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Chapter 1: Overview 
1.1 Synopsis 

Proteins carry out various biological functions of a cell. These functions range 

from generating the energy currency of the cell also known as ATP (Adenosine 

Triphosphate), to maintaining the shape and structure of the cell, brought about by 

cytoskeletal elements. Amino acids are the building blocks of proteins. There are 

about 20 standard amino acids. Proteins are synthesized by the ribosomal 

machinery in a process referred to as translation. After translation, some proteins 

get covalently attached to different chemical moieties. Examples of such moieties 

include phosphate group (phosphorylation), acetyl group (acetylation), methyl 

group (methylation) etc. In some cases, the moiety could be a protein, for example 

ubiquitin (ubiquitination), SUMO (SUMOylation), nedd (neddylation) and other 

members of ubiquitin-like family of proteins. 

A growing body of recent scientific literature has pointed to the importance of 

SUMOylation in regulating many cellular activities. SUMOylation is a post 

translational modification that involves formation of a covalent bond between C-

terminus of a protein called SUMO (Small Ubiquitin-related MOdifier) and lysine 

residues in proteins from eukaryotic organisms. Experimental determination of 

SUMOylation sites is cumbersome due to many technical reasons. Owing to these 

reasons, computational methods for predicting SUMOylation sites are important. 

This thesis focuses on development of computational methods to predict 

SUMOylated lysines. The computational methods discussed in this thesis fall into 

two broad categories – sequence and structure-based. 
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The sequence-based method begins with a list of >9000 SUMOylated lysines from 

human and >900 mouse proteins. This list was obtained from recent mass 

spectrometry based proteomics experiments. The protein sequence alignment tool 

PSIBLAST was used to identify proteins from the fruit fly Drosophila 

melanogaster that were homologs of human and mouse SUMOylated proteins. 

Protein sequence alignments were scanned to identify lysine residues that were 

conserved between human / mouse as well as fly proteins. This method identified 

>8600 fly proteins encoded by >4600 fly genes as putative SUMOylation targets. 

The homology data was further analyzed to obtain three kinds of information. First 

analysis was carried out to identify amino acid residues that co-occur along with 

the conserved lysines. This helped in finding out sequence motifs involving the 

conserved lysines, for example ψ–K-x-(E/D), where ψ – I/L/V, K – SUMOylated 

lysine and x – any amino acid. Second analysis helped in identifying which protein 

families tend to get more SUMOylated than others, for example transcription 

factors such as zinc finger proteins. Third analysis helped in determining the 

preferred cellular localization, molecular function and biological activity of the 

proteins identified in this study. The results from this study will be made available 

to the scientific community in the form of a database called SUMO-ON-THE-

FLY. 

This thesis also presents a novel structure based method. The method was 

demonstrated with the help of a pilot / proof-of-concept study. The dataset for this 

study consisted of 1841 Protein Data Bank structures of known human 

SUMOylated proteins. A special docking tool referred to as “sampling method” 

was designed to model complexes between ubc9 and target (substrate) proteins. 

Ubc9 is the enzyme capable of distinguishing between SUMOylated and non-

SUMOylated lysine residues. The ubc9-target complexes modeled using sampling 
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method, were analyzed in terms of the residue contacts at protein-protein 

interfaces. These residue contacts were further used to make predictions of 

SUMOylated and non-SUMOylated lysines. The structure based method proposed 

in this study achieved an accuracy of 81% and Matthews’ Correlation Coefficient 

of 0.4. 

 

1.2 Thesis Organization 

Chapter 1: Overview 

This chapter gives the synopsis for the present thesis and explains the organization 

of different chapters in it. 

Chapter 2: A General Introduction to SUMOylation 

This chapter gives a brief introduction to SUMOylation, its biological implications 

and experimental / computational approaches to study the modification. 

Chapter 3: Prediction of SUMOylation targets in Drosophila melanogaster 

This chapter presents a sequence based method to predict SUMOylation sites 

across different organisms. The method makes use of homology information. In 

addition, the method also presents three different kinds of clustering methods to 

obtain information about sequence motifs, protein families and biological functions 

of homologous proteins identified in this study. 

Chapter 4: SUMO-ON-THE-FLY web server 

The information obtained in the previous chapter from the homology based study 

will be presented to the scientific community in the form of a web server called 

SUMO-ON-THE-FLY. 
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Chapter 5: 3-D structure based prediction of SUMOylation sites in proteins 

All the currently available SUMOylation site prediction tools are sequence based. 

This chapter presents a first of its kind structure based SUMOylation site 

prediction tool. The method presented in this chapter can overcome the drawbacks 

of all the sequence based tools. This tool achieved an accuracy of 81% and 

Matthew’s correlation coefficient of 0.4. 

Chapter 6: Conclusions and Future Prospects 

This chapter highlights the contributions of this thesis to our better understanding 

of biology. 

Chapter 7: Publications 

This chapter gives a list of research articles that have already been published or 

those that will be published in near future (hopefully). 

Chapter 8: Appendix 

This chapter gives a summary of collaborative side projects. 

Chapter 9: Supplementary Data 

This chapter provides information about how to download supporting information 

of the present thesis. 

Chapter 10: Bibliography 

This chapter provides a list of all the references cited in this thesis. 
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Chapter 2: A General Introduction to 
SUMOylation 
 

SUMOylation was discovered in the year 1996 as a post translational modification 
of the protein RanGAP1 (Ran GTPase Activating Protein-1) [1]. Ever since then, a 
lot of scientific research has been done to uncover biological implications of this 
modification. This chapter provides a brief overview of SUMOylation and 
different aspects associated with it. Each succeeding chapter in this thesis will have 
its own introduction. (Detailed reviews of SUMOylation can be found here [2–6] ). 

 

2.1 The SUMO pathway 

SUMO (Small Ubiquitin-related MOdifier) is a protein of 90 – 100 amino acid 
residues. It is structurally similar to ubiquitin. Both the proteins belong to the beta 
grasp fold of proteins. Similar to ubiquitin, SUMO is conserved across all 
eukaryotes, from yeast to humans. Just like the ubiquitin pathway, the SUMO 
pathway consists of SUMO specific proteases , E1, E2 and E3 ligases (Figure 1) 
[2,3,5]. SUMO is synthesized in its precursor form in cells (Figure 1). The 
precursor undergoes proteolytic maturation at its C-terminus, carried out by SUMO 
specific proteases. The mature SUMO protein has a diglycine motif (-GG) at its C-
terminus. The diglycine motif is conserved across all members of ubiquitin-like 
family of proteins such as ubiquitin, SUMO, NEDD and others. 

The SUMO E1 activating enzyme (SAE1 / SAE2) uses energy from ATP 
(Adenosine Triphosphate) to form a thioester bond between C-terminus of mature 
SUMO and itself. Subsequently, SUMO E1 activating enzyme transfers the SUMO 
to SUMO E2 conjugating enzyme (UBC9). UBC9 has been shown to identify 
lysine residues in target (substrate) proteins that have a sequence motif ψ-K-x-
(E/D), where ψ = Leu, ILE or Val, x is any amino acid and E/D is a Glu / Asp 
residue. UBC9 catalyzes the formation of covalent bond between C-terminus of 
SUMO and the side chain 𝜀–amino group of lysine residues that conform to the 
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consensus motif. SUMO E3 ligase helps UBC9 to identify lysine residues that do 
not follow the consensus motif. 

 

Figure 1: Schematic representation of the SUMO pathway. SUP refers to SUMO specific proteases. 
SAE1 / SAE2 refers to SUMO E1 activating enzyme. Ubc9 refers to SUMO E2 conjugating enzyme. E3 
refers to SUMO E3 ligase. Adapted from [2]. 

From a cellular perspective, SUMOylation regulates most of the nuclear proteins, 
although it does regulate some of the cytosolic proteins as well [2,3]. Disruption of 
SUMOylation has been linked to various neurodegenerative diseases such as 
Alzheimer’s, Huntington’s, Parkinson’s diseases among others [4]. Deregulation of 
SUMOylation has also been associated with cancer [5]. SUMOylation also controls 
antiviral innate immune response. Hence, viruses exploit host SUMOylation 
pathway in order to evade immune response [6]. 
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2.2 Experimental determination of SUMOylation sites  

Earlier SUMOylation studies involved lysine to arginine mutations of every lysine 
in a given protein. However, such studies were cumbersome for many technical 
reasons. These reasons include but are not limited to – 1: Activity of SUMO 
proteases (making detection difficult), 2: Low turnover of SUMOylation (a very 
small fraction of protein gets SUMOylated) and 3: Multiple lysines getting 
SUMOylated (hence need multiple lysine to arginine mutations). A comprehensive 
list of SUMOylatin sites detected by these low throughput studies is maintained by 
many databases such as UniProt KB [7], dbPTM [8],  PLMD [9] and 
PhosphoSitePlus [10]. 

In recent years, development of mass spectrometry based proteomics methods has 
enabled the detection of thousands of SUMOylation sites in a single experiment 
[11]. These experiments have shown that approximately 18% of the human 
proteome undergoes SUMOylation. SUMOylation is a very dynamic modification 
[11–13]. This means that the SUMOylome (SUMOylated fraction of proteome) 
depends on the cellular conditions. Thus, cells grown under standard growth 
conditions will have a different SUMOylome compared to cells grown under stress 
conditions such as heat shock or proteasome inhibitors. 

 

2.3 Computational approaches to predict SUMOylation sites  

The important role played by SUMOylation in regulating key biological processes 
has motivated researchers across the globe in developing many in silico prediction 
tools. Examples of popular prediction tools are GPS-SUMO [14,15] and JASSA 
[16]. Other examples of SUMOylation site prediction tools include SUMOpre [17], 
SUMOhydro [18], SUMOhunt [19], SUMOsu [20], SUMOgo [21], SumSec [22], 
HseSUMO [23] and pSUMO-CD [24]. (A detailed discussion of SUMOylation site 
prediction tools can be found here [25,26] ). 

All the presently available SUMOylation site prediction tools make use of 
information from protein sequences. The development pipeline of these tools can 
be summarized as follows. 
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- Literature available in PubMed and databases such as CPLM are searched to 
obtain a list of proteins and the lysines therein that get SUMOylated. The 
protein list is divided into training and testing datasets. 

- Sequences of SUMOylated proteins are downloaded from databases such as 
UniProt. Information involving lysines is extracted in the form of peptides 
having size = k. For example, k = 15 for GPS-SUMO (7 residues before and 
after the lysine) and k = 21 for JASSA (10 residues before and after the 
lysine) respectively. Peptides centered on SUMOylated as well as non-
SUMOylated lysines are extracted. Peptides from SUMOylated lysines are 
treated as positive dataset whereas peptides from non-SUMOylated lysines 
are treated as negative dataset. 

- Information from k-mer peptides is encoded using feature extraction 
methods such as binary encoding, position specific scoring matrices and 
hydrophobicity scales. 

- Proportions of positive and negative datasets are balanced using under-
sampling or over-sampling. From all the available features, only those are 
retained that have statistically significant information. 

- Prediction tools are developed by training machine learning algorithms such 
as support vector machines, artificial neural networks, K nearest neighbors 
and random forests. 

- Statistical measures such as sensitivity, specificity, accuracy and correlation 
coefficients are used for performance assessment. 

 

Despite all the efforts dedicated to the development of existing SUMOylation site 
prediction tools, these tools have drawbacks. Most important drawback of these 
tools is that they predict a lot of false positives. Such false positive predictions are 
futile because they do not provide any meaningful biological information. Another 
drawback affecting existing computational methods is that they over-predict lysine 
residues following the consensus motif ψ-K-x-(E/D) and under-predict lysines not 
following the motif. This bias hinders the accuracy of existing computational 
methods. SUMOylation has been known to happen to both kinds of lysine residues 
– those that follow the consensus motif as well as those that do not follow the 
motif. 
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In order to overcome the shortcomings of existing tools, the present thesis 
proposes two novel computational methods. Chapter 3 describes a method 
that uses protein sequences to extract evolutionary information, which in turn 
is used to predict SUMOylated lysines conserved across different organisms. 
Chapter 5 of this thesis describes a method that utilizes protein 3-D structures to 
differentiate between lysine residues that can bind active site of the enzyme ubc9 
from those lysines that cannot. 
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Chapter 3: Prediction of SUMOylation 
targets in Drosophila melanogaster 

 

3.1 Introduction 

Small Ubiquitin-related MOdifier (SUMO) is a post-translational modifier protein 

of ~100 amino acids conserved in all eukaryotes from yeast to humans. SUMO is 

structurally similar to ubiquitin. Both the proteins belong to the beta-grasp fold of 

proteins. The SUMO pathway contains SUP (SUMO-specific Proteases), E1, E2 

and E3 enzymes. Covalent attachment of SUMO C-terminus to NZ atom of lysine 

residue in target proteins is known as SUMOylation. SUMOylation has been 

shown to regulate various biological processes such as nucleo-cytoplasmic 

translocation of proteins and the activity of transcription factors. Disruption of 

SUMOylation has been linked to various neuro-degenerative diseases and cancer 

(a detailed review of SUMOylation can be seen in [2] ). 

In the last few years, development of mass-spectrometry coupled proteomics 

experiments has enabled identification of SUMOylation sites in thousands of 

human proteins (a detailed review can be found in [11] ). In addition to standard 

cellular growth conditions, these experiments also probed the SUMOylation status 

of proteomes from cells grown under different stress conditions such as heat shock 

and proteasome inhibitors. Recently, [13] have come up with a list of human and 

mouse SUMOylated lysines and proteins using mass-spectrometry based 

proteomics approach. 

SUMO-proteomics experiments in the fruit fly Drosophila melanogaster have 

studied the cellular effects of the modification [27–29]. These experiments 
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identified SUMOylated proteins but technical difficulties hindered the 

identification of modified lysines in these proteins. Knowledge of SUMOylated 

lysines is important for understanding biological implications of the modification. 

There are 2 computational approaches to predict putative SUMOylation sites. First 

method involves using currently available SUMOylation site prediction tools such 

as GPS-SUMO [30,31] and JASSA [16]. These tools use protein sequence as input 

and scan local sequence environment around lysine residues to make predictions. 

However, these tools miss information about known SUMOylated lysines from 

homologous proteins. Second method to predict putative SUMOylation sites is 

presented in this study. The proposed method begins by identifying fruit fly 

homologs of known SUMOylated proteins from other organisms. Homology 

search is based on protein sequence alignments.  Putative SUMOylation sites are 

annotated based on quality of sequence alignments and local sequence 

environment around lysine residues. 

In this study, human and mouse SUMOylated proteins were used to identify 

orthologous proteins from the proteome of fruit fly Drosophila melanogaster. 

Homology search was carried out using the sequence alignment tool PSIBLAST 

(Position Specific Iterative Basic Local Alignment Search Tool). In addition, 

sequence patterns involving SUMOylation sites were studied. Two kinds of 

information were obtained from sequence pattern analysis. First kind of 

information was obtained by analyzing local sequence around SUMOylated lysines 

to detect new motifs. Second kind of information was extracted by clustering target 

proteins according to their families and identifying lysines conserved in every 

family. Apart from sequence patterns, Gene Ontology analysis was also carried out 

to study preferred cellular compartments and biological processes of the modified 

proteins. 
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3.2 Materials and Methods 

3.2.1 Overview of the method used to identify fly orthologs 
The objective of this work was to identify fly homologs of human and mouse 

SUMOylated proteins. For this reason, human and mouse proteins were queried 

against a reference database containing the fruit fly proteome and UniRef90 

proteins using PSIBLAST. All the details concerning the list of human proteins, 

reference database and PSIBLAST parameters will be discussed in the following 

subsections. Alignments involving fly-human and fly–mouse protein pairs were 

extracted from PSIBLAST results. All the pair-wise alignments were scanned to 

check whether SUMOylated lysines from human proteins were aligned to a lysine 

residue from the corresponding fly protein. If this was the case, then 15-mers 

centered on the lysines of interest were extracted. The 15-mers were extracted by 

including 7 residues upstream and downstream with respect to lysine of interest. 

There were 2 lists of 15-mers per organism. The first list was extracted from the 

FASTA protein sequences (referred to as FASTA 15-mers). And the other list was 

extracted from the aligned region of the protein sequence (referred to as Aligned 

15-mers, which may contain gaps from alignments). The workflow for obtaining 

15-mers is summarized below (Figure-1). 
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Figure 1: A: Overview of methods used to identify fly orthologs and 15-mers centered on aligned 
SUMOylated lysines using human and mouse proteins with known SUMOylated lysines. The homology 
search was carried out using PSIBLAST. B: An example alignment between human and fly homologs of 
the SUMO E2 conjugating enzyme (ubc9) and the conserved lysines as well as 15-mers therein. The 
alignment shown here has an E-value of 1e-78. 

B 

A 
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3.2.2 Reference database and query proteins 
For this study, the list of  human and mouse SUMOylated proteins was obtained 

from supplementary data  of [13] ( human data file named - 
41467_2018_4957_MOESM6_ESM.xlsx and mouse data file named - 

41467_2018_4957_MOESM8_ESM.xlsx )  . Details of query proteins used in this 

study are summarized below (Table-1). 

 

Table-1:  Details of query proteins used in this study 

Query type Number of 

proteins 

Source 

Organism 

Reference 

1 9256 Human [13] 

3 964 Mouse [13] 

 

The FASTA sequences of all the query proteins and reference databases were 

downloaded from the UniProt database (https://www.uniprot.org/) [7].  

The reference database (5,26,49,023 proteins) used in this study was created by 

combining UniRef90 database (5,26,29,880 proteins) and fruit fly proteome 

(19,143 proteins, Tax ID – 7227). In order to remove duplicates in the reference 

database, protein sequences in the UniRef90 database that came from the fruit fly 

proteome (TaxID – 7227) and having the term “Drosophila melanogaster” in their 

header were removed. 

Homologs of query proteins were searched in the reference proteome using 

PSIBLAST version 2.7.1+ [32,33].  For every query protein, 2 kinds of PSIBLAST 

https://www.uniprot.org/
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jobs were carried out. The parameters used for both kinds of jobs are summarized 

below (Table-2). 

 

Table-2: Parameters of both PSIBLAST jobs 

Parameter Job1 Job2 

Number of rounds 5 5 

E-value cutoff to 

include in PSSMs 

10-5 10-5 

Number of alignments 1000 100000 

Seg (mask low 

complexity region in 

query) 

Yes Yes 

Composition based 

statistics 

0 0 

 

For every query protein, 2 kinds of PSIBLAST jobs were carried out. The PSSMs 

(Position Specific Scoring Matrices) generated after both the jobs differ because of 

the difference in the number of alignments used namely – 1,000 and 100,000 

respectively. The job with 1,000 alignments was carried out to detect close 

homologs, whereas the job with 1,00,000 alignments was carried out to detect 

distant homologs. Pair-wise alignments in different rounds of PSIBLAST use 

different PSSMs. Thus, E-values from different rounds for the same protein pair 

cannot be compared with each other because PSIBLAST takes PSSMs into account 

while calculating E-values. Hence, E-values for all pair-wise alignments between 

human – fly and mouse – fly proteins were re-calculated using BLOSUM62 

substitution matrix and the E-value equation (Equation 1). 
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Equation 1 

 =    ’  

Equation 2 

 =   
 

  

 

Where E =  E-value, S = raw score calculated using BLOSUM62 substitution 

matrix, S’ = bit score, K and λ are constants, lnK = natural logarithm of K and ln2 

= natural logarithm of 2. In addition to substitution scores, raw score calculation 

also took into account affine gap penalties with a gap existence penalty = 11 and 

gap extension penalty = 1. 

For this study, K = 0.041, λ = 0.267, m = length of query protein and total number 

of amino acids in fly proteome also known as n = entire length of fly proteome 

present in the reference database =  17,879,049,827, were used for E-value 

calculations. All the equations and parameters used here were taken from 

PSIBLAST results. For scoring 15-mer alignment, m = 15 and n = 8,629,350 were 

used. The value of n was calculated after taking into account all possible 15-mers 

centered on all lysines of fly proteome present in the reference database. 

For every protein pair (namely human-fly and mouse-fly), there are 10 alignments 

from PSIBLAST (both the jobs yield 5 alignments each) results, including all the 

alignments that would have introduced bias in clustering analysis discussed later. 

Hence, for every protein pair the alignment with lowest re-calculated E-value was 

chosen for further analysis. 

 



26 
 

3.2.3 Frequent item-set mining based clustering of 15-mers centered on 
annotated SUMOylation sites 
Frequent item-set mining methods are commonly used for finding patterns in 

customer transaction data in the retail industry, for example market basket analysis. 

Apriori algorithm is a commonly used method in the field of frequent item-set 

mining. In this study, Apriori algorithm [34] was used to detect commonly 

occurring amino acid patterns in the 15-mer data obtained from PSIBLAST 

analysis. 

The human and mouse query proteins as well as the fly homologs identified in the 

respective PSIBLAST jobs have redundancy. This could introduce bias in the 

clustering analysis. Hence, all of these protein lists were culled using h-CD-HIT 

server (http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit) 

[35–38] . The culling process was hierarchical in nature and was carried out with 3 

different identity cutoffs – 90%, 60% and 30% respectively (the results discussed 

here were obtained at 30% redundancy). Details of non-redundant protein lists and 

15-mers centered on SUMOylation sites present in these proteins are given below 

(Table-3). 

 

Table-3: Summary of protein lists obtained from h-CD-HIT server 

Query 

type 

Protein 

type 

Total list nr (Non 

redundant 

list) 

FASTA 

15-mers 

(nr) 

Aligned 

15-mers 

(nr) 

Human Human 5283 3170 10245 10245 

Human Fly 8539 3725 8657 8657 

Mouse Mouse 468 373 549 549 

Mouse Fly 1700 707 876 876 

http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit
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It should be noted that for every fly homolog, only those 15-mers were chosen that 

occurred in longest alignments for the given fly protein. This was done because 

some fly proteins are aligned to multiple query proteins. Including 15-mers from 

all the alignments would have introduced repetitions that would have affected the 

clustering analysis described below. 

 At this point, it is important to define terminologies used in this analysis. An item 

is the frequency of each of the 20 amino acids to occur at every position in the 15-

mer. Positions in a 15-mer are numbered from 0 to 14, the SUMOylated lysine is at 

7th position. The 20 standard amino acids are sorted in an alphabetical order of 

their one letter code starting with Alanine (A) and ending with Tyrosine (Y). The 

SUMOylated lysine (7K) is omitted from the analysis since it is common to all 15-

mers. Possible items could be 0A, 0C, 0D ….. 6V, 6W, 6Y and 8A, 8C, 8D ….. 

14V, 14W, 14Y. In other words, there are 14 x 20 = 280 unique items in the data of 

a given 15-mer category. Another term used in this analysis is called support, 

which is frequency of a given item (or item-set) in the data of a given 15-mer 

category divided by total number of 15-mers of a given category. In other words, 

support is probability or normalized frequency. All 15-mers having gaps or 

occurring near N-terminus or C-terminus are excluded from this analysis. 

 

The Apriori algorithm can be explained in the steps given below – 

i. Calculate support values for each of the 280 items. Each item could 

be thought of as an item-set of size equal to 1. Select all size-1 item-

sets that have their support greater than or equal to their support 

cutoff. 
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ii. Generate all possible new item-sets of size = 2.New item-sets are 

generated by extending item-sets from previous step by an item, 

such that the item is a member of an item-set from previous step. 

iii. Support values are calculated for new item-sets. All item-sets with 

support greater than or equal to support cutoff are selected. 

iv. This process of generation and selection of new item-sets having 

size greater by 1 than previous step, is continued till no new item-

sets can be created. At this step, the algorithm ends. 

The item-sets having size-2 resulting from the Apriori algorithm were processed 

further. In case a group of size-2 item-sets satisfy the following conditions, they 

are combined together and their support values are added up –  

i. The given group of size-2 item-sets should have 1 common item and 

the varying item should have the same position but different amino 

acid. 

ii. All the item-sets of the given group should have their support values 

greater than or equal to support cutoff for combining 2-mer item-set 

for the given 15-mer category in accordance to Table-4. 

Let us understand the combining exercise with an illustration. For example, 

consider 3 size-2 item-sets: 6I-9E, 6L-93 and 6V-9E. These item-sets have 1 

common item namely 9E and the varying items – 6I, 6L and 6V have same 

position – 6 but varying amino acids namely – I, L and V. Since, the 2 conditions 

for combining size-2 item-sets has been met, the 3 item-sets will be combined into 

a consensus motif - 6[IVL]-9E, where I,V and L are the 3 amino acids that could 

occur at position 6 while E occurs at position 9. When the item-sets are combined 

into a consensus motif, their respective support values are added up and the sum is 
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assigned to the consensus motif. Given below are support cutoffs used for different 

15-mer categories (Table-4). 

 

Table-4: Support cutoffs for each 15-mer category used as input to Apriori 

algorithm and support cutoff for clustering 2-item-sets for each 15-mer category 

Query type Protein 

type 

Support 

cutoff 

Apriori 

(FASTA 

15-mer) % 

Support 

cutoff to 

cluster 2-

mer 

(FASTA 

15-mer) % 

Support 

cutoff 

Apriori 

(Aligned 

15-mer) % 

Support 

cutoff to 

cluster 2-

mer 

(Aligned 

15-mer) % 

Human Human 0.425 1.5 0.425 1.3 

Human Fly 0.65 0.82 0.65 0.79 

Mouse Mouse 2.6 3 2.6 3 

Mouse Fly 0.85 1.5 0.85 1.5 

 

 

 

3.2.4 Hierarchical clustering of protein sequences 
The results from h-CD-HIT server discussed in the previous section contain 

proteins clustered according to their sequence identities. Given below are details of 

clusters from each 15-mer category (Table-5).  

 

Table-5: The Protein sequence clusters from h-CD-HIT server. 
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Query 

type 

Protein 

type 

Total 

number 

of clusters 

Number 

of clusters 

size = 1 

Number 

of clusters 

size >= 2 

Number 

of 

proteins 

present in  

clusters 

size >= 2 

Human Human 3170 2180 990 3103 

Human Fly 3725 1876 1849 6663 

Mouse Mouse 373 309 64 159 

Mouse Fly 707 336 371 1364 

 

Multiple sequence alignments were constructed for every cluster using SALIGN 

function in MODELLER 9.17 [39]. All SUMOylation sites that line up at the same 

position in the MSA were grouped together and 15-mers centered on these lysines 

were extracted (discussed later in Results section). These clusters of SUMOylation 

sites were sorted in descending order by their sizes. Motifs were extracted from 

these 15-mer clusters. In this case, a motif is a 15-mer sequence such that each of 

the 15 positions is represented by the most abundant amino acid at that position in 

the 15-mer cluster. In case a position has its most abundant amino acid having 

frequency less than 70%, then x is included at that position in the motif sequence. 

The frequency cutoff of 70% was used because any cutoff less than that would 

have been too lenient and it would have introduced noise in the motif sequence. 
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3.2.5 Clustering of Gene Ontology terms 
This analysis was done to identify patterns related to protein functions for the 

identified homologs. Gene Ontology terms of every protein from both human and 

mouse PSIBLAST data were searched in the UniProt KB database. These terms 

can be divided into 3 categories - Cellular Component (GO C), Molecular Function 

(GO F) and Biological Process (GO P). It is possible for a protein to have one or 

more GO C, F and P terms associated with it. Each category of terms was clustered 

independently. All proteins that have the same term were grouped into the same 

cluster. For example, all proteins having Gene Ontology cellular component term 

as “nucleus” were grouped together into one cluster. Finally, all the clusters of a 

given category were sorted in descending order by their size. 

 

3.2.6 Computational tools and programs used in this study 
All the data extraction and analysis steps were carried out in Python version 2.7.5 

and mathematical calculations were done using Numeric Python (NumPy) version 

1.7.1 [40] respectively. Venn diagrams discussed later in the results section were 

plotted using VennDiagram library version 1.6.20 [41] in R version 3.4.4 [42] . 

 

 

3.3 Results 

3.3.1 Quantitative summary of results 

3.3.1.1 Predictions from human protein PSIBLAST 
Given below is a summary of the results obtained from PSIBLAST-based analysis 

of 9256 human proteins described in [13] (Table-6). Out of a total 9256 proteins, 

about 5283 (57%) proteins have around 8539 fly orthologs. As for the 15-mers 
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centered on SUMOylated lysines, 5283 human proteins contain 19823 15-mers 

centered on FASTA and aligned protein sequences. There around 52332 15-mers 

entered on annotated SUMOylated lysines from 8539 fly orthologs. There are 

about 4591 fly genes that encode for the 8539 fly proteins identified in this study. 

The CG-names and FlyBase FBgn identifiers for these genes were obtained from 

FlyBase release FB2018_05 ( https://flybase.org/ ) [43] .  

 

Table-6: Summary of results obtained from PSIBLAST of human 

proteins 

Description Numbers 

Total number of human proteins 9256 

Number of human proteins that 

found fly orthologs 

5283 

Number of fly orthologs found 8539 

Number of aligned and FASTA 

human 15-mers 

19823 

Number of aligned and FASTA 

fly 15-mers 

52332 

Number of fly genes that encode 

the fly proteins 

4591 

 

SUMOylated lysines are known to conform to a consensus sequence motif – ψ – K 

– x – (E/D) – where ψ = any aliphatic, hydrophobic amino acid such as I / V / L, K 

= SUMOylation site, x = any amino acid and E/D = either glutamate or aspartate 

residue. Since ψ and x are variable amino acids, only the K-x-E motif was checked 

in the FASTA 15-mers centered on SUMOylation sites. Given below is a summary 

https://flybase.org/
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of the proportion of human and fly SUMOylation sites that conform to the K– x–

(E/D) motif (Table-7). The proportions of human and fly SUMOylation sites that 

do not conform to the consensus motif are 67% and 74% respectively. 

 

Table-7: Summary of proportion of SUMOylation sites in human data 

that conform to K-x-(E/D) motif 

Motif status Proportion of human 

SUMOylation sites 

Proportion of fly 

SUMOylation sites 

K – x – (E/D) 3128 (16 %) 6292 (12 %) 

(E/D) – x – K 2820 (14 %) 6225 (12 %) 

(E/D) – x – K – x – 

(E/D) 

517 (3 %) 1079 (2 %) 

None 13358 (67 %) 38736 (74 %) 

 

A Venn diagram comparing the overlap between lists of CG-names for genes 

encoding fly SUMO targets identified by different SUMO proteomics studies can 

be seen below (Figure-2). These studies could identify fly SUMO targets but not 

the SUMOylated lysines due to experimental difficulties. The CG-name lists were 

derived from fly proteins identified by human PSIBLAST data, Nie et al 2009 [27] 

, Handu et al 2015 [28] , Pirone et al 2017 (S2R+ cell lines) and Pirone et al 2017  

(transgenic flies) [29] respectively. Around 1069 (23 %) of CG-names for fly 

orthologs found from the human PSIBLAST data were confirmed by at least one of 

the other studies (Figure-2).  These 1069 CG-names also account for 91% of the 

1169 CG-names identified by 2 or more studies compared in the Venn diagram 

given below (Figure-2). There are 5 proteins common among all studies. These 5 

proteins are actin-5C, Hsp68, RNP-107kd, 14-3-3 epsilon and 14-3-3 zeta. 
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Figure 2: Venn diagram comparing gene CG-name list of fly orthologs from human PSIBLAST data with 
gene CG-name lists for fly SUMOylated proteins identified by other SUMO proteomics studies. Here, 
numbers in brackets indicate total number of CG-names for a given study and Nie – Nie et al 2009, 
Handu – Handu et al 2015, Pirone (1069) – Pirone et al 2017 data from S2R+ cell lines, Pirone (163) – 
Pirone et al 2017 data from transgenic flies. 

 

Predictions from human PSIBLAST data also contain 3522 CG-names that were 

not identified by any of the 3 fly SUMO proteomics studies. 2194 of the 3522 fly 

genes encode at least one protein containing either K-x-(E/D), (E/D)-x-K or (E/D)-

x-K-x-(E/D) consensus motifs. 1033 of the 3522 fly genes also encode proteins 

that have nucleus as their preferred cellular localization as indicated by their Gene 

Ontology Cellular Component terms. This observation is consistent with previous 

reports suggesting nucleus as a preferred cellular compartment of SUMOylated 
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proteins [11,13]. A detailed discussion of various Gene Ontology terms can be 

found later in this article. 

 

3.3.1.2 Predictions from mouse protein PSIBLAST 
Given below is a summary of the results obtained from PSIBLAST of mouse 

proteins (Table-8). Out of 970 mouse proteins, around 468 proteins (48%) have 

1700 fly orthologs. There are 769 SUMOylated lysines in 468 mouse proteins. 

Similarly, the 1700 proteins contain 3700 annotated SUMOylated lysines. There 

are 936 fly genes that encode for the 1700 fly orthologs. 

 

Table-8: Summary of results obtained from PSIBLAST of mouse 

proteins 

Description Numbers 

Total number of mouse proteins 970 

Number of mouse proteins that 

found fly orthologs 

468 

Number of fly orthologs found 1700 

Number of aligned and FASTA 

mouse 15-mers 

769 

Number of aligned and FASTA 

fly 15-mers 

3700 

Number of fly genes that encode 

the fly proteins 

936 
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The proportions of K-x-(E/D) motif lysines in mouse and fly FASTA 15-mers are 

similar to the proportions reported for human PSIBLAST data in previous section 

(Table-9). Thus, around 57% of mouse SUMOylation sites and 76% of fly 

annotated SUMOylation sites do not conform to the K-x-(E/D) motif. 

 

Table-9: Summary of proportion of SUMOylation sites in mouse data 

that conform to K-x-(E/D) motif 

Motif status Proportion of mouse 

SUMOylation sites 

Proportion of fly 

SUMOylation sites 

K – x – (E/D) 239 (31 %) 478 (13 %) 

(E/D) – x – K 67 (9 %) 341 (9 %) 

(E/D) – x – K – x – 

(E/D) 

27 (3 %) 74 (2 %) 

None 436 (57 %) 2807 (76 %) 
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A 

B 



38 
 

Figure 3: A: Venn diagram comparing gene CG-name list of fly orthologs identified from mouse 
PSIBLAST data with gene CG-name lists of fly SUMOylated proteins identified by other SUMO 
proteomics studies namely – Nie et al 2009, Handu et al 2015, Pirone et al 2017 (S2R+ cell lines) and 
Pirone et al 2017 (transgenic flies) Notations are same as Figure-2. B: Venn diagram comparing CG-name 
lists of fly orthologs identified by human PSIBLAST data and mouse PSIBLAST data. 

 

Given above is a Venn diagram comparing overlap between CG-name lists of 

genes encoding fly orthologs identified from mouse PSIBLAST analysis and other 

SUMO proteomics studies (Figure-3A, Notations are the same as Figure-2). 

Around 326 (35%) of CG-names for fly orthologs found from mouse PSIBLAST 

analysis were confirmed by at least one of the other studies. The 4 proteins 

common in all studies are RNP-107kd, actin-5C, 14-3-3 epsilon and 14-3-3 zeta. In 

addition, overlap between CG-name lists for genes encoding fly orthologs 

identified by human PSIBLAST data and mouse PSIBLAST data can be seen 

above (Figure-3B). Around 884 (94%) of CG-names from mouse data were 

confirmed by CG-names from human data. 

 

3.3.2 Proteins identified by different fly SUMO proteomics experiments 
The Venn diagram derived from human PSIBLAST data (Figure-2) consists of 

proteins that belong to different overlap categories. Overlap categories could range 

from 0 to 4, where either a protein was detected by none of the fly proteomics 

studies to as many as all 4 studies. Proteins detected by all 4 studies have been 

discussed in the previous section. For the sake of analysis, proteins could be 

divided into 4 different categories, 1 – detected by 3 of the 4 studies, 2 – detected 

by 2 of the 4 studies, 3 – detected by 1 of the 4 studies and 4 – detected uniquely in 

this study. All the 4 categories are a subset of human PSIBLAST data. For each of 

these 4 categories, proteins were sorted in an ascending order according to the 

minimum E-value the given protein could achieve out of all the alignments 
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involving the given protein. Given below are top 5 proteins from every category 

(Table-10). 

 

Table-10: Top 5 proteins and their respective UniProt / UniRef90 IDs 

for every overlap category. 

Ran

k 

Proteins 

found by 3 

studies 

Proteins 

found by 2 

studies 

Proteins 

found by 1 

study 

Proteins 

unique to our 

study 

1 P0CG69 :  

Polyubiquitin 

P17210 : 

Kinesin heavy 

chain 

A1ZAB5 : 

Protein 

clueless 

X2JCN4 : 

Kugelei, 

isoform E 

2 Q9TVM2 :  

Exportin-1 

A4V1F9 : 

Ubiquitin-

63E, isoform 

C 

A0A0B4KEX

0 : Protein 

clueless 

P54358 : DNA 

polymerase 

delta catalytic 

subunit 

3 P13060 :  

Elongation 

factor 2 

Q59E34 : Mi-

2, isoform B 

Q9VPI9 : 

LD20667p 

Q7KU24 : 

Chromodomain

-helicase-

DNA-binding 

protein 1 

4 P15348 : 

DNA 

topoisomeras

e 2 

E1JI46 : Mi-2, 

isoform C 

M9PIA6 : Mi-

2, isoform D 

UniRef90_Q8S

WV9 : 

LD39323p 

(Fragment) 

5 P11147 : 

Heat shock 

Q9VF02 : 

Helicase 89B, 

Q00174 : 

Laminin 

P24014 : 

Protein slit 
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70 kDa 

protein 

cognate 4 

isoform B subunit alpha 

 

 

3.3.3 Motifs obtained from clustering analysis of 15-mer centered on 
SUMOylation sites   
Shown below are top 5 motifs (in terms of support values) found in human 

PSIBLAST data using Apriori algorithm (Tables-11 and 12). 

 

Table-11: Top 5 motifs found in FASTA and aligned 15-mers found 

in human proteins in human PSIBLAST data. Numbers in brackets 

indicate total number of motifs for the given category. 

Rank Motif  

human 

FASTA 15-

mer (5882) 

Support 

human 

FASTA 15-

mer (%) 

Motif 

human 

aligned 15-

mer (5885) 

Support 

human 

aligned 15-

mer (%) 

1 6[ILV]-9E 5.721 6[ILV]-9E 5.621 

2 9E-11[EL] 3.538 9E-13[EKL] 4.577 

3 8E-9E 2.013 2[EKL]-9E 4.017 

4 9E-12E 1.904 9E-12[EK] 3.26 

5 4E-5E 1.874 3[EL]-9E 3.026 
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Table-12: Top 5 motifs found in FASTA and aligned 15-mers found 

in fly proteins in human PSIBLAST data. Numbers in brackets 

indicate total number of motifs for the given category. 

Rank Motif fly 

FASTA 15-

mer (832) 

Support fly 

FASTA 15-

mer (%) 

Motif fly 

aligned 15-

mer (889) 

Support fly 

aligned 15-

mer (%) 

1 6[ILV]-9E 2.994 4[AEKLRS]-

6L 

5.272 

2 9E-

13[EKL] 

2.982 8L-

13[AKLR] 

3.896 

3 5[DEL]-6L 2.829 6[AILV]-9E 3.78 

4 0[EKL]-8L 2.805 9E-13[AEKL] 3.78 

5 4[AER]-6L 2.793 0[EKLR]-8L 3.737 

 

As can be seen above, the most commonly occurring motif in human PIBLAST 

data is 6[IVL]-9E (Tables-11 and 12). 

 

Given below are top 5 motifs (in terms of support values) found in mouse 

PSIBLAST data using Apriori algorithm (Tables-13 and 14). 

 

Table-13: Top 5 motifs found in FASTA and aligned 15-mers found 

in mouse proteins in mouse PSIBLAST data. Numbers in brackets 

indicate total number of motifs for the given category. 

Rank Motif Support Motif mouse Support 
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mouse 

FASTA 15-

mer (39) 

mouse 

FASTA 15-

mer (%) 

aligned 15-

mer (28) 

mouse 

aligned 15-

mer (%) 

1 6[ILV]-9E 21.642 6[ILV]-9E 19.744 

2 4[EKSV]-9E 13.993 9E-

12[DESTV] 

16.667 

3 9E-13[EGP] 13.06 4[AEKS]-9E 14.103 

4 9E-12[DES] 12.5 9E-13[EGP] 13.333 

5 3[LPS]-9E 11.754 3[LST]-9E 11.538 

 

 

Table-14: Top 5 motifs found in FASTA and aligned 15-mers found 

in fly proteins in mouse PSIBLAST data. Numbers in brackets 

indicate total number of motifs for the given category. 

Rank Motif fly 

FASTA 15-

mer (838) 

Support fly 

FASTA 15-

mer (%) 

Motif fly 

aligned 15-

mer (1181) 

Support fly 

aligned 15-

mer (%) 

1 6[IL]-9E 3.833 6[IL]-9E 3.406 

2 5E-9E 1.974 8[PT]-12S 3.251 

3 9E-10P 1.974 0Y-2C-5C-

9F 

2.012 

4 9E-11E 1.858 3E-4L 2.012 

5 10L-14L 1.858 9E-11E 2.012 

 

As can be seen above, 6[IVL]-9E is the amino acid motif with highest frequency in 

mouse PSIBLAST data (Tables-13 and 14). 
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All the motifs shown above (Tables-11 to 14) also contain the item 7K or central 

SUMOylated lysine. Recall from methods section that this item was omitted from 

input to Apriori algorithm because it occurs in all 15-mers. The item 7K should be 

considered while analyzing all the motifs (Tables-11 to 14). Thus, the motif 

6[IVL]-9E can be expanded as 6[IVL]-7K-9E motif. In other words, this motif 

represents the SUMOylation consensus motif - ψ – K – x – (E/D)   - where ψ is an 

aliphatic hydrophobic amino acid I, V or L occurring at 6th position, 7K is the 

SUMOylated lysine and 9E indicates the glutamate residue occurring at the 9th 

position in the 15-mer sequence. 

 

3.3.4 Motifs obtained from clustering analysis of protein sequences   
Given below are top 5 motifs (in terms of counts) occurring in MSAs built from 

proteins identified in human and mouse PSIBLAST data respectively (Tables-15 

and 16). 

 

Table-15: Top 5 motifs found in MSAs built from human and fly 

proteins in human PSIBLAST data. Numbers in brackets indicate total 

number of motifs for the given category. 

Ran

k 

Human protein 

motifs (8831) 

Count 

huma

n 

protei

n 

motifs 

Fly protein motifs 

(15473) 

Count 

fly 

protei

n 

motifs 
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1 xxxHTGEKPYxCx

xC 

48 LRVVRVAKVGRVL

RL 

51 

2 xxxHTGEKPYxCx

xC 

47 KSIDRQRKLEEALL

L 

22 

3 xxxHTGEKPYxCx

EC 

46 QSLLDTTKAQVKDI

L 

22 

4 xxxHTGEKPxxCx

EC 

44 IIDQFHTKILNDERQ 21 

5 xxxHTGEKPYxCx

xx 

43 PDLLDWRKARNDR

PR 

21 

 

Table-16: Top 5 motifs found in MSAs built from mouse and fly 

proteins in mouse PSIBLAST data. Numbers in brackets indicate total 

number of motifs for the given category. 

Ran

k 

Mouse protein 

motifs (266) 

Count 

mouse 

protei

n 

motifs 

Fly protein motifs 

(1041) 

Count 

Fly 

protei

n 

motifs 

1 AAPAPxEKxPxKK

KA 

4 xEExxFPKATDxTFx 17 

2 xxxxGLxKxxGxSNF 3 VxxxGxMKFxQxxx

x 

17 

3 EADLVxAKEANxK

CP 

3 LEAFGNAKTVxND

NS 

17 

4 VSLxALKKxLAAx 3 xFxExSAKxxxNVxx 16 
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GY 

5 QAVLLPKKxxxxxx

x 

3 xxLExQxKELxxxLx 16 

 

While analyzing the tables given above, it is important to note that the count values 

are actually the total number of 15-mers in a given cluster. For an amino acid to be 

included in the motif sequence, it should have frequency greater than or equal to 

70% of the count value at a given 15-mer position. Failing this criterion, a dummy 

amino acid x is added at that position in the motif sequence. 

 

All the top 5 15-mer clusters from human proteins (Table-15) have the motif 

sequence HTGEKPYxCxxC. The MSA from zinc finger proteins contains 5 

conserved repeats of the HTGEKPYxCxxC motif. Hence, there are 5 different 

instances of the same motif (Table-15). In addition to this motif, zinc finger 

proteins contain another motif sequence CxxCGKxF. However the CxxCGKxF 

motif occurs with a lower count as compared to HTGEKPYxCxxC motif. 

Motif sequence with rank-1 from fly proteins (Table-15) occurs in MSA built from 

sodium channel proteins. Motifs ranked-2, 3, 4 and 5 occur in MSA built from 

short stop proteins. Short stop proteins are cross-linkers between F-actin and 

microtubules. Similar to human proteins, fly proteins also contain zinc finger 

proteins and HTGEKPYxCxxC motifs albeit with a lower frequency. 

Motifs ranked-1, 4 and 5 under mouse column (Table-16) occur in MSAs built 

from histones. Motif ranke-2 occurs in aldo-keto reductase family 1. Motif rank-3 

occurs in chromobox proteins. 



46 
 

Motifs ranked-1, 2, 3 and 5 in fly columns (Table-16) occur in MSA from myosin 

heavy chain. Motif rank-4 occurs in Rab proteins. 

 

3.3.5 New predictions made using motifs obtained from protein sequence 
clusters 
A total of 13,922 out of 22,005 proteins of the fruit fly proteome were not picked 

up by either human or mouse PSIBLAST data. Hence, 15-mers centered on all 

lysine residues in these 13,922 proteins were extracted. Each of these 15-mers 

were scanned against a list of 11,227 motifs obtained after combining all fly motifs 

that had a count equal or greater than 2. The list of 11,227 motifs was created such 

that if one motif is a subset of another motif, then the larger motif was retained 

whereas the smaller motif was removed. This was done to ensure that the list of 

11.227 motifs was non-repeating and unique in nature. For every query 15-mer the 

longest motif that matched the query 15-mer was found. This exercise led to 

identification of 2694 15-mers centered on new lysines from 1131 out of 13,922 

proteins. These 2694 15-mers matched 1208 fly motifs. Given below are top 5 fly 

motifs that matched the most number of 15-mers centered on new lysines (Table-

17). 

 

Table-17: Top 5 fly motifs that matched most number of 15-mers 

centered on new lysines from remaining fly proteome. Numbers in 

brackets indicate total number of motifs for the given category. 

Rank Fly motifs (1208) New lysine count 

(2694) 

1 xVxxxxSKSxxxxxx  151 
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2 xxxxxxPKxxxNxKx  60 

3 VxxxDxxKxxxVxxx  55 

4 xxxxDxNKDxxxxxx  48 

5 xHxxPxVKxxxxxxx  42 

 

Table-18: Summary of proportion of new lysines that conform to 

consensus motif. 

Motif Proportion of new lysines 

[ILV]-K-x-E 121 (5 %) 

E-x-K-[ILV] 24 (1 %) 

E-x-K-x-E 3 (0 %) 

None 2546 (94 %) 

 

Around 6 % of the lysines detected using motifs derived from protein MSAs 

conform to either forward or inverse orientation of the consensus motif (Table-18). 

 

Table-19: Top 5 proteins and their respective UniProt / UniRef90 IDs 

for every overlap category. 

Ran

k 

Proteins found by motif matching (UniProt ID : 

protein name) 

Overlap with 

other fly 

studies 

1 O97159 : Chromodomain-helicase-DNA-binding 

protein Mi-2 homolog 

2 

2 P36179 : Serine/threonine-protein phosphatase 

PP2A 65 kDa regulatory subunit 

2 
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3 Q9NFP5 : SH3 domain-binding glutamic acid-rich 

protein homolog 

2 

4 Q9VPH7 : Eukaryotic peptide chain release factor 

subunit 1 

2 

5 A0A0B4LH53 : N-ethylmaleimide-sensitive factor 

2, isoform B 

1 

 

The list of top 5 proteins shown in 2nd column (Table-19) was obtained as follows. 

First, overlap (with respect to the 4 fly proteomics studies discussed earlier in 

Venn diagrams) was calculated for each of the 1131 proteins detected from motif 

matching exercise. Second, this list of 1131 proteins was sorted in descending 

order by their overlap values. From this sorted protein list, first 5 proteins that 

contain a lysine found using motif matching were chosen as long as the lysine 

conformed to either forward or inverse consensus motif. 

 

3.3.6 Analysis of Gene Ontology terms 
Given below is the summary of top 5 clusters obtained after analyzing Gene 

Ontology cellular component, molecular function and biological process terms 

from human PSIBLAST data (Tables-20 to 22). 

 

Table-20: Top 5 GO C terms found in human and fly proteins in 

human PSIBLAST data. Numbers in brackets indicate total number of 

GO C terms for the given protein category. 

Rank GO C terms 

human 

Count : 

Proportion 

GO C 

terms fly 

Count : 

Proportion 
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proteins 

(1206) 

% proteins 

(902) 

% 

1 Nucleus 2291 : 11% Nucleus 2333 : 14% 

2 Nucleoplasm 1886 : 9% Cytoplasm 1531 : 9% 

3 Cytosol 1724 : 8% integral 

component 

of 

membrane 

867 : 5% 

4 Cytoplasm 1324 : 6% Cytosol 703 : 4% 

5 extracellular 

exosome 

632 : 3% plasma 

membrane 

545 : 3% 

 

 

Table-21: Top 5 GO F terms found in human and fly proteins in 

human PSIBLAST data. Numbers in brackets indicate total number of 

GO F terms for the given protein category. 

Rank GO F terns 

human 

proteins 

(1991) 

Count : 

Proportion 

% 

GO F 

terms fly 

proteins 

(1510) 

Count : 

Proportion 

% 

1 metal ion 

binding 

1012 : 6% ATP 

binding 

1196 : 7% 

2 DNA binding 821 : 5% metal ion 

binding 

640 : 4% 

3 RNA binding 809 : 5% zinc ion 

binding 

516 : 3% 
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4 ATP binding 721 : 4% RNA 

binding 

493 : 3% 

5 DNA-

binding 

transcription 

factor 

activity 

422 : 3% DNA 

binding 

480 : 3% 

 

 

Table-22: Top 5 GO P terms found in human and fly proteins in 

human PSIBLAST data. Numbers in brackets indicate total number of 

GO P terms for the given protein category. 

Rank GO P terms 

human 

proteins 

(7037) 

Count : 

Proportion 

% 

GO P terms fly 

proteins (3855) 

Count : 

Proportion 

% 

1 regulation of 

transcription, 

DNA-

templated 

455 : 1% regulation of 

transcription, 

DNA-templated 

393 : 1% 

2 positive 

regulation of 

transcription 

by RNA 

polymerase 

II 

441 : 1% positive 

regulation of 

transcription by 

RNA 

polymerase II 

333 : 1% 
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3 negative 

regulation of 

transcription 

by RNA 

polymerase 

II 

392 : 1% regulation of 

transcription by 

RNA 

polymerase II 

289 : 1% 

4 regulation of 

transcription 

by RNA 

polymerase 

II 

283 : 1% protein 

phosphorylation 

240 : 1% 

5 negative 

regulation of 

transcription, 

DNA-

templated 

268 : 1% negative 

regulation of 

transcription by 

RNA 

polymerase II 

237 : 1% 

 

As can be seen from the tables above (Tables-20 to 22), majority of the proteins 

from human PSIBLAST data localize to the nucleus. Most of these proteins bind 

DNA, RNA or ATP. Regulating transcriptional activity of RNA polymerase II 

seems to be the common biological process of these proteins. 

Given below is the summary of top 5 clusters obtained after analyzing Gene 

Ontology cellular component, molecular function and biological process terms 

from mouse PSIBLAST data (Tables-23 to 25). 
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Table-23: Top 5 GO C terms found in mouse and fly proteins in 

mouse PSIBLAST data. Numbers in brackets indicate total number of 

GO C terms for the given protein category. 

Rank GO C terms 

mouse 

proteins (491) 

Count : 

Proportion 

% 

GO C 

terms fly 

proteins 

(414) 

Count : 

Proportion 

% 

1 Nucleus 288 : 11% Nucleus 668 : 17% 

2 Nucleoplasm 184 : 7% Cytoplasm 357 : 9% 

3 Cytosol 167 : 6% Cytosol 187 : 5% 

4 Cytoplasm 156 : 6% plasma 

membrane 

127 : 3% 

5 Mitochondrion 65 : 3% integral 

component 

of 

membrane 

95 : 3% 

 

 

Table-24: Top 5 GO F terms found in mouse and fly proteins in 

mouse PSIBLAST data. Numbers in brackets indicate total number of 

GO F terms for the given protein category. 

Rank GO F terms 

mouse 

proteins 

(666) 

Count : 

Proportion 

% 

GO F terms 

fly proteins 

(510) 

Count : 

Proportion 

% 

1 identical 99 : 4% ATP binding 383 : 9% 
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protein 

binding 

2 DNA 

binding 

94 : 4% RNA 

polymerase 

II cis-

regulatory 

region 

sequence-

specific 

DNA binding 

218 : 5% 

3 RNA 

polymerase 

II cis-

regulatory 

region 

sequence-

specific 

DNA 

binding 

87 : 4% DNA-

binding 

transcription 

factor 

activity, 

RNA 

polymerase 

II-specific 

205 : 5 % 

4 ATP binding 77 : 3% zinc ion 

binding 

205 : 5% 

5 metal ion 

binding 

72 : 3% metal ion 

binding 

137 : 3% 
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Table-25: Top 5 GO P terms found in mouse and fly proteins in 

mouse PSIBLAST data. Numbers in brackets indicate total number of 

GO P terms for the given protein category. 

Rank GO P mouse 

terms  

proteins 

(2219) 

Count : 

Proportion 

% 

GO P terms 

fly proteins 

(1690) 

Count : 

Proportion 

% 

1 regulation of 

transcription 

by RNA 

polymerase II 

93 : 2% regulation of 

transcription 

by RNA 

polymerase II 

252 : 4% 

2 positive 

regulation of 

transcription 

by RNA 

polymerase II 

84 : 2% regulation of 

transcription, 

DNA-

templated 

160 : 2% 

3 negative 

regulation of 

transcription 

by RNA 

polymerase II 

83 : 2% positive 

regulation of 

transcription 

by RNA 

polymerase II 

86 : 1% 

4 negative 

regulation of 

transcription, 

DNA-

templated 

59 : 1% negative 

regulation of 

transcription 

by RNA 

polymerase II 

73 : 1% 
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5 positive 

regulation of 

transcription, 

DNA-

templated 

49 : 1% negative 

regulation of 

transcription, 

DNA-

templated 

60 : 1% 

 

As can be seen above (Tables-23 to 25), GO term analysis of mouse PSIBLAST 

data reveals that most of the proteins localize to the nucleus. 

Most of these proteins bind metal ions, ATP, DNA or RNA. Regulating the 

transcriptional activity of RNA polymerase II seems to be the primary biological 

function of these proteins. Thus, taken together from GO term analysis of human 

and mouse PSIBLAST data, it seems that both categories of proteins have similar 

biological roles in a cellular environment. 

 

3.3.7 Comparison between predictions from our study, GPS-SUMO and 
JASSA 
The list of SUMOylated lysines predicted in this study was compared with the list 

obtained from sequence-based SUMOylation site prediction tools namely GPS-

SUMO and JASSA. The fly proteins discussed in the present study could come 

from either fly proteome sequences or the UniRef90 database. Hence, all the 

22,005 proteins of the fruit fly proteome and 1087 UniRef90 sequences were 

submitted as input to GPS-SUMO and JASSA. GPS-SUMO predicted 34,662 

SUMOylation sites in 13,216 proteins from the fruit fly proteome and 3518 sites in 

766 UniRef90 sequences. JASSA predicted 268,499 lysines in 21,034 proteins 

from the fruit fly proteome and 26,592 lysines in 1,077 UniRef90 sequences. 
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Given below is a comparison between lysines predicted in this study and lysines 

predicted by GPS-SUMO and JASSA (Table-26). 

 

Table-26: Overlap between lysines predicted in this study and 

predictions made by GPS-SUMO and JASSA. 

 Overlap of our 

study with 

results from 

GPS-SUMO 

Overlap of our 

study with 

results from 

JASSA 

Overlap 

between 

results from 

GPS-SUMO 

and JASSA 

Proteome 2841 (8%) 17,662 (7%) 31,319 

(90%) 

UniRef90 363 (10%) 2393 (9%) 3181 (90%) 

 

The method presented in this study takes protein homology information into 

account. However, GPS-SUMO [30,31] and JASSA [16] do not consider 

homology information while predicting SUMOylation sites. This could be the 

reason for the low overlap between SUMOylated lysines predicted in this study 

and those predicted by GPS-SUMO and JASSA. Both GPS-SUMO and JASSA 

take local sequence environment around lysine residues into account while making 

predictions and prefer lysines conforming to consensus motifs. Hence, predictions 

made by both the tools are 90% similar. 

 

3.4 Discussion 
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The work done in this study uses the concept of sequence homology for annotating 

SUMOylation sites in the proteome of fruit fly Drosophila melanogaster using 

information derived from human (9256) and mouse (964) proteins. The input 

information for this study was obtained from mass spectrometry-coupled 

proteomics experiments. The work resulted in prediction of more than 52,000 

SUMOylated lysines present in more than 8600 fly proteins encoded by more than 

4600 fly genes. Past fly SUMO proteomics experiments have shown that proteins 

encoded by 100 of the 4600 fly genes get SUMOylated. Future SUMO proteomics 

experiments need to validate SUMOylation of proteins encoded by the remaining 

3500 fly genes that have been predicted in this study. 

Clustering methods discussed in this study provide three kinds of information – 

sequence motifs centered on SUMOylated lysines, protein family specific motifs 

and biological functions preferred by target proteins.  

First clustering exercise revealed amino acid preferences found in local sequence 

environment provided by 15-mer s. This analysis confirmed the importance of the 

ψ–K-x-(E/D) consensus motif. Apart from the consensus motif, the present study 

also found the existence of hundreds of other motifs in the vicinity of SUMOylated 

lysines (Tables-11 to 14). Future experiments need to study the biological 

significance of these motifs because existing scientific literature does not explain 

the importance of these motifs. 

Second clustering exercise revealed protein family specific preferences found with 

the help of multiple sequence alignments. This analysis showed that members of 

hundreds of protein families get SUMOylated. Notable examples include zinc 

finger proteins, sodium channel proteins, histones and chromobox containing 

proteins. Each protein family has its own set of conserved SUMOylated lysines 
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and these lysines follow family specific signature motifs. For example, 

SUMOylated lysines in zinc finger proteins follow a signature motif 

HTGEKPYxCxxC, sodium channel proteins contain LRVVRVAKVGRVLRL 

motif and so on (Tables-15 and 16). These family specific motifs in turn helped in 

predicting SUMOylated lysines in proteins that were missed by PSIBLAST 

(Tables-17 to 19). 

Third clustering exercise helped in understanding cellular and molecular functions 

of SUMOylation target proteins as revealed by Gene Ontology term analysis. This 

analysis showed that most of the SUMOylated proteins localize to nucleus, bind 

DNA / RNA and are involved in regulation of transcriptional activity (Tables-20 to 

25). 

Future studies could extend this idea to other post-translational modifications such 

as phosphorylation, ubiquitination, acetylation and others. There are many novel 

findings of this in silico study that need to be experimentally validated in the near 

future. Such a combination of computational and experimental methods could be 

used for a better understanding of post-translational modifications in the near 

future. 
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Chapter 4: SUMO-ON-THE-FLY web 
server 
 

4.1 Introduction 

Databases are important for storing important biological information such as 
protein sequences, nucleic acid sequences, atomic structures of biomolecules etc. 
Examples of such databases include UniProt KB [7] and FlyBase [43] among 
others. There are also databases of post translational modification sites (such as 
SUMOylation) determined by low throughput experiments, such as dbPTM [8], 
PLMD [9], PhosphoSitePlus [10] etc. 

Recently, protein sequence alignments were used to identify SUMOylation sites 
conserved between human and fly proteins as well as mouse and fly proteins 
respectively. Here, fly refers to the fruit fly Drosophila melanogaster. The SUMO-
ON-THE-FLY server was designed to make the homology annotations available to 
fly geneticists around the globe. The database not only predicts known fly 
SUMOylation sites but also predicts thousands of previously unknown 
SUMOylation sites. 

 

4.2 Server description 

The web server has two separate search forms for the two different kinds of 
homology data. The database can be searched using UniProt, UniRef90, gene 
symbol, CG-number or FlyBase identifiers. Search results contain a table wherein 
the rows refer to mappings between a known SUMOylated lysine in a human / 
mouse protein and a putative SUMOylated lysine in a fly protein. The result table 
also contains information related to the sequence alignment between the 
homologous proteins such as percent identity, percent similarity, alignment length, 
sequence window centered on the SUMOylation site etc. A screenshot of the server 
search page is given below (Figure-1). The server has been locally set up at the IP 
address 10.30.1.175:/sumo-server.com/public_html/, in a Linux environment. 



60 
 

Apache and PHP provide the web interface whereas the database is stored in 
MySQL. 

 

Figure 1: A screenshot of the search page of the SUMO-ON-THE-FLY server. 

4.3 Case study: 14-3-3 epsilon 

The database is arranged according to mappings between lysine residues from 
human / mouse proteins and lysines from fly proteins. For example, when the 
database is searched for “14-3-3 epsilon”, the database returns information about 
human and fly homologs, their UniProt identifiers, the position of lysine residues 
that got aligned etc (Table-1). 

Table-1: Results from the database when queried for “14-3-3 epsilon” protein 

Fly 
UniProt 

ID 

Fly 
lysine 

Fly 15-mer Human 
UniProt 

ID 

Human 
lysine 

Human 15-mer 

P92177 50 NLLSVAYKNVIGARR P63104 49 NLLSVAYKNVVGARR 
P92177 142 FATGSDRKDAAENSL P63104 139 VAAGDDKKGIVDQSQ 
P92177 123 ESKVFYYKMKGDYHR P63104 120 ESKVFYLKMKGDYYR 
P92177 69 IITSIEQKEENKGAE P63104 68 VVSSIEQKTEGAEKK 
P92177 215 TLSEESYKDSTLIMQ P63104 212 TLSEESYKDSTLIMQ 

 

GPS-SUMO [14,31] and JASSA [16] are two of the most popular SUMOylation 
site prediction tools. When the protein sequence of 14-3-3 epsilon from the fruit fly 
was submitted to the standalone version of GPS-SUMO, it did not predict any of 
the lysines to be SUMOylated. JASSA predicted many lysines as putative 
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SUMOylation sites (Table-2). Except lysine 69, none of the lysines predicted by 
JASSA are predicted by SUMO-ON-THE-FLY database. The 2 lists of predicted 
lysines differ because unlike SUMO-ON-THE-FLY, JASSA does not take 
homology information into account while making the predictions. Lysines at 
positions – 12, 73, 78, 83, 118, 125 and 250 were not predicted by SUMO-ON-
THE-FLY because these lysines were not detected as SUMOylation sites by the 
mass spectrometry-coupled proteomics experiments used in chapter 3 of this thesis. 

Table-2: SUMOylation sites in 14-3-3 epsilon protein as predicted by JASSA and 
the 21-mers centered on these lysines as returned by JASSA 

Lysines predicted by 
JASSA 

21-mers centered on those lysines 

12 TERENNVYKAKLAEQAERYDE 
69 SWRIITSIEQKEENKGAEEKL 
73 ITSIEQKEENKGAEEKLEMIK 
78 QKEENKGAEEKLEMIKTYRGQ 
83 KGAEEKLEMIKTYRGQVEKEL 

118 LIPCATSGESKVFYYKMKGDY 
125 GESKVFYYKMKGDYHRYLAEF 
250 VDPNAGDGEPKEQIQDVEDQD 

 

4.4 Acknowledgements 

The user interface of the server was designed by Neelesh Soni, whereas the 
MySQL databases were generated by Yogendra Ramtirtha. 
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Chapter 5: 3-D structure based prediction 
of SUMOylation sites 

  

5.1 Introduction 

Lysine residues in eukaryotic proteins are known to undergo many post-
translational modifications. Examples include ubiquitination, acetylation, 
methylation, SUMOylation etc. SUMOylation involves formation of a covalent 
bond between side chain amino group of lysine residues in target / substrate 
proteins and C-terminus of a protein called SUMO (Small Ubiquitin-related 
MOdifier). Candidate lysines from target proteins are selected by SUMO E2 
conjugating enzyme (ubc9) independently in vitro or with the help of SUMO E3 
ligases in vivo. Mutation of lysine to an arginine disrupts the modification. 
Disruption of SUMOylation has been linked to neuro-degenerative diseases and 
cancer. 

Experimental determination of SUMOylated lysines is cumbersome. Hence, 
computational prediction of SUMOylated lysines could be useful. All the currently 
available SUMOylation site prediction tools make use of protein sequences. GPS-
SUMO [15,44] and JASSA [16] are two such popular sequence-based 
SUMOylation site prediction tools. These sequence-based SUMOylation site 
prediction tools preferentially look for the consensus motif ψ–K-x-(E/D), where ψ– 
I/L/V and K – SUMOylated lysine. Recent mass spectrometry-coupled proteomics 
experiments conducted on human cell lines have shown that around 50% of all 
SUMOylated lysines conform to consensus motif [11,13]. Thus, protein sequence 
information alone is insufficient to predict all SUMOylated lysines. Information 
about protein three dimensional (3-D) structures could be useful to understand how 
ubc9 discriminates between SUMOylated and non-SUMOylated lysines. To the 
best of our knowledge, none of the currently available SUMOylation site 
prediction tools make direct use of protein 3-D information. Hence, this research 
article describes proof-of-concept study of a novel method that takes protein 3-D 
information into account while predicting SUMOylated lysines. 
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Experimental techniques such as x-ray crystallography, nuclear magnetic 
resonance and electron microscopy are used to solve protein structures. Protein 3-
D structures are deposited in a data archive called Protein Data Bank (PDB) [45] 
under different accession identifiers. Structural information about known ubc9-
target protein complexes is very important for designing a robust prediction 
method. Our current understanding of ubc9-target complexes is limited because the 
PDB contains information about only one ubc9-target complex where the target 
protein is RanGAP1 (PDB ID : 1Z5S) [46]. Given below is the image of the 
enzyme-target complex generated using UCSF Chimera version 1.13.1 [47] 
(Figure-1). Ubc9 active site has 2 important residues C93 and D127 that catalyze 
the formation of covalent bond between lysine side chain and SUMO C-terminal 
tail. Lysine binding site in ubc9 is so narrow that replacing lysine in the target 
protein with an arginine disrupts the formation of covalent bond. 

 

Figure 1 : Top : Ribbon representation of a complex between SUMO (magenta), ubc9 (cyan) and 
RanGAP1 (green). All interacting residues are shown in ball and stick models. inset : surface 
representation of the same complex and same coloring scheme. SUMOylated lysine from RanGAP1 
conforms to the consensus motif. 
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Scarcity of structural information about ubc9-target complexes is the major 
limiting factor for the present study. Hence, this study has been divided into three 
broad steps. First step involves creating a dataset of protein 3-D structures for 
SUMOylated proteins identified by recent experiments. All the proteins considered 
in this study are encoded of human origin. Second step involves docking target 
protein structure onto ubc9 structure such that there is a lysine near the active site 
of ubc9. Different conformational poses of ubc9-target complex are sampled and 
the pose with maximum number of inter-protein atomic contacts at a distance of 
4Ẳ between the two proteins is chosen. Care was taken to make sure that the 
chosen pose did not have any atomic clashes between the main chain atoms of both 
the proteins. The sampling method was applied to every lysine from all the 
structures of the dataset and optimal pose of the ubc9-target complex obtained for 
every lysine was chosen. The third step involves developing a scoring method that 
can discriminate between ubc9-target complexes of SUMOylated and non-
SUMOylated lysine. Performance of the scoring method will also be assessed/ 

 

5.2 Materials and methods 

5.2.1 Generation of a dataset of SUMOylated protein structures 
The list of SUMOylated proteins for this study was obtained from a recent mass-
spectrometry based proteomics experiments conducted on human cell lines [13]. 
This list consists of 9330 proteins containing 49850 SUMOylated lysines in total. 
The mappings between human SUMOylated proteins and their respective Protein 
Data Bank (PDB) [45] identifiers were obtained with the help of SIFTS database 
[48,49]. Around 2331 of the 9330 SUMOylated proteins have at least one structure 
in the PDB containing at least one SUMOylated lysine. In order to remove 
redundancy in these proteins, h-CD-HIT server (http://weizhong-
lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit) [35–38]was used with 3 
hierarchical identity cutoffs 90%, 60% and 30% respectively. The results obtained 
at 30% redundancy from h-CD-HIT server contained a list of 1841 structures 
corresponding to 1841 SUMOylated proteins. The details of dataset used in this 
study are given below (Table-1). Some protein structures contained unnatural 
amino acids such as seleno-methionine, phospho-serine, phospho-threonine, 
phospho-tyrosine etc. These unnatural amino acids would have created errors 

http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit
http://weizhong-lab.ucsd.edu/cdhit_suite/cgi-bin/index.cgi?cmd=h-cd-hit
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during the sampling method discussed later. Hence, all the unnatural amino acids 
were converted to their nearest analogues from the 20 standard amino acids such as 
methionine, serine, threonine, tyrosine etc. Protein structures often have missing 
atoms because some parts of the structure have poor resolution. All such missing 
atoms were fixed using complete_pdb() function in MODELLER version 9.17 
[39]. In some cases, residue numbering differs between UniProt sequence of a 
protein and the sequence of its corresponding PDB structure. In order to obtain 
correct residue positions, pairwise alignments were built between UniProt and 
PDB sequences of each protein. All pairwise alignments were built using SALIGN 
from MODELLER version 9.17. There are around 7432 SUMOylated lysines in 
the 1841 structures used in this study. All the remaining 27874 lysines in these 
1841 protein structures (except the 7432 lysines) were treated as non-SUMOylated 
lysines. 

 Table-1: Overview of dataset used in this study 

Description Numbers 
Total number of target proteins 1841 
Total number of SUMOylated 

lysines 
7432 

Lysines conforming to either K-x-
(E/D) or (E/D)-x-K motif 

2556 

Lysines not conforming to 
consensus motif 

4876 

 

5.2.2 Computational tools used in this study 
All the steps in this work including dataset compilation, sampling method and 
scoring analysis were implemented in Python version 2.7.5. Mathematical 
calculations were carried out using Numeric Python (NumPy) version 1.7.1 [40].  
Graphs were plotted using ggplot2 library [50] in R version 3.4.4 [42]. 

 

5.2.3 Sampling method to dock target proteins onto ubc9 
It is important to understand the structure of a lysine residue before discussing the 
sampling method. A lysine residue has 4 main chain atoms N, CA, C and O as well 
as 5 side chain atoms CB, CG, CD, CE and NZ (Figure-2). The lysine main chain 
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has 2 torsion angles phi and psi whereas its side chain has 4 torsion angles chi1, 
chi2, chi3 and chi4 (Figure-2). Angles between 4 atoms connected by 3 
consecutive bonds are known as torsion angles. 

 
Figure 2: Two dimensional structure of a lysine residue 

Table-2: Overview of atoms involved in different torsion angles 

Torsion angle Atoms involved Bond of interest 
Phi Cprev-N-CA-C N-CA 
Psi N-CA-C-Nnext CA-C 
chi1 N-CA-CB-CG CA-CB 
chi2 CA-CB-CG-CD CB-CG 
chi3 CB-CG-CD-CE CG-CD 
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chi4 CG-CD-CE-NZ CD-CE 
 

Details of atoms involved in different torsion angles are given above (Table-2). For 
example, chi4 angle measures rotation of atoms around CD-CE bond and involves 
atoms CG, CD, CE and NZ. Cprev and Nnext imply main chain C and N atoms of 
previous and next residues in the protein sequence respectively. 

Torsion angle calculations are important for the sampling method. These 
calculations depend on unit vector calculations. For a vector v = (x, y, z), unit 
vectors are calculated in 2 steps. First, modulus of v is calculated by taking the 
square root of a dot product of v with itself (Equation-1). Second, v is divided by 
the modulus to obtain a unit vector of v (Equation-2).  In Python, dot product is 
calculated using the function numpy.dot() and square root is calculated using 
numpy.sqrt() function. 

Equation 1 

            =  √    

Equation 2 

                =
 

             

In order to understand torsion angle calculations, let us consider the chi4 angle. 
The chi4 angle measures rotation of atoms around CD-CE bond and it measures 
angle between two planes. The first plane is formed by CG, CD and CE atoms 
whereas the second plane is formed by CD, CE and NZ atoms. In case the four 
atoms have the Cartesian coordinates – CG = (x1, y1, z1), CD = (x2, y2, z2), CE = 
(x3, y3, z3) and NZ = (x4, y4, z4), then the torsion angle calculations go as 
follows: 

First, we calculate vectors: b1 = (x1 – x2, y1 – y2, z1 – z2), b2 = (x3 – x2, y3 – y2, 
z3 – z2) and b3 = (x4 – x3, y4 – y3, z4 – z3). Second, v1, v2 and v3 are unit 
vectors along b1, b2 and b3 respectively. Third, vectors u1 and u3 are calculated 
(Equations-3 and 4). 
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Equation 3 

  =   − (     )   

Equation 4 

  =   − (     )   

Equation 5 

  =       

Equation 6 

  =         

Equation 7 

  =                (       ) 

Equation 8 

   =      (     ) 

Equation 9 

    = (       )    

In all the above equations note the difference between dot product (.) and cross 
product (x). Fobrenius norm for a matrix is obtained by taking the square root of 
the sum of squares of all elements of the matrix. In Python, Fobrenius norm is 
calculated by using the function numpy.linalg.norm() and atan2 is calculated by 
using the function numpy.arctan2. The term “ang” represents the value of the 
torsion angle in radians. If the sign term is negative, then ang is also negative and 
hence must be multiplied by -1. The torsion angle “ang” ranges between –π to π in 
radians or -180ᵒ to 180ᵒ.In order to convert “ang” from radians to degrees, multiply 
“ang” by a factor of 180/π. Conversely, in order to convert an angle from degrees 
to radians, it should be multiplied by a factor of π/180. 

Given above are mathematical equations necessary for torsion angle calculations 
(Equations-1 to 9). Now we will be discussing the mathematical equations 
necessary for calculating Cartesian coordinates of a rigid body after rotation. For 
example, let us consider 3 points – P1 = (x1, y1, z1), P2 = (x2, y2, z2) and Q = (x3, 
y3, z3). Axis of rotation passes through points P1 and P2, and we want to calculate 
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Cartesian coordinates of Q after rotation by an angle θ in radians around the axis of 
rotation. Vector b1 = (x2 – x1, y2 – y1, z2 – z1) and u = (x0, y0, z0) is a unit 
vector along the direction of vector b1. 

Equation 10 

  =       ( −     ) +      

Equation 11 

  =       ( −     ) −         

Equation 12 

  =       ( −     ) +         

Equation 13 

  =       ( −     ) +         

Equation 14 

  =       ( −     ) +      

Equation 15 

  =       (  −     ) −         

Equation 16 

  =       ( −     ) −         

Equation 17 

  =       ( −     ) +         

Equation 18 

  =       ( −     ) +      

Now, we calculate vector b2 = (x4, y4, z4), where x4 = x3 – x1,  y4 = y3 – y1 and 
z4 = z3 – z1. Let us say that (x5, y5, z50 are Cartesian coordinates of point Q after 
the rotational motion. The values of x5, y5 and z5 can be calculated as follows. 

Equation 39 

  = (     +      +      ) +    
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Equation 20 

  = (     +      +      ) +    

Equation 21 

  = (     +      +      ) +    

Equations 19 to 21 can also be summarized as matrix multiplication given below. 

  
  
  
 =  

      
      
      

    
  
  
  
 + 

  
  
  

 

In Python, the values of sinθ and cosθ are calculated using the functions 
numpy.sin() and numpy.cos(). And, the value of π is obtained using the function 
numpy.pi(). Thus mathematical equations given above help us calculate the 
Cartesian coordinates of a target protein after spinning around an axis of rotation 
(Equations-10 to 21). 

 

 

Figure 3: Schematic overview of the steps involved in sampling method. Left panel – the method begins 
with monomeric unbound structures of ubc9 and target protein. Centre panel – Lysine residue from 
target protein is introduced into the active site of ubc9 using a technique called rigid transformation. 
Right panel – Keeping ubc9 fixed and moving the target protein, different clash-free conformational 
poses are sampled between the two proteins. In the above figure, all clash-free poses are represented as 
ribbons colored using different colors. 
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The objective of the sampling method is to dock target proteins onto ubc9 such that 
the lysine of interest from the target is near the active site residues of the enzyme. 
After docking the target onto ubc9, the method samples favorable conformational 
poses between the target and the enzyme. In the present method, ubc9 and target 
proteins are treated as rigid bodies. During the sampling process, ubc9 remains 
fixed whereas the target protein undergoes motions such as translations and 
rotations. The sampling method is carried out independently for every lysine from 
each of the 1841 target proteins of the dataset. 

Translation is a motion wherein every atom in a rigid body is displaced by the 
same distance through 3-D space. Rotation is a motion wherein every atom in a 
rigid body spins around an axis of rotation. Schematic depiction of steps involved 
in the sampling method is given above (Figure-3). Each step of the sampling 
method is elaborated below. 

 

5.2.3.1 Move target protein near ubc9 active site 
The first step of the sampling method aims at bringing the target protein in the 
vicinity of ubc9 such that the lysine of interest from the target is in the active site 
of the enzyme. This is achieved with the help of a technique called rigid body 
transformation in 3-D space, also known as 3-D least squares fit. Given below is a 
pictorial overview of steps involved in rigid body transformation in 3-D space 
(Figure 3). 

A detailed explanation of rigid body transformation can be found here 
(http://nghiaho.com/?page_id=671) [51]. The structure of protein RanGAP1 bound 
to ubc9 (PDB ID: 1Z5S and Figure 1) was used as a reference for the 
transformation. CD, CE and NZ atoms from lysine-524 in RanGAP1 and lysine of 
interest in target protein are important for the transformation process. The 
transformation process minimizes the root mean squared deviation between both 
the atom sets. 

Before the beginning of the transformation, the target and RanGAP1 proteins could 
have any arbitrary location in 3-D space (Figure 3A). Let us say, CD1 = (x1, y1, 
z1), CE1 = (x2, y2, z2) and NZ1 = (x3, y3, z3) are side chain atoms of lysine of 
interest from target protein. And, CD2 = (x4, y4, z4), CE2 = x5, y5, z5) and NZ2 = 

http://nghiaho.com/?page_id=671
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(x6, y6, z6) are side chain atoms of lysine 524 from RanGAP1. The first step of the 
transformation process is to translate the target protein such that the center of 
masses of both the above mentioned atom sets superimpose (transition of target 
protein from Figure 3A to 3B). 
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Figure 4: Schematic representation of steps involved in rigid body transformation of target protein in 3-D 
space. 

Given below are mathematical equations important for the transformation. Here, 
cm1 and cm2 are center of masses of both the atom sets described above. Average 
Cartesian coordinates are   =         

 
,    =         

 
,    =         

 
 and 

  =         
 

,   =         
 

 ,   =         
 

. 

Equation 22 

   = (         ) 

Equation 23 

   = (        ) 

Equation 24 

    =  
  −     −     −   
  −     −     −   
  −     −     −   
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Equation 25 

    =  
  −     −     −   
  −     −     −   
  −     −     −   

 

Equation 26 

 =          (    )       

Equation 27 

      =    ( ) 

Equation 28 

      =          ( )           (  ) 

Equation 29 

        =  −                (   ) +          (   ) 

All the equations given above (Equations 22 to 29) involve matrix multiplications. 
“Rotmat” and “Transmat” are rotation and translation matrices that help us in 
calculating the Cartesian coordinates of a target protein after rigid body 
transformation. SVD stands for singular value decomposition (implemented using 
Python function numpy.linalg.svd()). After the transformation is completed, the 
Cartesian coordinates of RanGAP1 were deleted leaving behind the ubc9-target 
complex. 

Rigid body transformations help in docking the target protein onto ubc9 (Figure 
3A, 3B and 3C). However, the structure of the enzyme-target complex generated 
from transformation may not be the energetically favorable pose for the two 
proteins to interact. Hence, the enzyme-target complex was subjected to further 
conformational sampling, the details of which are given below. 

 

5.2.3.2 Optimize lysine torsion angles 
The chi2, chi3 and chi4 torsion angles of lysine of interest from the ubc9-target 
complex generated above were adjusted to 172.8ᵒ, 173.8ᵒ and -175.3ᵒ respectively. 
This was done because the tunnel in ubc9 through which lysine accesses the active 
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site is very narrow and accommodates lysine only in its stretched or extended 
conformation (Figure-1). Mutagenesis studies have shown that if lysine is 
substituted by arginine, then the arginine cannot enter the tunnel owing to its 
branched side chain. In order to adjust torsion angles to their appropriate values, all 
the atoms of target protein (except lysine side chain atoms) are rotated around an 
axis of rotation defined by bond of interest. For example, while adjusting the chi4 
angle, all the atoms of target protein are rotated around CD-CE bond (Table-3) 
except CD, CE and NZ atoms (Table-3) of lysine side chain. Similar procedure is 
applied to chi1, chi2 and chi3 angles. 

 

Table-3: Lysine side chain torsion angles, bond of interest and atoms kept fixed 
during angle adjustment 

Torsion angle Bond of interest Atoms kept fixed during 
adjustment 

chi1 CA-CB CA, CB, CG, CD, CE, NZ 
chi2 CB-CG CB, CG, CD, CE, NZ 
chi3 CG-CD CG, CD, CE, NZ 
chi4 CD-CE CD, CE, NZ 

 

The list of possible values of chi1 angle was obtained from 2010 back-bone 
dependent rotamer library [52]. First main chain torsion angles phi and psi are 
calculated for the lysine of interest. Second, the rotamer library is searched for all 
possible lysine conformations having the given phi and psi angles as well as having 
average ch2, chi3 and chi4 angle values within 180 ± 10ᵒ. This list of chi1 angle 
values usually consists of 3 approximate conformations: -60ᵒ (+gauche), 60ᵒ (-
gauche) and 180ᵒ (trans) respectively. The lysine of interest from the target protein 
is sampled in all the 3 conformations. 

 

5.2.3.3 Spin target protein around lysine 
For every chi1 angle value, the target protein is subjected to an additional rotation. 
The axis of rotation for this motion is defined by CB and NZ atoms of lysine of 
interest. The target protein is spun in steps of 10ᵒ. Thus, for every chi1 angle value, 
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there are 360ᵒ / 10ᵒ = 36 different conformational poses between ubc9 and target 
protein. At the end of the sampling process, a total of 3 * 36 = 108 conformational 
poses are sampled between ubc9 and target protein for a given lysine of interest. 

Out of all the conformational poses sampled between ubc9 and target protein for a 
given lysine of interest, only those poses are retained that have no clashes between 
main chain atoms of ubc9 and target protein. Here, N, CA, C, O and CB atoms of 
both the proteins are considered as main chain atoms. The distance between ubc9 
main chain atom A = (x1, y1, z1) and target protein main chain atom B = (x2, y2, 
2z) is calculated as follows. 

Equation 30 

        =  (  −   ) + (  −   ) + (  −   )   

The Lennard-Jones potential (LJ) between atoms A and B can be calculated as 
follows. 

Equation 31 

            =  𝜀  
   

  

  

−  
   

  

 

 

Here, 𝜀A,B and Rmin,A,B  are terms specific to atoms A and B that were obtained from 
topology parameters of AMBER 99 force field [53]. The Rmin,A,B term is the sum of 
van der Waals radii of atoms A and B. When LJ potential between atoms A and B 
is equal to zero, Equation 31 reduces to    = 0.89 * Rmin,A,B .Thus, atoms A and b 
are considered to be clashing if the distance between them is less than 0.89 times 
the sum of their van der Waals radii. At the end of sampling method, only those 
poses are retained that do not have clashes between main chain atoms of ubc9 and 
target protein. In case, a lysine of interest has more than one clash free poses, then 
the pose having maximum number of atomic contacts within a distance of 4Ẳ 
between ubc9 and target protein was chosen. This was done to ensure that one 
representative pose was chosen for every lysine of interest. 
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5.2.4 Discriminating poses based on residue contacts 
The aim of this exercise is to find a combination of residue contacts that occur 
more in ubc9-target poses of SUMOylated lysines than in poses of non-
SUMOylated lysines. This was achieved with the help of a modified version of 
Apriori algorithm [34]. Residue i from ubc9 and residue j from a target protein was 
considered to be in contact if any atom from I is within a distance of 4Ẳ from any 
atom of residue j. Residue contact information from all the ubc9-target poses is 
encoded as “res-pairs”. An example of res-pair encoding for residue contacts from 
ubc9-RanGAP1 complex (Figure-1) involving glutamate residues of consensus 
motif from RanGAP1 is given below (Table-4). Residue contacts involving lysine 
of interest are ignored from all ubc9-target complexes because they do not provide 
any new information. 

Table-4: Example of res-pair encodings for residue contacts between ubc9 and 
glutamate residue of consensus motif from RanGAP1 

Ubc9 residue number : ubc9 residue 
type – RanGAP1 residue number : 

RanGAP1 residue type 

Res-pair encoding 

89 : SER – 526 : GLU 89 – GLU 
91 : THR – 526 : GLU 91 – GLU 
74 : LYS – 526 : GLU 74 – GLU 

 

The Apriori algorithm is commonly used for finding patterns in customer 
transaction data in the retail industry. Apriori algorithm clusters different items 
bought by customers into sets according to their support (also known as 
probability). For the present exercise, a res-pair could be considered as an item and 
res-pairs were clustered into different res-pair sets on the basis of their 
occurrences. The definition of support was modified as follows (Equation 32). The 
modified version of support was referred to as enrichment. 

Equation 32 

          =                     −                      

Here, observed probability refers to normalized frequency of a res-pair (or a set of 
res-pairs) in ubc9-target poses derived from SUMOylated lysines. Expected 
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probability refers to normalized frequency of res-pair (or set of res-pairs) in ubc9-
target poses derived from non-SUMOylated lysines. Normalization was done with 
respect to total number of ubc9-target poses for the given lysine category – 
SUMOylated or non-SUMOylated. 

The Apriori algorithm was applied to 360 res-pairs that occur in ubc9-target poses 
of both SUMOylated and non-SUMOylated lysines. These 360 res-pairs also had 
absolute frequency of 40 or higher in poses of SUMOylated lysines. The Apriori 
algorithm can be summarized in the steps given below –  

i. Calculate enrichment values for each of the 360 res-pairs. Each res-pair 
could be thought of as a res-pair set of size equal to 1. All res-pairs 
having their enrichments greater than or equal to -1.0 were selected. 
(There were no res-pairs having enrichments greater than or equal to 0.0). 

ii. New res-pair sets were generated by extending res-pair sets from 
previous step by another res-pair, such that the newly added res-pair was 
a member of a res-pair set from previous step. All possible res-pair sets 
of size equal to 2 were generated. 

iii. Enrichment values for all newly generated res-pair sets were calculated. 
All res-pair sets having enrichments greater than or equal to 0.0 were 
selected. 

iv. This process of generation and selection of new res-pair sets having size 
greater by 1 than previous step is continued till no new res-pair sets can 
be created. At this step, the algorithm ends. 

 

5.2.5 Statistical parameters to assess predictions 
Predictions were assessed using statistical parameters such as sensitivity, 
specificity, accuracy, F1 score and MCC (Matthew’s Correlation Coefficient) 
(Equations-33 to 38). Here, TP = number of true positives, TN = number of true 
negatives, FP = number of false positives and FN = number of false negatives. 

Equation 33 

           =  
  

  +    
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Equation 34 

           =
  

  +    

Equation 35 

        =  
  +   

  +   +   +    

Equation 36 

         =
  

  +   
 

Equation 37 

        =    
                     
         +             

Equation 38 

   =
     −      

(  +   )   (  +   )   (  +   )   (  +   )
 

 

 

5.3 Results 

5.3.1 Analysis of the target protein structures in the dataset 
Majority (1349) of the protein structures used in this study were solved using x-ray 
crystallography (Table-5). However, a few of the structures were also solved using 
NMR (178), electron microscopy (313) and solution scattering (1). 

Table-5: Experimental sources of the protein structures used in this study 

Experiment type Number of structures 
X-ray crystallography 1349 

NMR 178 
Electron microscopy 313 
Solution scattering 1 
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The protein structures used in this study vary in their sequence lengths (Figure 5B) 
as well as the number of SUMOylated lysines (Figure 5A) present in them. Most of 
the proteins used in this study contain 5 or less SUMOylated lysines. However, 
there are a handful of proteins that contain as many as 20 or more modified lysines. 
Similarly, majority of protein structures used in this study have sizes less than 
1000 amino acids. There are a handful of structures that have sizes equal to or 
greater than 2000 amino acids. Thus, SUMOylation occurs in proteins of varying 
sizes and varying number of lysines in these proteins. 
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Figure 5: Histograms of A: number of SUMOylated lysines per target protein 
structure and B: sequence length of every target protein. Here count refers to 
frequency or number of proteins. 

Table-6: Proportion of SUMOylated lysines that conform to consensus motif 

Description Numbers 
Lysines conforming to K-x-(E/D) 

motif 
1174 

Lysines conforming to (E/D)-x-K 
motif 

1175 

Lysines conforming to (E/D)-x-K-
x-(E/D) motif 

207 

Lysines not conforming to 4876 
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consensus motif 
 

There are around 7618 lysines in the 1841 protein structures that conform to either 
the forward or reverse version of the K-x-(E/D) consensus motif. However, only 
2556 or 33.5% of these lysines tend to get SUMOylated. Thus, a consensus motif 
alone is insufficient to guarantee SUMOylation of a lysine residue. On the other 
hand, all the SUMOylated lysines do not necessarily conform to the consensus 
motif. Majority of SUMOylated lysines analyzed in this study (4876) do not 
conform to the consensus motif. Thus, a sequence motif alone is not sufficient to 
predict all the SUMOylated lysines. Hence, the present study uses information 
from interactions between 3-D structures of unc9 and target proteins to predict 
SUMOylation sites. 

Table-7: Representatives of all the CATH superfamilies are included in this study 

CATH superfamily Count 
Mainly Alpha 478 
Mainly Beta 338 
Alpha Beta 947 

Few Secondary Structures 13 
Special 20 

 

The CATH database [54] classifies protein structures into different superfamilies 
(folds). Protein structures of the dataset used in this study were mapped to their 
respective CATH superfamilies (Table-7). There are 5 CATH superfamilies and 
members of all of these superfamilies are included in the dataset used in this study. 
The superfamily Alpha Beta has maximum representation as compared to other 
superfamilies. 

Table-8: Top 10 most abundant cellular component terms 

Rank Gene Ontology cellular 
component terms 

Count (Proportion %) 

1 Nucleus 419 (8.5) 
2 Nucleoplasm 411 (8.3) 
3 Cytosol 393 (7.94) 
4 Cytoplasm 325 (6.57) 
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5 Extracellular exosome 179 (3.62) 
6 Membrane 127 (2.57) 
7 Plasma membrane `98 (1.98) 
8 Nucleolus 80 (1.62) 
9 Mitochondrion 70 (1.41) 

10 Protein-containing 
complex 

68 (1.37) 

 

Table-9: Top 10 most abundant molecular function terms 

Rank Gene Ontology 
molecular function 

terms 

Count (Proportion %) 

1 RNA binding 151 (3.88) 
2 Identical protein binding 148 (3.8) 
3 Metal ion binding 102 (2.62) 
4 ATP binding 101 (2.6) 
5 DNA binding 91 (2.34) 
6 Zinc ion binding 66 (1.7) 
7 Chromatin binding 62 (1.59) 
8 Protein homodimerization 

activity 
56` (1.41) 

9 RNA polymerase II cis-
regulatory region 

sequence-specific DNA 
binding 

53 (1.36) 

10 Enzyme binding 50 (1.29) 
 

Table-10: Top 10 most abundant biological process terms 

Rank Gene Ontology biological process terms Count (Proportion 
%) 

1 Positive regulation of transcription by RNA 
polymerase II 

98 (1.09) 

2 Negative regulation of transcription by RNA 
polymerase II 

80 (0.89) 

3 Regulation of transcription by RNA polymerase 
II5 

69 (0.77) 
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4 Positive regulation of tran5scription, DNA-
templated5 

65 (0.72) 

5 Signal transduct55ion 57 (0.63) 
6 Negative regulation of tran5scription, DNA-

templated5 
53 (0.59) 

7 Negative regulation of apoptotic proce5ss 47` (0.52) 
8 DNA repair 46 (0.51) 
9 Cell division 41 (0.46) 

10 Cellular response to DNA damage stimulus 40 (0.45) 
 

Information regarding subcellular localization, cellular functions and biological 
activity of the proteins used in this study was obtained with the help of Gene 
Ontology terms. There are 3 kinds of Gene Ontology terms – cellular component, 
molecular function and biological process. All the proteins from the dataset were 
mapped to their respective Gene Ontology terms and these terms were sorted in a 
descending order of their abundance (Tables-8 to 10). 

SUMOylated proteins mostly localize to nucleus. However, there are a few 
proteins that localize to cytoplasmic organelles or plasma membranes too (Table-
8). Majority of the SUMOylated proteins bind nucleic acids such as DNA / RNA / 
ATP (Table-9). SUMOylated proteins such as zinc finger proteins are also known 
to bind metal ions. Biological processes such as transcription regulation, cell 
division, signal transduction and DNA repair have been linked to SUMOylation 
(Table-10). 

5.3.2 Predictions made using residue contacts 
The sampling method was applied to every lysine in all the target proteins. Clash-
free poses were obtained for around half of all the SUMOylated and non-
SUMOylated lysines (Table-11). For the remaining lysines, clash-free poses could 
not be obtained because either the main chain atoms of the target protein and ubc9 
had collisions. This could be either due to unfavorable phi and psi angles of the 
lysine residues or the target protein conformation may not be optimal for binding 
ubc9. 

 

Table-11: Overview of clash-free poses generated by the sampling method 
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 SUMOylated lysines 
(7432) 

Non-SUMOylated 
lysines (27874) 

Lysines with clash-free 
poses 

4006 13022 

Lysines without clash-free 
poses 

3426 14852 

 

Table-12: Proportion of lysines with clash-free poses that conform to consensus 
motif 

 K-x-(E/D) (E/D)-x-K Non-
consensus 

(E/D) 
Clash-free SUMOylated 

lysines (4006) 
42 29 613 

Clash-free non-SUMOylated 
lysines (13022) 

51 36 1949 

 

A vast majority of lysines with clash-free poses do not conform to consensus motif 
(Table-12). There are 613 SUMOylated and 1949 non-SUMOylated lysines that 
have poses wherein an E/D binds positively charged patch on ubc9. But the E/D 
residue is not at +2 / -2 position with respect to the sequential position of lysine of 
interest. These E/D residues are referred to as non-consensus. 

The Apriori algorithm generated res-pair sets varying in size from 1 to 18. 
Predictions were made independently for every res-pair set according to their size. 
Thus, predictions were made for all size-1 sets, size-2 sets and so on. The best 
predictions in terms of MCC were obtained for size-3 res-pair sets (Table-12). 
Predictions for size-3 sets were made by varying the cutoff from 1 to 185.  Here 
cutoff refers to the number of size-3 res-pair set present in a given conformational 
pose. All poses having more res-pair sets than the cutoff were chosen as positive 
predictions or else they were marked as negative prediction. 

The prediction method described here achieved a sensitivity = 27%, specificity = 
98%, accuracy = 81% and MCC = 0.4 (Table-13). Our method has higher 
specificity than sensitivity. This can be attributed to the higher number of non-
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SUMOylated poses (13022) than SUMOylated poses (4006). Future prediction 
tools can overcome this issue by under-sampling non-SUMOylated poses or over-
sampling SUMOylated poses. 

Table-13: Overview of predictions made for size-3 res-pair sets 

Statistical parameter Value 
True positives 1091 
True negatives 12763 
False positives 259 
False negatives 2915 

Sensitivity 0.272 
Specificity 0.98 
Accuracy 0.814 
F1 score 0.407 

MCC 0.396 
 

Table-14: Proportion of predicted lysines that conform to consensus motif 

 K-x-(E/D) (E/D)-x-K Non-consensus 
(E/D) 

True positives 13 7 301 
False positives 1 0 90 

 

Majority of lysines predicted using size-3 res-pair sets do not conform to 
consensus motif (Table-14). This trend is similar to the trend observed for lysines 
with clash-free poses (Table-12). An interesting observation is that true positives 
have more consensus lysines than false positives (20 versus 1).  

Table-15: Top 10 size-3 res-pair sets that show maximum enrichments 

Res-pair set Occurrence in 
true positives 

Occurrence in 
false positives 

74;LEU, 88;LEU, 91;LEU 8 2 
131;TYR, 129;TYR, 

135;TYR 
7 5 

139;GLU, 136;ARG, 
133;ARG 

7 6 
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98;ALA, 99;GLN, 98;GLN 6 2 
72;ARG, 99;ARG, 65;ASN 6 1 
99;ARG, 71;ARG, 76;GLU 6 3 
87;MET, 91;ASP, 74;ASP 6 4 
76;ASP, 87;TRP, 89;ASP 5 1 

131;SER, 129;TYR, 88;TYR 5 1 
88;LEU, 129;LEU, 91;LEU 5 4 

 

There were 7826 size-3 res-pair sets that showed positive enrichment in 
SUMOylated poses than non-SUMOylated poses. Out of these, top 10 res-pair sets 
in terms of their enrichment values are given above (Table-15). There are 2 sets of 
particular interest. These are 87;MET, 91;ASP, 74;ASP and 76:ASP, 87;TRP, 
89;ASP. Both these sets represent contacts between an aspartate residue in target 
protein and positively charged patch on ubc9. 

Secondary structure environment of SUMOylated lysines was determined using 
write_data() function in MODELLER. SUMOylation targets lysine residues in all 
secondary structures such as alpha helices, beta sheets or coils (Table-16). The 
sampling method and res-pair based predictions were able to detect SUMOylated 
lysines irrespective of their secondary structures (Table-16). 

Table-16: Overview of secondary structures of SUMOylated lysines 

Secondary 
structure 

All SUMOylated 
lysines in the 
dataset (7432) 

SUMOylated 
lysines with clash-
free poses (4006) 

True positives 
(1091) 

Beta strand 1300 481 155 
Loop 3095 1845 422 

Alpha helix 2988 1658 504 
Kink 49 22 10 

 

Table-17: Secondary structures of SUMOylated lysines in consensus motif 

Secondary 
structure 

All SUMOylated 
consensus motif 

lysines (2556) 

SUMOylated 
consensus motif 

lysines with clash-
free poses (71) 

Consensus motif 
lysines in True 
positives (20) 
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Beta strand 443 15 4 
Loop 1087 50 16 

Alpha helix 1011 6 0 
Kink 15 0 0 

 

SUMOylated lysines that follow a consensus motif occur in all kinds of secondary 
structures (Table-17). Sampling and prediction methods preferred lysines in a coil / 
loop. This is in agreement with lysine 524 in RanGAP1, which also happens to be 
in a located in a loop. 

 

5.4 Discussion 

All the existing computational methods suffer from the major drawback that they 
are biased in the favor of the ψ-K-x-(E/D) consensus motif. However, the 
consensus motif accounts for half of all the known SUMOylation sites. Thus, all 
the existing prediction tools are inefficient at predicting other half of the 
SUMOylation sites that do not follow the consensus motif. In order to make more 
robust predictions than existing tools, the present study proposed and demonstrated 
a method that uses protein 3-D structures rather than protein sequences to predict 
SUMOylation sites. The method described here achieved an accuracy of 81% and 
Matthews’ correlation coefficient of 0.4.  

SUMOylation is a dynamic post translational modification. SUMOylation can 
happen to proteins varying in size from 100 amino acids to more than 10000 amino 
acids (Figure-5B). The modification could target either one lysine in a given 
protein or more than 20 lysines (Figure-5A). Proteins belonging to different folds 
(CATH superfamilies) are targeted by the modification (Table-7). SUMOylation 
targets co-localize to either nucleus of a cell or to different cytoplasmic organelles 
and even the plasma membrane (Table-8). The target proteins could possibly bind 
DNA / RNA / ATP (Table-9) and might be involved in regulation of transcription 
activity, cell division, DNA repair or signal transduction (Table-10). SUMOylated 
lysines can occur in any of the 3 secondary structure environments such as alpha 
helices, beta sheets or loops / coils (Tables-16 and 17). 
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At present, the Protein Data Bank has structural information for only one ubc9-
target complex. Almost all of the proteins used in this study were not bound to 
ubc9. Hence, the conformation used for sampling method may not necessarily be 
optimal for binding ubc9. Apart from this, factors such as crystal contacts could 
also influence protein conformations [55].Hence, the poses generated by the 
sampling method have to be analyzed with caution. As more structural information 
becomes available for these interactions, more robust structure based prediction 
tools can be developed. Sampling different conformational poses and scoring those 
poses are two important aspects of any general protein-protein docking tool. In the 
present study, those two concepts were used for studying ubc9-target protein 
interactions. In cases of SUMOylated proteins with unknown 3-D structures, 
information from Alphafold models could be used [25]. In addition, future 
prediction tools can achieve improved accuracy by taking into account information 
about SUMO E3 ligases. 
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Chapter 6: Conclusions and Future 
prospects 

 

Research conducted around the globe over the past two and a half decades has 
revealed biological implications of SUMOylation. Mutation of SUMOylated 
lysines from target proteins often results in diseases. The present thesis has 
proposed and demonstrated the utility of different computational approaches to 
analyze and predict SUMOylated lysines. These methods can be applied to study 
any post translational modification. However the present thesis focuses on 
SUMOylation.  Information obtained from recent mass-spectrometry based 
proteomics experiments was used as input for the computational methods 
discussed here. 

The sequence based approach begins with identification of homologous proteins 
with conserved SUMOylated lysines across different organisms. Specifically in 
this case, we started with human and mouse proteins having known SUMOylated 
lysines. We used the protein sequence alignment tool PSIBLAST to identify 
homologs from fruit fly Drosophila melanogaster that contain conserved lysines. 
In order to gain confidence in our predictions, we compared our list of fly 
homologs with other fly SUMO proteomics experiments that were able to identify 
fly SUMOylated proteins but not the modified lysines therein. Apart from the list 
of homologous proteins, we also obtained three kinds of analysis. First kind of 
analysis was done to find out amino acid patterns involving these SUMOylated 
lysines in their local sequence environment. This helped us detect sequence motifs 
involving these lysines. Second kind of analysis was done to find out which protein 
families tend to get more SUMOylated as compared to others. Third kind of 
analysis was done to find out preferred biological functions of the newly identified 
homologs. This analysis was done using Gene ontology annotations of these 
proteins. 

The results obtained from the sequence based approach described above will be 
made available to the scientific community in the form of a database called 
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SUMO-ON-THE-FLY. Geneticists will be able to experimentally validate the 
predictions made therein, thus enriching our understanding of fly proteins. 

To the best of our knowledge, all the available SUMOylation site prediction tools 
make use protein sequence information. However, candidate lysines are selected as 
a result of protein-protein interactions between enzyme (ubc9) and its target 
(substrate) proteins. Hence, we proposed a novel structure based prediction tool. 
The major hurdle for our efforts here was that the Protein Data Bank contains only 
one structure of the enzyme-target complex as of date. We circumvented this 
drawback by designing a new special docking technique which we refer to as 
sampling method. In addition, we designed a scoring method that can discriminate 
between SUMOylatable and non-SUMOylatable lysines on the basis of residue 
contacts between ubc9 and the target proteins. Our method achieved an accuracy of 
81% and a Matthews’ Correlation Coefficient of 0.4. Thus, we have set up the 
stage for the development of future structure based tools to predict post 
translational modification sites. 
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Chapter 8: Appendix 
 

1. Study of interaction between human Argonaute-2 and Nup358 
This project was done in collaboration with the research group of Dr. jomon 
Joseph, NCCS Pune. Their experiments showed that argonaute-2 bound Nup358, a 
protein of nuclear pore complex. Argonaute has many domains that look 
structurally similar to SUMO. Nup358 is known to bind SUMO too. Hence, we 
used a structure superimposition tool called CLICK to study structural similarity 
between SUMO and argonaute. The results from this work are a part of 
publications-1 and 2 given above. 
 

2. Molecular dynamics simulations of 14-3-3 proteins 
This project was done in collaboration with Dr. Prasanna Venkatraman, ACTREC, 
Navi Mumbai. 14-3-3 proteins form homodimers that bind phosphopeptides and 
many small ligand molecules. Our collaborators have data to show that 14-3-3 
proteins also bind ATP. So, Neelesh Soni (a senior from the lab) modeled the 
complex of 14-3-3 with ATP. We carried out molecular dynamics simulations of 
zeta and gamma isoforms of 14-3-3 homodimers in apo and holo forms using the 
GROMACS software. The simulations were carried out for 150 ns and the 
GROMOS force field was used. 
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Chapter 9: Supporting Information 
 

All the supporting information related to the present thesis has been uploaded to 
Github. Here is the link to the zip file containing all the raw data relevant to 
Chapter 3- https://github.com/yogendra-bioinfo/homology-based-SUMOylation-
prediction.git. Here is the link to the zip file containing all the raw data relevant to 
Chapter 5 - https://github.com/yogendra-bioinfo/structure-based-SUMOylation-
prediction.git. Each folder contains a README file that explains the results 
present in all the files given therein. 
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