
Investigating sparse model for
Continuous Glucose Monitoring in

Type 2 Diabetes

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfilment of the requirements for the

MS (by Dissertation) Programme

by

Prajjwal

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

September, 2022

Supervisor: Dr. Pranay Goel

© Prajjwal 2022

All rights reserved





Certificate

This is to certify that this dissertation entitled Investigating sparse model for Contin-

uous Glucose Monitoring in Type 2 Diabetes towards the partial fulfilment of the MS

(by Dissertation) programme at the Indian Institute of Science Education and Research,

Pune represents study/work carried out by Prajjwal at Indian Institute of Science Ed-

ucation and Research under the supervision of Dr. Pranay Goel, Associate Professor,

Department of Biology, during the academic year 2021-2022.

Dr. Pranay Goel

Committee:

Dr. Pranay Goel

Dr. M.S. Santhanam Dr. Collins Assisi





Dedicated to diabetic patients all over the world.





Declaration

I hereby declare that the matter embodied in the report entitled Investigating sparse

model for Continuous Glucose Monitoring in Type 2 Diabetes are the results of the work

carried out by me at the Department of Biology, Indian Institute of Science Education

and Research Pune, under the supervision of Dr. Pranay Goel and the same has not been

submitted elsewhere for any other degree.

Prajjwal





Acknowledgements

This thesis and the work I’ve done over the last year would not have been possible without

the assistance of several people, whom I’d like to thank here.

First and foremost, I’d like to thank Dr. Pranay Goel, who has been my mentor

for the past year and has provided me with invaluable advice and guidance on how to

proceed. He has always encouraged, inspired, and corrected me when necessary. I’ve had

long conversations with him which always provided me with new insights into research

and various ideas. It is only because of those discussions that my project has transformed

into something with true academic importance. I am grateful to have had a guide who

permitted me to be free in many areas as long as the needed work was carried out precisely.

I would like to express my heartfelt gratitude to Dr. Saroj Ghaskadbi and Saurabh

D. Kalamkar (Savitribai Phule Pune University) for providing us with the necessary data

and for allowing me to collaborate with them. I’d also like to thank Sayantan Majumdar,

Sandra Aravind, Arjun KM, and Somashree Chakrobarty, who are all working on their

doctorates in Dr. Pranay Goels’ lab.

I would also like to mention my parents, Mrs. Archana Srivastav and Mr. Vinod

Srivastav, and my sister Harshita Srivastav who have always supported and believed in

me, deserve my sincere gratitude. They will be the focus of my entire life, not just for

this thesis. I hope that someday I will be able to mark a contribution from my side in

healthcare for those who are struggling with similar issues and are in need of assistance,

since my mother suffers from both diabetes and high blood pressure, which led to the

failure of her kidneys i can understand how deadly this disease can be. And in the end

I would also like to thank MS project students from our lab Rashmi Chapke and Suyog

Sankhe for their valuable suggestions and comments.

ix



x



Abstract

Continuous Glucose Monitoring (CGM) is a cutting-edge method for monitoring

blood glucose levels at predetermined intervals. Type 2 diabetes is a long-term chronic

lifestyle disease brought on by high blood sugar levels. In our investigation, we will use

isolated liquid meals and CGM data to predict the glucose level inspiring from a widely

used fitting method that is described in this work. Owing to the CGM data’s signifi-

cant nonlinearity and the complexity of adequately modelling it, we restricted the use

of non-linear approaches to a single time period during the day. After rigorous research,

we discovered that we can draw inspiration from the underdamped case of a damped

harmonic oscillator to simulate our data accurately. We then used the same technique

to apply and model CGM data available for five patients (2 non-diabetic, 2 diabetic and

one pre-diabetic). We have carefully analyzed and shown the data, day by day as well,

so that it may be used for more comprehensive analyses of the glucose dynamics and

the prescription of a diet or medication for diabetic patients since it demonstrates how

glucose varies with simple liquid meals.

Keywords: Non-Linear modelling, Data visualization and analysis, Continuous

Glucose Monitoring, Harmonic Oscillator
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Introduction

A sensor, often mounted to the arm, is used in continuous glucose monitoring (CGM),

which uses it to provide blood glucose readings every 15 minutes for two weeks. The

availability of this high-quality, high-time resolution approach is growing [1]. There has

been various model proposed which involves modelling using neural network [2], with

derivative free optimization techniques [3], and also minimal model approach [1]. various

techniques use particular time range for modelling; one such recent study conducted have

modelled the CGM data during sleep [4][5].

For the purposes of our investigation, we first began by modelling complicated

time series data using SINDy algorithm [6], where the sparse identification of non-linear

dynamical systems is carried out using sparse regression techniques, which is discussed in

the last section of this work. After that, we looked at a variety of sparse representation

methods; for instance, one in-depth research was conducted on the ISTA algorithm [7],

but to the best of our knowledge, none completely explained the dynamics of glucose. As

a result, we switched to the most widely used modelling scenario of a damped harmonic

oscillator and got our model inspiration from that, which was subsequently applied to all

participants but only within a predetermined window during which only the liquid meal

was ingested.

Our research objectives :

The data visualisation and analysis for all of the patients for each day was a major

component of our study so that we could better understand how and when to do the

modelling. We will go over the CGM models and studies that have been done in the

first chapter. In the second chapter, we will discuss the equations we are employing

and the parameters we will use to fit our CGM data for the non-diabetic, diabetic, and

pre-diabetes cases.
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Then, in Chapter three, a thorough analysis of every diet diary provided has been

carried out along with the discussion of data pre-processing and loading methodologies

as well as the step-by-step methodology we employed. In the last section of this work,

we had gone into short depth about the different ideas we had previously worked on in

the discussion portion.
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Chapter 1

Preliminaries

1.1 Continuous Glucose Monitoring (CGM)

CGM is an innovative technique for measuring blood glucose levels at predetermined

intervals. For 14 days, the sensor, which is attached to either the arm or the abdomen,

measures blood glucose every 15 minutes. The time series obtained from CGM data

allows us to gain a broad understanding of the variation of blood glucose throughout the

day, particularly after meals and other regular activities. The average blood glucose level

in diabetic CGM data is much higher (around 200 mg/dl) than in non-diabetic CGM

data (around 100 mg/dl).

Additionally, the diabetic CGM time series has glucose pulses that are wider

and stronger than those in the case of non-diabetic patient. CGM is influenced by the

individual’s physiology as well as the amount of food consumed by the subject while

being measured. As a result, the full dynamic modelling of the CGM time series is

currently difficult. We wanted to mimic the glucose peaks seen in the CGM data just

before breakfast in this investigation.
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Figure 1.1: Graph of Glucose (mg/dl) vs Time (15 min interval) scattered through a week
of diet one from the diabetic data available. Mean and median values are also plotted for
a week in orange and green respectively.

1.2 Modelling CGM Data

For modelling CGM various techniques have been used in the past. For example, the

Topp model was adapted for glucose-insulin dynamics, and a two compartmental food

dynamics model was developed in [1] :

dG

dt
= R0 − (EG0 + SII)G+ kgutqgut (1.1)

dI

dt
= Imax

G2

α +G2
− kII (1.2)

dqsto
dt

= −kstoqsto (1.3)

dqgut
dt

= kstoqsto − kgutqgut (1.4)

Previously, optimisation was performed in Matlab using a combination of the func-

tions fmincon and patternsearch with appropriate constraints. [1].

Also The derivative-free optimization and neural netwrok approach has also been
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applied to the CGM data [3, 2].

1.3 Objective of current Study

Goel and Ghaskadbi recently proposed an ‘Isolated Liquid Meals Tolerance Test’

(ILMTT) (private communictaion) which is the intake of a liquid meal, sufficiently sep-

arated from another meal, as an alternative to – a CGM version of – the OGTT.

My objective in this thesis is to model the glucose peaks observed after liquid meals,

which often occur before the subjects breakfast and can be referred to as ILMTT. As we

considered five diets (two non-diabetic, two diabetic, and one pre-diabetic), all of which

contain diverse meals like tea, milk, coffee, etc., the liquid meal is not particular and can

vary from person to person. For modelling, we analyse that glucose values follow patterns

like an underdamped harmonic oscillator where amplitude will oscillate and decay with

time, then asymptote to a particular point. And we propose our model by adding an

extra intercept term ’h’ taking an inspiration from that as :

G = a exp (−bt) cos (wt) + h (1.5)

where G is the glucose value at time t and a, b, h and w are unknown parameters to

be estimated.

Applying this to all of the available glucose data will help us choose the parameters

that will best fit our model. Next, we will compare the original data points with the

outcomes of our model to determine the statistical analysis.
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Chapter 2

Deriving the solution

The most commonly and widely used model in physics is a harmonic oscillator, and

for our modelling, we are using a special case of harmonic oscillator i.e under-damped

harmonic oscillator. We will just explain the equations that we are going to use with a

simple spring-mass system.

2.1 Damped harmonic oscillator

As it is known from Hooke’s law that without an external force acting on the system, the

net force on the spring-mass system is given as:

Fnet = ma = −kx (2.1)

And for a particular initial conditions system will oscillate forever with the constant force.

And the trajectory it follows will be given by the general solution :

x(t) = Asin(w0t) +Bcos(w0t) (2.2)

where

w2
0 =

k

m
(2.3)

But in the case of damping, net force changes as a function of velocity , thus an

additional force of the form Fb = bv will be added and our equation becomes :

Fnet = −kx− bv = ma = m
d2x

dt2
(2.4)
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2.2 Solution for liquid meals

Rearranging all our terms we get :

d2x

dt2
+ 2β

dx

dt
+ w2

0x = 0 (2.5)

where

2β =
b

m
, w2

0 =
k

m
(2.6)

With a bit of foresight we know that the solution can be of form of :

x = A exp (αt) (2.7)

Substituting in the equation above we get the auxiliary equation to be :

α2 + 2βα + w2
0 = 0 (2.8)

As the above equation is in the quadratic form hence the solution can be written as:

α1 = −β +
√
β2 − w2

0 (2.9)

α2 = −β −
√

β2 − w2
0 (2.10)

And we can write general solution of this motion as :

x(t) = exp (−βt)[A1 exp (
√

β2 − w2
0t) + A2 exp (−

√
β2 − w2

0t)] (2.11)

There are special cases to above solution, SHM (oscillations) , under-damped oscil-

lations , critical damped and over-damped.
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Figure 2.1: Trajectory for all three cases. Black : underdamped , red : critically damped
and blue : overdamped.

What we are interested in for our modelling is the underdamped case where :

b2 < 4km or β2 < w2.

(2.12)

Therefore, in this case, roots are imaginary, which will transform the solution as :

x(t) = A exp (−βt) cos (w1t− δ) (2.13)

Hence taking an inspiration from 2.13 we propose our modelling equation as:

G = a exp (−bt) cos (wt) + h (2.14)

where the additional term ”h” is added to provide our model with flexibility, allowing

it to go up and down now. Next, we will apply this during the liquid meal time window

of all the five cases.
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Chapter 3

Fitting the model

Five patients’ diets have been investigated ( 2 non-diabetic, one pre-diabetic and two

diabetics). All of the diet diaries that are currently available employ the model that we

proposed to fit the CGM data with isolated liquid meals.

For the fitting, we examined the tea time for each participant and found that it

may resemble an underdamped case of damped harmonic oscillation, in which the wave’s

amplitude lowers over time and reaches saturation after a predetermined amount of time.

We used data sets from the subjects’ tea time and used our model there while keeping

this in mind.

Our investigation revealed that our algorithm does a good job of capturing liquid

meals from the CGM data.

Data :

The daily glucose values that were measured over a 15-minute period are part of the CGM

data that we are using to construct our model. Additionally, we have a diet journal to

record when the peak meal was had and what a larger peak in the data means. Every

case has data for two weeks, and a diet diary includes all meals consumed by the patient,

not only liquid meals.
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Figure 3.1: Graph between Glucose (mg/dl) and Time (day) variation for 15 days of Diet
one (diabetic) data in DateTime format.

Procedure :

For a specific diet, we first loaded our CGM (Continuous Glucose Monitoring) data. You

can see in 3.1 how challenging it is to analyse after charting for all days. We began daily

analysis to search for patterns because it is practically difficult to analyse this way. For

instance, rather than looking at everything at once, we can better grasp the dynamical

behaviour of the single day plot as illustrated in figure 3.2

Figure 3.2: Plot of Glucose (mg/dl) vs time (15min gap) variation of diet two (diabetic)
data for all days including mean and median of them.
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((a)) Full day ((b)) Morning

Figure 3.3: Graph between Glucose (mg/dl) and Time (min) for July 17th 2021 from the
case two of diabetic data.

Now that we are just interested in one specific aspect of the diet—the liquid meal

time—we have realized that, according to most diet charts, this occurs in the morning

and typically consists of tea, milk, or coffee. If we take only one day from the diabetic

case i.e July 17th 2021 where the liquid meal have tea in the morning it will look like

figure 3.3. and we are going to fit that part only through our modelling procedure.

We discovered that it follows a specific harmonic oscillator, or under-damped case,

where the amplitude converges to a specific point, after reviewing the data that was

accessible day by day for all patients and using various non-linear modelling techniques.

The figure 3.4 illustrates how accurately glucose dynamics may be predicted for this

specific situation. However, keep in mind that it is diet-specific and depends on the

individual’s food intake.

We shall now proceed to actually applying our model to each diet possibility indi-

vidually. We will begin by outlining the procedure in non-diabetic cases before applying

it to all other scenarios. To make things more convenient, we use Matlab for model fitting

and interpolation. The model entails loading the data sets first, after which we carefully

analyse what meal was consumed when, and then we extract data points for setting up

the fit. The coming sections discusses step-by-step procedures from data visualisation and

applications, and at the conclusion of each case, a model with the estimated parameters

is shown with the data points and newly added ones.
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Figure 3.4: Plot of Glucose (Adjusted) vs Time (15 min) of diet two (diabetic). Data
points taken from morning time of diet were fitted with the model and it is observed that
most of the diets follows this approach reasonably well.

3.1 Non-Diabetic

First, we will apply our modelling methods to two situations of people who do not have

diabetes after that, pre-diabetic and diabetic.The non-diabetic cases are discussed as

follows :

3.1.1 Diet one (Non- Diabetic) :

We will first go over the data pre-processing and loading methods used:

• The data set containing glucose and time values for case one of non-diabetic CGM

provided will be loaded into the matlab workspace by first converting the time

column to the appropriate dateTime format, which is :

dtformat = ’yyyy/MM/dd HH:mm’

• Now that the data has been loaded into the matlab programme in ’table’ format,

we must first convert it to ’timetable’ format because we are working with time-

series data and need to access a certain window of time. The only information

that is necessary is Time and Glucose(mg/dl) values, hence we have also deleted

unnecessary columns that were provided for labelling and marking.

• The CGM data available for all diets is for two weeks and after evaluating the

first diet, we noticed that liquid meals alone were only consumed for 9 days in the

morning, between 7:00 and 9:00 am, and on July 15th from 9:00 to 11:00 am.
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• Therefore, we chose a time window from the schedule for all days from 7-9 am,

but for July 15 from 9-11 am, and then the glucose readings were retrieved. After

extracting the values, we plotted each one separately to determine whether or not

it followed our model. For instance, it appears as follows for August 13th in figure

3.5

Figure 3.5: Graph between Glucose(mg/dl) vs Time(min) of August 13th, 2021 from case
one of a non-diabetic subject.

When it comes to the fitting and modelling process, we are only interested in partic-

ular data points that will take the behaviour of the curve into account. And as part of

our procedure, we create a new array in the current library using the peak data values

and minima for a curve. And this will be the standard technique for all of the diets we

follow.The method we’ll employ is described in detail below:

• We first extract the data points before and after tea time, typically within a two-

hour window for each day, and store them in a separate Matlab timetable. We

next pick the maximum value and minimum value for a given day, and compute

an average. The updated adjusted values are then obtained by subtracting the

computed average value from the glucose measurements for that particular day.

• To ensure that the data points converges, for interpolation we will first take the

average of the adjusted values and then, at the very end, add the computed value

twice to the adjusted values to store in a new updated array.

• After plotting and visualizing the daily glucose data, we will analyse and determine

which day will fit our recommended model the best.

• Repeat the above procedure for each day to see which will produce the good results

and remove or add points according to that.
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After using the aforementioned procedure, we can now determine that the days that

produce the fittest results are 11/07/21 through 18/07/21.

Once more using Matlab to fit the model to the data we generated above with the

recommended model discussed in chapter two is:

G = a exp (−bt) cos (wt) + h (3.1)

Our goal will be to find the parameters a, b, w, and h which will best fit our data for

each day, and we will do this day by day. First, we load our created array of adjusted

glucose for fitting and after looking through optimised parameters for all days we got the

following result:

Date a b w h

11/07/21 38.53 0.014720 0.05885 -6.898

12/07/21 48.87 0.018780 0.05511 -16.460

13/07/21 33.96 0.010360 0.05873 -4.989

14/07/21 25.00 0.006660 0.05658 -2.077

15/07/21 19.93 0.001182 -0.04541 4.000

16/07/21 19.42 0.000558 0.05460 2.996

17/07/21 13.45 0.000210 -0.05760 2.000

18/07/21 36.04 0.020220 0.06337 -9.796
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Python is used for the statistical analysis of parameters, it is preferred that the

parameter values be loaded and turned into a pandas data frame before analysis. The

values for each parameter’s mean, standard deviation, range, high, low, and percentile

are as follows:

index a b w h

count 8.0 8.0 8.0 8.0

mean 29.40000 0.009086 0.030529 -3.903

std 11.894565 0.008204 0.050810 7.079028

min 13.45 0.00021 -0.0576 -16.46

25th

percentile

19.8025 0.00103 0.0295975 -7.6225

50th

percentile

29.48 0.00851 0.055845 -3.533

75th

percentile

36.6625 0.015735 0.05876 2.249

max 48.87 0.02022 0.06337 4.0

15



The correlation graph is plotted as a heatmap in the 3.10:

Figure 3.6: Heatmap of correlation between parameters for diet-one of a non-diabetic
patient.

We will now use a Box-plots to analyse the parameters , for this diet they are plotted

individually in figure 3.7 and combined in figure 3.8. Box-plots are used to gauge how

evenly dispersed a data set’s data are. It creates three quartiles out of the data set. The

minimum, maximum, median, first quartile, and third quartile of the data set are shown

in this graph. By creating box-plots for each data set, it is also helpful for comparing the

distribution of data across data sets. Maximum, minimum, median, and mean values are

indicated here. The green and orange lines are where the mean and median line is dotted

respectively.

16



((a)) Box-plot for ’a’ ((b)) Box-plot for ’b’

((c)) Box-plot for ’w’ ((d)) Box-plot for ’h’

Figure 3.7: Box-plots for all parameters of diet one (non-diabetic) patient.

Figure 3.8: Box-plots for all the parameters combined in one scale for comparison of diet
one (non-diabetic).
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We present the graph in figure 3.9 of actual data from the tea time and the plot

from estimated parameters on the same scale for all the selected dates after determining

the appropriate parameter values. This summarises our research and findings regarding

the liquid meal time for non-diabetic patient one.

Figure 3.9: A date-wise depiction of the diet dairy’s actual data points (marked with
blue) and interpolated points (marked red) overlaid with the black-fitted model after
applying our model to case one of non-diabetic patient.

18



3.1.2 Diet two (Non- Diabetic) :

In order to perform our analysis before loading the data set, we will once more go

through all the prior processes that were covered for the first patient instance. The

particular liquid meal time will be noted in the diet diary when the time series data has

been loaded as CGMND04.csv in which data of diet two of non-diabetic case is available.

In this case, the time ranges from 8 to 11 am in the morning, as shown in Listing 5.1

at the appendix page.

We got fit for July 21, 23, 25, 26, 27, 28, 29, and 30 throughout the course of

the two weeks from July 19 to July 21. Additionally, the table below lists the estimated

parameters by modelling:

Date a b w h

21/07/21 -20.0 0.007968 -0.131 0.04872

23/07/21 -1.388 0.0179 0.3639 0.0843

25/07/21 1.483 0.02152 0.0337 0.1277

26/07/21 1.713 0.01779 -1.085 0.102499

27/07/21 2.0 0.01329 -0.2785 0.1008

28/07/21 2.569 0.02122 -0.4837 0.0895

29/07/21 3.0 0.009693 0.3029 0.07043

30/07/21 2.37 0.01327 -4.214 -0.07268

We will acquire statistical insights into our set of parameters after loading them into

a Pandas data frame. First, the minimum, maximum, and percentile are provided in the

Table. In the table below count indicates the total number of values for each parameter,

which is always eight.As usual, min and max are denoted.

19



index a b h w

count 8.0 8.0 8.0 8.0

mean -1.031625 0.015331 -0.6865 0.06891

std 7.7806 0.005072 1.498531 0.061783

min -20.0 0.007968 -4.214 -0.07268

25th

percentile

0.7652500 0.012375750 -0.63402500 0.0650025

50th

percentile

1.8565 0.01554 -0.2047500 0.0869

75th

percentile

2.41975 0.01873 0.101 0.10122

max 3.0 0.02152 0.3639 0.1277

The correlation graph is plotted as a heatmap in the 3.10:

Figure 3.10: Heatmap of correlation between parameters for case two of a non-diabetic
patient.
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((a)) Box-plot for ’a’ ((b)) Box-plot for ’b’

((c)) Box-plot for ’w’ ((d)) Box-plot for ’h’

Figure 3.11: Box-plots for all parameters for case two of non-diabetic patient.

Figure 3.12: Box-plots for all the parameters of case two (non-diabetic) combined in one
scale for comparison.
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We will now use a Box-plots to analyse the parameters , for this diet they are plotted

individually in figure 3.7 and combined in figure 3.8.

Finally, we will plot in figure 3.13 the continuous glucose values with the actual

data points to see how well it fits a particular time range.

Figure 3.13: A date-wise depiction of the diet dairy’s actual data points (marked with
blue) and interpolated points (marked red) overlaid with the black-fitted model for case
two (non-diabetic).From the above figure we can see that our proposed model generalizes
well as most of the plot in black gives rsquare values above 90 percent.
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3.2 Pre-Diabetic

3.2.1 Diet three (Pre-Diabetic) :

Here, we analyse the data for the pre-diabetic patient with the same approach. Its

been also performed for eight days from the 15 days available: Additionally, the table

below lists the estimated parameters by modelling:

Date a b h w

6/08/21 -9.000 0.008632 2.0000 0.05903

11/08/21 -25.760 0.016380 5.1450 -0.06430

12/08/21 5.386 0.014940 -1.1050 0.06220

13/08/21 25.950 0.008908 -2.8470 0.05785

14/08/21 -30.090 0.007368 0.3336 0.04970

15/08/21 29.670 0.014780 -7.2970 0.06126

16/08/21 14.670 0.003637 2.0000 0.03995

17/08/21 31.000 0.007554 -4.6880 0.04710

We will acquire statistical insights into our set of parameters after loading them into

a pandas data frame. First, the minimum, maximum, and percentile are provided in

the Table. Here count indicates the total number of values for each parameter, which is

always eight. As usual, min and max are denoted.

23



index a b h w

count 8.0 8.0 8.0 8.0

mean 5.228250 0.010275 -0.807300 0.039099

std 24.466415 0.004533 4.034112 0.042497

min -30.090000 0.003637 -7.297000 -0.064300

25th

percentile

-13.190000 0.007508 -3.307250 0.045313

50th

percentile

10.028000 0.008770 -0.385700 0.053775

75th

percentile

26.880000 0.014820 2.000000 0.059588

max 31.000000 0.016380 5.145000 0.062200

The correlation graph is plotted as a heatmap in the 3.14:

Figure 3.14: Heatmap of correlation between parameters for case one of a pre-diabetic
patient.
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((a)) Box-plot for ’a’ ((b)) Box-plot for ’b’

((c)) Box-plot for ’w’ ((d)) Box-plot for ’h’

Figure 3.15: Box-plots for all parameters of case one (pre-diabetic) patient.

Figure 3.16: Box-plots for all the parameters combined in one scale for comparison of pre
diabetic case one.
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We will now use a Box-plots to analyse the parameters , for this diet they are plotted

individually in figure 3.15 and combined in figure 3.16.

Finally, we will plot in figure 3.17 the continuous glucose values with the actual

data points to see how well it fits a particular time range.

Figure 3.17: A date-wise depiction of the diet dairy’s actual data points (marked with
blue) and interpolated points (marked red) overlaid with the black-fitted model applied
to case one of pre-diabetic patient. From the above figure we can see that our proposed
model generalizes well as most of the plot in black gives rsquare values above 90 percent.
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3.3 Diabetic :

3.3.1 Diet four (Diabetic) :

Now, accounting for diabetes patients’ diet and glucose data. We have data available

from 15 July 21 to 29 July 21; we selected the eight best matches for the dates listed in

the table below. Because not all dates include a liquid meal alone in the diet, we only

included those dates with liquid alone and not with breakfast, hence the number of days

we experience fits is lower than what was specified. Using the same approach again, we

estimate the following parameters:

Date a b h w

17/07/21 10.000 0.003518 -4.4620 0.04662

18/07/21 8.873 0.004573 -2.4920 0.04079

19/07/21 2.500 0.005405 0.1031 0.06826

22/07/21 7.476 0.022060 5.0000 0.03768

23/07/21 7.244 0.007920 0.9821 0.04455

25/07/21 11.480 0.013560 2.0000 0.04379

27/07/21 1.354 0.000573 0.3441 0.05172

28/07/21 6.000 0.006439 0.6854 0.05055

The following statistical insights into our set of parameters are :
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index a b h w

count 8.0 8.0 8.0 8.0

mean 6.865875 0.008006 0.270088 0.047995

std 3.502000 0.006811 2.830933 0.009418

min 1.354000 0.000573 -4.462000 0.037680

25th

percentile

5.125000 0.004309 -0.545675 0.043040

50th

percentile

7.360000 0.005922 0.514750 0.045585

75th

percentile

9.154750 0.009330 1.236575 0.050842

max 11.480000 0.022060 5.000000 0.068260

The correlation graph is plotted as a heatmap in the 3.10:

Figure 3.18: Heatmap of correlation between parameters for diet-one of a diabetic patient.

We will now use a Box-plots to analyse the parameters , for this diet they are plotted

individually in figure 3.7 and combined in figure 3.8.
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((a)) Box-plot for ’a’ ((b)) Box-plot for ’b’

((c)) Box-plot for ’w’ ((d)) Box-plot for ’h’

Figure 3.19: Box-plots for all parameters of case one in a diabetic patient data.

Figure 3.20: Box-plots for all the parameters of case one in diabetic patient data combined
at one scale for comparison.
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Finally, we will plot in figure 3.13 the continuous glucose values with the actual

data points to see how well it fits a particular time range.

Figure 3.21: A date-wise depiction of the diet dairy’s actual data points (marked with
blue) and interpolated points (marked red) overlaid with the black-fitted model for case
one (diabetic). From the above figure we can see that our proposed model generalizes
well as most of the plot in black gives rsquare values above 90 percent.
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3.3.2 Diet five (Diabetic) :

Here we analyse last diabetic data and with the same approach again estimated

parameters are found as follows :

Date a b h w

15/07/21 8.759 0.026580 -5.3530 0.08188

16/07/21 -4.952 0.020030 0.0288 0.08146

17/07/21 9.000 0.017000 -1.5600 0.06770

18/07/21 7.968 0.011990 -8.3110 -0.05440

21/07/21 6.000 0.003025 -2.9750 0.04994

22/07/21 2.664 0.023150 -0.6066 0.09097

23/07/21 6.950 0.025580 -2.4050 0.06288

28/07/21 4.756 0.014600 -1.0000 0.06952

The following statistical insights into our set of parameters are :

index a b h w

count 8.0 8.0 8.0 8.0

mean 5.143125 0.017744 -2.772725 0.056244

std 4.600256 0.007875 2.794391 0.046495

min -4.952000 0.003025 -8.311000 -0.054400

25th

percentile

4.233000 0.013947 -3.569500 0.059645

50th

percentile

6.475000 0.018515 -1.982500 0.068610

75th

percentile

8.165750 0.023758 -0.901650 0.081565

max 9.000000 0.026580 0.028800 0.090970
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Figure 3.22: Heatmap of correlation between parameters for Diet two of a diabetic patient.

The correlation graph is plotted as a heatmap in the 3.10:

We will now use a Box-plots to analyse the parameters , for this diet they are plotted

individually in figure 3.7 and combined in figure 3.8.

Finally, we will plot in figure 3.13 the continuous glucose values with the actual

data points to see how well it fits a particular time range.
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((a)) Box-plot for ’a’ ((b)) Box-plot for ’b’

((c)) Box-plot for ’w’ ((d)) Box-plot for ’h’

Figure 3.23: Box-plots for all parameters for diet one of a Diabetic patient.

Figure 3.24: Box-plots for all the for diet two (diabetic) where parameters are combined
in one scale for comparison.
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Figure 3.25: A date-wise depiction of the diet dairy’s actual data points (marked with
blue) and interpolated points (marked red) overlaid with the black-fitted model for diet
two of diabetic patient.From the above figure we can see that our proposed model gener-
alizes well as most of the plot in black gives rsquare values above 90 percent.
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Chapter 4

Further Discussions and Conclusion

Our strategy focused on the spikes in glucose levels caused by liquid meals that were

shown in the CGM data; however, we had previously examined other sparse modelling

strategies for the spikes in glucose levels that were seen throughout the day. In the

end, we picked the harmonic oscillator model and added an extra intercept term. We

explored PySINDy library when perusing the majority of the non-linear sparse models,

which was based on a study by [6] that takes time series data as the inputs for all of

the states and then apply derivative to it for extracting governing equations from data.

The powerful and ground-breaking technique known as SINDy (Sparse Identification of

Non-Linear Dynamics) is based on sparse regression and compressed sensing [6]. SINDy

is quite capable of identifying dynamics when measurements of every state are provided,

although this is not always the case. It is challenging to find the governing equations

in our situation of merely glucose, for instance. The identification of latent or partiable

variables is always evolving, and if possible, it can be further applied in near future to

the CGM data for superior results.

Other sparse approaches were investigated, with the ISTA algorithm serving as the

primary algorithm [7]. It is a sophisticated iterative method that produces sparse vari-

ables than gradient descent. Additionally, it is a superior option for the optimization

issue.
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Conclusion

As we draw to a close, we have investigated a number of methodologies, both of whose

success and failure might be used to enhance the development of CGM data models

in the near future. The same kind of modelling can be investigated for other glucose

peaks. We have approximated this case to the liquid meal time in the morning because

the underdamped harmonic oscillator while asymptote to particular point with certain

oscialltions, the glucose data continues to spike with the effect of more food. However,

if we expand the same approaach throughout the day it will fail so other non-linear

techniques can be combined with this study to explore further.
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Chapter 5

Appendix

5.1 MATLAB code for tea time extraction, mod-

elling and plotting

Code 5.1: Code applied to case one of a non-diabetic data set named

nd04teatimeextraction.m

1 CGMND04tb = table2timetable(CGMND04);

2 CGMND04tb = removevars(CGMND04tb , ’ID’);

3 CGMND04tb = removevars(CGMND04tb , ’RecordType ’);

4 CGMND04tb.Properties.VariableNames {1} = ’Glucose ’;

5 %ndtwo22 = CGMND04tb(timerange ( ’2021-07-21 11:00’, ’2021-07-21

14:11 ’), :);

6 %plot(ndtwo22.Time , ndtwo22.Glucose)

7 %extracting tea time days from data

8 ndtwo21 = CGMND04tb(timerange(’2021 -07 -21 10:50’, ’2021 -07 -21

13:00’), :);

9 ndtwo22 = CGMND04tb(timerange(’2021 -07 -22 10:50’, ’2021 -07 -22

13:00’), :);

10 ndtwo23 = CGMND04tb(timerange(’2021 -07 -23 08:00’, ’2021 -07 -23

10:00’), :);

11 ndtwo24 = CGMND04tb(timerange(’2021 -07 -24 08:00’, ’2021 -07 -24

10:00’), :);

12 ndtwo25 = CGMND04tb(timerange(’2021 -07 -25 10:00’, ’2021 -07 -25

11:30’), :);

13 ndtwo26 = CGMND04tb(timerange(’2021 -07 -26 08:00’, ’2021 -07 -26

10:00’), :);

14 ndtwo27 = CGMND04tb(timerange(’2021 -07 -27 08:00’, ’2021 -07 -27

10:00’), :);
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15 ndtwo28 = CGMND04tb(timerange(’2021 -07 -28 08:00’, ’2021 -07 -28

10:00’), :);

16 ndtwo29 = CGMND04tb(timerange(’2021 -07 -29 08:00’, ’2021 -07 -29

10:00’), :);

17 ndtwo30 = CGMND04tb(timerange(’2021 -07 -30 08:00’, ’2021 -07 -30

09:30’), :);

18 ndtwo01 = CGMND04tb(timerange(’2021 -08 -01 08:00’, ’2021 -08 -01

10:00’), :);

19 ndtwo02 = CGMND04tb(timerange(’2021 -08 -02 09:00’, ’2021 -08 -02

11:00’), :);

20 %plotallglucose values

21 % plot(ndtwo21.Glucose)

22 % hold on

23 % plot(ndtwo22.Glucose)

24 % plot(ndtwo23.Glucose)

25 % plot(ndtwo24.Glucose)

26 % plot(ndtwo25.Glucose)

27 % plot(dtwo26.Glucose)

28 % plot(ndtwo27.Glucose)

29 % plot(ndtwo28.Glucose)

30 % plot(ndtwo29.Glucose)

31 % plot(ndtwo30.Glucose)

32 % plot(ndtwo01.Glucose)

33 % plot(ndtwo02.Glucose)

34 % plot(ndtwo03.Glucose)

35 %plot(ndtwo22.Time , ndtwo22.Glucose)

36 % hold on

37 % plot(ndtwo22.Time , ndtwo22.Glucose)

38 % plot(ndtwo22.Time , ndtwo22.Glucose)

39 % plot(ndtwo22.Time , ndtwo22.Glucose)

40 % plot(ndtwo19.Time , ndtwo19.Glucose)

41 % plont(dtwo20.Time n, dtwo20.Glucose)

42 % plot(ndtwo22.Time , ndtwo22.Glucose)

43 % plot(ndtwo22.Time , ndtwo22.Glucose)

44 % plot(ndtwo23.Time , ndtwo23.Glucose)

45 % plot(ndtwo24.Time , ndtwo24.Glucose)

46 % plot(ndtwo25.Time , ndtwo25.Glucose)

47 % plot(ndtwo26.Time , ndtwo26.Glucose)

48 % plot(ndtwo27.Time , ndtwo27.Glucose)

49 % plot(ndtwo22.Time , ndtwo22.Glucose)
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50 n4h21 = max(ndtwo21.Glucose);

51 n4l21 = min(ndtwo21.Glucose);

52 m4_21 = (n4h21+n4l21)/2;

53 ndtwo21v = ndtwo21.Glucose - m4_21;

54 ndtwo21v = [ndtwo21v (4:end)];

55 ndtwo21v = [ndtwo21v ’ ,mean(ndtwo21v) , mean(ndtwo21v) , mean(

ndtwo21v)];

56 nt21 = 0:15:( length(ndtwo21v) -1)*15;

57 %plot(ndtwo21v)

58 n4h23 = max(ndtwo23.Glucose);

59 n4l23 = min(ndtwo23.Glucose);

60 m4_23 = (n4h23+n4l23)/2;

61 ndtwo23v = ndtwo23.Glucose - m4_23;

62 ndtwo23v = [ndtwo23v (4:end)];

63 ndtwo23v = [ndtwo23v ’ ,mean(ndtwo23v) , mean(ndtwo23v)];

64 nt23 = 0:15:( length(ndtwo23v) -1)*15;

65 %plot(ndtwo23v)

66 n4h25 = max(ndtwo25.Glucose);

67 n4l25 = min(ndtwo25.Glucose);

68 m4_25 = (n4h25+n4l25)/2;

69 ndtwo25v = ndtwo25.Glucose - m4_25;

70 ndtwo25v = [ndtwo25v (3:end)];

71 ndtwo25v = [ndtwo25v ’ ,mean(ndtwo25v)];

72 nt25 = 0:15:( length(ndtwo25v) -1)*15;

73 %plot(ndtwo25v)

74 n4h26 = max(ndtwo26.Glucose);

75 n4l26 = min(ndtwo26.Glucose);

76 m4_26 = (n4h26+n4l26)/2;

77 ndtwo26v = ndtwo26.Glucose - m4_26;

78 ndtwo26v = [ndtwo26v (5:end -1)];

79 ndtwo26v = [ndtwo26v ’ ,mean(ndtwo26v) , mean(ndtwo26v)];

80 nt26 = 0:15:( length(ndtwo26v) -1)*15;

81 %plot(ndtwo26v)

82 n4h27 = max(ndtwo27.Glucose);

83 n4l27 = min(ndtwo27.Glucose);

84 m4_27 = (n4h27+n4l27)/2;

85 ndtwo27v = ndtwo27.Glucose - m4_27;

86 ndtwo27v = [ndtwo27v (3:end)];

87 ndtwo27v = [ndtwo27v ’ ,mean(ndtwo27v) , mean(ndtwo27v)];

88 nt27 = 0:15:( length(ndtwo27v) -1)*15;
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89 %plot(ndtwo27v)

90 n4h28 = max(ndtwo28.Glucose);

91 n4l28 = min(ndtwo28.Glucose);

92 m4_28 = (n4h28+n4l28)/2;

93 ndtwo28v = ndtwo28.Glucose - m4_28;

94 ndtwo28v = [ndtwo28v (2:6) ];

95 ndtwo28v = [ndtwo28v ’ ,mean(ndtwo28v) , mean(ndtwo28v)];

96 nt28 = 0:15:( length(ndtwo28v) -1)*15;

97 %plot(ndtwo28v)

98 n4h29 = max(ndtwo29.Glucose);

99 n4l29 = min(ndtwo29.Glucose);

100 m4_29 = (n4h29+n4l29)/2;

101 ndtwo29v = ndtwo29.Glucose - m4_29;

102 ndtwo29v = [ndtwo29v (1:6) ];

103 ndtwo29v = [ndtwo29v ’ ,mean(ndtwo29v) , mean(ndtwo29v)];

104 nt29 = 0:15:( length(ndtwo29v) -1)*15;

105 %plot(ndtwo29v)

106 n4h30 = max(ndtwo30.Glucose);

107 n4l30 = min(ndtwo30.Glucose);

108 m4_30 = (n4h30+n4l30)/2;

109 ndtwo30v = ndtwo30.Glucose - m4_30;

110 ndtwo30v = [ndtwo30v (2:5) ];

111 ndtwo30v = [ndtwo30v ’ ,mean(ndtwo30v) , mean(ndtwo30v)];

112 nt30 = 0:15:( length(ndtwo30v) -1)*15;

113 %plot(ndtwo30v)

114 %plot after curve fitting

115 %% july21

116 a = -20; %(fixed at bound)

117 b = 0.007968; %( -0.003895 , 0.01983)

118 h = -0.131; %(-6.02, 5.758)

119 w = 0.04872; %(0.03692 , 0.06052)

120 nt21_cf = linspace(1,nt21(end));

121 y15 = a*exp(-b*nt21_cf).*cos(w*nt21_cf)+h;

122 subplot (2,4,1)

123 plot(nt21 (1:end -2) , ndtwo21v (1:end -2) , ’-o’, ’Color’,’blue’)

124 hold on

125 plot(nt21(end -2: end), ndtwo21v(end -2: end) , ’-o’ , ’Color’, ’red’

)

126 plot(nt21_cf , y15 , ’Color’,’black’)

127 xticks (0:15:( length(nt21) - 1)*15)

40



128 xticklabels ({’11:36 am’ ’11:51 am’ ’12:06 pm’ ’12:21 pm’ ’12:36 pm’ ’

12:51pm’ ’13:06 pm’ ’13:21 pm’ ’13:36 pm’})

129 hold off

130 %legend , label and title

131 ylabel(’Glucose(Adjusted)’)

132 xlabel(’Time’)

133 legend(’Actual data’,’Extra points ’, ’Fitted model’)

134 title(’21/07/21 ’)

135 grid on

136 %% july23

137 a = -1.388 ; % (-2.003, -0.7727)

138 b = 0.0179 ; % (0.000661 , 0.03514)

139 h = 0.3639 ; % (0.1207 , 0.6071)

140 w = 0.0843 ; % (0.07046 , 0.09813)

141 nt23_cf = linspace(1,nt23(end));

142 n4y23 = a*exp(-b*nt23_cf).*cos(w*nt23_cf)+h;

143 subplot (2,4,2)

144 plot(nt23 (1:end -1) , ndtwo23v (1:end -1) , ’-o’, ’Color’,’blue’)

145 hold on

146 plot(nt23(end -1: end), ndtwo23v(end -1: end) , ’-o’ , ’Color’, ’red’

)

147 plot(nt23_cf , n4y23 , ’Color’,’black’)

148 xticks (0:15:( length(nt23) - 1)*15)

149 xticklabels ({’8:51am’ ’9:06am’ ’9:21am’ ’9:36am’ ’9:51am’ ’10:06

am’ ’10:21am’})

150 hold off

151 %legend , label and title

152 ylabel(’Glucose(Adjusted)’)

153 xlabel(’Time’)

154 legend(’Actual data’,’Extra points ’, ’Fitted model’)

155 title(’23/07/21 ’)

156 grid on

157 %% july25

158 a = 1.483 ; % (-1.549, 4.515)

159 b = 0.02152 ; % ( -0.09361 , 0.1366)

160 h = 0.0337 ; %(-1.361, 1.428)

161 w = 0.1277 ;%(0.04161 , 0.2138)

162 nt25_cf = linspace(1,nt25(end));

163 n4y25 = a*exp(-b*nt25_cf).*cos(w*nt25_cf)+h;

164 subplot (2,4,3)
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165 plot(nt25 (1: end) , ndtwo25v (1: end) , ’-o’, ’Color’,’blue’)

166 hold on

167 plot(nt25(end:end), ndtwo25v(end:end) , ’-o’ , ’Color’, ’red’)

168 plot(nt25_cf , n4y25 , ’Color’,’black’)

169 xticks (0:15:( length(nt25) - 1)*15)

170 xticklabels ({’10:36 am’ ’10:51 am’ ’11:06 am’ ’11:21 am’ ’11:36 am’ ’

12:51pm’ ’13:06 pm’ ’13:21 pm’ ’13:36 pm’})

171 hold off

172 %legend , label and title

173 ylabel(’Glucose(Adjusted)’)

174 xlabel(’Time’)

175 legend(’Actual data’,’Extra points ’, ’Fitted model’)

176 title(’25/07/21 ’)

177 grid on

178 %% july26

179 a = 1.713;% (-9.215, 12.64)

180 b = 0.01779;% ( -0.2669 , 0.2926)

181 h = -1.085;% (-6.191, 4.02)

182 w = 0.102499 ;% ( -0.1694 , 0.3743

183 nt26_cf = linspace(1,nt26(end));

184 n4y26 = a*exp(-b*nt26_cf).*cos(w*nt26_cf)+h;

185 subplot (2,4,4)

186 plot(nt26 (1:end -1) , ndtwo26v (1:end -1) , ’-o’, ’Color’,’blue’)

187 hold on

188 plot(nt26(end -1: end), ndtwo26v(end -1: end) , ’-o’ , ’Color’, ’red’

)

189 plot(nt26_cf , n4y26 , ’Color’,’black’)

190 xticks (0:15:( length(nt26) - 1)*15)

191 xticklabels ({’9:06am’ ’9:21am’ ’9:36am’ ’9:51am’ ’10:06 am’ ’10:21

am’})

192 hold off

193 %legend , label and title

194 ylabel(’Glucose(Adjusted)’)

195 xlabel(’Time’)

196 legend(’Actual data’,’Extra points ’, ’Fitted model’)

197 title(’26/07/21 ’)

198 grid on

199 %% july27

200 a = 2 ;% (fixed at bound)

201 b = 0.01329 ;% ( -0.005131 , 0.03172)
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202 h = -0.2785 ;% ( -0.8508 , 0.2938)

203 w = 0.1008 ;% (0.08363 , 0.1179)

204 nt27_cf = linspace(1,nt27(end));

205 n4y27 = a*exp(-b*nt27_cf).*cos(w*nt27_cf)+h;

206 subplot (2,4,5)

207 plot(nt27 (1:end -1) , ndtwo27v (1:end -1) , ’-o’, ’Color’,’blue’)

208 hold on

209 plot(nt27(end -1: end), ndtwo27v(end -1: end) , ’-o’ , ’Color’, ’red’

)

210 plot(nt27_cf , n4y27 , ’Color’,’black’)

211 xticks (0:15:( length(nt27) - 1)*15)

212 xticklabels ({’8:36am’ ’8:51am’ ’9:06am’ ’9:21am’ ’9:36am’ ’9:51am

’ ’10:06am’ ’10:21am’})

213 hold off

214 %legend , label and title

215 ylabel(’Glucose(Adjusted)’)

216 xlabel(’Time’)

217 legend(’Actual data’,’Extra points ’, ’Fitted model’)

218 title(’27/07/21 ’)

219 grid on

220 %% july28

221 a = 2.569;% (1.581 , 3.557)

222 b = 0.02122;% (0.003871 , 0.03856)

223 h = -0.4837;% ( -0.8717 , -0.09569)

224 w = 0.0895 ;% (0.07537 , 0.1036)

225 nt28_cf = linspace(1,nt28(end));

226 n4y28 = a*exp(-b*nt28_cf).*cos(w*nt28_cf)+h;

227 subplot (2,4,6)

228 plot(nt28 (1:end -1) , ndtwo28v (1:end -1) , ’-o’, ’Color’,’blue’)

229 hold on

230 plot(nt28(end -1: end), ndtwo28v(end -1: end) , ’-o’ , ’Color’, ’red’

)

231 plot(nt28_cf , n4y28 , ’Color’,’black’)

232 xticks (0:15:( length(nt28) - 1)*15)

233 xticklabels ({’8:21am’ ’8:36am’ ’8:51am’ ’9:06am’ ’9:21am’ ’9:36am

’ ’9:51am’ ’10:06am’ ’10:21am’})

234 hold off

235 %legend , label and title

236 ylabel(’Glucose(Adjusted)’)

237 xlabel(’Time’)
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238 legend(’Actual data’,’Extra points ’, ’Fitted model’)

239 title(’28/07/21 ’)

240 grid on

241 %% july29

242 a = 3 ;% (fixed at bound)

243 b = 0.009693 ;% ( -0.001457 , 0.02084)

244 h = 0.3029 ;% ( -0.3766 , 0.9824)

245 w = 0.07043 ;% (0.0596 , 0.08126)

246 nt29_cf = linspace(1,nt29(end));

247 n4y29 = a*exp(-b*nt29_cf).*cos(w*nt29_cf)+h;

248 subplot (2,4,7)

249 plot(nt29 (1:end -1) , ndtwo29v (1:end -1) , ’-o’, ’Color’,’blue’)

250 hold on

251 plot(nt29(end -1: end), ndtwo29v(end -1: end) , ’-o’ , ’Color’, ’red’

)

252 plot(nt29_cf , n4y29 , ’Color’,’black’)

253 xticks (0:15:( length(nt29) - 1)*15)

254 xticklabels ({’8:06am’ ’8:21am’ ’8:36am’ ’8:51am’ ’9:06am’ ’9:21am

’ ’9:36am’ ’9:51am’ ’10:06am’ ’10:21am’})

255 hold off

256 %legend , label and title

257 ylabel(’Glucose(Adjusted)’)

258 xlabel(’Time’)

259 legend(’Actual data’,’Extra points ’, ’Fitted model’)

260 title(’29/07/21 ’)

261 grid on

262 %% july30

263 a = 2.37 ;% ( -0.6159 , 5.357)

264 b = 0.01327 ;% ( -0.0357 , 0.06224)

265 h = -4.214 ;% (-5.592, -2.836)

266 w = -0.07268 ;% ( -0.1061 , -0.03923)

267 nt30_cf = linspace(1,nt30(end));

268 n4y30 = a*exp(-b*nt30_cf).*cos(w*nt30_cf)+h;

269 subplot (2,4,8)

270 plot(nt30 (1:end -1) , ndtwo30v (1:end -1) , ’-o’, ’Color’,’blue’)

271 hold on

272 plot(nt30(end -1: end), ndtwo30v(end -1: end) , ’-o’ , ’Color’, ’red’

)

273 plot(nt30_cf , n4y30 , ’Color’,’black’)

274 xticks (0:15:( length(nt30) - 1)*15)
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275 xticklabels ({’8:21am’ ’8:36am’ ’8:51am’ ’9:06am’ ’9:21am’ ’9:36am

’ ’9:51am’ ’10:06am’ ’10:21am’})

276 hold off

277 %legend , label and title

278 ylabel(’Glucose(Adjusted)’)

279 xlabel(’Time’)

280 legend(’Actual data’,’Extra points ’, ’Fitted model’)

281 title(’30/07/21 ’)

282 grid on

5.2 Python code for parameters visualisation and anal-

ysis for diet one of diabetic case.

Code 5.2: Python code applied to case one (diabetic) data.

1 import numpy as np

2 import pandas as pd

3 #import pysindy as ps

4 import matplotlib.pyplot as plt

5 import seaborn as sns

6 %matplotlib inline

7 from scipy.optimize import curve_fit

8

9 import plotly.express as px

10 from scipy.integrate import odeint

11 from scipy.integrate import solve_ivp

12 from sklearn.metrics import mean_squared_error

13 import warnings

14 from scipy.integrate.odepack import ODEintWarning

15 warnings.filterwarnings("ignore", category=ODEintWarning)

16 %config Completer.use_jedi=False

17

18 #Reading data and plotting

19 df = pd.read_csv("Saroj.txt" , sep=’\t’, header=1, parse_dates= [

"Time"], usecols =[1 ,3])

20 df.columns = [’Time’, ’Glucose ’]

21 df

22 sns.set(rc={’figure.figsize ’:(15 ,10)})

23 q = sns.lineplot(data = df , x = "Time" , y = "Glucose")
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24 q.set_xlabel("Time", fontsize = 20)

25 q.set_ylabel("Glucose", fontsize = 20)

26

27

28

29 #creating a pandas dataframe for parameters and converting into

csv.

30

31 data_nd04 = {

32 ’a’ : [ -20 , -1.388 ,1.483 ,1.713 ,2 ,2.569 ,3 ,2.37] ,

33 ’b’ :

[0.007968 ,0.0179 ,0.02152 ,0.01779 ,0.01329 ,0.02122 ,0.009693 ,0.01327] ,

34 ’h’ :

[ -0.131 ,0.3639 ,0.0337 , -1.085 , -0.2785 , -0.4837 ,0.3029 , -4.214] ,

35 ’w’ :

[0.04872 ,0.0843 ,0.1277 ,0.102499 ,0.1008 ,0.0895 ,0.07043 , -0.07268]

36

37 }

38 # Create the pandas DataFrame with column name is provided

explicitly

39 parameters_nd04 = pd.DataFrame(data_nd04)

40 parameters_nd04.to_csv(’pd_nd04.csv’)

41

42 parameters_nd04.describe ()

43

44 #create a correlation matrix

45 cor = parameters_nd04.corr() #calculating correlation

46 sns.heatmap(cor , xticklabels = cor.columns , yticklabels = cor.

columns , annot = True)

47

48 #boxplots

49 plt.boxplot(parameters_nd04.a , meanline= True , showmeans = True

, labels = ’a’)

50

51 plt.boxplot(parameters_nd04.b , meanline= True , showmeans = True

, labels = ’b’)

52
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53 plt.boxplot(parameters_nd04.w ,meanline= True , showmeans = True

, labels = ’w’)

54

55 plt.boxplot(parameters_nd04.h , meanline= True , showmeans = True

, labels = ’h’)

56

57 fig = plt.figure(figsize =(10, 7))

58 data = [parameters_nd04.a , parameters_nd04.b , parameters_nd04.w

, parameters_nd04.h]

59

60 # First we create an axes instance

61 ax = fig.add_axes ([0, 0, 1, 1])

62 # Combining all box -plot

63 bp = ax.boxplot(data , labels = (’a’, ’b’, ’w’ , ’h’))

64 # show plot

65 plt.show()
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