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Abstract

The size and complexity of power transmission networks make them good candidates for

study using the framework of the complex networks. The topological properties of any

network influence the dynamics and stability of the system and vice-versa. The heterogeneity

of power transmission network makes it vulnerable to intentional attacks. In this thesis, we

use the complex network approach to analyse the topological characteristics of the Indian

power transmission network using data generated from power map of India. We compare

the topology of Indian power transmission network with that of random graphs of similar

sizes.

We address the possible consequences of node removal due to random failure or targetted

attacks and study the vulnerability and extent of connectivity loss that can happen in both

cases. Then we study the process of cascade due to these attacks in the network. Adopting

the local preferential redistribution rule of an overloaded node, we investigate the effect of

the failure of nodes with high as well as low loads. We find nodes with low loads are more

threatening to the network for strength parameter > 0.5. The results of our study are highly

relevant to address the strategies required to prevent attacks or stop the spread of cascades

in the power transmission network of India.
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Chapter 1

Introduction

Our present society can function pleasantly and with comfort only if its critical infrastructure

such as electricity, transportation system, the internet, etc are working efficiently. Among the

infrastructures listed above, electricity is the most important one in everyday life. Electricity

is the most demanding and powerful form of energy around the world and the network of

power transmission is a complex and large-scale real world nonlinear dynamical system.

Due to its vast and complex structure, stability and vulnerability of power transmission

network become challenging. Even a small perturbation in its network can cause large-

scale blackouts [1]. The very high population density of India makes its power transmission

network even more complex. In the recent past, India has experienced large-scale blackouts.

In January 2001, North India experienced a blackout which affected over 230 million people.

Also just four years back, two major blackouts on 30 and 31 July 2012 left most part of India

without electricity. The regions affected by 2012 blackouts are shown in figure 1.1. This event

affected over 620 million people. If one just googles ”The major blackout”, Wikipedia shows

a very long list of blackouts in the history from the year 1960 to 2017. This means that

blackouts are inherent to power transmission networks and can happen unintentionally due

to self-generated or external perturbations. These blackouts have drawn the attention of the

scientific community and in the last two decades, efforts have been made to study the reasons

for such large-scale cascades and to see how to make power transmission network more robust

and efficient [2, 3, 4, 5, 6, 7]. Apart from the problem of the blackout, power transmission

network systems involve scientific knowledge analysis of complex networks. Therefore it is

important to understand the fundamental concepts of the complex network.
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Figure 1.1: States in red color are regions in India affected by 2012 blackout.

1.1 Complex networks

When we try to study any physical phenomena involving a large number of interacting

entities, we need the knowledge of coupled system. The framework of the complex network

is perfectly suited to study and understand such phenomena. Leonhard Euler solved the

problem of Koenigsberg bridges in 1736 and hence founded the concepts of graph theory [8].

Since then, the theory of graphs or networks has been used in diverse fields like economy [9],

sociology [10], internet [11, 12] biology [13], chemistry [14], spread of epidemics [15] and

theoretical physics [8].

In graph theory [16] a network or a graph G = (V,E) is defined as an ordered pair of

disjoint sets (V,E), where V is a set of vertices with |V | = n is the total number of nodes

and E is a set of edges with |E| = e is the total number of edges. The networks or graphs
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are in general classified into the following types:

• Undirected graph:

A graph in which relation between any pair of two nodes is symmetric. The edge (x,y)

is identical to the edge (y,x).

• Directed graph:

A graph in which edges have orientation. The relation between any pair of nodes is

ordered. The edges (x,y) and (y,x) can be different. The edge (x,y) is called an arrow

directed from node x to node y.

• Weighted graph:

A graph in which every edge (x,y) is assigned a number or weight which represents the

cost, traffic, power or capacity depending on the system.

• Regular graph:

A graph where each node has the same number of nearest neighbours. A graph with

each node having k number of neighbouring nodes is called k-regular graph.

• Complete graph:

A graph where every node is connected to every other node. The total number of edges

in a complete graph is equal to n(n-1)/2.

• Connected graph:

A graph or network is called connected if every unordered pair of nodes has at least

one path connecting them.

The adjacency matrix A uniquely represents the network configuration with matrix ele-

ment aij representing the nature of connection between node i and node j.

aij =

1 if node i and node j are connected

0 if node i and node j are not connected
(1.1)

A graph can be characterised by different topological properties, such as degree distribu-

tion, clustering coefficient and characteristic path length.
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1.1.1 Degree distribution

In graph theory, the degree of a node or a vertex is the number of edges incident to the node.

In other words, it gives the information about direct connection of a node to its nearest

neighbours. Degree distribution of a network is a measure of the number of nodes having a

certain degree k[8]. The degree of ith node is

ki =
∑
∀j

ai,j (1.2)

The degree distribution represents the global connectivity of a network. A network is ho-

mogeneous if nodes have similar degree like in the case of a regular or a random graph, and

it is heterogeneous if there are nodes with degree much larger than the average degree of

the graph. The networks whose degree distribution follows power law are called scale-free

networks.

1.1.2 Clustering coefficient

The clustering coefficient of a network is the measure of the extent to which nodes in the

network tend to cluster together. Clustering coefficient matrix CN is a 1-d vector which

provides information about the looping in the network, and the matrix element ci is a ratio

of the number of closed triplets to the number of connected triplets of any node.

ci = 2

∑n
j,k ajk

ki(ki − 1)
(1.3)

The average clustering coefficient Cavg of the network is

Cavg =
1

N

N∑
i=1

ci (1.4)

Cavg varies between 0 to 1. A well-clustered network provides more than one path between

any two nodes.
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1.1.3 Characteristic path length

Duncan Watts and Steven Strogatz [17] in 1998 noted that a graph can be characterised by

two independent properties, namely the clustering coefficient and average shortest path. We

define a distance matrix Dn×n and its matrix elements d(i,j) as a minimum number of edges

required to go from node i to node j. The characteristic path length L of a network is the

average of all such shortest paths.

L =
1

n× (n− 1)

∑
∀i,ji6=j

d(i,j) (1.5)

1.1.4 Global efficiency

The efficiency of a network is measured by its ease to transfer information between vertices.

So a network with shorter characteristic path length will have larger efficiency. Global

efficiency η is the average of inverse of characteristic path length of every pair of connected

nodes.

η =
1

n× (n− 1)

∑
∀i,ji6=j

1

dij
(1.6)

1.2 Random, scale-free and small-world networks

The way in which nodes or vertices are connected affects their cumulative behaviour because

structure always affects the function. Erdos P. and Renyi A. in 1959 [18] introduced the

concept of random network, known by their name ER graph. The ER graph starts with N

number of isolated nodes and pair of nodes are selected at random with uniform probability

to make connections between them. The ER graphs are characterized by average degree,

meaning nodes have relatively the same degree. Figure 1.2 shows the degree distribution of

a random graph with 2470 nodes and average degree 3.0477.

Most of the real-world networks are scale free. The scale-free network is a network whose

degree distribution follows a power law as in equation 1.7. In such network there will be a
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Figure 1.2: Degree distribution of a random network with 2470 nodes and average degree
3.0477

few number of high degree nodes called hubs.

P (k) = Ck−λ (1.7)

Regular graph and random graph are two extreme examples of graphs but real world

networks fall somewhere between the two extremes [17]. Another type of network is the

small-world network. A small world network is neither random nor regular. It has the

clustering coefficient of a regular graph and average shortest path between two nodes of a

random graph. In the small world network average path length l varies with number of nodes

in the network as: l = O(log(n)) for large n.

The world of networks spans from the regular network of a lattice, ring of nodes and fully

connected graph where nature of the connection is identical for every unit to random graphs

where the nature of connection is completely random. But most of the real world networks

have randomness with added patterns on it.
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1.3 Complex network of power grids

The severe incidents cited in section 1 have motivated the scientific community to extensively

study power transmission networks. The complex network approach has been used to study

the power transmission networks where substations are considered as nodes and transmission

lines connecting different stations are considered as edges. There are a few studies reported

in this direction recently. M. Rosas-Casals and B. Corominas-Murtra studied the robustness

and reliability of European power transmission network by studying the λ parameter of its

degree distribution [19]. Paolo Crucitti et al. analyzed efficiency and cascade of Italian

electric power transmission network [3] by relating final efficiency to the tolerance parameter

and removing nodes randomly and on the basis of the load. Reka Albert et al. investigated

the structural vulnerability of the North American power transmission network by removing

transmission stations and studying its effect on the network [2]. Different power flow models

have been addressed to study the dynamics of power transmission networks [20]. Multilayer

property of power transmission networks have been studied by Giuliano Andrea Pagani

considering different kV lines as different layers [21].

1.4 Indian power transmission network

Compared to the studies on power networks globally, reported studies on the Indian power

transmission are very few. After the blackout of 2012, Guidong Zhang et al. with the

help of Indian officials used the complex network approach to investigate the power failure

in Indian power transmission network [7]. They used a new power flow model including

active and reactive power flow to study the cascade. Their investigation revealed the origin

and spread of power failure. Himansu Das and group studied the topological properties of

Odisha power transmission network and concluded that Odisha power transmission network

degree distribution follows exponential function, unlike scale-free networks where degree

distribution follows power law [22]. The topology of West Bengal power transmission network

has been studied by Himansu Das, Gouri Sankar Panda, Bhagaban Muduli and Pradeep

Kumar Rath [23].

Apart from work done by Guidong Zhang et al., the other two investigations of the

Indian power transmission network using the complex network approach have considered
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only regional parts of the Indian power transmission network system. The reason for lacuna

of a detailed research on complete Indian power transmission network is the unavailability

of data in the useful format. So in the first part of this work, we concentrate on generating

this data in the form of adjacency matrix using the power map available as the source. As

the first step, the data generation is required even though it is time-consuming. Then we

can further study the topological properties, robustness, stability and vulnerability of Indian

power transmission network.

In the next chapter, we present the process of data generation and its important charac-

teristics. In the subsequent chapter, we present the results of our study on the topological

characteristics. We end by reporting the study on possible cascade processes on this network

due to the failure of one or more power stations.

The summary of our work, future scope and references are given at the end.
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Chapter 2

Data generation

This chapter provides the details about the process of data generation. As discussed in sec-

tion 1.4, studies on the Indian power network so far have been localized due to lack of data in

the useful form. Therefore in this chapter, we present our method of generating data from the

power map available on the official web page of Load Despatch Center(https://posoco.in/).

2.1 Power map of India

For the work in this thesis, the data representing the electrical power transmission network of

India is generated from power map available at an official web page(http://www.srldc.in/var/

mandatory /Compiled%20power%20maps%20of%20all%20Regions-2014.pdf) of Power Sys-

tem Operation Corporation Limited(POSOCO). The POSOCO is responsible for the secure,

efficient and reliable operation of the Indian power transmission network. The power map

has regional and state wise information of power stations and the transmission lines of differ-

ent kV wires(66kV, 100kV, 110kV, 132kV, 220kV, 400kV, 765kV and HVDC(high voltage

direct current)) joining the different stations. Images of all the five zones are given in fig-

ure 2.1, 2.4, 2.3, 2.5 and 2.2.
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Figure 2.1: Power map of North India

The North India power map in figure 2.1 shows only 400kV and 765kV lines. Therefore

we take the data for North India from state maps which include 220kV lines also.

Figure 2.2: Power map of western zone with numbers assigned to stations

Figure 2.3: Power map of North East India
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Figure 2.4: Power map of East India

In the map, we assign each power station a unique number starting from 0. We get a

total of 2497 stations in ’India after omitting a few due to lack of clarity.

From the map we generate two data sheets, one of which contains the information about

the number of transmission lines connecting the station to other stations and nature of

the stations, whether a station is a generating station or a distribution station. If it is a

generator then its type(thermal, windmill, hydroelectric or nuclear power plant) is also noted.

Our second data sheet contains the information of connectivity, like which two stations are

connected and through what kV lines. So if we consider the network weighted with different

kV lines then we find six layers of network with six different kV lines. Then we get one

unweighted network considering all the kV lines as unweighted. Since the total number of

stations in lower kV lines like 66kV, 100kV, 110kV and 132kv, and in 765kV are relatively

much smaller compared to other kV lines, we consider only 220kV, 400kV and whole network

for our further studies.

To find the connectivity of Indian power transmission network system, we use Breadth-

First Search (BFS) algorithm [24] with small changes. In particular, we keep count of nodes

reached from search key node. This gives us the total number of nodes connected together.
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Figure 2.5: Power map of South India

To our surprise, we found many small clusters of stations isolated from other clusters. It

is expected to find some isolated clusters in one particular kV line network because these

isolated clusters may be connected through any other kV lines. But even on the complete

unweighted network, we find a total of 10 isolated colonies. So we consider the single cluster

with the highest number of stations as the primary cluster and the others with smaller

number of stations as secondary clusters. The frequency and size of secondary clusters are

shown in figure 2.6. All further calculations and studies are done considering the primary

cluster only.

The reason for getting isolated clusters in the unweighted network is the presence of

small independent power sources such as solar, windmills, hydro or nuclear power plant

which provides energy for only a small number of stations. Some of such isolated stations in

Kerala are shown in figure 2.7 with red circles around the stations which are not connected

to the main network. Another reason can be the lack of information about the lower kV

lines.

As presented in this chapter, we generated the data on the power transmission network
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Figure 2.6: Secondary clusters of all kV lines with its size and frequency

of India. The details of the network data generated is summarised in table 2.1.

Table2.1-Details of all stations and clusters
Networks Total stations Number of isolated clusters Nodes in the largest cluster Edges in the largest cluster

132kv 1043 29 340 400
220kv 1404 10 1341 1855
400kv 413 4 405 613
Whole 2497 10 2470 3764

In the next chapter, we present the results of our study on the topological characteristics

of the generated network.
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Figure 2.7: Power map of Kerala. The clusters of isolated stations are marked with red
circle.
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Chapter 3

Topological characteristics of Indian

power network

This chapter reports the analysis of topological characteristics of the Indian power trans-

mission network. Considering the power transmission network as a complex network, we

study its emergent properties like degree distribution, clustering coefficient, characteristic

path length and global efficiency.

3.1 Modelling power transmission network as a com-

plex network

To represent Indian power transmission network as a complex network, we assume all types

of stations(generator,transmission stations and distribution station) to be identical nodes.

We consider three networks of the Indian power transmission network, first with 220kv line

connection, second with 400kV line connection and third by including all the stations which

are connected by any type of transmission lines. All three networks are considered as simple

and unweighted networks so that the adjacency matrix A is a symmetric matrix with only

zeroes as the diagonal elements.We considered the largest connected component in each

network for all the characteristic measurements.

15



Figure 3.1: Visualization of the whole power transmission network of India made using
Graph-tool. The size of each node is indicative of its degree

We generate the visualization of the network from the adjacency matrix using Graph-

tool. Figure 3.1 shows the Indian power transmission network with 2470 nodes and 3764

edges. The representations of 220kv and 400kv networks are shown in figures 3.3 and 3.2.
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Figure 3.2: Visualization of the 400kv power transmission network of India made using
Graph-tool. The size of each node is indicative of its degree

Figure 3.3: Visualization of the 220kv power transmission network of India made using
Graph-tool. The size of each node is indicative of its degree
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3.2 Degree distribution

We calculate the degree distribution of Indian power transmission network and we find that

its degree distribution follows an exponential curve. We use Gnuplot to fit the data with an

exponential function as

P (k) = C exp−
k
λ (3.1)

where C is normalizing constant and λ is the topological parameter. The λ value for all

three networks(220kv,400kv and whole network) falls between 1.5 and 1.9. The degree

distributions for the 220kv, 400kv and whole network are shown in figures 3.4, 3.5 and 3.6

respectively.

Figure 3.4: Degree distribution of 220kv line network. The x-axis shows degree of nodes
and the y-axis is the fraction of node having particular degree. The dots are data from the
network and the solid line represents the exponential fit with λ = 1.61

We note from the reported studies that most of the real world networks have a power

law distribution [25, 26]. However, power transmission networks have exponential degree

distribution [3, 2, 27, 19]. The table 3.1 shows the comparison of λ values of the Indian

power transmission network with that of the Iranian, North American and Italian power

network.
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Figure 3.5: Degree distribution of 400kv line network. The x-axis shows the degree of nodes
and the y-axis is the fraction of node having a particular degree. The dots are data from the
network and the solid line represents the exponential fit with λ = 1.92

Figure 3.6: Degree distribution of whole Indian power transmission network considering all
kv lines. The x-axis shows degree of nodes and the y-axis is the fraction of node having
particular degree. The dots are data from the network and the solid line represents the
exponential fit with λ = 1.66
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Networks Nodes Edges λ
220kv 1341 1855 1.613
400kv 405 613 1.924

Whole network 2470 3764 1.665
Iran [27] 105 142 1.587

North America [2] 14099 19657 2.0
Italy [3] 341 517 1.818

Table 3.1: The λ values of Indian, Iranian, North American and Italian power network.

3.3 Clustering coefficient

The average clustering coefficient of Indian power grid is calculated using equation 1.3 and

equation 1.4. The values lie between 0.15 to 0.18. We want to see the extent to which the

nodes of the same degree are clustered together, therefore we define clustering index as the

measure of clustering among nodes having same degree.

Figure 3.7: Clustering coefficient index of 220kv with clustering index on y-axis and degree
in x-axis

From the figures 3.7,3.8 and 3.9 we can conclude that nodes with degree 2 are more

probable to connect to nodes of same degree than nodes having different degrees. With

the increase in degree, the clustering index of nodes decreases suggesting nodes with higher

20



Figure 3.8: Clustering coefficient index of 400kv with clustering index on y-axis and degree
in x-axis

Figure 3.9: Clustering coefficient index of whole Indian network with clustering index on
y-axis and degree in x-axis

degree are less probable to cluster together. But we see an increase in clustering index for

nodes having degree 8 and 9, different from the expected trend.
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3.4 Characteristic path length

In a power transmission network, a transmission or distribution station is connected to a

generating station through more than one path and power can be transmitted from one

station to another through any possible path. The power loss in transmission from one

station to another station depends directly on the length of transmission line[28]. Hence we

assume that power will flow with the maximum probability between any two stations only

through the shortest possible path.

We do not take into account the actual length of connecting line between any two stations.

But we consider the edge as a unit length as done in the framework of the complex network.

Dn×n is a symmetric matrix with zeroes as diagonal elements for the simple network. The

characteristic path length L of a network is the average of all shortest paths between any

pair of nodes. We directly used Floyd-Warshall algorithm [29] for calculating the shortest

path between every pair of nodes. The characteristic path length of the 220kv, 400kv and

whole network is 25, 9 and 13 respectively.

3.5 Centrality

The concept of centrality has always been important in the analysis of networks [30, 31].

In the past, researchers have introduced a large number of centrality indices like degree

centrality, closeness centrality [32] and betweenness centrality [33, 34]. All the different

definitions of centrality are attempts to measure the importance of a node in the network.

3.5.1 Degree centrality

The simplest of the centrality indices is degree centrality CD which counts the number of

nodes connected to any nodes. This means larger the degree of a node, more vital that node

is to the network. If the load of a node depends on its degree, then the node with highest

degree centrality is vital to the network. The degree centrality of a node v is

CD(i) =
∑
∀j

ai,j (3.2)
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3.5.2 Closeness centrality

The closeness centrality CC measures how close a node is to rest of the nodes in the network.

The closeness centrality for a node v is inverse of the sum of all the shortest paths from

node v to all the other nodes in the network. If the shortest path length between any pair

of nodes is infinity(not connected), then this distance is not considered in the calculation of

closeness centrality.

CC(v) =
1∑

t∈V d(v,t)

(3.3)

where d(v,t) is the shortest path between node v and node t. If one has to study the ability of

a node to spread any information to the whole network, then closeness centrality is a better

indicator.

3.5.3 Betweenness centrality

The betweenness CB(v) of a node v is defined as the fraction of shortest paths between all

the pairs of nodes in a network that goes through the node v. The betweenness centrality is

useful to calculate if any type of load flow between nodes travels through the shortest path.

Hence betweenness centrality assumes the flow between nodes only through shortest paths.

CB(v) =
∑

s 6=v 6=t∈V

σst(v)

σst
(3.4)

where σst(v) is the number of the shortest paths between node s and node t that goes through

node v.

In the case of a power transmission network, it is difficult to formulate actual power flow

between stations, so we have assumed that power flows from a generator to load through

the shortest path. This assumption allows us to calculate the betweenness centrality for

the Indian power network. To calculate the betweenness centrality we used Brandes [34]

algorithm.

In the next chapter, we show how the centrality measures are useful to study the vulner-

ability of Indian power transmission network against node removal.
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Chapter 4

Vulnerability and cascade in the

Indian power transmission network

In this chapter, we present the results of our study on the vulnerability of Indian power

transmission network due to the removal of nodes. Since all the stations and substations are

connected to each other, failure of any one node can affect the performance of other stations

too. Therefore it is important to study the emergent behaviours that can take place in such

complex network.

Specificaly we continue the study in two parts. First connectivity loss, where the random

failure or targeted attack of nodes and the consiquence changes in the topology are studied.

Then the possibility of cascades leading to blackouts due to overloading of the nodes is

studied.

4.1 Connectivity loss

In this study, we remove one station and try to see how it affects the functioning of the

rest of the network. The removal of one station need not have in general much impact on

the connectivity of the network. We want to examine if the network disintegrates into small

clusters by continuous removal of nodes. In the stable state, there are 2470 stations connected

together in the unweighted network. We remove one node and calculate the fraction of the
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original network that is still connected. We calculate connectivity loss CL to quantify the

decrease in the number of stations connected together, as

CL = 1− Nc

No

(4.1)

where Nc is the number of stations connected after removing any fraction of nodes and

No is the total number of stations at the unperturbed state. After removing a certain

fraction of nodes there may be a situation where the network will disintegrate into many

isolated clusters, then we consider the remaining cluster with the largest number of connected

stations as Nc. We apply this method to the Indian power transmission network first by

removing random nodes corresponding to accidental failure, and then we remove nodes in

their decreasing order of degree and betweenness centrality to take care of targeted attacks.

We compare all three cases together to see what is the critical fraction of nodes after which

the network will disintegrate. We perform this test on all three networks. The results of the

study are given in figures 4.1,4.2 and 4.3.

Figure 4.1: Effect of node removal on 220kv network. Connectivity loss in y-axis and % of
nodes removed on x-axis.

The curve for random removal of nodes follows close to linear function initially, showing

that Indian power transmission network is resilient to the random attack on small number

of nodes. But targeted attacks on nodes with high degree or high betweenness have a severe

effect on the network. In all three cases for targetted attacks, removal of even 2-3 % of nodes
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Figure 4.2: Effect of node removal on the 400kv network.Connectivity loss in y-axis and %
of nodes removed on x-axis.

results in 30-40% loss in connectivity.

Figure 4.3: Effect of node removal on the whole network.Connectivity loss in y-axis and %
of nodes removed on x-axis.
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4.2 Cascade

In the study of complex networks, the load of a node is generally calculated by degree or

centrality of the node. In the case of a power transmission network, we can assume that

if any station nl is connected to a larger number of stations than some other station ns ,

then comparatively a larger amount of power will flow through nl than ns. But sometimes

it might be the case that all the stations that are connected to nl have degree 1, and ns

is connected to the smaller number of stations but which are further connected to other

stations, then ns will have larger load than nl. To study the model of load distribution and

cascade failure we use the model presented by Jian-Wei Wang and Li-Li Rong [35].

Jian-Wei Wang and Li-Li Rong consider the degree of neighbouring nodes also in addition

to the degree to calculate the load of any node. So the load Lj and capacity Cj of node j

depends on its degree kj and degree of its neighbours Γj. The capacity of any station is the

maximum amount of power or load that it can withstand. The capacity of a node is assumed

to be proportional to its load.

Lj = [kj(
∑
m∈Γj

km)]
α

(4.2)

Cj = tLj (4.3)

In the equation 4.2, α is a parameter which controls the dependency of load on degrees.

The capacity Cj of a node j in equation 4.3 is t times its load Lj, where t is tolerance

parameter that determines what multiple of load a node can withstand. Now if any node

i fails by any means, then its load is redistributed to its set of neighbouring nodes γi,

proportional to their loads. Equation 4.4 explains the load redistribution mechanism.

∆Lji = Li
Lj∑
n∈ΓiLn

(4.4)

We want to see the effect of load redistribution by attacking nodes with both lower load

and higher load. So we choose 1 node with high load and examine the cascade for different

parameter values and each simulation result is averaged over ten realisations of randomly
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selected nodes. We also repeat the above procedure for nodes with lower load value to

compare the effect of the node failure on both types of nodes. To calculate the effect of the

avalanche of size CF , we average the number of nodes failed NF for every parameter and then

divide it by the initial number of nodes N. For every parameter value of α, we will get a

critical tolerance tc value below which the network will suffer a large blackout.

CF = 〈NF

N
〉 (4.5)

Figure 4.4: Cascade in network by removing node with low load.

Figure 4.4 and 4.5 show the effect of node failure by varying the tolerance parameter t

and strength parameter α. The colour code indicates the fraction of nodes failed. We see

a uniform shift in colour with the change in α and tc. We calculate the critical tolerance

value tc below which a crucial fraction(10%) of the network will be damaged for removal of

one node. The dependence of tolerance value tc on strength parameter α for an attack on

both type of nodes, the lower load and higher load is shown in figure 4.6. From figure 4.6,

we see an increase in thr critical tolerance value tc with increasing strength parameter α for

the attack on nodes with higher load. But for nodes with lower load, the critical tolerance

value tc decreases with increase in α. We can conclude from the figure 4.6 that for α ≤ 0.5,

nodes with higher load are critical to the network and for α > 0.5, nodes with lower load

are critical for triggering cascade on node removal.
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Figure 4.5: Cascade in network by removing node with high load.

Figure 4.6: Relation between critical tolerance tc and α value for attacks on low load
nodes(purple) and high load nodes(green).

In this chapter, we present the results of the two tests for networks vulnerability against

random and targeted attacks on stations. The node removal model tests the effect of node

removal on the connectivity of the network and the cascade model studies the effect of an

overloaded power station on the network. In the next chapter, we conclude all the results

that we obtained on the study of the Indian power transmission network.
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Chapter 5

Conclusion

Major blackouts in the past and lack of detailed work on Indian power transmission network

motivated us to study the Indian power transmission network using complex network anal-

ysis. We used the power map of India to generate the complete Indian power network data

in the required format, which took around three months.

After generating the data, we first analyse the topological characteristics of Indian power

network. The result from section3.2 shows that Indian power transmission network has

an exponential degree distribution, with nodes having degree no more than 16. And the

clustering index of nodes decreases with increase in their degree, suggesting nodes with

lower degree tends to cluster together. We also notice a deviation from this pattern for node

with degree 8 and 9. In general, the characteristic path length of Indian power transmission

network has value i the range 9-25.

In the table below, we present the main results of the study on the topological charac-

teristics, for the three networks studied. The computed characteristics are compared with

that for a random network of same size and edges.

From the table of comparison, it is clear that Indian power transmission network differs

substantially from the respective random graphs. This would mean that the growth of Indian

power transmission network over time is not purely random. The stations are clustered

together with clustering coefficient around 0.15, which is much more than the clustering

coefficient of random graphs. The characteristic path length of Indian power transmission
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Table:Comparision of topology of Indian power transmission network with random networks
Networks Topological characteristics

- Node Edge Average degree Clustering coeff. Characteristic path length Global efficiency
220kv 1341 1855 2.767 0.173 25.47 6.01×10−2

Random1 1341 1836 2.767 3.91× 10−4 4.26 1.02× 10−3

400kv 405 613 3.027 0.177 9.43 0.138
Random2 405 599 3.027 1.68× 10−3 3.68 3.66× 10−3

Whole network 2470 3764 3.048 0.153 13.36 9.43× 10−2
Random3 2470 3720 3.048 9.44× 10−5 6.23 6.10× 10−4

network is ≈ 13, which is more than that of a random network. The Indian power networks

in general have more efficiency than the random graphs.

If we compare the 220kv, 400kv and whole network topology, there are subtle differences

between them. The 220kv network is less clustered compare to other two. The characteristic

path length of the 400kv network is lower than other two and it is most efficient also. The

average degree of 400kv and the whole network are almost similar but slightly higher than

that of the 220kv network.

The node removal model shows that Indian power transmission network is resilient to

random attacks. But if targeted, only 5-10% of node removal is enough to disintegrate the

network completely.

The cascade model based on degree-dependent load redistribution gives some counter-

intuitive results for high load and low load nodes. For the strength parameter α > 0.5,

attacking nodes with low degree(that is low load) will have more cascading effects on the

network.

5.1 Future work

There is a lot of scope for further study on Indian power transmission network. The complex

network is a good tool to simplify the complexity of power flow and study its properties

emerging from the topology of the network. Some of the future directions of study are:

1. Considering a dynamical system modellying a power flow on the nodes, we can study

the emergence of synchronisation and how node/link removal causes desynchronisation
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etc.

2. Considering the whole network as a multilayer network each layer being that of one

type of kV line, we can study the network in much more detailed manner.

3. Determining the stability of a dynamical state against local or non-local perturbation

by considering the state’s basin volume as a measure of its stability is also relevant for

future work.

The present study along with the future trends mentioned above can lead to very com-

prehensive and technically relevant results on the power transmission network of India. This

will be useful from an engineering point of view when strategies to prevent attacks or stop

the spread of cascade are to be considered in detail.
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