s entries equal to one.

Observe that in (2.9) discounted value of portfolio process is integrated with respect to
time and Brownian motion in two different integrals. We can use Girsanov transformation
to reduce these two integrals into one stochastic integral. This transformation allows for
the discounted stock prices of the stocks that don’t pay dividend to be treated as martin-
gales under P̃ . Which makes the problem of pricing of contingent claims in the setting of
continuous trading more tractable. Refer to [13] for elucidation of this point.
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Define θ(t) as follows:

θ(t) ≜ σ∗(t)D−1(t)(b(t) + µ(t)− r(t)1),Ft, 0 ≤ t <∞. (2.10)

Define Zt(θ) as follows:

Zt ≜ exp

{
−
∫ t

0

θ∗(s)dW (s)− 1

2

∫ t

0

∥θ(s)∥2ds
}
,Ft, 0 ≤ t <∞. (2.11)

Note that because of the conditions on the parameters σi,j(t), bi(t), µi(t), r(t) and matrix
D(t), presented in point number 8 in Subsection 2.1.1, θ(t) is uniformly bounded in (t, ω) ∈
[0, T ]× Ω for every finite T > 0. Thus, the continuous local martingale in (2.11) becomes a
continuous martingale as shown in Theorem 1.1.

Fix a time T > 0. This will usually be the time of maturity when dealing with contingent
claims in later sections. If we define a new probability measure

P̃T (A) ≜ E (ZT1A) , A ∈ FT , (2.12)

then by Theorem 1.1 we have that

1. P and P̃T are equivalent measures on FT , and

2. the process W̃ as defined below is an Rd-valued Brownian motion on
(
Ω,FT , P̃T

)
.

W̃ (t) ≜ W (t) +

∫ t

0

θ(s)ds,Ft, 0 ≤ t ≤ T. (2.13)

Thus, equations (2.8) and (2.9) can be rewritten as

dXt = r(t)Xtdt− dCt +
d∑

i=1

d∑
j=1

πi(s)σij(s)dW̃j(s), (2.14)

β(t)Xt +

∫ t

0

β(s)dCs = x+

∫ t

0

β(s)π∗(s)σ(s)dW̃ (s), (2.15)

respectively.
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Definition 2.4. Given a finite initial wealth X0 = x and a finite time T , we say a strategy,
i.e., a pair of portfolio and consumption processes (π,C) is admissible on (T, x) if the wealth
process of (π,C) given by (2.15) satisfies

X0 = x and Xt ≥ 0, 0 ≤ t ≤ T almost surely.

The set of all admissible strategies for the initial wealth x and time horizon T , is denoted by
A (T, x).

Evidently, due to (2.5) and Point 8 in Subsection 2.1.1, the RHS of (2.15) is a local mar-
tingale. Again notice that, as C is nondecreasing (see Definition 2.2), for an admissible
strategy (π,C), LHS of (2.15) is non-negative. Now, it can further be proved that for an
admissible strategy, the continuous non-negative local martingale in RHS of (2.15) is in fact
a supermartingale as follows.

For any local martingale M we have, a sequence of non-decreasing stopping times sn
that that diverge almost surely, and the stopped process M sn given by M sn

t = Mmin (t,sn) is
a martingale for all n ∈ N. In addition to that if M is non-negative, then we have, from
Fatou’s lemma, for 0 ≤ u ≤ t <∞

(1) E(|Mt|) = E(Mt) =E( lim
n→∞

M sn
t )

≤ lim inf
n→∞

E(M sn
t ) = E(M sn

0 ) <∞,

(2) E(Mt | Fu) =E( lim
n→∞

M sn
t | Fu)

≤ lim inf
n→∞

E(M sn
t | Fu) = lim inf

n→∞
M sn

u =Mu.

Thus, M is a supermartingale.

Thus, the RHS of (2.15), a continuous non-negative local martingale is indeed a su-
permartingale. Therefore, the left side is also a supermartingale. Therefore we can apply
optional sampling theorem to (2.15) to write

ẼT

[
β(τ)Xτ +

∫ τ

0

β(s)dCs

]
≤ x, ∀τ ∈ S0,T . (2.16)
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2.1.3 Hedging and Fair Price of Contingent Claims

Contingent claims are financial entities whose prices are contingent upon some underlying
security. We define two types of contingent claims here.

Definition 2.5. A contingent claim is a trade-able contract constituted by the triplet of
parameters (T, f, g)

• T ∈ [0,∞) is the time of maturity.

• f(t, ω) is the terminal payoff on exercise.

• g(t, ω) is the payoff rate function. It represents the rate of continuous payoff from the
claim up until the time the claim is exercised.

Remark 2.6. A European contingent claim (ECC) can only be exercised at the time of
maturity. Thus, f(t, ω) is only defined for t = T for an ECC. An American contingent
claim (ACC) can be exercised on or before the maturity date, so one also needs to select an
‘exercise time’ τ ∈ S0,T .

Remark 2.7. For the case of ACC, the process f is assumed to have continuous paths. The
processes f and g are assumed to be non-negative and progressively measurable, and there
exists µ > 1 such that the following holds

E

(
sup
0≤s≤t

fs +

∫ t

0

gsds

)µ

<∞ for every 0 ≤ t <∞. (2.17)

A hedging strategy against a contingent claim is basically a pair of of portfolio and
consumption processes (π,C) that give the same payoff as a contingent claim over the time
period till the maturity. We formally define hedging strategies for European and American
contingent claims below.

Here we mention a result from [15] that will be useful later.

Proposition 2.8. Fix x, T ∈ [0,∞). If there is a consumption process C such that the
following condition holds

ẼT

∫ T

0

β(s)dCs ≤ x. (2.18)
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then, there exists a portfolio process π such that (π,C) ∈ A (T, x) and the wealth process
generated by this pair is given by

Xt = ẼT

(∫ T

t

exp

(
−
∫ s

t

r(u)du

)
dCs | Ft

)
+

(
x− ẼT

∫ T

0

β(s)dCs

)
P0(t). (2.19)

Here ẼT represents the expectation with respect to P̃ as defined in (2.12).

Definition 2.9. A pair of portfolio and consumption processes (π,C) ∈ A (T, x) is a hedg-
ing strategy against a European contingent claim with parameters (T, fT (ω), g(t, ω)), if the
following hold almost surely:

XT = fT , and (2.20)

Ct =

∫ t

0

gsds, 0 ≤ t ≤ T (2.21)

where {Xt} is the wealth process generated by (π,C) according to (2.9).

Definition 2.10. A pair of portfolio and consumption processes (π,C) ∈ A (T, x) is a
hedging strategy against an American contingent claim with parameters (T, f(t, ω), g(t, ω)),
if the following hold almost surely:

At(ω) ≜ Ct(ω)−
∫ t

0

gs(ω)ds, 0 ≤ t ≤ T, is a continuous, non-decreasing function.

(2.22)

Xt(ω) ≥ ft(ω), ∀t ∈ [0, T ]. (2.23)

XT (ω) = fT (ω). (2.24)

At(ω) = Aτt(ω)(ω) for every fixed number t ∈ [0, T ], (2.25)

where τt is defined as τt ≜ inf {t ≤ s ≤ T ; Xs = fs}.

The continuity of A in (2.22) implies continuity of the consumption process C. This
implies the progressive measurability of the wealth process w.r.t. the filtration {Ft}t. This
makes τt as defined above a {Ft}t stopping time.
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2.2 Fair pricing of European claims

Definition 2.11. The fair price of a European Contingent Claim with parameters (T, fT , g)

is the smallest finite amount x > 0 for which A (T, x), the class of admissible strategies,
contains a hedging strategy.

Theorem 2.12. Define the process Q = {Qt}t, where Qt is the cumulative payoff of the
claim at time t as follows:

Qt ≜ β(t)ft +

∫ t

0

β(s)g(s)ds, Ft, 0 ≤ t ≤ T. (2.26)

The fair price for the ECC (T, fT , g) is the expected value of the discounted price of the
cumulative payoff at maturity. This is given by:

Ẽ(QT ) = ẼT

[
fT exp

(
−
∫ T

0

r(u)du

)
+

∫ T

0

gt exp

(
−
∫ t

0

r(u)du

)
dt

]
. (2.27)

Also there exists a hedging strategy (π,C) ∈ A (T, Ẽ(QT )), with a continuous adapted wealth
process X = {Xt,Ft; 0 ≤ t ≤ T} given by,

Xt = ẼT

[
fT exp

(
−
∫ T

t

r(u)du

)
+

∫ T

t

gs exp

(
−
∫ s

t

r(u)du

)
ds | Ft

]
, 0 ≤ t ≤ T (2.28)

a.s. P̃ .

Proof. First of all we prove the proposed fair price Ẽ(QT ) is finite. Let KT be an upper
bound on both ∥θ(t, ω)∥ and β(t, ω), where (t, ω) ∈ [0, T ] × Ω. We prove a stronger result

that for p > 1, Ẽ
(

max
0≤t≤T

Qt

)p

is finite.

Ẽ

(
max
0≤t≤T

Qt

)p

= E

(
ZT (θ)

[
max
0≤t≤T

(
β(t)ft +

∫ t

0

β(s)gsds

)])p

≤ E

(
ZT (θ)

[
max
0≤t≤T

β(t)ft +

∫ T

0

β(s)gsds

])p

.
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Define µ = p2 and q = 1− 1
p
. Using Hölder’s inequality we can write

E

(
(ZT (θ))

p

[
max
0≤t≤T

β(t)ft +

∫ T

0

β(s)gsds

]p)

≤ (E(Zp
T (θ))

q)
1
q .

(
E

[
max
0≤t≤T

β(t)ft +

∫ T

0

β(s)gsds

]p2) 1
p

= (E(ZT (θ))
qp)

1
q .

(
Kµ

T .E

(
max
0≤t≤T

ft +

∫ T

0

gsds

)µ) 1
p

.

By condition (2.17) E
(

max
0≤t≤T

ft +
∫ T

0
gsds

)µ

is finite. We have the result, if we show E(ZT (θ))
ρ

is finite for all 1 < ρ <∞.

E(ZT (θ))
ρ = E

(
exp

(
−
∫ t

0

ρθ∗(s)dW (s)− 1

2

∫ t

0

ρ∥θ(s)∥2ds
))

= E

(
exp

(
−
∫ t

0

ρθ∗(s)dW (s)−
(
1

2

∫ t

0

ρ∥θ(s)∥2ds−
∫ t

0

∥ρθ(s)∥2ds+
∫ t

0

∥ρθ(s)∥2ds
)))

= E

(
exp

(
−
∫ t

0

ρθ∗(s)dW (s)− 1

2

∫ t

0

∥ρθ(s)∥2ds
)
. exp

(
1

2
ρ(ρ− 1)

∫ t

0

∥θ(s)∥2ds
))

≤ E

(
exp

(
−
∫ t

0

ρθ∗(s)dW (s)− 1

2

∫ t

0

∥ρθ(s)∥2ds
))

. exp

(
1

2
ρ(ρ− 1)K2

TT

)
= 1. exp

(
1

2
ρ(ρ− 1)K2

TT

)
<∞.

The last equality comes from the martingale property of {Zt(ρθ)}t.

Having proved the finiteness of Ẽ(QT ) we now prove that it is the fair price. Consider a
hedging strategy (π,C) ∈ A (T, x) and X, the wealth process generated by it. From (2.16)
we have

ẼT

[
β(T )XT +

∫ T

0

β(s)dCs

]
≤ x.

Since (π,C) is a hedging strategy, this implies

Ẽ

[
β(T )fT +

∫ T

0

β(s)gsds

]
≤ x.

Since the choice of the hedging strategy was arbitrary, the initial wealth x for any hedging
strategy is bounded below by Ẽ(QT ). If we show the existence of a hedging strategy with
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initial wealth x = Ẽ(QT ), we prove that Ẽ(QT ) is the fair price of the ECC.

Consider a consumption process C with Ct =
∫ t

0
g(s)ds. Since fT is non-negative we

have,

Ẽ

(∫ T

0

β(s)dCs

)
= Ẽ

(∫ T

0

β(s)g(s)ds

)
≤ Ẽ

[
β(t)fT +

∫ T

0

β(s)gsds

]
= Ẽ(QT ).

Therefore, (2.18) holds true with x = Ẽ(QT ). Hence, by Result 2.8, there exists a portfolio
process π such that (π,C) ∈ A (T, Ẽ(QT )) whose wealth process is given according to the
equation (2.19) by

Xt = ẼT

(∫ T

t

exp

(
−
∫ s

t

r(u)du

)
g(s)ds | Ft

)
+

(
Ẽ(QT )− ẼT

∫ T

0

β(s)g(s)ds

)
P0(t)

= ẼT

(∫ T

t

β(s)

β(t)
g(s)ds | Ft

)
+

(
Ẽ

(
β(T )fT +

∫ T

0

β(s)g(s)ds

)
− ẼT

∫ T

0

β(s)g(s)ds

)
(β(t))−1

=

(
ẼT

(∫ T

t

β(s)g(s)ds | Ft

)
+ Ẽ (β(T )fT )

)
(β(t))−1.

Note that this wealth process, along with the consumption process Ct defined above satisfy
the conditions of Definition 2.9 to be a hedging strategy. Thus Theorem 2.12 is proved.

Valutaion process: We call X the valuation process because if there exists another
hedging strategy (π′, C ′) ∈ A (T, x) for ECC(T, fT , g), with initial wealth x = ẼT (QT ),
then X ′

t = Xt a.s. P̃T . Where X ′ is the wealth process generated by (π′, C ′).

Proof. Consider the equivalent of equation (2.15) for (π′, C ′) :

β(t)X ′
t +

∫ t

0

β(s)dC ′
s = x+

∫ t

0

β(s)(π′(s))∗σ(s)dW̃ (s). (2.29)

Let M ′
t denote the supermartingale shown in (2.15). We can write ẼT (x+M ′

0) = x =

ẼT (QT ) = ẼT (x+M ′
T ). The last equality follows from the hedging. Thus, {M ′

t ,Ft; 0 ≤ t ≤ T}
is a P̃T -martingale. We can write (2.29), for t ∈ [0, T ] as

29



X ′
t = P0(t)

{
x+

∫ t

0

β(s)(π′(s))∗σ(s)dW̃ (s)−
∫ t

0

β(s)dC ′
S

}
X ′

t = P0(t)

{
x+ ẼT (M ′

T | Ft)−
∫ t

0

β(s)gsds

}
= ẼT

[
fT exp

(
−
∫ T

t

r(u)du

)
+

∫ T

t

gs exp

(
−
∫ s

t

r(u)du

)
ds | Ft

]
= Xt a.s. P̃T .

2.3 Fair pricing of American claims

Definition 2.13. The fair price of a American Contingent Claim with parameters (T, f, g)

is the smallest finite amount x > 0 for which a hedging strategy (π,C) ∈ A (T, x) as defined
in Definition 2.10 exists.

Theorem 2.14. The fair price for the ACC(T, f, g), at t = 0 is given by

sup
τ∈S0,T

ẼT

[
fτ exp

(
−
∫ τ

0

r(u)du

)
+

∫ τ

0

gs exp

(
−
∫ s

0

r(u)du

)
ds

]
.

Let the process Q be as defined in the last section. Then there exists a hedging strat-

egy strategy (π,C) ∈ A

(
T, sup

τ∈S0,T

Ẽ(Qτ )

)
with continuous adapted wealth process X =

{Xt,Ft; 0 ≤ t ≤ T} given by,

Xt = ess sup
τ∈St,T

ẼT

[
fτ exp

(
−
∫ τ

t

r(u)du

)
+

∫ τ

t

gs exp

(
−
∫ s

t

r(u)du

)
ds | Ft

]
, 0 ≤ t ≤ T a.s.

(2.30)

From the same arguments as in the last section we notice that sup
τ∈S0,T

Ẽ(Qτ ) is finite for

the ACC(t, f, g). Consider, for some x, T ∈ [0,∞), a hedging strategy (π,C) ∈ A (T, x) and
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X the wealth process generated by it. From (2.16) we have

ẼT

[
β(τ)Xτ +

∫ τ

0

β(s)dCs

]
≤ x, τ ∈ S0,T .

Since (π,C) is a hedging strategy, this implies

Ẽ

[
β(τ)fτ +

∫ τ

0

β(s)gsds

]
≤ x, τ ∈ S0,T

=⇒ sup
τ∈S0,T

Ẽ(Qτ ) ≤ x.

Since the choice of the hedging strategy was arbitrary, the initial wealth x for any hedging
strategy is bounded below by sup

τ∈S0,T

Ẽ(Qτ ), if we show the existence of a hedging strategy

with initial wealth x = sup
τ∈S0,T

Ẽ(Qτ ), we prove that sup
τ∈S0,T

Ẽ(Qτ ) is the fair price of the ACC.

Remark 2.15. We first notice from Theorem 1.6 and [9] that

• sup
τ∈S0,T

Ẽ(Qτ ) = Ẽ(Yt), where Y is the minimal RCLL supermartingale that satisfies

Yt ≥ Qt a.s.for all t ∈ [0,∞).

• Yt = ess sup
τ∈St,T

ẼT (Qτ | Ft) a.s. P̃T .

• The stopping time ρt = inf {t ≤ s ≤ T ;Ys = Qs} is the optimal stopping time. That is,
Ẽ(Qρt) = Ẽ(Yt).

It turns out the supermartingale Y is regular and of class D[0, T ]. We prove that it is of
class D[0, T ]. For the proof of regularity one can refer to [9] and [3].

Lemma 2.16. The family of random variables {Yτ}τ∈S0.T
is uniformly integrable with respect

to P̃T .

Proof. Let m be an RCLL modification process of the martingale ẼT (max0≤θ≤T Qθ | Ft).
Note that Ẽ(Yτ )τ∈S0,T

≤ ẼT

(
sup0≤t≤T Yt

)
. If we prove the latter term in the inequality is

finite we are done.
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We have from Jensen’s inequality, for p > 1,

ẼT

(
sup

0≤t≤T
Yt

)p

≤ ẼT

(
sup

0≤t≤T
mp

t

)
.

applying Doob’s Lp inequality to the RHS of the inequality we get

ẼT

(
sup

0≤t≤T
mp

t

)
≤
(

p

p− 1

)p

· ẼT (mp
t ) ≤

(
p

p− 1

)p

· ẼT

(
max
0≤t≤T

Qt

)p

.

The last term is shown to be finite in the last section 2.2. This completes the proof.

D-M decomposition of Y: From Lemma 2.16 and the regularity condition on Y we
can write the supermartingale Y as follows:

Yt = Y (0) +Mt − Λt, 0 ≤ t ≤ T, a.s.P̃T (2.31)

Here Λ is a continuous nondecreasing process and M is a P̃T -martingale with RCLL paths
and M0 = Λ0 = 0, ẼT (ΛT ) = Y (0)− ẼT (QT ).

From theroem 3.4.15 of [16] about representation of Brownian square integrable martin-
gales as stochastic integrals, and Baye’s rule we can write Mt as follows:

Mt =
d∑

j=1

∫ t

0

ψj(s)dW̃j(s), 0 ≤ t ≤ T, (2.32)

where {ψj(t),Fi; 0 ≤ t ≤ T} are measurable and adapted processes which satisfy

d∑
j=1

∫ T

0

ψ2
j (t)dt <∞ a.s. P̃T . (2.33)

proof of the Theorem 2.14. Define the process X as follows:

Xt ≜
1

β(t)

[
Yt −

∫ t

0

β(s)gsds

]
,Ft, 0 ≤ t ≤ T (2.34)
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From the equation (2.31) and (2.32) we can write Xt as follows:

β(t)Xt +

∫ t

0

β(s)gsds+ Λt = Y (0) +

∫ t

0

ψ∗(s)dW̃ (s) (2.35)

Comparing equation (2.35) with equation (2.15) we can construct a consumption process C
given by,

Ct =

∫ t

0

gsds+

∫ t

0

P0(s)dΛs (2.36)

and because of (2.33) the process π given by,

π∗(s) =
1

β(s)

(
ψ∗(s).σ∗(s).D−1(s)

)
(2.37)

becomes the portfolio process.

We see from construction that the wealth process generated by these is the same as
the equation (2.34). We see they also hedge the ACC(T, f, g) of Definition 2.10. (2.22) is
satisfied trivially. (2.23) and (2.24) are satisfied from the way Y is defined. (2.25) is satisfied
due to the following:

ẼT (Yt) = ẼT (Qρt) = ẼT (Yρt) . (2.38)

Which implies, from (2.31) that ẼT (Λt) = ẼT (Λρt). Thus, we get Λt = Λρt a.s. P̃T . Note
that the optimal stopping time for Y from the remark 2.15 and stopping time of Definition
2.10 are the same for this choice of X . Hence we can claim that the hedging strategy
(π,C) with portfolio and consumption processes as mentioned above have the initial wealth
sup

τ∈S0,T

Ẽ(Qτ ), and thus the theorem is proved.
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Chapter 3

Explicit Pricing of claims

The hedging of contingent claims as mentioned in the second chapter demonstrates that
the fair price exists for the European and American contingent claims as defined in (2.11)
and (2.13), and gives a stochastic representation for the values of fair price and the hedging
wealth process. Though this gives us the tools to analyse the properties of the fair price and
the hedging wealth process, it does not provide explicit solutions representing the portfolio
process and the fair price of the claims.

One can get explicit solutions representing these quantities if one makes certain conces-
sions on the generality of the market models. In this chapter we describe a few ways to do
that. In the first two sections we present the modified market model and show explicit solu-
tions for the fair price of an ECC under restricted conditions on the market model. In the
third section explicit formula for computing the portfolio process by using the Feynman-Kac
formula is given. In the fourth section we show an explicit formula for pricing a perpetual
American put option along with providing a stopping rule for the option.

3.1 Market model

Consider a market model with asset price dynamics as in section 2.1. Instead of having the
coeffcients of the market as adapted processes, we assume them to be constants. For t ≥ 0,

let r(t) = r, µi(t) = µi, σij(t) = σij, with r, µi, σij ∈ R+, 1 ≤ i, j ≤ d.
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Consider a contingent claim with terminal payoff function ft = L(P (t)), and payoff rate
function gt = 0. Here P (t) is the vector of the stock prices P (t) = (P1(t), . . . , Pd(t))

∗ .
Let, L : Rd

+ → [0,∞) be a continuous function. The prices of the stocks obey the following
equations.

dPi(t) = Pi(t)

[
(r − µi) dt+

d∑
j=1

σijdW̃j(t)

]
, 1 ≤ i ≤ d. (3.1)

Or,Pi(t) = pi exp

[(
r − µi −

1

2
Dii

)
t+

d∑
j=1

σijW̃j(t)

]
. (3.2)

Let, for z ∈ Rd

Ki(q, t, z) = q exp

[(
r − µi −

1

2
Dii

)
t+

d∑
j=1

σijzj

]

and for s ∈ Rd, K(s, t, z) be the vector K(s, t, z) = (K1(s1, t, z), . . . , Kd(sd, t, z))
∗.

3.2 Fair price formula for an ECC

For an ECC(T, fT , 0) the valuation process is given by equation (2.28). Substituting the f
and g from above we get the valuation process

Xt =
1

β(t)
ẼT

[
e−r(T )L(P (T )) + 0 | Ft

]
(3.3)

= ẼT

[
e−τ(T−t)L

(
K1

(
P1(t), T − t, W̃ (T − t)

)
,

. . . , Kd

(
Pd(t), T − t, W̃ (T − t)

))
| Ft

]
= e−τ(T−t)

∫
Rd

L(K(P (t), T − t, z))ΓT−t(z)dz

a.s. P̃T , for t ∈ [0, T ), where

Γt(z) ≜ (2πt)−d/2 exp

{
−∥z∥2

2t

}
, z ∈ Rd, t > 0,
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is the fundamental Gaussian kernel. Define H(t, p) as follows:

H(t, p) ≜

e−r(T−t)
∫

Rd L(K(T − t, p, z))ΓT−t(z)dz, 0 ≤ t < T, p ∈ Rd
+,

L(p), t = T, p ∈ Rd
+,

(3.4)

the valuation process for the European claim can be written as

Xt = H(t, P (t)) (3.5)

We can even integrate equation (3.4), if we set d = 1 and L(p) = (p − c)+ where c > 0 is
called the strike price. This ECC is called a European call option. This leads to the renown
Black-Scholes Formula for pricing an option.

3.3 Valuation of the portfolio process

The hedging strategy introduced in Chapter 2 for an ECC show the existence of a portfolio
process, but it does not provide a way to evaluate the portfolio process in terms of known
quantities at a time t ≥ 0.

Here we show that we can compute the portfolio process for the wealth process of (3.5)
that hedges the ECC introduced in the subsection. 3.1

Applying Ito’s rule to the wealth process of (3.5) we get

dH =
∂H

∂t
· dt+

d∑
i=1

∂H

∂Pi

· dPi +
1

2

d∑
i=1

d∑
j=1

∂2H

∂Pi∂Pj

· d⟨Pi, Pj⟩ (3.6)

We can calculate d⟨Pi, Pj⟩ from the ‘multiplication table’ [16, page number 154] and equation
(3.1). We get,

d⟨Pi, Pj⟩ =

(
d∑

k=1

σikdW̃k · Pi

)
·

(
d∑

n=1

σjndW̃n · Pj

)
= PiPjDijdt
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Substituting in the above equation, we get

dH =
∂H

∂t
· dt+

d∑
i=1

∂H

∂Pi

· Pi

[
(r − µi) dt+

d∑
j=1

σijdW̃j

]

+
1

2

d∑
i=1

d∑
j=1

∂2H

∂Pi∂Pj

· PiPjDijdt (3.7)

=

(
∂H

∂t
+

d∑
i=1

∂H

∂Pi

· Pi (r − µi) +
1

2

d∑
i=1

d∑
j=1

∂2H

∂Pi∂Pj

· PiPjDij

)
dt

+
d∑

i=1

∂H

∂Pi

· Pi

d∑
j=1

σijdW̃j(t). (3.8)

Here we see thatH(t, p) as defined in (3.4) is a C1,2 function. We also notice L is a continuous
function, r ≥ 0 is a constant, and g = 0. If L satisfies conditions of growth, such that H(t, p)

satisfies the following growth condition, for some constants M,a ∈ R,

|H(t, p)|
0≤t≤T

≤Mea∥p∥
2 ∀p ∈ Rd (3.9)

then the stochastic representation of H(t, P (t)) = Xt as given in (3.3) gives that H(t, P (t))

is a solution to the following PDE

∂H

∂t
+

d∑
i=1

∂H

∂Pi

· Pi (r − µi) +
1

2

d∑
i=1

d∑
j=1

∂2H

∂Pi∂Pj

· PiPjDij − rH = 0. (3.10)

This result is a direct application of the Feynman-Kac formula [16, page number 267].

From (3.8) and (3.10) we get that the valuation process Xt = H(t, P (t)) satisfies the
following

dXt = rXtdt+
d∑

i=1

d∑
j=1

∂H

∂Pi

(t) · Pi(t)σijdW̃j(t). (3.11)

Comparing this with (2.14) we conclude that the portfolio process can be given by

π(t) =
∂H

∂Pi

(t) · Pi(t), 1 ≤ i ≤ d, 0 ≤ t <∞. (3.12)
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3.4 Pricing of a perpetual American put option.

An American perpetual put option is an ACC with the time of maturity of the Definition
2.5, T = ∞. To talk about pricing this claim the market model needs to be changed. This
is to take into account that the equivalent martingale measure P̃ defined in (2.12) is for a
finite T . This needs to be extended to be defined for all t ≥ 0.

Karatzas [15] shows that this extension of the equivalent martingale measure P̃ is indeed
possible under the assumption that all the coefficients of the market model and the process
f and g of Definition 2.5 are progressively measurable Brownian functionals. The fair price
of an ACC in that setting is given as:

V0 = sup
τ∈S0,∞

Ẽ

[
fτ exp

(
−
∫ τ

0

r(u)du

)
+

∫ τ

0

gs exp

(
−
∫ s

0

r(u)du

)
ds

]
. (3.13)

with the optimal stopping time ρ0 = inf{t ≥ 0 : Yt = Qt}. Here Y and Q are defined the
same way as in Section 2.3.

Here the stopping times τ ∈ S0.∞ may take value τ = ∞. For any progressively measur-
able non-negative process X,
X∞(ω) ≜ lim supt→∞Xt(ω) and Ẽ(Xτ ) ≜ Ẽ(Xτ1τ<∞ +X∞1τ=∞)

Consider the market model of Section 3.1. Set d = 1, and consider an ACC with ft =

(c − P (t))+, gt = 0, µ = 0 and T = ∞. Here c ∈ [0,∞). We will call this a perpetual
put option. For this option we will derive the value of the fair price, and optimal stopping
boundary as presented in [7].

Note that the stock price P (t) at time t ≥ 0 is given by P (t) = P (0) exp{(r−σ2

2
)t+σW̃ (t)}

Let’s denote (r − σ2

2
) by γ for notational convenience.

For ft as defined above we have Qt = e−rt(c− P (t))+. Thus,

Ẽ

(
sup

0≤t<∞
Qt

)
= Ẽ

(
sup

0≤t<∞
e−rt(c− P (t))+

)
≤ Ẽ

(
sup

0≤t<∞
1.c

)
<∞

This condition is necessary for (3.13) to hold (refer [15] for details).
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Define V0(x), the price of the American perpetual put at time t = 0, with the stock price
P (0) = x as follows:

V0(x) ≜ sup
τ∈S0,∞

Ẽ

(
e−rτ

(
c− x exp

{
γτ + σW̃ (τ)

})+)
Since e−rt → 0 as t→ ∞ we have for any stopping time τ

Ẽ

(
e−rτ

(
c− x exp

{
γτ + σW̃ (τ)

})+)
= Ẽ

(
e−rτ

(
c− x exp

{
γτ + σW̃ (τ)

})+
1τ<∞ + 0. lim sup

t→∞

(
c− x exp

{
γτ + σW̃ (τ)

})+
1τ=∞

)
= Ẽ

(
e−rτ

(
c− x exp

{
γτ + σW̃ (τ)

})+
1τ<∞

)
.

Thus, V0(x) = sup
τ∈S0,∞

Ẽ

(
e−rτ

(
c− x exp

{
γτ + σW̃ (τ)

})+
1τ<∞

)
.

It can be shown that V0(x) is convex in x, decreasing on [0,∞), and V0(x) ≥ (c − x)+

∀x ∈ [0,∞), [7, Lemma 8.2.8]. Define P ∗ = sup{x ≥ 0 : V0(x) = (c− x)+}. We have,

V0(x) = (c− x) if x ≤ P ∗

V0(x) > (c− x)+ if x > P ∗.

Note that given P (0) = x, the optimal stopping time ρ0 = inf{t ≥ 0 : V0(P (t)) = (c−P (t))+}
can thus be written as ρ0 = inf{t ≥ 0 : P (t) ≤ P ∗}. Since P (t) has continuous paths we can
write this as

ρ0 = inf{t ≥ 0 : P (t) = P ∗} if x > P ∗

= 0 if x ≤ P ∗

To calculate the value of P ∗ fix P (0) = x. Define the function h(y) as follows:

h(y) = Ẽ

(
e−rαx,y

(
c− x exp

{
γαx,y + σW̃ (αx,y)

})+
1αx,y<∞

)
(3.14)

Where αx,y is a stopping time given by αx,y = inf
{
t ≥ 0 : x exp

{
γt+ σW̃ (t)

}
≤ y
}

, or

equivalently αx,y = inf
{
t ≥ 0 :

{
γ
σ
t+ W̃ (t)

}
≤ 1

σ
log
(
y
x

)}
. If we have y ≥ x, then αx,y = 0.
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For y < x, from the continuity of
(
γt+ σW̃ (t)

)
we get, αx,y = inf

{
t ≥ 0 :

{
γ
σ
t+ W̃ (t)

}
= 1

σ
log( y

x
)
}

.
We thus have,

h(y) = Ẽ
(
e−rαx,y (c− y)+ 1αx,y<∞

)
h(y) = (c− y)+ Ẽ

(
e−rαx,y

)
. (3.15)

The expectation above can be computed, [7, Corollary 7.2.6]. Consider k, l,m ∈ [0,∞).
For a stopping time T (l) = inf

{
t ≥ 0 : kt+ W̃ (t) = l

}
, the expectation of the exponential

random variable Ẽ(e−mT (l)) is given by Ẽ(e−mT (l)) = exp{kl− |l|
√
k2 + 2m}. Thus, we have

h(y) =


(c− y)+ if y > x

(c− y)+ exp

{
γ
σ2 log(

y
x
)− |log( y

x
)|

σ

√
γ
σ
2 + 2r

}
if y ∈ [0, x] ∩ [0, c]

0 if y ∈ [0, x] ∩ [c,∞)

(3.16)

We see that h(y) attains its maximum when y ∈ [0, x]∩ [0, c]. Substituting (r− σ2

2
) for γ

and simplifying we get, h(y) = (c− y) exp
{

2r
σ2 · log( yx)

}
. The derivative of h(y) is given by,

h′(y) =
(y
x

) 2r
σ2

((
c− y

y

)
2r

σ2
− 1

)
Setting the derivative to zero we see that the maximum is attained at y = 2cr

2r+σ2 . But, P ∗

also maximises h(y) from the optimality property, and the way h(y) is defined. Thus, we
can write P ∗ = 2cr

2r+σ2 .

The valuation of the American perpetual put as a function of the initial stock price
P0(x) = x is thus given by

V0(x) =

(c− P ∗)(P
∗

x
)

2r
σ2 if x ≤ P ∗

(c− x)+ if x > P ∗.
(3.17)

Mckean [17] showed that the valuation process of the American perpetual put is equivalent
to the solution of a particular free boundary problem (see [2] for more details). We look at
the pricing of an American perpetual put, assuming it satisfies this free boundary equation,
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and show that the pricing function is the same as the equation(3.17).

Let V (p) denote the value of the perpetual put as a function of the stock price p, by the
conditions presented by McKean it satisfies the following :

1

2
σ2p2

d2V

dp2
+ rp

dV

dp
− rV = 0. (3.18)

V (∞) = 0. (3.19)

And boundary conditions for the free boundary P ∗:

V (P ∗) = (P ∗ − p)+ (3.20)
∂V

∂p
|p=P ∗ = −1. (3.21)

The differential equation mentioned above is a standard Cauchy-Euler equation whose solu-
tion can be obtained by substituting pr for V (p). We get a general solution of the form

V (p) = A2p+ A1p
− 2r

σ2 . (3.22)

Due to (3.19) we have A2 = 0, i.e., V (p) = A1p
− 2r

σ2 . Free boundary conditions give

P ∗ =
2rc

2r + σ2
and A1 = (c− P ∗)(P ∗)

2r
σ2 .

Which is the same result as the equation (3.17).
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Chapter 4

American Option Pricing in a Markov
Modulated GBM Market Model

In this chapter, we introduce the market model similar to the one in [5]. In this market
model, the parameters of the market model: the interest rate of the bond or equivalently
bank interest rate, the appreciation rate of the stock, and the dispersion coefficient or the
volatility of the stock due to Brownian motion, are modeled by a finite state Markov chain.

The finite state Markov chain introduced in [5] is assumed to have a stochastic integral
representation. This fact is used to arrive at a differential equation analogous to the Black-
Scholes equation for option price function. We examine the assumption and look at the
precise derivation of the Black-Scholes equation analogue by following the setup introduced
in [1]. Lastly we examine the equations for approximate solutions for pricing an American
option in regime switching presented in [5].

Original contribution During the literature survey of this paper we found an equation
which is imprecise as presented in [5]. We try to present the precise equation and describe
the conditions of when the equation holds.
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4.1 Markov modulated GBM model

4.1.1 The market model

Consider a complete probability space (Ω,F , P ). Let X = {Xt}t≥0 be an irreducible finite
state Markov chain. The state space, without loss of generality, can be assumed to be
X = {e1, e2 . . . en}, where ei ∈ Rn is the ith column of an n dimensional identity matrix.
The transition rates for the chain are given as follows:

P (Xt+δt = ej | Xt = ei) = λijδt+ o(δt). (4.1)

Here, for i ̸= j, λij ≥ 0, and λii = −
∑

j /∈{i} λij. The rate matrix is denoted by A = (λij).

We consider two underlying assets of the market, a bond or equivalently a bank account,
and a stock. We suppose the instantaneous interest rate of the bank account r = {rt}t≥0,
the appreciation rate of the stock µ = {µt}t≥0, and the volatility of the stock σ = {σt}t≥0,
depend on the state of the X, which represents the states of the economy. We assume there
exist vectors µ0 = (µ1, . . . , µn)

′ , σ0 = (σ1, . . . , σn)
′ and r0 = (r1, . . . , rN)

′ ∈ Rn such that

rt = r(Xt) = ⟨r,Xt⟩ ,
µt = µ(Xt) = ⟨µ,Xt⟩ ,
σt = σ(Xt) = ⟨σ,Xt⟩

give the value of the parameters at time t.

Let B = {Bt}t≥0 and S = {St}t≥0 denote the money in the bank account and the price
of the stock respectively. Then we have the following equations which govern the dynamics
of the prices

Bt = exp

(∫ t

0

r(Xu)du

)
(4.2)

dSt = St (µ(Xt)dt+ σ(Xt)dWt) , S0 > 0. (4.3)

Here W = {Wt}t≥0 is a standard Brownian motion process independent of X = {Xt}t≥0. Let
Ft = σ (Su, Xu, u ≤ t). We can assume {Ft} is right continuous without loss of generality.
We will use this filtration henceforth.
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4.2 Stochastic integral representation of the Markov chain

& BSM equation

Consider a Polish space S. Let B(S) denote its Borel σ-field on S, M(S) be the set of
all non-negative integer valued σ-finite measures on B(S). Let Mσ(S) be the smallest
σ-field on M(S) such that ∀ B ∈ B(S), the maps fB : M(S) → N

⋃
{∞} defined by

fB(µ) := µ(B) are measurable. We equip M(S) with the σ algebra Mσ(S). A measurable
map ψ : (Ω,F ) → (M(S),Mσ(S)) is called a random point measure on S with intensity Eψ,
if it exists. Such ψ is a Poisson random measure with intensity measure ψ̄ if (i) ψ(B1) and
ψ(B2) are independent provide B1 and B2 are disjoint; (ii) ψ(B) follows Poisson distribution
with rate ψ̄(B).

For i ̸= j ∈ {1, 2 . . . n}, let Λij denote consecutive (with respect to the lexicographic
ordering on {1, 2 . . . n}×{1, 2 . . . n} ) left closed right open intervals of the real line with the
length of Λij being equal to λij. We embed X in R by identifying ei with i ∈ Rn. We then
define a function u : X × R → R by

u(i, z) :=

j − i if z ∈ Λij

0 otherwise.

Then Xt can be written as

Xt = X0 +

∫ t

0

∫
R
u (Xu−, z)ψ(du, dz). (4.4)

Here ψ(dt, dz) is a Poisson random measure with values in M (R+ × R) and intensity mea-
sure equal to the Lebesgue measure dtdz. The integration is done on the interval (0, t].
ψ(dt, dz), X0,W and S0, defined on (Ω,F , P ) are independent.

It turns out the Markov modulated market model presented in (4.2)-(4.4) is not complete.
Because of the incompleteness there will be claims that are not attainable, and thus perfect
hedging of a claim might not be possible. One resorts to a risk-minimising option pricing in
such a case. The details of this are presented in [1].

Here we do not go into the details of the incompleteness, but rather assume the measure
P is itself a risk neutral measure.
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Under this assumption the price of a European call option with strike price K and
expiration time T at time t is given by the following. (Check Buffington [5] for details.)

C(t, T, s, x) = E

[
exp

(
−
∫ T

t

r(Xv)dv

)
(ST −K)+ | St = s,Xt = x

]
. (4.5)

Define V (t, s, x) as follows:

V (t, s,Xt) = exp

(
−
∫ t

0

r(Xv)dv

)
C(t, T, s,Xt) (4.6)

=⇒ V (t, St, Xt) = exp

(
−
∫ t

0

r(Xv)dv

)
C(t, T, St, Xt) (4.7)

= E

[
exp

(
−
∫ T

0

r(Xv)dv

)
(ST −K)+ | St, Xt

]
(4.8)

= E

[
exp

(
−
∫ T

0

r(Xv)dv

)
(ST −K)+ | Ft

]
(4.9)

using the Markovity of (S,X) w.r.t. {Ft}. Consequently {V (t, St, Xt)} is a Ft-martingale.
Let V (t, s) be defined as follows:

V (t, s) = (V (t, s, e1) , . . . , V (t, s, e2)) ,

so that V (t, St, Xt) = ⟨V (t, St) , Xt⟩. Applying Ito’s formula on V (t, St, Xt) we get from
(4.4):

dV (t, St, Xt)

=
∂

∂t
V (t, St, Xt−) dt+

∫
R
{V (t, St, Xt− + u (Xt−, z))− V (t, St, Xt−)}ψ(dt, dz)

+
∂

∂s
V (t, St, Xt−) dSt +

1

2

∂2

∂s2
V (t, St, Xt−) d⟨S, S⟩t (4.10)

=
∂

∂t
V (t, St, Xt−) dt+ µ (Xt−)St

∂

∂s
V (t, St, Xt−) dt

+
1

2
σ2 (Xt−)S

2
t

∂2

∂s2
V (t, St, Xt−) dt+

∑
j∈X

V (t, St, j)λXt−,jdt+ dM̃t (4.11)
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where M̃t is a martingale given by

M̃t = M̃0 +
∫ t

0
Svσ (Xv−)

∂
∂s
V (v, Sv, Xv−) dWv

+
∫ t

0

∫
R {V (v, Sv, Xv− + u (Xv−, z)) − V (v, Sv, Xv−)} ψ̂(dv, dz)

(4.12)

where ψ̂(dt, dz) := ψ(dt, dz)− dtdz is the compensated Poisson random measure.

We can write the integral version of (4.11) as

V (t, St, Xt)− V (0, S0, X0)− M̃t + M̃0

=

∫ t

0

( ∂
∂t
V (t, St, Xt−) + µ (Xt−)St

∂

∂s
V (t, St, Xt−)

+
1

2
σ2 (Xt−)S

2
t

∂2

∂s2
V (t, St, Xt−) + ⟨V (t, St), A

∗Xt−⟩
)
dt. (4.13)

Notice that the LHS of above equation is a martingale, and the RHS is a bounded variation
process. A martingale with bounded variation is a constant martingale. For the integral of
RHS to be constant the integrand needs to be zero, as the integrand is non-negative the way
it is defined. This imples,

∂

∂t
V (t, St, Xt−) + µ (Xt−)St

∂

∂s
V (t, St, Xt−) +

1

2
σ2 (Xt−)S

2
t

∂2

∂s2
V (t, St, Xt−)

+⟨V (t, St), A
∗Xt−⟩ = 0. (4.14)

We see from (4.6) that C(t, T, St, Xt) also follows equation (4.14). The boundary condition
for C is C(T, T, s,X) = (s−K)+. Write

Ci(t, s) ≜ C(t, T, s, ei) (4.15)

C(t, s) = (C1(t, s), C2(t, s), . . . , Cn(t, s)) (4.16)

then we can see C(t, s) satisfies the coupled Black-Scholes equations:

riCi(t, s) +
∂Ci(t, s)

∂t
+ µis

∂Ci(t, s)

∂s
+

1

2
σ2
i s

2∂
2Ci(t, s)

∂s2
+ ⟨C(t, s), A∗ei⟩ = 0, 1 ≤ i ≤ n.

(4.17)
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4.3 System of equations for the pricing of American op-

tions

Now we consider an American put option. We assume from here onward that number of
states of regime switching n = 2. Let the transition rate matrix be given by

A =

(
a11 −a11
−a22 a22

)
. (4.18)

The price of an American option with strike price K and expiration time T at time t is given
by

J(t, T, s, x) = sup
τ∈St,T

E

[
exp

(
−
∫ τ

t

rudu

)
(K − Sτ ) | St = s,Xt = x

]
(4.19)

where (K − Sτ ) is the payoff from exercise strategy with stopping time τ . Let J(t, s) be
defined as follows:

J(t, s) = (J(t, T, s, e1), J(t, T, s, e2)) ≜ (J1(t, s), J2(t, s)). (4.20)

If there is no regime switching this problem boils down to the McKean problem [17]. They
present a ‘continuation region’, which for each t ∈ [0, T ] is an interval of the form [S∗

t ,∞) [7].
In the continuation region the option price satisfies the BSM equations, and outside of this
region the price of the option is equal to the payoff (K−St). The optimal exercise strategy is
defined as the first time the option price is equal to the payoff. Similar ‘continuation region’
and ‘stopping boundary’ can be defined for the regime switching case also(refer to [5] for
details).

Let for i = 1, 2

Ci =
{
(s, t) ∈ R+ × [0, T ] : J (t, T, s, ei) > (K − s)+

}
S i =

{
(s, t) ∈ R+ × [0, T ] : J (t, T, s, ei) = (K − s)+

}
denote the continuation region and stopping region respectively with Xt = ei. For each
t ∈ [0, T ] we get an interval [s∗(ei, t),∞) of the continuation region. Depending upon the
values of µi, σi and ri either of the s∗(ei, t) can be smaller. We assume, without loss of
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generality s∗(e2, t) ≥ s∗(e1, t) ∀t ∈ [0, T ].

If the stock price St > s∗ (e2, t) , then for both states e1, e2, (St, t) lies in the continuation
region. Thus, J = (J1(t, St), J2(t, St)) satisfies the pair of Black-Scholes equations:

− r1J1 +
∂J1
∂t

+ µ1St
∂J1
∂s

+
1

2
σ2
1S

2
t

∂2J1
∂s2

+ ⟨J,A∗e1⟩ = 0 (4.21)

− r2J2 +
∂J2
∂t

+ µ2St
∂J2
∂s

+
1

2
σ2
2S

2
t

∂2J2
∂s2

+ ⟨J,A∗e2⟩ = 0. (4.22)

For St ≤ S∗ (e1, t), for both states (St, t) lies in the stopping region. There

J1(t, St) = J2(t, St) = J (t, T, St, ei) = K − St. (4.23)

For St in the transition region s∗ (e1, t) ≤ St ≤ s∗ (e2, t) we have,

J2(t, St) = J (t, T, St, e2) = (K − St) (4.24)

and J1(t, St) = J (t, T, St, e1) satisfying,

−r1J1 +
∂J1
∂t

+ µ1St
∂J1
∂s

+
1

2
σ2
1St

2∂
2J1
∂s2

+ a11J1 − a11(K − St) = 0. (4.25)

4.4 Approximate solution for the price of an American

put option in the common continuation region.

In this section we will present part of an approximate solution for a finite horizon option, as
presented in [5]. We show that the equation in [5] that is equivalent to the equation (4.30)
is imprecise, and present scenarios where it holds. We will present the correct equation, and
show that the further derivation of the approximate solution as presented in [5] remains the
same. Thus, we will not repeat the derivation of the solution, but just state the results.

In the common continuation region St > s∗ (e2, t) , the price function of the American
option satisfies equations (4.21) and (4.22). Additionally, the stopping region gives boundary
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conditions as follows:

J (t, T, s∗ (e2, t) , e2) = (K − s∗ (e2, t)) and (4.26)
∂J2
∂s

(t, T, s∗ (e2, t) , e2) = −1. (4.27)

The second condition comes from the ‘smooth pasting’ condition. (For deatils check [7] and
[17] ).

Since the early exercise feature of an American option confers extra rights to the owner,
an early exercise premium is paid to the option -writer. We define early exercise premium
as ϕ as follows:

ϕ(t, T, s, x) = J(t, T, s, x)− C(t, T, s, x). (4.28)

This quantity is always positive because we can see from equations (4.19) and (4.5) that the
price of an American option is greater than the price of a European option with the same
parameters.
We define ϕ(t, s) as follows:

ϕ(t, s) = (ϕ(t, T, s, e1), ϕ(t, T, s, e2)) ≜ (ϕ1(t, s), ϕ2(t, s)). (4.29)

We make the approximation of assuming that ϕ(t, T, s, ei) can be presented in a variables
separated format as ϕi(t, s) = hi(s)yi(t). Since, both J(t, T, s, x) and C(t, T, s, x) satisfy the
black Scholes equation in the continuation region, so does ϕ(t, T, s, x). Thus, we have

−rihiyi + hi
∂yi
∂t

+ µis
∂hi
∂s

yi +
1

2
σ2
i s

2∂
2hi
∂s2

yi + ⟨ϕ, A∗ei⟩ = 0. (4.30)

If we assume the following, we can eliminate the partial derivative with respect to time t.

yi(t) = E

[
1− exp

(
−
∫ T

t

rudu

)
| Xt = ei

]
=⇒ ∂yi

∂t
= ri (yi(t)− 1) . (4.31)

Thus equation 4.30 can be written as,

−rihi + µis
∂hi
∂s

yi +
1

2
σ2
i s

2∂
2hi
∂s2

yi +
2∑

j=1

ϕjA
∗
ji = 0. (4.32)
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That is

1

2
σ2
1s

2∂
2h1
∂s2

+ µ1s
∂h1
∂s

=
(r1h1 − a11(h1y1 − h2y2))

y1(t)
. (4.33)

1

2
σ2
2s

2∂
2h2
∂s2

+ µ2s
∂h2
∂s

=
(r2h2 − a22(h2y2 − h1y1))

y2(t)
. (4.34)

In Appendix B of [5] a solution of the following form is assumed

h1(s) = ρ1s
η1 + ρ2s

η2 , (4.35)

h2(s) = θ1s
η1 + θ2s

η2 . (4.36)

From comparing the coefficients of the sη1 and sη2 four equations are derived. The equivalent
equations as we have derived from (4.35), (4.36) and (4.33) are:

1

2
σ2
1ρ1η1 (η1 − 1) + µ1ρ1η1 + a11ρ1 − a11θ1

y2
y1

− r1
y1(t)

ρ1 = 0, (4.37)

1

2
σ2
1ρ2η2 (η2 − 1) + µ1ρ2η2 + a11ρ2 − a11θ2

y2
y1

− r1
y1(t)

ρ2 = 0, (4.38)

1

2
σ2
2θ1η1 (η1 − 1) + µ2θ1η1 − a22ρ1

y1
y2

+ a22θ1 −
r2
y2(t)

θ1 = 0, (4.39)

1

2
σ2
2θ2η2 (η2 − 1) + µ2θ2η2 − a22ρ2

y1
y2

+ a22θ2 −
r2
y2(t)

θ2 = 0. (4.40)

From equation (4.37) and (4.39) we have,

a11
y2θ1
y1ρ1

=
1

2
σ2
1η1 (η1 − 1) + µ1η1 + a11 −

r1
y1(t)

(4.41)

a22
y1ρ1
y2θ1

=
1

2
σ2
2η1 (η1 − 1) + µ2η1 + a22 −

r2
y2(t)

. (4.42)

We can thus see η1 is a solution to the fourth order equation,

a11a22 =

(
1

2
σ2
1η(η − 1) + µ1η + a11 −

r1
y1(t)

)
×
(
1

2
σ2
2η(η − 1) + µ2η + a22 −

r2
y2(t)

)
. (4.43)

We note that, in [5] they arrive at the same equation as (4.43), and thus the further equations
follow the result derived in [5]. We will not repeat the same equations. We just state the
results from Appendix B of [5].
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Proposition 4.1. The price of the American option in the setting of section 4.3, in the
common continuation region is given by

J (t, T, s, e1) = C (t, T, s, e1) +
(
ρ1s

η1(t) + ρ2s
η2(t)
)
y1(t) (4.44)

J (t, T, s, e2) = C (t, T, s, e2) +
(
θ1s

η1(t) + θ2s
η2(t)
)
y2(t). (4.45)

Here η1(t), η2(t) are the two time varying negative roots of the following equation in η. (see
[11] )

F (η) =

(
1

2
σ2
1η(η − 1) + µ1η + a11 −

r1
y1(t)

)
×
(
1

2
σ2
2η(η − 1) + µ2η + a22 −

r2
y2(t)

)
− a11a22 = 0.

θ1 and θ2 are as given below:

θ1 =

[
s∗2

(
1 +

∂C2

∂s

)
+ η2 (K − s∗2 − C2)

]
[s∗η12 y2 (η2 − η1)]

−1

θ2 =

[
s∗2

(
1 +

∂C2

∂s

)
+ η1 (K − s∗2 − C2)

]
[s∗η22 y2 (η1 − η2)]

−1
.

Here s∗2 ≜ s∗(e2, t) is as defined in Section 4.3. C2 ≜ C2(t, s) is as defined in (4.15). The
value of s∗2 is determined by the boundary conditions (4.26), (4.27) of smooth pasting and
continuity.

ρ1 and ρ2 are as given below:
ρi = λ−1

i θi where

λi = a−1
ii

(
1

2
σ2
i ηi(t) (ηi(t)− 1) + µiηi(t) + aii −

ri
yi(t)

)
.
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