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Abstract
Let k be an algebriacally closed field and A,B be finitely generated (affine) k-domains.

A is said to be stably isomorphic to B if the polynomial algebra A[X](in one variable) is

k-isomorphic to the polynomial algebra B[Y ]. Keeping this definition in mind, we now

state one of the important problems in affine geometry.

Question:Let A,B be affine domains such that A is stably isomorphic to B. Is A

isomorphic to B as k-domains?

This problem has been investigated by many well-known mathematicians. In this thesis,

we report on the progress achieved so far regarding this problem.
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Chapter 1

Introduction

Let k be an algebraically closed field and let A,B be affine k-domains.A is said to be

stably isomorphic to B if A[X](in one variable) is k-isomorphic to B[Y ]. Keeping this

definition in mind, we now state one of the important problems in affine geometry.

Question:Let A,B be affine domains such that A is stably isomorphic to B. Is A

isomorphic to B as k-domains?

Note that if A is a polynomial algebra over k then the above problem is known as the

“Zariski Cancellation Problem”.

Abhyankar, Eakin and Heinzer have shown that if dim A = 1, then the above question

has an affirmative answer ([1]).

If dimA = 2, then Danielewski (in his unpublished paper) has shown by an example

that the answer to this question is not always affirmative even if k is a field of complex

numbers.

However if k is a field of characteristic 0, and A = k[X, Y ] a well known result of

Miyanishi-Sugie and Fujita says that the question has an affirmative answer ([5], [8]).

Recently, Neena Gupta has shown by an example ([6]) that the above question does not

have an affirmative answer in general if characteristic of k is p(p > 0) and A = k[X, Y, Z].

In this thesis, we first present the original proof of Abhyankar, Eakin and Heinzer theorem

(A-E-H theorem). We also give an alternative proof to the same. The original proof of

Miyanishi-Sugie and Fujita of the cancellation theorem for k[X, Y ] is highly geometric and

needs deep results from projective geometry. However, Crachiola and Makar-Limanov([3])

have given an algebraic proof which we have presented here.
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2 CHAPTER 1. INTRODUCTION

The main ingredient of our alternative proof of A-E-H theorem, the algebraic proof of

Crachiola and Makar-Limanov (on the cancellation of k[X, Y ]) and Neena Gupta’s result

is the notion of exponential map which has been studied by Crachiola and Makar-Limanov

in their paper ([3]).

Let A,B be affine k-domains such that A[X] ∼= B[Y ]. Let σ : A[X] → B[Y ] be an

isomorphism. Then σ(A)[σ(X)] = B[Y ]. Therefore, by identifying A with σ(A) and X

with σ(X), we can formulate the above question as follows,

Question: Let R be an affine domain of dimension n ≥ 1 over a field k and let A,B

be affine k-subdomains of dimension n − 1 such that A[X] = R = B[Y ].Is A ' B as

k-domains?

The layout of this thesis is as follows. In Chapter 2, we give relevant definitions and

results. In Chapter 3, we present original as well as an alternative proof of A-E-H

theorem. Chapter 4 is devoted to presenting the algebraic proof given by Crachiola and

Makar-Limanov (of cancellation for A = k[X, Y ]). Chapter 5 deals with the example

given by Danielewski. Chapter 6 deals with the result of Neena Gupta.



Chapter 2

Preliminaries

In this section we define the terms used in the thesis, recall a few well-known results,

and prove a few lemmas for later use. Throughout this thesis all rings considered are

commutative with identity.

For a ring C, C [n] will denote a polynomial ring in n variables over C.

We begin with the following lemma.

Lemma 2.1. Let A be a domain containing a field k. Assume that trk(A) = 1. Then

dim(A) ≤ 1.

Proof. Assume that dim(A) ≥ 2. Then there exists a non-zero prime ideal P of A which

is not maximal. Let m be a maximal ideal of A containing P . Since P is non-zero ∃ x ∈ P
such that x 6= 0. Since P 6= m ∃ y ∈ m \ P . Let C = k[x, y] be the k-subalgebra of A

generated by x, y.

Let Q1 = C ∩ P and Q2 = C ∩ m. Then, as x ∈ Q1, Q1 is a non-zero prime ideal

of C such that Q1 ⊂ Q2. Note that Q2 is a prime ideal of C. Moreover, by choice of y,

y ∈ Q2 \Q1. This shows that the non-zero prime ideal Q1 is properly contained in the

prime ideal Q2. Hence dim(C) ≥ 2.

Since C is an affine domain over k, trk(C) = dim(C) ≥ 2. Therefore, as k ⊂ C ⊂ A,

we have 1 = trk(A) ≥ trk(C) ≥ 2 which is a contradiction. Hence dim(A) ≤ 1. ♣

The following proposition is an easy consequence of the above lemma and is used very

often.

3



4 CHAPTER 2. PRELIMINARIES

Proposition 2.2. Let A,B be unique factorization domains such that A ⊂ B ⊂ A[n].

Assume that trA(B) = 1. Then B = A[1].

Proof. Let us write A[T1, · · · , Tn] for A[n]. Let M = (T1, · · · , Tn) be a prime ideal of

A[T1, · · · , Tn] and P = M ∩ B. Then it is easy to see that P ∩ A = 0 and A ⊂ B/P ⊂
A[T1, · · · , Tn]/M = A. Thus B/P = A and hence, as trAB = 1, P is a non-zero prime

ideal of B.

Let S = A\ (0). Then S−1(A) = K is the quotient field of A and we have the inclusion

of rings K ⊂ S−1(B) ⊂ K[T1, · · · , Tn]. Since trKS
−1(B) = trA(B) = 1, by Lemma 2.1,

dim S−1(B) = 1. Since P ∩ A = 0 and P is non-zero, P is a prime ideal of B of height

one. Therefore, as B is UFD, P is a principal ideal of B.

Let P = (G). Now we prove that B = A[G] (A[1]).

Let b ∈ B. We show that b ∈ A[G] by induction on the degree l of b as an element of

A[T1, · · · , Tn].

If l = 0 then b ∈ A and hence b ∈ A[G]. Now assume that l ≥ 1. Since A = B/P = B/(G),

there exists a ∈ A such that b − a ∈ (G). Let b − a = cG, c ∈ B. Note that

G ∈ (T1, · · · , Tn) and hence degree of G (as an element of A[T1, · · · , Tn]) is positive

and hence degree of c < l. Therefore, by induction hypothesis, c ∈ A[G] and hence

b ∈ A[G]. ♣

2.1 Conductor Ideal

Definition 2.3. Let A ↪→ B be an inclusion of domains. Let M = B/A, a module over

A. The conductor ideal of B over A is defined to be AnnAM.

Lemma 2.4. Let A ↪→ B be an inclusion of domains. Let I be the conductor ideal of B

over A. Then IB = I

Proof. Since I is the conductor ideal, it is easy to see that I ⊂ IB ⊂ A. Let IB = J . Now

J is an ideal of A such that JB = IBB = IB = J . Hence J annihilates the A-module

B/A. Thus J ⊂ AnnA(B/A).Therefore I = J = IB ♣

Lemma 2.5. Let A ↪→ B be an inclusion of domains and let I be the conductor ideal of

B over A. Assume that A is Noetherian. Then I 6= 0⇔ B is a finite A-module and B

and A have the same quotient field.
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Proof. Let 0 6= a ∈ I. Then (0) ( aB ⊂ A. Thus aB is an ideal of A and hence is a

finitely generated A-module as A is Noetherian. Since aB ∼= B as an A-module, B is a

finite A-module. Moreover, for every b ∈ B, c = ab ∈ A. Hence b = c/a. Thus B and A

have the same quotient field.

Conversely, assume that B is a finite A-module and B and A have the same quotient

field K. Let B =
n∑
i=1

Axi. Since xi ∈ B ⊂ K, we have xi = yi/ai such that yi, ai ∈ A and

ai 6= 0. Let a =
∏
ai. Then a 6= 0 and axi ∈ A, ∀ i (1 ≤ i ≤ n). Therefore, aB ⊂ A and

hence a ∈ I = AnnAB/A ♣

Remark 2.6. Let k be a field and let A be an affine domain over k. Let Ā be the integral

closure of A in its quotient field K. Then Ā is a finite A-module having quotient field K.

Therefore the conductor ideal I of Ā over A is a non zero ideal of A.

Lemma 2.7. Let A be an affine domain over a field k with quotient field K and let Ā

be its integral closure in K. Let I be the conductor ideal of Ā over A. Let R = A[X] and

R̄ = Ā[X]. Then the conductor ideal of R̄ over R is IR̄ = IR (i.e. IĀ[X] = IA[X]).

Proof. Let J ⊂ Ā[X] be an ideal such that J ⊂ A[X]. We need to show J ⊂ IĀ[X] =

IA[X].

Let f=
∑

0≤l≤n
alX

l ∈ J . Then al ∈ A ∀ l. Let b ∈ Ā. Then b.f =
∑

0≤l≤n
b.alX

l ∈ J ⊂ A[X].

Therefore b.al ∈ A for ∀ l. Thus, for ∀ b ∈ Ā, b.al ∈ A. This implies alĀ ⊂ A i.e. al ∈ I.

Hence J ⊂ IA[X]. Thus IA[X] = IĀ[X] is the conductor ideal of R̄ over R. ♣

2.2 Locally Nilpotent derivation, Locally finite iter-

ative higher derivation and Exponential Map

2.2.1 Local Nilpotent Derivation (LND)

Definition 2.8. Let B be a domain. A group homomorphism d : B → B is called locally

nilpotent derivation(LND) if

1. d(ab) = ad(b) + bd(a) a, b ∈ B.

2. For every b ∈ B, ∃ a positive integer n(depending upon b) such that dn(b) = 0.
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2.2.2 Locally finite iterative higher derivation

Definition 2.9. Let B be a domain. A locally finite iterative higher derivation on B is a

sequence di : B → B (0 ≤ i <∞) of functions satisfying following properties.

1. d0 = id.

2. dn(a+ b) = dn(a) + dn(b) a, b ∈ B.

3. dn(a.b) =
n∑
i=0

di(a)dn−i(b).

4. didj =
(
i+j
i

)
di+j.

5. For b ∈ B ∃ n0 ∈ N (depending on b) such that dn(b) = 0 for ∀ n ≥ n0

2.2.3 Exponential Map

Definition 2.10. Let B be a domain and di : B → B (0 ≤ i < ∞) be a locally finite

iterative higher derivation. A ring morphism φ : B → B[T ] defined by

φ(b) =
∑

di(b)T
i

is called the exponential map (associated to a sequence di (0 ≤ i <∞)).

2.2.4 Ring of φ-invariants

Definition 2.11. Let B be a domain and let φ : B → B[T ] be the exponential map

associated to a locally finite iterative higher derivation di(0 ≤ i < ∞) . Let Bφ = {a |
a ∈ B, φ(a) = a} (equivalently Bφ = {a | di(a) = 0 ∀ i ≥ 1}) Then Bφ is called the ring

of φ-invariants. We say φ is non-trivial if Bφ 6= B

Remark 2.12. Let B be a domain and di (0 ≤ i <∞) be a locally finite iterative higher

derivation on B. Then d1 is a locally nilpotent derivation on B. Morever, if B contains

the field of rationals, then di =
di1
i!

(∀ i ≥ 1). Conversely, if B contains the field of rationals

and d is a locally nilpotent derivation, then di = di/i! is a locally finite iterative higher

derivation on B. Thus, if B contains the field of rationals then every locally nilpotent

derivation d : B → B gives rise to the exponential map φ on B such that Bφ = ker(d).
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Let di (0 ≤ i < ∞) be a locally finite iterative higher derivation on B and let

φ : B → B[T ] be the corresponding exponential map Assume that φ is non-trivial. Let

b ∈ B be such that the degTφ(b) = n (n ≥ 1). Let φ(b) =
n∑
i=0

diT
i. Then dn(b) 6= 0 and

dn(b) ∈ Bφ.

Lemma 2.13. Let φ : B → B[T ] be an exponential map and let A = Bφ. Then

1. A is factorially closed in B i.e. for b, c ∈ B − {0}, if bc ∈ A then b ∈ A and c ∈ A.

2. A∗ = B∗

3. For a ∈ A A ∩ aB = aA

4. If a ∈ A is a prime element of B then a is a prime element of A also.

5. A is algebraically closed in B.

6. If B is UFD, then A is UFD.

Proof. Properties 2, 3, 4, 5 and 6 follow easily from 1.

Since A = φ−1(B), and B is factorially closed in B[T ], the result follows. ♣

Lemma 2.14. Let B be a domain and φ : B → B[T ] be an exponential map. Let A be

the ring of φ-invariants. Suppose ∃ b ∈ B such that φ(b) = b+ T . Then B = A[b] (A[1]).

In particular, if B contains the field of rationals and d : B → B is a locally nilpotent

derivation with A = ker(d) such that d(b) = 1 for b ∈ B, then B = A[b] (A[1]).

Proof. Since b ∈ B−A, by Lemma 2.13, b is transcendental over A. Let c ∈ B. We prove

the result by induction on degTφ(c).

If degTφ(c) = 0, then c ∈ A and hence c ∈ A[b].

Assume degTφ(c) ≥ 1. Let φ(c) =
n∑
i=0

di(c)T
i. Then dn(c) ∈ A. Therefore,

φ(c− dn(c)bn) = φ(c)− φ(dn(c))φ(bn)

= φ(c)− dn(c)(φ(b))n

= φ(c)− dn(c)(b+ T )n
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Clearly, φ(c− dn(c)bn) is a polynomial such that degTφ(c− dn(c)bn) ≤ n− 1. Therefore,

by induction hypothesis, c− dn(c)bn ∈ A[b]. Let c′ = c− dn(c)bn. Then c = c′ + dn(c)bn.

As dn(c) ∈ A and c′ ∈ A[b], we see that c ∈ A[b]. Thus B = A[b] ♣

The next lemma is proved in [3]

Lemma 2.15. Let φ : B → B[T ] be a non-trivial exponential map on a domain B. Let A

be the ring of φ-invariants. Then there exists a non-trivial exponential map φ1 : B → B[T ]

and b ∈ B such that Bφ1 = A and φ1(b) = b+ aT a 6= 0. As a consequence, a ∈ A and

B[1/a] = A[1/a][b] (A[1/a][1]). Hence trAB = 1. Therefore, if B is an affine domain of

dimension n over k, then trkA = n− 1.

Lemma 2.16. Let B be a domain and let φ : B → B[T ] be the exponential map

corresponding to a locally finite iterative higher derivation (di, 0 ≤ i <∞) on B. Let A

be the ring of φ-invariants. Let z ∈ A be such that z is a prime element of B (and hence

of A). Assume that for some j ≥ 1, dj(B)6⊂zB. Then φ induces a non-trivial exponential

map φ̄ on B/zB.

Proof. Since z ∈ A we have di(z) = 0 ∀ i ≥ 1. Therefore di induces a map δi : B/zB →
B/zB for i ≥ 1. Let δ0 be the identity map of B/zB. As z ∈ A, it is easy to see that the

sequence (δi, 0 ≤ i <∞) defines a locally finite iterative higher derivation on B/zB and

hence gives rise to an exponential map φ̄ on B/zB. Note that, δj 6= 0 as dj(B) 6⊂ zB.

Hence φ̄ is non-trivial. ♣

Notation

Let R =
⊕

−∞<i<∞
Ri be a graded domain. For g =

∑
m≤i≤n

gi, gi ∈ Ri, gn 6= 0 we say

that gn is the highest weight form of g and we denote it by hwf(g).

Keeping this notation in mind, we state the following version of a result of H.Derksen,

O.Hadas and L.Makar-Limanov as presented in [4](Theorem 2.6) (See also [6], Theorem

2.3).

Theorem 2.17. Let R =
⊕

−∞<i<∞
Ri be a graded domain containing a field k. Assume

that R and R0 are affine domains over k. let φ : R→ R[T ] be a non-trivial exponential

map. Then φ induces a non-trivial exponential map ψ : R→ R[T ] such that if A = Rψ

then
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1. A =
⊕

−∞<i<∞
(A ∩Ri)

2. If g ∈ Rφ then hwf(g) ∈ A.

As a consequence we have the following result.

Proposition 2.18. Let k be an infinite field and let B be an affine domain over k.

Let R = B[Y ]. Assume that B does not admit any non-trivial exponential map. Let

φ : R → R[T ] be an exponential map. Then B ⊂ Rφ. In particular, if φ is non-trivial

then Rφ = B.

Proof. If φ is trivial then Rφ = R and hence we are through.

Assume that φ is non-trivial. If Rφ 6= B then, as Rφ is algebraically closed in R

and transcendence degree of R over Rφ is one, Rφ 6⊂ B. Hence ∃g ∈ Rφ \B. Therefore

degY g = n ≥ 1.

Note that B[Y ] = R =
⊕

0≤i<∞
Ri where R0 = B and Ri = BY i (i ≥ 1). Therefore, by

Theorem 2.17, there exists a non-trivial exponential map ψ : R→ R[T ] such that the ring

A of ψ-invariants contains the element hwf(g). Since degY (g) = n ≥ 1, it follows that Y

divides hwf(g). Hence Y ∈ A. Therefore Y − λ ∈ A (∀ λ ∈ k). Since ψ is non-trivial

there exists F ∈ R such that degTψ(F ) = m ≥ 1. Let f ∈ R be the leading coefficient of

ψ(F ). Since R is Noetherian and k is infinite, ∃ β ∈ k such that f is not divisible by the

prime element Z = Y − β (of R). Therefore, as Z ∈ A, by (Lemma 2.16), ψ induces a

non-trivial exponential map on B = R/ZR which is contradiction. Hence Rφ = B. ♣

2.2.5 Makar-Limanov Invariant

Definition 2.19. Let B be a domain and let EXP (B) denote the set of all non-trivial

exponential maps on B. We define the Makar-Limanov invariant (AK(B)), or the ring of

absolute constants of B as AK(B) =
⋂

φ∈EXP (B)

Bφ where Bφ is the ring of φ-invariants.

Definition 2.20. Let B be a domain. Then the Derksen Invariant of B (DK(B)) is

define to be the subalgebra of B generated by the sets Bφ such that φ is a non-trivial

exponential map.
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Remark 2.21. Let B be a domain which contains the field of rationals. Let LND denote

the set of all non-zero locally nilpotent derivations on B. Then, it is easy to see that (by

Remark 2.12), that AK(B) =
⋂

d∈LND
ker(d)

Remark 2.22. We can restate Proposition 2.18 as follows. Let B be a domain such that

the set EXP (B) = ∅ (i.e. B does not admit any non-trivial exponential map). Then

AK(B[1]) = B.

Lemma 2.23. Let k be a field and let B = k[X1, · · · , Xn] be a polynomial algebra in n

variables over k. Then AK(B) = k and DK(B) = B.

Proof. For 1 ≤ i ≤ n, let φi : B → B[T ] be an exponential map defined as φ(Xj) = Xj

for j 6= i and φi(Xi) = Xi + T . Let Ai denote the ring of φi-invariant. Then it is easy to

see that Ai = k[X1, · · · , Xi−1, Xi+1, · · · , Xn]. Hence AK(B) = k and DK(B) = B. ♣



Chapter 3

Cancellation results for dimension 1

Lemma 3.1. Let k be a field and let f ∈ k[X] be a monic polynomial in X of positive

degree. Then f is transcendental over k and the polynomial algebra k[X] is a finite

module over k[f ].

Proof. Since f ∈ k[X] is a monic polynomial in X of positive degree n, f is of the form

f(X) = Xn...+ a1X + a0 (3.0.1)

Hence f is transcendental over k. To show that k[X] is a finite module over k[f ], we will

show that X is integral over k[f ]. Let

G(T ) = T n...+ a1T + a0 − f (3.0.2)

G(T ) is a monic polynomial in T with coefficients in k[f ] and G(X) = 0. Therefore, X is

integral over k[f ]. Hence, k[X] is a finitely generated k[f ] module. ♣

Lemma 3.2. Let k ↪→ A ↪→ k[X] and k 6= A. Then A is an affine k-algebra. Moreover

k[X] is a finite A-module.

Proof. Since k 6= A, ∃ f ∈ A−k. Since f is not in k, as an element of k[X] , degXf = n ≥ 1.

Let

f = anX
n...+ a1X + a0 (n ≥ 1, an 6= 0) (3.0.3)

Since an ∈ k∗, changing f by a−1n f , we can assume that f is a monic polynomial in X of

11
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degree n ≥ 1. As f ∈ A, we have the following inclusion of k-algebras.

k ↪→ k[f ] ↪→ A ↪→ k[X] (3.0.4)

By Lemma 3.1, k[X] is a finite module over a Noetherian ring k[f ]. Therefore k[f ]-

submodule A of k[X] is a finite module over k[f ] and k[X] is a finite A-module. Hence A

is an affine k-algebra. ♣

Proposition 3.3. Let k ( A ⊂ k[X] be an inclusion of k-algebras. Suppose A is normal.

Then A = k[1].

Proof. Let L be the field of fractions of A. Then we have the inclusion k ( L ⊂ k(X).

By Lüroth’s Theorem, L = k(f) for some f ∈ k(X) such that f is transcendental over k.

Let R = k[1/X](1/X) Then R is a discrete valuation ring such that k[X] 6⊂ R. Therefore,

as k[X] is integral over A, A 6⊂ R.

Let S = R∩L. Then clearly, A 6⊂ S (since A 6⊂ R ). Also S is a subring of R contained in L.

Claim: S is a valuation ring with the field of fractions L.

Proof. Consider the following commutative diagram

R k(X)

S = R ∩ L L

It can be clearly seen from above that S is a valuation ring of L, since we know that R is

a valuation ring of k(X). Also note that S is a proper subring of L. If not, then S = L

and A ⊂ L, therefore A ⊂ S which is a contradiction. ♣

Claim: ∃ u ∈ L such that

1. u /∈ S

2. k(u) = L = k(f)
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Proof. If f /∈ S, then we take f = u. If f ∈ S and f−1 /∈ S, then we take f−1 = u.

Suppose f ,f−1 ∈ S. Therefore f ∈ S∗. Let m(R) denote the maximal ideal of R. Then

clearly, m(R) ∩ S is the maximal ideal of S. Moreover k ⊂ S/m(R) ∩ S ↪→ R/mR. Now

from the construction of R, it is clear that R/m(R) = k. Therefore k = S/m(R) ∩ S.

Let f̄ be the image of f in k. As f ∈ S∗, f̄ ∈ k∗. Let f̄ = λ. Then clearly, f−λ ∈ m(R)∩S.

Therefore, 1/(f − λ) /∈ S as f − λ not a unit in S. Now take 1/(f − λ) = u. Then clearly,

L = k(f) = k(f − λ) = k(1/(f − λ)) = k(u). ♣

Thus S is a valuation ring with the field of fractions L such that k[u] 6⊂ S. In fact, it is

the discrete valuation ring such that above condition is satisfied.

Since A is normal, A is a dedekind domain. Therefore, for every maximal ideal n of A,

the local ring An is a discrete valuation ring.

Since A 6⊂ S, An 6= S for any maximal ideal n of A. As k[u] 6⊂ S, we have k[u] ⊂ An for

every maximal ideal n of A. Therefore, k[u] ⊂ A =
⋂

n∈max(A)
An. Thus, we have

k[u] ↪→ A ↪→ k[X] degXu ≥ 1

Then by Lemma 3.1, k[X] is integral over k[u]. Hence A is integral over k[u] and have the

same field of fractions L. Since k[u] is integrally closed in L, A = k[u]. Thus A = k[1].

♣

Theorem 3.4 (A-E-H Theorem). Let k = k̄. Let A,B be affine domains of dimension 1

over k such that A[1] = B[1] = R. Let A[X] = R = B[Y ]. Then

1. If A = k[1] ⇒ B = k[1]

2. If A 6= k[1] ⇒ A = B

Proof. Suppose A = k[1], then A[1] = R = k[2]. Therefore R is a UFD. This implies that

B is a UFD. Therefore, as k ⊂ B ⊂ k[2] and tr.k(B) = 1, by Proposition 2.2 B = k[1].

Now suppose A 6= k[1].

Case 1: Assume A is normal

Clearly, B 6= k[1]. Let m be a maximal ideal of B. Let mR = P . Then since m is a height

1 prime ideal, P is a height 1 prime ideal in R. Let n = P ∩A. Clearly, n is a prime ideal
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in A. Therefore n is either zero ideal or maximal. Now we have the following inclusion

A/n ↪→ R/P = B/m[1] = k[1]

Therefore,since A6=k[1] and A is normal, n must be a maximal ideal of A and nR ⊂ P .

As nR and P are prime ideals of R of height 1, we have nR = P . Therefore, we have

nR = P = mR.

Now we know that A is normal. Therefore B is also normal. Since B is of dimension 1, B

is a Dedekind domain. Let b ∈ B such that b 6∈ B∗, b 6= 0. Then we have the following,

bB =
∏
li

mli
i (mi ∈ max(B))

bR =
∏
li

(mR)li

bR =
∏
li

(niR)li (ni = miR ∩ A)

bR =
∏
li

nlii R

(3.0.5)

Let J =
∏
li

nlii . Then since JR = bR, JR is principal and thus J is a principal ideal of

A. Let J = aA. Then bR = aR. Therefore, b = λa where λ ∈ R∗ = A∗ = B∗. Thus

b ∈ A ∩B and hence B ⊂ A. One can similarly show A ⊂ B. Thus A = B.

Case-2: Assume A is not normal

Let Ā and B̄ be the normalizations of A and B respectively. Let R̄ be the normalization

of R. Then clearly, R̄ = Ā[X] = B̄[Y ].

Sub-case-1: Ā 6= k[1]

From case-1, it is clear that Ā = B̄. We will now show that A = B. Since R = B[Y ]

and R̄ = B̄[Y ], we have A[X] = R = B[Y ] and Ā[X] = R̄ = B̄[Y ] = Ā[Y ].Then

A = R ∩ Ā = R ∩ B̄ = B.

Sub-case-2: Ā = k[u](k[1])

Then B̄ = k[t]. Hence k[u,X] = R̄ = k[t, Y ]

Let I be the conductor ideal of Ā over A. Let J be the conductor ideal of B̄ over B.Then

the conductor ideal of R̄ over R is IĀ[X] = JB̄[Y ] (by Lemma 2.7). Clearly, I 6= 0,

J 6= 0.(by Lemma 2.5).
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Let I = fĀ and J = gB̄ where f ∈ A, f 6∈ A∗, and g ∈ B, g 6∈ B∗. As stated

above, IĀ[X] = JB̄[Y ], therefore fR̄ = gR̄. Thus f = λg, where λ ∈ R̄∗. But

R̄∗ = Ā∗ = B̄∗ = k∗ as Ā = k[1]. Hence λ ∈ k∗. Therefore, f ∈ B. Thus f ∈ A ∩ B.

Therefore, degY f = 0. Since f ∈ Ā = k[u] and f 6∈ k, we get degY u = 0. Therefore

u ∈ B̄. Hence, Ā = k[u] ⊂ B̄. Similarly, B̄ = k[t] ⊂ Ā. Hence Ā = B̄. Therefore,

A = R ∩ Ā = R ∩ B̄ = B. ♣

Now we give another proof of A-E-H theorem using the notion of exponential map

Lemma 3.5. Let k be an algebraically closed field and let A be an affine domain of

dimension 1 over k. Then A ' k[U ] if and only if A admits a non-trivial exponential map.

As a consequence , if R = A[X] (A[1]) then AK(R) = k if and only if A = k[1].

Proof. It is easy to see that a k algebra homomorphism ψ : k[U ] → k[U ][T ] such that

ψ(U) = U + T is an exponential map.

Suppose φ : A→ A[T ] is a non-trivial exponential map. Let C denote the ring of φ-

constants. Then k ⊂ C and, by (Lemma 2.15 ), ∃ c(6= 0) ∈ C such that A[1/c] = C[1/c][1].

Hence trkC = dim(A)− 1 = 0. Therefore, as k is algebraically closed, k = C and c ∈ k∗

Therefore A = k[1].

Now if A = k[1] then R = k[2] and therefore, by (Lemma 2.23), AK(R) = k. Conversely,

if AK(R) = k, then A must admit a non-trivial exponential map (see Remark 2.22) and

hence A = k[1].

♣

Theorem 3.6 (A-E-H Theorem). Let k be an algebraically closed field and let A and B

be affine domains of dimension 1 over k. Suppose A[X] = B[Y ]. Then A ' B. Moreover

if A 6=k[1] then A = B.

Proof. Let A[X] = R = B[Y ]. Assume that A = k[1]. Then R = k[2] and hence, by

(Lemma 2.23), AK(R) = k. Therefore , as R = B[Y ], by (3.5), B = k[1]. Thus A ' B.

Now suppose A 6= k[1]. Then, by (Lemma 3.5 ), A does not admit any non-trivial

exponential map. Therefore, by (Proposition 2.18), AK(R) = A. Since R = B[Y ]

and AK(R) 6= k, by (Lemma 3.5), B 6=k[1] and hence B does not admit any non-trivial

exponential map. Therefore again ,by (Proposition 2.18), AK(R) = B. Thus A =

AK(R) = B. ♣
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Chapter 4

Cancellation theorem for k[X, Y ]

In this section we prove the following theorem. This theorem was originally proved by

Miyanishi-Sugie and Fujita using geometric methods ([5], [8]). The (algebraic) proof

presented here is due to Crachiola and Makar-Limanov([3]).

For the proof of this theorem, we need the following lemma

Lemma 4.1. Let B be a domain containing the field of rationals. Let d : B → B be

a non-zero locally nilpotent derivation and let A = ker(d). Suppose for a ∈ B, a 6= 0,

d(a) ∈ aB, then a ∈ A.

Proof. Since B contains the field of rationals, by Remark 2.12, d gives rise to a non-trivial

exponential map φ : B → B[T ] such that A is the ring of φ-invariants.

Suppose a 6∈ A. Then, as d is locally nilpotent ,∃ n ≥ 1 such that dn(a) 6= 0 but

dn+1(a) = 0. Therefore dn(a) is a non-zero element of A. Since d(a) ∈ aB, it is easy to

see, dn(a) ∈ aB. Let dn(a) = ac, c ∈ B. Therefore, as A is factorially closed in B, a ∈ A
which is a contradiction.

♣

Theorem 4.2. Let k be an algebraically closed field of characteristic 0. Let B be an

affine domain of dimension 2 over k such that B[1] = k[3]. Then B = k[2].

Proof. Let B[W ] = R = k[X, Y, Z]. Then AK(R) = k (by Lemma 2.23). Since R = B[W ],

and AK[R] 6= B, by Proposition 2.18, B admits a non-trivial exponential map φ. Since B

contains the field of rationals, by Remark 2.12, φ gives rise to a non-zero locally nilpotent

17
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derivation d : B → B such that Bφ = ker(d) = A.

Claim: A = k[1].

Proof. Since B[W ] = k[X, Y, Z], B is a UFD and hence, by Lemma 2.13, A is a UFD

such that trkA = trkB − 1 = 1(by Lemma 2.15). Since k ⊂ A ⊂ k[X, Y, Z], A = k[U ]

(k[1]) by Proposition 2.2. ♣

Therefore, to prove B = k[2], it is enough to prove that B = A[1].

Note that since B[W ] = k[X, Y, Z], B is an affine domain over k. Let B = k[z1, z2...zn] and

let a = gcd(d(z1), ...d(zn)). Then it is easy to see that d(B) ⊂ aB. Hence , by 4.1, a ∈ A.

Let d1 = a−1d. Then, as d(B) ⊂ aB and a ∈ A = ker(d), it is easy to see that d1 : B → B

is a (non-zero) locally nilpotent derivation of B such that A = ker(d1). Therefore,

replacing d by d1, we assume without loss of generality that gcd(d(z1), ..d(zn)) = 1.

Note that A = ker(d), B is UFD and A = k[U ]. Hence ∀ λ ∈ k, (U − λ) is a prime

element in B such that d((U − λ)B)) ⊂ (U − λ)B. Hence d induces a locally nilpotent

derivation d̄λ : B/(U − λ)B → B/(U − λ)B. Since U − λ - d(zi) for some i, d̄λ is a

non-zero locally nilpotent derivation. Hence, as dim(B/(U − λ)B) = 1, by Lemma 3.5,

B/(U − λ)B = k[1].

Let I = d(B)∩A. Note that, as A = ker(d), d 6= 0, I is a non-zero ideal of A. In view

Lemma 2.14, to prove that B = A[1], it is enough to show that I = A. Since A = k[U ],

I = f(U)A. Therefore, to prove that I = A, it is enough to show that degreeU(f) = 0.

Assume that degreeU(f) = n ≥ 1. But then , since k is algebraically closed, ∃λ ∈ k
such that U − λ | f . Let W ∈ B be such that d(W ) = f . Let W̄ denote the image of W

in B/(U − λ)B. Then W̄ ∈ ker(d̄λ). By the choice of d, d̄λ is a non-zero locally nilpotent

derivation on B/(U − λ)B = k[1]. Therefore W̄ ∈ k. This implies that ∃β ∈ k such that

W − β = (U − λ)V for some V ∈ B. Therefore f(U) = d(W ) = (U − λ)d(V ). Hence

d(V ) ∈ d(B) ∩ A = I = f(U)A which leads to a contradiction.

Thus I = A and hence B = A[1] = k[2]. ♣



Chapter 5

Example of Danielewski

In this and subsequent section we present some examples to show that the (cancellation)

question mentioned in the introduction does nor have an affirmative answer in general.

These examples involve rings of the type C[U, V ]/(U2V − g) where C is a polynomial

algebra over a field k and g ∈ C \ k.

For simplicity of notation we denote C[U, V ]/(U2V − g) by B and by u, v images of

U, V in B. Then B =
⊕

−∞<n<∞
Bn where B0 = C, B−i = Cui (i ≥ 1), B2j−1 = Cuvj (j ≥

1), B2r = Cvr (r ≥ 1). Moreover u is transcendental over C and B[1/u] = C[u, u−1].

Now we proceed to give an example of Danielewski. k will denote an algebraically

closed field of characteristic 0.

Let B = k[U, V,W ]/(U2V −W 2 − 1). We denote by u, v, w images of U, V,W in B.

It is easy to see that B is an affine domain of dimension 2 over k and k-subalgebras

k[u, v], k[u,w], k[v, w] of B are polynomial algebras in two variables over k.

We first prove some properties of locally nilpotent derivations on B.

Lemma 5.1. Let d be a non-zero locally nilpotent derivation on B. Then ker(d)∩k[w] =

k = ker(d) ∩ k[v].

Proof. Note that since ker(d) is factorially closed in B, k ⊂ ker(d) and k is algebraically

closed, ker(d) ∩ k[w]6 = k would imply that ker(d) ∩ k[w] = k[w]. But then, since u2v =

w2 + 1, u, v ∈ ker(d) contradicting the fact that d is non-zero. Hence ker(d) ∩ k[w] = k.

Note that, since k is algebraically closed and char.(k) = 0, for every λ ∈ k \ (0)

B/(v−λ) ' k[u,w]/(λu2−w2−1) ' k[t, t−1] (Laurent polynomial algebra in one variable

19
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over k). Therefore, for λ ∈ k \ (0), v − λ is a prime element of B such that B/(v − λ)

does not admit any non-zero locally nilpotent derivation.

Since d is non-zero, ∃ b ∈ B such that d(b)6=0 and hence v − β does not divide d(b)

for some β ∈ k \ (0). If ker(d) ∩ k[v]6=k, then arguing as above we see that k[v] ⊂ ker(d).

Therefore d(v − β) = 0. Therefore, by Lemma 2.16, we see that d induces a non-zero

locally nilpotent derivation on B/(v − β) ; a contradiction.

Hence ker(d) ∩ k[v] = k.

♣

Lemma 5.2. Let d be a derivation on B given by d(u) = 0, d(w) = u2, d(v) = 2w.

Then d is a non-zero locally nilpotent derivation on B such that ker(d) = k[u].

Proof. It is easy to see that d is locally nilpotent and k[u] ⊂ ker(d). Since B[1/u] =

k[u, u−1][w](= k[u, u−1]
[1]

) and k[u] = B ∩ k[u, u−1], k[u] is algebraically closed in B and

hence k[u] = ker(d).

♣

Proposition 5.3. Let B = k[U, V,W ]/(U2V −W 2 − 1). The Makar-Limanov invariant

AK(B) = k[u].

Proof. In view of Lemma 5.2, we have k ⊂ AK(B) ⊂ k[u]. To complete the proof it is

enough to show that if D is a non-zero locally nilpotent derivation then k[u] ⊂ ker(D).

Since D is non-zero and tr.degk(B) = 2, we get that tr.degk(ker(D)) = 1. Since k[u] is

algebraically closed in B, k[u] ⊂ ker(D) if and only if k[u] = ker(D). Since ker(D) is

algebraically closed in B, k[u] = ker(D) if and only if ker(D) ⊂ k[u]. Now we proceed to

prove that ker(D) ⊂ k[u].

Recall that B =
⊕

−∞<n<∞
Bn where B0 = k[w], B−i = k[w]ui (i ≥ 1), B2j−1 =

k[w]uvj (j ≥ 1), B2r = k[w]vr (r ≥ 1).

Suppose ∃ g ∈ ker(D) such that g 6∈k[u]. Then hwf(g) ∈ Bn, n ≥ 0 and hwf(g) 6∈k.

By Theorem 2.17, there exists a non-zero derivation D̄ over B such that if C = ker(D̄)

then

1. C =
⊕

−∞<i<∞
C ∩Bi

2. hwf(g) ∈ C ∩Bn.
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Since hwf(g)6∈k and n ≥ 0 either hwf(g) ∈ k[w] \ k or it is divisible by v. Therefore,

since C is factorially closed in B, we get that either k[w] ⊂ C or k[v] ⊂ C which is a

contradiction in view of Lemma 5.1.

Therefore ker(D) ⊂ k[u] and hence AK(B) = k[u].

♣

Proposition 5.4. Let B = k[U, V,W ]/(U2V −W 2− 1) and R = B[Y ] (B[1]). Let d be a

locally nilpotent derivation on R defined as: d(u) = 0, d(w) = u2, d(v) = 2w, d(Y ) = u

and let A = ker(d). Then

1. R = A[1] and

2. AK(A) = k

Proof. . Let f = uY − w ∈ R. Then clearly, d(f) = 0. Note that

f 2 + 1 = u2Y 2 + w2 − 2uwY + 1

= u2Y 2 + u2v − 2uwY

= u(uY 2 + uv − 2wY )

(5.0.1)

Let g = uY 2 + uv − 2wY . Then f 2 + 1 = ug. Since d(f) = 0, d(f 2 + 1) = 2d(f) = 0.

Thus, d(ug) = 0 and hence, u, g ∈ A.

To show that R = A[1] it is enough to show that ∃ X ∈ R such that d(X) = 1. Since

ug = f 2 + 1, u, f are co-maximal. Let X1 = (Y 2 − v)/2. Then we have

d(X1) = Y d(Y )− d(v)/2

= uY − w
= f

(5.0.2)

Now consider X = gY − fX1, then d(X) = gu− f 2 = 1. Thus, by Lemma 2.14 R = A[X]

(A[1])

Now we proceed to prove that AK(A) = k.

Claim: A = k[u, g, f ]

Proof. Since u, f, g ∈ A, k[u, g, f ] ⊂ A. Let C denote the k-subalgebra k[u, g, f ] of A.
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Note that B[1/u] = k[u, u−1][w] (k[u, u−1]
[1]

). Therefore

R[1/u] = k[u.u−1][w, Y ]

= k[u, u−1][f, w]

= C[1/u][w] (i.e. C[1/u][1])

(5.0.3)

On the other hand, since d(Y ) = u and A = ker(d), we have R[1/u] = A[1/u][Y ]

(A[1/u][1]). Therefore, as C ⊂ A, we have C[1/u] = A[1/u]. Hence to prove the claim it is

enough to show that C ∩ uA = uC. Since A ∩ uR = uA (A being kernel of d), it enough

to show that C ∩ uR = uC i.e. the canonical homomorphism C/uC → R/uR is injective.

Note that C is an affine domain of dimension 2 over k. Let θ : k[T1, T2, T3]→ C be a

surjective homomorphism given by

θ(T1) = u

θ(T2) = g

θ(T3) = f.

(5.0.4)

Since ug = f 2 + 1, ker(θ) = (T1T2 − T3
2 − 1) i.e C ' k[T1, T2, T3]/(T1T2 − T3

2 − 1).

Therefore k[f ]/(f 2 + 1)[g] = C/uC ' k[T3]/(T3
2 + 1)[T2] (a polynomial algebra in one

variable over k[T3]/(T3
2 + 1)).

Now R/uR = k[w]/(w2 + 1)[v, Y ] (a polynomial algebra in two variables v, Y over

k[w]/(w2+1)) and under the canonical homomorphism C/uC → R/uR image of f = image

of −w in R/uR and image of g = −2wY . Therefore the homomorphism C/uC → R/uR

is injective and hence C = A.

Thus the claim is proved

♣

Since A ' k[T1, T2, T3]/(T1T2 − T32 − 1), it easy to see that there exists two non-zero

locally nilpotent derivations d1, d2 on A such that d1(u) = 0 = d2(g). As k[u] and k[g]

are algebraically closed in A we have ker(d1) = k[u] and and ker(d2) = k[g]. Hence

k ⊂ AK(A) ⊂ k[u] ∩ k[g] = k.

Thus AK(A) = k.

♣
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Corollary 5.4.1. Let B,R,A be as in Proposition 5.4. Then A is stably isomorphic to

B but A 6'B.

Proof. Since A[X] = R = B[Y ], A is stably isomorphic to B. Since AK(B) = k[u] and

AK(A) = k, A is not isomorphic to B ♣
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Chapter 6

Example of Neena Gupta

In this section we present an example (due to Neena Gupta) of a three dimensional

affine domain R over an algebraically closed field k of positive characteristic such that

R[1] = k[4] but R 6=k[3], thus showing that even Zariski cancellation problem does not have

an affirmative answer in general in the case the base field has a positive characteristic.

The proof of the fact that R 6=k[3] is quite involved and we need series of results which

will be stated without proof.

In what follows k will denote an algebraically closed field of characteristic p > 0. The

following result is due to Russell and Sathaye ([10])

Lemma 6.1. Let G ∈ k[Z, T ] be a prime element. Suppose ∃ h ∈ k[G] such that

k[Z, T, 1/h] = k[G, 1/h][1] then k[Z, T ] = k[G][1] i.e. G is a variable in k[Z, T ].

Next proposition is an easy consequence of the above lemma.

Proposition 6.2. Let φ be a non-trivial exponential map on k[Z, T ](k[2]). Let A denote

the ring of φ-invariants. Then A = k[G] and k[Z, T ] = A[1] (i.e. G is a variable in k[Z, T ]).

Proof. Since k[Z, T ] is a UFD, by Lemma 2.13, A is also UFD. Since φ is non-trivial,

trk(A) = 1 and k ⊂ A ⊂ k[Z, T ]. Hence A = k[1] by Proposition 2.2 Let A = k[G]. Since A

is the ring of φ-invariants, by Lemma 2.15, ∃h ∈ k[G] such that k[Z, T, 1/h] = k[G, 1/h][1].

Hence, by Lemma 6.1, G is a variable in k[Z, T ].

♣

A proof of following result can be found in Nagata’s book entitled ”Automorphism

group of k[Z, T ]”([9])

25
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Proposition 6.3. Let k be an algebraically closed field of positive characteristic p

and let q = p + 1. Let σ : k[Z, T ] → k[U ] be a k-algebra homomorphism defined as:

σ(Z) = U + Upq, σ(T ) = Up2 . Let F = T + T pq − Zp2 . Then

1. ker(σ) = (F )

2. σ is surjective and hence k[Z, T ]/(F ) = k[U ]

3. F is not a variable in k[Z, T ].

The following result is due to Asanuma ( [2], Theorem 5.1 and Corollary 5.3.).

Theorem 6.4. Let F ∈ k[Z, T ] be as in Proposition 6.3. Let R = k[U, V, Z, T ]/(U2V −F ).

Then R[1] = k[4].

In what follows we assume that k is an algebraically closed field of positive characteristic

p ≥ 3, q = p + 1, F = T + T pq − Zp2 ∈ k[Z, T ] and R = k[U, V, Z, T ]/(U2V − F ). u, v

will denote images of U, V in R. We regard k[Z, T ] as a k-subalgebra of R

Note that, by Proposition 6.3, k[Z, T ]/(F ) = k[1] but F is not a variable in k[Z, T ].

Moreover, by Theorem 6.4, R[1] = k[4].

The following lemma is about non-trivial exponential maps on R.

Lemma 6.5. Let ψ be a non-trivial exponential map on R. Then F 6∈Rψ (the ring of

ψ-invariants).

Proof. . Note that for every non-zero λ ∈ k, the canonical map k[Z, T ]→ R/(u− λ) is

an isomorphism sending F to the image of λ2v. This shows that u− λ is a prime element

of R for every non-zero λ ∈ k.

Let C denote Rψ. Since C is factorially closed in R, F ∈ C implies that u, v ∈ C.

Since ψ is non-trivial, it is easy to see that ∃ β ∈ k \ (0) such that ψ induces a non-trivial

exponential map ψ̄ on R/(u − β) = k[Z, T ]. Moreover, v ∈ C implies ψ̄(F ) = F , thus

showing that F is an element of the ring of ψ̄-invariants. By Proposition 6.2, k[G] is the

ring of ψ̄-invariants for some variable G ∈ k[Z, T ]. Hence F ∈ k[G]. Now F is a prime

element of k[Z, T ] and k is algebraically closed. Therefore k[G] = k[F ]. This means that

F is also a variable in k[Z, T ] which is a contradiction in view of Proposition 6.3.

Thus F 6∈Rψ. ♣
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Lemma 6.6. Let k be an algebraically closed field such that char.k 6= 2. Let f ∈ k[W ]

be such that k[U,W ]/(U2 − f) = k[1]. Then f is a variable in k[W ].

Proof. Let k[U,W ]/(U2 − f) = k[X]. Then k[W ] ⊂ k[X] and k[X] is a free k[W ]-module

of rank two. This show that degX(W ) = 2.

Let W = α0 +α1X +α2X
2 with αi ∈ k and α2 is non-zero. Without loss of generality

we assume that α2 = 1. Recall that char.(k)6=2. Let X1 = X+1/2α1. Then W = X1
2 +β

for some β ∈ k. Let W1 = W − β.

Now k[X] = k[X1], k[W ] = k[W1] and X1
2 = W1. Hence k[X] is a free module over

k[W ] with a basis (1, X1) Since k[X] = k[U,W ]/(U2 − f), (1, u) is also basis of k[X] over

k[W ]. Since u2 = f ∈ k[W ] and X1
2 = W1 and char.(k) 6= 2 we see that u = λX1 for

some non-zero λ ∈ k. Therefore u2 = f = λ2W1. Hence f is a variable in k[W ].

♣

The following proposition of Neena Gupta is very crucial in proving that R 6=k[3].

Proposition 6.7. Let k be an algebraically closed field of positive characteristic p ≥ 3,

q = p + 1, F = T + T pq − Zp2 ∈ k[Z, T ] and R = k[U, V, Z, T ]/(U2V − F ). Let φ be a

non-trivial exponential map on R. Then the ring Rφ of φ-invariants is a k-subalgebra of

k[u, Z, T ] .

Proof. We begin our proof with some observations.

Recall that R =
⊕

−∞<n<∞
Rn where R0 = k[Z, T ], R−i = R0u

i (i ≥ 1), R2j−1 =

R0uv
j (j ≥ 1), R2r = R0v

r (r ≥ 1). Therefore every element of Rn (n ≥ 1) is divisible by

v. Moreover
⊕

−∞<n≤0
Rn = k[u, Z, T ] (k[3]) and

⊕
0≤2r<∞

R2r = k[v, Z, T ] (k[3]).

Let φ be a non-trivial exponential map on R. We prove the proposition by showing

that we get a contradiction if the ring Rφ of φ-invariants is not contained in k[u, Z, T ].

Now suppose Rφ is not contained in k[u, Z, T ]. Then there exists g ∈ Rφ such that

hwf(g) ∈ Rn for some n ≥ 1 and hence is divisible by v. Moreover, by Theorem 2.17, φ

induces a non-trivial exponential map ψ : R→ R[T ] such that if A = Rψ then

1. A =
⊕

−∞<n<∞
(A ∩Rn)

2. hwf(g) ∈ A.
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Since v divides hwf(g) and A is factorially closed in R, v ∈ A. But, by 6.5, F 6∈A
and hence u6∈ A. This shows that, since A is a factorially closed graded k- subdomain

of R, A =
⊕

0≤2r<∞
(A ∩ R2r) and hence k[v] ⊂ A ⊂ k[v, Z, T ]. Note that A is UFD and

trk(A) = 2 = trk[v](A) + 1. Therefore, by Proposition 2.2, A = k[v][1].

Claim A = k[v,G] for some G ∈ k[Z, T ].

Proof. Note that A is graded, factorially closed in R, A ⊂ k[v, Z, T ] and R2r = k[Z, T ]vr

if r ≥ 0. Therefore , if C = A∩k[Z, T ], then A =
⊕

0≤2r<∞
Cvr. As A is factorially closed in

R, C is factorially closed in k[Z, T ] and hence C is a UFD. Since trk(A) = 2 and F 6∈A, we

get that k ⊂ C ⊂ k[Z, T ] and trk(C) = 1. Therefore, by Proposition 2.2, C = k[G](k[1]).

Thus claim is proved. ♣

Now we show that k[Z, T ] = k[G][1].

Since A = Rψ, by Lemma 2.15, ∃ h ∈ A such that R[1/h] = A[1/h][1]. Since

A[1/h] ⊂ k[v, Z, T ][1/h] ⊂ R[1/h] and k[v, Z, T ] = k[3] is UFD, by Proposition 2.2,

k[v, Z, T ][1/h] = A[1/h][1]. Let β ∈ k∗ be such that v−β does not divide h in A and hence

in R as A is factorially closed in R. Note that, as R/(v−β) = k[U,Z, T ]/(βU2−F ) we have

k[Z, T ] ⊂ R/(v−β)R. This shows that (v−β)R∩k[v, Z, T ] = (v−β)k[v, Z, T ] and hence

we get that k[G] = A/(v − β)A ⊂ k[v, Z, T ]/(v − β)k[v, Z, T ] = k[Z, T ] ⊂ R/(v − β)R.

For simplicity of notation we denote R/(v − β)R by B. Recall that R[1/h] =

A[1/h][1]. Therefore, if h̄ denotes the image of h in A/(v − β)A = k[G], we get

that k[G][1/h̄] ⊂ k[Z, T ][1/h̄] ⊂ B[1/h̄] = k[G, 1/h̄]
[1]

. Hence, by Proposition 2.2,

k[Z, T ][1/h̄] = k[G, 1/h̄]
[1]

. Therefore, by Lemma 6.1, k[Z, T ] = k[G][1]. Let k[Z, T ] =

k[G,W ].

Now we consider F as a polynomial in W with coefficients in k[G]. Since F 6∈A
and k[G] ⊂ A, we get that F 6∈k[G]. Therefore degW (F ) = n ≥ 1. Let α(G) be the

leading coefficient of F (as a polynomial in W ). It is easy to see that ∃ λ ∈ k such

that G − λ does not divide h̄ as well as α(G). Then, if f denote the image of F in

k[G,W ]/(G− λ) = k[W ] we get that degW (F ) = n = degW (f). Moreover, as h̄ ∈ k[G],

the image of h̄ in k[G]/(G− λ) is an element of k∗.

As R[1/h] = A[1/h][1], h is not divisible by v − β (in R) and v − β ∈ A, we have

R[1/h]/(v − β) = A[1/h]/(v − β)[1] i.e. B[1/h̄] = k[G][1/h̄][1].
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Note that R/(v − β) = B = k[U,Z, T ]/(βU2 − F ) = k[U,G,W ]/(βU2 − F ) and

k[G] = A/(v − β)A ⊂ k[v,W,G]/(v − β)k[v,W,G] = k[G,W ] ⊂ B. B[1/h̄] = k[G, 1/h̄]
[1]

.

Therefore, using the fact that G − λ is co-maximal to h̄, we get that k[U,W ]/(βU2 −
f) = B/(G − λ) = k[1]. Therefore, by Lemma 6.6, f is a variable in k[W ] and hence

degW (F ) = n = degW (f) = 1.

Thus F = θ(G) + α(G)W.. Since k[Z, T ]/(F ) = k[1], α(G) ∈ k∗. Therefore F must be

a variable in k[G,W ] = k[Z, T ] which is a contradiction.

Therefore Rφ ⊂ k[u, Z, T ]. Thus the proposition is proved.

♣

As a consequence of the above proposition we have the following theorem ([6]) which

shows that Zariski cancellation problem does not have an affirmative answer in general in

the case the base field has a positive characteristic.

Theorem 6.8. Let k, k[Z, T ], F, R be as in Proposition 6.7. Then R[1] = k[4] but R 6=k[3].

Proof. By Theorem 6.4, R[1] = k[4]. On the other hand, by Proposition 6.7, the Derksen

Invariant DK(R) is a k-subalgebra of k[u, Z, T ] and hence DK(R) 6= R. Hence R 6= k[3],

as DK(k[3]) = k[3] (see Lemma 2.23). ♣
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