
Alliances in Graphs: A Parameterized
Perspective

A Thesis

submitted to
Indian Institute of Science Education and Research Pune
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy

by

Shuvam Kant Tripathi

Indian Institute of Science Education and Research Pune
Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

July, 2022

Supervisor: Dr. Soumen Maity, IISER Pune
© Shuvam Kant Tripathi 2022

All rights reserved

Certificate

Certified that the work incorporated in the thesis entitled Alliances in Graphs: A
Parameterized Perspective, submitted by Shuvam Kant Tripathi was carried out by the
candidate, under my supervision. The work presented here or any part of it has not been
included in any other thesis submitted previously for the award of any degree or diploma
from any other university or institution.

Dr. Soumen Maity, IISER Pune

Committee:

Dr. Soumen Maity, IISER Pune

Dr. Vivek Mallick, IISER Pune

Professor Saket Saurabh, IMSc Chennai

This thesis is dedicated to my parents.

Declaration

I declare that this written submission represents my ideas in my own words and where
others’ ideas have been included, I have adequately cited and referenced the original
sources. I also declare that I have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source
in my submission. I understand that violation of the above will be cause for disciplinary
action by the institute and can also evoke penal action from the sources which have thus
not been properly cited or from whom proper permission has not been taken when needed.

Shuvam Kant Tripathi

Acknowledgments

It is a great pleasure to express my deep sense of gratitude to Dr. Soumen Maity for
supervising my research work and for the constant encouragement I received from him.

I am thankful to Professor Saket Saurabh and Dr. Vivek Mallick for being in my research
advisory committee and for their valuable suggestions. I am grateful to Ajinkya Gaikwad
for continuous discussion, encouragement and joint papers in this thesis. Thanks are also
due to our research group members Hitendra Kumar and Mihir Neve.

I am grateful to the Indian Institute of Science Education and Research (IISER) Pune
for providing ample facilities for research. Finally I wish to express my thanks to my parents
and my bother for their encouragement during the course of my work.

Shuvam Kant Tripathi

ix

x

Abstract

Throughout history, humans have formed communities, guilds, faiths etc in the hope of
coming together with a group of people having similar requirements, visions and goals.
Their reasons to do so, usually rest on the fact that any group with common interests
often provides added mutual benefits to the union in fields of trade, culture, defense, etc
as compared to the individual. Such activities are commonly seen in the present day, in
areas of geo-politics, cultures, trades, economics, unions etc and are popularly termed as
alliances. The concept of an alliance was first captured as a graph theoretic problem in
2000 by Kristiansen, Hedetniemi, and Hedetniemi in [45]. Based on the structure, formation
and goals of an alliance, many variations of the problem exist in graph theory. A defensive
alliance is usually formed with the aim of defending its members against non-members, and
hence it is natural to ask that each member of the alliance should have more friends within
the alliance (including oneself) than outside. More formally, a defensive alliance in a graph
G = (V,E) is a non-empty set of vertices S satisfying the condition that every vertex v ∈ S

has at least as many neighbors (including itself) in S than it has in V \ S. Similarly, an
offensive alliance is formed with the inverse goal of offending or attacking non-members of
the alliance. An offensive alliance in a graph G = (V,E) is a non-empty set of vertices S

satisfying the condition that every vertex v ∈ N(S) has at least as many neighbors in S than
it has in V \S (including itself). It is known that the problems of finding small defensive and
offensive alliances are NP-complete. We enhance our understanding of the problems from
the viewpoint of parameterized complexity. Strong versions of the above problems do not
consider the self to be a friend, and the minimal versions try to find those alliances which
lose the required property in the absence of any member.

These variations in types of alliances manifest themselves ubiquitously in daily life scenar-
ios and applications, thereby attributing value to the study of their graph theoretic versions
and related algorithms. Alliances have been used to study problems such as classification
and clustering problems, understanding communities on the internet, protocols for distribu-
tion etc. [19, 56, 34]. The data clustering problem relies on the concept of partitioning the
vertices of the graph into multiple strong defensive alliances. This problem was introduced
by Gerber and Kobler [32] and is called the Satisfactory Partition problem.

Almost all variants of the alliance problem are NP-hard, and so there is very little hope for
finding efficient polynomial time algorithms for these problems. However, the applicability

xi

of this problem warrants the use of techniques which can make these variants computation-
ally tractable under certain scenarios. Two key approaches for achieving this goal involve
the polynomial-time approximation algorithms and the concept of fixed-parameter tractable
(FPT) algorithms. The former involves finding algorithms which approximate the optimal
solution in polynomial time, thereby creating a trade-off between the correctness and time
complexity of the algorithm. On the other hand, FPT algorithms originated from the theory
of parameterized complexity as introduced by Downey and Fellows. Problems which do not
admit a polynomial time solution, often make use of exponential time algorithms, thereby
making them intractable. The idea in these cases is to associate a parameter k with every
instance of the problem, and then try to develop an algorithm that captures the exponential
growth only as a function of the parameter k. We would then obtain an algorithm with
running time f(k) · nc where n is the size of the input, k is the parameter, f(·) is some
computable function, and c is a constant that is independent on k and n. Such algorithms
are said to be fixed-parameter tractable algorithms. However, presently, FPT algorithms are
not known for all NP-hard problems. The study of these fixed-parameter intractable prob-
lems led to the formation of the W-hierarchy of complexity classes. Similar to the theory of
classical complexity, showing that a parameterised problem is one of the hardest problems
in any one of the W-classes, gives evidence that it is unlikely for the problem to admit an
FPT algorithm.

In this dissertation, we consider parameterized algorithms and complexity of the following
problems: defensive and offensive alliances in graphs, locally minimal defensive alliances in
graphs, and the satisfactory partition problem in graphs. We obtain the following results.

• We design FPT algorithms for Defensive Alliance and Offensive Alliance

when parameterized by neighbourhood diversity of the input graph. We prove that
Defensive Alliance and Offensive Alliance are polynomial time solvable for
graphs with bounded treewith.

• We study parameterized intractability of the Defensive Alliance problem. We
prove that the Defensive Alliance problem is W[1]-hard when parameterized by the
pathwidth of the input graph. We also prove that the Exact Defensive Alliance

problem is W[1]-hard when parameterized by the feedback vertex set number and the
pathwidth of the input graph.

• We design a polynomial-time algorithm for the Connected Locally Minimal

xii

Strong Defensive Alliance on trees. We prove that Locally Minimal De-

fensive Alliance problem is NP-complete, even when restricted to planar graphs.
We give a randomized FPT algorithm for the Exact Connected Locally Minimal

Defensive Alliance problem using color coding technique. We give an FPT algo-
rithm for Locally Minimal Defensive Alliance when parameterized by neigh-
bourhood diversity of the input graph. We prove that Exact Connected Locally

Minimal Defensive Alliance parameterized by treewidth is W[1]-hard and thus
not FPT (unless FPT=W[1]). Finally we show that the Locally Minimal Defen-

sive Alliance problem is polynomial time solvable for graphs with bounded treewith.

• We design a polynomial-time algorithm for the Satisfactory Partition problem
for block graphs. We prove that the Satisfactory Partition and Balanced Sat-

isfactory Partition problems are fixed parameter tractable (FPT) when parame-
terized by neighbourhood diversity. We show that the Satisfactory Partition and
Balanced Satisfactory Partition problems can be solved in polynomial time for
graphs of bounded clique-width. Finally we prove that the Balanced Satisfactory

Partition problem is W[1]-hard when parameterized by treewidth.

xiii

xiv

Contents

Abstract xi

1 Introduction 1

1.1 Defensive and Offensive Alliances in Graphs 1

1.2 Locally Minimal Defensive Alliance . 5

1.3 The Satisfactory Partition Problem . 8

1.4 Parameterized Complexity . 11

1.5 Literature Survey . 12

1.6 Graph Theory . 15

1.7 Structural Graph Parameters . 17

1.8 An Overview of the Thesis . 24

2 Introduction to Parameterized Complexity 27

2.1 Fixed Parameter Tractability . 27

2.2 Fixed-Parameter Intractability . 38

3 Defensive and Offensive Alliances 45

3.1 Introduction . 45

3.2 FPT algorithm parameterized by neighbourhood diversity 45

xv

3.3 FPT algorithm parameterized by domino treewidth 56

3.4 Graphs of bounded treewidth . 60

4 Parameterized Intractability of Defensive Alliance Problem 67

4.1 Introduction . 67

4.2 W[1]-hardness parameterized by pathwidth 68

5 Locally Minimal Defensive Alliance 85

5.1 Introduction . 85

5.2 Polynomial-Time Algorithm for Connected Locally Minimal Strong Defensive
Alliance on Trees . 86

5.3 Locally Minimal Defensive Alliance in Planar Graphs is NP-complete 92

5.4 A color coding algorithm for Exact Connected Locally Minimal De-
fensive Alliance . 95

5.5 FPT algorithm parameterized by neighbourhood diversity 96

5.6 Hardness of Exact Connected Locally Minimal Defensive Alliance
parameterized by treewidth . 100

5.7 Graphs of bounded treewidth . 111

6 The Satisfactory Partition Problem 117

6.1 Introduction . 117

6.2 Polynomial Time Algorithm for Block Graphs 118

6.3 FPT algorithm parameterized by neighbourhood diversity 122

6.4 Graphs of bounded clique-width . 125

6.5 Hardness of Balanced Satisfactory Partition parameterized by treewidth128

7 Conclusions and Open Problems 141

xvi

Chapter 1

Introduction

In this dissertation, we consider parameterized algorithms and complexity of the follow-
ing graph problems: defensive and offensive alliances in graphs, locally minimal defensive
alliances in graphs, and the satisfactory partition problem in graphs. We give below, section-
wise, the problems considered.

1.1 Defensive and Offensive Alliances in Graphs

Throughout history, humans have formed communities, guilds, faiths etc in the hope of
coming together with a group of people having similar requirements, visions and goals. Their
reasons to do so, usually rest on the fact that any group with common interests often provides
added mutual benefits to the union in fields of trade, culture, defense, etc as compared to
the individual. Such activities are commonly seen in the present day, in areas of geo-politics,
cultures, trades, economics, unions etc and are popularly termed as alliances. The idea of
an alliance has been applied to study several models like distributed protocols, classification
or clustering problems, and studying communities on the internet [34, 19, 56].

A defensive alliance is an alliance formed with the main purpose of defending its members,
while an offensive alliance gets formed with the purpose of attacking non-members. The
former desires having more friends within the alliance, while the latter happens when a
non-member has more enemies in the alliance than friends outside. These notions motivate

1

the study of defensive and offensive alliances in graphs. A defensive alliance which is also
a dominating set is called a global alliance. Kristiansen, Hedetniemi, and Hedetniemi [45]
pioneered the study of various types of alliance in graphs including defensive, offensive and
powerful alliances. Since then, many variations of the alliance problem, [21, 53, 10, 51, 55],
including generalisations called r-alliances [52], have been extensively researched upon.

Throughout this dissertation, G = (V,E) denotes a finite, simple and undirected graph
of order |V | = n. The subgraph induced by S ⊆ V (G) is denoted by G[S]. For a vertex
v ∈ V , we use N(v) = {u : (u, v) ∈ E(G)} to denote the (open) neighbourhood of vertex
v in G, and N [v] = N(v) ∪ {v} to denote the closed neighbourhood of v. The degree d(v)

of a vertex v ∈ V (G) is |N(v)|. For a subset S ⊆ V (G), we define its closed neighbourhood
as N [S] =

⋃
v∈S N [v] and its open neighbourhood as N(S) = N [S] \ S. For a non-empty

subset S ⊆ V and a vertex v ∈ V (G), NS(v) denotes the set of neighbours of v in S, that
is, NS(v) = {u ∈ S : (u, v) ∈ E(G)}. We use dS(v) = |NS(v)| to denote the number of
neighbours of v in S. The complement of the vertex set S in V is denoted by Sc. Now we
give definitions of defensive alliance and defensive r-alliance.

Definition 1.1.1. A non-empty set S ⊆ V is a defensive alliance in G = (V,E) if dS(v)+1 ≥
dSc(v) for all v ∈ S.

Definition 1.1.2. For an integer r, a non-empty set S ⊆ V is a defensive r-alliance in
G if for each v ∈ S, dS(v) ≥ dSc(v) + r. A set is a defensive alliance if it is a defensive
(−1)-alliance.

We often use the terms defenders and attackers of an element v of a defensive alliance S.
By these we mean the sets N [v] ∩ S and N [v] \ S, respectively. A vertex v ∈ S is said to be
protected if the number of defenders of v is greater than or equal to the number of attackers
of v, that is, |N [v]∩S| = dS(v)+1 ≥ dSc(v) = |N [v]\S|. A set S ⊆ V is a defensive alliance
if every vertex in S is protected. We define Defensive Alliance and Exact Defensive

Alliance as follows:

Defensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≥ 1.
Question: Is there a defensive alliance S ⊆ V (G) such that |S| ≤ k?

2

While the Defensive Alliance problem asks for defensive alliance of size at most k, we
also consider the Exact Defensive Alliance problem that concerns defensive alliance of
size exactly k.

Exact Defensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≥ 1.
Question: Is there a defensive alliance S ⊆ V (G) such that |S| = k?

Now we give definitions of offensive alliance and offensive r-alliance.

Definition 1.1.3. A non-empty set S ⊆ V is an offensive alliance in G if dS(v) ≥ dSc(v)+1

for all v ∈ N(S).

Definition 1.1.4. For an integer r, a non-empty set S ⊆ V is an offensive r-alliance in G if
for each v ∈ N(S), dS(v) ≥ dSc(v) + r. An offensive 1-alliance is called an offensive alliance.

Informally, given a graph G = (V,E), we say a set S is an offensive alliance if every vertex
that is adjacent to S is outgunned by S; more of its neighbours are in S than outside S.
Equivalently, since an attack by the vertices in S on the vertices in V \ S can result in no
worse than a “tie” for S, we say that S can effectively attack N(S). For example, Figure
1.1(i) shows a minimum size defensive alliance in G and Figure 1.1(ii) shows a minimum size
offensive alliance in G.

b

d

c

e

a

b

d

c

e

a

(i) (ii)

Figure 1.1: (i) S = {a, b} is a minimum size defensive alliance in G, (ii) S = {a, b, e} is a
minimum size offensive alliance in G.

3

Definition 1.1.5. A non-empty set S ⊆ V is a strong offensive alliance in G if dS(v) ≥
dSc(v) + 2 for all v ∈ N(S).

In this thesis, we consider Offensive Alliance and Strong Offensive Alliance under
structural parameters. We define these problems as follows:

Offensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≥ 1.
Question: Is there an offensive alliance S ⊆ V (G) such that |S| ≤ k?

Strong Offensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≥ 1.
Question: Is there a strong offensive alliance S ⊆ V (G) such that |S| ≤ k?

It was shown that the problem of finding a minimum alliance of any variant is NP-hard in
general. It is known that the Defensive Alliance problem is NP-complete [38]. The
defensive r-alliance [52] and global defensive r-alliance problems [17] are NP-complete for
any fixed r. The defensive alliance problem is NP-complete even when restricted to split,
chordal and bipartite graph [39]. Fernau et al. showed that the offensive r-alliance and global
offensive r-alliance problems are NP-complete for any fixed r [18]. There are polynomial time
algorithms for finding minimum alliances in trees [9, 38, 39]. A polynomial time algorithm
for finding minimum defensive alliance in series parallel graph is presented in [38]. There
has also been some work on the parameterized complexity of alliance problems. It is known
that Defensive Alliance and Offensive Alliance are fixed-parameter tractable when
parameterized by the solution size [13, 16]. Alliance problems have been studied with respect
to structural graph parameters. The alliance problems for all variants are efficiently solvable
for much larger graph classes. Kiyomia and Otachi [42] proved that alliance problems can
be solved in polynomial time for graphs of bounded clique-width. They also showed that
the problems are fixed-parameter tractable when parameterized by the vertex cover number.
Ensico [13] showed that the problems of finding minimum size defensive alliances and global
defensive alliances are fixed-parameter tractable when parameterized by both treewidth and
maximum degree. Bliem and Woltran [6] proved that defensive alliance problem is W[1]-
hard when parameterized by the treewidth of the input graph. It is also known that the
Offensive Alliance problem is W[1]-hard when parameterized by the treewidth of the
input graph [22]. This puts these two problems among the few problems that are FPT when

4

parameterized by solution size but not when parameterized by treewidth (unless FPT=W[1]).
We design FPT algorithms for Defensive Alliance and Offensive Alliance when
parameterized by neighbourhood diversity of the input graph. We prove that Offensive

Alliance is FPT when parameterized by domino treewidth of the input graph. We also
prove that Defensive Alliance and Offensive Alliance are polynomial time solvable
for graphs with bounded treewith.

1.2 Locally Minimal Defensive Alliance

In the previous section we defined the problem of Defensive Alliance. This problem has
been extensively studied, both combinatorially and computationally, over the course of the
last 20 years. Recall that an alliance was said to be defensive, in a graph, if every member
has at least as many friends within the alliance (including itself) as compared to those not
in the alliance. If oneself is not treated as a friend, then the resulting defensive alliance is
said to be a strong defensive alliance.

Forming an alliance usually requires a lot of effort for it to be profitably beneficial. In the
same sense, it is a crucial problem to determine the minimum number of people required to
form a defensive alliance. On the other hand, larger alliances are often more powerful, but
are harder to form. This sort of trade-off between size and ease of formation of a defensive
alliance can be mitigated by studying the concepts of maximum-sized minimal alliances, that
is, those alliances of the maximum size for which, each member is essential in the sense that
the alliance does not stay defensive in his absence. Observe that this concept is based on
the fact that Defensive Alliance is not a hereditary graph problem. Indeed, removing
a vertex from the defensive alliance can cause a member to lose a friend within the alliance,
thereby leaving him undefended. Hence a subset of a defensive alliance need not be defensive.

The above ideas motivate the need to study problems like the locally minimal defensive
alliance and the globally minimal defensive alliance. The former, as referred to by Shafique,
[34] is a defensive alliance which does not stay defensive if any single member gets removed.
On the other hand, the latter, as studied by Bazgan et al. [1] considers those defensive
alliances, for which no proper subset stays defensive. Motivated by the trade-off given
above, we shall study the problem of finding locally minimal defensive alliances of maximum
size. There is also a general mathematical interest in such type of problems [48].

5

Throughout this thesis, G = (V,E) denotes a finite, simple and undirected graph of order
|V | = n. A non-empty set S ⊆ V is a defensive alliance in G if for each v ∈ S, |N [v]∩ S| ≥
|N(v) \ S|, or equivalently, dS(v) + 1 ≥ dSc(v). A vertex v ∈ S is said to be protected if
dS(v) + 1 ≥ dSc(v). Here v has dS(v) + 1 defenders and dSc(v) attackers in G. A set S ⊆ V

is a defensive alliance if every vertex in S is protected.

Definition 1.2.1. A vertex v ∈ S is said to be marginally protected if it becomes unprotected
when any of its neighbour in S is moved from S to V \ S. A vertex v ∈ S is said to be
overprotected if it remains protected even when any of its neighbours is moved from S to
V \ S.

Definition 1.2.2. [1] An alliance S is called a locally minimal alliance if for any v ∈ S,
S \ {v} is not an alliance.

It is important to note that if S is a locally minimal defensive alliance, then for every vertex
v ∈ S, at least one of its neighbours in S is marginally protected.

p

q

r

s

t

(i)

p

q

r

s

t

(ii)

Figure 1.2: (i) S = {p, q} forms a locally minimal defensive alliance of size 2, (ii) S = {p, q, r}
is not a locally minimal defensive alliance.

In Figure 1.2(i), S = {p, q} forms a locally minimal defensive alliance. Here both p and q

are marginally protected. Thus p has a marginally protected neighbours q, similarly q has
a marginally protected neighbours p. In Figure 1.2(ii), S = {p, q, r} is a defensive alliance
but not a locally minimal defensive alliance. Here p and r are marginally protected but q

is overprotected. Thus p and r do not have a marginally protected neighbours; and hence
S is not a locally minimal defensive alliance. In other words, S = {p, q, r} is not a locally
minimal defensive alliance as S \ {r} = {p, q} is a defensive alliance.

Definition 1.2.3. [1] An alliance S is globally minimal alliance or shorter minimal alliance
if no proper subset is an alliance.

6

1

2 3 4 5 6

7 8 9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26

Figure 1.3: The set S1 = {7, 2, 9, 3, 11, 4, 13, 5, 15, 6} is a locally minimal defensive alliance
of size 10 and S2 = {1, 2, 3} is a globally minimal defensive alliance of size 3 in G.

A defensive alliance S is connected if the subgraph induced by S is connected. An al-
liance S is called a connected locally minimal alliance if for any v ∈ S, S \ {v} is not a
connected alliance. Notice that any globally minimal alliance is also connected. We consider
Locally Minimal Defensive Alliance and Exact Connected Locally Minimal

Defensive Alliance under structural parameters. We define the problems as follows:

Locally Minimal Defensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≤ |V (G)|.
Question: Is there a locally minimal defensive alliance S ⊆ V (G) such that |S| ≥ k?

Exact Connected Locally Minimal Defensive Alliance

Input: An undirected graph G = (V,E) and an integer k ≤ |V (G)|.
Question: Is there a connected locally minimal defensive alliance S ⊆ V (G) such that
|S| = k?

Bazgan, Fernau and Tuza [1] proved that deciding if a graph contains a locally minimal
strong defensive alliance of size at least k is NP-complete, even when restricted to bipartite
graphs with average degree less than 3.6; deciding if a graph contains a locally minimal
defensive alliance of size at least k, even for bipartite graphs with average degree less than
5.6. The authors also proved that deciding if a graph contains a connected locally minimal
strong defensive alliance or a connected locally minimal defensive alliance of size at least

7

k is NP-complete, even when restricted to bipartite graphs with average degree less than
2+ ϵ, for any ϵ > 0. We design a polynomial-time algorithm for the Connected Locally

Minimal Strong Defensive Alliance on trees. We prove that Locally Minimal

Defensive Alliance problem is NP-complete, even when restricted to planar graphs.
We give a randomized FPT algorithm for the Exact Connected Locally Minimal

Defensive Alliance problem using color coding technique. We give an FPT algorithm for
Locally Minimal Defensive Alliance when parameterized by neighbourhood diversity
of the input graph. We prove that Exact Connected Locally Minimal Defensive

Alliance parameterized by treewidth is W[1]-hard and thus not FPT (unless FPT=W[1]).
Finally we show that the Locally Minimal Defensive Alliance problem is polynomial
time solvable for graphs with bounded treewith.

1.3 The Satisfactory Partition Problem

While the formation of an alliance is highly beneficial to its members, it can have adverse
effects on the non-members of the alliance. Such an alliance can create a sense of disharmony
within the community, and can be harmful in the long run. Thus, while the formation of
groups and communities itself cannot be prevented, one can hope that the groups created are
such that they partition the entire population into beneficial defensive alliances. With this
in mind, we shall study a graph theoretic version of this scenario, where we try to partition
the vertices of a graph into defensive or strong defensive alliances, and try to characterise
the set of graphs for which such a partition exists.

This problem also has applications in similarity networks of natural objects [20]. Given a
set of objects, we can create a similarity graph or network, which links two objects based on
their similarities. Then, the problem would be to partition these objects into smaller classes
or clusters such that every object has more similarity with members of the same class, than
other classes. Finding such clusters in a given data set automatically by a computer is a
popular line of study in the present day. Cluster recognition finds applications in many fields
including those of pattern recognition, information theory and behavioural sciences [34].

Similar to the partitioning problem above, Gerber and Kobler [32] defined a satisfactory
partition to be a partition of the vertices of a graph into two non-empty parts, such that
each part forms a strong defensive alliance. A graph for which a satisfactory partition exists

8

is said to be satisfactorily partitionable. Complete graphs, star graphs, complete bipartite
graphs with at least one part having odd size are some examples of graphs which are not
satisfactorily partitionable, while non-star trees and cycles of length at least 4 are some
graphs for which a satisfactory partition can be easily found [5]. See Figure 1.4.

a b

c d

(i)

e

f

g

h

i j

(ii)

k

l

m

n

o

(iii)

p

q

r

s

t

(iv)

Figure 1.4: (i) An unsatisfactory partition of K4 (ii) An unsatisfactory partition of start
graph (iii) An unsatisfactory partition of K2,3 (iv) A satisfactory partition of C5.

We study the parameterized complexity of Satisfactory Partition and Balanced Sat-

isfactory Partition problems. We define these problems as follows:

Satisfactory Partition

Input: A graph G = (V,E).
Question: Is there a nontrivial partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

then dVi
(v) ≥ dV3−i

(v)?

A variant of this problem where the two parts have equal size is:

Balanced Satisfactory Partition

Input: A graph G = (V,E) on an even number of vertices.
Question: Is there a nontrivial partition (V1, V2) of V such that |V1| = |V2| and for every
v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v)?

9

Given a partition (V1, V2), we say that a vertex v ∈ Vi is satisfied if dVi
(v) ≥ dV3−i

(v), or
equivalently if dVi

(v) ≥ ⌈d(v)
2
⌉. A graph admitting a non-trivial partition where all vertices

are satisfied is called satisfactory partitionable, and such a partition is called satisfactory
partition. In Figure 1.4(i), the partition (V1, V2) where V1 = {a, c} and V2 = {b, d} is not a
satisfactory partition. Here a has only one neighbour c in V1 and two neighbours b, d in V2.
Similarly the partitions in Figure 1.4(ii) and Figure 1.4(iii) are not satisfactory. However,
the partition in Figure 1.4(iv) is satisfactory. Additionally, if |V1| = |V2| holds, then it will be
called a balanced satisfactory partition and the graph G is balanced satisfactory partitionable.
It is easy to see that cycles of even length and complete bipartite graphs with both vertex
classes of even size are trivially balanced partitionable [5].

In the first paper on this topic, Gerber and Kobler [32] considered a generalized version
of this problem by introducing weights for the vertices and edges and showed that a general
version of the problem is strongly NP-complete. For the unweighted version, they presented
some sufficient conditions for the existence of a solution. This problem was further studied
in [2, 33, 31]. The Satisfactory Partition problem is NP-complete and this implies that
Balanced Satisfactory Partition problem is also NP-complete via a simple reduction
in which we add new dummy vertices and dummy edges to the graph [3, 5]. Both problems
are solvable in polynomial time for graphs with maximum degree at most 4 [5]. They also
studied generalizations and variants of this problem when a partition into k ≥ 3 nonempty
parts is required. Bazgan, Tuza, and Vanderpooten [2, 4] studied an “unweighted" general-
ization of Satisfactory Partition, where each vertex v is required to have at least s(v)

neighbours in its own part, for a given function s representing the degree of satisfiability.
Obviously, when s = ⌈d

2
⌉, where d is the degree function, they obtained satisfactory parti-

tion. They gave a polynomial-time algorithm for graphs of bounded treewidth which decides
if a graph admits a satisfactory partition, and gives such a partition if it exists. Except this
result, to the best of our knowledge, the parameterized complexity of the Satisfactory

Partition and Balanced Satisfactory Partition problems have not been studied be-
fore. We design a polynomial-time algorithm for the Satisfactory Partition problem
for block graphs. We prove that the Satisfactory Partition and Balanced Satis-

factory Partition problems are fixed parameter tractable (FPT) when parameterized
by neighbourhood diversity. We show that the Satisfactory Partition and Balanced

Satisfactory Partition problems can be solved in polynomial time for graphs of bounded
clique-width. Finally we prove that the Balanced Satisfactory Partition problem is
W[1]-hard when parameterized by treewidth.

10

1.4 Parameterized Complexity

A parameterized problem is a language L ⊆ Σ⋆ × N, where Σ is a fixed, finite alphabet.
For an instance (x, k) ∈ Σ⋆ × N, k is called the parameter. For example, an instance of
Vertex Cover prameterized by the solution size is a pair (G, k), where we expect G to be
an undirected graph encoded as a string over Σ, and k is a positive integer. A pair (G, k)

belongs to the Vertex Cover parameterized language if and only if the string G correctly
encodes an undirected graph (G) and moreover the graph G contains a vertex cover on k

vertices.

Definition 1.4.1. A parameterized problem L ⊆ Σ⋆ × N is fixed-parameter tractable (FPT
in short) if there is an algorithm (called an FPT algorithm) that correctly decides, for input
(x, k) ∈ Σ⋆ × N, whether (x, k) ∈ L in time f(k)nc where f is some (usually computable)
function, n is the size of the main part of the input x, that is |x| = n and c is a constant
independent of k. A complexity class containing all fixed-parameter tractable problems is
called FPT.

Fixed-parameter tractable algorithms (FPT-algorithms) are helpful in solving real world
problems that are in general NP-hard, but where most instances of interest have small pa-
rameter values. This is the case for many practical problems such as multiple sequence
alignment in computational biochemistry, known to be equivalent to the vertex cover prob-
lem, which has an FPT-algorithm with running time O(kn+ 1.2738k).
We now define the complexity class XP.

Definition 1.4.2. A parameterized problem L ⊆ Σ⋆ × N is slice-wise polynomial (XP in
short) if there is an algorithm (called an XP algorithm) that correctly decides, for input
(x, k) ∈ Σ⋆ × N, whether (x, k) ∈ L in time f(k)ng(k) where f and g are some (usually
computable) functions, n is the size of the main part of the input x, that is |x| = n and c is a
constant independent of k. A complexity class containing all slice-wise polynomial problems
is called XP.

Parameterized complexity classes are defined with respect to fpt-reducibility. A parame-
terized problem P is fpt-reducible to Q if in time f(k)·|(x, k)|c, one can transform an instance
(x, k) of P into an instance (x′, k′) of Q such that (x, k) ∈ P if and only if (x′, k′) ∈ Q, and
k′ ≤ g(k), where f and g are computable functions depending only on k. Owing to the def-

11

inition, if P fpt-reduces to Q and Q is fixed-parameter tractable then P is fixed-parameter
tractable as well.

What makes the theory more interesting is a hierarchy of intractable parameterized prob-
lem classes above FPT which helps in distinguishing those problems that are not fixed param-
eter tractable. Central to parameterized complexity is the following hierarchy of complexity
classes, defined by the closure of canonical problems under fpt-reductions: FPT ⊆ W[1] ⊆
W[2] ⊆ . . . ⊆ XP. All inclusions are believed to be strict. In particular, FPT ̸= W[1] under
the Exponential Time Hypothesis [37]. The class W[1] is the analog of NP in parameterized
complexity. A major goal in parameterized complexity is to distinguish between parameter-
ized problems which are in FPT and those which are W[1]-hard, i.e., those to which every
problem in W[1] is fpt-reducible. There are many problems shown to be complete for W[1],
or equivalently W[1]-complete, including the MultiColored Clique (MCC) problem [12].

Closely related to fixed-parameter tractability is the notion of preprocessing. A reduction
to a problem kernel, or equivalently, problem kernelization means to apply a data reduction
process in polynomial time to an instance (x, k) such that for the reduced instance (x′, k′)

it holds that (x′, k′) is equivalent to (x, k), |x′| ≤ g(k) and k′ ≤ g(k) for some computable
function g only depending on k. Such a reduced instance is called a problem kernel. It is
easy to show that a parameterized problem is in FPT if and only if there is kernelization
algorithm. A polynomial kernel is a kernel, whose size can be bounded by a polynomial in
the parameter. We refer to [11, 12] for further details on parameterized complexity.

1.5 Literature Survey

In real life, an alliance is a collection of people, groups, or states such that the union is
stronger than individual. The alliance can be either to achieve some common purpose,
to protect against attack, or to assert collective will against others. This motivates the
definitions of defensive and offensive alliances in graphs. The properties of alliances in graphs
were first studied by Kristiansen, Hedetniemi, and Hedetniemi [45]. They introduced the
concepts of defensive and offensive alliances, global offensive and global defensive alliances
and studied alliance numbers of some classes of graphs such as cycles, wheels, grids and
complete graphs. A set X ⊂ V (G) is called a dominating set if every vertex in V (G)\X has at
least one neighbour in X. An alliance is global if it is a dominating set. The alliance problems

12

have been studied extensively during last fifteen years [21, 53, 10, 51, 55], and generalizations
called r-alliances are also studied [52]. The global defensive (offensive) alliance number of
G is the cardinality of a minimum size global defensive (offensive) alliance in G. Haynes,
Hedetniemi and Henning [35] studied the global defensive alliance numbers of different classes
of graphs. They gave lower bounds for general graphs, bipartite graphs and trees, and upper
bounds for general graphs and trees. Rodriquez-Velazquez and Sigarreta [54] studied the
defensive alliance number and the global defensive alliance number of line graphs. The
decision version for several types of alliances have been shown to be NP-complete. It is
known that the Defensive Alliance problem is NP-complete [38]. The defensive r-
alliance [52] and global defensive r-alliance problems [17] are NP-complete for any fixed r.
The defensive alliance problem is NP-complete even when restricted to split, chordal and
bipartite graph [39]. Fernau et al. showed that the offensive r-alliance and global offensive r-
alliance problems are NP-complete for any fixed r [18]. There are polynomial time algorithms
for finding minimum alliances in trees [9, 38, 39]. A polynomial time algorithm for finding
minimum defensive alliances in series parallel graphs is presented in [38].

There has also been some work on the parameterized complexity of alliance problems. It is
known that Defensive Alliance and Offensive Alliance are fixed-parameter tractable
when parameterized by the solution size [13, 16]. Alliance problems have been studied with
respect to structural graph parameters. In this paper, we show that the problems for all
variants are efficiently solvable for much larger graph classes. Kiyomia and Otachi [42] proved
that alliance problems can be solved in polynomial time for graphs of bounded clique-width.
They also showed that the problems are fixed-parameter tractable when parameterized by the
vertex cover number. Ensico [13] showed that the problems of finding minimum size defensive
alliances and global defensive alliances are fixed-parameter tractable when parameterized by
the combined parameters treewidth and maximum degree. Treewidth [50, 7] is one of the
most extensively studied structural parameters in parameterized complexity. It indicates
how close a graph is to being a tree. It is particularly interesting because there are many
hard problems which become tractable on instances of bounded treewidth. It has also been
observed that the problem instances for several practical applications exhibit small treewidth
[7, 59]. Hence it is very appealing to obtain FPT algorithms for the Defensive Alliance

and Offensive Alliance problems using this parameter. Bliem and Woltran [6] proved
that defensive alliance problem is W[1]-hard when parameterized by the treewidth of the
input graph. It is also known that the Offensive Alliance problem is W[1]-hard when
parameterized by the treewidth of the input graph [22]. This puts these two problems

13

among the few problems that are FPT when parameterized by solution size but not when
parameterized by treewidth (unless FPT=W[1]).

An alliance S is called a locally minimal alliance if for any v ∈ S, S \ {v} is not an
alliance. Bazgan, Fernau and Tuza [1] proved that deciding if a graph contains a locally
minimal strong defensive alliance of size at least k is NP-complete, even when restricted to
bipartite graphs with average degree less than 3.6; deciding if a graph contains a locally
minimal defensive alliance of size at least k, even for bipartite graphs with average degree
less than 5.6. The authors also proved that deciding if a graph contains a connected locally
minimal strong defensive alliance or a connected locally minimal defensive alliance of size
at least k is NP-complete, even when restricted to bipartite graphs with average degree less
than 2 + ϵ, for any ϵ > 0.

In the first paper on the satisfactory partition problem, Gerber and Kobler [32] con-
sidered a generalized version of this problem by introducing weights for the vertices and
edges and showed that a general version of the problem is strongly NP-complete. For the
unweighted version, they presented some sufficient conditions for the existence of a solution.
This problem was further studied in [2, 33, 31]. The Satisfactory Partition problem is
NP-complete and this implies that Balanced Satisfactory Partition problem is also
NP-complete via a simple reduction in which we add new dummy vertices and dummy edges
to the graph [3, 5]. Both problems are solvable in polynomial time for graphs with maximum
degree at most 4 [5]. They also studied generalizations and variants of this problem when
a partition into k ≥ 3 nonempty parts is required. Bazgan, Tuza, and Vanderpooten [2, 4]
studied an “unweighted" generalization of Satisfactory Partition, where each vertex v

is required to have at least s(v) neighbours in its own part, for a given function s represent-
ing the degree of satisfiability. Obviously, when s = ⌈d

2
⌉, where d is the degree function,

they obtained satisfactory partition. They gave a polynomial-time algorithm for graphs of
bounded treewidth which decides if a graph admits a satisfactory partition, and gives such
a partition if it exists. Except this result, to the best of our knowledge, the parameterized
complexity of the Satisfactory Partition and Balanced Satisfactory Partition

problems have not been studied before.

14

1.6 Graph Theory

In this section, we state some basic definitions in graph theory that are used in this thesis.
For standard notations and definitions in graph theory we refer to West [60]. We define
a graph G to be a finite non-empty set V = V (G) of n vertices together a (multi) set E

of m unordered pair of vertices of V . Each pair (u, v) of vertices in E is an edge of G; u
and v are said to be adjacent. For a graph G, V (G) and E(G) denote the vertex and edge
sets of the graph G, respectively. A loop in G is an edge of the form (v, v) ∈ E(G). If an
edge (u, v) appears at least twice in E then it is called a multi-edge. A graph is simple if it
has no loops or multi-edges. A graph is a multi graph if it contains a self-loop or a multi-
edge. A directed graph, also called a digraph, is a graph in which the edges have a direction.
Throughout this thesis we consider undirected simple graphs. A graph H is a subgraph of
G if V (H) ⊆ V (G) and E(H) ⊆ E(G) where of course any edge of in H must have both
its endpoints in V (H). If v is a vertex of a graph, then the degree of v, d(v), is the number
of edges incident with v. A walk in a graph or a multigraph is an alternating sequence of
vertices and edges v0, e1, v1, e2, . . . , vn−1, en, vn beginning and ending with vertices, in which
every edge is incident with the vertices immediately preceding and following it. This walk
joins v0 and vn and may be called a (v0, vn) walk. It is closed if v0 = vn and open otherwise.
It is a path if all the vertices are distinct. If v0 = vn but all other vertices are distinct, it is
a cycle.

A graph is connected if every pair of vertices are joined by a path. If a graph is not
connected, it is called disconnected and its maximal connected subgraphs are called compo-
nents. A simple and important type of graph is called a tree. A tree is a connected graph
containing no cycles. A rooted tree is a tree in which one vertex has been designated the
root. In a rooted tree, the parent of a vertex v is the vertex adjacent to v on the path to
the root; every vertex has a unique parent except the root which has no parent. A child of a
vertex v is a vertex of which v is the parent. The height of a rooted tree is the length of the
longest path from the root to any vertex. In this dissertation, the path length corresponds to
the number of vertices in the path. Consider the tree shown in Figure 1.5. The root of this
tree is x1; nodes x4 and x5 are children of x3. Node x5 is parent of x6. Nodes x2, x4, x6 are
leaf nodes. The height of this tree is four. A forest is a graph containing no cycles. Some
other special types of graphs will also be of interest to us. A graph G is regular of degree d

if every vertex has degree d. The graph on n vertices in which every vertex is adjacent to

15

x1

x2 x3

x4

x5

x6

Figure 1.5: A tree of height 4.

every other vertex is called the complete graph and denoted by Kn. If the vertices of a graph
G can be partitioned into two sets V1 and V2, so that every edge joins a vertex of V1 to a
vertex of V2, then G is called bipartite. If every vertex of V1 is adjacent to every vertex of
V2, then G is complete bipartite and denoted by Km,n where m = |V1| and n = |V2|. Planar
graph is a graph that can be drawn on the plane so that its edges meet only at vertices. A
clique is a subset of vertices of an undirected graph such that every two distinct vertices in
the clique are adjacent. A independent set is a subset of vertices of an undirected graph such
that no two vertices in the independent set are adjacent to each other.

A graph G is said to be chordal if every cycle of G of length at least 4 has a chord. Figure
1.6 shows a chordal graph. Block graphs form a subclass of chordal graphs that generalize

a

b c

d

ef

Figure 1.6: A chordal graph

the trees. For any positive integer k, a k-connected component is a maximal k-connected
subgraph in G. The 2-connected components of a graph G are called blocks of G. Thus a
block does not contain any cut-vertex; a cut-vertex is a vertex the removal of which would
disconnect the remaining graph. Moreover, two blocks of a graph G share at most one vertex
of G. A graph is said to be a block graph if every block of the graph is a clique. Figure 1.7
shows a block graph.

16

a
b

c d
e

f

g

Figure 1.7: A block graph

1.7 Structural Graph Parameters

In this section, we recall definitions of structural graph parameters that are discussed in this
thesis. The graph parameters we discuss in this thesis are pathwidth, treewidth, vertex cover
number, twin-cover number and feedback vertex set number.

Vertex Cover, Twin-Cover, Feedback Vertex Set

Definition 1.7.1. A set S ⊆ V (G) is a vertex cover of G = (V,E) if each edge in E has at
least one endpoint in S. The size of a smallest vertex cover of G is the vertex cover number
of G.

We now recall a natural way of generalizing vertex cover to dense graphs. We relax the
definition of vertex cover so that not all edges need to be covered.

Definition 1.7.2. An edge is a twin edge if its incident vertices have the same closed
neighborhood.

Definition 1.7.3. A set X ⊆ V (G) is a twin-cover of G if every edge in G is either twin or
incident to a vertex in X. We then say that G has twin-cover number k if k is the minimum
possible size of a twin-cover of G.

An illustration and comparison is provided in Figure 1.8.

Definition 1.7.4. A feedback vertex set of a graph G is a set of vertices whose removal
leaves G without cycles. The minimum size of a feedback vertex set in G is the feedback
vertex set number of G, denoted by fvs(G).

17

(a)

v2
v1

v4

v3

v5

v8

v6

v7
(b)

Figure 1.8: (a) A minimum-size vertex cover (size 5 – depicted in black) (b) A minimum-size
twin-cover (size 2 – depicted in black).

Neighbourhood Diversity

We say that two (distinct) vertices u and v have the same neighborhood type if they share
their respective neighborhoods, that is, when N(u) \ {v} = N(v) \ {u}. If this is so we say
that u and v are twins. It is possible to distinguish true-twins (those joined by an edge) and
false-twins (in which case N(u) = N(v)).

Definition 1.7.5. [46] A graph G = (V,E) has neighbourhood diversity at most k, if there
exists a partition of V into at most k sets (we call these sets type classes) such that all the
vertices in each set have the same neighbourhood type.

If neighbourhood diversity of a graph is bounded by an integer k, then there exists a par-
tition {C1, C2, . . . , Ck} of V (G) into k type classes. We would like to point out that it is
possible to compute the neighborhood diversity of a graph in linear time using fast modular
decomposition algorithms [58]. Notice that each type class could either be a clique or an
independent set by definition and two type classes are either joined by a complete bipartite
graph or no edge between vertices of the two types is present in G. For algorithmic purpose
it is often useful to consider a type graph H of graph G, where each vertex of H is a type class
in G, and two vertices Ci and Cj are adjacent iff there is a complete bipartite clique between
these type classes in G. The key property of graphs of bounded neighbourhood diversity
is that their type graphs have bounded size. For example, a graph G with neighbourhood
diversity four and its corresponding type graph H is illustrated in Figure 1.9.

Pathwidth and Treewidth

We now review the concept of a tree decomposition, introduced by Robertson and Seymour
in [50]. Treewidth is a measure of how “tree-like” the graph is.

18

a b c d

e

f

g h

i

G H

a, b, c, d

e

f, g h, i

Figure 1.9: A graph G with neighbourhood diversity 4 and its corresponding type graph H.

Definition 1.7.6. [12] A tree decomposition of a graph G = (V,E) is a tree T together
with a collection of subsets Xt (called bags) of V labeled by the nodes t of T such that⋃

t∈T Xt = V and (1) and (2) below hold:

1. For every edge (u, v) ∈ E(G), there is some t such that {u, v} ⊆ Xt.

2. (Interpolation Property) If t is a node on the unique path in T from t1 to t2, then
Xt1 ∩Xt2 ⊆ Xt.

Definition 1.7.7. [12] The width of a tree decomposition is the maximum value of |Xt| − 1

taken over all the nodes t of the tree T of the decomposition. The treewidth tw(G) of a graph
G is the minimum width among all possible tree decompositions of G.

Example 1. Figure 1.10 gives an example of a tree decomposition of width 2.

A special type of tree decomposition, known as a nice tree decomposition was introduced by
Kloks [43]. The nodes in such a decomposition can be partitioned into four types (examples
in Figure 1.11):

Definition 1.7.8. [11] A tree decomposition is said to be nice tree decomposition if the
following conditions are satisfied:

1. All bags correspond to leaves are empty. One of the leaves is considered as root node
r. Thus Xr = ∅ and Xl = ∅ for each leaf l.

19

b

a c

d

h

e

f

g

b, d

a, b, d c, b, d

c, d, h

c, h, g h, e

c, g, f

Figure 1.10: Example of a tree decomposition of width 2

2. There are three types of non-leaf nodes:

• Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪{v} for
some v /∈ Xt′ ; we say that v is introduced at t.

• Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for
some w ∈ Xt′ ; we say that w is forgotten at t.

• Join node: a node with two children t1 and t2 such that Xt = Xt1 = Xt2 .

u, v u, wt′

u, v, wt

u, v, wt′

u, vt

u, v, wt1 u, v, wt2

u, v, wt

Figure 1.11: The four types of node in a nice tree decomposition. From left to right: a leaf,
an introduce node, a forget node, and a join node.

Note that, by the third property of tree decomposition, a vertex v ∈ V (G) may be intro-
duced several time, but each vertex is forgotten only once. To control introduction of edges,
sometimes one more type of node is considered in nice tree decomposition called introduce
edge node. An introduce edge node is a node t, labeled with edge uv ∈ E(G), such that
u, v ∈ Xt and Xt = Xt′ , where t′ is the only child of t. We say that node t introduces edge

20

uv. It is known that if a graph G admits a tree decomposition of width at most tw, then it
also admits a nice tree decomposition of width at most tw, that has at most O(n · tw) nodes
[11].

Definition 1.7.9. If the tree T of a tree decomposition is a path, then we say that the tree
decomposition is a path decomposition, and use pathwidth in place of treewidth.

Example 2. Figure 1.12 gives an example of a path decomposition of width 3.

b

a c

d

h

e

f

g

a, b, d b, d, c d, c, h c, g, f, h e, h

Figure 1.12: Example of a path decomposition of width 3

Treedepth

A rooted forest is a disjoint union of rooted trees. Given a rooted forest F , its transitive
closure is a graph H in which V (H) contains all the nodes of the rooted forest, and E(H)

contain an edge between two vertices only if those two vertices form an ancestor-descendant
pair in the forest F .

Definition 1.7.10. The treedepth of a graph G is the minimum height of a rooted forest F
whose transitive closure contains the graph G. It is denoted by td(G).

21

Figure 1.13: Examples explaining treedepth of the graphs

Clique Width

The clique-width of a graph G, denoted by cw(G), is the minimum number of labels needed
to construct G using the following four operations:

1. Create a new graph with a single vertex v with label i (written i(v)).

2. Take the disjoint union of two labelled graphs G1 and G2 (written G1 ∪G2).

3. Add an edge between every vertex with label i and every vertex with label j, i ̸= j

(written ηij).

4. Relabel every vertex with label i to have label j (written ρi→j).

We say that a construction of a graph G with the four operations is a c-expression if it uses at
most c labels. Thus the clique-width of G is the minimum c for which G has a c-expression.
A c-expression is a rooted binary tree T such that

1. each leaf has label i for some i ∈ {1, . . . , c},

22

2. each non-leaf node with two children has label ∪, and

3. each non-leaf node with only one child has label ρi,j or ηi,j (i, j ∈ {1, . . . , c}, i ̸= j).

Example 3. Consider the graph Pn, which is simply a path on n vertices. Note that cw(P1) =

1 and cw(P2) = cw(P3) = 2. Now consider a path on four vertices v1, v2, v3, v4, in that order.
Then this path can be constructed using the four operations (using only three labels) as follows:

η3,2(3(v4) ∪ ρ3→2(ρ2→1(η3,2(3(v3) ∪ η2,1(2(v2) ∪ 1(v1)))))).

This construction can readily be generalized to longer paths for n ≥ 5. It is easy to see that
cw(Pn) = 3 for all n ≥ 4.

A c-expression represents the graph represented by its root. A c-expression of a n-vertex
graph G has O(n) vertices. A c-expression of a graph is irredundant if for each edge {u, v},
there is exactly one node ηi,j that adds the edge between u and v. It is known that a c-
expression of a graph can be transformed into an irredundant one with O(n) nodes in linear
time. Here we use irredundant c-expression only.

Computing the clique-width and a corresponding c-expression of a graph is NP-hard. For
c ≤ 3, we can compute a c-expression of a graph of clique-width at most c in O(n2m) time,
where n and m are the number of vertices and edges, respectively. For fixed c ≥ 4, it is
not known whether one can compute the clique-width and a corresponding c-expression of
a graph in polynomial time. On the other hand, it is known that for any fixed c, one can
compute a (2c+1− 1)-expression of a graph of clique-width c in O(n3) time. For more details
see [40].

Relationship Between Graph Parameters

See Figure 1.14 for a schematic representation of the relationship between selected graph
parameters. Note that A → B means that there exists a function f such that for all graphs,
f(A(G)) ≥ B(G); therefore the existence of an FPT algorithm parameterized by B implies
the existence of an FPT algorithm parameterized by A, and conversely, any negative result
parameterized by A implies the same negative result parameterized by B.

23

vc

nd tcvi

td

fvspw
mw cvd

tw

cw

Figure 1.14: Relationship between vertex cover (vc), neighbourhood diversity (nd), twin
cover (tc), modular width (mw), cluster vertex deletion number (cvd), feedback vertex set
(fvs), pathwidth (pw), treewidth (tw) and clique width (cw). Note that A → B means that
there exists a function f such that for all graphs G, f(A(G)) ≥ B(G).

1.8 An Overview of the Thesis

In Chapter 2, we give a brief introduction to Parameterized Complexity. We formally define
parameterized problems, fixed-parameter tractable algorithms and kernelization. Further-
more, we illustrate each of them with some examples. We also give a brief introduction to
fixed-parameter intractability and W-hierarchy. Each of these notions are illustrated with
examples.

In Chapter 3, we consider the Defensive Alliance and Offensive Alliance prob-
lems. This chapter is based on the paper [25]. In the Defensive Alliance problem,
given an undirected graph G and a positive integer k, the question is to check whether G

has a defensive alliance of size at most k. In the Offensive Alliance problem, given an
undirected graph G and a positive integer k, the question is to check whether G has an of-
fensive alliance of size at most k. We design FPT algorithms for Defensive Alliance and
Offensive Alliance when parameterized by neighbourhood diversity of the input graph.
We prove that Offensive Alliance is FPT when parameterized by domino treewidth of
the input graph. We also prove that Defensive Alliance and Offensive Alliance are
polynomial time solvable for graphs with bounded treewith.

In Chapter 4, we study parameterized intractability of the Defensive Alliance prob-

24

lem. This chapter is based on the paper [29]. We prove that the Defensive Alliance

problem is W[1]-hard when parameterized by the pathwidth of the input graph. We also
prove that the Exact Defensive Alliance problem is W[1]-hard when parameterized
by the feedback vertex set number and the pathwidth of the input graph. We introduce
several variants of Defensive Alliance that we require in our proofs of above two re-
sults. The Defensive AllianceF problem generalizes Defensive Alliance where some
vertices are forced to be outside the solution; these vertices are called “forbidden" vertices.
Given a graph G = (V,E), a set V□ ⊆ V (G) and an integer k ∈ N, we study Defensive

AllianceF, where the goal is to find a defensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ k,
and (ii) S ∩ V□ = ∅. The Defensive AllianceFN problem is a further generalization
that, in addition, requires some “necessary” vertices to be in S. Given a graph G = (V,E),
a set V□ ⊆ V (G), a set V△ ⊆ V , and an integer k ∈ N, we study Defensive AllianceFN,
where the goal is to find a defensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ k, (ii) S∩V□ = ∅,
and (iii) V△ ⊆ V . We prove that the Defensive AllianceFN problem is W[1]-hard when
parameterized by the size of a vertex deletion set into trees of height at most 4. We also
prove that the Defensive AllianceF problem is W[1]-hard when parameterized by the
pathwidth of the graph.

In Chapter 5, we consider the problem Locally Minimal Defensive Alliance, which
takes as input an undirected graph G and a positive integer k, and the objective is to de-
cide if G has a locally minimal defensive alliance of size at least k. This chapter is based
on the paper [26] and the manuscript [27]. We design a polynomial-time algorithm for the
Connected Locally Minimal Strong Defensive Alliance on trees. We prove that
Locally Minimal Defensive Alliance problem is NP-complete, even when restricted
to planar graphs. We give a randomized FPT algorithm for the Exact Connected Lo-

cally Minimal Defensive Alliance problem using color coding technique. We give
an FPT algorithm for Locally Minimal Defensive Alliance when parameterized by
neighbourhood diversity of the input graph. We prove that Exact Connected Locally

Minimal Defensive Alliance parameterized by treewidth is W[1]-hard and thus not FPT
(unless FPT=W[1]). Finally we show that the Locally Minimal Defensive Alliance

problem is polynomial time solvable for graphs with bounded treewith.

In Chapter 6, we consider the Satisfactory Partition and Balanced Satisfac-

tory Partition problems. In the Satisfactory Partition problem, given a graph
G = (V,E), the goal is to find a nontrivial partition (V1, V2) of V such that for every v ∈ V ,

25

if v ∈ Vi then dVi
(v) ≥ dV3−i

(v). In the Balanced Satisfactory Partition problem,
given a graph G = (V,E), the goal is to find a nontrivial partition (V1, V2) of V such that
|V1| = |V2| and for every v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v). This chapter is based

on the papers [28, 23, 24]. We design a polynomial-time algorithm for the Satisfactory

Partition problem for block graphs. We prove that the Satisfactory Partition and
Balanced Satisfactory Partition problems are fixed parameter tractable (FPT) when
parameterized by neighbourhood diversity. We show that the Satisfactory Partition

and Balanced Satisfactory Partition problems can be solved in polynomial time for
graphs of bounded clique-width. Finally we prove that the Balanced Satisfactory Par-

tition problem is W[1]-hard when parameterized by treewidth.

26

Chapter 2

Introduction to Parameterized
Complexity

The time taken by an algorithm is a central measure of its efficiency. For many problems,
there are algorithms whose time complexity is polynomial in the size of the instance. How-
ever, there are a multitude of problems for which no polynomial time algorithm is known to
exist. The known algorithms for such problems usually tend to be exponential in the size n

of the instance. As a result, the time complexity grows a lot faster compared to n, making
the problem computationally intractable even for relatively smaller instances.

2.1 Fixed Parameter Tractability

A popular method to soften this exponential blow is to look at parameterized problems. Here,
every instance is attached with a parameter k, thereby expanding the set of all instances to
I×N. Any element of this set is of the form (x, k) where x is the instance, and k is the value
of some parameter associated to x. A parameterized problem now asks a Yes/No question,
often linking x to k, and is characterised by a subset P ⊆ I × N of yes instances.

One wonders then, as to how adding a parameter can help in designing more efficient
algorithms to the exponential problems above. The key idea is to capture and restrict
the exponential growth in running times to the parameter, thereby obtaining an algorithm

27

which takes time possibly exponential in the parameter k, but polynomial in the size n

of the instance x. Such a tactic makes the problem tractable over the subset of instances
having a parameter less than a fixed small maximum value of k. This happens because the
exponential term in k gets bounded above by a constant, thereby rendering an algorithm
with time complexity polynomial in n. Such parameterized problems are said to be fixed-
parameter tractable (FPT). Formally,

Definition 2.1.1. A parametrized problem P ⊆ I×N is said to be fixed-parameter tractable
(FPT) if it is possible to determine accurately, for input (x, k) ∈ I ×N, if (x, k) ∈ P in time
f(k) ·nc where f is some (usually computable) function, n is the size of the main part of the
input x, that is |x| = n and c is a constant independent of k. The algorithm that performs
this task is called an FPT algorithm.

We now look at some techniques that are used in constructing FPT algorithms, and see some
examples of these algorithms in graph theory.

2.1.1 Kernelization

Imagine that you are searching for a 5-letter across word while solving a crossword (or
perhaps a Wordle). A general brute-force algorithm would expect you to think of all possible
5-letter words one at a time and match them with the given meaning or clue (at least 1,50,000
meaningful ones!). Now suppose that the first and third letter of this word are known to
be ‘A’ via solved down clues. This now reduces your search to only those 5-letter words
of the form A?A?? (around 18 meaningful words of this form). So, obtaining some trivial
information about the word, using the down clues, helped restrict our search to a much
smaller set, and with variations over those positions in the word that did not intersect with
any down clues. In other words, we restricted ourselves to the core letters of the word.

Similarly, say now you are solving an MCQ with 5 options and do not know the answer to
the question. If you make a guess, the chances of getting a correct answer is just 0.2. But
suppose, now you were able to trivially eliminate three irrelevant and incorrect options out
of the five. Then your problem gets restricted to choosing one of the 2 options, with a 0.5

chance of getting it correct. You have successfully reduced your options by reaching the core

28

two options of the MCQ. Even while finding possible solutions to a given Sudoku, finding
some numbers by hand with the help of the basic rules, reduces your search for solutions,
thereby allowing for faster brute-force or branching methods.

The above scenarios capture the essence of kernelization techniques: To make some poly-
nomial time deductions on the given instance, which restricts the algorithm to the computa-
tionally hard ‘core’ (kernel) of the problem, thereby reducing the time complexity. Formally,
we define kernelization as follows:

Definition 2.1.2. A kernelization algorithm takes as input an instance (x, k) ⊆ I × N and
returns in polynomial time, an equivalent instance (x′, k′), such that |x′| ≤ g(k) and k′ ≤ g(k)

for some computable function g(k).

Two instances (x, k) and (x′, k′) are said to be equivalent instances of P when (x, k) ∈ P if
and only if (x′, k′) ∈ P . Note that once k′ ≤ g(k), there might be no further reduction in the
value of the parameter, and thus repetitive applications of a kernelization algorithm need
not reduce the problem to triviality. However, in most cases, a repetitive and exhaustive
application of kernelization algorithms provide an equivalent instance with size bounded by
a function of k, thereby paving way for an FPT algorithm.

Vertex Cover

We shall look at a kernelisation algorithm for finding a smallest vertex cover of a graph
G = (V,E). We say that the vertices u and v cover the edge (u, v). A vertex cover of G is
a subset S ⊂ V such that every edge in E is covered by some element of S. This example is
taken from [11]. We define the problem as follows:

Vertex Cover

Input: A graph G = (V,E) and a positive integer k.
Question: Does G have a vertex cover of size at most k?

We shall find a simple kernelization algorithm for this problem parameterized by the solution
size k. Recall from graph theory that, a vertex v is said to be a neighbour of u if (u, v) is

29

an edge. The set of all neighbours of a vertex v is denoted by N(v), and the degree d(v) is
defined to be the cardinality |N(v)|.

Let us look at the vertices with degree 0 (isolated vertices). If v is an isolated vertex, then
it does not cover any edge. Thus, v need not be a part of any vertex cover for the graph
G, and hence can be ignored. Note that ignoring this vertex does not affect the size of the
vertex cover, and thus keeps the parameter the same. This gives us our first reduction rule
for kernelization:

Reduction VC 1. If v is an isolated vertex in G, delete v from G. The new instance is
(G− v, k)

Note that the above rule satisfies all conditions of a kernelization algorithm. Using this rule
we can eliminate all isolated vertices. Let us move on to the set of one-degree vertices. Let
v be a vertex with d(v) = 1, and w be its unique neighbour. If S is a vertex cover of size k,
then either v ∈ S or v /∈ S. If v /∈ S, then w must lie in S so as to cover the edge (v, w).
Alternatively, if v ∈ S, then v covers exactly one edge e = (v, w) while w covers more edges
than v does, and also covers the edge e. So, replacing v with w results in a more optimal
covering of edges. Thus, we can always find a smallest vertex cover which has exactly one
vertex out of v and w, preferably w.

So, if v is a vertex with d(v) = 1, then we have obtained a sure element w, the only neighbour
of u, in any optimal vertex cover, allowing us to forget both the vertices v and w from the
graph G, and reduce the parameter size by 1. This gives us the next reduction rule:

Reduction VC 2. If v is a vertex of degree one and w is the neighbour of v in G, then
delete w from G and decrease the parameter k by 1. The new instance is (G− w, k − 1)

Now, we focus our attention to vertices with higher degree. Suppose we are searching for a
vertex cover S of size at most k, and v is a vertex with degree d(v) > k, then v must belong
to S. As v has at least k + 1 edges in G and if v /∈ S, then all these k + 1 edges will have
to be covered by k + 1 distinct vertices in S. But this is not possible as |S| ≤ k. This idea
gives the next reduction rule:

Reduction VC 3. If v is a vertex of degree at least k+1, then delete v from G, and decrease
the parameter k by 1. The new instance is (G− v, k − 1).

30

These three rules are sufficient to demonstrate a simple and effective kernelisation algorithm.
Together, they attack on all vertices with degrees d(v) ≤ 1 or d(v) ≥ k + 1. We apply these
rules exhaustively, that is, until it is not possible to apply any of the rules in the output
instance. It is important to note that the application of the three rules can be exhausted in
finite time as each rule reduces the size of the input graph by at least 1 vertex.

Similar to most kernelization algorithms, an exhaustive application of these rules returns an
equivalent instance (G′, k′), called the kernel, such that the size of V (G′) is bounded by some
function of k. We shall now prove this fact:

Theorem 2.1.1. Let (G′, k′) be the new instance obtained from (G, k) such that none of
the reduction rules V C.1, V C.2, V C.3 is applicable to G′. If (G′, k′) is a yes instance then
G′ has at most k2 vertices and at most k2 edges.

Proof. Let (G′, k′) be obtained from (G, k) after an exhaustive applications of the three rules.
Suppose that S ′ is a vertex cover of G′ of size ≤ k′, that is, (G′, k′) is an yes-instance. Note
that the application of any of the three rules does not cause the value of k to increase. Thus,
|S ′| ≤ k′ ≤ k. We count first, the edges in G′. As every edge in G′ is covered by a vertex in
S ′,

|E(G′)| ≤ ∆(G′) · |S ′|

where ∆(G′) is the maximum degree of G′, which is less than k due to exhaustion application
of Reduction VC 3. So,

|E(G′)| ≤ ∆(G′) · |S ′| ≤ k · k ≤ k2.

Thus, G′ has at most k2 edges. Now, for the vertices, by the first handshake lemma in graph
theory, we have:

2|E(G′)| =
∑

v∈V (G′)

d(v)

We know by exhaustive application of Reduction VC.1 and VC.2, that d(v) ≥ 2. Further,
we saw that |E(G′)| ≤ k2. Combining both these facts in the previous equation, we get

2k2 ≥ 2|E(G′)| =
∑

v∈V (G′)

d(v) ≥
∑

v∈V (G′)

2 = 2|V (G′)|

or, |V (G′)| ≤ k2, as required.

31

The above theorem has the following implications. Given a graph G with n vertices, we
can find a kernel (G′, k′) in time polynomial in n, say p(n). Now, we can check if the number
of edges or vertices in G′ is more than k2 in time O(k2). If either number has size greater
than k2, we declare (G, k) to be a no-instance by the contrapositive of Theorem 2.1.1. If this
is not the case, then we search for a vertex cover by some brute-force approach. We look at
all possible choices of a vertex cover of size k′ and check for each choice, if it covers each of
the k2 edges or not. This takes g(k) = O(k2k+2) time, exponential in k. If we find a vertex
cover of size k′, we say that (G, k) is a yes-instance, else it would be a no-instance. This
process determines whether (G, k) is a yes-instance or not in p(n)+ g(k)O(k2) time, thereby
giving us an FPT algorithm.

What we demonstrated above was the formation of a kernelisation algorithm by observing
simple facts. More efficient kernelisation algorithms give a kernel of smaller sizes, and can
be obtained via a deeper study of the structural aspects of the given instance. There are
better kernelisation techniques which use structural features, like crown decompositions,
sunflower lemma, or expansion lemma, which can provide smaller kernels. We end this
section by mentioning a fascinating connection between FPT and kernelization algorithms,
which follows easily from the definitions:

Theorem 2.1.2. [11] A parameterized problem admits a kernelization algorithm if and only
if it is fixed-parameter tractable.

2.1.2 Bounded Search Trees

The vertex cover algorithm given in Section 2.1.1 takes about p(n)+O(k2k+4) running time.
Even though the exponential time has been captured only in k, it is still very high and we
can try to improve it by finding a better algorithm.

The key idea now is to make use of branching : at every step, we take the given instance
and break it into some s disjoint and exhaustive cases, with each case working on some
reduced simpler instance. What we require is that each of these simpler instances has a
solution that can be extended to a solution for the parent instance, and at least one of these
extended solutions must match with an optimal solution on the parent instance as desired
by the problem. The branching is used recursively at every simpler instance, forming some

32

sort of recursive search trees.

The recursive search will have a leaf instance which is trivial to solve. Such instances
need not be branched further, and depict the end of the recursion tree. The key idea is that
if the number of nodes in the recursion tree is bounded by a function of the parameter k,
say f(k), and takes polynomial p(n) time at each node, we get a Bounded Search Tree which
solves the problem in O(f(k)q(n)) time, thereby giving perhaps an efficient FPT algorithm.
The number of nodes depend on the number of branches s at each level and the depth of
the tree d, and effectively have to be kept small. Let us use these ideas to give a better FPT
algorithm for the vertex cover problem.

Vertex Cover

This example is taken from [11]. Suppose G is a graph and S is a vertex cover for G, then
the key idea is to note that for every vertex v, either v or N(v) must be a part of S so as to
cover all the d(v) edges adjacent to v. This will be our criteria for branching. The branching
stops when we get a graph with all vertices having d(v) ≤ 1, as the vertex covers for such
graphs can be found easily in polynomial time, or if the parameter value k ≤ 1, where it
becomes easier to determine if a vertex cover of required size will exist or not. The algorithm
runs as follows: at every instance (G, k), we pick a vertex v with the highest degree. Note
that v can be found in O(n2) time. We branch the instance into 2 cases - either v ∈ S or
N(v) ⊂ S. The first case returns the instance (G − v, k − 1), and the second case returns
the instance (G−N(v), k − |N(v)|).

We must now calculate the number of nodes in this recursion tree. Note that, as the tree
has 2 branches at every node, depth d, and has l = 2d leaves, then the total number of
nodes in the tree equals

∑d
i=0 2

i = 2d+1 − 1 = 2l− 1. Thus, our tree has O(l) nodes and so,
it suffices to estimate the size of l. Let L(k) be the number of leaves in a tree starting at
parameter k. We saw that k ≤ 1 is a trivial case and itself forms a leaf. so, L(0) = L(1) = 1.
Otherwise, for k > 1, we branch as explained above. The first branch then has L(k − 1)

leaves and the second branch has at most L(k − 2) leaves. As L(k) is increasing in k and
the parameter reduces by at least 2 in the second branch as there exists a vertex v of degree
d(v) ≥ 2 in a non trivial instance. The leaves needed are the sum of leaves present in the
sub-trees. Thus, L(k) ≤ L(k − 1) + L(k − 2). Considering the worst case scenario, we get

33

the recursion:

L(i) =

L(i− 1) + L(i− 2) if i ≥ 2,

1 if i ≤ 1

Observe that the sequence L(i) is the Fibonacci sequence. Such recurrence relations are
solved by substituting L(i) = xi and solving for x. Making the substitution gives us xi =

xi−1 + xi−2, or x2 − x− 1 = 0, giving a quadratic equation with the solutions x = ϕ = 1.618

(the Golden ratio) and x = −0.618. So, the solution to the recurrence relation will be of
the form L(i) = c11.618

i + c2(−0.618)i for some c1, c2 ∈ R. We can determine c1 and c2 by
substituting the initial conditions L(0) = L(1) = 1. We get

c1 + c2 = 1 and 1.618c1 − 0.618c2 = 1.

We get c1 = 1.618/
√
5 and c2 = −0.618/

√
5. So we have

L(k) =
1.618k+1

√
5

+
−0.618k+1

√
5

≤ 2√
5
× 1.618k+1.

Thus the number of nodes in the search tree is O(1.618k), and the algorithm takes O(1.618kn2)

time to find a vertex cover in (G, k). Substituting these values with our kernelization algo-
rithm, gives us an improved FPT algorithm with time p(n)+O(1.618kk4), thereby concluding
our discussion on bounded search trees.

2.1.3 FPT via Integer Linear Programming (ILP)

Given two parametrized problems A and B, complexity theory provides us with the means
to reduce an instance of problem A to an equivalent instance of problem B. Then, if an
algorithm is known for problem B, we can construct an algorithm for problem A by com-
bining the reduction algorithm with the algorithm for problem B. If further, the reduction
happens in polynomial time and B has an FPT algorithm, the above process gives an FPT
algorithm for problem A as well. In this section, we shall let B be the classical Integer Linear
Programming problem, and show how FPT algorithms can be designed for other problems,

34

via the ILP method.

The ILP Problem: Integer linear programming (ILP) is defined as follows:

p-ILP

Input: A matrix A ∈ Zm×p, and vectors b ∈ Zp and c ∈ Zp.
Question: Find a vector x ∈ Zp that satisfies the m inequalities, that is, A · x ≥ b.
Parameter: p, the number of variables.

Lenstra [47] showed that p-ILP is FPT with running time doubly exponential in p, where
p is the number of variables. Later, Kannan [41] proved an algorithm for p-ILP running in
time pO(p). In our algorithms, we need the optimization version of p-ILP rather than the
feasibility version. We state the minimization version of p-ILP as presented by Fellows et.
al. [14]. The problem and the result are formally stated as follows.

p-Opt-ILP

Input: A matrix A ∈ Zm×p, and vectors b ∈ Zp and c ∈ Zp.
Question: Find a vector x ∈ Zp that minimizes the objective function cT ·x and satisfies
the m inequalities, that is, A · x ≥ b.
Parameter: p, the number of variables.

Lemma 1. [14] p-Opt-ILP can be solved using O(p2.5p+o(p) · L · log(MN)) arithmetic op-
erations and space polynomial in L. Here L is the number of bits in the input, N is the
maximum absolute value any variable can take, and M is an upper bound on the absolute
value of the minimum taken by the objective function.

Given any problem P with parameter k, we must try to reformulate it as an ILP problem
with at most f(k) variables for some computable function f in order to apply the ILP
technique. This is the most crucial requirement for this technique. If then, substituting
L, M and N gives a running time polynomial in n, we shall obtain an FPT algorithm for
the problem P .

35

Imbalance

We shall look at the example of the Imbalance problem. This example is taken from [15].
Suppose we order the vertices of a graph G = (V,E) in a straight line, and call this ordering
π. For any vertex v, we let Lπ(v) (Rπ(v)) be the set of all neighbours of v to the left (right)
of v in the ordering π. The imbalance i(v) of the vertex v is defined to be the difference
between the cardinalities of the two sets Lπ(v) and Rπ(v), and the imbalance of the graph
G is defined as i(G) =

∑
v∈V (G) i(v). The problem is to find an ordering of the vertices of G

that minimises the imbalance i(G).

We shall attempt to reformulate this as an ILP problem. Let S be the minimum vertex
cover of the graph G, with |S| = s vertices, and let πS be an ordering of S. The aim would
be to infuse the vertices of V \ S into the fixed ordering πS in such a way so as to minimise
i(G). This process will be repeated for every s! orderings of the vertex cover S, to get the
minimum possible imbalance. So, let us fix an ordering πS with the order (v1, v2, ..., vs) and
let I = V \ S. Note that I is an independent set.

Let Ii be those vertices of I which will be infused between vi and vi+1 in πS for i ∈
{1, 2, ..., s − 1} and I0 are those vertices infused before v0. Thus the set {Ii : 0 ≤ i ≤ s}
partitions I. Note that as I is an independent set, that is, the vertices of Ii are not adjacent
to each other, for any fixed i. Thus, a change in order of vertices within Ii does not affect
the imbalance i(G). Hence, it suffices to find an optimal partition of I into {Ii}.

Constraint 1: Let S ′ ⊂ S, then define I(S ′) = {x ∈ I : N(x) = S ′}. Define the variables
xi
S′ = |Ii ∩ I(S ′)| for all S ′ ⊂ S and i = 1, 2, . . . , s to be used in the ILP. Then, as for a fixed

S ′, {Ii ∩ I(S ′)} partitions I(S ′). We have the following constraint:

s∑
i=0

xi
S′ = |I(S ′)| ∀S ′ ⊂ S

Constraint 2: Now, we shall contraint the imbalance of the vertices in S. Let xi be the
imbalance of the vertex vi ∈ S. This will also be a variable in our ILP formulation. Let ei be
the, roughly, the imbalance in vi calculated only using the vertices of S and the ordering πS,

36

or more precisely, ei = LπS
(vi)−RπS

(vi), without the modulus sign. Then, the imbalance of
vi is given by:

xi =

∥∥∥∥ei + ∑
{S′⊂S : vi∈S′}

(
i−1∑
j=0

xj
S′ −

s∑
j=i

xj
S′

)∥∥∥∥.
Note that there is a modulus sign in this constraint which makes the constraint non-linear.
However, we can split the problem into 2s separate ILP problems by multiplying the RHS
of the above constraint by either ti = 1 or ti = −1, independently for each i. This completes
constraint 2.

We finally add the constraint that all xi
S′ and xi must be nonnegative quantities to complete

our ILP formulation. For each S ′ ⊆ S, we partition I(S ′) into s sets I(S ′)∩Ii, i = 0, 1, . . . , s.
It may be noted that for each i, every vertex in I(S ′) ∩ Ii will have the same imbalance;
this imbalance depends only on the ordering of elements of S ′ in πS and can be calculated
easily. This imbalance is stored in ziS′ . As xi

S′ is the number of vertices which have imbalance
ziS′ , we add the second term in the objective function to count total imbalances due to the
vertices in I. Therefore the vertices in I(S ′) ∩ Ii contribute ziS′xi

S′ imbalance to the total
imbalance i(G).

Thus, given an ordering πS of the vertices of S, we have 2s ILPs of the form:

Minimize i(G) =
s∑

i=1

ti · xi +
s∑

i=0

∑
S′⊂S

ziS′xi
S′

subject to
s∑

i=0

xi
S′ = |I(S ′)| ∀S ′ ⊂ S

xi = tiei +
∑

{S′⊂S : vi∈S′}

(
i−1∑
j=0

tix
j
S′ −

s∑
j=i

tix
j
S′

)
, i ∈ {1, ...s}

xi, x
i
S′ ≥ 0 ∀S ′ ⊂ S, i ∈ {0, 1, ...s}

There are a total of s+s2s variables in the formulated ILP. In order to satisfy the requirement
that the number of variables in the ILP problem must be bounded by a function of the
parameter, we shall parameterize the Imbalance problem with the vertex cover number s

37

of the input graph G. There are a total of s!2s ILPs of the above type. For each ILP, the input
has size L = O(n2) and both M,N are bounded by n. So, each ILP takes O(g(s)g(s)n2log(n2))

time, with g(s) = s(1 + 2s), thus giving an FPT algorithm for the Imbalance problem
parametrised by the vertex cover number s which runs in O(s!2sg(s)g(s)n2log(n2)) time.

This concludes our brief exposition on some of the techniques used to find fixed-parameter
tractable algorithms.

2.2 Fixed-Parameter Intractability

Problems in the set P, those which have polynomial time algorithms, are computationally
the easiest problems to solve. For those not in P, we saw that FPT-algorithms gave some
relief by making these harder problems computationally tractable under the scenario of a
bounded parameter k. However, presently, not all problems have known FPT-algorithms.
Evidently, these problems become the hardest ones to solve, and gain special attention in
the theory of parameterized complexity, thereby forming the W-classes of complexity. We
shall discuss these concepts briefly in this section.

Let us first understand the concept of hardness between problems via the theory of
classical complexity. Suppose we are given two decision problems P,Q and an algorithm
A, which can convert an instance of P to an equivalent instance of Q in polynomial time.
Now, if Q has a polynomial time solution, then P can also be solved in polynomial time:
First convert the instance of P to an equivalent instance of Q using the algorithm A and
then solve the problem Q, each takes polynomial time. However, given a polynomial time
algorithm for P , it is not necessary that a polynomial time algorithm exists for Q. Stated
otherwise, just finding a polynomial time algorithm for P is not enough to find a polynomial
time algorithm for Q, and so, we say that Q is polynomially harder to solve than P .

More formally, the algorithm A : P
P−→ Q is said to be a polynomial time reduction from

P to Q. If such an algorithm A exists, then we say that Q is polynomially harder than P ,
or P ≤P Q. We say that the problems P and Q are polynomially equivalent if P ≤P Q and
Q ≤P P , denoted by P =P Q.

This idea of polynomial hardness helps study the set of problems not in P, thereby

38

characterising polynomial intractability. For example, the NP-complete problems are the
polynomially hardest problems in the class NP, and are all polynomially intractable, making
them a special focus in the theory of classical complexity. Taking inspiration from these ideas,
we can try to study fixed-parameter intractability by defining the concepts of parameterised
reductions or parameterised hardness, and then proceeding in a way similar to the classical
theory of complexity.

2.2.1 Parameterized Reduction

We begin by defining the concepts of parameterised reductions in a manner similar to poly-
nomial reductions. To begin with, we would like our parameterised reduction to be an
algorithm A that reduces an instance of P to an equivalent instance of Q in FPT time (time
complexity of the form f(k)nc), for parameterised problems P and Q. However, unlike the
polynomial case, this is not strong enough to suit our requirements. Note that, the crucial
and desired implication of a polynomial reduction from P to Q, is that a polynomial algo-
rithm for Q will generate a polynomial algorithm for P as well. Likewise, a parameterised
reduction from P to Q must be such that the existence of an FPT algorithm for Q must
imply the existence of an FPT algorithm for P . Just the above definition is not sufficient
to guarantee this implication, and thus we add another clause while defining parameterised
reductions as follows:

Definition 2.2.1. [12] Given two parameterised problems P and Q, an algorithm A is said
to be a parameterised reduction from P to Q, if for every instance (x, k) of P , the algorithm
returns an equivalent instance (x′, k′) of Q in an FPT running time f(k) · |x|c, such that
k′ ≤ g(k) for some computable functions f(k), g(k) and a constant c.

Note that the instances (x, k) of P and (x′, k′) of Q are said to be equivalent when (x, k) is
a yes instance of P if and only if (x′, k′) is a yes instance of Q. Further, we can, without loss
of generality, assume that f(k) and g(k) are increasing functions.

We shall now prove that the above definition is sufficient for our requirements:

Lemma 2. [11] If there is a parameterized reduction from P to Q and Q admits an FPT
algorithm, then P has an FPT algorithm as well.

39

Proof. Suppose (x, k) is a given instance of problem P . We have to find an FPT algorithm to
determine whether (x, k) is a yes instance or not. The idea would be to use the parameterised
reduction algorithm A to obtain an equivalent instance (x′, k′) for Q, and then solve it using
the known FPT algorithm for Q. We must show that this process takes FPT time for P .
First, observe that obtaining the equivalent instance (x′, k′) via the algorithm A takes time
T1 = f(k)|x|c ≤ f(k)|x|cd where c and d are constants.

Further, as Q has an FPT algorithm, solving the instance (x′, k′) would take time T2 =

h(k′)|x′|d. Here, by replacing h(k) with min {h(i) : 1 ≤ i ≤ k}, we can without loss of gen-
erality assume that h(k) is a non-decreasing function. Now, as k′ ≤ g(k) and h(k′) is
non-decreasing, we have h(k′) ≤ h ◦ g(k). Further, the size |x′| is bounded above by the
running time of algorithm A, we have |x′| ≤ f(k)|x|c. Combining both these facts, we get
the bound T2 ≤ h ◦ g(k)f(k)d · |x|cd.

Finally, the time taken for this process,

T = T1 + T2 ≤ [f(k) + h ◦ g(k)f(k)d] · |x|cd

Thus, showing that the algorithm for P takes FPT time.

Based on the definition of a parameterised reduction and the above lemma, we can call a
problem Q to be FPT-harder than another problem P if there is a parameterised reduction
algorithm A from P to Q. This is denoted by P ≤FPT Q. Further, problems P and Q

would be called FPT-equivalent, or P =FPT Q, if P ≤FPT Q and Q ≤FPT P . Let us look at
examples of some known parameterized reductions showing that Clique can be reduced to
some basic problems:

Theorem 2.2.1. [11] There is a parameterized reduction from Clique to Independent

Set.

Proof. Let (G, k) be an instance of Clique. We construct an instance (G′, k′) of Indepen-

dent Set as follows. We let V (G′) = V (G) and E(G′) = {(u, v) | (u, v) /∈ E(G), u ̸= v}
and k′ = k. Clearly, G′ can be constructed in polynomial time and G has a clique of size k

if and only if G′ has an independent set of size k.

The Multicoloured Clique problem takes as input, a graph G, an integer k, and a

40

partition (V1, V2, . . . , Vk) of the vertices of G. The problem is to decide whether G has a
k-clique having exactly one vertex from each set Vi.

Theorem 2.2.2. [11] There is a parameterized reduction from Clique to Multicoloured

Clique.

Proof. Let (G, k) be an instance of Clique. We construct an instance (G′, k, (V1, V2, . . . , Vk))

of Multicoloured Clique as follows. Begin constructing G′ by making k-copies of the
graph G. Let V (G) = {v1, v2, . . . , vn} be the vertices of the original graph. We can then,
label the vertices of the k-copies of G by Vi =

{
vij | j ∈ [n]

}
for all i ∈ [k].

Next, we shall add additional edges as follows: for vil ∈ Vi and vjt ∈ Vj, we add the edge
(vil , v

j
t) to E(G′) if and only if (vl, vt) ∈ E(G), l ̸= t. Note that construction of G′ takes

FPT time. Further, it can be proven that G has a clique if and only if G′ has an isomorphic
multicoloured clique. Thus k′ = k, with g(k) = 1.

It is easy to see from the definitions that a parameterised reduction need not be a poly-
nomial time reduction, for the reduction algorithm itself may not run in polynomial time.
However, quite interestingly, every polynomial reduction need not be a parameterised reduc-
tion as well! Take for example, the reduction of Vertex Cover to Independent Set.
From graph theory, we know that, S is a vertex cover of size at most k for graph G with ver-
tices V (G), if and only if the set V (G)\S is an independent set of size at least n−k. We then,
have a polynomial reduction which, given a graph (G, k) as an instance for Vertex Cover,
returns the complement graph (G, n − k) as an equivalent instance of the Independent

Set problem in O(n2) time. So, this is a polynomial time reduction algorithm. However,
it is not a parameterised reduction as k′ = n − k cannot be bounded by any computable
function g(k) as n goes to infinity.

2.2.2 The W-hierarchy

We shall now try to characterise problems which are fixed-parameter intractable, thereby
briefly introducing the notions of W-complexity classes.

The basis of fixed-parameter intractability entirely sits on the fact that no FPT algorithm
is presently known for solving the Clique problem. Rather, every result that shall be

41

mentioned in this section, holds true only under the hypothesis that an FPT algorithm
does not exist for the Clique problem. Under this hypothesis, and by the contrapositive
of Lemma 2, if the Clique problem can be FPT-reduced to any parameterised problem P ,
then P would be fixed-parameter intractable as well.

However, one gets to see a novel phenomenon in the case of these fixed-parameter in-
tractable problems - a hierarchy of complexity classes. In the theory of classical complexity,
all NP-complete problems are polynomially equivalent to each another. This does not happen
in the case of parameterised reductions. For example, there is an FPT-reduction algorithm
from the Multicoloured Independent Set problem to the Dominating Set problem
(see, e.g. Theorem 13.9 [11]), but, presently no FPT reduction is known to exist in the
opposite direction. Thus, the Dominating Set problem cannot be equivalent to the Mul-

ticoloured Independent Set problem, but it is strictly FPT-harder. This indicates the
presence of a computationally harder subclass within the class of fixed parameter intractable
problems, that captures this apparent hierarchy. These complexity sub-classes were de-
fined and introduced by Downey and Fellows, [12] thereby giving rise to the W-hierarchy of
complexity classes. Most of the intractable problems fall in the first three sub-classes of this
hierarchy. However, as mentioned later by Downey and Fellows themselves, these complexity
classes have limited practical use, and thus we would not dwell much into the technicalities
of the W-hierarchy. We provide a brief description of the same, below:

To define the sub-classes within the W-hierarchy, we begin by defining a Boolean circuit.
A Boolean circuit is a directed acyclic graph that tries to imitate a real life electric circuit
made of logic-gates. In this sense, the nodes of a Boolean circuit are partitioned as follows:

• Input Nodes: Nodes with indegree 0

• NOT Nodes: Nodes with indegree 1

• AND or OR Nodes: Nodes with indegree atleast 2

• Output Node: Unique Node with outdegree 0

Similar to an electric circuit, assigning 0 or 1 values to the input nodes of such a Boolean
circuit can uniquely determine the binary value of the output node. We say that this input
assignment satisfies the circuit, if the resulting value of the output node equals 1. The sum

42

of all values of the input nodes is called the weight of the input assignment. The Weighted

Circuit Satisfiability (WCS) problem, takes as input a Boolean circuit C, parameter k
and asks whether C has a satisfying assignment of size at most k. The Clique problem can
be reduced to the WCS problem, making the latter problem fixed-parameter intractable.

For any Boolean circuit, we can define the depth d of the circuit as the maximum length
of a path from an input node to the output node. Further, we say a node is large if it has
indegree of at least three. The weft w of a Boolean circuit is the maximum number of large
nodes encountered on any path from an input node to the output node.

Now, let Cw,d be the set of Boolean circuits with depth at most d and weft at most w,
then, for every natural number n, we define the nth W-hierarchy class as follows:

Definition 2.2.2. For n ∈ N , where n ≥ 1, a parameterized problem P is said to lie in the
sub-class W [n] if there is a parameterized reduction from WCS[Cn,d] for some d ≥ 1.

Here, WCS[Cn,d] refers to the WCS problem restricted to the class Cn,d. The above
sub-classes form a sequence of complexity classes for fixed parameter intractable problems
and are collectively called the W-hierarchy. Further, it can be proven via FPT-reductions
that:

FPT = W [0] ⊂ W [1] ⊂ W [2] ⊂ W [3] ⊂ W [4] ⊂ ...

Finally, a parameterised problem P is said to be complete for a class W [n] if P ∈ W [n] and
there is a parameterized reduction from every problem in W [n] to P . The problems Clique

and Independent Set are both W [1]-complete, while the Dominating Set problem and
its variations are W [2]-complete. We refer to [11, 12] for further details on parameterized
complexity.

43

44

Chapter 3

Defensive and Offensive Alliances

3.1 Introduction

In this chapter, we design FPT algorithms for Defensive Alliance and Offensive Al-

liance when parameterized by neighbourhood diversity of the input graph. We also design
an FPT algorithm for Offensive Alliance when parameterized by domino treewidth of
the input graph. Finally we prove that Defensive Alliance and Offensive Alliance

are polynomial time solvable for graphs with bounded treewith. See also [25].

3.2 FPT algorithm parameterized by neighbourhood di-

versity

In this section, we present FPT algorithms for the Defensive Alliance and Offensive

Alliance problems parameterized by neighbourhood diversity. It is known that the prob-
lems are fixed parameter tractable when parameterized by vertex cover number [42]. We
prove that the problems remain fixed parameter tractable when parameterized by neigh-
bourhood diversity. See Section 1.7 for the definitions of neighbourhood diversity and type
graph.

45

3.2.1 Defensive Alliance

In this subsection, we prove the following theorem:

Theorem 3.2.1. Defensive Alliance is fixed-parameter-tractable when parameterized by
the neighbourhood diversity.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≤ k, we first find a
partition of the vertices into at most k type classes C1, . . . , Ck. Let C = {C1, . . . , Ck} and
let ni denote the number of vertices in Ci. The case where some Ci are singletons can be
considered as cliques or independent sets. For simplicity, we consider singleton type classes
as independent sets. Let H be the type graph of G.

ILP formulation: Our goal here is to find a smallest defensive alliance S of G. For each
Ci, we associate a variable xi that indicates |S ∩ Ci| = xi. As the vertices in Ci have the
same neighbourhood, the variables xi determine S uniquely, up to isomorphism. We define

C+ = {Ci ∈ C | Ci ∩ S ̸= ∅}

and
C− = {Ci ∈ C | Ci ∩ S = ∅}.

Note that S contains xi > 0 vertices from class Ci if Ci ∈ C+ and contains no vertices from
class Ci if Ci /∈ C−. We next guess if a type class Ci belongs to C+ or C−. There are at
most 2k guesses as each clique type class Ci has two options: either it is in C+ or in C−.
We reduce the problem of finding a smallest defensive alliance to at most 2k integer linear
programming problems with at most k variables. Since integer linear programming is fixed-
parameter tractable when parameterized by the number of variables [47], we conclude that
our problem is FPT when parameterized by the neighbourhood diversity k. We consider the
following cases based on whether Ci is a clique type class or an independent type class.

Case 1: Let Ci ∈ C+ be an independent type class. Let v ∈ V (Ci) ∩ S. Then the number

46

of neighbours of v in S is

dS(v) =
∑

Cj∈NH(Ci)∩C+

xj (3.1)

where NH(Ci) =
{
Cj : (Ci, Cj) ∈ E(H)

}
. Thus, including itself, v has 1 +

∑
Ci∈NH(Cj)∩C+

xi

defenders in G. Note that if Ci ∈ C+, then only xi vertices of Ci are in S and the the
remaining ni − xi vertices of Ci are outside S. The number of neighbours of v outside S is

dSc(v) =
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj (3.2)

Therefore, a vertex v from an independent type class Ci ∈ C+ is protected if and only if

1 +
∑

Cj∈NH(Ci)∩C+

xj ≥
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj. (3.3)

Equation 3.3 implies a vertex v from an independent type class Ci ∈ C+ is protected if and
only if

1 +
∑

Cj∈NH(Ci)∩C+

2xj ≥
∑

Cj∈NH(Ci)

nj.

Case 2: Let Ci ∈ C+ be a clique type class. Let v ∈ V (Ci) ∩ S. Then the number of
neighbours of v in S is

dS(v) = (xi − 1) +
∑

Cj∈NH(Ci)∩C+

xj (3.4)

This is to ensure that when v ∈ V (Ci) is picked in the solution it contributes xi − 1 to the
value of dS(v) as v itself can’t be accounted as its own neighbour. Therefore, including itself,
v has xi +

∑
Cj∈NH(Ci)∩C+

xj neighbours in S. This can be written as

dS(v) + 1 =
∑

Cj∈NH [Ci]∩C+

xj (3.5)

where NH [Ci] denotes the closed neighbourhood of Ci in H. The number of neighbours of v

47

outside S is

dSc(v) =
∑

Cj∈NH [Ci]∩C+

(nj − xj) +
∑

Cj∈NH [Ci]∩C−

nj (3.6)

Thus a vertex v from clique type class Ci ∈ C is protected if and only if dS(v) + 1 ≥ dSc(v),
that is, ∑

Cj∈NH [Ci]∩C+

xj ≥
∑

Cj∈NH [Ci]∩C+

(nj − xj) +
∑

Cj∈NH [Ci]∩C−

nj. (3.7)

Equation 3.7 implies, a vertex v from clique type class Ci ∈ C is protected if and only if∑
Cj∈NH [Ci]∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj. (3.8)

In the following, we present ILP formulation of defensive alliance problem, where C+ is given:

minimize
∑

Ci∈C+

xi

subject to

1 +
∑

Cj∈NH(Ci)∩C+

2xj ≥
∑

Cj∈NH(Ci)

nj for each independent type class Ci ∈ C+

∑
Cj∈NH [Ci]∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj for each clique type class Ci ∈ C+

xi ∈ {1, 2, . . . , ni} for all i : Ci ∈ C+.

Solving the ILP We have at most k variables in the ILP formulation of Defensive Al-

liance. The value of objective function is bounded by n and the value of any variable in
the integer linear programming is also bounded by n. The constraints can be represented
using O(k2 log n) bits. Lemma 1 of Section 2.1.3 implies that we can solve the problem with
the guess C+ in FPT time. There are at most 2k choices for C+, and the ILP formula for a
guess can be solved in FPT time. Thus Theorem 3.2.1 holds.

48

Example 4. Consider the graph shown in Figure 3.1. The type classes are C1 = {a, b, c, d, e},
C2 = {f, g, h} and C3 = {i, j, k, l}. We consider all possible guesses:

a

b

d

c

e

f

g

h

i j

kl

Figure 3.1: The graph in Example 4.

Guess 1: C+ = {C1}. Then we have the following ILP:

min x1

subject to x1 ≥ 4

x1 ∈ {1, 2, 3, 4, 5}

It is easy to see that x1 = 4 is the optimal solution for the ILP. Thus x1 = 4, x2 = 0, x3 = 0

represent a valid defensive alliance {a, b, c, d} of size 4 for the graph.

Guess 2: C+ = {C2}. In this case we do not get any valid constraints for x2.
Guess 3: C+ = {C3}. Then we have the following ILP:

min x3

subject to x3 ≥ 4

x3 ∈ {1, 2, 3, 4}

It is easy to see that x3 = 4 is the optimal solution of the ILP. Thus x1 = 0, x2 = 0, x3 = 4

represent a valid defensive alliance {i, j, k, l} of size 4 for the graph.

49

Guess 4: C+ = {C1, C2}. Then we have the following ILP:

min x1 + x2

subject to x1 ≥ 4

x1 + x2 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x2 ∈ {1, 2, 3}

It is easy to see that x1 = 4, x2 = 1 is the optimal solution of the ILP. Thus x1 = 4, x2 =

1, x3 = 0 represent a valid defensive alliance {a, b, c, d, f} of size 5 for the graph.

Guess 5: C+ = {C1, C3}. Then we have the following ILP:

min x1 + x3

subject to x1 ≥ 4

x3 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x3 ∈ {1, 2, 3, 4}

It is easy to see that x1 = 4, x3 = 4 is an optimal solution of the ILP. Thus x1 = 4, x2 =

0, x3 = 4 represent a valid defensive alliance {a, b, c, d, i, j, k, l} of size 8 for the graph.

Guess 6: C+ = {C2, C3}. Then we have the following ILP:

min x2 + x3

subject to x3 ≥ 4

x2 + x3 ≥ 4

x2 ∈ {1, 2, 3};x3 ∈ {1, 2, 3, 4}

It is easy to see that x2 = 1, x3 = 4 is the optimal solution of the ILP. Thus x1 = 0, x2 =

1, x3 = 4 represent a valid defensive alliance {f, i, j, k, l} of size 5 for the graph.

50

Guess 7: C+ = {C1, C2, C3}. Then we have the following ILP:

min x1 + x2 + x3

subject to x1 + x3 ≥ 4

x1 + x2 ≥ 4

x2 + x3 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x2 ∈ {1, 2, 3};x3 ∈ {1, 2, 3, 4}

It is easy to see that x1 = 2, x2 = 2, x3 = 2 is an optimal solution of the ILP. Thus
x1 = 2, x2 = 2, x3 = 2 represent a valid defensive alliance {a, b, f, g, i, j} of size 6 for the
graph.
Therefore the size of a smallest defensive alliance for the graph is 4.

3.2.2 Offensive Alliance

We also obtain the following result:

Theorem 3.2.2. Offensive Alliance is fixed-parameter-tractable when parameterized by
the neighbourhood diversity.

Proof. We give an ILP formulation of offensive alliance problem for a given C+. Recall that
a non-empty set S ⊆ V is an offensive alliance in G if for each v ∈ N(S), dS(v) ≥ dSc(v)+1.
The proof of this Theorem is similar to that of Theorem 3.2.1. We consider the following
cases:

Case 1: Let Ci ∈ NH(C+) be an independent type class and v ∈ Ci. Then

dS(v) =
∑

Cj∈NH(Ci)∩C+

xj (3.9)

and

dSc(v) =
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj (3.10)

51

Therefore, a vertex v from a indpendent type class Ci ∈ N(C+) is protected if and only if
dS(v) ≥ dSc(v) + 1, that is,∑

Cj∈NH(Ci)∩C+

xj ≥ 1 +
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj. (3.11)

Equation 3.11 implies a vertex v from an independent type class Ci ∈ N(C+) is protected if
and only if ∑

Cj∈NH(Ci)∩C+

2xj ≥ 1 +
∑

Cj∈NH(Ci)

nj. (3.12)

Case 2: Let Ci ∈ NH(C+) be a clique type class and v ∈ Ci. Then

dS(v) =
∑

Cj∈NH(Ci)∩C+

xj (3.13)

and

dSc(v) = (ni − 1) +
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj (3.14)

Therefore, a vertex v from a clique type class Ci ∈ N(C+) is protected if and only if dS(v) ≥
dSc(v) + 1, that is,∑

Cj∈NH(Ci)∩C+

xj ≥ 1 + (ni − 1) +
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj. (3.15)

Equation 3.15 implies a vertex v from a clique type class Ci ∈ N(C+) is protected if and
only if ∑

Cj∈NH(Ci)∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj. (3.16)

Case 3: Let Ci ∈ C+ be an independent type class and v ∈ Ci ∩ Sc. It may be verified that
v is protected if and only if it satisfies the condition in Equation 3.12.

52

Case 4: Let Ci ∈ C+ be a clique type class and v ∈ Ci ∩ Sc. Then we have

dS(v) =
∑

Cj∈NH [Ci]∩C+

xj (3.17)

and

dSc(v) = (ni − xi)− 1 +
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj (3.18)

Therefore, a vertex v from a clique type class Ci ∈ C+ is protected if and only if dS(v) ≥
dSc(v) + 1, that is,∑

Cj∈NH [Ci]∩C+

xj ≥ (ni − xi) +
∑

Cj∈NH(Ci)∩C+

(nj − xj) +
∑

Cj∈NH(Ci)∩C−

nj. (3.19)

Equation 3.19 implies a vertex v from a clique type class Ci ∈ C+ is protected if and only if∑
Cj∈NH [Ci]∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj. (3.20)

We now present ILP formulation of offensive alliance problem for a given C+.

minimize
∑

Ci∈C+

xi

subject to∑
Cj∈NH(Ci)∩C+

2xj ≥ 1 +
∑

Cj∈NH(Ci)

nj for each independent type class Ci ∈ NH(C+) ∪ C+

∑
Cj∈NH(Ci)∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj for each clique type class Ci ∈ NH(C+)

∑
Cj∈NH [Ci]∩C+

2xj ≥
∑

Cj∈NH [Ci]

nj for each clique type class Ci ∈ C+

xi ∈ {1, 2, . . . , ni} for all i : Ci ∈ C+.

In the formulation for Offensive Alliance problem, we have at most k variables. The

53

value of objective function is bounded by n and the value of any variable in the integer linear
programming is also bounded by n. The constraints can be represented using O(k2 log n)

bits. Proposition ?? implies that we can solve the problem with the guess C+ in FPT time.
There are at most 2k guesses, and the ILP formula for a guess can be solved in FPT time.
Thus Theorem 3.2.2 holds.

Example 5. Consider the graph shown in Figure 3.1. The type classes are C1 = {a, b, c, d, e},
C2 = {f, g, h} and C3 = {i, j, k, l}. We consider all possible guesses:

Guess 1: C+ = {C1}. Then we have the following ILP:

min x1

subject to x1 ≥ 5

x1 ∈ {1, 2, 3, 4, 5}

It is easy to see that x1 = 5 is the optimal solution for the ILP. Thus x1 = 5, x2 = 0, x3 = 0

represent a valid offensive alliance {a, b, c, d, e} of size 5 for the graph.

Guess 2: C+ = {C2}. Then we have the following ILP:

min x2

subject to x2 ≥ 4

x2 ∈ {1, 2, 3}

In this case we do not get any valid constraints for x2; so no solution.
Guess 3: C+ = {C3}. Then we have the following ILP:

min x3

subject to x3 ≥ 5

x3 ∈ {1, 2, 3, 4}

In this case we do not get any valid constraints for x3; so no solution.

54

Guess 4: C+ = {C1, C2}. Then we have the following ILP:

min x1 + x2

subject to x1 ≥ 5

x2 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x2 ∈ {1, 2, 3}

In this case we do not get any valid constraints for x2; no solution.

Guess 5: C+ = {C1, C3}. Then we have the following ILP:

min x1 + x3

subject to x1 ≥ 4

x3 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x3 ∈ {1, 2, 3, 4}

It is easy to see that x1 = 4, x3 = 4 is an optimal solution of the ILP. Thus x1 = 4, x2 =

0, x3 = 4 represent a valid offensive alliance {a, b, c, d, i, j, k, l} of size 8 for the graph.

Guess 6: C+ = {C2, C3}. Then we have the following ILP:

min x2 + x3

subject to x2 ≥ 4

x3 ≥ 4

x2 ∈ {1, 2, 3};x3 ∈ {1, 2, 3, 4}

In this case we do not get any valid constraints for x2; no solution.

55

Guess 7: C+ = {C1, C2, C3}. Then we have the following ILP:

min x1 + x2 + x3

subject to x1 + x3 ≥ 5

x1 + x2 ≥ 4

x2 + x3 ≥ 4

x1 ∈ {1, 2, 3, 4, 5};x2 ∈ {1, 2, 3};x3 ∈ {1, 2, 3, 4}

It is easy to see that x1 = 2, x2 = 2, x3 = 3 is an optimal solution of the ILP. Thus
x1 = 2, x2 = 2, x3 = 3 represent a valid offensive alliance {a, b, f, g, i, j, k} of size 7 for the
graph.
Therefore the size of a smallest defensive alliance for the graph is 5.

3.3 FPT algorithm parameterized by domino treewidth

It is known that the Defensive Alliance and Offensive Alliance problems are W[1]-
hard when parameterized by treewidth of the input graph [6, 22], which rule out FPT
algorithms under common assumptions. This puts these two problems among the few prob-
lems that are FPT when parameterized by solution size but not FPT when parameterized by
treewidth (unless FPT = W[1]). Thus we look at domino treewidth. Enciso [13] proved that
finding defensive and global defensive alliances are fixed parameter tractable when parame-
terized by domino treewidth. In this section, we show that when parameterized by domino
treewidth d, the problem of finding smallest offensive alliance is fixed parameter tractable.
See Section 1.7 for definitions of tree decomposition and treewidth.

It is important to note that a graph may have several different tree decomposition. Similarly,
the same tree decomposition can be valid for several different graphs. Every graph has a
trivial tree decomposition for which T has only one vertex including all of V . However, this
is not effective for the purpose of solving problems.

Definition 3.3.1. [8] A tree decomposition (T, {Xt}t∈V (T)) is a domino tree decomposition
if for i, j ∈ V (T) where i ̸= j and (i, j) /∈ E(T), then Xi ∩ Xj = ∅. In other words, in a
domino tree decomposition, every vertex of G appears in at most two bags in T .

56

Xi1

Xi

Xi2

parent(Xi)

1

2

Type 3

1

Si1

Si

Si2

Figure 3.2: Compatibility of Si with Si1 and Si2 . Set Si is the region bounded by the dotted
line in Xi; Sij is the region bounded by the dotted line in Xij for j = 1, 2.

The width of a tree decomposition is defined as width(T) = max
t∈V (T)

|Xt| − 1 and the

treewidth tw(G) of a graph G is the minimum width among all possible tree decompositions
of G. Similarly, domino treewidth dtw(G) is defined for domino tree decomposition. Note
that the number of nodes in a domino tree decomposition remains order n. Moreover, given
a graph G with treewidth k and maximum degree ∆, the domino treewidth dtw(G) ≤
(9k + 7)∆(∆ + 1), can be obtained in polynomial time [8].

Let τ =
(
T, {Xt}t∈V (T)

)
be a domino tree decomposition of the input n-vertex graph G

that has width at most d. Suppose T is rooted at node r and Xr = ∅. For a node i of T , let
Vi be the union of all bags present in the subtree of T rooted at i, including Xi. We denote
by Gi the subgraph of G induced by Vi.

Let Xi be a non-leaf bag. Then a vertex v ∈ Xi can be of three types. Type 1: v is also
in one of the children of Xi; Type 2: v is also in the parent of Xi; Type 3: v is only in Xi.

For every bag i and every Si ⊆ Xi, a potential offensive alliance (pOA) is a smallest set Ŝi

57

such that Si ⊆ Ŝi ⊆ Vi, Ŝi∩Xi = Si, and Ŝi protects the vertices of NVi
(Ŝi)−parent(Xi). We

use c[i, Si] to denote the size of Ŝi. If no such set Ŝi exists, then we put c[i, Si] = |Ŝi| = ∞.
We now move on to presenting how the values of c[., .] are computed. We compute the values
of c[., .] at each node i based on the values computed for the children of i. We give a recursive
formula for the computation of c[., .]. The values of c[., .] for leaf node corresponds to the
base case of the recurrence; whereas the values of c[., .] for a non-leaf node i depend on the
values of c[., .] for the children of i. We finally compute c[r, ∅] by applying the formulas in
a bottom-up manner on T . Note that c[r, ∅] is the size of minimum offensive alliance in G;
this is due to the fact that Vr = V (G) and Sr = ∅.

Leaf node: If i is a leaf node, then for every Si ⊆ Xi ̸= ∅, we define c[i, Si] as follows:

c[i, Si] =

|Si| if Si is a non empty subset of Xi and protects

all vertices in NXi
(Si)− parent(Xi)

∞ otherwise.

Non leaf node: Suppose i is a non-leaf node with two children i1 and i2. We say that a set
Si ⊆ Xi is compatible with Si1 ⊆ Xi1 , Si2 ⊆ Xi2 if and only if

1. Xi ∩Xij ∩ Si = Xi ∩Xij ∩ Sij for 1 ≤ j ≤ 2.

2. Type 1 and Type 3 vertices of NXi
(Si ∪ Si1 ∪ Si1) are protected by Si ∪ Si1 ∪ Si2 .

For Si ⊆ Xi, if there does not exist any Sij ⊆ Xij that is compatible with Si for some j,
then c[i, Si] = ∞. Otherwise, c[i, Si] =

|Si|+min
{ 2∑

j=1

c[ij, Sij]− |Si ∩ Sij | : Sij ⊆ Xij ; Si1 , Si2 are compatible with Si

}
.

Theorem 3.3.1. For every node i in T and every Si ⊆ Xi, c[i, Si] is the size of the smallest
potential offensive alliance Ŝi where Ŝi ⊆ Vi and Ŝi ∩ Xi = Si. Further, the size of the
minimum offensive alliance in G is c[r, ∅], where T is rooted at node r.

Proof. We will prove the theorem by induction. When node i is a leaf node, for every
Si ⊆ Xi, clearly c[i, Si] is the size of a smallest potential defensive alliance as Ŝi = Si. So
the statement is true for leaf node i.

58

Let i be a non-leaf node of T and let i1 and i2 be two children of i. Let Ti1 and Ti2 be the
subtrees rooted at i1 and i2 respectively. By induction hypothesis, for arbitrary Sij ⊆ Xij ,
c[ij, Sij] is the size of a smallest potential offensive alliance Ŝij , where Sij = Ŝij ∩ Xi for
i = 1, 2. We need to show that for arbitrary Si ⊆ Xi, c[i, Si] as computed by the above recur-
rence relation is the size of a smallest potential offensive alliance Ŝi ⊆ Vi, where Si = Ŝi∩Xi.
If there does not exist Si1 ⊆ Xi1 and Si2 ⊆ Xi2 that are compatible with Si, then c[i, Si] = ∞.
Otherwise, c[i, Si] =

|Si| +min
{ 2∑

j=1

c[ij, Sij]− |Si ∩ Sij | : Sij ⊆ Xij ; Si1 , Si2 are compatible with Si

}
. By induc-

tion hypothesis for any subset Sij ⊆ Xij , c[ij, Sij] is the size of a minimum potential offensive
alliance Ŝij , where Sij = Ŝij ∩Xij and the relation considers all possible compatible sets.

To prove Ŝi is a potential offensive alliance, we must prove that Ŝi protects all the vertices
v ∈ N(Ŝi)− parent(Xi). Suppose Ŝi = Si ∪ Ŝi1 ∪ Ŝi2 . Since Si1 and Si2 are compatible with
Si all the vertices of Type 1 and Type 3 in NXi

(Si ∪Si1 ∪Si1) are protected by Si ∪Si1 ∪Si2 .
By definition Ŝij protects all vertices in N(Ŝij) − parent(Xij). Moreover, since Si1 and Si1

are compatible with Si, the vertices in Xi1 ∪Xi2 that were of Type 2 are of Type 1 in Xi and
Si∪Si1∪Si2 protects all Type 1 vertices of NVi

(Si∪Si1∪Si2). Thus Ŝi protects all the vertices
in NVi

(Ŝi)−parent(Xi). Now we prove that c[i, Si] is the size of a smallest potential offensive
alliance Ŝi such that Si = Ŝi∩Xi. From induction hypothesis, c[ij, Sij] is the size of a small-
est potential offensive alliance Ŝij such that Sij = Ŝij ∩ Xij , for j = 1, 2. For computation
of c[i, Si] all possible subsets Si1 ⊆ Xi1 and Si2 ⊆ Xi2 that are compatible with Si are evalu-
ated, thus c[i, Si] is the size of a smallest potential offensive alliance Ŝi such that Si = Ŝi∩Xi.

Now we prove that c[r, ∅] is the size of a minimum offensive alliance in G. Let r − 1

be the child of r. Since Xr = ∅, we have from the recurrence relation c[r, ∅] = min
{
c[r −

1, Sr−1] : Sr−1 ⊆ Xr−1; Sr = ∅ and Sr−1 are compatible
}

. Since there are no Type 2

vertices in Xr−1, NVr−1(Ŝr−1) is protected. For computation of c[r, ∅] all subsets Sr−1 ⊆ Xr−1

that are compatible with ∅ are evaluated, thus c[r, ∅] is the size of a minimum offensive
alliance. This completes the proof of the theorem.

Note that the definition of compatibility and the above recurrence relation can be easily
extended if a non-leaf node i has more than two children. At a non-leaf node we compute 2d+1

many c[., .] values and the time need to compute each of these values is O(4d+1), assuming

59

binary domino tree decomposition. As the number of nodes in domino tree decomposition
is O(n), the total running time of the algorithm is O(8dn).

3.4 Graphs of bounded treewidth

It is known that the Defensive Alliance and Offensive Alliance problems are W[1]-
hard when parameterized by treewidth of the input graph [6, 22], which rule out FPT
algorithms under common assumptions. This was surprising as Defensive Alliance is
a “subset problem" and FPT when parameterized by solution size, and “subset problems"
that satisfy this property usually tend to be FPT for bounded treewidth as well. In this
section we prove that Defensive Alliance and Offensive Alliance problems can be
solved in polynomial time for graphs of bounded treewidth. In other words, this section
presents XP-time algorithms for Defensive Alliance and Offensive Alliance prob-
lems parameterized by treewidth. We design dynamic programming based XP-algorithms for
Defensive Alliance and Offensive Alliance when parameterized by the treewidth of
input graph. See Section 1.7, for definitions of tree decomposition and nice tree decomposi-
tion.

3.4.1 Defensive Alliance

In this subsection, we prove the following theorem:

Theorem 3.4.1. Given an n-vertex graph G and its nice tree decomposition T of width at
most k, the size of a minimum defensive alliance of G can be computed in O(2kn2k+4) time.

Let (T, {Xt}t∈V (T)) be a nice tree decomposition rooted at node r of the input graph G.
For a node t of T , let Vt be the union of all bags present in the subtree of T rooted at t,
including Xt. We denote by Gt the subgraph of G induced by Vt. For each node t of T , we
construct a table dpt(A,n, a, α) ∈ {true, false} where A ⊆ Xt, n is a vector of length n, and
its ith coordinate is positive only if vi ∈ A; a and α are integers between 0 and n. We set
dpt(A,n, a, α) = true if and only if there exists a set At ⊆ Vt such that:

1. At ∩Xt = A

60

2. a = |At|

3. the ith coordinate of vector n is

n(i) =

dAt(vi) for vi ∈ A

0 otherwise

4. α is the number of vertices v ∈ At that are protected, that is, dAt(v) ≥
dG(v)−1

2
.

We compute all entries dpt(A,n, a, α) in a bottom-up manner. Since tw(T) ≤ k, at most
2knk(n + 1)2 = O(2knk+2) records are maintained at each node t. Thus, to prove Theorem
5.7.1, it suffices to show that each entry dpt(A,n, a, α) can be computed in O(nk+2) time,
assuming that the entries for the children of t are already computed.

Leaf node: For leaf node t we have that Xt = ∅. Thus dpt(A,n, a, α) is true if and only if
A = ∅, n = 0, a = 0 and α = 0. These conditions can be checked in O(1) time.

Introduce node: Suppose t is an introduction node with child t′ such that Xt = Xt′ ∪{vi}
for some vi /∈ Xt′ . Let A be any subset of Xt. We consider two cases:

Case (i): Let vi /∈ A. In this case dpt(A,n, a, α) is true if and only if dpt′(A,n, a, α) is true.

Case (ii): Let vi ∈ A. Here dpt(A,n, a, α) is true if and only if there exist A′,n′, a′, and α′

such that dpt′(A
′,n′, a′, α′)=true, where

1. A = A′ ∪ {vi};

2. n(j) = n′(j) + 1, if vj ∈ NA(vi), n(i) = dA(vi), and n(j) = n′(j) if vj ∈ A \NA[vi];

3. a = a′ + 1;

4. α = α′ + δ; here δ is the cardinality of the set{
vj ∈ A | n′(j) <

dG(vj)− 1

2
;n(j) ≥ dG(vj)− 1

2

}
.

That is, to compute α from α′ we need to add the number δ of vertices which are not
satisfied in (A′,n′, a′, α′) but satisfied in (A,n, a, α).

61

For introduce node t, dpt(A,n, a, α) can be computed in O(1) time. This follows from the
fact that there is only one candidate of such tuple (A′,n′, a′, α′).

Forget node: Suppose t is a forget node with child t′ such that Xt = Xt′ \ {vi} for
some vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,n, a, α) is true if and only if
either dpt′(A,n, a, α) is true (this corresponds to the case that At does not contain vi) or
dpt′(A

′,n′, a, α)=true for some A′,n′ with the following conditions:

1. A = A′ \ {vi};

2. n(j) = n′(j) for all j ̸= i and n(i) = 0;

(this corresponds to the case that At contains vi). For forget node t, dpt(A,n, a, α) can be
computed in O(n) time. This follows from the fact that there are O(n) candidates of such
tuple (A′,n′, a, α).

Join node: Suppose t is a join node with children t1 and t2 such that Xt = Xt1 = Xt2 . Let A
be any subset of Xt. Then dpt(A,n, a, α) is true if and only if there exist (A1,n1, a1, α1) and
(A2,n2, a2, α2) such that dpt1(A1,n1, a1, α1) = true and dpt2(A2,n2, a2, α2) = true, where

1. A = A1 = A2;

2. n(i) = n1(i) + n2(i)− dA(vi) for all i ∈ A, and n(i) = 0 if i /∈ A;

3. a = a1 + a2 − |A|;

4. α = α1 + α2 − γ + δ; γ is the cardinality of the set{
vj ∈ A | n1(j) ≥

dG(vi)− 1

2
; n2(j) ≥

dG(vi)− 1

2

}
and δ is the cardinality of the set{

vj ∈ A | n1(j) <
dG(vi)− 1

2
; n2(j) <

dG(vi)− 1

2
; n(j) ≥ dG(vi)− 1

2

}
.

62

To compute α from α1 + α2, we need to subtract the number of those vj which are
satisfied in both the branches and add the number of vertices vj not satisfied in either
of the branches t1 and t1 but satisfied in t.

For join node t, there are nk possible pairs for (n1,n2) as n2 is uniquely determined by n1;
n + 1 possible pairs for (a1, a2); and n + 1 possible pairs for (α1, α2). In total, there are
O(nk+2) candidates, and each of them can be checked in O(1) time. Thus, for join node t,
dpt(A,n, a, α) can be computed in O(nk+2) time.

At the root node r, we look at all records such that dpr(∅,n, a, α)= true, a, α > 0 and a = α.
The size of a minimum defensive alliance is the minimum a satisfying dpr(∅,n, a, a)= true
and a > 0.

3.4.2 Offensive Alliance

We also obtain the following result:

Theorem 3.4.2. Given an n-vertex graph G and its nice tree decomposition T of width at
most k, the size of a minimum offensive alliance of G can be computed in O(2kn2k+6) time.

Proof. Let (T, {Xt}t∈V (T)) be a nice tree decomposition rooted at node r of the input graph
G. For each node t of T , we construct a table dpt(A,m, a, b, β) ∈ {true, false} where A ⊆ Xt;
m is a vector of length n, all of its coordinates are integers between 0 and n− 1, and its ith
coordinate is positive only if vi ∈ NXt(At); a, b and β are integers between 0 and n. We set
dpt(A,m, a, b, β) = true if and only if there exists a set At ⊆ Vt such that:

1. At ∩Xt = A

2. a = |At|

3. b = |NGt(At)|

63

4. the ith coordinate of vector m is

m(i) =

dAt(vi) for vi ∈ NXt(At)

0 otherwise

5. β is the number of vertices v ∈ NGt(At) that are protected by At, that is, dAt(v) ≥
dG(v)+1

2
.

We compute all entries dpt(A,m, a, b, β) in a bottom-up manner. Since tw(T) ≤ k, at most
2k × nk × (n+ 1)3 = O(2knk+3) records are maintained at each node t. Thus, to prove The-
orem 3.4.2, it suffices to show that each entry dpt(A,m, a, b, β) can be computed in O(nk+3)

time, assuming that the entries for the children of t are already computed.

Leaf node: For leaf node t we have that Xt = ∅. Thus dpt(A,m, a, b, β) is true if and only
if A = ∅, m = 0, a = 0, b = 0 and β = 0. These conditions can be checked in O(1) time.

Introduce node: Suppose t is an introduction node with child t′ such that Xt = Xt′ ∪{vi}
for some vi /∈ Xt′ . Let A be any subset of Xt. We consider three cases:

Case (i): vi /∈ A and vi is not adjacent to any vertex in A. In this case dpt(A,m, a, b, β) is
true if and only if dpt′(A,m, a, b, β) is true.

Case (ii): Suppose vi /∈ A and vi is adjacent to a vertex in A. In this case dpt(A,m, a, b, β)

is true if and only if there exist A′,m′, a′, b′, β′ such that dpt′(A′,m′, a′, b′, β′) is true, where

1. A = A′;

2. m(i) = dA(vi), m(j) = m′(j) for all j ̸= i;

3. a = a′;

4. b = b′ + 1;

64

5.

β =

β′ + 1 if dAt(vi) ≥
dG(v)+1

2

β′ otherwise

Case (iii): Suppose vi ∈ A. In this case dpt(A,m, a, b, β) is true if and only if there exist
A′,m′, a′, b′, β′ such that dpt′(A

′,m′, a′, b′, β′) is true, where

1. A = A′ ∪ {vi};

2.

m(j) =

m′(j) + 1 if vj ∈ NXt(At) and (vi, vj) ∈ E(G)

m′(j) if vj ∈ NXt(At) and (vi, vj) /∈ E(G)

0 if vj /∈ NXt(At)

3. a = a′ + 1

4. b = b′ + dAc∩Xt(vi)

5. β = β′ + δ; here δ is the cardinality of the set{
vj ∈ NXt(At) | m′(j) <

dG(vj) + 1

2
;m(j) ≥ dG(vj) + 1

2

}
.

That is, to compute β from β′ we need to add the number δ of those vertices not
protected in (A′,m′, a′, b′, β′) but protected in (A,m, a, b, β).

For introduce node t, dpt(A,m, a, b, β) can be computed in O(1) time. This follows from the
fact that there is only one candidate of such tuple (A′,m′, a′, b′, β′).

Forget node: Suppose t is a forget node with child t′ such that Xt = Xt′ \ {vi} for some
vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,m, a, b, β) is true if and only if either

1. there exists m′ such that dpt′(A,m
′, a, b, β) is true, where m(j) = m′(j) for all j ̸= i;

m(i) = 0; or

2. there exist A′ such that dpt′(A
′,m, a, b, β) is true, where A = A′ \ {vi};

65

For forget node t, dpt(A,m, a, b, β) can be computed in O(n) time. This follows from the
fact that there are O(n) candidates of such tuple (A,m′, a, b, β).

Join node: Suppose t is a join node with children t1 and t2 such that Xt = Xt1 =

Xt2 . Let A be any subset of Xt. Then dpt(A,m, a, b, β) is true if and only if there exist
A1,m1, a1, b1, β1, A2,m2, a2, b2, β2 such that dpt1(A1,m1, a1, b1, β1) = true and
dpt2(A2,m2, a2, b2, β2) = true, where

1. A = A1 = A2;

2. m(i) = m1(i) +m2(i)− dA(vi) if max{m1(i),m2(i)} > 0, m(i) = 0, otherwise;

3. a = a1 + a2 − |A|;

4. b = b1 + b2 − |NXt(A)|;

5. β = β1 + β2 − γ + δ; γ is the cardinality of the set{
vj ∈ NXt(A) | m1(j) ≥

dG(vi) + 1

2
; m2(j) ≥

dG(vi) + 1

2

}
and δ is the cardinality of the set{

vj ∈ NXt(A) | m1(j) <
dG(vi) + 1

2
; m2(j) <

dG(vi) + 1

2
; m(j) ≥ dG(vi) + 1

2

}
.

To compute β from β1 + β2, we need to subtract the number of those vj which are
satisfied in both the branches and add the number of vertices vj not satisfied in either
of the branches but satisfied in t.

For join node t, there are nk possible pairs for (m1,m2) as m2 is uniquely determined by m1;
n+ 1 possible pairs for (a1, a2), (b1, b2) and (β1, β2) each. In total, there are O(nk+3) candi-
dates, and each of them can be checked in O(1) time. Thus, for join node t, dpt(A,m, a, b, β)

can be computed in O(nk+3) time.

At the root node r, we look at all records such that dpr(∅,m, a, b, β)= true, a > 0 and b = β.
The size of a minimum offensive alliance is the minimum a satisfying dpr(∅,m, a, b, b)= true
and a > 0.

66

Chapter 4

Parameterized Intractability of Defensive
Alliance Problem

4.1 Introduction

Bliem and Woltran [6] proved that defensive alliance problem is W[1]-hard when parame-
terized by the treewidth of the input graph. However, for the parameter pathwidth, the
question of whether the problem is FPT has remained open. In this chapter, we give a
negative answer by showing that the problem is W[1]-hard when parameterized by path-
width, which rules out FPT algorithms under common assumptions. This chapter describes
a parameterized reduction from the Multidimensional Subset Sum (MSS) problem. On
the way towards this result, we provide hardness results for two variants of the Defensive

Alliance problem, called Defensive AllianceF and Defensive AllianceFN, which
we believe are interesting in their own right. We prove that the Defensive AllianceFN

problem is W[1]-hard when parameterized by the pathwidth of the input graph. We also
prove that the Defensive AllianceF problem is W[1]-hard when parameterized by the
pathwidth of the graph.

67

4.2 W[1]-hardness parameterized by pathwidth

In this section we prove the following theorems:

Theorem 4.2.1. The Defensive Alliance problem is W[1]-hard when parameterized by
the pathwidth of the input graph.

Theorem 4.2.2. The Exact Defensive Alliance problem is W[1]-hard when parame-
terized by the feedback vertex set number and the pathwidth of the input graph.

We introduce some variants of Defensive Alliance that we require in our proofs. The
problem Defensive AllianceF generalizes Defensive Alliance where some vertices
are forced to be outside the solution; these vertices are called “forbidden" vertices. This
variant can be formalized as follows:

Defensive AllianceF

Input: An undirected graph G = (V,E), an integer k and a set V□ ⊆ V (G).
Question: Is there a defensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ k, and (ii)
S ∩ V□ = ∅?

Defensive AllianceFN is a further generalization that, in addition, requires some “nec-
essary” vertices to be in S. This variant can be formalized as follows:

Defensive AllianceFN

Input: An undirected graph G = (V,E), an integer k, a set V△ ⊆ V , and a set V□ ⊆
V (G).
Question: Is there a defensive alliance S ⊆ V such that (i) 1 ≤ |S| ≤ k, (ii) S ∩ V□ = ∅,
and (iii) V△ ⊆ S?

While the Defensive Alliance problem asks for defensive alliance of size at most k, we
also consider the Exact Defensive Alliance problem that concerns defensive alliance
of size exactly k. Analogously, we also define exact versions of the two generalizations of
Defensive Alliance presented above.

68

4.2.1 Hardness of Defensive Alliance with Forbidden and Necessary

Vertices

To show W[1]-hardness of Defensive AllianceFN, we consider the Multidimensional

Subset Sum (MSS) problem.

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ∈ Nk for every i with
1 ≤ i ≤ n and a target vector t ∈ Nk.
Parameter: k

Question: Is there a subset S ′ ⊆ S such that
∑
s∈S′

s = t?

We introduce two variants of MSS that we require in our proofs. In the Multidimensional

Relaxed Subset Sum (MRSS) problem, an additional integer k′ is given (which will be
part of the parameter) and we ask whether there is a subset S ′ ⊆ S with |S ′| ≤ k′ such
that

∑
s∈S′

s ≥ t. It is known that MRSS is W[1]-hard when parameterized by the combined

parameter k+k′, even if all integers in the input are given in unary [30]. For Exact MRSS

problem, both the input as well as the parameters are the same as in the case of MRSS
however one now asks whether there is a subset S ′ ⊆ S with |S ′| = k′ such that

∑
s∈S′

s ≥ t.

This variant can be formalized as

Exact Multidimensional Relaxed Subset Sum (Exact MRSS)

Input: An integer k, a set S = {s1, . . . , sn} of vectors with si ∈ Nk for every i with
1 ≤ i ≤ n and a target vector t ∈ Nk.
Parameter: k, k′

Question: Is there a subset S ′ ⊆ S with |S ′| = k′ such that
∑
s∈S′

s ≥ t?

Lemma 3. Exact MRSS is W[1]-hard when parameterized by the combined parameter
k + k′, even if all integers in the input are given in unary.

This follows from the fact that the MRSS problem is W[1]-hard even if all integers in the
input are given in unary. We now show that the Defensive AllianceFN problem is

69

W[1]-hard parameterized by the size of a vertex deletion set into trees of height at most 4,
via a reduction from MRSS.

Lemma 4. The Defensive AllianceFN problem is W[1]-hard when parameterized by
the size of a vertex deletion set into trees of height at most 4.

Proof. To prove this we reduce from MRSS, which is known to be W[1]-hard when parame-
terized by the combined parameter k+ k′ [30]. Let I = (k, k′, S, t) be an instance of MRSS.
Let s = (s(1), s(2), . . . , s(k)) ∈ S and let max(s) denote the value of the largest coordinate of
s. We construct an instance I ′ = (G, r, V△, V□) of Defensive AllianceFN the following
way. Before we formally define our reduction, we briefly describe the intuition. We introduce
three types of vertices: necessary vertices, forbidden vertices and normal vertices. We often
indicate necessary vertices by means of a triangular node shape, and forbidden vertices by
means of a square node shape, and normal vertices by means of a circular node shape. We
want to make sure that necessary vertices are always inside every solution and forbidden
vertices are always outside every solution; and a normal vertex could be inside or outside
the solution. Note that it is easy to force a forbidden vertex outside every solution by simply
increasing its degree in the graph. Specifically, if we are looking for a defensive alliance of
size at most r then vertices of degree more than 2r are always outside every solution. The
challenging part is to force inclusion of all necessary vertices in every solution. See Figure
4.1 for an illustration of the reduction. The vertex set of the constructed graph G is defined
as follows:

1. We introduce a set of k new vertices U = {u1, u2, . . . , uk}. For every ui ∈ U , we create
a set Vui□ of

∑
s∈S

s(i) one degree forbidden vertices and a set Vui△ of 2
(∑

s∈S
s(i)− t(i)

)
one degree necessary vertices.

2. For each vector s = (s(1), s(2), . . . , s(k)) ∈ S, we introduce a tree Ts into G. We intro-
duce two vertices xs and ys, and introduce two sets of new vertices As = {as1, . . . , asmax(s)}
and Bs = {bs1, . . . , bsmax(s)}. Next, for every vertex as ∈ As, we add a set V □

as of
|NU(a

s)| + 3 many one degree forbidden vertices. Therefore, the vertex set of tree Ts

is as follows:
V (Ts) = As ∪Bs

⋃
as∈As

V □
as

⋃{
xs, ys

}
.

3. Finally two vertices a, b are introduced into G.

70

a

b

u1 u2 uk

xs1

ys1

xsn

ysn

as11 as1max(s1) asn1 asnmax(sn)

bs11 bs1max(s1) bsn1 bsnmax(sn)

Vu1□ Vu1△ Vu2□ Vu2△ Vuk□ Vuk△

V □
a
s1
1

V □
a
s1
max(s1)

V □
asn1

V □
asnmax(sn)

Figure 4.1: The reduction from MRSS to Defensive AllianceFN in Lemma 4. Note that
the edges between the vertices in U and As are note shown. Gadgets in the green square
correspond to vectors in set S.

We now create the edge set of G.

1. For every ui ∈ U , make ui adjacent to every vertex of Vui□ ∪ Vui△.

2. For every s ∈ S, we create the edge set of Ts,

E(Ts) =
{
(xs, α), (ys, β), (xs, ys) | α ∈ As, β ∈ Bs

}
⋃

as∈As

{
(as, α) | α ∈ V □

as

}
.

3. For each i ∈ {1, 2, . . . , k} and for each s ∈ S, we make ui adjacent to exactly s(i) many
vertices of As in an arbitrary manner.

71

4. For each s ∈ S, make a adjacent to all vertices of As ∪Bs; also make b adjacent to a.

We define the set of necessary vertices

V△ = {a} ∪ U ∪
k⋃

i=1

Vui△,

the set of forbidden vertices
V□ = {b} ∪

⋃
s∈S

⋃
as∈As

V □
as ,

and set r =
k∑

i=1

2
(∑

s∈S
s(i)− t(i)

)
+

n∑
i=1

max(si) + k + k′ + 1. Observe that if we remove the

set U ∪ {a} of k + 1 vertices from G, each connected component of the resulting graph is a
tree with height at most 4.

Formally, we claim (k, k′, S, t) is a positive instance of MRSS if and only if G has a
defensive alliance S of size at most r such that V△ ⊆ R, and V□ ∩ R = ∅. Let S ′ ⊆ S be
such that |S ′| ≤ k′ and

∑
s∈S′

s ≥ t. We claim that the set

R =V△ ∪
⋃
s∈S′

(
As ∪ {xs}

)
∪
⋃

s∈S\S′

Bs

={a} ∪ U ∪
k⋃

i=1

Vui△ ∪
⋃
s∈S′

(
As ∪ {xs}

)
∪
⋃

s∈S\S′

Bs

is a defensive alliance in G such that |R| ≤ r, V△ ⊆ R, and V□∩R = ∅. Let x be an arbitrary
element of R.
Case 1: If x = ui ∈ U , then the neighbours of ui in R are the elements of Vui△ and s(i)

elements of As if s ∈ S ′. Therefore we have

dR(ui) =
∑
s∈S′

s(i) + |Vui△|.

The neighbours of ui in Rc are the elements of V □
ui

and s(i) elements of As if s ∈ S \S ′. Thus

dRc(ui) =
∑

s∈S\S′

s(i) + |V □
ui
| =

∑
s∈S\S′

s(i) +
∑
s∈S

s(i).

72

Note that

dR(ui) =
∑
s∈S′

s(i) + |Vui△|

=
∑
s∈S′

s(i) + 2
∑
s∈S

s(i)− 2t(i)

=
(∑

s∈S′

s(i)− t(i)
)

︸ ︷︷ ︸
≥0 by assumption

+
(∑

s∈S

s(i)− t(i)
)
+
∑
s∈S

s(i)

≥
(∑

s∈S

s(i)− t(i)
)
+
∑
s∈S

s(i)

=
∑

s∈S\S′

s(i) +
(∑

s∈S′

s(i)− t(i)
)

︸ ︷︷ ︸
≥0 by assumption

+
∑
s∈S

s(i)

≥
∑

s∈S\S′

s(i) +
∑
s∈S

s(i) =
∑

s∈S\S′

s(i) + |Vui□|

= dRc(ui)

Therefore, we have dR(ui) + 1 ≥ dRc(ui), and hence ui is protected.

Case 2: If x = as ∈ As, then dR(a
s) = |NU(a

s)| + |{a, xs}| = |NU(a
s)| + 2 and dRc(as) =

|V □
as | = |NU(a

s)|+ 3. Therefore, we have dR(a
s) + 1 ≥ dRc(as).

Case 3: If x = bs ∈ Bs, then NR(b
s) = {a} and NRc(bs) = {ys}. Therefore, we have

dR(b
s) + 1 ≥ dRc(bs).

Case 4: If x = a, then NR(a) =
⋃
s∈S′

As

⋃
s∈S\S′

Bs and NRc(a) =
⋃
s∈S′

Bs

⋃
s∈S\S′

As ∪ {b}. As

|As| = |Bs|, we have dR(a) + 1 ≥ dRc(a).

For the vertices in Vu△, it is easy to see that they have one neighbour in R and no neighbours
in Rc. Therefore, R is a defensive alliance in G such that |R| ≤ r, V△ ⊆ R, and V□ ∩R = ∅.

For the reverse direction, suppose that G has a defensive alliance R of size at most r such

73

that V△ ⊆ R and V□ ∩ R = ∅. From the definition of V△, we have U ⊆ R. We know V△

contains 1 + k +
k∑

i=1

2
(∑

s∈S
s(i)− t(i)

)
vertices; thus besides the vertices of V△, there are at

most
n∑

i=1

max(si)+k′ vertices in R. The neighbours of a in G are the elements of
⋃
s∈S

As∪Bs;

therefore the degree of a in G is
n∑

i=1

2 × max(si). Since a ∈ R, it is protected and it must

have at least
n∑

i=1

max(si) many neighbours in R from the set
⋃
s∈S

As ∪ Bs. For each as ∈ As,

we have NG(a
s) = V □

as ∪NU(a
s) ∪ {a, xs}. As the elements of V □

as are forbidden vertices and
|V □

as | = |NU(a
s)|+3, as has at least |NU(a

s)|+3 neighbours outside R. Therefore if as ∈ As

is in the solution then xs also lie in the solution for the protection of as. This shows that at
most k′ many sets of the form As contribute to the solution as otherwise the size of solution
exceeds r. Therefore, any arbitrary defensive alliance R of size at most r can be transformed
to another defensive alliance R′ of size at most r as follows:

R′ = V△
⋃
xs∈R

As ∪ {xs}
⋃

xs∈V (G)\R

Bs.

We define a subset S ′ =
{
s ∈ S | xs ∈ R′

}
. Clearly, |S ′| ≤ k′. We claim that

∑
s∈S′

s(i) ≥ t(i)

for all 1 ≤ i ≤ k. Assume for the sake of contradiction that
∑
s∈S′

s(i) < t(i) for some

74

i ∈ {1, 2, . . . , k}. Then, we have

dR′(ui) =
∑
s∈S′

s(i) + |Vui△|

=
∑
s∈S′

s(i) + 2
∑
s∈S

s(i)− 2t(i)︸ ︷︷ ︸
size of Vui△

=
∑
s∈S′

s(i)− t(i)︸ ︷︷ ︸
<0 by assumption

+
∑
s∈S

s(i)− t(i) +
∑
s∈S

s(i)

<
∑
s∈S

s(i)− t(i) +
∑
s∈S

s(i)

=
∑

s∈S\S′

s(i) +
(∑

s∈S′

s(i)− t(i)
)

︸ ︷︷ ︸
<0 by assumption

+
∑
s∈S

s(i)

<
∑

s∈S\S′

s(i) +
∑
s∈S

s(i) =
∑

s∈S\S′

s(i) + |Vui□|

= dR′c(ui)

and we also know that ui ∈ R′, which is a contradiction to the fact that R′ is a defensive
alliance. Therefore we get that

∑
s∈S′

s(i) ≥ t(i) for all 1 ≤ i ≤ k. This shows that (k, k′, S, t)

is a positive instance of MRSS.

The following corollary is a consequence of Lemma 4.

Corollary 1. The Defensive AllianceFN problem is W[1]-hard when parameterized by
the size of a vertex deletion set into trees of height at most 5, even when |V△| = 1.

Proof. Let I = (G, r, V△, V□) be an instance of Defensive AllianceFN where V△ =

{v1, v2, . . . , vℓ}, ℓ > 1. We construct an equivalent instance I ′ = (G′, r′, V ′
△, V

′
□) of Defen-

sive AllianceFN where |V ′
△| = 1. The construction of G′ starts with G′ := G and then

add the following new vertices. We introduce a necessary vertex x and make x adjacent to
all the vertices in V△. We introduce a set Vx□ of ℓ+1 degree one forbidden vertices and make
x adjacent to every vertex of Vx□. For every vi ∈ V△, add a degree one forbidden vertex v□i

and make it adjacent to vi. We define V ′
△ = {x} and V ′

□ = Vx□ ∪ V□ ∪
⋃

vi∈V△

{v□i }. We define

75

G′ as follows
V (G′) = V (G) ∪ {x} ∪ Vx□ ∪

⋃
vi∈V△

v□i

and

E(G′) = E(G) ∪ {(x, α), (x, v) | α ∈ Vx□, v ∈ V△} ∪
ℓ⋃

i=1

{(vi, v□i)}.

We set r′ = r + 1.

x

v1 v2

v□2v□1

vℓ

v□ℓ

Vx□

Figure 4.2: An illustration of the reduction in Corollary 1.

Let H be a set with at most k vertices in G such that G−H is a forest with trees of height
at most 4. Clearly, the set H ∪ {x} is of size at most k + 1 and G′ − (H ∪ {x}) is a forest
with trees of height at most 5. We claim that G has a defensive alliance S of size at most
r such that V△ ⊆ S and V□ ∩ S = ∅ if and only if G′ has a defensive alliance S ′ of size
at most r′ such that V ′

△ ⊆ S ′ and V ′
□ ∩ S ′ = ∅. Suppose that G has a defensive alliance

S of size at most r such that V△ ⊆ S and V□ ∩ S = ∅. Define S ′ = S ∪ {x}. Note that
NS′(x) = {v1, v2, . . . , vℓ} and the neighbour of x outside S ′ are the elements of Vx□. That
is, x has ℓ + 1 neighbours (including itself) in S ′ and ℓ + 1 neighbours outside S ′. So x is
protected in S ′. Clearly, every vertex of S remains protected. Therefore S ′ is a defensive
alliance of size at most r such that V ′

△ ⊆ S ′ and V ′
□ ∩ S ′ = ∅.

To prove the reverse direction of the equivalence, suppose now that S ′ is a defensive
alliance of size at most r′ in G′ such that V ′

△ ⊆ S ′ and V ′
□ ∩ S ′ = ∅. The protection of x in

S ′ ensures that {v1, v2, . . . , vℓ} ⊆ S ′. Define S = S ′ \ {x}. Clearly, S is of size at most r. As
{v1, v2, . . . , vℓ} ⊆ S ′, we have V△ = {v1, v2, . . . , vℓ} ⊆ S. Observe that NS(vi) = NS′(vi)\{x}

76

and NSc(vi) = NS′c(vi) \ {v□i }. As vi was protected in S ′ of G′, it remains protected in S of
G. Thus S is a defensive alliance in G of size at most r such that V△ ⊆ S and V□∩S = ∅.

We can get an analogous result for the exact variant.

Corollary 2. The Exact Defensive AllianceFN problem is W[1]-hard when parame-
terized by the size of a vertex deletion set into trees of height at most 5, even when |V△| = 1.

The following corollary is a consequence of Lemma 4.

Corollary 3. The Defensive AllianceFN problem is W[1]-hard when parameterized by
pathwidth and treedepth of the input graph.

Proof. To prove this we reduce from MRSS, which is known to be W[1]-hard when parame-
terized by the combined parameter k+ k′ [30]. Let I = (k, k′, S, t) be an instance of MRSS.
We construct an instance I ′ = (G, r, V△, V□) of Defensive AllianceFN as in Lemma 4.
Note that the pathwidth and treedepth of a tree are at most its height. We claim that as
G has a k + 1 size vertex deletion set D = U ∪ {a} into trees of height at most 4, then G

has a path decomposition of width at most k + 4. First, we get a path decomposition P of
trees of height at most 4, it has width at most 3; then add k+1 vertices of D to all the bags
of P to get a path decomposition of G. This implies that the pathwidth of G is bounded
by k + 4. To compute treedepth of G, note that G \ D is a rooted forest where the trees
are of height at most 4. We add paths of length at most k + 1 at the roots, covering the
vertices of D, such that the resulting forest is a transitive closure of G. The height of the
resulting forest is at most k+5. This implies that the treedepth of G is bounded by k+5.

4.2.2 Hardness of Defensive Alliance with Forbidden Vertices

Now we give an FPT reduction to get rid of necessary vertices for the exact version of the
problem.

Lemma 5. The Exact Defensive AllianceF problem is W[1]-hard parameterized by
the size of a vertex deletion set into trees of height at most 5.

77

Proof. To prove this we reduce from Exact Defensive AllianceFN when |V△| = 1,
which is W[1]-hard when parameterized by the size of a vertex deletion set into trees of
height at most 5. See Corollary 2. Let I = (G, r, V△, V□) with |V△| = 1 be an instance of
Exact Defensive AllianceFN. Let n = |V (G)|, r ≤ n and V△ = {x}. We construct
an instance I ′ = (G′, r′, V ′

□) of Exact Defensive AllianceF problem the following way.
See Figure 4.3 for an illustration. The construction of G′ starts with G′ := G and then add

a
b
c
x′x

h1

h2n

H

hx
1

hx
2n

Hx

hx′
1

hx′
2n

Hx′

Figure 4.3: An illustration of the reduction from Exact Defensive AllianceFN with
|V△| = 1 to Exact Defensive AllianceF. The vertex x may have additional neighbours
in G.

the following new vertices and edges. We introduce three forbidden vertices a, b, c and one
normal vertex x′. We also introduce a set of 2n normal vertices H = {h1, h2, . . . , h2n}, two
sets of 2n forbidden vertices each: Hx = {hx

1 , h
x
2 , . . . , h

x
2n} and Hx′

= {hx′
1 , h

x′
2 , . . . , h

x′
2n}. We

make x adjacent to every vertex of H ∪Hx and make x′ adjacent to every vertex of H ∪Hx′ .
Finally make a, b, c adjacent to every vertex of H. We define G′ as follows:

V (G′) = V (G) ∪H ∪Hx ∪Hx′ ∪ {a, b, c, x′}

and

E(G′) = E(G) ∪
⋃
h∈H

{(x, h), (x′, h), (a, h), (b, h), (c, h)} ∪
⋃

hx∈Hx

(x, hx) ∪
⋃

hx′∈Hx′

(x′, hx′
).

We define V ′
□ = V□ ∪Hx ∪Hx′ ∪ {a, b, c} and set r′ = r + 2n + 1. Suppose G has a size k

vertex deletion set D to trees of height at most 4. Then D∪{x, x′, a, b, c} is a vertex deletion
set to trees of height at most 4 in G′. Thus the size of a vertex deletion set to trees of height
at most 4 is clearly bounded by k + 5 in G′.

We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose there is a

78

defensive alliance R of size exactly r in G such that x ∈ R and V□ ∩ R = ∅. It is easy to
check that R′ = R∪H ∪{x′} is a defensive alliance of size r+2n+1 such that V ′

□ ∩R′ = ∅.
This implies that I ′ is a yes-instance.

To prove the reverse direction of the equivalence, suppose there is a defensive alliance
R′ of size r′ such that V ′

□ ∩ R′ = ∅. We claim that x ∈ R′. For the sake of contradiction,
suppose x /∈ R′. Then no vertex from the set H is part of R′ as dR′(h) ≤ 2 and dR′c(h) ≥ 4

for each h ∈ H. This implies that |R′| ≤ n < r′, a contradiction. Therefore x ∈ R′. Observe
that at least one vertex from H must be part of R′ for protection of x in R′. Without loss of
generality assume that h1 ∈ R′. We see that the protection of h1 requires x′ to be inside the
solution. Therefore, x′ is in R′. Now, the protection of x′ requires 2n many vertices which
can only be contributed by H. It implies that H ⊆ R′. We claim that R = R′ \

(
H ∪ {x}

)
forms a defensive alliance of size exactly r in G. Since R′ ∩ V (G) = {x}, we only need to
show that x is protected R. This is true since x looses 2n neighbours from inside and outside
the solution in G′. This shows that I is a yes-instance.

In [6], Bliem and Woltran proved that Defensive AllianceF problem is W[1]-hard
when parameterized by the treewidth of the input graph by giving a reduction from De-

fensive AllianceFN problem which again they showed to be W[1]-hard when parame-
terized by the treewidth of the graph. Since we have a stronger result that the Defensive

AllianceFN is W[1]-hard when parameterized by the pathwidth of the input graph, we now
prove that the Defensive AllianceF problem is W[1]-hard when parameterized by the
pathwidth of the input graph. We obtain the following hardness results using the reduction
of Lemma 5 given in [6] and see that the resulting graph has bounded pathwidth.

Lemma 6. The Defensive AllianceF problem is W[1]-hard when parameterized by the
pathwidth of the input graph.

Proof. To prove this we reduce from Defensive AllianceFN, which is W[1]-hard when
parameterized by the pathwidth of the input graph. See Corollary 3. The reduction given
here is the same as that of Lemma 5 in [6]. Let I = (G, r, V△, V□) be an instance of Defen-

sive AllianceFN. We construct an instance I ′ = (G′, r′, V ′
□) of Defensive AllianceF

problem in the following way. First, we find an optimal path decomposition P of G which can
be done in FPT time. Next, we record the sequence ⪯ of non-forbidden vertices that occur
for the last time in P . Let V0 denote V (G) \ (V△ ∪ V□). For each v ∈ V0, we introduce a set

79

of new vertices H = {v′, gv, hv, g
□
v , h

□
v }. We use V + to denote the set V△∪V0∪{v′ | v ∈ V0}.

For each v ∈ V +, we introduce the set of vertices Av = {v1, . . . , vn+1, v
□
1 , . . . , v

□
n+1}; we

use the notation A□
v = {v□1 , . . . , v□n+1}. We use the notation u ⊕ v to denote the set

of edges
{
(u, v), (u, u□), (v, v□), (u, v□), (v, u□)

}
. For any vertex v ∈ V0 ∪ V△, we define

p(v) = v if v ∈ V△ and p(v) = v′ if v ∈ V0. Let P be the set consisting of all pairs
(p(u), p(v)) such that v is the direct successor of u in the sequence ⪯. Next, we define
V ′
□ = V□ ∪ {g□v , h□

v | v ∈ V0} ∪
⋃

v∈V +

A□
v . The graph G′ is defined by

V (G′) = V (G) ∪H ∪
⋃

v∈V +

Av

and

E(G′) = E(G) ∪ {(v, vi), (v, v□i) | v ∈ V +, 1 ≤ i ≤ n+ 1}

∪
⋃

v∈V +,1≤i≤n

vi ⊕ vi+1 ∪
⋃

(u,v)∈P

un+1 ⊕ v1

∪
⋃
v∈V0

vn+1 ⊕ gv ∪ {(v′, gv), (v′, hv), (gv, hv), (gv, h
□
v) | v ∈ V0}.

a a′

a2

a□2

a1

a□1

an

a□n

an+1 ga

g□a

ha

h□
aa□n+1

Figure 4.4: An illustration of the gadget corresponding to a non-necessary and non-forbidden
vertex.

80

u a′ v

u2

u□
2

u1

u□
1

un

u□
n

un+1 a′1

a′□1

a′n+1 v1 vn+1

a′□n+1 v′□1 v′□n+1u□
n+1

Figure 4.5: Illustration of the gadget that makes sure that every solution contains all neces-
sary vertices if it contains some necessary vertex or if it contains a′ for some non-necessary
vertex a. We use the ordering u ⪯ a ⪯ v where u, v are necessary vertices and a is non-
necessary and non-forbidden vertex.

See Figure 4.4 and 4.5 for an illustration. Next, we show that the pathwidth of G′ is
bounded by a function of the pathwidth of G. To get a path decomposition P ′ of G′, we use an
optimal path decomposition P of G. In the path decomposition P , we denote the right most
bag containing vertex u by tPu . Initially, we set P ′ := P and make the following modifications:

• For each v ∈ V0, we add the vertices v′, gv, hv, g
□
v , h

□
v to the bag of tP ′

v . After this step
the pathwidth of P ′ is increased by at most 5.

• For each v ∈ V +, let Bv denote the bag of tP ′
v and replace tP

′
v by a sequence of nodes

N1, . . . , Nn where Nn is the rightmost node and the bag of Ni is Bv∪{vi, vi+1, v
□
i , v

□
i+1}.

Note that we have covered all the edges except the ones connecting the nodes of two
distinct sets Au and Av where (u, v) ∈ P . After this step, the pathwidth of P ′ is
increased by at most nine.

• For every (u, v) ∈ P , we add v1 and v□1 into the bag of every node between (and
including) tP ′

u and tP
′

v1
. In this way, we can cover all the remaining edges. This implies

that the pathwidth P ′ of G′ is at most pathwidth P of G plus 11.

The proof of equivalence of instances I and I ′ is given in [6].

81

4.2.3 Hardness of Defensive Alliance

Now we give an FPT reduction to get rid of forbidden vertices. The same reduction holds
for exact version of the problem as well.

Proof of Theorem 4.2.1

Proof. To prove Theorem 4.2.1 we reduce from the Defensive AllianceF problem, which
is W[1]-hard when parameterized by the pathwidth of the input graph. See Lemma 6. Let
I = (G, r, V□) be an instance of the Defensive AllianceF problem. We construct an
instance I ′ = (G′, r′) of Defensive Alliance problem the following way. We set r′ = r.

u ∈ V□ t

u1

u2

u3

u2r+2

Vu

Figure 4.6: An illustration of the reduction from Defensive AllianceF to Defensive
Alliance.

For every vertex u ∈ V□, we introduce a set Vu = {u1, u2, . . . , u2r+2} of 2r+ 2 many vertices
and make them adjacent to u. We also add a new vertex t which is adjacent to all the
vertices in

⋃
u∈V□

Vu. Clearly, we can see that the pathwidth of G′ is at most the pathwidth

of G plus two. We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose
there is a defensive alliance R of size at most r in G such that V□ ∩ R = ∅. Clearly R′ = R

is also a defensive alliance of size at most r′ = r in G′. This implies that I ′ is a yes-instance.

To prove the reverse direction of the equivalence, suppose there is a defensive alliance R′

in G′ of size at most r′ = r. We claim that any defensive alliance in G′ containing a vertex

82

from the set V□
⋃

u∈V□

Vu∪{t} is of size at least r+1. The reason is this. Let x be an arbitrary

element of V□
⋃

u∈V□

Vu ∪ {t}. If x is an element of V□ then dG′(x) ≥ 2r + 2. Therefore its

protection requires at least r+1 vertices in R′. If x = t, then dG′(t) = |V□|(2r+2) ≥ (2r+2).
Therefore its protection requires at least r+1 vertices in R′. Since |R′| ≤ r′ = r, this implies
that R′ ∩ (V□ ∪ {t}) = ∅. If x ∈ Vu for some u ∈ V□, then x has two neighbours u and t, and
we proved that both u and t are not in R′. Therefore x also cannot be in R′. This implies
that R′ ∩ (V□

⋃
u∈V□

Vu ∪ {t}) = ∅. We see that R = R′ is a defensive alliance of size at most r

such that R ∩ V□ = ∅. This shows that I is a yes-instance.

The following corollary is a consequence of Theorem 4.2.1.

Corollary 4. The Defensive AllianceN problem with exactly one necessary vertex is
W[1]-hard when parameterized by the size of a vertex deletion set into trees of height at
most 6.

Proof. To prove this we reduce from Defensive AllianceFN problem with |V△| = 1,
which is W[1]-hard when parameterized by the size of a vertex deletion set into trees of
height at most 5. See Corollary 1. The reduction here is the same as in the proof of Theo-
rem 4.2.1.

Proof of Theorem 4.2.2

Proof. To prove Theorem 4.2.2 we reduce from Exact Defensive AllianceF problem,
which is W[1]-hard when parameterized by the vertex deletion set into trees of height at
most 4 of the input graph. See Lemma 5. The reduction here is the same as in the proof of
Theorem 4.2.1. Therefore, the Exact Defensive Alliance problem is W[1]-hard when
parameterized by the vertex deletion set into trees of height at most 6. Clearly trees of height
at most 6 are trivially acyclic. Moreover, it is easy to verify that such trees have pathwidth
[44] treedepth [49] at most 6, which implies the Exact Defensive Alliance problem is
W[1]-hard when parameterized by any of the following parameters: the feedback vertex set,
pathwidth, treewidth and treedepth of the input graph.

83

84

Chapter 5

Locally Minimal Defensive Alliance

5.1 Introduction

An alliance S is called a locally minimal alliance if for any v ∈ S, S \ {v} is not an alliance.
It is important to note that if S is a locally minimal defensive alliance, then for every vertex
v ∈ S, at least one of its neighbours in S is marginally protected. In this chapter, we
consider the problem Locally Minimal Defensive Alliance, which takes as input an
undirected graph G and a positive integer k, and the objective is to decide if G has a locally
minimal defensive alliance of size at least k. This chapter is based on the paper [26] and
the manuscript [27]. We design a polynomial-time algorithm for the Connected Locally

Minimal Strong Defensive Alliance on trees. We prove that Locally Minimal

Defensive Alliance problem is NP-complete, even when restricted to planar graphs.
We give a randomized FPT algorithm for the Exact Connected Locally Minimal

Defensive Alliance problem using color coding technique. We give an FPT algorithm for
Locally Minimal Defensive Alliance when parameterized by neighbourhood diversity
of the input graph. We prove that Exact Connected Locally Minimal Defensive

Alliance parameterized by treewidth is W[1]-hard and thus not FPT (unless FPT=W[1]).
Finally we show that the Locally Minimal Defensive Alliance problem is polynomial
time solvable for graphs with bounded treewith.

85

5.2 Polynomial-Time Algorithm for Connected Locally

Minimal Strong Defensive Alliance on Trees

Finding the largest connected locally minimal (strong) defensive alliance is believed to be
intractable [1]. However, when the graph happens to be a tree, we solve the problem in
polynomial time, using dynamic programming. Here we consider strong defensive alliances
where the vertex itself is not counted while computing the number of neighbours in the
defensive alliance. A defensive alliance is strong if each vertex in the alliance has at least as
many neighbours in the alliance (not counting itself) as outside the alliance. A vertex v in
the strong defensive alliance S is said to be marginally protected if it becomes unprotected
when any of its neighbour in S is moved from S to V \ S. A vertex v ∈ S is said to be
overprotected if it remains protected even when any of its neighbours is moved from S to
V \ S. Also recall that if S is a locally minimal (strong) defensive alliance, then for every
vertex v ∈ S, at least one of its neighbours in S is marginally protected. A vertex v ∈ S is
said to be good if it has at least one marginally protected children in S, otherwise it is called
a bad vertex. Let v be a non-root node with children v1, v2, . . . , vd, that is, d(v) = d+1. We
define different possible states of a vertex v based on four factors:

• whether the vertex is part of the solution or not

If the vertex is in the solution, then we consider the following factors:

• whether the vertex is marginally protected or overprotected

• whether the vertex is good or bad

• whether the parent of v is in the solution or not

The states are as follows:

• 0: vertex v is not in the solution.

• mp
g : vertex v is in the solution, it is marginally protected by its children and parent,

parent of v is in the solution and it has at least one marginally protected child.

86

• mp
b : vertex v is in the solution, it is marginally protected by its children and parent,

parent of v is in the solution and it has no marginally protected children.

• mp̄
g : vertex v is in the solution, it is marginally protected by its children only, parent

of v is not in the solution and it has at least one marginally protected child.

• opg : vertex v is in the solution, it is overprotected by its children and parent, parent of
v is in the solution and it has at least one marginally protected child.

• opb : vertex v is in the solution, it is overprotected by its children and parent, parent of
v is in the solution and it has no marginally protected children.

• op̄g : vertex v is in the solution, it is overprotected by its children only, parent of v is
not in the solution and it has at least one marginally protected child.

Note that mp̄
b or op̄b are not valid state of a vertex v as the vertex will not have any marginally

protected neighbours. Here is the algorithm: Start by rooting the tree at any node v. Each
node defines a subtree, the one hanging from it. This immediately suggests subproblems:
Av(s)= the size of the largest connected locally minimal strong defensive alliance of the sub-
tree rooted at v and the state of v is s; if no connected locally minimal strong defensive al-
liance exists, we put Av(s) = −∞. Our final goal is to compute max

{
Ar(0), Ar(m

p̄
g), Ar(o

p̄
g)
}

where r is the root of T .

Leaf Node: For a leaf node v, we have Av(0) = 0. Note that as v does not have any
children, we get Av(m

p
g) = −∞, Av(o

p
g) = −∞, Av(o

p̄
g) = −∞, Av(m

p̄
g) = −∞. As v is a one

degree vertex, it cannot be overprotected in the solution, therefore, we get Av(o
p
b) = −∞.

We have Av(m
p
b) = 1 as this is a valid state.

Non-leaf Node: Let v be a non-leaf node with the set C = {v1, v2, . . . , vd} of children.
Suppose we know Avi(s) for all children vi of v. How can we compute Av(s)? We now
consider the following cases:

Case 1: Let the state of v be 0, that is, v is not included in the solution. Therefore, we move

87

on to v’s children and consider the best of their solutions. Then

Av(0) = max
x∈C

{
Ax(0), Ax(m

p̄
g), Ax(o

p̄
g)
}
.

Case 2: Let the state of v be mp
g or mp̄

g. Here v is a good vertex and therefore, must
have a marginally protected child in S. Therefore, at least one child vi must have la-
bel mp

g or mp
b . Next, let (v1, v2, . . . , vd) be a descending ordering of C according to values

max{Avi(m
p
g), Avi(m

p
b), Avi(o

p
g), Avi(o

p
b)}, that is,

max{Av1(m
p
g), Av1(m

p
b), Av1(o

p
g), Av1(o

p
b)} ≥ . . . ≥ max{Avd(m

p
g), Avd(m

p
b), Avd(o

p
g), Avd(o

p
b)}.

Let Ck,i be the set of first k children from the ordering (v1, v2, . . . , vd) except vertex vi. Thus,
we have

Av(m
p
g) = 1 + max

vi∈C

{
max{Avi(m

p
g), Avi(m

p
b)}

+
∑

x∈C
⌈ d+1

2 ⌉−2,i

max{Ax(m
p
g), Ax(m

p
b), Ax(o

p
g), Ax(o

p
b)}

}
,

In the case d = 1, we take Av(m
p
g) = −∞ as the state is invalid.

Suppose the state of v is mp̄
g, that is, v is marginally protected by its children only and

it has a marginally protected children. Since the parent of v is not there in the solution, we
have

Av(m
p̄
g) = 1 + max

vi∈C

{
max{Avi(m

p
g), Avi(m

p
b)}

+
∑

x∈C
⌈ d+1

2 ⌉−1,i

max{Ax(m
p
g), Ax(m

p
b), Ax(o

p
g), Ax(o

p
b)}

}

Case 3: Let the state of v be opg. When a vertex is overprotected, all its children in the solution
must be good. If any of them is bad, it remains bad, as its parent is an overprotected node.

88

Here v is a good vertex and therefore, must have a marginally protected child in S. As v ∈ S

is overprotected in the presence of its parent, v must have at least ⌈d+1
2
⌉ children in S, all

these children need to be good. Let (v1, v2, . . . , vd) be a descending ordering of C according
to values max{Avi(m

p
g), Avi(o

p
g)}. Let Ck,i be the set of first k children from the ordering

(v1, v2, . . . , vd) except vertex vi. We have the following recurrence relation:

Av(o
p
g) = 1 + max

vi∈C

{
Avi(m

p
g) +

∑
x∈C

⌈ d+1
2 ⌉−1,i

max{Ax(m
p
g), Ax(o

p
g)}

+
∑

x∈C\
(
C
⌈ d+1

2 ⌉−1,i
∪{vi}

)max
(
0, Ax(m

p
g), Ax(o

p
g)
)}

.

Let the state of v be op̄g. Then we have the following recurrence relation:

Av(o
p̄
g) = 1 + max

vi∈C

{
Avi(m

p
g) +

∑
x∈C

⌈ d+1
2 ⌉,i

max{Ax(m
p
g), Ax(o

p
g)}

+
∑

x∈C\
(
C
⌈ d+1

2 ⌉,i
∪{vi}

)max
(
0, Ax(m

p
g), Ax(o

p
g)
)}

.

Case 4: Let the state of v be opb . Here v is a bad vertex, that is, v has no marginally
protected children in S. In other words, v’s children in S must be overprotected. As v ∈ S

is overprotected, all its children in S must be good. Let (v1, v2, . . . , vd) be a descending
ordering of C according to values Avi(o

p
g). Let C⌈ d+1

2
⌉ = {v1, . . . , v⌈ d+1

2
⌉}. We have the

following recurrence relation:

Av(o
p
b) = 1 +

∑
x∈C

⌈ d+1
2 ⌉

Ax(o
p
g) +

∑
x∈C\C

⌈ d+1
2 ⌉

max
{
0, Ax(o

p
g)
}
.

Case 5: Let the state of v be mp
b . Here v is a bad vertex therefore, v’s children in S

are overprotected. Let (v1, v2, . . . , vd) be a descending ordering of C according to values
max{Avi(o

p
g), Avi(o

p
b)}. We have the following recurrence relation:

89

Av(m
p
b) = 1 +

∑
x∈C

⌈ d+1
2 ⌉−1

max{Ax(o
p
g), Ax(o

p
b)}

For computation of Ar(m
p̄
g) and Ar(o

p̄
g), we replace d by d− 1 in the above recurrence rela-

tions as the root node r with d children has degree d, whereas any other non-leaf node with
d children has degree d+ 1.

The running time of this algorithm is easy to analyze. At each node v ∈ V (T), we compute
Av(s) where s is a state of v. The time required to get descending ordering of the children
of vi is O(di log di), where di is the number of children of vertex vi. The number of subprob-
lems is exactly the number of vertices in T . The total running time is therefore equal to
c
∑

di log di ≤ c log n
∑

di = cn log n = O(n log n), where c is a constant.

5.2.1 An Illustration of the Algorithm

Consider the tree shown in Figure 5.1. For a leaf node x ∈ {x2, x4, x6}, we have Ax(0) = 0,

x1

x2 x3

x4

x5

x6

Figure 5.1: The largest locally minimal strong defensive alliances of T are {x1, x3, x4} and
{x1, x3, x5}

Ax(m
p
g) = Ax(o

p
g) = Ax(o

p̄
g) = Ax(m

p̄
g) = Ax(o

p
b) = −∞ and

Ax(m
p
b) = 1. For non-leaf node x5, we have Ax5(0) = max

{
Ax6(0), Ax6(m

p̄
g), Ax6(o

p̄
g)
}

=

max{0,−∞,−∞} = 0. Since d = 1, we have Ax5(m
p
g) = −∞ and ⌈d+1

2
⌉ − 1 = 0. Therefore

Ax5(m
p̄
g) = 1 + max{Ax6(m

p
g), Ax6(m

p
b)} = 1 +max{−∞, 1} = 2

and
Ax5(o

p
g) = Ax5(o

p̄
g) = 1 + Ax5(m

p
g) = 1 + (−∞) = −∞.

90

Next, we consider the states opb and mp
b . We have Ax5(o

p
b) = 1 +Ax5(o

p
g) = 1 + (−∞) = −∞

and Ax5(m
p
b) = 1. For non-leaf node x3, we have d = 2;

Ax3(0) = max
{
Ax4(0), Ax4(m

p̄
g), Ax4(o

p̄
g), Ax5(0), Ax5(m

p̄
g), Ax5(o

p̄
g)
}

= max{0,−∞,−∞, 0, 2,−∞} = 2

and the associated locally minimal defensive alliance is {x5, x6}. For the state mp
g, we have

Ax3(m
p
g) = 1 + max

x∈C1
{max

{
Ax(1og), Ax(1ob)

}
}

= 1 +max
{
Ax4(m

p
g), Ax4(m

p
b), Ax5(m

p
g), Ax5(m

p
b)
}

= 1 +max{−∞, 1,−∞, 1} = 2.

For the state mp̄
g, we have

Ax3(m
p̄
g) = 1 + max

{
max

{
Ax4(m

p
g), Ax4(m

p
b)
}
+max

{
Ax5(m

p
g), Ax5(m

p
b), Ax5(o

p
g), Ax5(o

p
b)
}
,

max
{
Ax5(m

p
g), Ax5(m

p
b)
}
+max

{
Ax4(m

p
g), Ax4(m

p
b), Ax4(o

p
g), Ax4(o

p
b)
}}

= 1 +max{2, 2} = 3,

and the associated locally minimal defensive alliances are {x3, x4, x5} and {x3, x5, x6}. Next,
we get

Ax3(o
p
g) = 1 + max

{
Ax4(m

p
g) + max

{
Ax5(m

p
g), Ax5(o

p
g),

Ax5(m
p
g) + max

{
Ax4(m

p
g), Ax4(o

p
g)
}}

= 1 +max{−∞,−∞} = −∞

Similarly, since Ax4(m
p
g) = Ax5(m

p
g) = −∞, we get Ax3(o

p̄
g) = −∞. As Ax4(o

p
g) = Ax5(o

p
g) =

−∞, we get Ax3(o
p
b) = 1+ (−∞) = −∞. As Ax4(o

p
g) = Ax4(o

p
b) = Ax5(o

p
g) = Ax5(o

p
b) = −∞,

we get Ax3(m
p
b) = 1 + (−∞) = −∞. Finally, for the root node x1, we have d = 2 and

Ax1(0) = max
{
Ax2(0), Ax2(m

p̄
g), Ax2(o

p̄
g), Ax3(0), Ax3(m

p̄
g), Ax3(o

p̄
g)
}

= max{0,−∞,−∞, 2, 3,−∞} = 3.

91

As Ax2(m
p
g) = Ax3(m

p
g) = −∞, we get Ax1(o

p̄
g) = −∞. Next

Ax1(m
p̄
g) = 1 + max

{
max{Ax2(m

p
g), Ax2(m

p
b)},max{Ax3(m

p
g), Ax3(m

p
b)}
}

= 1 + 2 = 3.

The associated connected locally minimal strong defensive alliances are {x1, x3, x4} and
{x1, x3, x5}. Therefore, the size of the largest locally minimal strong defensive alliance is
max{Ax1(0), Ax1(m

p̄
g), Ax1(o

p̄
g)} = 3.

5.3 Locally Minimal Defensive Alliance in Planar Graphs

is NP-complete

Bazgan, Fernau and Tuza showed in [1] that the Locally Minimal Strong Defensive

Alliance is NP-complete even when restricted to bipartite graphs with average degree less
than 3.6. They proved that Locally Minimal Defensive Alliance is NP-complete even
when restricted to bipartite graphs with average degree less than 5.6; and Connected Lo-

cally Minimal Strong Defensive Alliance is NP-complete even for bipartite graphs
with average degree less than 2 + ϵ, for any ϵ > 0, are NP-complete. Here we prove that the
Locally Minimal Defensive Alliance problem is NP-complete in planar graphs, via
a reduction from Minimum Maximal Matching in cubic planar graph. Yannakakis and
Gavril showed in [61] that the problem of finding a maximal matching of minimum size, is
NP-hard in planar graphs of maximum degree 3. In [36], Horton and Kilakos obtained the
NP-hardness of Minimum Maximal Matching in planar cubic graphs.

Theorem 5.3.1. The Locally Minimal Defensive Alliance problem is NP-complete,
even when restricted to planar graphs.

Proof. Clearly, the decision version of the problem belongs to NP. In order to obtain the NP-
hardness result for the locally minimal defensive alliance problem, we obtain a polynomial
reduction from the Minimum Maximal Matching problem on cubic planar graphs proved
NP-hard in [36]. Given an instance I = (G, k) of the Minimum Maximal Matching

problem where G is a cubic planar graph, we construct an instance I ′ = (G′, k′) of the
Locally Minimal Defensive Alliance problem where G′ is planar. An example is given

92

in Figure 5.2. The graph G′ that we construct has vertex sets A and B, where A = V (G) =

d

a b

c

d

a

A

b

c

d□

a□

V □

b□

c□

ab

B

ab□

E□

ab
′□

ac

ac□

ac
′□

ad

ad□

ad
′□

bc

bc□

bc
′□

bd

bd□

bd
′□

cd

cd□

cd
′□

(a) (b)

C
a□

C
b□

C
c□

C
d□

C
ab□

C
ab′□

C
ac□

C
ac′□

C
ad□

C
ad′□

C
bc□

C
bc′□

C
bd□

C
bd′□

C
cd□

C
cd′□

Figure 5.2: Reducing Minimum Maximal Matching on planar cubic graphs to Lo-
cally Minimal Defensive Alliance on planar graphs. (a) An undirected graph
G = (V,E) with minimum maximal matching M = {(a, b), (c, d)}. (b) The planar
graph G′ produced by the reduction algorithm that has locally minimal defensive alliance
D = A ∪ B \ {ab, cd}

⋃
x∈V □∪E□

{
x1, x2, x4, x5, x7, x8, . . . , x58, x59

}
. A red circle represents a

cycle of length 60 and a red line between x and Cx indicates that x is adjacent to every
vertex of Cx.

{v1, v2, . . . , vn} and B = E(G) = {e1, e2, . . . , em}, the edge set of G. We make vi adjacent to
ej if and only if vi is an endpoint of ej. Further we add two sets of vertices V □ = {v□1 , . . . , v□n }
and E□ = {e□1 , e′□1 , . . . , e□m, e

′□
m}; and make vi adjacent to v□i and ei adjacent to e□i and e′□i .

For each x ∈ V □∪E□, we add a cycle Cx of length 6(n+m) with vertices x1, x2, . . . , x6(n+m)

and make x adjacent to every vertex of Cx. This completes the construction of G′. It is easy
to note that G′ is a planar graph. Set k′ = 4(n +m)(n + 2m) + (n +m− k). To complete
the proof, we show that G has a maximal matching of size at most k if and only if G′ has a
locally minimal defensive alliance of size at least k′.

Suppose G has a maximal matching M of size at most k. We claim that D = A ∪
(B\M)

⋃
x∈V □∪E□

{
x1, x2, x4, x5, x7, x8, . . . , x6(n+m)−2, x6(n+m)−1

}
is a locally minimal defensive

93

alliance of size at least k′. It is easy to verify that all the vertices in A are protected. Clearly,
all the vertices in

(B\M) ∪
⋃

x∈V □∪E□

{
x1, x2, x4, x5, x7, x8, . . . , x6(n+m)−2, x6(n+m)−1

}
are marginally protected. Since M is maximal, it is not possible to remove a vertex from
D ∩B since otherwise some vertex from A will become unprotected. Also, it is not possible
to remove a vertex from D ∩ A since otherwise some vertices from D ∩ B will become
unprotected. This shows that D is indeed a locally minimal defensive alliance.

For the reverse direction, suppose that G′ has a locally minimal defensive alliance D

of size at least k′. We claim that if x ∈ V □ ∪ E□, then x does not lie in D. For the
sake of contradiction assume that x ∈ D. We consider two cases: Case 1: x is marginally
protected. In this case, the cycle Cx contributes at most 3(n+m) vertices in D, as otherwise
x is not marginally protected. Then |D| < k′ and this is a contradiction. Case 2: x is
overprotected. Let xi be a neighbour of x in Cx ∩ D. As D is a locally minimal defensive
alliance, xi must have a marginally protected neighbour, say xi+1, in Cx. Clearly, xi and
xi+1 are not marginally protected. This implies that xi and xi+1 do not have a marginally
protected neighbour, a contradiction to the assumption that D is a locally minimal defensive
alliance. As x ∈ V □ ∪ E□ is not in D, then Cx can contribute at most 4(n + m) vertices
in D by choosing two sets from the following three sets of vertices X0 = {x3i | 1 ≤ i ≤
2(n +m)}, X1 = {x3i+1 | 0 ≤ i ≤ 2(n +m)− 1} and X2 = {x3i+2 | 0 ≤ i ≤ 2(n +m)− 1}.
We define M = B∩Dc and claim that there exists a set M ′ ⊆ M such that M ′ is a maximal
matching. If no subsets of M forms a maximal matching then clearly there exists an edge
(u, v) ∈ E such that it can still be added in M . It implies that all edges incident to u and
v are in D and hence u and v are overprotected. Therefore, vertex e = uv ∈ B does not
have a marginally protected neighbour as both of its neighbors u and v are overprotected.
This shows that there must exist a set M ′ ⊆ M such that M ′ is a maximal matching and
|M ′| ≤ |M | ≤ k.

94

5.4 A color coding algorithm for Exact Connected Lo-

cally Minimal Defensive Alliance

In this section, we give a randomized FPT algorithm for the Exact Connected Locally

Minimal Defensive Alliance problem using color coding technique. Let G = (V,E) be
a graph and let S ⊆ V be a subset of size k. Every vertex in G is colored independently
with one colour from the set {green, red} with uniform probability. Denote the obtained
coloring by χ : V (G) → {red, green}. A connected locally minimal defensive alliance S in
G is called a green connected locally minimal defensive alliance in G with coloring χ if all
the vertices in S are colored with green color and all the vertices in N(S) are colored red.

Lemma 7. Let G be a graph and let χ : V (G) → {red, green} be a colouring of its vertices
with two colours, chosen uniformly at random. Let S ⊆ V be a connected locally minimal
defensive alliance of size k in G. Then the probability that the elements of S are coloured
with green colour and elements of N(S) are coloured with red colour is at least 1

2k2+k
.

Proof. As S is a (connected locally minimal) defensive alliance of size k in G, each element
v in S is protected and therefore v can have at most k neighbours outside S. It follows
that |N(S)| ≤ |S|k = k2. There are 2n possible colorings χ; and there are 2n−k2−k possible
colorings where the k vertices of S are coloured green and at most k2 neighbours of S are
colored red. Hence the lemma follows.

Lemma 8. Let G be a graph and let χ : V (G) → {red, green} be a colouring of its vertices
with two colours. Then there exists an algorithm that checks in time O(n +m) whether G

contains a green connected locally minimal defensive alliance of size k and, if this is the case,
returns one such alliance.

Proof. Let Vg and Vr be a partitioning of V (G) such that all vertices in Vg are coloured
green and all vertices in Vr are coloured red. A connected component C is said to be a green
connected component if the vertices of C are colored green. Run DFS to identify all green
connected components C1, C2, . . . , Cℓ of G[Vg] in O(m+n) time. Then verify in linear time if
there exists a green connected component Ci of size k that forms a locally minimal defensive
alliance in G.

95

We now combine Lemma 7 and Lemma 8 to obtain the main result of this section.

Theorem 5.4.1. There exists a randomized algorithm that, given an Exact Connected

Locally Minimal Defensive Alliance instance (G, k), in time 2O(k2+k)(n+m) either
reports a failure or finds a connected locally minimal defensive alliance of size exactly k in
G. Moreover, if the algorithm is given a yes-instance, it returns a solution with a constant
probability.

Proof. Given an input instance (G, k), we uniformly at random color the vertices of V (G)

with two colors green and red. That is, every vertex is colored independently with either
green or red color with uniform probability. Denote the obtained coloring by χ : V (G) →
{red, green}. We run the algorithm of Lemma 8 on the graph G with coloring χ. If it returns
a green connected locally minimal defensive alliance S of size k, then we return this S as
connected locally minimal defensive alliance of size k in G. Otherwise, we report failure.

It remains to bound the probability of finding a connected locally minimal defensive
alliance of size k in the case (G, k) is a yes-instance. To this end, suppose G has a connected
locally minimal defensive alliance S of size k. By Lemma 7, S becomes a green connected
locally minimal defensive alliance of size k in the colouring χ with probability at least 1

2k2+k
.

If this is the case, the algorithm of Lemma 8 finds a green connected locally minimal defensive
alliance of size k (not necessarily S itself), and the algorithm returns a connected locally
minimal defensive alliance of size k in G.

Thus we have an algorithm that runs in time O(m+n) and given a yes-instance, returns
a solution with probability at least 1

2k2+k
. Clearly, by repeating the algorithm independently

2k
2+k times, we obtain the running time bound and the success probability at least 1− 1

e
.

5.5 FPT algorithm parameterized by neighbourhood di-

versity

In this section, we present an FPT algorithm for Locally Minimal Defensive Alliance

problem parameterized by neighbourhood diversity. See Section 1.7 for the definitions of
neighbourhood diversity and type graph. In this section, we prove the following theorem:

96

Theorem 5.5.1. The Locally Minimal Defensive Alliance problem is fixed-parameter
tractable when parameterized by the neighbourhood diversity.

Let G be a connected graph such that nd(G) = k. Let C1, . . . , Ck be the partition of V (G)

into sets of type classes. We assume k ≥ 2 since otherwise the problem becomes trivial. Let
H be the type graph of G. Next we guess the cardinality of Ci ∩ S and whether the vertices
in Ci are marginally or overprotected, where S is a locally minimal defensive alliance. We
make the following guesses:

• Option 1: |Ci ∩ S| = 0.

• Option 2: |Ci ∩ S| = 1 and the vertices in Ci are marginally protected.

• Option 3: |Ci ∩ S| = 1 and the vertices in Ci are overprotected.

• Option 4: |Ci ∩ S| > 1 and the vertices in Ci are marginally protected.

• Option 5: |Ci ∩ S| > 1 and the vertices in Ci are overprotected.

There are at most 5k choices for the tuple (C1, C2, . . . , Ck) as each Ci has 5 options as given
above. Finally we reduce the problem of finding a locally minimal defensive alliance of max-
imum size to an integer linear programming optimization with k variables. Since integer
linear programming is fixed parameter tractable when parameterized by the number of vari-
ables [47], we conclude that our problem is FPT when parameterized by the neighbourhood
diversity.

ILP Formulation: Given a particular choice P of options for (C1, C2, . . . , Ck), our goal here
is to find a locally minimal defensive alliance of maximum size. For each Ci, we associate a
variable xi that indicates |S ∩ Ci| = xi. Clearly, xi = 0, if Ci is assigned Option 1; xi = 1

if Ci is assigned Option 2 or 3; and xi > 1 if Ci is assigned Option 3 or 4. Because the
vertices in Ci have the same neighbourhood, the variables xi determine S uniquely, up to
isomorphism. Let C1 = {Ci | xi = 1}, C>1 = {Ci | xi > 1} and C = C1 ∪ C>1. Let H[C] be
the subgraph of H induced by C. Now we label the vertices of H[C] as follows: vertex Ci is
labelled c1 if it is a clique and Option 2 is assigned to Ci; vertex Ci is labelled c>1 if it is a
clique and Option 4 is assigned to Ci; vertex Ci is labelled ind if it is an independent set

97

and Option 2 or 4 is assigned to Ci; vertex Ci is labelled op if it is a clique or an independent
set, and Option 3 or 5 is assigned to Ci. To ensure local minimality of defensive alliance,
the induced subgraph must satisfy the following conditions:

• Every vertex labelled op in the induced graph must have at least one neighbour labelled
c1, c>1 or ind.

• Every vertex labelled c1 in the induced graph must have at least one neighbour labelled
c1, c>1 or ind.

• Every vertex labelled ind in the induced graph must have at least one neighbour
labelled c1, c>1 or ind.

Above conditions ensure local minimality of the solution because when we remove a vertex
from the solution, we make sure at least one of its neighbours gets unprotected. This hap-
pens because every vertex in the solution has at least one neighbour which is marginally
protected. If the induced subgraph H[C] satisfies all the above conditions then we proceed
for the ILP, otherwise not. Let L be a subset of C consisting of all type classes which are
cliques; I = C \ L be a subset of C consisting of all type classes which are independent sets
and R = {C1, . . . , Ck}\C. Let ni denote the number of vertices in Ci. We consider two cases:

Case 1: Suppose v ∈ Cj where Cj ∈ I. Then the degree of v in S satisfies

dS(v) =
∑

Ci∈NH(Cj)∩C

xi (5.1)

Thus, including itself, v has 1+
∑

Ci∈NH(Cj)∩C
xi defenders in G. Note that if Ci ∈ C, then only

xi vertices of Ci are in S and the remaining ni − xi vertices of Ci are outside S. The degree
of v outside S satisfies

dSc(v) =
∑

Ci∈NH(Cj)∩C

(ni − xi) +
∑

Ci∈NH(Cj)∩R

ni (5.2)

98

Case 2: Suppose v ∈ Cj where Cj ∈ L. The degree of v in S satisfies

dS(v) =
∑

Ci∈NH [Cj]∩C

xi (5.3)

The degree of v outside S satisfies

dSc(v) =
∑

Ci∈NH [Cj]∩C

(ni − xi) +
∑

Ci∈NH [Cj]∩R

ni (5.4)

In the following, we present an ILP formulation of locally minimal defensive alliance prob-
lem, where a choice of options for (C1, . . . , Ck) is given:

Maximize
∑
Ci∈C

xi

Subject to

1 +
∑

Ci∈NH(Cj)∩C

2xi >
∑

Ci∈NH(Cj)

ni, for all Cj ∈ I, labelled op,

∑
Ci∈NH(Cj)∩C

2xi −
∑

Ci∈NH(Cj)

ni = 0 or − 1, for all Cj ∈ I, labelled ind,

∑
Ci∈NH [Cj]∩C

2xi >
∑

Ci∈NH [Cj]

ni, for all Cj ∈ L, labelled op ,

∑
Ci∈NH [Cj]∩C

2xi −
∑

Ci∈NH [Cj]

ni = 0 or 1, for all Cj ∈ L, labelled c1 or c>1,

xi = 1 for all i : Ci ∈ C1;
xi ∈ {2, 3, . . . , |Ci|} for all i : Ci ∈ C>1.

Solving the ILP: In the formulation for Locally Minimal Defensive Alliance prob-
lem, we have at most k variables. The value of objective function is bounded by n and the
value of any variable in the integer linear programming is also bounded by n. The constraints
can be represented using O(k2 log n) bits. Lemma 1 of Section 2.1.3 implies that we can solve
the problem with the guess P in FPT time. There are at most 5k choices for P , and the ILP
formula for a guess can be solved in FPT time. Thus Theorem 6.3.1 holds.

99

5.6 Hardness of Exact Connected Locally Minimal

Defensive Alliance parameterized by treewidth

In this section, we prove the following theorem:

Theorem 5.6.1. The Exact Connected Locally Minimal Defensive Alliance

problem is W[1]-hard when parameterized by the treewidth of the input graph.

We introduce several variants of Locally Minimal Defensive Alliance problem that
we require in our proofs. The problem Locally Minimal Defensive AllianceF gen-
eralizes Locally Minimal Defensive Alliance where some vertices are forced to be
outside the solution (these vertices are called forbidden vertices). This variant can be for-
malized as follows:

Locally Minimal Defensive AllianceF

Input: A graph G = (V,E), an integer k and a set V□ ⊆ V (G).
Question: Does there exist a locally minimal defensive alliance S ⊆ V (G) of size at least
k such that S ∩ V□ = ∅?

Locally Minimal Defensive AllianceFN is a further generalization where some ver-
tices are forced to be in every solution (these vertices are called necessary vertices) and some
other vertices are forced to be outside the solution. This variant can be formalized as follows:

Locally Minimal Defensive AllianceFN

Input: A graph G = (V,E), an integer k, a set V△ ⊆ V (G), and a set V□ ⊆ V (G).
Question: Does there exist a locally minimal defensive alliance S ⊆ V (G) of size at least
k such that (i) V△ ⊆ S, (ii) V□ ⊆ Sc?

Let G = (V,E) be an undirected and edge weighted graph, where V , E, and w denote the
set of nodes, the set of edges and a positive integral weight function w : E → Z+, respec-
tively. An orientation Λ of G is an assignment of a direction to each edge {u, v} ∈ E(G),
that is, either (u, v) or (v, u) is contained in Λ. The weighted outdegree of u on Λ is
wu

out =
∑

(u,v)∈Λw({u, v}). We define Minimum Maximum Outdegree problem as fol-
lows:

100

Minimum Maximum Outdegree

Input: A graph G, an edge weighting w of G given in unary, and a positive integer r.
Question: Is there an orientation Λ of G such that wu

out ≤ r for each u ∈ V (G)?

It is known that Minimum Maximum Outdegree is W[1]-hard when parameterized by
the treewidth of the input graph [57]. To prove Theorem 6.5.1, we reduce Minimum Max-

imum Outdegree to Locally Minimal Defensive AllianceFN and then we show
how we can successively reduce the latter problem Connected Locally Minimal De-

fensive AllianceFN, Connected Locally Minimal Defensive AllianceF and
finally Exact Connected Locally Minimal Defensive Alliance.

5.6.1 Hardness of Exact Connected Locally Minimal Defensive

Alliance with Forbidden and Necessary Vertices

To show W[1]-hardness of Locally Minimal Defensive AllianceFN, we reduce from
Minimum Maximum Outdegree which is known to be W[1]-hard [57] parameterized by
the treewidth of the graph:

Lemma 9. The Locally Minimal Defensive AllianceFN is W[1]-hard when param-
eterized by the treewidth of the input graph.

Proof. Let G = (V,E,w) and a positive integer r be an instance of Minimum Maximum

Outdegree. We construct an instance of Locally Minimal Defensive AllianceFN as
follows. We illustrate our construction in Figure 5.3. Before we formally define our reduction,
we briefly describe the intuition. We introduce three types of vertices: necessary vertices,
forbidden vertices and normal vertices. We often indicate necessary vertices by means of a
triangular node shape, and forbidden vertices by means of a square node shape, and normal
vertices by means of a circular node shape. We want to make sure that necessary vertices
are always inside every solution and forbidden vertices are always outside every solution;
and a normal vertex could be inside or outside the solution. For each vertex v ∈ V (G), we
introduce one new forbidden vertex v□, one set of normal vertices Hv = {hv

1, . . . , h
v
2r} and one

set of forbidden H□
v = {hv□

1 , . . . , hv□
2r }. For each edge (u, v) ∈ E(G), we introduce two sets of

101

a

a□

ha
1

ha
2

ha
3

ha
4

ha□
1

ha□
2

ha□
3

ha□
4

ad
1

△a1d1

△′
a1d1

□a1d1

ad□
1

da1

da□
1

b

b□

hb
1

hb
2

hb
3

hb
4

hb□
1

hb□
2

hb□
3

hb□
4

bc1

bc2

bc□1

bc□2

ba1 ba□
1

c

c□

hc
1

hc
2

hc
3

hc
4

hc□
1

hc□
2

hc□
3

hc□
4

cb1

cb2

cb□1

cb□2

cd1 cd2

cd□1 cd□2

d

d□

dc1

△′
c1d1

□c1d1

dc2

dc□1 dc□2

ab
1

△a1b1

△′
a1b1

□a1b1

ab□
1

hd
1

hd
2

hd
3

hd
4

hd□
1

hd□
2

hd□
3

hd□
4

a d

b c

2

2

1

1

Figure 5.3: Result of our reduction on a Minimum Maximum Outdegree instance G with
r = 2. The graph G long with its orientation is shown at the left; and G′ is shown at the
right. The necessary vertices in V△ are filled with red colour; the forbidden vertices in V□

are filled with blue colour. The vertices in locally minimal defensive alliance S are shown in
red label for the given orientation of G.

normal vertices Vuv = {uv
1, . . . , u

v
w(u,v)} and Vvu = {vu1 , . . . , vuw(u,v)}; and two sets of forbidden

vertices V □
uv = {uv□

1 , . . . , uv□
w(u,v)} and V □

vu = {vu□1 , . . . , vu□w(u,v)}. Let ω =
∑

(u,v)∈E(G)

w(u, v). We

define a set of complementary vertex pairs

C =
{
(uv

i , v
u
i), | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}
∪
{
(uv

i+1, v
u
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)− 1

}
.

For every complementary pair c = (uv, vu) ∈ C, we introduce a set V (c) = {△uvvu ,□uvvu ,△′
uvvu}

of three vertices: two necessary vertices and one forbidden vertex. We add the following set
of edges to the complementary pair gadget

E(c) =
{
(△uvvu ,□uvvu), (△uvvu ,△′

uvvu), (△′
uvvu ,□uvvu), (u

v,△uvvu), (△uvvu , v
u)
}
.

102

We now define the graph G′ with

V (G′) = V (G) ∪
{
v□ | v ∈ V (G)

}
∪

⋃
v∈V (G)

(
Hv ∪H□

v

)
∪

⋃
(u,v)∈E(G)

(
Vuv ∪ V □

uv ∪ Vvu ∪ V □
vu

)
∪
⋃
c∈C

V (c)

and

E(G′) =
{
(v, h) | v ∈ V (G), h ∈ Hv

}
∪
{
(hv

i , h
v□
i) | 1 ≤ i ≤ 2r, v ∈ V (G)

}
∪
{
(u, x) | (u, v) ∈ E(G), x ∈ Vuv ∪ V □

uv

}
∪
{
(x, v) | (u, v) ∈ E(G), x ∈ Vvu ∪ V □

vu

}
∪
{
(v, v□) | v ∈ V (G)

}
∪
⋃
c∈C

E(c).

The number of vertices in G′ is n(4r + 2) + 4ω + 3|C|, where n is the number of vertices in
G. Finally we define the set of necessary vertices

V△ = V (G) ∪
⋃

(uv ,vu)∈C

{△uvvu ,△′
uvvu}

and the set of forbidden vertices

V□ =
⋃

(u,v)∈E(G)

(V □
uv ∪ V □

vu) ∪
⋃

v∈V (G)

(
H□

v ∪
{
v□ | v ∈ V (G)

})
∪

⋃
(uv ,vu)∈C

{□uvvu}.

We set k = n(r + 1) + ω + 2|C|. Note that the end points of each complementary pair
are adjacent to a vertex in V△. We use I to denote (G′, k, V△, V□) which is an instance of
Locally Minimal Defensive AllianceFN.

Clearly, it takes polynomial time to compute I. We now prove that the treewidth of the
graph G′ of I is bounded by a function of the treewidth of G. We do so by modifying an
optimal tree decomposition τ of G as follows:

• For every edge (u, v) of G, there is a node in τ whose bag B contains both u and
v; add to this node a chain of nodes 1, 2, . . . , w(u, v) − 1 where the bag of node i is

103

B ∪ {uv
i , v

u
i , u

v
i+1, v

u
i+1,△uv

i v
u
i
,□uv

i v
u
i
,△′

uv
i v

u
i
,△uv

i v
u
i+1

,□uv
i v

u
i+1

,△′
uv
i v

u
i+1

}.

• For every edge (u, v) of G, there is a node in τ whose bag B contains u; add to this
node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is B ∪ {uv□

i , u□}.

• For every edge (u, v) of G, there is a node in τ whose bag B contains v and add to this
node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is B ∪ {vu□i , v□}.

• For every vertex v of G, there is a node in τ whose bag B contains v and add to this
node a chain of nodes 1, 2, . . . , 2r where the bag of node i is B ∪ {hv

i , h
v□
i }.

Clearly, the modified tree decomposition is a valid tree decomposition of G′ and its width is
at most the treewidth of G plus ten.

Let D be the directed graph obtained by an orientation of the edges of G such that for
each vertex the sum of the weights of outgoing edges is at most r. Let wx

out and wx
in denote

the sum of the weights of outgoing and incoming edges of vertex x, respectively. Then the
set

S = V△ ∪
⋃

(u,v)∈E(D)

Vvu ∪
{
hv
i | 1 ≤ i ≤ r + wv

out; v ∈ V (G)
}

is a locally minimal defensive alliance of size k. Note that (u, v) ∈ E(D) is a directed edge
from u to v in D. To prove that S is a locally minimal defensive alliance, we show that
dS(x) ≥ dSc(x) for all x ∈ S and each vertex in S has a marginally protected neighbour.
Let x be an arbitrary element of S. If x ∈ Hv, then including itself, it has two neighbour in
S and one neighbour in Sc; so x is marginally protected. If x ∈ Vuv, then including itself,
it has three neighbour in S and no neighbours in Sc; so x is protected. If x ∈ V (G) ⊆ V△,
then including itself, it has r+wx

out+wx
in+1 neighbours in S, and it has r+wx

out+wx
in+1

neighbours in Sc; so x is marginally protected. If x ∈ V△ \ V (G) =
⋃

(uv ,vu)∈C
{△uvvu ,△′

uvvu},

then it is easy to see that x is marginally protected. Thus every vertex x in S is protected
and has at least one marginally protected neighbour.

Conversely, suppose S is a solution of the instance I. We first show that exactly one
vertex from each complementary pair belongs to S. The following holds for every solution S

of I: As S contains △uvvu ,△′
uvvu for every complementary pair (uv, vu) ∈ C, it must include

at least one vertex from {uv, vu} to protect △uvvu in the solution. We claim S cannot include
both uv and vu. We know every vertex in a locally minimal defensive alliance must have a

104

marginally protected neighbour. As △uvvu is the only neighbour of △′
uvvu in S, △uvvu must

be marginally protected. Suppose both uv and vu are in S, then including itself, △uvvu has
four neighbours in S, and one neighbour outside S. Then △uvvu is not marginally protected.
Therefore S contains exactly one endpoint for each (uv, vu) ∈ C. For every (u, v) ∈ E(G),
either Vuv ∈ S or Vvu ∈ S due to the complementary vertex pairs. We define a directed
graph D by V (D) = V (G) and

E(D) =
{
(u, v) | Vvu ⊆ S

}
∪
{
(v, u) | Vuv ⊆ S

}
.

Suppose there is a vertex x in D for which wx
out > r. Clearly x ∈ V (G). We know, including

itself, x has at most 2r+wx
in +1 neighbours in S and x has at least 2wx

out +wx
in +1 neigh-

bours in Sc. Then dSc(x) > dS(x), as by assumption wx
out > r, a contradiction to the fact

that S is a (locally minimal) defensive alliance of G′. Hence wx
out ≤ r for all x ∈ V (D).

Lemma 10. The Connected Locally Minimal Defensive AllianceFN is W[1]-hard
when parameterized by the treewidth of the graph.

Proof. Let I = (G, k, V△, V□) be a Locally Minimal Defensive AllianceFN instance;
let n denote the number of vertices in G. We construct an instance I ′ = (G′, k′, V ′

△, V
′
□)

of Connected Locally Minimal Defensive AllianceFN the following way. We il-
lustrate our construction in Figure 5.4. The construction of G′ starts with G′ := G and
then add the following new vertices and edges. We introduce one necessary vertex h and
one forbidden vertex t, and make them adjacent to every vertex of G. We introduce a set
of necessary vertices H = {h1, h2, . . . , h4n}. For every vertex hi in H, we introduce four
forbidden vertices H□

i = {h1□
i , h2□

i , h3□
i , h4□

i }. We now define the Connected Locally

Minimal Defensive AllianceFN instance I ′ = (G′, k′, V ′
△, V

′
□) where

V ′
△ = V△ ∪ {h} ∪

4n⋃
i=1

{hi},

V ′
□ = V□ ∪ {t} ∪

4n⋃
i=1

4⋃
j=1

{hj□
i }

105

v1

v2

vn

h t

H

h1

h1□
1

h2□
1

h3□
1

h4□
1

h2

h1□
2

h2□
2

h3□
2

h4□
2

h4n

h1□
4n

h2□
4n

h3□
4n

h4□
4n

G

Figure 5.4: The graph G′ in our reduction from Locally Minimal Defensive
AllianceFN to Connected Locally Minimal Defensive AllianceFN in the proof
of Lemma 10.

and G′ is the graph defined by

V (G′) = V (G) ∪ {h, t} ∪
4n⋃
i=1

4⋃
j=1

{hi, h
j□
i }

and

E(G′) =E(G) ∪
⋃

u∈V (G)

{(u, h), (u, t)} ∪
4n⋃
i=1

4⋃
j=1

{(hi, h
j□
i), (h, hi)} ∪

4n−1⋃
i=1

{(hi, hi+1), (h4n, h1)}

We set k′ = k + 4n+ 1. The treewidth of G′ is equal to the treewidth of G plus 5. We now
claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose there exists a locally
minimal defensive alliance S ⊆ V (G) with |S| ≥ k of G such that V△ ⊆ S and V□ ∩ S = ∅.
We claim that the set

S ′ = S ∪H ∪ {h}

is a connected locally minimal defensive alliance of G′ such that |S ′| ≤ k′, V ′
△ ⊆ S and

V ′
□ ∩ S = ∅. As h is adjacent to all vertices in S ′, the subgraph induced by S ′ is connected.

In G′, each vertex of V (G) is adjacent to one new necessary vertex h and one new forbid-
den vertex t. Therefore each vertex in S remains protected and has a marginally protected
neighbour. Each vertex in H has four neighbours inside S ′ and four neighbours outside S ′.

106

Thus each vertex in H is marginally protected and has a marginally protected neighbour in
H. Similarly, h is strongly protected and adjacent to marginally protected vertices in H.
Since we are adding the set H of 4n vertices and a vertex h to S, it implies that |S ′| ≥ k′.
This shows that I ′ is a yes-instance.

Conversely, suppose that there exists a connected locally minimal defensive alliance S ′

of G′ with |S ′| ≥ k′ such that V ′
△ ⊆ S ′ and V ′

□ ∩ S ′ = ∅. We claim that S = S ′ ∩ V (G)

forms a locally minimal defensive alliance in G. Clearly, each vertex in S = S ′ ∩ V (G)

remains protected as it loses one neighbour from inside the solution and one neighbour from
outside the solution. This also implies that marginally protected vertices in S ′ will remain
marginally protected in S. As every vertex in S ′ had a marginally protected neighbour in S ′

and h is strongly protected in S ′, it shows that every vertex in S will also have a marginally
protected neighbour in S. As we are removing exactly 4n+ 1 vertices from the solution, we
get |S| ≥ k. This shows that I is a yes-instance.

As a consequence of Lemma 10, we have the following result:

Corollary 5. The Exact Connected Locally Minimal Defensive AllianceFN

problem is W[1]-hard when parameterized by the treewidth of the graph.

5.6.2 Hardness of Connected Locally Minimal Defensive Alliance

with Forbidden Vertices

Now we present a transformation that eliminates necessary vertices. The basic idea is that
we ensure that a necessary vertex u is always part of every solution by adding a very large
gadget which is connected to G through u only. If u is not in the solution, then we cannot
include any vertex from the newly added gadget to the connected locally minimal defensive
alliance; as a result we will not be able to attain the required size of the solution. Therefore,
we are forced to include every necessary vertex u in the solution.

Lemma 11. The Connected Locally Minimal Defensive AllianceF is W[1]-hard
when parameterized by the treewidth of the graph.

Proof. Let I = (G, k, V△, V□) be a Connected Locally Minimal Defensive AllianceFN

107

instance. We construct an instance I ′ = (G′, k′, V ′
□) of Connected Locally Minimal De-

fensive AllianceF the following way. We illustrate our construction in Figure 5.5. The

u1

uu2

u1
1

u1
2

u1
2n

u1
2n+1

u1
4n−1

u1
4n

V □
u1
2n

V □
u1
2n+1

V □
u1
4n

V □
u1
4n−1

V □
u1
1

V □
u1
2

Figure 5.5: An illustration of the reduction of necessary vertices in Connected Lo-
cally Minimal Defensive AllianceFN to Connected Locally Minimal Defen-
sive AllianceF. The vertex u may have additional neighbours in G.

construction of G′ starts with G′ := G and then add the following new vertices and edges.
For each u ∈ V△, we introduce two new vertices u1 and u2. For each u1, we introduce a set
Vu1 = {u1

i | 1 ≤ i ≤ 4n} of 4n vertices. For each u1
i ∈ Vu1 , we add a set V □

u1
i

of four one-degree
forbidden vertices and make them adjacent to u1

i . We now define the graph G′ with

V (G′) = V (G) ∪
⋃

u∈V△

{u1, u2} ∪
⋃

u∈V△

4n⋃
i=1

{u1
i } ∪

⋃
u∈V△

4n⋃
i=1

V □
u1
i

and

E(G′) = E(G) ∪
⋃

u∈V△

4n⋃
i=1

{
(u1, u), (u2, u), (u1, u1

i), (u
1
i , α) | α ∈ V □

u1
i

}
.

We set

V ′
□ = V□ ∪

⋃
u∈V△

{u2} ∪
⋃

u∈V△

4n⋃
i=1

V □
u1
i

and k′ = k + (4n+ 1)|V△|.

108

We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose there is a
connected locally minimal defensive alliance S of size at least k in G such that V△ ⊆ S and
V□ ∩ S = ∅. We claim the set

S ′ = S ∪
⋃

u∈V△

4n⋃
i=1

{u1, u1
i }

is a connected locally minimal defensive alliance of size at least k′ in G′ such that S ′∩V ′
□ = ∅.

Clearly, each vertex in S remains protected and has a marginally protected neighbour be-
cause we are adding equal number of neighbours inside and outside the solution for each
vertex in S. We observe that the vertices in Vu1 = {u1

i | 1 ≤ i ≤ 4n} are marginally pro-
tected and have a marginally protected neighbour in the same set. Also, u1 is overprotected
and has marginally protected neighbours in the set Vu1 . As for every vertex in the set V△, we
are adding exactly 4n+1 vertices to the solution, it implies that |S ′| ≥ k′ = k+(4n+1)|V△|.
This proves that if I is a yes-instance then I ′ is a yes-instance.

To prove the reverse direction of the equivalence, suppose there is a connected locally
minimal defensive alliance S ′ of size at least k′ in G′ such that V ′

□ ∩ S ′ = ∅. We first prove
that all the vertices {u, u1 |u ∈ V△} are in the solution. If there is a vertex u1 such that it is
not part of S ′ then no vertices from the set Vu1 are part of S ′ as they will not be protected;
every vertex of Vu1 will have at least five neighbours outside S ′ and at most three neighbours,
including itself, inside S ′. This implies that |S ′| ≤ n+(4n+1)(|V△|−1) < (4n+1)|V△| < k′,
a contradiction to the fact that |S ′| ≥ k′. If there is a vertex u such that it is not part of
S ′ then no vertices from the set Vu1 are part of S ′ as the solution will be disconnected; if
Vu1 itself forms a solution then clearly |Vu1| < k′. We claim that S = S ′ ∩ V (G) is a locally
minimal defensive alliance in graph G of size at least k such that V△ ⊆ S. We proved that
V△ ⊆ S. Since every vertex in S loses equal number of neighbours from inside and outside
the solution, the vertices of S remain protected. This also implies that every vertex in S

has a marginally protected neighbour. This is true since u has only one new neighbour u1

in S ′ and since u1 is overprotected in S ′, u must have a marginally protected neighbour in
S = S ′∩V (G). As we are removing exactly (4n+1)|V△| vertices from S ′, we get |S| ≥ k.

As a consequence of this lemma, we have the following result:

Corollary 6. The Exact Connected Locally Minimal Defensive AllianceF prob-

109

lem is W[1]-hard when parameterized by the treewidth of the input graph.

5.6.3 Hardness of Exact Connected Locally Minimal Defensive

Alliance

We now introduce a transformation that eliminates forbidden vertices. The basic idea is that
we ensure that a forbidden vertex u is never part of a solution by adding a large number of
neighbors to u such that we could only defend u by exceeding the solution size.

Lemma 12. The Exact Connected Locally Minimal Defensive Alliance problem
is W[1]-hard when parameterized by the treewidth of the graph.

Proof. Let I = (G, k, V□) be an instance of the Exact Connected Locally Minimal

Defensive AllianceF problem. We construct an instance I ′ = (G′, k′) of Exact Con-

nected Locally Minimal Defensive Alliance as follows. The construction of G′

starts with G′ := G and then add the following new vertices and edges. For every u ∈ V□,
we introduce a set Vu of 2n + 2 one degree vertices adjacent to u. The graph G′ is defined
as follows:

V (G′) = V (G) ∪
⋃

u∈V□

Vu

and
E(G′) = E(G) ∪

⋃
u∈V□

{
(u, β) | β ∈ Vu

}
We set k′ = k (≤ n).

We claim that I is a yes-instance if and only if I ′ is a yes-instance. Suppose S is a
connected locally minimal defensive alliance of size k in G such that S ∩ V□ = ∅. Then S is
also a connected locally minimal defensive alliance of size k in G′. Conversely, suppose that
S ′ is a connected locally minimal defensive alliance of size k (≤ n) in G′. We observe that
S ′ cannot contain any vertex from the set V□ as the protection of a vertex from V□ requires
at least n+ 1 vertices in S ′. This implies that |S ′| ≥ n+ 1, a contradiction to the fact that
|S ′| = k ≤ n. Therefore, S ′ is an exact connected locally minimal defensive alliance of size
k in G such that V□ ∩ S ′ = ∅. This shows that I is a yes-instance.

110

This proves Theorem 6.5.1.

5.7 Graphs of bounded treewidth

In this section we prove that Locally Minimal Defensive Alliance problem can be
solved in polynomial time for graphs of bounded treewidth. In other words, this section
presents an XP-algorithm for Locally Minimal Defensive Alliance problem parame-
terized by treewidth. We now prove the following theorem:

Theorem 5.7.1. Given an n-vertex graph G and its nice tree decomposition T of width at
most k, the size of a maximum locally minimal defensive alliance of G can be computed in
8knO(2k+1) time.

Let (T, {Xt}t∈V (T)) be a nice tree decomposition rooted at node r of the input graph G.
For a node t of T , let Vt be the union of all bags present in the subtree of T rooted at t,
including Xt. We denote by Gt the subgraph of G induced by Vt. For each node t of T , we
construct a table dpt(A,x, a, α,y, z, β) ∈ {true, false} where A ⊆ Xt; x and y are vectors of
length n; a, α and β are integers between 0 and n. We set dpt(A,x, a, α,y, z, β) = true if
and only if there exists a set At ⊆ Vt such that:

1. At ∩Xt = A

2. a = |At|

3. the ith coordinate of vector x is

x(i) =

dAt(vi) for vi ∈ A

0 otherwise

4. α is the number of vertices v ∈ At that are protected, that is, dAt(v) ≥
dG(v)−1

2
.

5. A vertex v ∈ A is said to be “good" if it has at least one marginally protected neighbour
in At\A. A vertex v ∈ A is said to be “bad" if it has no marginally protected neighbours

111

in At \ A. Here y is a vector of length n, and the ith coordinate of vector y is

y(i) =

g if vi ∈ A and vi is a good vertex

b if vi ∈ A and vi is a bad vertex

0 otherwise

6. z is a 2k length vector, where the entry z(S) associated with subset S ⊆ A de-
notes the number of common bad neighbours of S in At \ A. The z vector consid-
ers the power set of A in lexicographic order. For example, let A = {a, b, c}, then
z =

(
z({a}), z({a, b}), z({a, b, c}), z({a, c}), z({b}), z({b, c}), z({c})

)
.

7. β is the number of good vertices in At.

We compute all entries dpt(A,x, a, α,y, z, β) in a bottom-up manner. Since tw(T) ≤ k,
at most 2knk(n+1)32kn2k = 4knO(2k) records are maintained at each node t. Thus, to prove
Theorem 5.7.1, it suffices to show that each entry dpt(A,x, a, α,y, z, β) can be computed in
2knO(2k) time, assuming that the entries for the children of t are already computed.

Leaf node: For a leaf node t we have that Xt = ∅. Thus dpt(A,x, a, α,y, z, β) is true if and
only if A = ∅, x = 0, a = 0, α = 0, y = 0, z = 0, β = 0 . These conditions can be checked
in O(1) time.

Introduce node: Suppose t is an introduction node with child t′ such that Xt = Xt′ ∪{vi}
for some vi /∈ Xt′ . Let A be any subset of Xt. We consider two cases:

Case (i): Let vi /∈ A. In this case dpt(A,x, a, α,y, z, β) is true if and only if dpt′(A,x, a, α,y, z, β)
is true.

Case (ii): Let vi ∈ A. Here dpt(A,x, a, α,y, z, β) is true if and only if there exist A′,x′, a′,
α′, y′, z′, and β′ such that dpt′(A

′,x′, a′, α′,y′, z′, β′)=true, where

1. A = A′ ∪ {vi};

2. x(j) = x′(j) + 1, if vj ∈ NA(vi), x(i) = dA(vi), and x(j) = x′(j) if vj ∈ A \NA[vi];

112

3. a = a′ + 1;

4. α = α′ + δ; here δ is the cardinality of the set{
vj ∈ A | x′(j) <

dG(vj)− 1

2
;x(j) ≥ dG(vj)− 1

2

}
.

That is, to compute α from α′ we need to add the number δ of those vertices not
satisfied in (A′,x′, a′, α′,y′, z′, β′) but satisfied in (A,x, a, α,y, z, β).

5. y(i) = b and y(j) = y′(j) for all j ̸= i.

6. z(S) = z′(S) if vi /∈ S; z(S) = 0 if vi ∈ S.

7. β = β′.

For an introduce node t, dpt(A,x, a, α,y, z, β) can be computed in O(1) time. This follows
from the fact that there is only one candidate of such tuple (A′,x′, a′, α′,y′, z′, β′).

Forget node: Suppose t is a forget node with child t′ such that Xt = Xt′ \ {vi} for some
vi ∈ Xt′ . Let A be any subset of Xt. Here dpt(A,x, a, α,y, z, β) is true if and only if either
dpt′(A,x, a, α,y, z, β) is true (this corresponds to the case that At does not contain vi) or
dpt′(A

′,x′, a′, α′,y′, z′, β′)=true for some A′,x′, a′, α′, y′, z′, β′ with the following conditions
(this corresponds to the case that At contains vi):

1. A′ = A ∪ {vi};

2. x(j) = x′(j) for all j ̸= i and x(i) = 0;

3. a = a′;

4. α = α′;

We now consider four cases:
Case 1: vi is not marginally protected and vi is a good vertex.

5. y(j) = y′(j) for all j ̸= i and y(i) = 0;

113

6. z(S) = z′(S) for all S ⊆ A;

7. β = β′.

Case 2: vi is not marginally protected and vi is a bad vertex.

5. y(j) = y′(j) for all j ̸= i and y(i) = 0;

6.

z(S) =

z′(S) + 1 if S ⊆ NA(vi)

z′(S) otherwise

7. β = β′.

Case 3: vi is marginally protected and vi is a good vertex.

5.

y(j) =

g if vj ∈ NA(vi)

y′(j) if vj ∈ A \NA(vi)

6. z(S) = z′(S)− z′(S ∪ {vi}) for all S ⊆ A;

7. β = β′ + z′({vi}) + |
{
j : y′(j) = b; y(j) = g

}
|.

Case 4: vi is marginally protected and vi is a bad vertex.

5.

y(j) =

g if vj ∈ NA(vi)

y′(j) if vj ∈ A \NA(vi)

6.

z(S) =

z′(S)− z′(S ∪ {vi}) + 1 if S ⊆ NA(vi)

z′(S)− z′(S ∪ {vi}) for all other subsets S ⊆ A

7. β = β′ + z′({vi}) + |
{
j : y′(j) = b; y(j) = g

}
|.

114

For a forget node t, dpt(A,x, a, α,y, z, β) can be computed in nO(2k) time. This follows from
the fact that there are nO(2k) candidates of such tuple (A′,x′, a′, α′, z′, β′), and each of them
can be checked in O(1) time.

Join node: Suppose t is a join node with children t1 and t2 such that Xt = Xt1 = Xt2 .
Let A be any subset of Xt. Then dpt(A,x, a, α,y, z, β) is true if and only if there exist
(A1,x1, a1, α1,y1, z1, β1) and (A2,x2, a2, α2,y2, z2, β2) such that dpt1(A1,x1, a1, α1,y1, z1, β1) =

true and dpt2(A2,x2, a2, α2,y2, z2, β2) = true, where

1. A = A1 = A2;

2. x(i) = x1(i) + x2(i)− dA(vi) for all i ∈ A, and x(i) = 0 if i /∈ A;

3. a = a1 + a2 − |A|;

4. α = α1 + α2 − γ + δ; γ is the cardinality of the set{
vj ∈ A | x1(j) ≥

dG(vi)− 1

2
; x2(j) ≥

dG(vi)− 1

2

}
and δ is the cardinality of the set{

vj ∈ A | x1(j) <
dG(vi)− 1

2
; x2(j) <

dG(vi)− 1

2
; x(j) ≥ dG(vi)− 1

2

}
.

To compute α from α1 + α2, we need to subtract the number of those vj which are
satisfied in both the branches and add the number of vertices vj not satisfied in either
of the branches t1 and t1 but satisfied in t.

5.

y(j) =

g if y1(j) = g or y2(j) = g

b otherwise

6. z(S) = z1(S) + z2(S) for all S ⊆ A;

7. β = β1 + β2 − |
{
j : y1(j) = g, y2(j) = g

}
|.

For a join node t, there are nk possible pairs for (x1,x2) as x2 is uniquely determined by
x1; n + 1 possible pairs for (a1, a2); n + 1 possible pairs for (α1, α2); there are 2k possible

115

pairs for (y1,y2) as y2 is uniquely determined by y1; there are n2k possible pairs for (z1, z2)
as z2 is uniquely determined by z1; and n+ 1 possible pairs for (β1, β2). In total, there are
2knO(2k) candidates, and each of them can be checked in O(1) time. Thus, for a join node t,
dpt(A,x, a, α,y, z, β) can be computed in 2knO(2k) time.

At the root node r, we look at all records such that dpr(∅,x, a, α,y, z, β)= true, and a = α =

β. The size of a maximum locally minimal defensive alliance is the maximum a satisfying
dpr(∅,x, a, a,y, z, a)= true.

116

Chapter 6

The Satisfactory Partition Problem

6.1 Introduction

In this chapter, we consider the Satisfactory Partition and Balanced Satisfactory

Partition problems. In the Satisfactory Partition problem, given a graph G = (V,E),
the goal is to find a nontrivial partition (V1, V2) of V such that for every v ∈ V , if v ∈ Vi

then dVi
(v) ≥ dV3−i

(v). In the Balanced Satisfactory Partition problem, given a
graph G = (V,E), the goal is to find a nontrivial partition (V1, V2) of V such that |V1| =
|V2| and for every v ∈ V , if v ∈ Vi then dVi

(v) ≥ dV3−i
(v). This chapter is based on

the papers [28, 23, 24]. We design a polynomial-time algorithm for the Satisfactory

Partition problem for block graphs. We prove that the Satisfactory Partition and
Balanced Satisfactory Partition problems are fixed parameter tractable (FPT) when
parameterized by neighbourhood diversity. We show that the Satisfactory Partition

and Balanced Satisfactory Partition problems can be solved in polynomial time
for graphs of bounded clique-width. Finally we prove that the Balanced Satisfactory

Partition problem is W[1]-hard when parameterized by treewidth.

117

6.2 Polynomial Time Algorithm for Block Graphs

A cut-vertex is a vertex the removal of which would disconnect the remaining graph. A
graph G is a block graph if every block (maximal 2-connected subgraph) is a clique. By their
maximality, different blocks of G overlap in at most one vertex, which is then a cut-vertex
of G. Hence, every edge of G lies in a unique block, and G is the union of its blocks. An end
block of a block graph is a block that contains exactly one cut-vertex of G. A block graph
that is not complete graph has at least two end blocks. A block graph G is shown in Figure
6.1.

v1 v2 v3 v4 v5

v6
v7

v8 v9

v10 v11

v12

v13 v14

v15

v16

v17

v18
B1

B5

B3 B4 B6

B7 B8

B9

B10

B11

B12

B2

Figure 6.1: A block graph G. It has six cut-vertices; the good cut-vertices v2, v3, v4, v7, v13
are shown in blue; and the bad cut-vertex v15 is shown in red.

Lemma 13. If a cut-vertex v belongs to an end block B′ = {v, v′} of size two, then v and
v′ must lie in the same part in any satisfactory partition.

Proof. Suppose v and v′ are in different parts. As B′ is an end-block of size 2, v′ has no
neighbour in its own part and has one neighbour v in the other part. Hence v′ is not satisfied.
This proves the lemma.

Let G be a block graph. Every cut-vertex of G belongs to at least two blocks. For simplicity,

118

suppose cut-vertex v belongs to two blocks B1 and B2. Then G−v has two components CB1

and CB2 , where CBi
is the component that contains block Bi \ {v}, i = 1, 2. There are two

possible partitions with respect to v:
(
CB1 ∪ {v}, CB2

)
and

(
CB1 , CB2 ∪ {v}

)
. A cut-vertex

v is said to be a good cut-vertex if there is a satisfactory partition of G with respect to v;
otherwise v is called a bad cut-vertex. In general, suppose cut-vertex v belongs to k non-end
blocks B1, B2, . . . , Bk, and ℓ end blocks B′

1, B
′
2, . . . , B

′
ℓ. As each cut-vertex must belong to

at least two blocks, we have k + ℓ ≥ 2. We consider the following cases and decide if v is a
good or bad cut-vertex in each case.

Case 1: Let k ≥ 2 and ℓ ≥ 0. That is, v belongs to at least two non-end blocks and ℓ ≥ 0 end
blocks. Let B be the smallest non-end block containing v. Consider the partition V1 = CB

and V2 = V \ V1. Note that v ∈ V2 and dV2(v) ≥ dV1(v), hence v is satisfied and, clearly all
other vertices are also satisfied. Thus (V1, V2) forms a satisfactory partition. For example in
Figure 6.1, v2 belongs to two non-end blocks B2, B4 and one end block B3. Here B2 is the
smallest non-end block, thus V1 = CB2 = {v7, v8, v9, v18} and V2 = V \V1 form a satisfactory
partition. The cut-vertex v2 is a good cut-vertex.

Case 2: Let k = 1 and ℓ ≥ 1. That is, v belongs to exactly one non-end block B and at
least one end block.

Subcase 2A: Suppose all the end blocks B′
1, B

′
2, . . . , B

′
ℓ are of size two. Using Lemma 13,

we know the vertices of blocks B′
1, B

′
2, . . . , B

′
ℓ are in one part along with v. Thus

ℓ⋃
i=1

B′
i

forms the first part V1 and V2 = V \ V1. Thus vertex v ∈ V1 and dV1(v) = ℓ. If the
size of block B is greater than or equal to ℓ + 2, v is not satisfied in partition (V1, V2), as
dV2(v) ≥ ℓ+1 > dV1(v) = ℓ. For example in Figure 6.1, v15 is adjacent to one non-end block
B10 of size 4 and two end blocks B11, B12 of size 2 each. Consider the partition with respect
to v15, V1 = {v15, v16, v17} and V2 = V \V1. This is not a satisfactory partition as v15 ∈ V1 but
dV2(v15) = 3 > dV1(v15) = 2. The cut-vertex v15 here is a bad cut-vertex. If the size of block
B is less than or equal to ℓ + 1, v is satisfied in partition (V1, V2), as dV1(v) = ℓ ≥ dV2(v).
For example, v4 is adjacent to one non-end block B7 of size 2 and two end blocks B8, B9 of
size 2 each. Note that partition with respect to v4, V1 = {v4, v5, v6} and V2 = V \ V1, is a
satisfactory partition. The cut-vertex v4 here is a good cut-vertex.

119

v1 v2

v3v4

v5

v6

v7

v8

v9

v10

v11

v12 v13

B B1

B2

B3

B4

B5

B6

B7 B8

Figure 6.2: A satisfactory partitionable block graph G = (V,E) with no good cut-vertices.
Note that G has three cut-vertices v3, v4, v5 and all of them are bad cut-vertices. Here
V1 = {v3, v4, v6, v7, v8, v9, v10, v11} and V2 = V \V1 form a satisfactory partition of G.

Subcase 2B: At least one end block is of size greater than 2. Without loss of generality
suppose |B′

1| > 2. If |B| ≥ |B′
1|, then V1 = CB′

1
and V2 = V \V1 form a satisfactory partition.

If |B′
1| ≥ |B|, then V1 = CB and V2 = V \ V1 form a satisfactory partition. For example,

v7 belongs to one non-end block B2 = {v2, v7} and two end blocks B1 and B5. As the size
of the non-end block B2 is less than or equal to the size of end block B1, we set V1 = CB2 ,
the component that contains B2 \ {v7} in G − v7, and V2 = V \ V1 = {v7, v8, v9, v18}. The
partition (V1, V2) forms a satisfactory partition. The cut-vertex v7 is a good cut-vertex.

This suggests the following theorem.

Theorem 6.2.1. Let G be a block graph. If G has a good cut-vertex then G is satisfactory
partitionable.

Note that although the condition of this theorem is sufficient to assure that a block graph
is satisfactory partitionable, this certainly is not a necessary condition. For example, the
block graph shown in Figure 6.2 is satisfactory partitionable but does not have any good
cut-vertices; clearly such block graphs always have at least two bad cut-vertices. If a block
graph has exactly one cut-vertex and that too is a bad cut-vertex, then the graph has no
satisfactory partition. Now, we consider block graphs G having no good cut-vertices but the
number m of bad cut-vertices is at least two; such graphs satisfy following two conditions:

120

1. There is exactly one non-end block in G and every cut-vertex belongs to it.

2. All the end blocks of G are of size exactly equal to 2.

Suppose B is the only non-end block in G and B′ is obtained from B by removing its cut
vertices. Let Di represent the union of all end-blocks that contain vi. For graph G in
Figure 6.2, we have D3 = {v3, v7, v6, v8}, D4 = {v4, v9, v10, v11}, D5 = {v5, v12, v13}; and
B = {v1, v2, v3, v4, v5}, B′ = {v1, v2}. By Lemma 13, all the vertices of Di must lie in one
part in any satisfactory partition. Let (D1, D2, . . . , Dm) be a decreasing ordering of Di’s
according to cardinalities, that is, |D1| ≥ |D2| ≥ . . . ≥ |Dm|.

Theorem 6.2.2. Let G be a block graph satisfying Conditions 1 and 2 above. Then G is
satisfactory partitionable if and only if G has a satisfactory partition of the form either

V1,r =
r⋃

i=1

Di, V2,r = B′ ∪
m⋃

i=r+1

Di or

V ′
1,r = B′ ∪

r⋃
i=1

Di, V ′
2,r =

m⋃
i=r+1

Di,

for some 1 ≤ r ≤ m.

Proof. Suppose G is satisfactory partitionable, and V1 =
j−1⋃
i=1

Di ∪
r+1⋃

i=j+1

Di, V2 = B′ ∪

Dj ∪
m⋃

i=r+2

Di form a satisfactory partition of G. It is easy to see that V ′
1 =

⋃r
i=1 Di and

V ′
2 = B′ ∪

m⋃
i=r+1

Di, obtained from (V1, V2) by swapping two sets Dj and Dr+1, also form

a satisfactory partition in the required form. On the other hand, if there is a satisfactory
partition of the form (V1,r, V2,r) or (V ′

1,r, V
′
2,r) for some r, then G is satisfactory partitionable.

This proves the theorem.

The following algorithm determines if a given block graph G has a satisfactory partition.
SP-Block Graph (G)

1. for each cut-vertex v ∈ V (G), decide if v is a good cut-vertex or a bad cut-vertex.

121

2. if G has a good cut-vertex, then G is satisfactory partitionable (Theorem 6.2.1).

3. if G has exactly one bad cut-vertex and no good cut-vertices, then G is not satisfactory
partitionable.

4. if G has at least two bad cut-vertices and no good cut-vertices, then compute all
partitions of the form (V1,r, V2,r) and (V ′

1,r, V
′
2,r) for 1 ≤ r ≤ m, and G is satisfactory

partitionable if (V1,r, V2,r) or (V ′
1,r, V

′
2,r) is a satisfactory partition for some 1 ≤ r ≤ m

(Theorem 6.2.2).

The total cost of deciding if v is a good or bad cut-vertex for all cut-vertices v ∈ V (G), is
O(|E|). Computation of all partitions of the form (V1,r, V2,r) and (V ′

1,r, V
′
2,r) for 1 ≤ r ≤ m,

requires a decreasing ordering (D1, D2, . . . , Dm) of Di’s according to their cardinalities. This
takes O(|V | log |V |) time as m can be at most |V |. The running time of SP-Block Graph

is therefore O(|V | log |V |+ |E|).

6.3 FPT algorithm parameterized by neighbourhood di-

versity

In this section, we present an FPT algorithm for the Satisfactory Partition and Bal-

anced Satisfactory Partition problems parameterized by neighbourhood diversity. See
Section 1.7 for the definitions of neighbourhood diversity and type graph. In this section,
we prove the following theorem:

Theorem 6.3.1. The Satisfactory Partition problem is fixed-parameter tractable when
parameterized by the neighbourhood diversity.

Let G be a connected graph such that nd(G) = k. Let C1, . . . , Ck be the partition of
V (G) into sets of type classes. We assume k ≥ 2 since otherwise the problem becomes trivial.
Let H be the type graph of G. We define I1 = {Ci | Ci ⊆ V1}, I2 = {Ci | Ci ⊆ V2} and
I3 = {Ci | Ci ∩V1 ̸= ∅, Ci ∩V2, ̸= ∅} where (V1, V2) is a satisfactory partition. We next guess
if Ci belongs to I1, I2, or I3. There are at most 3k possibilities as each Ci has three options:
either in I1, I2, or I3. We reduce the problem of finding a satisfactory partition to an integer
linear programming optimization with k variables. Since integer linear programming is fixed

122

parameter tractable when parameterized by the number of variables [47], we conclude that
our problem is FPT when parameterized by the neighbourhood diversity.

ILP Formulation: Given I1, I2 and I3, our goal here is to answer if there exists a satisfac-
tory partition (V1, V2) of G with all vertices of Ci are in V1 if Ci ∈ I1, all vertices of Ci are in
V2 if Ci ∈ I2, and vertices of Ci are distributed amongst V1 and V2 if Ci ∈ I3. For each Ci,
we associate a variable: xi that indicates |V1 ∩Ci| = xi. Because the vertices in Ci have the
same neighbourhood, the variables xi determine (V1, V2) uniquely, up to isomorphism. We
now characterize a satisfactory partition in terms of xi. Note that xi = ni = |Ci| if Ci ∈ I1;
xi = 0 if Ci ∈ I2.

Lemma 14. Let C be a clique type class. Then C is either in I1 or I2.

Proof. Let C be a clique type class. Let u, v ∈ C. Let us denote N(u) \ {v} = N(v) \ {u}
by S and let a = |S ∩ V1| and let b = |S ∩ V2|. The satisfiability of u implies a ≥ b + 1

and the satisfiablity of v implies b ≥ a + 1. Clearly, u and v cannot be satisfied simultane-
ously, as the two inequalities imply a ≥ b+1 ≥ a+2, a contradiction. This proves the lemma.

For w = 1, 2, 3 and j = 1, 2, . . . , k, we denote by C[j, w] the set of indices i such that
Ci ∈ NH [Cj] ∩ Iw. Here NH [Cj] denotes the closed neighbourhood of node Cj in the type
graph H. Now we consider the following four cases:
Case 1: Suppose v belongs to a clique type class Cj in I1. Then the degree of v in V1

satisfies
dV1(v) =

∑
i∈C[j,1]

ni +
∑

i∈C[j,3]

xi − 1.

The degree of v in V2 satisfies

dV2(v) =
∑

i∈C[j,2]

ni +
∑

i∈C[j,3]

(ni − xi).

Therefore, vertex v is satisfied if and only if∑
i∈C[j,1]

ni +
∑

i∈C[j,3]

2xi ≥ 1 +
∑

i∈C[j,2]∪C[j,3]

ni (6.1)

123

Case 2: Suppose v belongs to a clique type class Cj in I2. Then similarly, v is satisfied if
and only if ∑

i∈C[j,2]∪C[j,3]

ni ≥ 1 +
∑

i∈C[j,1]

ni +
∑

i∈C[j,3]

2xi (6.2)

Case 3: For w = 1, 2, 3 and j = 1, 2, . . . , k, we denote by C(j, w) the set of indices i such
that Ci ∈ NH(Cj) ∩ Iw. Here NH(Cj) denotes the open neighbourhood of node Cj in the
type graph H. Suppose v belongs to an independent type class Cj in I1 ∪ I3. Then the
degree of v in V1 satisfies

dV1(v) =
∑

i∈C(j,1)

ni +
∑

i∈C(j,3)

xi.

Note that if Cj ∈ I3, then only xj vertices of Cj are in V1 and the the remaining yj vertices
of Cj are in V2. The degree of v in V2 satisfies

dV2(v) =
∑

i∈C(j,2)

ni +
∑

i∈C(j,3)

(ni − xi).

Therefore, v is satisfied if and only if∑
i∈C(j,1)

ni +
∑

i∈C(j,3)

2xi ≥
∑

i∈C(j,2)∪C(j,3)

ni (6.3)

Case 4: Suppose v belongs to an independent type class Cj in I2 ∪ I3. Similarly, vertex v

is satisfied if and only if ∑
i∈C(j,2)∪C(j,3)

ni ≥
∑

i∈C(j,1)

ni +
∑

i∈C(j,3)

2xi (6.4)

We now formulate ILP formulation of satisfactory partition, for given I1, I2 and I3. The
question is whether there exist xj under the conditions xj = nj if Cj ∈ I1, xj = 0 if Cj ∈ I2,
xj ∈ {1, 2, . . . , nj − 1} if Cj ∈ I3 and the additional conditions described below:

• Inequality 6.1 for all clique type classes Cj ∈ I1

• Inequality 6.2 for all clique type classes Cj ∈ I2

124

• Inequality 6.3 for all independent type classes Cj ∈ I1

• Inequality 6.4 for all independent type classes Cj ∈ I2

• ∑
i∈C(j,2)∪C(j,3)

ni =
∑

i∈C(j,1)

ni +
∑

i∈C(j,3)

2xi

for all independent type classes Cj ∈ I3.

For Balanced Satisfactory Partition problem, we additionally ask that∑
i:Ci∈I1

ni +
∑

i:Ci∈I3

xi =
∑

i:Ci∈I3

(ni − xi) +
∑

i:Ci∈I2

ni.

Solving the ILP: In the formulation for Satisfactory Partition problem, we have at
most k variables. The value of any variable in the integer linear programming is bounded
by n, the number of vertices in the input graph. The constraints can be represented using
O(k2 log n) bits. Lemma 1 implies that we can solve the problem with the given guess I1, I2
and I3 in FPT time. There are at most 3k choices for (I1, I2, I3), and the ILP formula for a
guess can be solved in FPT time. Thus Theorem 6.3.1 holds.

6.4 Graphs of bounded clique-width

This section presents a polynomial time algorithm for the Satisfactory Partition and
Balanced Satisfactory Partition problems for graphs of bounded clique-width. See
Section 1.7 for the definition of clique-width and irredundant c-expression. We now have the
following result:

Theorem 6.4.1. Given an n-vertex graph G and an irredundant c-expression T of G, the
Satisfactory Partition and Balanced Satisfactory Partition problems are solv-
able in O(n8c) time.

For each node t in a c-expression T , let Gt be the vertex-labeled graph represented by
subtree hanging from t. We denote by Vt the vertex set of Gt. In a vertex-labeled graph, an

125

i-vertex is a vertex of label i. For each i, we denote the set of i-vertices in Gt by V i
t . For each

node t in T , we construct a table dpt(r1, r2, s1, s1) ∈ {true, false} where r1, r2, s1 and s2 are
c-dimensional vectors. We set dpt(r1, r2, s1, s2) = true if and only if there exists a partition
(V1, V2) of Vt such that for all i ∈ {1, 2, . . . , c}

• r1(i) = |V1 ∩ V i
t |;

• r2(i) = |V2 ∩ V i
t |;

• if V1 ∩ V i
t ̸= ∅, then s1(i) = minv∈V1∩V i

t

{
|NGt(v) ∩ V1| − |NGt(v) ∩ V2|

}
, otherwise

s1(i) = ∞;

• if V2 ∩ V i
t ̸= ∅, then s2(i) = minv∈V2∩V i

t

{
|NGt(v) ∩ V2| − |NGt(v) ∩ V1|

}
, otherwise

s2(i) = ∞.

That is, r1(i) denotes the number of the i-vertices in V1; r2(i) denotes the number of the
i-vertices in V2; s1(i) is the “surplus" at the weakest i-vertex in V1 and s2(i) is the “surplus"
at the weakest i-vertex in V2. The possible values that r1(i) and r2(i) can take are from
the set {0, . . . , n}; the possible values that s1(i) and s2(i) can take are from the set {−n +

1, . . . , n− 1} ∪ {∞}.

Let τ be the root of the c-expression T of G. Then G has a satisfactory partition if there
exist r1, r2, s1, s2 satisfying

1. dpτ (r1, r2, s1, s2) = true;

2. min
{
s1(i), s2(i)

}
≥ 0.

For the Balanced Satisfactory Partition problem, we additionally ask that
∑c

i=1 r1(i) =∑c
i=1 r2(i). If all entries dpτ (r1, r2, s1, s2) are computed in advance, then we can verify above

conditions by spending O(1) time for each tuple (r1, r2, s1, s2).

In the following, we compute all entries dpt(r1, r2, s1, s2) in a bottom-up manner. There
are (n + 1)c · (n + 1)c · (2n)c · (2n)c = O(n4c) possible tuples (r1, r2, s1, s2). Thus, to prove
Theorem 6.4.1, it is enough to prove that each entry dpt(r1, r2, s1, s2) can be computed in
time O(n4c) assuming that the entries for the children of t are already computed.

126

Lemma 15. For a leaf node t with label i, dpt(r1, r2, s1, s2) can be computed in O(1) time.

Proof. Observe that dpt(r1, r2, s1, s2) = true if and only if r1(j) = 0, r2(j) = 0, s1(j) = 0,
and s2(j) = 0 for all j ̸= i and either

• r1(i) = 0, r2(i) = 1, s1(i) = ∞, s2(i) = 0, or

• r1(i) = 1, r2(i) = 0, s1(i) = 0, s2(i) = ∞.

The first case corresponds to V1 = ∅, V2 = V i
t , and the second case corresponds to V1 =

V i
t , V2 = ∅. These conditions can be checked in O(1) time.

Lemma 16. For a ∪-node t, dpt(r1, r2, s1, s2) can be computed in O(n4c) time.

Proof. Let t′ and t′′ be the children of t in T . Then dpt(r1, r2, s1, s2) = true if and only if
there exist r′1, r′2, s′1, s′2 and r′′1, r

′′
2, s

′′
1, s

′′
2 such that dpt′(r′1, r′2, s′1, s′2) = true, dpt′′(r′′1, r′′2, s′′1, s′′2) =

true, r1(i) = r′1(i) + r′′1(i), r2(i) = r′2(i) + r′′2(i), s1(i) = min
{
s′1(i), s

′′
1(i)
}

and s2(i) =

min
{
s′2(i), s

′′
2(i)
}

for all i. The number of possible pairs for (r′1, r
′′
1) is at most (n + 1)c as

r′′1 is uniquely determined by r′1; the number of possible pairs for (r′2, r′′2) is at most (n+1)c

as r′′2 is uniquely determined by r′2. There are at most 2c(2n)c possible pairs for (s′1, s′′1) and
for (s′2, s

′′
2) each. In total, there are O(n4c) candidates. Each candidate can be checked in

O(1) time, thus the lemma holds.

Lemma 17. For a ηij-node t, dpt(r1, r2, s1, s2) can be computed in O(1) time.

Proof. Let t′ be the child of t in T . Then, dpt(r1, r2, s1, s2) = true if and only if dpt′(r1, r2, s′1, s′2) =
true for some s′1, s

′
2 with the following conditions:

• s1(h) = s′1(h) and s2(h) = s′2(h) hold for all h /∈ {i, j};

• s1(i) = s′1(i) + 2r1(j)− |V j
t | and s1(j) = s′1(j) + 2r1(i)− |V i

t |;

• s2(i) = s′2(i) + 2r2(j)− |V j
t | and s2(j) = s′2(j) + 2r2(i)− |V i

t |.

We now explain the condition for s1(i). Recall that T is irredundant. That is, the graph
Gt′ does not have any edge between the i-vertices and the j-vertices. In Gt, an i-vertex has

127

exactly r1(j) more neighbours in V1 and exactly |V j
t | − r1(j) more neighbours in V2. Thus

we have s1(i) = s′1(i) + 2r1(j) − |V j
t |. The lemma holds as there is only one candidate for

each s′1(i), s′1(j), s′2(i) and s′2(j).

Lemma 18. For a ρi→j node t, dpt(r1, r2, s1, s2) can be computed in O(n4) time.

Proof. Let t′ be the child of t in T . Then, dpt(r1, r2, s1, s2) = true if and only if there exist
r′1, r

′
2, s

′
1, s

′
2 such that dpt′(r

′
1, r

′
2, s

′
1, s

′
2) = true, where :

• r1(i) = 0, r1(j) = r′1(i) + r′1(j), and r1(h) = r′1(h) if h /∈ {i, j};

• r2(i) = 0, r2(j) = r′2(i) + r′2(j), and r2(h) = r′2(h) if h /∈ {i, j};

• s1(i) = ∞, s1(j) = min
{
s′1(i), s

′
1(j)

}
, and s1(h) = s′1(h) if h /∈ {i, j};

• s2(i) = ∞, s2(j) = min
{
s′2(i), s

′
2(j)

}
, and s2(h) = s′2(h) if h /∈ {i, j}.

The number of possible pairs for (r′1(i), r′1(j)) is O(n) as r′1(j) is uniquely determined by r′1(i);
similarly the number of possible pairs for (r′2(i), r

′
2(j)) is O(n) as r′2(j) is uniquely deter-

mined by r′2(i). There are at most O(n) possible pairs for (s′1(i), s′1(j)) and for (s′2(i), s′2(j)).
In total, there are O(n4) candidates. Each candidate can be checked in O(1) time, thus the
lemma holds.

6.5 Hardness of Balanced Satisfactory Partition pa-

rameterized by treewidth

In this section, we prove the following theorem:

Theorem 6.5.1. The Balanced Satisfactory Partition problem is W[1]-hard when
parameterized by the treewidth of the graph.

We introduce several variants of Balanced Satisfactory Partition that we require in
our proofs. The problem Balanced Satisfactory PartitionS generalizes Balanced

Satisfactory Partition where some vertices are forced to be in the second part V2. This

128

variant can be formalized as follows:

Balanced Satisfactory PartitionS

Input: A graph G = (V,E) on an even number of vertices, and a set V□ ⊆ V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that V□ ⊆ V2.

Balanced Satisfactory PartitionFS is a further generalization where some vertices
are forced to be in the first part V1 and some other vertices are forced to be in the second
part V2. This variant can be formalized as follows:

Balanced Satisfactory PartitionFS

Input: A graph G = (V,E) on an even number of vertices, a set V△ ⊆ V (G), and a set
V□ ⊆ V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that (i) V△ ⊆ V1

(ii) V□ ⊆ V2.

Finally, we introduce the generalization Balanced Satisfactory PartitionFSC in
which we are also given a subset of “complementary pairs" of vertices and feasible solutions
are only those for which neither V1 nor V2 contains both the vertices of a complementary
pair.

Balanced Satisfactory PartitionFSC

Input: A graph G = (V,E) on an even number of vertices, a set V△ ⊆ V (G), a set
V□ ⊆ V (G), and a set C ⊆ V (G)× V (G).
Question: Is there a balanced satisfactory partition (V1, V2) of V such that (i) V△ ⊆ V1

(ii) V□ ⊆ V2, and (iii) for all (a, b) ∈ C, V1 contains either a or b but not both?

Let G = (V,E) be an undirected and edge weighted graph, where V , E, and w denote the
set of nodes, the set of edges and a positive integral weight function w : E → Z+, respec-
tively. An orientation Λ of G is an assignment of a direction to each edge (u, v) ∈ E(G),
that is, either (u, v) or (v, u) is contained in Λ. The weighted outdegree of u on Λ is
wu

out =
∑

(u,v)∈Λw(u, v). We define Minimum Maximum Outdegree problem as follows:

129

Minimum Maximum Outdegree

Input: A graph G, an edge weighting w of G given in unary, and a positive integer r.
Question: Is there an orientation Λ of G such that wu

out ≤ r for each u ∈ V (G)?

It is known that Minimum Maximum Outdegree is W[1]-hard when parameterized by
the treewidth of the input graph [57]. To prove Theorem 6.5.1, we reduce Minimum Max-

imum Outdegree to Balanced Satisfactory PartitionFSC and then show how we
can successively reduce the latter problem to Balanced Satisfactory PartitionFS,
Balanced Satisfactory PartitionS and finally Balanced Satisfactory Parti-

tion. To measure the treewidth of a Balanced Satisfactory PartitionFSC instance,
we use the following definition. Let I = (G, V△, V□, C) be a Balanced Satisfactory

PartitionFSC instance. The primal graph G′ of I is defined as follows: V (G′) = V (G)

and E(G′) = E(G) ∪ C.

6.5.1 Hardness of Balanced Satisfactory Partition with Restric-

tion on the First Part (F), the Second Part (S) and Comple-

mentary Pairs

To show W[1]-hardness of Balanced Satisfactory PartitionFSC, we reduce from
Minimum Maximum Outdegree, which is known to be W[1]-hard parameterized by the
treewidth of the graph [57]:

Lemma 19. The Balanced Satisfactory PartitionFSC is W[1]-hard when parame-
terized by the treewidth of the primal graph.

Proof. Let G = (V,E,w) and a positive integer r be an instance of Minimum Maximum

Outdegree. We construct an instance of Balanced Satisfactory PartitionFSC as
follows. An example is given in Figure 6.3. For each vertex v ∈ V (G), we introduce a set
of new vertices Hv = {hv

1, . . . , h
v
2r}. For each edge (u, v) ∈ E(G), we introduce the sets of

new vertices Vuv = {uv
1, . . . , u

v
w(u,v)}, V ′

uv = {u′v
1 , . . . , u

′v
w(u,v)}, Vvu = {vu1 , . . . , vuw(u,v)}, V ′

vu =

{v′u1 , . . . , v′uw(u,v)}, V □
uv = {uv□

1 , . . . , uv□
w(u,v)}, V ′□

uv = {u′v□
1 , . . . , u′v□

w(u,v)}, V □
vu = {vu□1 , . . . , vu□w(u,v)},

and V ′□
vu = {v′u□1 , . . . , v′u□w(u,v)}. Let ω =

∑
(u,v)∈E(G)

w(u, v). Finally we add a set V0 of 8ω +

130

a

ha
1

ha
2

ha
3

ha
4

ad
1

ad□
1

a′d
1

a′d□
1

d′a1 da1

d′a□
1 da□

1

b

hb
1

hb
2

hb
3

hb
4

bc1

bc2

bc□1

bc□2

b′c1

b′c2

b′c□1

b′c□2

ba1 ba□
1

b′a1 b′a□
1

c

hc
1

hc
2

hc
3

hc
4

cb1

cb2

cb□1

cb□2

c′b1

c′b2

c′b□1

c′b□2

cd1 cd2

cd□1 cd□2

c′d1 c′d2

c′d□1 c′d□2

V0

d

dc1 dc2

dc□1 dc□2

d′c1 d′c2
d′c□1 d′c□2

ab
1 ab□

1

a′b
1 a′b□

1

hd
1

hd
2

hd
3

hd
4

a d

b c

2

2

1

1

Figure 6.3: Result of our reduction on a Minimum Maximum Outdegree instance G with
r = 2. The graph G long with its orientation is shown at the left; and G′ is shown at the
right. Complementary vertex pairs are shown using dashed lines. The vertices of the set V△
are filled with red color whereas the vertices of the set V□ are filled with blue color. The
vertices in the first part of satisfactory partition (V1, V2) of G′ are shown in red label and
vertices of V2 are shown in blue label for the given orientation of G. Here ω = 6 and V0

contains 64 isolated vertices.

|V |(2r + 1)− 4 isolated vertices. We now define the graph G′ with

V (G′) = V (G) ∪ V0 ∪
⋃

v∈V (G)

Hv ∪
⋃

(u,v)∈E(G)

(Vuv ∪ V □
uv ∪ Vvu ∪ V □

vu)

∪
⋃

(u,v)∈E(G)

(V ′
uv ∪ V ′□

uv ∪ V ′
vu ∪ V ′□

vu)

131

and

E(G′) =
{
(v, h) | v ∈ V (G), h ∈ Hv

}
∪
{
(u, x) | (u, v) ∈ E(G), x ∈ Vuv ∪ V □

uv

}
∪
{
(x, v) | (u, v) ∈ E(G), x ∈ Vvu ∪ V □

vu

}
∪
{
(uv

i , u
′v
i), (u

v□
i , u′v□

i), (vui , v
′u
i), (v

u□
i , v′u□i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}
.

The number of vertices in V (G′) \ V0 is 8ω + |V |(2r + 1). We define the complementary
vertex pairs

C =
{
(u′v

i , v
′u
i), (u

v
i , v

′u
i), (u

′v
i , v

u
i) | (u, v) ∈ E(G), 1 ≤ i ≤ w(u, v)

}
∪
{
(u′v

i+1, v
′u
i) | (u, v) ∈ E(G), 1 ≤ i < w(u, v)

}
Complementary vertex pairs are shown in dashed lines in Figure 6.3. Finally we define

V△ = V (G) ∪
⋃

v∈V (G)

Hv

and
V□ =

⋃
(u,v)∈E(G)

(V □
uv ∪ V ′□

uv ∪ V □
vu ∪ V ′□

vu).

We use I to denote (G′, V△, V□, C) which is an instance of Balanced Satisfactory

PartitionFSC.

Clearly, it takes polynomial time to compute I. We now prove that the treewidth of the
primal graph G′ of I is bounded by a function of the treewidth of G. We do so by modifying
an optimal tree decomposition τ of G as follows:

• For every edge (u, v) of G, there is a node in τ whose bag B contains both u and
v; add to this node a chain of nodes 1, 2, . . . , w(u, v) − 1 where the bag of node i is
B ∪ {uv

i , u
′v
i , v

′u
i , v

u
i , u

v
i+1, u

′v
i+1, v

′u
i+1, v

u
i+1}.

• For every edge (u, v) of G, there is a node in τ whose bag B contains u; add to this
node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is B ∪ {uv□

i , u′v□
i }.

• For every edge (u, v) of G, there is a node in τ whose bag B contains v and add to this

132

node a chain of nodes 1, 2, . . . , w(u, v) where the bag of node i is B ∪ {vu□i , v′u□i }.

• For every vertex v of G, there is a node in τ whose bag B contains v and add to this
node a chain of nodes 1, 2, . . . , 2r where the bag of node i is B ∪ {hv

i }.

Clearly, the modified tree decomposition is a valid tree decomposition of the primal graph
of I and its width is at most the treewidth of G plus eight.

It remains to show that our reduction is correct. Let D be the directed graph obtained by
an orientation of the edges of G such that for each vertex the sum of the weights of outgoing
edges is at most r. Note that (u, v) ∈ E(D) indicates there is a directed edge from u to v

in D whereas (u, v) ∈ E(G) indicates there is an edge joining u and v in G. Consider the
partition of G′ − V0

V1 = V△ ∪
⋃

(u,v)∈E(D)

(Vvu ∪ V ′
vu) = V (G) ∪

⋃
v∈V (G)

Hv ∪
⋃

(u,v)∈E(D)

(Vvu ∪ V ′
vu)

and

V2 = V□ ∪
⋃

(u,v)∈E(D)

(Vuv ∪ V ′
uv)

=
⋃

(u,v)∈E(D)

(Vuv ∪ V ′
uv ∪ V □

uv ∪ V ′□
uv) ∪

⋃
(u,v)∈E(D)

(
V □
vu ∪ V ′□

vu

)
.

To prove that (V1, V2) is a satisfactory partition, first we prove that dV1(x) ≥ dV2(x) for
all x ∈ V1. If x is a vertex in Hv or Vvu ∪ V ′

vu, then clearly all neighbours of x are in V1,
hence x is satisfied. Suppose x ∈ V (G). Let wx

out and wx
in denote the sum of the weights

of outgoing and incoming edges of vertex x, respectively. Hence dV1(x) = 2r + wx
in and

dV2(x) = 2wx
out +wx

in in G′. This shows that x is satisfied as wx
out ≤ r. Now we prove that

dV2(x) ≥ dV1(x) for all x ∈ V2. If x is a vertex in Vuv ∪ V □
uv ∪ V □

vu then x has one neighbour
in V1 and one neighbour in V2. If x ∈ V ′

uv ∪ V ′□
uv ∪ V ′□

vu then x has one neighbour in V2 and
no neighbours in V1. Thus the vertices in V2 are satisfied. The isolated vertices of V0 are
distributed among V1 and V2 so that it becomes balanced satisfactory partition for G′.

Conversely, suppose (V1, V2) is a balanced satisfactory partition of G′. That is |V1| =
|V2| = 8ω+(2r+1)|V |− 2. Then V ′

1 = V1 \V0 and V ′
2 = V2 \V0 form a satisfactory partition

of G′ − V0. For every (u, v) ∈ E(G), either Vuv ∪ V ′
uv ∈ V ′

1 or Vvu ∪ V ′
vu ∈ V ′

1 due to the

133

complementary vertex pairs. We define a directed graph D by V (D) = V (G) and

E(D) =
{
(u, v) | Vvu ∪ V ′

vu ∈ V ′
1

}
∪
{
(v, u) | Vuv ∪ V ′

uv ∈ V ′
1

}
.

Suppose there is a vertex x in D for which wx
out > r. Clearly x ∈ V ′

1 . We know
dV ′

1
(x) = 2r + wx

in and dV ′
2
(x) = 2wx

out + wx
in. Then dV ′

2
(x) > dV ′

1
(x), as by assumption

wx
out > r, a contradiction to the fact that (V ′

1 , V
′
2) is a satisfactory partition of G′ − V0.

Hence wx
out ≤ r for all x ∈ V (D).

6.5.2 Hardness of Balanced Satisfactory Partition with Restric-

tion on the First Part (F) and the Second Part (S)

Now we prove the following result which eliminates complementary pairs.

Lemma 20. The Balanced Satisfactory PartitionFS problem, parameterized by the
treewidth of the graph, is W[1]-hard.

Proof. Let I = (G, V□, V△, C) be an instance of Balanced Satisfactory PartitionFSC.
Consider the primal graph of I, that is the graph Gp where V (Gp) = V (G) and E(Gp) =

E(G)∪C. From this we construct an instance I ′ = (G′, V ′
□, V

′
△) of Balanced Satisfactory

PartitionFS problem. For each (a, b) ∈ C in the primal graph Gp, we introduce two new
vertices △ab and □ab and four new edges in G′. We now define G′ with

V (G′) = V (G) ∪
⋃

(a,b)∈C

{△ab,□ab}

and
E(G′) = E(G) ∪

⋃
(a,b)∈C

{
(a,△ab), (a,□ab), (b,△ab), (b,□ab)

}
.

Finally, we define the sets
V ′
△ = V△ ∪

⋃
(a,b)∈C

{△ab}

134

and
V ′
□ = V□ ∪

⋃
(a,b)∈C

{□ab}.

We illustrate our construction in Figure 6.4. It is easy to see that we can compute I ′ in
polynomial time and its treewidth is linear in the treewidth of I.

△ab

a b

□ab

Figure 6.4: Gadget for a pair of complementary vertices (a, b) in the reduction from Bal-
anced Satisfactory PartitionFSC to Balanced Satisfactory PartitionFS.

The following holds for every solution (V ′
1 , V

′
2) of I ′: V ′

1 contains △ab for every (a, b) ∈ C,
so it must also contain a or b. It cannot contain both a and b for any (a, b) ∈ C, because
□ab ∈ V ′

2 . Restricting (V ′
1 , V

′
2) to the original vertices thus is a solution to I. Conversely,

for every solution (V1, V2) of I, the partition (V ′
1 , V

′
2) where V ′

1 = V1 ∪
⋃

(a,b)∈C
{△ab} and

V ′
2 = V2 ∪

⋃
(a,b)∈C

{□ab}, is a solution of I ′.

6.5.3 Hardness of Balanced Satisfactory Partition with Restric-

tion on the Second Part (S)

Now we prove the following result which eliminates restriction on the first part of the parti-
tion.

Lemma 21. The Balanced Satisfactory PartitionS is W[1]-hard when parameterized
by the treewidth of the graph.

Proof. Let I = (G, V△, V□) be a Balanced Satisfactory PartitionFS instance; let n

135

denote the number of vertices in G. Fix any vertex v0 ∈ V□. For every u ∈ V△, we introduce
two sets of new vertices Xu = {xu

1 , x
u
2 , . . . , x

u
n} and Y □

u = {yu1 , yu2 , . . . , yun}. Next, we define
the Balanced Satisfactory PartitionS instance I ′ = (G′, V ′

□) where V ′
□ = V□

⋃
u∈V△

Y □
u

and G′ is the graph defined by

V (G′) = V (G) ∪
⋃

u∈V△

Xu ∪ Y □
u

and

E(G′) =E(G) ∪
⋃

u∈V△

{
(u, xu

i), (u, y
u
i), (x

u
i , v0), (y

u
i , v0) | 1 ≤ i ≤ n

}
∪
⋃

u∈V△

{
(xu

i , y
u
i), (x

u
i , y

u
i+1) | 1 ≤ i ≤ n− 1

}
∪
{
(xu

n, y
u
n), (x

u
n, y

u
1)
}

∪
⋃

u∈V△

{
(xu

i , x
u
i+1 | 1 ≤ i ≤ n− 1

}
∪
{
(xu

n, x
u
1)
}

∪
⋃

u∈V△

{
(yui , y

u
i+1 | 1 ≤ i ≤ n− 1

}
∪
{
(yun, y

u
1)
}

An example is given in Figure 6.5. The treewidth of G′ is equal to the treewidth of G plus

u

xu
4
Xu

xu
3

xu
2

xu
1

v0

Y □
u

yu
4

yu
3

yu
2

yu
1

Figure 6.5: Let n = 4. Gadget for a pair of vertices (u, v0) where u ∈ V△ and v0 is a fixed
vertex in V□ in the reduction from Balanced Satisfactory PartitionFS to Balanced
Satisfactory PartitionS.

5. We now claim that I is a yes-instance if and only if I ′ is a yes-instance. Assume first that
there exists a balanced satisfactory partition (V1, V2) of I such that V△ ∈ V1 and V□ ∈ V2.

136

In this case, we get a balanced satisfactory partition (V ′
1 , V

′
2) of I ′ as follows:

V ′
1 = V1 ∪

⋃
u∈V△

Xu and V ′
2 = V2 ∪

⋃
u∈V△

Y □
u .

It is easy to see that (V ′
1 , V

′
2) forms a balanced satisfactory partition of G′ as all the vertices

in V1 and V2 remain satisfied and also the new vertices in Xu ∪ Y □
u for all u ∈ V△ are sat-

isfied in their respective part as each vertex has three neighbours in its own part and three
neighbors in the other part. Since we are adding equal number of vertices in the balanced
partition (V1, V2), we again get a balanced satisfactory partition. This shows that I ′ is a
yes-instance.

Conversely, suppose that there exists a balanced satisfactory partition (V ′
1 , V

′
2) of G′ such

that V ′
□ ∈ V ′

2 . We first show that all the vertices in V△ must lie in V ′
1 . Let us assume that

there exists a vertex u ∈ V△ that lies in V ′
2 . Then each vertex in Xu has at least 4 neighbors

in V ′
2 and at most 2 neighbours in V ′

1 ; therefore all the vertices in Xu lie in V ′
2 . In this case,

we cannot get a balanced satisfactory partition as already more than half of the vertices are
in V ′

2 . This proves that all the vertices in V△ lie in V ′
1 . Next, we show that as V△ ⊆ V ′

1 , the
vertices in

⋃
u∈V△

Xu also lie in V ′
1 . Since u ∈ V ′

1 , it must be satisfied in V ′
1 . As the vertices in

Y □
u lie in V ′

2 , u has at least n neighbors in V ′
2 and since u has at most n−1 neighbors in graph

G, it implies that at least one vertex from Xu must be in V ′
1 . Without loss of generality,

we can assume that xu
1 ∈ V ′

1 . Since xu
1 ∈ V ′

1 , it must be satisfied in V ′
1 and this forces its

neighbours xu
n, x

u
2 to be in V ′

1 as well. Repetitively applying the above argument we get that
all the vertices in set Xu lie in V ′

1 . We claim that (V ′
1 ∩ V (G), V ′

2 ∩ V (G)) forms a balanced
satisfactory partition of graph G. As each vertex in V ′

i ∩ V (G), i = 1, 2, loses equal number
of neighbors from both the partitions, this implies that all the vertices are satisfied and the
partition is balanced. This shows that I is a yes-instance.

137

6.5.4 Hardness of Balanced Satisfactory Partition

Now we prove the following result which eliminates restriction on the second part of the
partition.

Lemma 22. The Balanced Satisfactory Partition problem, parameterized by the
treewidth of the graph, is W[1]-hard.

Proof. Let I = (G, V□) be a Balanced Satisfactory PartitionS instance, where V□ =

{u1, u2, . . . , ur}. For every vertex ui in the set V□, we introduce two new sets of vertices
Xui = {xui

1 , xui
2 , . . . , xui

4n} and Y ui = {yui
1 , yui

2 , . . . , yui
4n}. We also introduce a clique of size

2 containing vertices {s, t} and a set C = {c1, c2, . . . , c8n} of 8n vertices. We add two new
vertices {s′, t′} along with two sets of vertices S ′ = {s′1, s′2, . . . , s′4n} and T ′ = {t′1, t′2, . . . , t′4n}.
Now, we define the Balanced Satisfactory Partition instance I ′ = G′ where G′ is the
graph defined by

V (G′) = V (G) ∪ {s, t, s′, t′} ∪ S ′ ∪ T ′ ∪ C ∪
r⋃

i=1

Xui ∪ Y ui

and

E(G′) = E(G) ∪
r⋃

i=1

4n⋃
j=1

{
(xui

j , ui), (y
ui
j , ui), (y

ui
j , s), (yui

j , t)
}
∪
{
(s, t)

}
∪

8n⋃
j=1

{
(cj, s), (cj, t)

}
∪

4n⋃
j=1

{
(s′, s′j), (t

′, t′j)
}
∪
{
(s′, s)(s′, t), (t′, s), (t′, t)

}
.

We claim that I is a yes-instance of Balanced Satisfactory PartitionS if and only
if I ′ is a yes-instance of Balanced Satisfactory Partition. Suppose that there is a
balanced satisfactory partition (V1, V2) in G such that V□ ⊆ V2. A balanced satisfactory
partition (V ′

1 , V
′
2) for G′ is defined as follows:

V ′
1 = V1 ∪ {s, t} ∪ C ∪

r⋃
i=1

Y ui and V ′
2 = V2 ∪ {s′, t′} ∪ S ′ ∪ T ′ ∪

r⋃
i=1

Xui .

Clearly, all the vertices are satisfied. Since we are adding equal number of vertices in both
the parts, (V ′

1 , V
′
2) is a balanced satisfactory partition of G′. This proves that if I is a yes-

138

s′1

. . .

s′4n

s′

t′1

. . .

t′4n

t′
c1
. . .
c8n

s t

yu1
1

. . . yu1
4n

xu1
1

. . . xu1
4n

u1 . . .

yur
1

. . . yur
4n

xur
1

. . . xur
4n

ur

Figure 6.6: An illustration of the reduction from Balanced Satisfactory PartitionS

to Balanced Satisfactory Partition.

instance then I ′ is a yes-instance.

To prove the reverse direction of the equivalence, suppose now that (V ′
1 , V

′
2) is a balanced

satisfactory partition of G′. We first prove that all the vertices of V□ are in the same part.
Since NG′ [s] = NG′ [t], both s and t would be in the same part; without loss of generality
suppose they lie in V ′

1 . For 1 ≤ i ≤ r, each vertex yui
j is adjacent to 3 vertices {ui, s, t} and

since {s, t} belong to V ′
1 , it forces yui

j to be in V ′
1 for 1 ≤ j ≤ 4n. Similarly, as s, t ∈ V ′

1 , each
ci would also be in V ′

1 for 1 ≤ i ≤ 8n. For the sake of contradiction, suppose the vertices
of V□ are distributed among V ′

1 and V ′
2 , that is, r′ many vertices of V□ are in V ′

1 and the
remaining r−r′ vertices of V□ are in V ′

2 . Observe that if u ∈ V□ is in V ′
1 , then all the vertices

in Xu are also in V ′
1 . This implies that V ′

1 contains at least 4n(r + r′ + 2) + r′ + 2 vertices
and V ′

2 contains at most 4n(r − r′ + 2) + 2 + (r − r′) vertices. It implies that |V ′
1 | > |V ′

2 |, a
contradiction to our assumption that (V ′

1 , V
′
2) is a balanced satisfactory partition of G′. This

shows that all the vertices of V□ must go to V ′
2 . Therefore, for every balanced satisfactory

partition of G′, we have

{s, t} ∪ C ∪
r⋃

i=1

Y ui ⊆ V ′
1 and {s′, t′} ∪ S ′ ∪ T ′ ∪ V□ ∪

r⋃
i=1

Xui ⊆ V ′
2 .

We now claim that (V ′
1 ∩ V (G), V ′

2 ∩ V (G)) forms a balanced satisfactory partition of G.

139

From the above observation, we have V□ ⊂ V ′
2 ∩ V (G). All the vertices are satisfied in the

new partition (V ′
1 ∩V (G), V ′

2 ∩V (G)) and it is a balanced partition because we are removing
equal number of vertices from both parts. This shows that if I ′ is a yes-instance then I is
also a yes-instance.

This proves Theorem 6.5.1.

140

Chapter 7

Conclusions and Open Problems

In this dissertation, we have considered parameterized algorithms and complexity of the
following graph problems: defensive and offensive alliances in graphs, locally minimal de-
fensive alliances in graphs, and the satisfactory partition problem in graphs. In Chapter
3, we proved that Defensive Alliance and Offensive Alliance problems are FPT
when parameterized by neighbourhood diversity; Defensive Alliance and Offensive

Alliance problems are solvable in polynomial time on graphs of bounded treewidth. A
powerful alliance is both defensive and offensive. The paramererized complexity of differ-
ent kinds of alliances such as offensive alliance or powerful alliance remains unsettled when
parameterized by clique-width, treewidth, pathwidth, feedback vertex set number, etc.

In Chapter 4, we have proved that the Defensive Alliance problem is W[1]-hard when
parameterized by the pathwidth of the input graph and the Exact Defensive Alliance

problem is W[1]-hard parameterized by a wide range of fairly restrictive structural param-
eters such as the feedback vertex set number, pathwidth, treewidth and treedepth of the
input graph. The parameterized complexity of the Defensive Alliance problem remains
unsettled when parameterized by the feedback vertex set number, pathwidth and treedepth
of the input graph. It would also be interesting to consider the parameterized complexity
with respect to twin-cover and modular width.

In Chapter 5, we have designed a polynomial-time algorithm for the Connected Lo-

cally Minimal Strong Defensive Alliance on trees. We proved that Locally Mini-

mal Defensive Alliance problem is NP-complete, even when restricted to planar graphs.

141

We gave a randomized FPT algorithm for the Exact Connected Locally Minimal De-

fensive Alliance problem using color coding technique. We gave an FPT algorithm for
Locally Minimal Defensive Alliance when parameterized by neighbourhood diversity
of the input graph. We proved that Exact Connected Locally Minimal Defensive

Alliance parameterized by treewidth is W[1]-hard and thus not FPT (unless FPT=W[1]).
Finally we showed that the Locally Minimal Defensive Alliance problem is poly-
nomial time solvable for graphs with bounded treewith. See Figure 7.1 for a schematic

vc

fvs pw nd tc

mwtw

cw

Figure 7.1: Relationship between vertex cover (vc), neighbourhood diversity (nd), twin cover
(tc), modular width (mw), feedback vertex set (fvs), pathwidth (pw), treewidth (tw) and
clique-width (cw). Arrow indicate generalizations, for example, treewidth generalizes both
feedback vertex set and pathwidth.

representation of the relationship between selected graph parameters. Note that A → B

means that there exists a function f such that for all graphs, f(A(G)) ≥ B(G); therefore
the existence of an FPT algorithm parameterized by B implies the existence of an FPT
algorithm parameterized by A, and conversely, any negative result parameterized by A im-
plies the same negative result parameterized by B. We now list some nice problems emerge
from the results here: is the Locally Minimal Defensive Alliance problem FPT in
treewidth, and does it admit a polynomial kernel in neighborhood diversity? Also, noting
that the result for neighborhood diversity implies that the problem is FPT in vertex cover,
it would be interesting to consider the parameterized complexity with respect to twin cover.
The modular width parameter also appears to be a natural parameter to consider here, and
since there are graphs with bounded modular-width and unbounded neighborhood diversity;
we believe this is also an interesting open problem. The parameterized complexity of the
Locally Minimal Defensive Alliance problem remains unsettle when parameterized
by other important structural graph parameters like clique-width, modular width etc.

In Chapter 6, we proved that the Satisfactory Partition problem is polynomial time
solvable for block graphs; the Satisfactory Partition and Balanced Satisfactory

142

Partition problems are fixed parameter tractable (FPT) when parameterized by neigh-
bourhood diversity; the problems are polynomial time solvable for graphs of bounded clique
width; and the Balanced Satisfactory Partition problem is W[1]-hard when parame-
terized by treewidth. Noting that the result for neighborhood diversity implies that the prob-
lem is FPT in vertex cover, it would be interesting to consider the parameterized complexity
with respect to twin cover. We have proved that the Balanced Satisfactory Partition

problem is W[1]-hard when parameterized by treewidth, but the parameterized complexity of
Satisfactory Partition parameterized by treewidth remains unsettled. The parameter-
ized complexity of Satisfactory Partition and Balanced Satisfactory Partition

remain unsettled when parameterized by other important structural graph parameters like
pathwidth, clique-width and modular-width.

143

List of Publications:

The main results of this thesis are based on the following publications:

1. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized Complex-
ity of Satisfactory Partition Problem, Theoretical Computer Science, Vol. 907,
113-127, 2022.

2. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized Complex-
ity of Locally Minimal Defensive Alliances, Discrete Applied Mathematics (under
revision).

3. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized intractabil-
ity of defensive alliance problem, In: 8th International Conference on Algorithms and
Discrete Applied Mathematics, CALDAM 2022, Lecture Notes in Computer Sci-
ence, Vol. 13179, 279-291, 2022.

4. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, The Balanced Satis-
factory Partition Problem, In: 47th International Conference on Current Trends in
Theory and Practice of Computer Science, SOFSEM 2021, Lecture Notes in Com-
puter Science, Vol. 12607, 322-336, 2021.

5. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized Com-
plexity of Locally Minimal Defensive Alliance, In: 7th International Conference on
Algorithms and Discrete Applied Mathematics, CALDAM 2021, Lecture Notes in
Computer Science, Vol. 12601, 135-148, 2021.

6. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized Complex-
ity of Defensive and Offensive Alliances in Graphs, In: 17th International Conference
on Distributed Computing and Internet Technology, ICDCIT 2021, Lecture Notes in
Computer Science, Vol. 12582, 175-187, 2021.

7. Ajinkya Gaikwad, Soumen Maity and Shuvam Kant Tripathi, Parameterized Complex-
ity of Satisfactory Partition Problem, In: 14th International Conference on Combina-
torial Optimization and Applications, COCOA 2020, Lecture Notes in Computer
Science, Vol. 12577, 76-90, 2020.

144

Bibliography

[1] C. Bazgan, H. Fernau, and Z. Tuza. Aspects of upper defensive alliances. Discrete
Applied Mathematics, 266:111 – 120, 2019.

[2] C. Bazgan, Z. Tuza, and D. Vanderpooten. On the existence and determination of satis-
factory partitions in a graph. In T. Ibaraki, N. Katoh, and H. Ono, editors, Algorithms
and Computation, pages 444–453, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[3] C. Bazgan, Z. Tuza, and D. Vanderpooten. Complexity and approximation of satisfac-
tory partition problems. In Proceedings of the 11th Annual International Conference on
Computing and Combinatorics - Volume 3595, page 829–838, Berlin, Heidelberg, 2005.
Springer-Verlag.

[4] C. Bazgan, Z. Tuza, and D. Vanderpooten. Degree-constrained decompositions of
graphs: Bounded treewidth and planarity. Theoretical Computer Science, 355(3):389 –
395, 2006.

[5] C. Bazgan, Z. Tuza, and D. Vanderpooten. The satisfactory partition problem. Discrete
Applied Mathematics, 154(8):1236 – 1245, 2006.

[6] B. Bliem and S. Woltran. Defensive alliances in graphs of bounded treewidth. Discrete
Applied Mathematics, 251:334 – 339, 2018.

[7] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11:1–21, 1993.

[8] H. L. Bodlaender and J. Engelfriet. Domino treewidth. Journal of Algorithms, 24(1):94
– 123, 1997.

[9] C.-W. Chang, M.-L. Chia, C.-J. Hsu, D. Kuo, L.-L. Lai, and F.-H. Wang. Global
defensive alliances of trees and cartesian product of paths and cycles. Discrete Applied
Mathematics, 160(4):479 – 487, 2012.

[10] M. Chellali and T. W. Haynes. Global alliances and independence in trees. Discuss.
Math. Graph Theory, 27(1):19–27, 2007.

[11] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

145

[12] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 2012.

[13] R. Enciso. Alliances in graphs: Parameterized algorithms and on partitioning series
-parallel graphs. PhD thesis, USA, 2009.

[14] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, Algorithms and Computation, pages 294–305, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[15] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh. Graph
layout problems parameterized by vertex cover. In S.-H. Hong, H. Nagamochi, and
T. Fukunaga, editors, Algorithms and Computation, pages 294–305, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

[16] H. Fernau and D. Raible. Alliances in graphs: a complexity-theoretic study. In
J. van Leeuwen, G. F. Italiano, W. van der Hoek, C. Meinel, H. Sack, F. Plasil, and
M. Bieliková, editors, SOFSEM 2007: Theory and Practice of Computer Science, 33rd
Conference on Current Trends in Theory and Practice of Computer Science, Harrachov,
Czech Republic, January 20-26, 2007, Proceedings Volume II, pages 61–70. Institute of
Computer Science AS CR, Prague, 2007.

[17] H. Fernau, J. A. Rodríguez-Velázquez, and J. M. Sigarreta. Global r-alliances and total
domination. In CTW, 2008.

[18] H. Fernau, J. A. Rodríguez, and J. M. Sigarreta. Offensive r-alliances in graphs. Discrete
Applied Mathematics, 157(1):177 – 182, 2009.

[19] G. Flake, S. Lawrence, and C. Giles. Efficient identification of web communities.
In R. Ramakrishnan, S. Stolfo, R. Bayardo, I. Parsa, R. Ramakrishnan, S. Stolfo,
R. Bayardo, and I. Parsa, editors, Proceeding of the Sixth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Proceeding of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
150–160, United States, 2000. Association for Computing Machinery (ACM). Proceed-
ings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2001) ; Conference date: 20-08-2000 Through 23-08-2000.

[20] G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web communi-
ties. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’00, page 150–160, New York, NY, USA, 2000. As-
sociation for Computing Machinery.

[21] G. Fricke, L. Lawson, T. Haynes, M. Hedetniemi, and S. Hedetniemi. A note on defensive
alliances in graphs. Bulletin of the Institute of Combinatorics and its Applications,
38:37–41, 2003.

146

[22] A. Gaikwad and S. Maity. On structural parameterizations of the offensive alliance
problem. CoRR, abs/2110.15757, 2021.

[23] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of satisfactory
partition problem. In W. Wu and Z. Zhang, editors, Combinatorial Optimization and
Applications - 14th International Conference, COCOA 2020, Dallas, TX, USA, De-
cember 11-13, 2020, Proceedings, volume 12577 of Lecture Notes in Computer Science,
pages 76–90. Springer, 2020.

[24] A. Gaikwad, S. Maity, and S. K. Tripathi. The balanced satisfactory partition problem.
In T. Bures, R. Dondi, J. Gamper, G. Guerrini, T. Jurdzinski, C. Pahl, F. Sikora, and
P. W. H. Wong, editors, SOFSEM 2021: Theory and Practice of Computer Science -
47th International Conference on Current Trends in Theory and Practice of Computer
Science, SOFSEM 2021, Bolzano-Bozen, Italy, January 25-29, 2021, Proceedings, vol-
ume 12607 of Lecture Notes in Computer Science, pages 322–336. Springer, 2021.

[25] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of defensive and
offensive alliances in graphs. In D. Goswami and T. A. Hoang, editors, Distributed
Computing and Internet Technology - 17th International Conference, ICDCIT 2021,
Bhubaneswar, India, January 7-10, 2021, Proceedings, volume 12582 of Lecture Notes
in Computer Science, pages 175–187. Springer, 2021.

[26] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of locally minimal
defensive alliances. In A. Mudgal and C. R. Subramanian, editors, Algorithms and Dis-
crete Applied Mathematics - 7th International Conference, CALDAM 2021, Rupnagar,
India, February 11-13, 2021, Proceedings, volume 12601 of Lecture Notes in Computer
Science, pages 135–148. Springer, 2021.

[27] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of locally minimal
defensive alliances. CoRR, abs/2105.10742, 2021.

[28] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized complexity of satisfactory
partition problem. Theoretical Computer Science, 907:113–127, 2022.

[29] A. Gaikwad, S. Maity, and S. K. Tripathi. Parameterized intractability of defensive
alliance problem. In N. Balachandran and R. Inkulu, editors, Algorithms and Discrete
Applied Mathematics - 8th International Conference, CALDAM 2022, Puducherry, In-
dia, February 10-12, 2022, Proceedings, volume 13179 of Lecture Notes in Computer
Science, pages 279–291. Springer, 2022.

[30] R. Ganian, F. Klute, and S. Ordyniak. On structural parameterizations of the bounded-
degree vertex deletion problem. Algorithmica, 2020.

[31] M. Gerber and D. Kobler. Classes of graphs that can be partitioned to satisfy all their
vertices. AUSTRALASIAN JOURNAL OF COMBINATORICS Volume, 29:201–214,
01 2004.

147

[32] M. U. Gerber and D. Kobler. Algorithmic approach to the satisfactory graph partitioning
problem. European Journal of Operational Research, 125(2):283 – 291, 2000.

[33] M. U. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoretical Computer Science, 299(1):719 – 734, 2003.

[34] K. Hassan-Shafique. Partitioning a graph in alliances and its application to data clus-
tering. 2004.

[35] T. W. Haynes, S. T. Hedetniemi, and M. A. Henning. Global defensive alliances in
graphs. Electron. J. Comb., 10, 2003.

[36] J. D. Horton and K. Kilakos. Minimum edge dominating sets. SIAM Journal on Discrete
Mathematics, 6(3):375–387, 1993.

[37] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[38] L. H. Jamieson. Algorithms and Complexity for Alliances and Weighted Alliances of
Various Types. PhD thesis, USA, 2007.

[39] L. H. Jamieson, S. T. Hedetniemi, and A. A. McRae. The algorithmic complexity of
alliances in graphs. Journal of Combinatorial Mathematics and Combinatorial Comput-
ing, 68:137–150, 2009.

[40] M. Kamiński, V. V. Lozin, and M. Milanič. Recent developments on graphs of bounded
clique-width. Discrete Applied Mathematics, 157(12):2747 – 2761, 2009.

[41] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of Operations Research, 12(3):415–440, 1987.

[42] M. Kiyomi and Y. Otachi. Alliances in graphs of bounded clique-width. Discrete Applied
Mathematics, 223:91 – 97, 2017.

[43] T. Kloks. Treewidth, computations and approximations. In Lecture Notes in Computer
Science, 1994.

[44] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes
in Computer Science. Springer, 1994.

[45] P. Kristiansen, M. Hedetniemi, and S. Hedetniemi. Alliances in graphs. Journal of
Combinatorial Mathematics and Combinatorial Computing, 48:157–177, 2004.

[46] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64:19–37, 2012.

[47] H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics of
Operations Research, 8(4):538–548, 1983.

148

[48] D. Manlove. In Minimaximal and maximinimal optimisation problems: a partial order-
based approach, 1998.

[49] J. Nesetril and P. O. de Mendez. Sparsity: Graphs, Structures, and Algorithms. Springer
Publishing Company, Incorporated, 2014.

[50] N. Robertson and P. Seymour. Graph minors. iii. planar tree-width. Journal of Com-
binatorial Theory, Series B, 36(1):49 – 64, 1984.

[51] J. Rodríguez-Velázquez and J. Sigarreta. Global offensive alliances in graphs. Electronic
Notes in Discrete Mathematics, 25:157 – 164, 2006.

[52] J. Sigarreta, S. Bermudo, and H. Fernau. On the complement graph and defensive
k-alliances. Discrete Applied Mathematics, 157(8):1687 – 1695, 2009.

[53] J. Sigarreta and J. Rodríguez. On defensive alliances and line graphs. Applied Mathe-
matics Letters, 19(12):1345 – 1350, 2006.

[54] J. Sigarreta and J. Rodríguez. On defensive alliances and line graphs. Applied Mathe-
matics Letters, 19(12):1345–1350, 2006.

[55] J. Sigarreta and J. Rodríguez. On the global offensive alliance number of a graph.
Discrete Applied Mathematics, 157(2):219 – 226, 2009.

[56] P. K. Srimani and Z. Xu. Distributed protocols for defensive and offensive alliances in
network graphs using self-stabilization. In 2007 International Conference on Computing:
Theory and Applications (ICCTA’07), pages 27–31, 2007.

[57] S. Szeider. Not so easy problems for tree decomposable graphs. CoRR, abs/1107.1177,
2011.

[58] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposi-
tion via recursive factorizing permutations. In Automata, Languages and Programming,
pages 634–645, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[59] M. Thorup. All structured programs have small tree width and good register allocation.
Information and Computation, 142(2):159–181, 1998.

[60] D. B. West. Introduction to Graph Theory. Prentice Hall, 2000.

[61] M. Yannakakis and F. Gavril. Edge dominating sets in graphs. SIAM Journal on
Applied Mathematics, 38(3):364–372, 1980.

149

	Abstract
	Introduction
	Defensive and Offensive Alliances in Graphs
	Locally Minimal Defensive Alliance
	 The Satisfactory Partition Problem
	Parameterized Complexity
	Literature Survey
	Graph Theory
	Structural Graph Parameters
	An Overview of the Thesis

	Introduction to Parameterized Complexity
	Fixed Parameter Tractability
	Fixed-Parameter Intractability

	Defensive and Offensive Alliances
	Introduction
	FPT algorithm parameterized by neighbourhood diversity
	FPT algorithm parameterized by domino treewidth
	Graphs of bounded treewidth

	Parameterized Intractability of Defensive Alliance Problem
	Introduction
	W[1]-hardness parameterized by pathwidth

	Locally Minimal Defensive Alliance
	Introduction
	Polynomial-Time Algorithm for Connected Locally Minimal Strong Defensive Alliance on Trees
	Locally Minimal Defensive Alliance in Planar Graphs is NP-complete
	A color coding algorithm for Exact Connected Locally Minimal Defensive Alliance
	FPT algorithm parameterized by neighbourhood diversity
	Hardness of Exact Connected Locally Minimal Defensive Alliance parameterized by treewidth
	Graphs of bounded treewidth

	The Satisfactory Partition Problem
	Introduction
	Polynomial Time Algorithm for Block Graphs
	FPT algorithm parameterized by neighbourhood diversity
	Graphs of bounded clique-width
	Hardness of Balanced Satisfactory Partition parameterized by treewidth

	Conclusions and Open Problems

