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Abstract

Let k be an algebriacally closed field and A, B be finitely generated (affine) k-domains.
A is said to be stably isomorphic to B if the polynomial algebra A[X](in one variable) is
k-isomorphic to the polynomial algebra B[Y]. Keeping this definition in mind, we now
state one of the important problems in affine geometry.

Question:Let A, B be affine domains such that A is stably isomorphic to B. Is A
isomorphic to B as k-domains?

This problem has been investigated by many well-known mathematicians. In this thesis,

we report on the progress achieved so far regarding this problem.
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Chapter 1
Introduction

Let k be an algebraically closed field and let A, B be affine k-domains. A is said to be
stably isomorphic to B if A[X](in one variable) is k-isomorphic to B[Y]. Keeping this
definition in mind, we now state one of the important problems in affine geometry.
Question:Let A, B be affine domains such that A is stably isomorphic to B. Is A
isomorphic to B as k-domains?

Note that if A is a polynomial algebra over k then the above problem is known as the
“Zariski Cancellation Problem”.

Abhyankar, Eakin and Heinzer have shown that if dim A = 1, then the above question
has an affirmative answer ([I]).

If dimA = 2, then Danielewski (in his unpublished paper) has shown by an example
that the answer to this question is not always affirmative even if k is a field of complex
numbers.

However if k is a field of characteristic 0, and A = k[X,Y] a well known result of
Miyanishi-Sugie and Fujita says that the question has an affirmative answer ([5], [§]).
Recently, Neena Gupta has shown by an example ([0]) that the above question does not
have an affirmative answer in general if characteristic of k is p(p > 0) and A = k[X,Y, Z].
In this thesis, we first present the original proof of Abhyankar, Eakin and Heinzer theorem
(A-E-H theorem). We also give an alternative proof to the same. The original proof of
Miyanishi-Sugie and Fujita of the cancellation theorem for k[X, Y] is highly geometric and
needs deep results from projective geometry. However, Crachiola and Makar-Limanov([3])

have given an algebraic proof which we have presented here.
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The main ingredient of our alternative proof of A-E-H theorem, the algebraic proof of
Crachiola and Makar-Limanov (on the cancellation of k[X,Y]) and Neena Gupta’s result
is the notion of exponential map which has been studied by Crachiola and Makar-Limanov
in their paper ([3]).

Let A, B be affine k-domains such that A[X] = B[Y]. Let o : A[X] — B[Y] be an
isomorphism. Then o(A)[o(X)] = B[Y]. Therefore, by identifying A with ¢(A) and X
with o(X), we can formulate the above question as follows,

Question: Let R be an affine domain of dimension n > 1 over a field k and let A, B
be affine k-subdomains of dimension n — 1 such that A[X] = R = B[Y].Is A ~ B as
k-domains?

The layout of this thesis is as follows. In Chapter 2, we give relevant definitions and
results. In Chapter 3, we present original as well as an alternative proof of A-E-H
theorem. Chapter 4 is devoted to presenting the algebraic proof given by Crachiola and
Makar-Limanov (of cancellation for A = k[X,Y]). Chapter 5 deals with the example
given by Danielewski. Chapter 6 deals with the result of Neena Gupta.



Chapter 2
Preliminaries

In this section we define the terms used in the thesis, recall a few well-known results,
and prove a few lemmas for later use. Throughout this thesis all rings considered are
commutative with identity.

For a ring C, O™ will denote a polynomial ring in n variables over C.

We begin with the following lemma.

Lemma 2.1. Let A be a domain containing a field k. Assume that try(A) = 1. Then
dim(A) < 1.

Proof. Assume that dim(A) > 2. Then there exists a non-zero prime ideal P of A which
is not maximal. Let m be a maximal ideal of A containing P. Since P is non-zero 3 z € P
such that = # 0. Since P #m 3y € m\ P. Let C' = k[x,y] be the k-subalgebra of A
generated by x,y.

Let Q1 = CNP and Q; = CNm. Then, as x € ()1, @1 is a non-zero prime ideal
of C such that @)y C Q). Note that ()5 is a prime ideal of C'. Moreover, by choice of vy,
y € Q2 \ Q1. This shows that the non-zero prime ideal @ is properly contained in the
prime ideal Q. Hence dim(C') > 2.

Since C'is an affine domain over k, tri(C') = dim(C') > 2. Therefore, as k C C' C A,
we have 1 = trp(A) > tri(C') > 2 which is a contradiction. Hence dim(A4) < 1. )

The following proposition is an easy consequence of the above lemma and is used very

often.
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Proposition 2.2. Let A, B be unique factorization domains such that A ¢ B ¢ A",
Assume that try(B) = 1. Then B = Al

Proof. Let us write A[T},---,T,] for AP\, Let M = (T,---,T,) be a prime ideal of
AlTy,---,T,] and P = M N B. Then it is easy to see that PN A =0and A C B/P C
ATy, -, T,]/M = A. Thus B/P = A and hence, as tryB = 1, P is a non-zero prime
ideal of B.

Let S = A\ (0). Then S~'(A) = K is the quotient field of A and we have the inclusion
of rings K ¢ S™Y(B) C K|[T},---,T,]. Since trgS™!(B) = tra(B) = 1, by Lemma
dim S7}(B) = 1. Since PN A =0 and P is non-zero, P is a prime ideal of B of height
one. Therefore, as B is UFD, P is a principal ideal of B.

Let P = (G). Now we prove that B = A[G] (AlM).

Let b € B. We show that b € A[G] by induction on the degree [ of b as an element of
AlTy, -+, T,].

If ] = 0then b € A and hence b € A[G]. Now assume that [ > 1. Since A = B/P = B/(G),
there exists a € A such that b —a € (G). Let b —a = ¢G, ¢ € B. Note that
G € (T, ---,T,) and hence degree of G (as an element of A[T},---,T,]) is positive
and hence degree of ¢ < [. Therefore, by induction hypothesis, ¢ € A[G] and hence
b e AlG). &

2.1 Conductor Ideal

Definition 2.3. Let A < B be an inclusion of domains. Let M = B/A, a module over
A. The conductor ideal of B over A is defined to be Ann4M.

Lemma 2.4. Let A — B be an inclusion of domains. Let I be the conductor ideal of B
over A. Then IB =1

Proof. Since I is the conductor ideal, it is easy to see that I C IB C A. Let IB = J. Now
J is an ideal of A such that JB = IBB = IB = J. Hence J annihilates the A-module
B/A. Thus J C Anny(B/A). Therefore [ = J = IB ]

Lemma 2.5. Let A < B be an inclusion of domains and let I be the conductor ideal of
B over A. Assume that A is Noetherian. Then I # 0 < B is a finite A-module and B
and A have the same quotient field.
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Proof. Let 0 # a € I. Then (0) C aB C A. Thus aB is an ideal of A and hence is a
finitely generated A-module as A is Noetherian. Since aB = B as an A-module, B is a
finite A-module. Moreover, for every b € B, ¢ = ab € A. Hence b = ¢/a. Thus B and A
have the same quotient field.

Conversely, assume that B is a finite A-module and B and A have the same quotient

field K. Let B = ) Ax;. Since x; € B C K, we have x; = y;/a; such that y;,a; € A and
=1

a; #0. Let a =[] a;. Then a # 0 and az; € A,V i (1 <i <n). Therefore, aB C A and
hence a € I = AnnyB/A &

Remark 2.6. Let k be a field and let A be an affine domain over k. Let A be the integral
closure of A in its quotient field K. Then A is a finite A-module having quotient field K.

Therefore the conductor ideal I of A over A is a non zero ideal of A.

Lemma 2.7. Let A be an affine domain over a field k& with quotient field K and let A
be its integral closure in K. Let I be the conductor ideal of A over A. Let R = A[X] and
R = A[X]. Then the conductor ideal of R over R is IR = IR (i.e. [A[X] = I[A[X]).

Proof. Let J C A[X] be an ideal such that J C A[X]. We need to show J C TA[X] =
TA[X].
Let f= Y @X'€J. Thena; € AVI Letbe A. Thenb.f = > baX'eJC AX].

0<i<n 0<I<n
Therefore b.a; € A for V1. Thus, for V b € A, b.a; € A. This implies ¢yA C Aie. o € I.
Hence J C TA[X]. Thus IA[X] = I A[X] is the conductor ideal of R over R. &

2.2 Locally Nilpotent derivation, Locally finite iter-

ative higher derivation and Exponential Map

2.2.1 Local Nilpotent Derivation (LND)

Definition 2.8. Let B be a domain. A group homomorphism d : B — B is called locally
nilpotent derivation(LND) if

1. d(ab) = ad(b) + bd(a) a,b € B.

2. For every b € B, 3 a positive integer n(depending upon b) such that d™(b) = 0.
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2.2.2 Locally finite iterative higher derivation

Definition 2.9. Let B be a domain. A locally finite iterative higher derivation on B is a

sequence d; : B — B (0 < i < 00) of functions satisfying following properties.
1. dy = 1d.

2. dy(a+0b) =dy(a) + d,(b) a,b e B.

3. dn(a.b) = > di(a)d,—i(b).

=0

(2

5. For b € B 3 nyg € N (depending on b) such that d,(b) =0 for V n > ng

2.2.3 Exponential Map

Definition 2.10. Let B be a domain and d; : B — B (0 < i < c0) be a locally finite
iterative higher derivation. A ring morphism ¢ : B — B[T] defined by

o) = 3 ()T

is called the exponential map (associated to a sequence d; (0 < i < 00)).

2.2.4 Ring of ¢-invariants

Definition 2.11. Let B be a domain and let ¢ : B — B[T] be the exponential map
associated to a locally finite iterative higher derivation d;(0 <i < c0) . Let B® = {a |
a € B,¢(a) = a} (equivalently B® = {a| d;(a) =0V i > 1}) Then B? is called the ring
of ¢-invariants. We say ¢ is non-trivial if B® # B

Remark 2.12. Let B be a domain and d; (0 < i < 00) be a locally finite iterative higher
derivation on B. Then d; is a locally nilpotent derivation on B. Morever, if B contains
the field of rationals, then d; = i—,l (Vi >1). Conversely, if B contains the field of rationals
and d is a locally nilpotent derivation, then d; = d'/i! is a locally finite iterative higher
derivation on B. Thus, if B contains the field of rationals then every locally nilpotent

derivation d : B — B gives rise to the exponential map ¢ on B such that B® = ker(d).
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Let d; (0 < i < o00) be a locally finite iterative higher derivation on B and let
¢ : B — BJ[T] be the corresponding exponential map Assume that ¢ is non-trivial. Let

b € B be such that the deg,;¢(b) =n (n > 1). Let ¢(b) = >_ d;T". Then d,(b) # 0 and
i=0
dn(b) € B?.

Lemma 2.13. Let ¢ : B — B[T] be an exponential map and let A = B?. Then
1. A is factorially closed in B i.e. for b,c € B — {0}, if bc € A then b € A and ¢ € A.
2. A* = B*
3. Forae A AnaB =aA
4. If a € A is a prime element of B then a is a prime element of A also.
5. A is algebraically closed in B.
6. If B is UFD, then A is UFD.

Proof. Properties 2, 3, 4, 5 and 6 follow easily from 1.
Since A = ¢~!(B), and B is factorially closed in B[T], the result follows. &

Lemma 2.14. Let B be a domain and ¢ : B — B[T] be an exponential map. Let A be
the ring of ¢-invariants. Suppose 3 b € B such that ¢(b) = b+ T. Then B = A[b] (Al).
In particular, if B contains the field of rationals and d : B — B is a locally nilpotent
derivation with A = ker(d) such that d(b) = 1 for b € B, then B = A[b] (A1),

Proof. Since b € B— A, by Lemma [2.13] b is transcendental over A. Let ¢ € B. We prove
the result by induction on deg;¢(c).
If degr¢(c) =0, then ¢ € A and hence ¢ € A[b).

Assume degp¢(c) > 1. Let ¢(c) = > di(c)T". Then d,(c) € A. Therefore,
i=0

¢c = dn(c)0") = ¢(c) — cb( n(c))®
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Clearly, ¢(c — d,(c)b™) is a polynomial such that deg;¢(c — d,(c)b™) < n — 1. Therefore,
by induction hypothesis, ¢ — d,,(c)b™ € A[b]. Let ¢ = ¢ — d,,(c)b™. Then ¢ = ¢ + d,(c)b".
As d,(c) € A and ¢ € A[b], we see that ¢ € A[b]. Thus B = A[b] L

The next lemma is proved in [3]

Lemma 2.15. Let ¢ : B — B[T] be a non-trivial exponential map on a domain B. Let A
be the ring of ¢-invariants. Then there exists a non-trivial exponential map ¢, : B — B[T]
and b € B such that B® = A and ¢;(b) =b+aT a # 0. As a consequence, a € A and
B[1/a] = A[l/al[b] (A[l/a]m). Hence try B = 1. Therefore, if B is an affine domain of

dimension n over k, then tryA =n — 1.

Lemma 2.16. Let B be a domain and let ¢ : B — B[T] be the exponential map
corresponding to a locally finite iterative higher derivation (d;, 0 < i < 0o) on B. Let A
be the ring of ¢-invariants. Let z € A be such that z is a prime element of B (and hence
of A). Assume that for some j > 1, d;(B)ZzB. Then ¢ induces a non-trivial exponential
map ¢ on B/zB.

Proof. Since z € A we have d;(z) =0V ¢ > 1. Therefore d; induces a map 0, : B/zB —
B/zB for i > 1. Let dy be the identity map of B/zB. As z € A, it is easy to see that the
sequence (9;, 0 < i < oo) defines a locally finite iterative higher derivation on B/zB and

hence gives rise to an exponential map ¢ on B/zB. Note that, d; # 0 as d;(B) ¢ zB.

Hence ¢ is non-trivial. &
Notation
Let R= € R; be agraded domain. For g = > ¢, 9; € R;i, g, # 0 we say
—00<1< 00 m<i<n

that g, is the highest weight form of g and we denote it by hwf(g).

Keeping this notation in mind, we state the following version of a result of H.Derksen,
O.Hadas and L.Makar-Limanov as presented in [4](Theorem 2.6) (See also [6], Theorem
2.3).

Theorem 2.17. Let R= € R; be a graded domain containing a field k. Assume

—00<1< 00

that R and Ry are affine domains over k. let ¢ : R — R[T] be a non-trivial exponential
map. Then ¢ induces a non-trivial exponential map ¢ : R — R[T)] such that if A = RY
then
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1.A= @ (ANR)

—00<1< 00

2. If g € R? then hwf(g) € A.
As a consequence we have the following result.

Proposition 2.18. Let £ be an infinite field and let B be an affine domain over k.
Let R = B[Y]. Assume that B does not admit any non-trivial exponential map. Let
¢ : R — R[T] be an exponential map. Then B C R?. In particular, if ¢ is non-trivial
then R? = B.

Proof. If ¢ is trivial then R? = R and hence we are through.

Assume that ¢ is non-trivial. If R® # B then, as R? is algebraically closed in R
and transcendence degree of R over R? is one, R ¢ B. Hence 3g € R? \ B. Therefore
degyg=n > 1.

Note that B[Y]=R= € R; where Ry = B and R; = BY" (i > 1). Therefore, by

0<i<oo

Theorem there exists a non-trivial exponential map 1 : R — R|[T] such that the ring
A of y-invariants contains the element hwf(g). Since degy (g) = n > 1, it follows that YV
divides hwf(g). Hence Y € A. Therefore Y — XA € A (V A € k). Since ® is non-trivial
there exists F' € R such that deg;1)(F) =m > 1. Let f € R be the leading coefficient of
(F'). Since R is Noetherian and k is infinite, 3 5 € k such that f is not divisible by the
prime element Z =Y — § (of R). Therefore, as Z € A, by (Lemma [2.16)), ¢ induces a
non-trivial exponential map on B = R/ZR which is contradiction. Hence R® = B. &

2.2.5 Makar-Limanov Invariant

Definition 2.19. Let B be a domain and let EX P(B) denote the set of all non-trivial

exponential maps on B. We define the Makar-Limanov invariant (AK(B)), or the ring of

absolute constants of B as AK(B) = ()  B® where B? is the ring of ¢-invariants.
$eEXP(B)

Definition 2.20. Let B be a domain. Then the Derksen Invariant of B (DK (B)) is

define to be the subalgebra of B generated by the sets B? such that ¢ is a non-trivial

exponential map.
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Remark 2.21. Let B be a domain which contains the field of rationals. Let LN D denote
the set of all non-zero locally nilpotent derivations on B. Then, it is easy to see that (by
Remark [2.12), that AK(B)= () ker(d)

deLND

Remark 2.22. We can restate Proposition [2.18 as follows. Let B be a domain such that
the set EXP(B) = 0 (i.e. B does not admit any non-trivial exponential map). Then
AK(BMY) = B.

Lemma 2.23. Let k be a field and let B = k[ X3, -, X,,] be a polynomial algebra in n
variables over k. Then AK(B) =k and DK (B) = B.

Proof. For 1 <i <n, let ¢; : B — B[T] be an exponential map defined as ¢(X;) = X;
for j # i and ¢;(X;) = X; + T. Let A; denote the ring of ¢;-invariant. Then it is easy to
see that A; = k[Xy, -+, Xio1, Xiv1, -+, X)), Hence AK(B) =k and DK(B)=B. &



Chapter 3
Cancellation results for dimension 1

Lemma 3.1. Let k be a field and let f € k[X] be a monic polynomial in X of positive
degree. Then f is transcendental over k and the polynomial algebra k[X] is a finite

module over k[f].
Proof. Since f € k[X] is a monic polynomial in X of positive degree n, f is of the form

Hence f is transcendental over k. To show that k[X] is a finite module over k[f], we will
show that X is integral over k[f]. Let

G(T') is a monic polynomial in 7" with coefficients in k[f] and G(X) = 0. Therefore, X is
integral over k[f]. Hence, k[X] is a finitely generated k[f] module. &

Lemma 3.2. Let k — A — k[X] and k # A. Then A is an affine k-algebra. Moreover
k[X] is a finite A-module.

Proof. Sincek # A, 3 f € A—k. Since f isnot in k, as an element of k[X] , degy f =n > 1.
Let
f=a, X"..+a X +ap (n>1,a,#0) (3.0.3)

Since a, € k*, changing f by a,!f, we can assume that f is a monic polynomial in X of

11
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degree n > 1. As f € A, we have the following inclusion of k-algebras.
k= k[f] — A — k[X] (3.0.4)

By Lemma [3.1 k[X] is a finite module over a Noetherian ring k[f]. Therefore k[f]-
submodule A of k[X] is a finite module over k[f] and k[X] is a finite A-module. Hence A
is an affine k-algebra. )

Proposition 3.3. Let £ C A C k[X] be an inclusion of k-algebras. Suppose A is normal.
Then A = k1.

Proof. Let L be the field of fractions of A. Then we have the inclusion £ C L C k(X).
By Liiroth’s Theorem, L = k(f) for some f € k(X) such that f is transcendental over k.
Let R = k[1/X]1/x) Then R is a discrete valuation ring such that k[X] ¢ R. Therefore,
as k[X] is integral over A, A ¢ R.

Let S = RNL. Then clearly, A ¢ S (since A ¢ R). Also S is a subring of R contained in L.

Claim: § is a valuation ring with the field of fractions L.

Proof. Consider the following commutative diagram

R —— k(X)

J I

S=RNL «—— L

It can be clearly seen from above that S is a valuation ring of L, since we know that R is
a valuation ring of k(X). Also note that S is a proper subring of L. If not, then S = L
and A C L, therefore A C S which is a contradiction. &

Claim: 3 u € L such that
l.ug¢gs

2. k(u) = L = k(f)



13

Proof. If f ¢ S, then we take f =u. If f € S and f~! ¢ S, then we take f~! = u.
Suppose f,f~! € S. Therefore f € S*. Let m(R) denote the maximal ideal of R. Then
clearly, m(R) NS is the maximal ideal of S. Moreover k C S/m(R) NS — R/mR. Now
from the construction of R, it is clear that R/m(R) = k. Therefore k = S/m(R) N S.
Let f be the image of fin k. As f € S*, f € k*. Let f = X\. Then clearly, f—\ € m(R)NS.
Therefore, 1/(f —A) ¢ S as f — A not a unit in S. Now take 1/(f — A) = u. Then clearly,

L=k(f) =k =A) = k(1/(f = A) = k(u). s

Thus S is a valuation ring with the field of fractions L such that k[u] ¢ S. In fact, it is
the discrete valuation ring such that above condition is satisfied.

Since A is normal, A is a dedekind domain. Therefore, for every maximal ideal n of A,
the local ring A, is a discrete valuation ring.

Since A ¢ S, A, # S for any maximal ideal n of A. As k[u] ¢ S, we have k[u] C A, for

every maximal ideal n of A. Therefore, k[u] C A= () A,. Thus, we have
nemax(A)

klu] — A — k[X] degyu >1

Then by Lemma [3.1] £[X] is integral over k[u]. Hence A is integral over k[u] and have the
same field of fractions L. Since k[u] is integrally closed in L, A = k[u]. Thus A = kl!.

&

Theorem 3.4 (A-E-H Theorem). Let k = k. Let A, B be affine domains of dimension 1
over k such that Al = Bl = R. Let A[X] = R = B[Y]. Then

1. f A=kM = B =kl
2. A4k = A=8B

Proof. Suppose A = k!, then Al = R = k[?. Therefore R is a UFD. This implies that
B is a UFD. Therefore, as k C B C k1@ and tr.,(B) = 1, by Proposition 2.2 B = k[,
Now suppose A # k1.

Case 1: Assume A is normal

Clearly, B # k!l. Let m be a maximal ideal of B. Let mR = P. Then since m is a height
1 prime ideal, P is a height 1 prime ideal in R. Let n = PN A. Clearly, n is a prime ideal
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in A. Therefore n is either zero ideal or maximal. Now we have the following inclusion
A/n = R/P = B/m!" = kU

Therefore,since A#kl! and A is normal, n must be a maximal ideal of A and nR C P.
As nR and P are prime ideals of R of height 1, we have nR = P. Therefore, we have
nkR =P =mR.

Now we know that A is normal. Therefore B is also normal. Since B is of dimension 1, B
is a Dedekind domain. Let b € B such that b ¢ B*, b # 0. Then we have the following,

bB=[]mi  (m € max(B))

(3.0.5)

Let J =1]] nil Then since JR = bR, JR is principal and thus J is a principal ideal of

A. Let Jll: aA. Then bR = aR. Therefore, b = Aa where A € R* = A* = B*. Thus
be AN B and hence B C A. One can similarly show A C B. Thus A = B.

Case-2: Assume A is not normal

Let A and B be the normalizations of A and B respectively. Let R be the normalization
of R. Then clearly, R = A[X] = B[Y].

Sub-case-1: A # k!l

From case-1, it is clear that A = B. We will now show that A = B. Since R = B[Y]
and R = B[Y], we have A[X] = R = B[Y] and A[X] = R = B[Y] = A[Y].Then
A=RNA=RNB=B.

Sub-case-2: A = k[u] (kM)

Then B = k[t]. Hence k[u, X] = R = k[t,Y]

Let I be the conductor ideal of A over A. Let J be the conductor ideal of B over B.Then
the conductor ideal of R over R is TA[X] = JB[Y] (by Lemma [2.7). Clearly, I # 0,

J # 0.(by Lemma [2.5)).
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Let I = fA and J = gB where f € A, f & A*, and g € B, g ¢ B*. As stated
above, TA[X] = JB[Y], therefore fR = gR. Thus f = \g, where A € R*. But
R* = A* = B* = k* as A = k[, Hence X\ € k*. Therefore, f € B. Thus f € AN B.
Therefore, degy f = 0. Since f € A = k[u] and f & k, we get degyu = 0. Therefore
u € B. Hence, A = k[u] C B. Similarly, B = k[t] C A. Hence A = B. Therefore,
A=RNA=RNB=B. »

Now we give another proof of A-E-H theorem using the notion of exponential map

Lemma 3.5. Let k be an algebraically closed field and let A be an affine domain of
dimension 1 over k. Then A ~ k[U] if and only if A admits a non-trivial exponential map.
As a consequence , if R = A[X] (AY) then AK(R) = k if and only if A = k1.

Proof. 1t is easy to see that a k algebra homomorphism 1 : k[U] — k[U][T] such that
Y(U) = U + T is an exponential map.

Suppose ¢ : A — A[T] is a non-trivial exponential map. Let C' denote the ring of ¢-
constants. Then k C C and, by (Lemma ), 3 c( 0) € C such that A[1/d = C[1/q".
Hence tryC = dim(A) — 1 = 0. Therefore, as k is algebraically closed, k = C and ¢ € k*
Therefore A = k[,

Now if A = k! then R = k% and therefore, by (Lemma, AK(R) = k. Conversely,
if AK(R) = k, then A must admit a non-trivial exponential map (see Remark and
hence A = klU.

&

Theorem 3.6 (A-E-H Theorem). Let k be an algebraically closed field and let A and B
be affine domains of dimension 1 over k. Suppose A[X| = B[Y]. Then A ~ B. Moreover
if A#kM then A = B.

Proof. Let A[X] = R = B[Y]. Assume that A = kl). Then R = k2 and hence, by
(Lemma [2.23), AK(R) = k. Therefore , as R = B[Y], by , B =K. Thus A~ B.
Now suppose A # kI, Then, by (Lemma ), A does not admit any non-trivial
exponential map. Therefore, by (Proposition , AK(R) = A. Since R = B[Y]
and AK(R) # k, by (Lemma , B#k and hence B does not admit any non-trivial
exponential map. Therefore again ,by (Proposition 2.18), AK(R) = B. Thus A =
AK(R) = B. &
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Chapter 4

Cancellation theorem for kX, Y]

In this section we prove the following theorem. This theorem was originally proved by
Miyanishi-Sugie and Fujita using geometric methods ([5], [8]). The (algebraic) proof
presented here is due to Crachiola and Makar-Limanov([3]).

For the proof of this theorem, we need the following lemma

Lemma 4.1. Let B be a domain containing the field of rationals. Let d : B — B be
a non-zero locally nilpotent derivation and let A = ker(d). Suppose for a € B, a # 0,
d(a) € aB, then a € A.

Proof. Since B contains the field of rationals, by Remark d gives rise to a non-trivial
exponential map ¢ : B — B[T] such that A is the ring of ¢-invariants.

Suppose a € A. Then, as d is locally nilpotent ,3 n > 1 such that d"(a) # 0 but
d"™(a) = 0. Therefore d"(a) is a non-zero element of A. Since d(a) € aB, it is easy to
see, d"(a) € aB. Let d"(a) = ac, ¢ € B. Therefore, as A is factorially closed in B, a € A

which is a contradiction.

)

Theorem 4.2. Let k be an algebraically closed field of characteristic 0. Let B be an
affine domain of dimension 2 over k such that BY = k¥, Then B = k.

Proof. Let BW] = R = k[X,Y, Z]. Then AK(R) = k (by Lemma|2.23)). Since R = B[W],
and AK[R] # B, by Proposition m, B admits a non-trivial exponential map ¢. Since B
contains the field of rationals, by Remark [2.12] ¢ gives rise to a non-zero locally nilpotent

17
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derivation d : B — B such that B? = ker(d) = A.
Claim: A = kl!.

Proof. Since B[W] = k[X,Y,Z], B is a UFD and hence, by Lemma [2.13, A is a UFD
such that trpA = tr,B — 1 = 1(by Lemma [2.15)). Since &k C A C k[X,Y, Z], A = k[U]
(kM) by Proposition [2.2 &

Therefore, to prove B = k2, it is enough to prove that B = Alll.

Note that since BlW| = k[X,Y, Z|, B is an affine domain over k. Let B = k[z1, 25...2,] and
let a = ged(d(z1), ...d(z,)). Then it is easy to see that d(B) C aB. Hence , by 1.1} a € A.
Let d; = a™'d. Then, as d(B) C aB and a € A = ker(d), it is easy to see that d; : B — B
is a (non-zero) locally nilpotent derivation of B such that A = ker(d;). Therefore,
replacing d by d;, we assume without loss of generality that ged(d(z1),..d(z,)) = 1.
Note that A = ker(d), B is UFD and A = k[U]. Hence V X € k, (U — \) is a prime
element in B such that d((U — A\)B)) C (U — \)B. Hence d induces a locally nilpotent
derivation dy : B/(U — \)B — B/(U — X\)B. Since U — X t d(z;) for some i, d is a
non-zero locally nilpotent derivation. Hence, as dim(B/(U — A)B) = 1, by Lemma
B/(U—\)B = kW,

Let I = d(B)N A. Note that, as A = ker(d), d # 0, I is a non-zero ideal of A. In view
Lemma to prove that B = Al it is enough to show that I = A. Since A = k[U],
I = f(U)A. Therefore, to prove that I = A, it is enough to show that degree; (f) = 0.

Assume that degree; (f) =n > 1. But then , since k is algebraically closed, I\ € k
such that U — X\ | f. Let W € B be such that d(W) = f. Let W denote the image of W
in B/(U — \)B. Then W € ker(dy). By the choice of d, dy is a non-zero locally nilpotent
derivation on B/(U — \)B = kl!l. Therefore W € k. This implies that 33 € k such that
W —p8 = (U-=M\V for some V € B. Therefore f(U) = d(W) = (U — \)d(V). Hence
d(V) e d(B)nA=1= f(U)A which leads to a contradiction.

Thus I = A and hence B = Al = k1 [ 3



Chapter 5
Example of Danielewski

In this and subsequent section we present some examples to show that the (cancellation)
question mentioned in the introduction does nor have an affirmative answer in general.
These examples involve rings of the type C[U,V]/(U*V — g) where C' is a polynomial
algebra over a field k and g € C'\ k.

For simplicity of notation we denote C[U, V]/(U?V — g) by B and by u, v images of
U, Vin B. Then B= € B, where By=C, B_;=Cu' (i > 1), Byj_1 = Cut? (j >

—oo<n<oo

1), By, = Cv" (r > 1). Moreover u is transcendental over C' and B[1/u] = Clu,u™!].
Now we proceed to give an example of Danielewski. k will denote an algebraically
closed field of characteristic 0.
Let B = k[U,V,W]/(U?*V — W? —1). We denote by u,v,w images of U,V,W in B.
It is easy to see that B is an affine domain of dimension 2 over k£ and k-subalgebras
klu,v], klu, w], k[v, w] of B are polynomial algebras in two variables over k.

We first prove some properties of locally nilpotent derivations on B.

Lemma 5.1. Let d be a non-zero locally nilpotent derivation on B. Then ker(d) Nk[w] =
k = ker(d) N klv].

Proof. Note that since ker(d) is factorially closed in B, k C ker(d) and k is algebraically
closed, ker(d) N k[w] & k would imply that ker(d) N k[w] = k[w]. But then, since u?v =
w? + 1, u,v € ker(d) contradicting the fact that d is non-zero. Hence ker(d) N k[w] = k.

Note that, since k is algebraically closed and char.(k) = 0, for every A € k\ (0)
B/(v—2\) ~ k[u,w]/(AMu? —w?—1) ~ k[t,t~'] (Laurent polynomial algebra in one variable

19
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over k). Therefore, for A € k\ (0), v — A is a prime element of B such that B/(v — \)
does not admit any non-zero locally nilpotent derivation.

Since d is non-zero, 3 b € B such that d(b)#0 and hence v — 3 does not divide d(b)
for some 5 € k\ (0). If ker(d) N k[v]#k, then arguing as above we see that k[v] C ker(d).
Therefore d(v — ) = 0. Therefore, by Lemma [2.16] we see that d induces a non-zero
locally nilpotent derivation on B/(v — (3) ; a contradiction.

Hence ker(d) N k[v] = k.

&

Lemma 5.2. Let d be a derivation on B given by d(u) = 0, d(w) = v?, d(v) = 2w.

Then d is a non-zero locally nilpotent derivation on B such that ker(d) = k[u].

Proof. 1t is easy to see that d is locally nilpotent and k[u] C ker(d). Since B[l/u] =
ku, u=[w](= ku, u=™) and k[u] = B N ku, u™"], k[u] is algebraically closed in B and
hence k[u] = ker(d).

)

Proposition 5.3. Let B = k[U,V,W]/(U*V — W? — 1). The Makar-Limanov invariant
AK(B) = klu).

Proof. In view of Lemma [5.2 we have k C AK(B) C k[u]. To complete the proof it is
enough to show that if D is a non-zero locally nilpotent derivation then k[u] C ker(D).
Since D is non-zero and tr.deg,(B) = 2, we get that tr.deg, (ker(D)) = 1. Since k[u] is
algebraically closed in B, k[u] C ker(D) if and only if k[u] = ker(D). Since ker(D) is
algebraically closed in B, k[u] = ker(D) if and only if ker(D) C k[u]. Now we proceed to
prove that ker(D) C k[u].

Recall that B = @ B, where By = kw|,B_; = klwu' (i > 1), By =

—oo<n<oo

klwluv? (7 > 1), Ba, = k[w]v" (r > 1).

Suppose 3 g € ker(D) such that g¢€k[u]. Then hwf(g) € B,, n > 0 and hwf(g)¢k.
By Theorem , there exists a non-zero derivation D over B such that if C' = ker(D)
then

.C= @ CnB

—00<1< 00

2. hwf(g) e CN B,.
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Since hwf(g)¢k and n > 0 either hwf(g) € k[w] \ k or it is divisible by v. Therefore,
since C' is factorially closed in B, we get that either k[w] C C or k[v] C C which is a
contradiction in view of Lemma [5.1]

Therefore ker(D) C k[u] and hence AK(B) = k[u].
&

Proposition 5.4. Let B = k[U,V,W]/(U?V —W?—1) and R = B[Y] (BY). Let d be a
locally nilpotent derivation on R defined as: d(u) =0, d(w)=u? d(v)=2w, d(Y)=u
and let A = ker(d). Then

1. R= Al and
2. AK(A) =k
Proof. . Let f =uY —w € R. Then clearly, d(f) = 0. Note that

fAH1=u*Y? +w? - 2uwY +1
= u?Y? +u?v — 2uwY (5.0.1)
= u(uY? + uv — 2wY)

Let g = uY? + uwv — 2wY. Then f? + 1 = ug. Since d(f) =0, d(f*+ 1) = 2d(f) = 0.
Thus, d(ug) = 0 and hence, u, g € A.

To show that R = Al it is enough to show that 3 X € R such that d(X) = 1. Since
ug = f2+1, u, f are co-maximal. Let X; = (Y? — v)/2. Then we have

d(X1) =Yd(Y) —d(v)/2
=uY —w (5.0.2)
=/
Now consider X = gY — fXj, then d(X) = gu— f? = 1. Thus, by Lemma [2.14 R = A[X]
(AM)
Now we proceed to prove that AK(A) = k.
Claim: A = k[u, g, f]

Proof. Since u, f,g € A, klu, g, f] C A. Let C denote the k-subalgebra k|u, g, f] of A.
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Note that B[1/u] = k[u, v !][w] (k[u,u"]M). Therefore

R[1/u] =

Eluu[w,Y]
T (5.0.3)
= O[1/ulw] (ie. O[1/u]")

On the other hand, since d(Y) = u and A = ker(d), we have R[1/u] = A[l/u][Y]
(A[1/u]™). Therefore, as C' C A, we have C[1/u] = A[1/u]. Hence to prove the claim it is
enough to show that C' N uA = uC'. Since ANuR = uA (A being kernel of d), it enough
to show that C' N uR = uC i.e. the canonical homomorphism C/uC — R/uR is injective.

Note that C' is an affine domain of dimension 2 over k. Let 0 : k[T, T2, T3] — C be a

surjective homomorphism given by

Q(Tl) = U
0(T>) =g (5.0.4)
0(Ts) = f

Since ug = f%2+ 1, ker(d) = (I\Ty — T5% — 1) i.e C ~ [Ty, T, Ts]/(T\Ty — T3> — 1).
Therefore k[f]/(f% + 1)[g] = C/uC ~ k[T3]/(T3* 4+ 1)[T3] (a polynomial algebra in one
variable over k[T3]/(T5% + 1)).

Now R/uR = k[w]/(w* + 1)[v,Y] (a polynomial algebra in two variables v,Y over
k[w]/(w*+1)) and under the canonical homomorphism C/uC' — R/uR image of f = image
of —w in R/uR and image of g = —2wY. Therefore the homomorphism C/uC — R/uR
is injective and hence C' = A.

Thus the claim is proved

)

Since A ~ k[Ty, T, T3] /(Th Ty — 5% — 1), it easy to see that there exists two non-zero
locally nilpotent derivations dq,dy on A such that di(u) = 0 = da(g). As k[u] and k[g]
are algebraically closed in A we have ker(d;) = k[u] and and ker(ds) = k[g]. Hence
k C AK(A) C k[u] Nk[g] = k.

Thus AK(A) = k.
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Corollary 5.4.1. Let B, R, A be as in Proposition [5.4] Then A is stably isomorphic to
B but A#B.

Proof. Since A[X] = R = BI[Y], A is stably isomorphic to B. Since AK(B) = k[u]| and
AK(A) = k, A is not isomorphic to B )
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Chapter 6
Example of Neena Gupta

In this section we present an example (due to Neena Gupta) of a three dimensional
affine domain R over an algebraically closed field k of positive characteristic such that
R = kM but R#£KP!, thus showing that even Zariski cancellation problem does not have
an affirmative answer in general in the case the base field has a positive characteristic.
The proof of the fact that R#kP! is quite involved and we need series of results which
will be stated without proof.

In what follows k will denote an algebraically closed field of characteristic p > 0. The
following result is due to Russell and Sathaye ([10])

Lemma 6.1. Let G € k[Z,T] be a prime element. Suppose 3 h € k[G] such that
k[Z,T,1/h]) = k[G,1/hY then k[Z,T] = k[G] i.e. G is a variable in k[Z, T).

Next proposition is an easy consequence of the above lemma.

Proposition 6.2. Let ¢ be a non-trivial exponential map on k[Z, T](k!?). Let A denote
the ring of ¢-invariants. Then A = k[G] and k[Z, T] = AW (i.e. G is a variable in k[Z, TY).

Proof. Since k[Z,T] is a UFD, by Lemma [2.13] A is also UFD. Since ¢ is non-trivial,
try(A) =1land k C A C k[Z,T]. Hence A = k!l by PropositionLet A = k[G]. Since A
is the ring of ¢-invariants, by Lemma , 3h € k[G] such that k[Z,T,1/h] = k[G,1/h]".
Hence, by Lemmal[6.1] G is a variable in k[Z, T).

&

A proof of following result can be found in Nagata’s book entitled ” Automorphism

group of k[Z, T ([9])

25
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Proposition 6.3. Let £ be an algebraically closed field of positive characteristic p
and let ¢ = p+ 1. Let o : k[Z,T] — k[U| be a k-algebra homomorphism defined as:
o(Z)=U+UP o(T)=U". Let F =T +T" — Z?". Then

1. ker(o) = (F)

2. o is surjective and hence k[Z,T]/(F) = k[U]

3. Fis not a variable in k[Z,T].

The following result is due to Asanuma ( [2], Theorem 5.1 and Corollary 5.3.).

Theorem 6.4. Let F € k[Z,T) be as in Proposition[6.3} Let R = k[U,V, Z,T]/(U*V —F).
Then RM = kM.

In what follows we assume that & is an algebraically closed field of positive characteristic
p>3,q=p+1, F=T+Tr — 2" € k[Z,T] and R = k[U,V, Z,T)/(U*V — F). u,v
will denote images of U,V in R. We regard k[Z,T| as a k-subalgebra of R

Note that, by Proposition 6.3 k[Z,T]/(F) = k!l but F is not a variable in k[Z, T).
Moreover, by Theorem [6.4] RI' = k1],

The following lemma is about non-trivial exponential maps on R.

Lemma 6.5. Let ¢ be a non-trivial exponential map on R. Then FZRY (the ring of

Y-invariants).

Proof. . Note that for every non-zero A € k, the canonical map k[Z,T] — R/(u — \) is
an isomorphism sending F to the image of A\?v. This shows that v — \ is a prime element
of R for every non-zero \ € k.

Let C denote RY. Since C is factorially closed in R, F' € C implies that u,v € C.
Since 1) is non-trivial, it is easy to see that 3 5 € &\ (0) such that ) induces a non-trivial
exponential map 1 on R/(u — ) = k[Z,T]. Moreover, v € C implies 1)(F) = F, thus
showing that F is an element of the ring of t/-invariants. By Proposition [6.2 k[G] is the
ring of t/-invariants for some variable G € k[Z, T]. Hence F € k[G]. Now F is a prime
element of k[Z,T] and k is algebraically closed. Therefore k[G] = k[F]. This means that
F'is also a variable in k[Z, T| which is a contradiction in view of Proposition [6.3]

Thus FZRY. [ 3
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Lemma 6.6. Let k be an algebraically closed field such that char.k # 2. Let f € k[W]
be such that k[U, W]/(U? — f) = kl!l. Then f is a variable in k[W].

Proof. Let k[U,W1/(U?* — f) = k[X]. Then k[W] C k[X] and k[X] is a free k[WW]-module
of rank two. This show that degy (W) = 2.

Let W = ag + a1 X + oo X? with o; € k and «y is non-zero. Without loss of generality
we assume that oy = 1. Recall that char.(k)#2. Let X; = X +1/2a;. Then W = X,*+ 3
for some f € k. Let Wy =W — .

Now k[X] = k[X1], k[W] = k[W}] and X,* = W,. Hence k[X] is a free module over
k[W] with a basis (1, X;) Since k[X] = k[U, W]/(U? — f), (1,u) is also basis of k[X] over
k[W]. Since u?> = f € k[W] and X;* = W, and char.(k) # 2 we see that u = X for
some non-zero A € k. Therefore u? = f = A\?T¥;. Hence f is a variable in k[WW].

)
The following proposition of Neena Gupta is very crucial in proving that R#k[.

Proposition 6.7. Let k be an algebraically closed field of positive characteristic p > 3,
g=p+1, F=T+Tr — 27 ¢ k[Z,T] and R = k[U,V, Z,T]/(U?V — F). Let ¢ be a
non-trivial exponential map on R. Then the ring R? of ¢-invariants is a k-subalgebra, of
klu, Z,T] .

Proof. We begin our proof with some observations.
Recall that R = @ Rn where RO = ]{P[Z, T], R—i = Roui (Z Z ].), R2j—1 =

—oo<n<oo

Rouv? (j > 1), Ry = Rov" (r > 1). Therefore every element of R,, (n > 1) is divisible by
v. Moreover @ R, =k[u, Z,T] (kB¥) and @ Ry = kv, Z,T] (kB).

—o00o<n<0 0<2r<oo
Let ¢ be a non-trivial exponential map on R. We prove the proposition by showing

that we get a contradiction if the ring R? of ¢-invariants is not contained in k[u, Z, T'.

Now suppose R? is not contained in k[u, Z, T]. Then there exists ¢ € R? such that
hwf(g) € R,, for some n > 1 and hence is divisible by v. Moreover, by Theorem , 0]
induces a non-trivial exponential map 1 : R — R[T] such that if A = R¥ then

LA= @ (ANR)

—oo<n<oo

2. hwi(g) € A.
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Since v divides hwf(g) and A is factorially closed in R, v € A. But, by [6.5] F¢A
and hence u¢ A. This shows that, since A is a factorially closed graded k- subdomain
of R, A= @ (AN Ry ) and hence k[v] C A C k[v, Z,T]. Note that A is UFD and

0<2r<oco

tri(A) = 2 = trgp(A) + 1. Therefore, by Proposition , A = ko]
Claim A = k[v, G| for some G € k[Z,T].

Proof. Note that A is graded, factorially closed in R, A C k[v, Z,T] and Ry, = k[Z, T|v"
if r > 0. Therefore , if C' = ANEK[Z,T], then A= & Cv". As A is factorially closed in

0<2r<oco

R, C is factorially closed in k[Z,T] and hence C'is a UFD. Since tr;(A) = 2 and F¢&A, we
get that k C C C k[Z,T] and tr,(C) = 1. Therefore, by Proposition 2.2, C' = k[G](k1).
Thus claim is proved. &

Now we show that k[Z, T] = k[G]™.

Since A = RY, by Lemma , 3 h € A such that R[1/h] = A[1/h)". Since
A[l1/h] C k[v,Z,T)[1/h] C R[1/h] and k[v,Z,T] = kB! is UFD, by Proposition
k[v, Z,T)[1/h] = A[1/h]". Let 8 € k* be such that v — 8 does not divide & in A and hence
in R as A is factorially closed in R. Note that, as R/(v—0) = k[U, Z,T]/(BU?*—F') we have
k[Z,T] C R/(v—f)R. This shows that (v—8)RNk[v, Z,T] = (v—B)k[v, Z,T| and hence
we get that k[G] = A/(v— B)A C kv, Z, T/ (v — B)k[v, Z,T) = k[Z,T] C R/(v — B)R.

For simplicity of notation we denote R/(v — B)R by B. Recall that R[1/h] =

A[1/h)™. Therefore, if h denotes the image of h in A/(v — B)A = k[G], we get

that k[G][1/h] C k[Z,T|[1/h] C B[1/h] = k’[G,l/B]m. Hence, by Proposition
k[Z, T)[1/h] = k|G, 1/A]". Therefore, by Lemma [6.1] k[, T] = k[G)". Let k[2,T] =
k[G, W]

Now we consider F' as a polynomial in W with coefficients in k[G]. Since F'¢A
and k[G] C A, we get that F'¢k[G]|. Therefore degy, (F) = n > 1. Let a(G) be the
leading coefficient of F' (as a polynomial in W). It is easy to see that 3 A € k such
that G — A does not divide h as well as a(G). Then, if f denote the image of F in
kG, W]/(G — \) = k[W] we get that degy, (F) = n = degy, (f). Moreover, as h € k[G],
the image of h in k[G]/(G — ) is an element of k*.

As R[1/h] = A[1/h]"*, h is not divisible by v — § (in R) and v — 8 € A, we have

Alt/m,
R[1/h)/(v = B) = A[1/h)/(v — B)" ie. B[1/R] = k[G][1/R]1
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Note that R/(v — ) = B = k[U,Z,T|/(BU* — F) = k|U,G,W]/(BU? — F) and
k[G] = A/(v— B)A C klv,W,G]/(v — B)k[v, W, G] = k|G, W] C B. B[1/h] = k|G, 1/h]™.
Therefore, using the fact that G — X is co-maximal to h, we get that k[U, W]/(3U?% —
f) = B/(G — \) = k.. Therefore, by Lemma , f is a variable in k[W] and hence
degy (F) = n = degy (f) = 1.

Thus F = 6(G) + a(G)W.. Since k[Z,T|/(F) = kM, a(G) € k*. Therefore F must be
a variable in k|G, W] = k[Z, T] which is a contradiction.

Therefore R® C k[u, Z, T]. Thus the proposition is proved.

)

As a consequence of the above proposition we have the following theorem ([6]) which
shows that Zariski cancellation problem does not have an affirmative answer in general in

the case the base field has a positive characteristic.
Theorem 6.8. Let k, k[Z,T], F, R be as in Proposition . Then RM = kM but R#AKE.

Proof. By Theorem , R = kM On the other hand, by Proposition the Derksen
Invariant DK (R) is a k-subalgebra of k[u, Z, T] and hence DK (R) # R. Hence R # kP,

as DK (kBl) = kB (see Lemma [2.23)). )
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