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Abstract 

Marine biodiversity changes through time and space. Identifying the drivers of such change is 

becoming especially important in the context of recent anthropogenic biodiversity loss. 

Shallow marine molluscan assemblages have long been recognized as good indicators of 

overall marine biodiversity and the health of the ecosystem at a regional scale. Their long 

geologic span and abundance in the fossil record also make useful diversity indicators of past 

ecosystems. Their complex ecosystem and durable shells enable their fossil record to be a 

reliable indicator of ecological interactions including predation and competition. A 

comparison of live assemblage (LA) and time-averaged death assemblage (DA) also provides 

important ecological insight into the changes in the molluscan community through time. 

Before one can use these signals for inferring spatio-temporal patterns from molluscan fossil 

assemblage, however, it is important to recognize that various taphonomic and 

methodological artifacts can potentially affect the accurate ecological signal. In this thesis, I 

tried to assess the influence of taphonomy and methodological decisions (such as sampling 

protocol, analytical method, and data categorization) on ecological inferences using time-

averaged molluscan death assemblages. Using statistical modeling, I also proposed ways to 

recognize such influences and account for them. 

 The first research problem explored how the degree of spatial live-dead similarity of 

an assemblage (spatial fidelity) is affected by the degree of post-mortem transportation in a 

tropical marine setting with a high sedimentation rate and high frequency of storms. Shells 

can be transported both within and out-of-habitat depending on the energy conditions of the 

surrounding habitats. Largescale mixing is more common in siliciclastic settings with a 

narrow shelf, high sedimentation rate, and those that are frequented by episodically high-

energy events. By studying the live-dead (L-D) fidelity and modeling size-frequency 

distribution of the molluscan fauna from Chandipur-on-sea on the east coast of India, I 

attempted to evaluate the contribution of ‘‘out-of-habitat’’ versus ‘‘within-habitat’’ mixing in 

developing the molluscan death assemblages. The tropical cyclones originating above 15°N 

cause a high degree of lateral transport explained by the high compositional similarity of 

species within this latitudinal extent. The results indicate that those death assemblages are not 

likely to be a product of within-habitat mixing and they probably received considerable input 

via regional transport, facilitated by frequent tropical cyclones.  

The second research problem of the thesis explored how the spatial diversity of an 

assemblage is affected by the scale of the study and the choice of diversity index. Beta 

diversity or between-habitat diversity can be driven by various factors such as environmental, 
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historical processes, and biotic interactions. The factors determining variability in 

composition at a small spatial scale are different from the determinant processes at larger 

scales. I tried to assess how the spatial scale of sampling can influence the nature of beta 

diversity of molluscs at a regional scale using LA and DA from the west coast of India. I 

developed a statistical approach to test if the observed variation in beta diversity is explained 

by the unequal spatial scale (grain size) of sampling. A realistic null model was developed by 

generating a beta diversity pattern with progressively increasing spatial scale using the 

observed data of DA and LA over 14 latitude bins. Our observed beta diversity pattern is 

significantly different from the null model pattern, implying that the unequal grid size of 

sampling does not explain the spatial variation in beta diversity in this region. Our results also 

demonstrate that the choice of the beta diversity index and the design of the null model can 

significantly influence the inference of spatial patterns of diversity. By choosing a 

combination of the robust models and indices (thereby reducing the effect of methodological 

artifacts), we could identify the responsible oceanographic variables shaping the regional beta 

diversity along the west coast of India. This study provides an approach for evaluating the 

effect of variable sampling scales on comparing regional beta diversity. It emphasizes the 

importance of understanding the role of sampling and spatial standardization while inferring 

about processes driving diversity changes. 

The third research problem of the thesis evaluated how the sampling intensity and 

evenness of an assemblage can alter ecological inferences regarding biotic interactions such 

as predation. Predation is an important evolutionary driver and predation estimates play an 

important role in understanding its role in shaping the molluscan ecosystem through time. 

The reliability of the inferences is dependent on the assumption that it is not influenced by 

other processes or methodological artifacts. Using a resampling technique, I evaluated the 

effect of evenness and sampling intensity of a community on the inferred predation estimates 

in molluscs. Theoretically simulated model communities representing different levels of 

evenness, predation intensity, and predatory behavior (selective, non-selective) were 

resampled without replacement. The variation in the inferred predation intensity and the 

number of prey species was noted. The results demonstrate that communities with highly 

selective predation are sensitive to evenness and sampling intensity. For non-selective 

predation, sampling intensity heavily influences communities with low evenness and low 

predation intensity. I also proposed a standardization protocol and validated it using predation 

data from four Plio-Pleistocene molluscan assemblages. Our approach highlights the 

importance of these methodological choices in influencing the predation estimates of fossil 

and recent assemblages. 
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The findings reported in my thesis highlight the influence of factors such as 

taphonomy and sampling on the ecological inferences of molluscan assemblages. It also 

provides critical insights into how such influences can be recognized in recent and fossil 

assemblages. This will enable future researchers to standardize the data collected from spatio-

temporally separated molluscan assemblages before using them for evaluating important 

ecological hypotheses. 
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significant (p<0.05) results are marked in bold. 
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Table 4.4: The test-statistic (D) of Kolmogorov–Smirnov test comparing the predation 

estimates across four Plio-Pleistocene fossil assemblages of Florida using 

sample-standardization protocol. All the results are statistically significant 

(p<0.05). 

 

Table 4.5: A summary of the difference in inferred predation intensity from the original 

value for the model assemblages. Each cell contains information about the 

mean value and standard deviation of DiffPI; the first two represents the sign 

and magnitude of the mean value. A positive mean value of DiffPI indicates a 

larger value of original than inferred predation intensity (PIT > PIT.inf).  

 

Table 4.6: A summary of the difference in inferred prey species richness from the 

original value for the model assemblages. Each cell contains the minimum 

sample size required for DiffS to converge to zero for each model 

assemblages. A smaller number indicates that the inferred prey species 

richness converges to the original value (Sprey.inf = Sprey) at smaller sample 

size. 

 

Table 3.S1: Significance (p-values) of Spearman rank correlation test between 

environmental variables. The significant results are in bold. 
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1. 1 Introduction 

 

The spatio-temporal patterns of biodiversity change have fascinated paleontologists 

and ecologists since Darwin (Darwin 1909). It provides crucial insight into the long- and 

short-term processes shaping the distribution of living organisms (Tittensor et al. 2010). The 

fossil record is the avenue to study long-term processes responsible for the spatio-temporal 

distribution of organisms. In the context of the recent climate changes, identifying the 

mechanisms for ecological variation is of primary importance to quantify the processes which 

may potentially cause an ecosystem collapse (Jablonski 1998; Olszewski and Patzkowsky 

2001; Bonelli et al. 2006; Clapham et al. 2006; Clapham and James 2008; Heim 2009). At the 

same time, various operational decisions about sampling protocols, analytical methods, and 

data categorization can significantly affect the inferred biological signal (Jurasinski 2007). 

Appreciation of such factors that may obscure the ecological pattern is essential before 

concluding spatio-temporal patterns from any fossil assemblage. 

Molluscs, with their taphonomically durable shells, are one of the most abundant 

groups in the shallow marine environment (Kidwell 2001; Kowalewski et al. 2003; Giribet 

2008; Khan et al. 2010). Their high abundance in various ecological niches at shallow marine 

and coastal regions makes them an interesting proxy for tracking their spatial and 

morphological response to environmental fluctuations occurring along the coasts at a regional 

scale (Ponder and Lindberg 2008; Sarkar et al. 2019). They have a remarkably documented 

fossil record with around 60,000 fossil species which dates far back to early Cambrian (Lee et 

al. 2014). Predation traces such as drill holes and repair scars recording successful and failed 

predation attempts on molluscs are one of the most abundant predation traces preserved in the 

fossil record (Alexander and Dietl 2003a; Kelley and Hansen 2003; Alexander and Dietl 

2005; Klompmaker and Kelley 2015; Klompmaker et al. 2019). As a result, many such large 

scale quantitative palaeoecological studies rely on molluscan fossil record for evaluating 

evolutionary hypotheses and inferring ecological patterns through space and time 

(Hutchinson and Hawkins 1992; Gray 2000; McClain and Rex 2001; McClain et al. 2012; 

Sarkar et al. 2019). Therefore, we chose molluscs as a proxy for our study to evaluate the role 

of these operational decisions on the derived paleobiological inferences. 

Fossil assemblage represents a subset of a paleocommunity that got favorable 

conditions to be preserved under the action of taphonomic processes (Staff et al. 1986). 

Assessing the quality of fossil records as a reliable source of biological information is an 
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ongoing concern when it comes to the reconstruction of past ecosystems and diversity 

(Boucot 1953; Kowalewski and Bambach 2008; Patzkowsky and Holland 2012). Before 

deriving conclusions about macroevolutionary processes, one needs to quantify the extent to 

which the composition of an ancient community is represented by the fossil assemblages. 

Actuopaleontology is the study of patterns of distribution and the processes occurring 

between death and burial of paleontologically relevant organisms in the present time (W 

Schäfer 1962; Gerhard C Cadée 1991). Examination of their dead remains can provide 

valuable insights about how taphonomy can impact their fossil record (Behrensmeyer et al. 

2000; Kidwell and Holland 2002). Alteration of dead remains can occur after death of an 

organism depending on the depositional environment, energy conditions of the region and 

preservation potential of the taxonomic group (Behrensmeyer 1978; Behrensmeyer et al. 

2000; Kidwell and Holland 2002). Live-Dead studies, evaluate the extent to which modern 

death assemblages resemble their living counterpart in terms of their community composition 

and has been conducted on a number of groups including mammals (Behrensmeyer 1978; 

Behrensmeyer et al. 2000; Western and Behrensmeyer 2009; Terry 2010; Miller et al. 2014), 

marine invertebrates such as molluscs (Kidwell 2007; Tomašových and Kidwell 2009a, b, 

2010a; Yanes 2012; Kidwell 2013), brachiopods (Tomašových 2004; Tomašových and 

Kidwell 2010b) and also ostracods (Tomašových and Kidwell 2010b). This approach has 

proved to be particularly important to develop critical insight about preservation potential of 

specific groups, role of environment in preservation, nature of sedimentation and impact of 

time-averaging (Kowalewski et al. 2003; Tomašových 2004; Tomašových and Kidwell 

2009b, a, 2010a, b; Kidwell 2013; Cheng et al. 2021).  

The rich fossil record of molluscan assemblages prompted paleontologists to study 

the fidelity of modern marine shelly assemblages (Kidwell 2001). Dead shelly assemblages 

can be different from live ones because of accumulation of dead remains with time (Fürisch 

and Aberhan 1990; Kidwell and Bosence 1991; Kowalewski 1996) and degradation due to 

taphonomic processes such as abrasion, fragmentation, chemical dissolution and cementation 

(Smith and Nelson 2003; Kosnik et al. 2009; Powell et al. 2011). Post-mortem transportation 

causing influx and removal of dead shells from different areas depending on the 

sedimentation rate and wave energy of the region can also impact the formation of dead shell 

and fossil assemblages (Fürisch and Aberhan 1990; Kidwell and Bosence 1991; Pandolfi 

1992; Parsons-Hubbard et al. 1999; Powell et al. 2002, 2008, 2011).There is growing 

evidence against the generalizations made from molluscan live-dead fidelity studies 

performed at sampling sites which are mostly situated in regions with a wide shelf, lower 
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sedimentation rate and with low rates of large scale post-mortem transportation events. These 

associated biases and underlying assumptions need to be quantified with respect to the area 

that is being studied.  

Apart from taphonomy, the biological signal inferred from the fossil data could be 

significantly dependent on the protocols followed during data collection and further analyses. 

Researchers employ a variety of methods for collection, compilation, identification and 

analysis of fossil assemblages. The inferences derived from these studies are considered 

reliable biological signal and used for testing various ecological and evolutionary hypotheses 

in both marine and terrestrial flora and fauna (Kitchell and Kitchell 1980; Vermeij et al. 

1981; Harrison et al. 1992; Kelley and Hansen 1993; Vermeij 1993; McNamara 1994; 

Ellingsen 2001; Ellingsen and Gray 2002; Davidar et al. 2007; Jankowski et al. 2009; Budd 

and Mann 2019). Only a small number of studies explicitly quantified the impact of 

methodological differences on the outcome of paleobiological observations including live-

dead fidelity (Kidwell 2002), predation (Kowalewski and Hoffmeister 2003; Budd and Mann 

2019), diversity and community composition (Rahel 1990; Redman et al. 2007; Anderson et 

al. 2011; Barton et al. 2013; Budd and Mann 2019). The impact of sampling strategies on 

inferred faunal composition differ in spatial and temporal scale. Forcino et al. (2010) tested 

the sensitivity of inferences about faunal composition to operational decisions about sampling 

and data processing (e.g. taxa to be included, taxonomic resolution). They had observed a 

consistent signal irrespective of similarity measure and data categorization being used. In 

contrast, a study on temporal change of molluscan assemblage showed a significant effect of 

sampling strategies (e.g. data format, analytical approach, and rare data exclusion) on the 

interpretation of faunal persistence (Visaggi and Ivany 2010).  Patchiness among samples 

affects fine-scale patterns of biological variation, because compositional variation among 

localities depends on the composition of the patch sampled (Bennington 2003; Webber 

2005). Smaller replicate samples within a single bed or unit remove patchiness within 

samples and produce more robust patterns than one large bulk sample (Lafferty et al. 1994; 

Zuschin et al. 2006; Zambito et al. 2008). Forcino (2013) observed that increased temporal 

sampling within multiple stratigraphic units was more informative as compared to increased 

lateral sampling across a single stratigraphic unit. Therefore, it is also important to evaluate 

what level of sampling is adequate so that one does not spend valuable time and effort on 

over-collecting.  

Another operational decision which we make while performing modern as well as 

paleoecological studies is the spatial scale of the study. While studying the biodiversity of a 



5 
 

region, the spatial scale at which we make ecological observations plays a major role in our 

understanding of ecosystem functioning (Mac Arthur and Wilson 1967; Pandolfi 2002; 

Hewitt et al. 2005; Tokeshi 2009). Beta diversity, also known as the within- habitat diversity 

is used to quantify the spatial variation in community composition among localities (Harrison 

et al. 1992; Gray 2000; Anderson et al. 2011). In comparison to terrestrial communities, beta 

diversity of marine communities are relatively poorly studied with the exception of reefal 

communities such as fishes and benthic invertebrates (Hewitt et al. 2005; Harborne et al. 

2006; Josefson 2009; Belley and Snelgrove 2016; Roden et al. 2020; Souza et al. 2021). Even 

though there has been an explosion in terms of reviews and literature highlighting important 

issues of analytical methods and appropriate terminologies regarding beta diversity, 

conceptual issues surrounding scale dependence in the patterns and processes producing 

variation in beta diversity remain (Baselga 2010; Tuomisto 2010; Anderson et al. 2011).The 

level of habitat heterogeneity will depend on the scale of observation, with increasing 

resolution (finer scales), more detail can be observed (Senft et al. 1987; With and Crist 1995; 

Goodsell and Connell 2002). While studying paleo communities, it is important to check the 

effect of ecological processes on the community composition over variable spatio-temporal 

scales, before making any statements what processes are truly driving the palaeoecological 

signal (Fleishman et al. 2003; Becking et al. 2006; Forcino 2013). The factors that will 

determine variability in composition at a small spatial scale (site-scale or point-based studies) 

will be different from the determinant processes at larger scales. Most studies have focused 

on finding drivers of beta diversity over an environmental or latitudinal gradient at global 

scales (Bustamante and Branch 1996; Melo et al. 2009; Baselga et al. 2012; Maxwell et al. 

2022) and small (local) scales are mostly assumed to be homogenous (Whittaker and Likens 

1975; Gaston 1994).  Recently some progress has been made in observing spatial 

heterogeneity at smaller scales (point based or site scale) (Downes et al. 1993; Boström and 

Bonsdorff 1997; Hereu et al. 2008). Athough the importance of global pattern is appreciated, 

previous researchers also highlighted the role of physical drivers (such as temperature, 

seasonality and productivity) and the variation of habitats observed at an intermediate 

regional scale that may have significant effect of the variability in composition (Broitman et 

al. 2001; Ellingsen 2001; Ellingsen and Gray 2002; Astorga et al. 2014). Studies on terrestrial 

woody plants have shown that beta diversity changes across a latitudinal or elevational 

gradient can also simply be caused by sampling due to changes in the size of species pools 

and not by variable mechanisms of community assembly at temperate vs tropical systems 

(Kraft et al. 2011). However regional scale studies exploring the effect of variable scale of 

sampling within a certain spatial extent on spatial heterogeneity is still relatively unexplored.  
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Despite the significant problems associated with spatial scaling across heterogenous 

ecosystems, the analytical methods and model designing of ecological studies have been 

fairly unchanged (Hewitt et al. 2007; Barton et al. 2013).  

Apart from faunal composition, different sampling strategies may impact inferences 

of other important paleoecological processes such as biotic interaction. Biotic interaction, 

such as predation is an important driver of evolutionary changes through time and predation 

traces from past and present assemblages are often used to test specific evolutionary 

hypothesis  (Vermeij 1977; Vermeij et al. 1981; Signor and Brett 1984; Langerhans 2007; 

Stanley 2008; Barnes et al. 2010; Gorzelak et al. 2012; Kotta et al. 2018; Petsios et al. 2021). 

Researchers have been relying on traces of predation events preserved in the fossil record to 

assess evolutionary impact of predation in deep time (Vermeij et al. 1981; Alexander and 

Dietl 2003b; Kelley and Hansen 2003). Drill holes and repair scars are one of the abundantly 

preserved predation traces in the fossil record and hence they are commonly used for various 

paleoecological studies. The reliability of the inferences are dependent on the premise that it 

is not influenced by other processes or methodological artefacts. Targeted sampling of 

specific size-class or a taxon also impacts the inferred predation patterns derived from a 

sample (Kowalewski and Hoffmeister 2003; Kosloski et al. 2008; Ottens et al. 2012; Hattori 

et al. 2014; Chattopadhyay et al. 2016; Hausmann et al. 2018). Studies which evaluate the 

predation trends through space and time are however often forced to use predation data from 

various discrete assemblages that differ in sample size, community structure, and the type of 

predation selectivity (Harper 2016). Previous studies have shown analytical techniques to 

evaluate predation measures and to compare temporally distinct groups often impact the 

inferences (Kowalewski 2002; Leighton 2002; Grey et al. 2006; Stafford and Leighton 2011; 

Dietl and Kosloski 2013; Smith et al. 2018; Budd and Mann 2019). Therefore, 

standardization of protocol for sampling, data categorization and analyses are necessary 

before concluding about ecological signals such as predation trends and variability in 

composition of a taxon, especially in studies across variable spatiotemporal scales and meta-

analyses (Forcino 2013). 

In this thesis, I tried to evaluate the role of taphonomy and sampling on various 

paleobiological inferences including live-dead fidelity, beta diversity and predation patterns 

using recent marine molluscan assemblages. 

Post-mortem transportation is one of the processes which can impact the 

accumulation of dead shells and their spatial fidelity with respect to the live assemblages. 
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Shells can be transported both within and out-of-habitat depending on energy conditions of 

the surrounding habitats (Kidwell and Bosence 1991). Previous studies suggest that out-of-

habitat transport (Kidwell and Flessa 1995; Behrensmeyer et al. 2000) characterized by a 

large number of shells transported over great distances is thought to play a rather insignificant 

role in ordinary level bottom sublittoral environments with gentle slopes and they mostly 

experience within habitat transportation. Narrow, steep continental shelves, in contrast, have 

more potential for post-mortem transportation (Donovan 2002). However, high energy 

catastrophic events such as storms and turbidity current can transport shells over large 

distances and carry them to a low energy environment where they are eventually buried 

(Dominici and Zuschin 2005). Rate of sedimentation is also an important factor in controlling 

the rate of mixing by transportation and high rates of sedimentation yield high spatial fidelity 

(Zuschin and Stanton 2002; Keen et al. 2004). In 2nd chapter of my thesis, I explored the 

nature of post mortem transportation which is affecting the spatial fidelity in a tropical marine 

setting with high sedimentation rate and high frequency of storm events such as Chandipur, 

Orissa. By studying the live-dead fidelity and modelling the size-frequency distribution of the 

fauna, I attempted to evaluate the contribution of ‘‘out-of-habitat’’ versus ‘‘within-habitat’’ 

mixing in developing the molluscan death assemblages. 

In the third Chapter of my thesis, I tried to investigate how methodological factors 

such as the grid size of sampling might affect nature of inferred beta diversity patterns at a 

regional scale. Tropical habitats are known for their high diversity and environmental 

heterogeneity. Beta diversity or between habitat diversity can be driven by various factors 

such as environmental, historical processes, biotic interactions. The coastal part of India 

bordering the eastern Arabian Sea having a latitudinal spread of 14 ° (8–23°N) presents a 

unique scenario to evaluate the effect of spatial resolution and sampling on beta diversity of 

bivalves at a regional scale (Sarkar et al. 2019). Using data from our collection of dead 

assemblages from west coast as well as live assemblages reported from the existing literature, 

I devised a numeric null model to check if the variation in the beta diversity along the west 

coast can be explained by unequal spatial scales of sampling . I tried to compare the results of 

this null model using various beta diversity measures to check if the choice of distance 

measure has any effect on the patterns. Finally, I tried to evaluate what environmental 

variables are driving the beta diversity pattern if it is not being affected by methodological 

factors. 

Lastly in the fourth Chapter of my thesis, I evaluated the effect of sampling intensity 

and nature of prey community structure on inferred predation pattern. Various aspects of prey 
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community such as evenness, predation selectivity may influence quantification of predation 

at the community level, such as predation intensity, prey selection. Sampling intensity and 

selective sampling of a specific size group may significantly impact the results obtained. 

Using theoretical simulation based on a resampling technique, I attempted to develop a 

methodological framework to understand the effect of community evenness, sampling 

intensity, and the nature of predation selectivity on inferred predation estimates. The effect of 

these parameters was observed on the pattern of inferred predation intensity and the number 

of prey species. In addition to that, I proposed a method of post-facto standardization to 

validate our approach using predation data from drill holes and repair scars from four Plio-

Pleistocene fossil assemblages of Florida. 

In summary, the motivation of this study to understand the effect of various 

underlying processes and methodological decisions to discover the true biotic and abiotic 

responses of marine communities from fossil records and modern assemblages. 
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Molluscan live-dead fidelity of a storm-dominated 

shallow-marine setting and its implications 
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Molluscan live-dead fidelity of a storm-dominated shallow-marine setting and its 

implications 

 

 

ABSTRACT 

Actualistic studies are important for evaluating the fidelity of fossil assemblages in 

representing the living community. Poor live-dead (LD) fidelity in molluscan assemblages 

may result from transport-induced mixing. Large-scale mixing is more common in 

siliciclastic settings with a narrow shelf, high sedimentation rate, and those that are 

frequented by episodically high-energy events. Chandipur-on-sea, on the east coast of India 

has an optimal setting to promote such conditions. By studying the LD fidelity and modeling 

size-frequency distribution (SFD) of the fauna, we attempted to evaluate the contribution of 

“out-of-habitat” versus “within-habitat” mixing in developing the molluscan death 

assemblage. The correlation between the composition of live (LA) and death assemblages 

(DA) was insufficient; unlike LAs, the DAs do not show environmental partitioning in 

ordination space. A numerical simulation of the shell size frequency distribution (SFD) for 

DAs from LAs was compared with the observed SFD of the DAs. The results of this 

simulation indicate that DAs are not likely to be a product of within-habitat mixing. DAs 

probably received considerable input via regional transport, facilitated by frequent tropical 

cyclones affecting the coast of Odisha. Chandipur receives a large proportion of cyclones 

originating above 15°N, which causes a high degree of lateral transport and shell mixing 

between 15° to 21°N, explained by the high compositional similarity of species within this 

latitudinal extent. Our study highlights the significance of out-of-habitat transport in shaping 

the regional distribution of marine fossil assemblages, especially in storm dominated 

siliciclastic shallow-marine settings.  

 Keywords: Out-of-habitat transport, tropical cyclone, spatial fidelity, taphonomy 
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2.1 INTRODUCTION 

 

Actualistic studies are an important tool to understand the taphonomic processes. 

Live-dead (LD) fidelity is used to evaluate the impact of the taphonomic processes in shaping 

the fossil record (Behrensmeyer et al. 2000). Marine molluscan assemblages were used for a 

large number of LD fidelity studies because of their high preservation potential and the 

resultant paleontological relevance (Kidwell and Bosence 1991). LD fidelity can be affected 

by multiple processes including time averaging (Fürisch and Aberhan 1990; Kidwell and 

Bosence 1991; Kowalewski 1996), taphonomic degradation (Smith and Nelson 2003; Kosnik 

et al. 2009; Powell et al. 2011), and shell mixing due to post-mortem transportation (Zenetos 

1990; Parsons and Brett 1991; Callender et al. 1992). Spatial fidelity of molluscan 

assemblages, in particular, is largely affected by post-mortem transportation (Kidwell and 

Bosence 1991), both within- and out-of-habitat. Dead shells in siliciclastic environments are 

more prone to undergo post-mortem transportation as compared to carbonate environments 

due to lower cementation rate and lower taphonomic degradation by bio-erosion in 

siliciclastic environments (Tomašových and Kidwell 2009a; Kidwell and Tomasovych 2013; 

Weber and Zuschin 2013; Korpanty and Kelley 2014; Zuschin and Ebner 2015). Therefore, 

siliciclastic settings are appropriate to evaluate the effect of post-mortem transportation on 

the final distribution of dead assemblages.  

The susceptibility of dead shells to transportation depends on the energy condition of 

the surrounding habitats to which the shells are exposed. Experimental flume studies on 

mollusks have shown that the entrainment velocity is affected by various aspects of 

morphology such as shell size (Spencer 1963; Olivera and Wood 1997; Dey 2003), shape 

(Chattopadhyay et al. 2013a), and presence of predation marks (Chattopadhyay et al. 2013b; 

Molinaro et al. 2013). Consequently, the original and the transported assemblage may have a 

different composition (Chattopadhyay et al. 2013a, b). This may explain the fact that death 

assemblages (DAs) often capture environmental gradients reflecting habitat-specific 

taphonomic processes, including between-habitat differences in transportation (Fürsich and 

Flessa 1987; Powell et al. 2008).  

Out-of-habitat transport (Kidwell and Flessa 1995; Behrensmeyer et al. 2000) 

characterized by a large number of shells transported over great distances by mass (or bulk) 

flow (Kidwell and Bosence 1991) is thought to play a rather insignificant role in the ordinary 

level-bottom sublittoral environments as suggested by actualistic taphonomic studies. It is 
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only considered to play an important role in settings characterized by a steep slope, high 

sedimentation rate, or settings frequented by very high-energy events (Kidwell and Bosence 

1991). In level-bottom sublittoral environments, however, most of the lateral transport is 

“within-habitat” with influx of exotic species from adjacent habitats (Kidwell and Bosence 

1991). The high spatial fidelity found in the majority of actualistic studies could, therefore, be 

attributed to the preferential selection of sampling sites which are situated on a wide shelf, 

with low rates of sedimentation and are largely unaffected by high energy events. Narrow, 

steep continental shelves, in contrast, have more potential for post-mortem transportation 

(Donovan 2002). Studies conducted in steep slopes tend to show low fidelity due to increased 

transportation (Hubbard 1992; Hohenegger and Yordanova 2001) and hence, could lead to 

greater taphonomic bias in benthic marine records. Dominici and Zuschin (2005) emphasized 

the importance of high energy catastrophic events in the geologic record and argued that the 

potential of shell transport even in the gently sloping shelves might be greatly altered by 

catastrophic events such as major storms or turbidity currents—events that are geologically 

frequent although historically rare. These events may transport skeletal remains into a low-

energy environment at depth, bury it with transported sediments over a long period and 

thereby, lead to eventual preservation (Bries et al. 2004). Rate of sedimentation can also play 

an important role in controlling the mixing rate of shells during post-mortem transportation. 

Reworking through intense bioturbation in low-sedimentation areas often strips the event 

beds of their unique features (Zuschin and Stanton Jr 2002; Keen et al. 2004).  Modern 

assemblages, characterized by high sedimentation rates leading to time-averaged shell beds 

yield high spatial fidelity (Kowalewski and Bambach 2008; Tyler and Kowalewski 2017). 

Lower sedimentation, in contrast, would result in low spatial-fidelity of fossil assemblages. In 

fact, in a comprehensive study based on molluscan datasets from modern open shelf settings, 

signatures of post-mortem transportation (such as presence of allochthonous shells) are 

detected in some datasets of the shoreface on wide shelves, that receive high sediment input 

with transported specimens from adjacent habitats such as estuaries (Kidwell 2008). 

There is growing evidence against the general assumption of low probability of “out-

of-habitat” transport for fossil assemblages that has been formed by generalizing the results 

from actualistic studies of selected environments (Dominici and Zuschin 2005) . It is, 

therefore, worth exploring the nature of spatial fidelity from areas characterized by high 

sedimentation rate and that are frequented by high energy events. 

The eastern coast of the peninsular India is characterized by extremely high sediment 

influx (> 1350 million tons of suspended sediments/year) brought by the Ganges-
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Brahmaputra River systems together with other rivers to the Bay of Bengal, especially 

towards the north (Milliman and Meade 1983; Subramanian et al. 1985). Chandipur-on-sea is 

a coastal town in northern Odisha, India (Fig. 2.1A). The state of Odisha has experienced 128 

tropical cyclones in the last 109 years (Mohanty et al. 2004). Its coastline is characterized by 

a siliciclastic marine setting with different habitats including a tidal flat, a beach, a restricted 

embayment, and an estuary within a small geographic extent. Using the species composition 

and size frequency distribution of live and dead molluscan assemblages from various habitats 

of the Chandipur-on-sea, we evaluated the nature of spatial fidelity in a tropical marine 

setting with high sedimentation rate and high frequency of storm events. We tried to assess 

the nature of post-mortem transportation processes at small scales (< 200 kms from 

Chandipur) and large scales (>200 kms from Chandipur) influencing the spatial fidelity of 

Chandipur by addressing the following questions: 

First, is the habitat specific LA-DA fidelity consistent with transportation-induced 

mixing? We expect significant compositional dissimilarity between habitat specific LAs and 

DAs as a consequence of storm-induced “within” and “out-of-habitat” transport. Moreover, 

habitat specific LAs should have lower compositional variation compared to habitat specific 

DAs. This can be explored with samples from the tidal flat and restricted embayment because 

these were the only habitats where live specimens were found. 

Second, is the shell mixing a result of within-habitat transportation? We expect good 

agreement between the size-frequency distribution (SFD) of pooled LA and DA if the DAs 

are developed by transporting LAs after they are dead, within short distances and 

accumulating over time. Disagreement between the observed DA and the simulated DA 

created from the pooled LA, however, would point to the low probability of developing DA 

by within-habitat mixing of live populations. This can be explored with samples from all of 

the four habitats (i.e., tidal flat, beach, restricted embayment, and estuary). 

Finally, is the regional record of high-energy events indicative of the extent of out-of-

habitat transport? If the high-energy events are restricted to specific regions, we expect a high 

degree of shell transport and resultant mixing within that region. This would eventually lead 

to high compositional similarity of shells within such regions compared to those unaffected 

by high-energy events. This can be explored using the published data on high energy events 

and species occurrence from the Chandipur region. 
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2.2 MATERIALS AND METHODS  

 

The studied coastal region of Chandipur on-sea (21°27′27.01″N, 87°03′25.09″E) 

represents a 5 km long tropical siliciclastic shallow marine setting (Fig. 2.1) composed of a 

variety of habitats, including a tidal flat, a sandy beach, an estuary, and a restricted 

embayment (Figs. 2. 1, 2.2). 

 

2.2.1 Collection Protocol: 

Molluscan specimens from four different habitats (beach, tidal flat, restricted 

embayment, and estuary) were collected during three visits (October 2015, July 2016, 

September 2016) (Table 2.1). The sampling was conducted with a metal box sediment corer 

of dimensions 30 cm × 30 cm × 5 cm. After placing the corer, the top sediments within the 

frame were scooped out with a spatula and the specimens were sieved using a sieve of mesh 

size 0.3 mm and washed before collecting in separate jars. Using Rose Bengal staining, live 

specimens were identified and picked. We found live specimens only on the tidal flat and in 

the restricted embayment. The specimens were identified to the species level using available 

literature sources (Apte 1998; Rao 2017). The taxonomic information was verified using the 

World Register of Marine Species (WoRMS). The number of individuals was estimated by 

counting intact shells and making necessary adjustments for disarticulated valves of bivalves 

by taking the higher number of left or right valves (total = articulated shells + higher number 

of left or right valves). After identification, specimens were photographed and cataloged. 

Sites represented by less than 25 dead specimens were excluded from further analyses (Table 

2.1).  

Using digital calipers, we measured the length and height of seven individuals (the 

largest, the smallest, and five random specimens) for each species from live and dead 

assemblages of each site. The log-transformed (base 2) geometric mean of length and height 

is used as a measure of size for all subsequent analyses (Kosnik et al. 2006). 

 

2.2.2 Statistical analyses: 

 

2.2.2.1 Live-Dead Fidelity 

Univariate analyses were performed on the live and dead assemblages within two 

habitats (tidal flat and restricted embayment) and the rest of the habitats were not included 
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due to the lack of live fauna. We calculated F1 (the percentage of species found in LAs 

occurring in DAs) and F2 (the percentage of species found in DAs occurring in LAs) indices 

(Kidwell and Bosense 1991; Ritter and Erthal 2013). To evaluate live-dead agreement, we 

calculated probability of interspecific encounter (PIE) using the calc_PIE() function (Hurlbert 

1971), ΔS (Olszewski and Kidwell 2007), and Chao’s Jaccard similarity index (Chao et al. 

2005). The PIE is also an indicator of beta diversity and consequently for spatial mixing 

(Olszewski 2004). The difference between the evenness of the death assemblage (dead PIE) 

and that of the living community (live PIE), called ΔPIE is used for quantifying live-dead 

agreement in evenness (Olszewski and Kidwell 2007) and can range from +1 to –1. 

Spearman rank-order correlation of species relative abundance was used as an indicator of 

similarity between LAs and DAs (Kidwell 2001). The normality of the size distribution of 

species was evaluated using the Shapiro-Wilk test. Indices were calculated using ‘diversity’ 

and ‘vegdist’ functions in the ‘vegan’ packages in the statistical programming language R. To 

visualize the compositional similarity of LA and DA between all samples and habitats, 

NMDS plots were performed based on the Bray-Curtis similarity indices on Wisconsin-

standardized square root transformed proportional abundances using the ‘metaMDS’ function 

in R.  

 

2.2.2.2 Size Distribution Model 

The extent of post-mortem transport that a shell undergoes primarily depends on the 

size/mass of the shell and the energy of the carrying medium (Spencer 1963; Allen 1984; 

Chattopadhyay et al. 2013a). A habitat specific size frequency distribution (SFD) depends on 

the species proportion of a habitat and the body-size of those species (Tomasovych 2004; 

Kosnik et al. 2006). To test the probability of creating the characteristic size distribution of 

the DA of each habitat from a common pool of live samples, we designed the SFD model. 

We first created the SFD of the live population by considering the size data for each species 

present in the LA. Instead of measuring all live specimens (N) of a species, we developed a 

representative ontogenetic trend (linear) between length (L) and width (W) for each species 

from measured specimens (m). Because of small sample size of our measured specimens for 

certain species, we compared our results with those from a larger collection (S. Mondal’s 

collection from the same locality). The species-specific ontogenetic trend remains the same. 

Moreover, the larger dataset demonstrates a normal distribution of L for all species except 

one (Shapiro-Wilk test, p-value > 0.05) (See Appendix Figure 2.S1). After confirming the 

normality of an observed species-specific SFD, we generated a simulated species-specific 
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SFD by randomly drawing p (= N-m) number of L values from a normal distribution bounded 

between the measured minimum and maximum value of L for a particular species. The log 

transformed (base 2) geometric mean of the Ls and the inferred W (from the species-specific 

linear trend) was used to create the final SFD of a species. The same process is performed to 

develop SFDs for all species that are present in the live assemblage. The SFD of pooled live 

assemblage (SPL) is generated by combining the SFDs of all the species present in the live 

assemblage with their observed proportion. 

 Using this SFD of pooled live data, we developed a model for simulating a 

distribution of dead shells for each of the different habitats by randomly sampling the size-

distribution of the pooled live assemblage. Let’s consider that the pooled size data of live 

assemblage is a vector SPL with n elements where n is larger than the DA of any habitat. The 

number of dead shells in a sample from a specific habitat is SBD. We resampled SBD from 

SPL with replacement and generated a distribution of the simulated dead shells. We calculated 

the K-S distance and the corresponding p-value between the distribution of observed and 

simulated dead using the ks.test () function in R. We repeated this step 10,000 times to get 

Bootstrap densities of K-S distances and p-values. 

If dead shells of a given habitat are produced by small-scale mixing as a result of 

post-mortem transportation of the live assemblages of different habitats, then the above 

method should show good agreement between the simulated and the observed dead samples. 

Disagreement between the observed and the simulated dead, however, would point to a low 

probability of developing the dead assemblage by within-habitat mixing of live populations. 

A variant of the model is also developed restricting the sampling only to species shared 

between LA and DA. 

Because the entrainment velocity of shells is primarily controlled by shell size and 

each habitat is characterized by a specific energy, we can calculate a characteristic maximum 

velocity for each habitat (Spencer 1963; Allen 1984; Olivera and Wood 1997; Dey 2003). We 

calculated the entrainment velocity of shells in each habitat by using its grain-size range from 

the Hjulström-Sundborg Diagram (Sundborg 1956). The maximum shell size that can be 

entrained by the hydrodynamic energy of a habitat was calculated using empirical results 

(Chattopadhyay et al. 2013a; Molinaro et al. 2013; Fick et al. 2020). From the sizes 

calculated for each habitat using the above equation, a maximum size constraint is applied to 

the live data. We generated a simulated dead size distribution from the live data with a 

velocity filter, using the same analysis described previously. For some empirically derived 

equations (Molinaro et al. 2013; Fick et al. 2020), the maximum size constraint is smaller 
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than the smallest of the observed value and hence, does not affect the velocity filter and the 

final distribution. 

 

2.2.2.3 Regional Record of the Storm and Shell Distribution 

The cyclone record of Chandipur was developed based on the global-tropical-

extratropical cyclone climatic atlas from the U.S. Navy National Climate Data Center cyclone 

records. We identified the frequency of VSCS (very severe cyclonic storms) and CS 

(cyclonic storms) that passed within a radius of 200 km around Chandipur in the last 40 years 

(1977 to 2017). A compilation of published bivalve occurrences from 15 latitudinal bins 

spanning from 8 to 22N along the east coast of India was reported by Sarkar et al. (2019). 

These data of 1927 occurrences representing 417 bivalve species were used to evaluate the 

compositional similarity with the Chandipur assemblage using an occurrence-based Bray-

Curtis similarity index. 
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Figure 2.1. Study area. A) The location of Chandipur in India (Source: Google Earth 

Image, National Geophysical Data Center, NOAA). B) Location of the sampling sites in 

Chandipur. Colors represent different habitats: pink = beach; blue = tidal flat; orange = 

restricted embayment; green = estuary 
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Figure 2.2. Different habitats around Chandipur. (A) Overall view of the backshore, 

foreshore, and intertidal regions. (B) Live molluscan assemblage, consisting virtually 

exclusively of gastropods (mostly potamidids) on the tidal flat. (C) Dead shell accumulation 

at the beach. (D) Overview of the restricted embayment (right of the boy). (E) Death 

assemblage in the restricted embayment along with a few live individuals.  
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Table 2.1. Details of samples used for the analyses. The sampling sites are marked in Fig 1. G=Gastropod; B= Bivalve. Sites with less than 25 

dead specimens are marked with an asterisk and are excluded from further analyses. 

 

 

 

Environment 
Site 

name 

Collection 

season 

Abundance 

at site 
Pooled abundance 

Richness Measured specimens  Size range 

(log2(size)) 
Site specific  Pooled Shared All Shared 

Live Dead Live  Dead Live Dead Live  Dead Live  Dead Live  Dead Live  Dead Live  Dead 

Beach 

B1 October, 15 0 55 

0 

314 

(B=251, 

G=63) 

0 8 

0 

32 

(B=24, 

G=8) 

0 

4 

(B=3, 

G=1) 

0 243 0 27 0 
2.03-

6.05 

B2 October, 15 0 99 0 19 

B3 October, 15 0 117 0 10 

B4* 
September, 

16 
0 4 0 3 

B5 
September, 

16 
0 39 0 23 

Tidal flat 

T1 
September, 

16 
113 124 

1330 

(B=1044, 

G=286) 

10592 

(B=10485, 

G=107) 

5 21 

9 

(B=2, 

G=7) 

25 

(B=17, 

G=8) 

7 

(B=2, 

G=5) 

  117 406 114 123 
2.59-

5.83 

1.8-

6.16 

T2 July, 16 1118 2900 7 11 

T3 October, 15 28 74 3 13 

T4 October, 15 36 27 2 2 

T5 October, 15 1 4210 1 7 

T6 October, 15 10 706 3 5 

T7 October, 15 9 989 3 6 

T8 October, 15 15 1445 2 11 

Restricted 

R1 October, 15 11 331 

790 

(B=227, 

G=567) 

6966 

(B=6925, 

G=36) 

1 6 

5 

(B=4, 

G=1) 

25 

(B=18, 

G=7) 

3 

(B=1, 

G=2) 

8 

(B=3, 

G=5) 

39 186 38 87 
2.53-

5.07 

1.9-

5.67 

R2 October, 15 4 27 1 7 

R3 October, 15 313 74 1 13 

R4 October, 15 200 4126 1 10 

R5 July, 16 262 2408 4 11 

Estuary 

E1 October, 15 0 648 

0 

8773 

(B=8765, 

G=8) 

0 12 

0 

21 

(B=16, 

G=5) 

0 

2 

(B=2, 

G=0) 

0 84 0 20 0 
2.23-

5.79 
E2 October, 15 0 3179 0 9 

E3 July, 16 0 4946 0 8 
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2.3 RESULTS 

 

2.3.1 Overall Richness and Composition: 

A total of 24,438 mollusk specimens were collected, representing 15 species of 

gastropods and 49 species of bivalves (Table 2.1). Out of the total, 91% of the shells belong 

to the DA, representing 47 species and the remaining 9% belong to the LA, representing 12 

species. Only nine species were found in both live and dead assemblages. DA showed higher 

species richness than LA in all the habitats. In all of the habitats, Timoclea imbricata 

demonstrated the highest abundance in both LA and DA (Fig. 2.3). Nassarius jacksonianus, 

Paratectonatica tigrina, and Pirenella cingulata were the other three most abundant species 

found in the LA. Among the six most common species in DAs, Mactra luzonica, Sunetta 

vaginalis, and Donax lubricus were not found in the live assemblage. Tanea lineata and 

Meretrix (cf.) lamarckii were the only two species that were exclusively found in the LA.  

 

2.3.2 Fidelity of Richness: 

Species relative abundances in LAs and DAs are not correlated for the overall data 

(Spearman correlation, rho = -0.02, p = 0.84) (Fig. 2.4B); there are four tidal flat sites, 

however, that demonstrate significant correlation (Table 2.2). The F1 index values show a 

range between 50–100% for tidal flat and 25–100% for the restricted embayment (mean for 

all sites = 47.34%) indicating that most species found in LAs are also found in DAs (Fig. 

2.5A). The F2 index values ranged between 9–50% for the tidal flat and 7–14% for the 

restricted embayment (mean for all sites = 15.31%) (Fig. 2.5B), implying that species found 

exclusively in DAs by far outnumber the species which are found live. 

Comparison of PIE of DAs and LAs show that DAs have lower evenness (Fig. 2.6A). 

Restricted embayment sites show a similar evenness between DAs and LAs. LAs show 

higher evenness compared to DAs in sites from the tidal flat. The dispersion of PIE values in 

DAs was relatively narrow as most of the sites (except T3, T4, and R5) have values smaller 

than 0.2, whereas it was more heterogeneous in LAs (0.1 to 0.8). Taphonomic fidelity of 

evenness and richness was measured as cross-plots of live-dead differences in evenness 

versus richness (ΔPIE vs ΔS) (Fig. 2.6B). Most of the tidal flat sites show negative ΔPIE 

values with considerable variation in ΔS values (0.19 to 0.84). Restricted embayment sites 

mostly show zero PIE (except R5) and fall on the boundary between the upper and lower 

right quadrant with higher ΔS values (0.78 to 1.11). The tidal flat sites are scattered within 
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three quadrants with no significant correlation between them (r = -0.11, p = 0.71). The 

median of Chao’s Jaccard similarity indices between LA and DA are 0.005. All of the sites 

from the tidal flat and restricted embayment showed a taxonomic similarity (Chao’s Jaccard 

index) < 0.5 and most sites from the tidal flat and only one site from restricted embayment 

show positive correlations in species rank order abundance (Spearman’s rho), thus occupying 

the lower right corner of the Chao’s Jaccard-Spearman cross plot (Fig. 2.7). However, only a 

few tidal flat sites show significant rank-order correlation (Table 2.2). 

 

2.3.3 Compositional Partitioning: 

The NMDS shows a separation of DAs from LAs (Fig. 2.8A). The LAs showed clear 

clustering of assemblages from different habitats; the tidal flat and restricted embayment sites 

segregated into two different groups (Fig. 2.8B). The DAs, however, do not show any such 

habitat-specific cluster (Fig. 2.8C, 2.8D).  

 

2.3.4 Nature of Size Distributions and Modeling Within-Habitat Mixing : 

The SFD of all habitats has a comparable range, except for the beach that showed a 

higher size range (Fig. 2.9). The size distribution for the simulated DA is significantly 

different from that of the observed DAs for all habitats (p value << 0.05) (Fig. 2.10A–2.10D). 

The beach shows the largest difference (Fig. 2.10A) and the tidal flat shows the smallest 

difference (Fig. 2.10B). Re-running the simulation using the energy-specific size cut-off for 

each habitat did not produce any significant change (Fig. 2.10E, 2.10F). The size distribution 

of the beach and the tidal flat is completely unaffected by the velocity filter because the 

characteristic velocity is higher than the required velocity to transport even the biggest shells. 

The restricted embayment and the estuarine habitat show a change in the magnitude of 

difference after applying the cut-off, which is not statistically significant. Other variants of 

the model (i.e., with only the shared species, using different equations for bivalves and 

gastropods) did not produce any significant change (See Appendix Figure 2.S2). 

 

2.3.5 Regional Nature of Storms and the Distribution of Shells  

Chandipur has been affected quite frequently by tropical cyclones in last 40 years 

(1977 to 2017); a total of three very severe cyclonic storms (VSCS) and 13 cyclonic storms 

(CS) affected the coast between 1980 to 2010 (Fig. 11) and the majority of the cyclones 

originated above 15°N (Fig. 2.12A, 2.12B). The published literature on reported occurrence 
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data of bivalve species shows a drop in compositional similarity (Bray-Curtis index) below 

15°N when compared to the Chandipur bivalve assemblage (Fig. 2.12C). 
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Figure 2.3. The proportion of the six most abundant species for various habitats. DAs: (A) 

Beach. (B) Estuary. (C) Tidal flat. (E) Restricted embayment. LAs: (D) Tidal flat. (F) 

Restricted embayment. Stars indicate those species that are exclusive to DAs. 
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Figure 2.4. Comparison of species richness of LAs and DAs. (A) Bivariate plot showing 

species richness in LAs vs DAs of different sampling sites across Chandipur. (B) Bivariate 

plot of species relative abundance in DAs and LAs. 
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Table 2.2. Results of Spearman rank order correlation between LA and DAs for sampling 

sites within tidal flat and restricted environment. Statistically significant values are marked in 

bold. 

 

 

 

  

Habitat Site names Spearman's rho p value 

Tidal flat 

T1 -0.09 0.49 

T2 0.50 0.00 

T3 0.40 0.00 

T4 -0.07 0.63 

T5 0.05 0.69 

T6 0.54 0.00 

T7 0.37 0.00 

T8 0.22 0.10 

Restricted 

R1 -0.07 0.63 

R2 -0.05 0.71 

R3 0.22 0.11 

R4 -0.11 0.42 

R5 -0.09 0.49 
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Figure 2.5. Live-dead fidelity. (A) Bivariate plot showing percentage of species found in LAs 

that are also found in DAs (F1 index) vs. number of species in LAs. (B) Bivariate plot 

showing percentage of species found in DAs that are also found in LAs (F2 index) vs.  

number of species in DAs.  
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Figure 2.6. Fidelity between LAs and DAs. (A) Cross-plot of evenness (Probability of 

Interspecific Encounter PIE) of LAs and DAs (rho: 0.494; p: 0.08). (B) Cross-plot of 

differences in evenness (ΔPIE) and species richness (ΔS) between DAs and LAs at different 

sampling sites (rho: 0.046; p: 0.88).  
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Figure 2.7. Live–dead taxonomic agreement (Chao’s Jaccard similarity index) plotted against 

live–dead rank-order correlation (Spearman rho) across different sampling sites from 

Chandipur. Sites located in the upper right quadrant have the highest live-dead agreement and 

sites in the lower left quadrant have the lowest live-dead agreement.  
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Figure 2.8. Non-metric multidimensional scaling for species abundances. (A) Pooled LAs and 

DAs of all sites (Stress = 0.13). B) Only LAs (Stress = 0.003). (C) DAs with all habitats 

(Stress = 0.16), (D) DAs from habitats with live specimens (Stress = 0.12). The closed 

symbols represent DAs and the open symbols represent LAs.  
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Figure 2.9. Box plots of size ranges of individuals (log2 geometric mean of shell size) from 

LAs and DAs of all the habitats. Key: N = sample sizes; filled circles = outliers of the data; 

horizontal line inside box = median; lower and upper box boundaries = the first and third 

quartiles, respectively; and the lower and upper whiskers = the lowest and the highest 

observations of 1.5 times the Inter Quartile Range.  
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Figure 2.10. Histograms of D-values from the K-S test between simulated and observed dead 

size frequency distributions. (A) Beach. (B) Tidal flat. (C) Restricted embayment. (D) 

Estuary. (E) Restricted embayment (with size filter). (F) Estuary (with size filter).  
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Figure 2.11. Bar diagram of intensity of cyclones from 1977 to 2017 within 100 km (yellow) and 200 km (blue) radius of Chandipur.  Each bar 

corresponds to the occurrence of one cyclone that has affected region. The different categories of cyclones are shown in different shades of 

orange: SC = Super Cyclone; VSCS = Very Severe Cyclonic Storm; SCS = Severe Cyclonic Storm; CS = Cyclonic Storm; CDP = Cyclonic 

Depression during monsoon.  



34 
 

 

 

 

Figure 2.12. Cyclones at the eastern coast of India. A) Tracks of cyclones passing through the eastern coast of India from years 1977–2014 

which are within a radius of 3° from Chandipur (blue) and those below 3° radius marked in red. Cyclones with higher intensity (> 60 knots) have 

bolder lines. (B) Plot showing the cyclones affecting regions within 3° latitudes of Chandipur (denoted by a star). The bars indicate the 

proportion of the total number of cyclones originating in each latitudinal bin that eventually affected Chandipur. (C) Bar plot showing 

compositional similarity of the bivalve assemblage of Chandipur (denoted by a star) with other latitudinal bins in the east coast based on 

published data. Occurrence based Bray-Curtis similarity index is used. A few latitudes were excluded due to insufficient data. 
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2.4 DISCUSSION 

 

2.4.1 Degree of Live-Dead Fidelity: 

Our study shows that DAs are about four times richer than LAs at both site-specific analyses 

as well as in pooled assemblages (Fig. 2.4A). These results are in agreement with the expectation of 

high D-L mismatch in siliciclastic environments due to the high window of time-averaging leading 

to high D/L ratios (Kidwell and Bosence 1991; Flessa and Kowalewski 1994; Kidwell and Flessa 

1995; Kowalewski et al. 2000; Kidwell 2002, 2008; Tomašových and Kidwell 2009a, 2010; 

Tomaŝovỳch and Kidwell 2011; Kidwell 2013; Korpanty and Kelley 2014). The high D/L ratio that 

we observed is significantly higher than the highest ratios provided by the study on 11 datasets from 

primarily siliciclastic soft sediment settings in temperate environments (Tomašových and Kidwell 

2009a). These ratios are considerably higher than those reported by Weber and Zuschin (2013) for 

an inner and outer tidal flat in a siliciclastic, temperate environment in the Adriatic Sea (range 1.06–

2.77). The high D/L ratio observed in our study can also be attributed to the high patchiness of LAs, 

when sites having fewer species in the LA are compared to their respective, more homogenized 

DAs (García-Ramos et al. 2016). LAs in our study are depicting the environmental partitioning 

within habitats as expected and are likely to represent the diversity of the living community 

accurately (Bouchet et al. 2002; Kidwell 2002; Warwick and Light 2002; Warwick and Turk 2002; 

Zuschin and Oliver 2005; Albano and Sabelli 2011; Kidwell and Tomasovych 2013; García-Ramos 

et al. 2016; Bürkli and Wilson 2017). The lower richness in LA might be due to under-sampling 

(Lockwood and Chastant 2006) and the richness in DA can be increased owing to time averaging 

(Olszewski and Kidwell 2007) and spatial mixing between contiguous areas (Fürsich 1978).  

Comparing LD fidelity in the tidal flat and restricted embayment, we observed that the 

percentage of dead species found in live assemblages (F2) is lower than that of living species found 

in death assemblages (F1). Studies have yielded values around 62–88% for F1, and 63–94% for F2 

in marine settings (Kidwell and Bosence 1991; Zuschin et al. 2000; Kidwell 2002; Kowalewski et 

al. 2003; Zuschin and Oliver 2003; Lockwood and Chastant 2006). Previously reported values of F1 

(75–100%) and F2 (12.5–100%) from an estuarine-lagoonal setting (Ritter and Erthal 2013) is 

comparable to the observed values of the restricted embayment in our study (Fig. 2.5A, 2.5B). It is 

important to note, however, that the F indices do not consider sample size discrepancies between 

live and dead assemblages (Lockwood and Chastant 2006; Tomašových and Kidwell 2009a) and 

may have limited interpretive value for the present scenario where the sample size of LAs and DAs 

differ substantially.  
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Unlike other studies that document good within-habitat correlation in tidal flat and 

associated sub-littoral soft bottom habitats (Kidwell 2001; Weber and Zuschin 2013; Zuschin and 

Ebner 2015), we found a lack of strong rank-order correlation for the tidal flat and for the restricted 

embayment except for a few sites in the tidal flat (Table 2.2). In the Chao’s Jaccard-Spearman plot, 

sites in the upper-right and lower-left quadrants represent the highest and lowest L-D agreement 

respectively (Kidwell 2007). Most of the tidal flat sites fall in the lower right-hand corner with very 

low similarities and positive rank order correlation indicating poor L-D agreement (Fig. 2.7). In the 

ΔS-ΔPIE plot, ΔS > 0 and ΔPIE > 0 indicates that the DAs represent higher diversity and evenness 

respectively when compared to that of the LAs (Olszewski and Kidwell 2007; Kidwell 2008). Both 

tidal flat and the restricted embayment are characterized by a positive ΔS with substantial site-

specific variation (Fig. 2.6B). Although the richness is generally higher in DAs, there is a high 

degree of variation across sites in terms of alpha diversity. The tidal flat with a negative ΔPIE 

indicates a higher evenness for LAs in contrast to the restricted embayment with a nearly equal 

evenness between LA and DA (Fig. 2.6B). The ΔPIE value of the tidal flat is consistent with the 

processes that bring more short-term or rare species in the live assemblage and increase the 

evenness in LA (Olszewski and Kidwell 2007; Kidwell 2008).  

Our sampling protocol may have contributed to the observed fidelity of LA and DA. A 

multi-year replicate sampling is ideal to determine fidelity as species composition and abundance 

can vary seasonally or may differ between subsequent years (Kidwell and Bosence 1991; Kidwell 

and Flessa 1995; Kidwell 2001; Kidwell et al. 2001; Lockwood and Chastant 2006). It is not 

possible to rule out the contribution of such variations in shaping the L/D fidelity using our 

sampling protocol. Apart from the sampling protocol, mismatches between LA and DA of an area 

can also be caused by (1) time averaging (Olszewski and Kidwell 2007; Tomašových and Kidwell 

2009a); (2) lower sedimentation rates leading to longer exposure of shells to degradation (Smith 

and Nelson 2003; Kosnik et al. 2009; Powell et al. 2011); and (3) shell mixing due to post-mortem 

transportation (Zenetos 1990; Parsons and Brett 1991; Callender et al. 1992). However, it is 

important to note that these three factors are not mutually exclusive and can work together in 

conjunction to create patterns. A high window of time averaging can lead to high D/L ratios 

because of higher rates of post-mortem transport and lower sedimentation rates (Kidwell 2002; 

Finnegan and Droser 2008; García-Ramos et al. 2016). The poor rank-order correlation between 

LAs and DAs often indicates that a redistribution of shelly remains in shallow sublittoral or 

intertidal environment at local-scale (within-habitat mixing) or large-scale (out-of-habitat mixing) 

due to lower sedimentation rate or higher energy conditions (e.g Miller et al. 1988; Kidwell 2008; 

Poirier et al. 2010; Albano and Sabelli 2011). Although we do not have measurements of the 
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sedimentation rate at Chandipur, its location within the Ganges-Brahmaputra River system points to 

a high sedimentation rate of the basin. The linear sedimentation rate (LSR) varies from a moderate 

(0.15mm/y) to high (3.86 mm/y) value in the nearby area of the present study (18°59.1020″ N, 

85°41.1669″ E) in the western Bay of Bengal (Da Silva et al. 2017). High sedimentation rates might 

increase fidelity in embayments such as lagoons and estuaries because the re-equilibration rate 

between DAs and LAs positively correlates with sedimentation rates (Kidwell 2007; Ritter and 

Erthal 2013). The DAs, however, can acquire higher richness than LAs if the rate of shell input is 

higher than the rates of shell destruction and sedimentation (Ritter and Erthal 2013). Therefore, the 

high degree of L/D mismatch of the pooled data along with habitat specific data from the estuary 

and from the restricted embayment of Chandipur might be a result of processes such as increased 

shell input and consequently mixing of shells by lateral transport. 

 

2.4.2 Fidelity of Composition: 

 A comparison of overall compositional fidelity between LA and DA shows the dissimilarity 

of the most common species in DA and LAs. Except for Timoclea imbricata which is the most 

abundant species in all habitats, the most common species in LAs (Nassarius jacksonianus, 

Paratectonatica tigrina, and Pirenella cingulata) are not the most common species in DAs, indicating 

a distinct compositional difference (Fig. 2.3A–2.3F). Although some of the common species in DAs 

are found in LAs (such as Mactra luzonica, Sunetta vaginalis, and Donax lubricus), many are absent 

in LAs. Moreover, LAs show a clear habitat partitioning in ordination space (Fig. 2.8B). The 

restricted embayment is compositionally different from the tidal flat in LAs which is not observed 

for DAs. The adjacent sampling sites in LAs show a tendency to cluster closer together which can 

be due to the patchy occurrence of LAs causing spatial autocorrelation (Tomašových and Kidwell 

2009b; Weber and Zuschin 2013). Some sights from the restricted habitat might appear to show 

higher variability than other habitats that might be a caused by the artificial clustering due to 

presence of excess zeros in the dataset of habitats which causes them to cluster together.DAs do not 

preserve the compositional fidelity of the LA and cannot be reliably used to define different 

habitats/environments unlike our live assemblage (Tomašových and Kidwell 2009b; Weber and 

Zuschin 2013; Zuschin and Ebner 2015). Time averaging in death assemblages of beaches, tidal 

flats, and near shore subtidal habitats with low-moderate sedimentation rates can range up to 

thousands of years (Kidwell 1998). The lack of environmental partitioning and presence of a 

homogeneous character of DAs across habitats can therefore be the result of multiple mechanisms 

such as high sedimentation rate along with differential preservation of shells or addition of dead 
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shells from other habitats through post-mortem mixing (Flessa and Kowalewski 1994; Ritter and 

Erthal2013). 

 

2.4.3 Role of Lateral Transport: 

Post-mortem transportation has been considered to be one of the most important agents that 

leads to lower fidelity between living and death assemblages (Kidwell and Bosence 1991; Kidwell 

2008). Marine death assemblages are often the product of post-mortem lateral shell transport and 

the two important factors which influence the transport of DA’s are time and energy of the related 

habitat. The shells can either be transported within a small spatial scale within habitats, or they can 

be transported by higher energy conditions at a larger spatial scale (Kidwell and Bosence 1991). 

The energy of the habitat plays a major role in transporting the shells within/out of the habitat 

(Tomasovych 2004). Previous studies have observed that in narrow shelves the out-of habitat 

transportation is often species/size-specific; only a subset is transported rather than the whole 

assemblage (Donovan 2002; Kidwell 2008). Shell transport in wide, gently sloping shelves brought 

by catastrophic events such as storms or turbidity current, however, often transport the whole 

assemblage without significant sorting (Dominici and Zuschin 2005). Apart from influencing the 

species composition, transportation can also change the fidelity by influencing SFD. Tomašových 

(2004) observed a changing SFD fidelity between LA and DA along a bathymetric gradient 

(Tomasovych 2004) (Fig. 2.4). The cause of the difference has been related to water energy level, 

substrate type, and/or net rate of sedimentation. For example, the mixed-bottom habitats with 

primarily unconsolidated sediment and characterized by high rate of sedimentation demonstrate 

higher SFD fidelity in comparison to those of hard-gravelly habitats. Among the habitats with 

similar sedimentological characteristics, the SFD fidelity increases with decreasing energy. All the 

habitats in our study belong to unconsolidated mixed-bottom habitats of similar depth and are likely 

to demonstrate similar SFD fidelity unless influenced by differential energy conditions. Apart from 

the physical factors, there could be biological factors that may contribute to the difference in SFD 

between LAs and DAs. While SFDs in LAs reflect the size/age structure of the standing population 

at the time of sampling, SFDs in DAs correspond to the sizes at death and so depend on aspects of 

population dynamics (Tomasovych 2004). Although it is not possible to completely rule out the 

influence of these factors, it is important to note that the LAs in the present study comprise multiple 

samplings done over different months and hence, are more likely to represent a general pattern of 

the population instead of a snapshot. SFDs of LAs and DAs can differ because of size-specific 

mortality rates (Cummins et al. 1986). Although generally considered to have a skewed distribution, 

SFDs of most live assemblages are characterized by a juvenile peak. A prominent lack of such peak 
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in the shallowest habitats are often attributed to higher intensity of predation and competition 

(Cummins et al. 1986; Collins 1991; Tomasovych 2004). At the Chandipur intertidal zone a very 

high degree of predation has been documented (Chattopadhyay et al. 2014; Pahari et al. 2016) and 

hence, it is not unusual to find no juvenile peak in the live assemblage. Evidences of small-scale 

transportation from within habitats to the beach has been reported in foraminiferal preys drilled by 

gastropods from Chandipur (Mondal and Sarkar, 2021). 

It is recognized that when the DA is formed by accumulation of successive, non-

contemporaneous populations (Walker and Bambach 1971), its SFD is cumulative and therefore 

composed of many distinct cohorts. In our simulation, we used observed cohorts of the LA to 

simulate a cumulative SFD of the DA and the simulated DAs are significantly different from the 

observed DAs (Fig. 2.10A–2.10D; See Appendix for Supplementary Figure 2.S2A–2.S2D). 

Therefore, the size distribution of locality-specific DAs cannot be produced entirely by small-scale 

within-habitat mixing of LAs. A simulation with energy-specific size cut off does not change the 

scenario (Fig. 2.10E, 2.10F; See Appendix for Supplementary Figure 2.S2E, 2.S2F). This points to 

the limited influence of within-habitat transfer at small spatial scales to develop SFD of DAs. This 

suggests that the SFD of DAs are probably developed as a result of larger-scale transportation 

processes by high-energy events such as tropical cyclones.

 

2.4.4 Role of Storm Surges and Tropical Cyclones: 

The incidence of tropical cyclones is very common over the Bay of Bengal, which 

experiences approximately six tropical cyclones annually with increasing intensity (Mohapatra and 

Mohanty 2004; Balaguru et al. 2014; Patra et al. 2016). Storm processes exert a major control over 

the benthic community development and also influence the preservation of benthic assemblages in 

the fossil record. The rapid deposition of mud leads to excellent preservation of communities and 

also accumulation of skeletal material. Actualistic studies documented that the storm events control 

the bathymetric limits of benthic communities by substrate modification and episodic physical 

disturbance (Miller et al. 1988). The coast of Odisha, in particular, is prone to tropical cyclones and 

has experienced 128 tropical cyclones in the last 109 years (Mohanty et al. 2004). The cyclone 

record of Chandipur shows a similar record. Chandipur has been affected quite frequently by 

tropical cyclones over the last 40 years (Fig. 2.11). Such storms generally transport large amounts 

of sediments eventually settling into graded sand and silt tempestite beds in the submarine canyons, 

which correlate well with the cyclone timings in the past (Kuehl et al. 1989; Kudrass et al. 1998; 

Michels et al. 1998). Coastal lands with gentle land slope suffer greater land loss from inundation 

during storm surges and Chandipur, characterized by less than 0.2 ° slope, has a high risk of 
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flooding and storm surge (Kumar et al. 2010; Mukhopadhyay et al. 2016). The high frequency of 

cyclonic storms and the gentle slope of Chandipur makes it quite vulnerable to storm-induced 

sediment transport. 

The exact spatial extent of the “out-of-habitat” transport of an area is always difficult to 

determine. However, the trajectory of frequently appearing cyclones in the studied region points to 

large-scale transportation and mixing. The tracks show that cyclones passing through the Chandipur 

region move NW before entering the land. However, the majority of the cyclones originated above 

15°N and never travel over the southern coast before reaching Chandipur. This indicates a 

limitation of mixing within a zone above 15°N (Fig. 2.12A). This is also evident from the fact that 

the majority of the cyclones that affect the studied region originates above 15°N (Fig. 2.12B), 

indicating that large-scale mixing would be prevalent within the northern latitudinal bins (16–

21°N). Reported occurrence data of bivalve species from all latitudinal bins along the eastern coast 

of India (Sarkar et al. 2019) also shows a drop in compositional similarity (Bray-Curtis) below 

15°N when compared to the Chandipur bivalve assemblage (Fig. 2.12C). Many of the reported 

occurrences are based on shell concentrations and not on live assemblage (Apte 1998; Rao 2017). 

The region shows a considerable degree of environmentally heterogeneity with a wide variety of 

habitats ranging from sandy and rocky substrate beaches, estuaries with muddy substrates, reef 

associated rocky and sandy beaches. The high environmental heterogeneity along with the high 

frequency of cyclones affecting indicates that the high degree of similarity within latitudinal bins 

above 15°N may have been due to the large-scale mixing caused by tropical cyclones along these 

latitudes. The similarity fades south of 15°N probably indicating a different set of mixing controlled 

by the southern cyclones. 

 

2.4.5 Implication for the Past Record: 

Live-dead bias can be strong in areas characterized by narrow shelves, high sediment input, 

and episodic occurrence of high pulse-type energy as evidenced by the high L/D mismatch found in 

our study. The results of the present study also demonstrate the low probability of preserving 

habitat-specific biotic assemblages even within a small spatial extent. In the absence of distinct 

taphonomic grades among the preserved specimens, it would even be difficult to recognize the 

degree of mixing in a fossilized assemblage. Apart from the fossilized deposit, the nature of poor 

spatial fidelity would also affect interpretation of regional events from historic records that heavily 

depend on time-averaged samples of the shallow subsurface (Tomašových et al. 2018; Gallmetzer et 

al. 2019; Tomašovỳch et al. 2019). The high LD mismatch due to transportation in our study 

indicates that the time-averaged samples retrieved from a specific location may not record local 
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events exclusively; instead it may be affected by assemblages transported from considerable 

distance. Spatial change in the sedimentological character without any change in fauna, especially 

along a depth gradient may point to possible mixing. 

Sea-level fluctuations in the past have been detected by relative taphonomic trends using the 

variation in net rate and episodicity of sedimentation with distance from land and water depth 

(Kidwell and Bosence 1991; Brett and Baird 1993, 1997; Brett 1995, 1998). However, sea-level 

changes are often associated with climatic fluctuations. Any change in the climatic pattern will 

influence the frequency of storms (Ali 1996, 1999; Dettinger 2011; Lin et al. 2012; Mendelsohn et 

al. 2012) and hence would control the out-of-habitat transport and subsequent mixing. Size and 

shape sorting of shells along with sedimentological features such as channel structures, graded 

bedding, and erosional bases reflect the transport history and also affect the diversity of shelly 

assemblages in allochthonous beds. However, comparisons between storm deposits should be dealt 

with great caution as diversities are strongly governed by transport intensities, which are difficult to 

predict (Westrop 1986; Zuschin et al. 2005). In the absence of these obvious field signatures of 

transportation as observed in Chandipur, it would be difficult to recognize these storm events in the 

fossil assemblage. Therefore, depending on which geological period we are looking at, the extent of 

out-of-habitat transportation may be different. Because of the temporal variation of such climatic 

phenomena, they may even influence the spatial fidelity of the fossil record through time. 

 

2.5 CONCLUSION 

The extent of out-of-habitat transportation is understudied in areas of shallow shelf, frequented by 

high-energy events such as tropical cyclones. The present study demonstrates a high-degree of L/D 

mismatch from such an area indicating a high degree of post-mortem transport and mixing. 

Although a detailed multi-year sampling is required to establish the true variability of LAs, a SFD 

based modeling helps to understand the effect of lateral mixing in shaping the L/D fidelity. The 

model, based on the size distribution of live and dead assemblage, shows the low probability of 

creating the death assemblage by “within-habitat” mixing of live communities and implies the 

possible role of “out-of-habitat” mixing. The cyclone record of Chandipur shows a high frequency 

of cyclones that originate above 15°N and moves northward. The fact that there is high 

compositional similarity of species within the latitudinal extent of 15° to 21°N probably points to a 

high degree of lateral transport and mixing of shells within the latitudinal bins in the north of 15°N. 

These findings highlight the importance of out-of-habitat transport in shaping the regional 

distribution of marine fossil assemblages, especially in storm dominated siliciclastic settings. In 
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addition, factors such as sedimentation rate, time-averaging, and slope would contribute in creating 

patterns. The regional pattern of shell distribution, therefore, will be influenced by a combination of 

these factors and may differ significantly across storm-dominated settings. 
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Controls of spatial resolution and environmental variables on observed beta diversity of 

molluscan assemblage at a regional scale 

 

ABSTRACT 

 

Beta diversity, which quantifies the compositional variation among communities, is one of the 

fundamental partitions of biodiversity and is associated with abiotic and biotic drivers. Unveiling 

these drivers is essential for understanding various ecological processes in the past and recent faunal 

communities. Although the quantification of beta diversity measures has improved over the years, 

the potential dependence of beta diversity on methodological choices is relatively understudied. 

Here, we investigate the effect of the variable scale of sampling on different measures of beta 

diversity at a regional scale. The west coast of India, bordering the eastern margin of the Arabian 

sea, presents a coastal stretch of approximately 6100km from 8–21◦N. We used marine bivalve 

distribution data, consisting of live occurrence data from literature reports and abundance data from 

death assemblages collected from localities representing latitude bins. We tested if variable 

sampling scales explain the observed variation in beta diversity due to differences in bin sizes and 

unequal coastline length. We developed a null model to generate a beta diversity pattern with an 

increase in the spatial scale of sampling by progressively increasing the grid size along the 14 

latitude bins. Our null model demonstrates that for both the live and dead datasets, the total beta 

diversity measured by Bray-Curtis, Whittaker, and Sorenson indices decreases with increasing 

sampling scale. The species replacement (turnover) evaluated by the Simpson index decreases, and 

the species loss (nestedness) measured by the Sorenson index increases with increasing sampling 

scale. A comparison between the simulated and observed beta diversity distribution using the K-S 

test demonstrated that the observed pattern of beta diversity is significantly different from the 

pattern generated from the null model in both live and death assemblages. Our findings imply that 

sampling alone does not create this region's spatial variation in beta diversity. The results show that 

environmental parameters such as salinity, productivity, and cyclones significantly shape the 

regional beta diversity along the west coast. Our study provides an approach for evaluating the 

effect of variable sampling scales on comparing regional beta diversity. It also highlights spatial 

standardization's importance while inferring processes driving spatial diversity changes.  

 

Keywords: spatial fidelity, similarity indices, scale dependence, environmental variability 
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3.1 INTRODUCTION 

 

Biological diversity is spatially heterogeneous across the globe, and understanding the 

causes of spatial variation in marine diversity is one of the primary focus of ecological and 

paleoecological research (Kowalewski 1996; Olszewski and Patzkowsky 2001; Kidwell and 

Holland 2002; Huntley and Kowalewski 2007; Melo et al. 2009; Tittensor et al. 2010; Brown 2014; 

Tyler and Kowalewski 2017). The measures of spatial differences in diversity have three main 

partitions: alpha, beta, and gamma diversity (Whittaker 1960). Alpha and gamma diversity 

represent diversity at the finest and largest scale of observation, respectively (Patzkowsky and 

Holland 2012). Beta diversity, defined as within-habitat diversity (Whittaker 1960), is used to 

quantify the spatial variation in community composition among localities (Harrison et al. 1992; 

Gray 2000; Anderson et al. 2011). Evaluating within-habitat differences in the composition helps 

understand different aspects of ecosystem functioning (Legendre 2014), including drivers of 

community assembly, and are considered essential for conservation-based studies (Purvis and 

Hector 2000; Cleary 2003; Tuomisto et al. 2003; Baselga 2010).  

However, beta diversity is a derived quantity unlike the directly measurable alpha and 

gamma diversities. One can measure beta diversity in numerous ways without any consensus on 

which measure is suitable for a particular ecological question, making it a complex metric to 

interpret (Whittaker 1960; Anderson et al. 2006, 2011; Baselga 2010; Beck et al. 2013; Barwell et 

al. 2015). Beta diversity can be partitioned into two major components: turnover and nestedness 

(Harrison et al. 1992; Baselga 2007, 2010; Anderson et al. 2011). Turnover can be explained as the 

replacement of some species by others between assemblages along a gradient due to environment 

sorting and/or historical constraints such as dispersal barriers due to geographic isolation (Qian et 

al. 2005; Leprieur et al. 2011). In contrast, nestedness reflects a spatial pattern where assemblages 

with lower species richness are subsets of those sites with higher species richness, resulting from 

selective extinction or colonization (Wright and Reeves 1992; Ulrich and Gotelli 2007). These 

components are not mutually exclusive, and the resulting assemblages can be a mix of both 

components. Exploring these components across a gradient can reveal the role of different processes 

in shaping the patterns of assemblage composition along that gradient, which will, in turn, help in 

designing strategies for protecting the diversity of a landscape (Leprieur et al. 2011; Qian et al. 

2020). 

The patterns and processes influencing beta diversity have been an area of considerable 

research interest. The model organisms in studies of beta diversity are dominated by terrestrial 
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communities such as plants (Fournier and Loreau, 2001; Kraft et al., 2011; Qian et al., 2005; Qian 

and Ricklefs, 2007; Qian and Xiao, 2012; Wagner et al., 2000), insects (Fleishman et al. 2003; 

Gering et al. 2003; Summerville et al. 2003; Lindo and N. Winchester 2008), birds (Fleishman et al. 

2003; Jankowski et al. 2009), mammals (Gabriel et al. 2006; Soininen et al. 2007; Melo et al. 2009; 

Svenning et al. 2011; Peixoto et al. 2017) and freshwater fauna (Stendera and Johnson 2005). In 

contrast, the marine communities are relatively poorly studied except for reefal communities such 

as fishes and benthic invertebrates (Hewitt et al. 2005; Harborne et al. 2006; Josefson 2009; Belley 

and Snelgrove 2016; Roden et al. 2020; Souza et al. 2021). Large-scale patterns in beta diversity is 

linked to latitudinal and altitudinal gradients (Soininen et al. 2007; Jankowski et al. 2009; Kraft et 

al. 2011). A combination of abiotic factors (such as temperature, habitat heterogeneity, 

biogeographic isolation events) and biotic factors (such as dispersal limitation, competitive 

exclusion) are attributed as important drivers of taxonomic and phylogenetic beta diversity in both 

terrestrial and marine realm (Becking et al. 2006; Qian and Ricklefs 2007; Arias-González et al. 

2008; Leprieur et al. 2011; Baselga et al. 2012; Segre et al. 2014; Hattab et al. 2015; Klompmaker 

and Finnegan 2018; Fluck et al. 2020; Qian et al. 2020; Maxwell et al. 2022).  

Identifying the drivers of beta diversity is highly dependent on the spatial scale and 

resolution of the study (Mac Arthur and Wilson 1967; Hewitt et al. 2005; Tokeshi 2009). The 

factors that will determine variability in composition at a small spatial scale (site-scale or point-

based studies) will differ from the determinant processes at larger scales. Typically, beta diversity 

increases rapidly at local scales as new sampling units are incorporated due to high variation in 

stochastic species occupancy patterns among sites (Rosenzweig 1995; Barton et al. 2013). At 

regional scales, beta diversity increases more slowly as fewer new species are encountered between 

sites than local ones. At larger scales, beta diversity increases as new species are encountered 

between sites across biogeographic regions with different geological and evolutionary histories.  

Consequently, similar patterns of beta diversity observed at different scales may not imply causative 

similarities (Whittaker et al. 2001; Hortal et al. 2010). Conceptually, beta diversity should increase 

with increasing spatial scale of individual units of observation (grid size) considering all individual 

units of observation (Barton et al. 2013). However, the choice of grid sizes for sampling, even 

within a constant extent of the study area, significantly affects the variability in species composition 

(Steinbauer et al. 2012). Barton et al (2013) proposed that a ‘sliding window’ perspective, in which 

both grid size and extent vary, would be an informative way to understand compositional variation 

across scales. Uncertainties produced due to unequal sampling and variable geographic 

configuration further complicate the comparison of measured beta diversity (Womack et al. 2020). 

Despite acknowledging the potential scale dependence, only a few studies attempted spatial scaling 
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of beta diversity (Kraft et al. 2011; Barton et al. 2013; Womack et al. 2020). Moreover, the patterns 

of beta diversity and the sensitivity to sampling can differ among time-averaged death assemblages 

(DA) and live assemblages (LA) residing in various environments (Tyler and Kowalewski 2017). 

Understanding the effect of increasing grid size of sampling, implying increasing sample size per 

bin within a constant extent on observed beta diversity of both live and death assemblages, will 

provide a unique insight into the spatial patterns of beta diversity.   

The diverse ecosystem of tropical shallow marine environments is characterized by many 

co-existing species within habitats and high rates of species turnover between habitats (Gray 2000). 

Although these are important factors impacting beta diversity (Segre et al. 2014; Klompmaker and 

Finnegan 2018), only a handful of studies explored the regional patterns along tropical shallow 

marine environments. Using the marine bivalve distribution over a regional stretch of the 

environmentally heterogeneous coastline of India, we evaluated the beta diversity and its 

dependence on the scale of study. Specifically, we tried to address the following questions: 

 

i. Can the beta diversity variation be explained by the unequal grid size of sampling for LA 

and DA? 

ii. What is the effect of the choice of beta diversity index on the observed pattern? 

iii. If variations due to unequal sampling are minimal, which environmental parameter explains 

the observed beta diversity pattern? 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 Locality and sampling: 

The study was conducted along the west coast of India. The west coast of India, bordering 

the eastern Arabian Sea, represents a latitudinal spread of 14° (8–23°N) spanning approximately 

6100km from Kanyakumari in the south to Koteshwar in the north. The coast is characterized by a 

high degree of environmental heterogeneity consisting of coral reefs, lagoons, seagrass habitats, and 

sandy beaches. The northern part of the Arabian sea has low siliciclastic input and high productivity 

associated with upwelling during winter cooling. The southern region has a well-developed reefal 

system with moderate variation in salinity (Parulekar and Wagh 1975; Slater 1984; Madhupratap et 

al. 1996; Levin et al. 2000; Sarkar et al. 2019).  

For collecting time-averaged death assemblage, 25 sampling sites representing 14 latitudinal 

bins were selected (Fig 3.1). Each bin is represented by at least one sampling locality, with a 
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minimum of a five km gap between two consecutive localities within a bin. All visible molluscan 

specimens were collected from a traverse of ~1 km along the sea shore from each locality. We 

repeated this process twice for each sampling site. The sampling was done over five and a half years 

from July 2010 to December 2015 in both post and pre-monsoon. Each latitudinal bin was 

represented by a minimum of 200 individuals of bivalve. The bivalve specimens from death 

assemblage (DA) was identified using published work by Rao (2017) and the World Register of 

Marine Species (WoRMS Editorial Board, 2020) (for details, see Chattopadhyay et al. 2021). For 

constructing live assemblage (LA) dataset, the occurrence data on marine bivalves was obtained 

from a marine biodiversity database reported from various published literature, maintained by the 

Bioinformatics Centre, National Institute of Oceanography, Goa, India (for details, see Sarkar et al., 

2019). The database provided the scientific name of the bivalves, taxonomic details, feeding habits, 

habitat, size, and location. We often used Google Earth, supplementing location data to acquire the 

correct latitude and longitude.

 

 

3.2.2 Oceanographic variables: 

We retrieved data on oceanographic variables (productivity, sea surface temperature, and 

salinity) from Ocean Productivity database. The diversity of shallow marine fauna is also known to 

depend on the habitat area (Smith and Benson 2013); therefore, we use shelf area and coastline 

length as a proxy for the habitat area. The coastal length and shelf width data are obtained from 

GEBCO Compilation Group (2020). Because high-energy storm events affect the distribution of 

molluscan death assemblages (Bhattacherjee et al. 2021), we included cyclone frequency data for 

our analyses. We used the global-tropical-extratropical cyclone climatic atlas from the United States 

Navy National Climate Data Center cyclone records. The processing details of cyclone data are 

discussed in Bhattacherjee et al. (2021).

 

3.2.3 Diversity estimates: 

Taxonomic beta diversity can be measured in several ways. According to the concept of 

additive partitioning (Lande 1996), the gamma diversity (γ) in an area with multiple samples equals 

the sum of the average diversity within each of the samples (α) and among the samples (β); 

therefore γ = α + β, and β is given by γ – α (Crist et al. 2003). We report results using both classical 

additive metrics and pairwise metrics. Classical additive metrics are derived directly from the 

relationship between alpha diversity and gamma diversity, such as the Whittaker index (Lande 

1996). The pairwise metric is based on the similarity between a pair of sites, or an average of all 

http://sites.science.oregonstate.edu/ocean.productivity/standard.product.php
https://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_2020/
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pairs and quantifies turnover (Anderson et al. 2011). The pairwise metrics used are Sørensen 

(Sørensen,1948), the Nestedness component of Sørensen, Simpson (Simpson 1943) and Bray-Curtis 

(Pairwise proportional dissimilarity) (Bray and Curtis 1957; Koleff et al. 2003; Anderson et al. 

2006) indices. Sørensen dissimilarity measures the compositional dissimilarity component arising 

from species replacement and species loss (nestedness). The component of dissimilarity caused by 

species replacement is explained by the Simpson dissimilarity (Simpson 1943). The nested 

component of Sørensen can be calculated by subtracting the Simpson dissimilarity from the 

Sørensen dissimilarity measure (Baselga 2010). The presence-absence version of the Bray-Curtis 

indices or pairwise proportional dissimilarity (PPD) is relatively insensitive to variable sample sizes 

(Wolda 1981; Ferrier et al. 2007). 

All calculations were performed on both datasets (LA and DA). The abundance data is transformed 

to presence-absence data prior to the measurement of beta diversity. Classical beta diversity 

measures like Whittaker’s beta diversity are calculated in R using the “betadiver” function from the 

package Vegan, and pairwise measures are calculated using the “beta.pair” function from the 

package betapart (Baselga and Orme 2012). 

 

3.2.4 Null model: 

The null hypothesis states that the variation in beta diversity along the coast is explained by 

unequal sampling due to differences in bin sizes and unequal coastline length. To test it, we 

designed a null model following a resampling technique with increasing grid size (Ulrich and 

Gotelli 2007; Astorga et al. 2014; Loiseau et al. 2017). We created two variations of the model: 1) 

Combined bin method and 2) Individual bin method (Fig 3.2). These variations allow prediction of 

the pattern of beta diversity with increasing grid size and spatial extent of observation. 

In both variations, we randomly choose two latitude bins between 8 to 21, 8 being the 

southernmost bin and 21 being the northernmost bin. Each of these bins is of unequal sizes 

spanning variable coastline lengths. We consider each of these bins as grid or individual units of 

observation. Therefore, bin sizes or coastline length is considered as our study's measure of 

sampling scale. In the "Combined bin method," we incrementally increase the grid size from the 

smaller latitude bin towards the larger bin by adding one bin in each step. The remaining latitudinal 

bins at that step are also clubbed together into a single unit. At each step, the beta diversity is 

calculated between that grid and the other unit containing the rest of the latitude bins combined. The 

grid size from the smaller bin is increased at each step until it reaches the bin prior to that iteration's 

maximum latitude bin value. This process is repeated for 50 iterations (Fig. 3.2). The beta diversity 

is calculated at each step of every iteration.  
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In the “Individual bin method,” we increase the grid size at each step from the smaller 

latitude bin by adding one bin. In contrast to the "Combined bin method," multiple latitude bins are 

clubbed together as one single unit, here, we consider the remaining latitudinal bins as individual 

units; the beta diversity at each step is calculated between that grid with the other individual latitude 

bins. The remaining steps within the first iteration are common to the "Combined bin method" and 

are followed in the same sequence as explained previously (Fig. 3.2).  

To evaluate the effect of choice of the beta diversity measure, we used various beta 

diversity measures such as Whittaker (βwhit), Bray Curtis (βppd), Simpson (βsim), Sorenson (βsor) and 

nestedness component of Sorenson (βsne). Spearman rank-order coefficient is used to measure the 

correlation of beta diversity values (βNull) of each index with varying bin sizes and coastline length. 

The model was used for the LA and DA datasets, and the results are compared. 

  To check the effect of unequal grid sizes on the observed beta diversity distribution we 

checked whether βObs (βObs_LA and βObs_DA) could be generated from the distribution of null model 

values βNull (βNull_LA and βNull_DA). A resampling method (described in Bhattacherjee et al, 2021) was 

performed to simulate a distribution of β values (βsimulated) by randomly sampling from the 

distribution of null model values (βNull). We resampled 14 values with replacement corresponding to 

14 latitude bins from the distribution of βNull to generate a simulated distribution (βsimulated). We 

calculated the K-S distance between the distribution of simulated β values (βsimulated) and observed β 

values (βObs_LA and βObs_DA) using the ks.test () function in R. We repeated this step 10,000 times to 

get Bootstrap densities of K-S distances and p-values. This process is performed for all the β 

diversity indices. If βObs can be generated from βNull then the K-S test will generate p values >0.005, 

implying the scale-dependent sampling strategy can create the observed difference in beta diversity. 

We can reject the null hypothesis if p<0.005. A statistically significant difference between βObs and 

βsimulated indicates that βObs cannot be generated from the distribution of βNull. Such a result would 

imply that methodological issues such as sampling strategy alone and probably demonstrating the 

natural variation cannot explain the variation in beta diversity. 

 

3.2.5 Statistical analyses: 

We used the Spearman rank-order correlation test to evaluate the relationship between β 

diversity and physical factors (such as latitude, coastline length, and other environmental variables). 

We used Bray-Curtis (PPD) dissimilarity for evaluating the correlation of βobs with environmental 

variables. We also used multiple generalized linear models (GLMs) to analyze the effect of 

environmental variables by taking all parameters simultaneously and evaluating their contributions 

to the total variation in diversity (Quinn and Keough 2002). To assess the change in species 
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composition with environmental variables, a canonical correspondence analysis (CCA) and 

Redundancy Analysis (RDA) were conducted (Ter Braak 1986). CCA uses a site-by-species matrix 

and a site-by-environment matrix to extract orthogonal ordination axes that represent linear 

combinations of environmental variables. RDA is a canonical extension of principal component 

analysis (PCA), where ordination vectors are constrained by multiple regression to be linear 

combinations of the original explanatory variables (Legendre and Legendre 1998). 

All statistical tests were performed in R version 4.2.0 (R Core Development Team, 2012).   
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Figure 3.1: Map of India showing the sampling locations for collection of death assemblages. 
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Figure 3.2: Flowchart describing the general framework for the null model



 

54 
 

3. 3 RESULTS 

 

The DA consists of 13757 bivalve specimens collected from 25 localities over 14 latitude 

bins representing 167 species from 28 families. The LA consists of 177 species representing 37 

families. Mean beta diversity values in LA vary from 0.156 for βobs_sne to 0.864 for βobs_ppd (Table 

3.1). Mean beta diversity values in DA vary from 0.151 for βobs_sne to 0.851 for β obs_ppd (Table  3.1). 

 

3.3.1 Predicted effect of sampling and choice of index on beta diversity: 

In the live assemblages (LA), the null model-generated beta diversity values did not show 

any consistent pattern, and the correlation was dependent on the unit of spatial resolution (bins and 

coastline length) and the method used (Table 3.2). Bray-Curtis dissimilarity (βppd), although not 

significantly correlated with coastline length, was negatively correlated with some bins in the 

individual bin method. However, the negative correlation with coastline length is significant in the 

combined bin method (Fig 3.3A, 3.S1A). The total dissimilarity component is negatively correlated 

with coastline length. While the Simpson index (βsim) values show a negative correlation with both 

coastline length and the number of bins in the individual bin method (Fig 3.3F, 3.S1F), the 

nestedness component of Sorenson (βsne) is positively correlated. In the combined bin method, 

however, βsne is negatively correlated with the number of bins (Fig 3.3J, 3.S1J).   

In the DA’s, beta diversity of all indices from the null model was negatively correlated with 

the number of bins and coastline length in the combined bin method, except βsim where the 

correlation wasn’t significant with coastline length (Fig 3.4, 3.S1; Table 3.3). Only Bray-Curtis 

(βppd) was positively correlated with coastline length and the number of bins for both methods (Fig 

3.4A-B, 3.S2A-B). Whittaker’s beta diversity (βwhit) is negatively correlated with coastline length 

and the number of bins combined bin method and only with bins in the individual bin method (Fig 

3.4C, 3.S2C-D). The Simpson index (βsim) demonstrates a consistent negative correlation with 

coastline length in the individual bin method and the number of bins in both methods (Fig 3.4E, 

3.S2E-F). Sorenson (βsor) shows a similar pattern to βsim being negatively correlated with coastline 

length in the combined bin method and with the number of bins in both methods (Fig 3.4G, 3.S2G, 

3.S2H). The variance in βsim and βsor is also negatively correlated with the number of bins in both 

methods and coastline length in the combined bin method (Fig 3.4E, 3.4G, 3.S2E-H; Table 3.3). On 

the other hand, the nestedness component of Sorenson (βsne) shows a positive correlation with 

coastline length in the individual bin method and a negative correlation in the combined bin method 

(Fig 3.4I-J, 3.S2I). All the correlations mentioned before were significant, if not mentioned 

otherwise (Table 3.3).  
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3.3.2 Effect of sampling scale and choice of index on observed beta diversity pattern: 

The observed variation pattern of beta diversity along the west coast also shows no 

significant correlation with coastline length in LA and DA (Fig 3.5). The distribution of βobs is 

significantly different from βNull in the K-S test for all beta diversity indices except the nestedness 

component of Sorenson (βsne) in the combined bin method (Fig 3.6). In the individual bin method, 

the difference is significant for βsor distribution in live assemblages and βppd in live assemblages (Fig 

3.6 D, N). βNull and βobs in the nestedness component of Sorenson (βsne) are never significantly 

different in either of the methods (Fig 3.6Q-T). Most of the results for total dissimilarity indices βsor 

and βppd are significant (Fig 3.6 A, C-D, M-O), which implies that they are sensitive proxies that 

can be used to evaluate methodological influence. Since βppd shows a consistent pattern, it is a good 

index for determining the effect of the sampling scale.

 

3.3.3 Overlapping and non-overlapping patterns in LA and DA: 

For LA and DA, beta diversity patterns from the null model were different, particularly 

when the combined bin method was used. While LA did not show a significant correlation with the 

number of bins in βppd βwhit βsim, DAs were strongly negatively correlated for all indices (Table 3.2-

3.3). The patterns in LA were less consistent than the patterns observed in the DA. βppd shows a 

significant positive correlation with the number of bins in individual bin method, for the LA and 

DA (Fig 3.S1B, 3.S2B). The turnover component (βsim) shows a negative correlation with coastline 

length and the number of bins in the individual bin method for both datasets (Fig 3.3F,3.4F, 3.S1F, 

3.S2F; Table 3.2-3.3). On the other hand, the nestedness component (βsne) positively correlated with 

coastline length in the individual bin method and negatively correlated with the number of bins in 

the combined bin method in both LA and DA (Fig 3.3J, 3.4J, 3.S1I, 3.S2I). Overall, both LAs and 

DAs showed a decreasing pattern in the total dissimilarity components and turnover components 

with an increase in sampling scale, except for the nestedness component, which showed an 

increasing pattern. ΒNull_LA and βNull_DA produced by both the LA and DA datasets were significantly 

different from the βobs_LA and βobs_DA of respective LA and DA datasets in the combined bin method. 

In the individual bin method, however, βNull and βobs difference were not significant for most indices 

in both LA and DA except for βsor in LA and βppd in DA, which were significantly different. Except 

for two instances (Fig 3.6B-D, 3.6N-P), LA and DA behaved the same for all treatments (index, 

type of null model). This implies that the sensitivity to the sampling scale is similar for both live 

assemblages and time-averaged death assemblages.
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3.3.4 Effect of environmental variables on beta diversity: 

Because of the robustness of βppd (Fig 3.6), we selected this index to evaluate the influence 

of the environmental variables on beta diversity. Only oxygen concentration shows a significant 

negative correlation with Bray-Curtis dissimilarity (βppd) in LAs (Fig 3.7M).  

Salinity (range) significantly correlates with other environmental variables (Table 3.4). After 

excluding salinity (range) based on autocorrelation, none of the explanatory variables show a 

significant effect on the beta diversity in single and multiple or single GLM for LA and DA (Table 

3.5).  

In Canonical correspondence analysis (CCA), 58% variation in species composition in LAs 

was explained by the environmental variables of salinity mean, productivity mean, productivity 

range, temperature mean, shelf area, oxygen concentration, and cyclones (Fig 3.8A). Of the three 

ordination axes, axis 1 explained 12% of the total variation in the dataset, and 42% of the variation 

was explained by all three axes. The same combination of variables was able to explain 6.3% of the 

total variation in species composition in DAs (Figure 3.8B). In DAs, out of the three ordination 

axes, axis 1 explained 17% of the total variation in the dataset, and 43.5% of the variation was 

explained by all three axes.  

About 50% of the constrained variation in species distribution in LAs is explained by a 

combination of productivity (range), salinity (mean), temperature (mean), and cyclones using RDA 

on presence-absence species data (Adjusted R2=23.7%) (Fig 3.8C). With a forward selection, only 

salinity (mean and range) was a significant predictor (p=0.03). The same set of variables, along 

with shelf area, was able to explain about 53% of the variation in species distribution in DAs 

(Adjusted R2=23.7%) (Fig 3.8D). Forward selection to choose a model with fewer variables, 

however, stopped because of the limited explanatory power of fewer environmental variables.  
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Figure 3.3: Null model predicted mean (black circles) and variance of beta diversity (red dash) with 

coastline length based on LA data. The left column represents “combined bin method” and the right 

column represents “individual bin method”. The indices of beta diversity used here include Bray-

Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-F), Sorenson index (βsor) 

(G-H), Nestedness component of Sorenson (βsne) (I-J). 
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Figure 3.4: Null model predicted mean (black circles) and variance of beta diversity (red dash) with 

coastline length based on DA data. The left column represents “combined bin method” and the right 

column represents “individual bin method”. The indices of beta diversity used here include Bray-

Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-F), Sorenson index (βsor) 

(G-H), Nestedness component of Sorenson (βsne) (I-J).  
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Figure 3.5: Relationship between observed mean beta diversity and coastline length. The left 

column represents LA and the right column represents DA. The indices of beta diversity used here 

include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson index (βsim) (E-F), 

Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-J). 

  



 

60 
 

Figure 3.6: Histograms of D-values produced by K-S test between simulated (combined and 

individual method) and observed beta diversity distributions. The first two columns represent LA 

and the right two columns represent DA. The indices of beta diversity used here include Bray-Curtis 

(βppd) (A-D), Whittaker index (βwhit) (E-H), Simpson index (βsim) (I-L), Sorenson index (βsor) (M-P), 

Nestedness component of Sorenson (βsne) (Q-T). The significant p-values are marked in red. 
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Figure 3.7: Relationship between βppd and different oceanographic parameters. The first two 

columns represent LA and the right two columns represent DA.  
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Figure 3.8: Biplots showing the relationship between βppd and environmental parameters using 

canonical correspondence analysis (CCA) (A-B) and redundancy analysis (RDA) (C-D). The left 

column represents LA and the right column represents DA. 
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Table 3.1. Mean of observed beta diversity values of different indices from LA and DA. 

 

 

 

β diversity index LA DA 

Bray-Curtis (βobs_ppd) 0.851 0.864 

Whittaker (βobs_whit) 0.753 0.629 

Simpson (βobs_simp) 0.602 0.473 

Sorenson (βobs_sor) 0.753 0.629 

Nestedness component of Sorenson (βobs_sne) 0.151 0.156 
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Table 3.2. Results of Spearman rank correlation test between beta diversity and spatial scale of sampling (grain size) for LA. The statistically 

significant results are marked in bold. 

 

 

Index 

 

LA 

Number of bins Coastline length 

Combined bin method Individual bin method Combined bin method Individual bin method 

Mean Variance   Mean Variance Mean Variance   Mean Variance   

p rho p rho p rho p rho p rho p rho p rho p rho 

βppd 0.636 -0.032 0.000 0.335 0.034 0.148 0.087 -0.545 0.004 -0.191 0.341 0.382 0.296 0.074 0.141 -0.473 

βwhit 0.496 -0.046 0.503 0.227 0.388 0.056 0.354 -0.293 0.106 -0.109 0.356 0.309 0.975 

-

0.002 0.451 -0.254 

βsim 0.519 0.047 0.232 

-

0.418 0.000 -0.339 0.880 0.066 0.735 -0.024 0.145 

-

0.469 0.000 

-

0.277 0.945 0.030 

βsor 0.012 -0.169 0.968 

-

0.018 0.085 0.118 0.457 -0.237 0.053 -0.131 0.451 

-

0.254 0.321 0.068 0.654 -0.150 

βsne 0.056 -0.139 0.299 

-

0.345 0.000 0.471 0.225 -0.400 0.252 -0.084 0.021 

-

0.700 0.000 0.335 0.946 -0.027 
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Table 3.3. Results of Spearman rank correlation test between beta diversity and spatial scale of sampling (grain size) for DA. The statistically 

significant results are marked in bold. 

 

 

Metric 

DA 

Number of bins Coastline length 

Combined bin method Individual bin method Combined bin method Individual bin method 

Mean Variance Mean Variance Mean Variance Mean Variance 

p rho p rho p rho p rho p rho p rho p rho p rho 

βppd 0.000 0.315 0.758 -0.115 0.001 0.221 0.095 -0.563 0.000 0.292 0.341 -0.318 0.001 0.227 0.236 -0.391 

βwhit 0.000 -0.436 0.967 0.018 0.002 -0.214 0.707 -0.139 0.000 -0.353 0.145 -0.472 0.752 0.220 0.802 -0.091 

βsim 0.045 -0.141 0.001 -0.872 0.000 -0.474 0.100 -0.527 0.072 -0.126 0.004 -0.809 0.000 -0.263 0.327 0.327 

βsor 0.000 -0.428 0.427 -0.284 0.000 -0.271 0.033 -0.654 0.000 -0.327 0.016 -0.718 0.658 0.029 0.192 -0.427 

βsne 0.000 -0.354 0.743 0.133 0.097 0.119 0.503 0.227 0.001 -0.222 0.349 -0.333 0.022 0.163 0.313 -0.336 
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Table 3.4. Results of multiple and single GLM analyses to assess contribution of environmental variables in determining observed Bray-Curtis 

dissimilarity (βobs_ppd).  

  

 Environmental 

variables 

  

LA West Coast DA West Coast 

Multiple GLM Single GLM Multiple GLM Single GLM 

Estimate 

Std. 

Error t value Pr(>|t|) Estimate 

Std. 

Error t value Pr(>|t|) Estimate 

Std. 

Error t value Pr(>|t|) Estimate 

Std. 

Error t value Pr(>|t|) 

Productivity 

mean -0.0001 0.0001 

-

0.7246 0.5012 0.0000 0.0000 0.9590 0.3570 -0.0001 0.0000 

-

1.5158 0.1900 0.0000 0.0000 

-

0.1720 0.8660 

Productivity 

range 0.0000 0.0001 

-

0.0890 0.9325 0.0000 0.0000 

-

1.4380 0.1760 0.0002 0.0001 2.1764 0.0815 0.0000 0.0000 

-

0.4580 0.6550 

Salinity mean 0.1011 0.1586 0.6371 0.5521 0.0258 0.0208 1.2400 0.2390 0.0593 0.1040 0.5701 0.5933 0.0091 0.0164 0.5540 0.5900 

Temperature 

mean 0.0797 0.2094 0.3808 0.7190 -0.0359 0.0296 

-

1.2120 0.2488 -0.2376 0.1373 

-

1.7306 0.1441 -0.0072 0.0235 

-

0.3060 0.7650 

Temperature 

range 0.1654 0.1068 1.5496 0.1819 0.0184 0.0263 0.6990 0.4980 -0.0381 0.0700 

-

0.5440 0.6098 -0.0158 0.0197 

-

0.8050 0.4370 

Oxygen 

concentration -0.0317 0.0207 

-

1.5307 0.1864 -0.0152 0.0119 

-

1.2800 0.2250 -0.0296 0.0136 

-

2.1778 0.0813 -0.0156 0.0084 

-

1.8710 0.0859 

Cyclones 0.0002 0.0071 0.0297 0.9774 -0.0004 0.0027 

-

0.1500 0.8830 0.0101 0.0046 2.1847 0.0806 0.0002 0.0021 0.0950 0.9260 

Shelf area 0.0000 0.0000 

-

1.2324 0.2726 0.0000 0.0000 0.2330 0.8190 0.0000 0.0000 

-

1.9635 0.1068 0.0000 0.0000 

-

0.0700 0.9460 
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3.4 DISCUSSION 

 

Abiotic and biotic drivers influence the compositional variation among communities 

captured by beta diversity. Unveiling these drivers of spatial heterogeneity in diversity requires us 

to rule out variations arising due to methodological strategies. The high marine diversity of tropical 

oceans, although studied in detail, their spatial structure is relatively poorly known. The west coast 

of India, bordering the eastern Arabian Sea, represents a tropical marine realm with a latitudinal 

spread of 14° (8–23°N) and has high degree of environmental heterogeneity. The alpha diversity of 

the coastal and shelf region of the Arabian sea has been relatively well studied (Jayaraj et al. 2008; 

Joydas and Damodaran 2009, 2014). In contrast, this region's beta diversity of macrobenthic species 

has been largely unexplored (Sarkar et al. 2019; Sivadas et al. 2020, 2021). Our study attempts to 

develop a methodological framework to assess how beta diversity is influenced by methodological 

strategies such as spatial scale and diversity index. It also attempts to identify the oceanographic 

drivers shaping the distribution by using the regional distribution of LA and DA from a tropical 

coast with high environmental heterogeneity.

 

3.4.1 Effect of sampling scale: 

Coastline length is an important predictor of the biodiversity of recent marine ecosystems 

(Tittensor et al. 2010). A longer coastline offers higher availability of essential habitat features that 

positively influence both abundance and richness of coastal species (Rosenzweig 1995). However, 

variable coastline lengths of each latitude bin might lead to uneven sampling from different spatial 

bins resulting in increased beta diversity. Alpha diversity also increases quickly with increasing 

scale at smaller spatial scales due to high variation in stochastic species occupancy patterns among 

sampling units and variation in species responses to habitat heterogeneity (Rosenzweig 1995; 

Whittaker et al. 2001). At intermediate or regional scales, diversity increase with scale is slower 

because of the limited addition of new species relative to the regional pool. This pattern is also 

applicable to beta diversity, wherein dissimilarity is higher at the smallest and biggest spatial scales 

but lower at the intermediate scale (when based on a “sliding window” with varying grid size and 

extent) (Barton et al. 2013).  

The null model provides a ‘sliding window’ perspective wherein the spatial grid size in-

creases incrementally within a constant spatial extent. According to the results of our null model, 

the consistent pattern observed in beta diversity across LAs and DAs was a decreasing trend or 

negative correlation with an increasing sampling scale (Table 3.2, 3.3). This decreasing pattern 

contradicts the general theory of increasing beta diversity with increasing grid sizes within a 
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constant extent (Barton et al. 2013; Womack et al. 2020). Harborne et al. (2006) observed a positive 

correlation of beta diversity with environmental conditions within a specific spatial scale across a 

tropical seascape, supporting the importance of multiple scale- studies over single-scale studies for 

generalizing ecological patterns (Levin 1992). However, the observed pattern in beta diversity from 

mollusc LA and DAs from the west coast does not significantly correlate with increasing coastline 

length. The null-model-generated distribution of beta diversity in this study provides an opportunity 

to evaluate the effect of scale on regional beta diversity quantitatively. Our study also demonstrated 

that slight changes in the null model design might result in differing conclusion of the scale 

sensitivity. Between the two variations of the null model, the combined bin method appeared more 

robust in identifying beta diversity variations developed due to non-methodological processes. This 

affirms that data categorization decisions can influence the observed beta diversity patterns at 

regional scales. 

 

3.4.2 Effect of choice of index: 

Unlike the overall diversity measures (alpha and gamma diversities) beta diversity cannot be 

measured directly. Because it is a derived quantity, the choice of measure is often debated as there 

is no general consensus on the suitability of a measure for addressing particular ecological question 

(Whittaker 1960; Anderson et al. 2006, 2011; Baselga 2010; Beck et al. 2013; Barwell et al. 2015). 

Moreover, the very concept of beta diversity is scale dependent and hence, the individual measures 

may differ in their sensitivity of the scale dependence. Our study shows that different measures of 

beta diversity may have a varying degree of sensitivity to spatial scale of sampling. Multisite 

pairwise measures of beta diversity (βppd, βsor, βwhit) shows a general negative correlation with 

increasing sampling scale represented by number of bins/coastline length, contrary to the a priori 

expectation of increasing beta diversity with increasing scale (Barton et al. 2013). Partitioning beta 

diversity into nestedness and species replacement components facilitates a greater understanding of 

patterns in beta diversity. However, we find a difference in their scale sensitivity implying a 

potential problem in interpreting observed patterns in beta diversity. In our study, the turnover 

component (βsim) decreases with increasing sampling scale whereas the nestedness component (βsne) 

increases, although in some of the analyses the nestedness component also decreases with 

increasing scale from the null model. Species replacement component or turnover component is the 

dominant component of variation in compositional dissimilarity and it is supposed to increase with 

increasing spatial scale, while the nestedness component decreases with increasing scale (Baselga 

2007; Womack et al. 2020). The patterns of these components are logical consequences of the effect 

of environmental or ecological conditions that are operating at different scales. However, these 
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studies have been performed at global scale where the role of dispersal limitation of species is 

higher and geographical differences in environmental conditions will also increase, which will 

likely increase the beta diversity. Our study has been performed at an intermediate scale in tropics, 

with a latitudinal range of 14 where such large scale geographical and dispersal limitation are less 

likely to occur. While comparing the simulated and observed pattern in beta diversity, the 

nestedness component (βsne) did not show significant difference between observed and simulated 

patterns in any of the results, indicating that this index is not a reliable index in this context, as it 

cannot tell apart the methodological influence from the biological influence. Whereas, in total 

dissimilarity indices like βsor and βppd , the simulated and observed distribution are significantly 

different in most results. This implies that they are sensitive proxies that can be used to evaluate 

methodological influence. Therefore, we used βppd in our subsequent analyses for determining the 

contribution of environment.  

 

3.4.3 Patterns observed in LA and DA: 

Death assemblages showed a consistent pattern of negative correlation of beta diversity with 

increasing sampling scale from the null with the exception of nestedness component which showed 

a positive correlation with sampling scale. The live assemblages were also negatively correlated 

with sampling scale except βsne , however the correlation was significant in only very few analyses 

and indices. The observed beta diversity pattern in both DA and LA was not significantly correlated 

with coastline length and both showed the same signal of being significantly different from the 

predicted beta diversity pattern generated from the null model. In comparison of observed and 

simulated beta diversity, LA and DA behaved the same for all treatments (index, type of null 

model) except for two instances. This implies that the sensitivity to sampling scale is similar for 

both datasets. This means that in contrary to the previous observation that time averaging generally 

reduces the beta diversity in an assemblage (Tomašových and Kidwell 2009), our study 

demonstrated that time-averaged death assemblages and fossils are no worse than the LA when it 

comes to beta diversity scaling. Therefore, death assemblages preserve the biological signal that is 

observed in the live assemblages as observed in other marine assemblages (Tyler and Kowalewski 

2017).  Time averaging and post-mortem mixing did not change the spatial fidelity in beta diversity 

pattern at a regional scale study such as this one.  

 

3.4.4 Role of environmental factors: 

Environmental processes are commonly known to explain beta diversity at regional scales 

and lower latitudes  (Qian and Ricklefs 2007). Studies showing substantial effect of environmental 
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as opposed to spatial variables on community similarity have been reported from tropical forests 

and marine macrofauna in European marine sediments (Condit et al. 2002; Duivenvoorden et al. 

2002; Ellingsen 2002; Ellingsen and Gray 2002; Cleary et al. 2004). The eastern Arabian sea's 

environmental variables significantly influence beta diversity. Salinity is one of the primary 

structuring factors for macrobenthic species turnover at a regional scale, as observed in the 

estuarine species in the northern Baltic sea, where beta diversity changed at the same rate as the 

change in salinity between regions (Bleich et al. 2011; Josefson and Göke 2013). There is a 

significant variation in salinity in the southern part of the west coast because of the influence of 

rainfall in summer monsoons and the mixing of Bay of Bengal waters during winter. This salinity 

variation is likely to affect marine benthos on the west coast. In our study, salinity played a decisive 

role in determining the variability of the species composition in both the northern and southern parts 

of the west coast based on the results of CCA and RDA. 

Productivity also plays an important role in shaping up the diversity profile along a coastal 

region (Sarkar et al. 2019). Benthic marine communities showed a higher response than pelagic 

communities since physical mixing plays a significant role in the homogenization of species 

composition (Zinger et al. 2011). However, our study does not show any significant correlation 

between beta diversity and productivity. The productivity range plays a significant in controlling the 

variability of composition in both LA and DA, as observed by the proximity of southern latitudinal 

bins to the productivity range in RDA. This relationship develops because the west coast 

experiences increase productivity due to upwelling processes with the onset of the summer 

monsoon (June- September) (Madhupratap et al. 1996). During winter months, there is a rise in 

productivity in the surface layer, mainly in the northeastern Arabian sea, whereas the southern part 

has low productivity (Kumar and Prasad 1996; Madhupratap et al. 1996). The difference between 

summer and winter productivity is, therefore, higher in the southern Arabian sea, resulting in a 

higher productivity range in the south. 

Shelf area had a significant effect on the LAs but not DAs, which is likely attributable to the 

fact that LAs have habitat-specific patchy occurrences. In contrast, DAs are more prone to post-

mortem mixing. A greater shelf area indicates gentler slopes which cause lower rates of mixing, 

whereas a lower shelf area means a steeper slope causing higher rates of post-mortem transportation 

(Kidwell and Bosence 1991; Donovan 2002). 

Our RDA plot (Fig 3.8C, 3.8D) shows a higher effect of cyclones on the species 

composition of the northern part of the west coast in both LA and DA, as illustrated by the 
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proximity of northern latitudinal bins to the frequency of cyclones. There has been an increase in 

the intensity of pre-monsoon tropical cyclones over the Arabian Sea during recent years owing to an 

increase in the heat content in the ocean (Rajeevan et al. 2013) (Fig 3.S3). The cyclone tracks from 

the western Arabian sea move northwesterly from 14°N to 17°N and gradually weaken towards the 

north (Subrahmanyam et al. 2002). These cyclones thereby follow a northwesterly track impacting 

the northern part of the west coast more significantly. Such cyclones can impact the beta diversity 

of shallow marine benthos due to species loss due to storms, as documented at a tidal flat in Brazil 

(Corte et al. 2017). 

The results of this study suggest that substantial variation in beta diversity can arise from 

methodological artifacts like uneven sampling and spatial resolution. Unless such variation is 

identified and accounted for, the actual spatial pattern of biodiversity will remain obscured, and it 

will not be possible to identify the environmental drivers influencing the ecological processes. 

 

3.5 CONCLUSION 

 

In conclusion, the present study analyzed the effect of the sampling scale on the beta 

diversity at a regional scale using live and dead bivalve assemblages along the west coast of India. 

The beta diversity pattern generated from the null model provides a reference to assess the effect of 

sampling scale on regional beta diversity pattern and its sensitivity on the choice of beta diversity 

index. Our analyses show that the observed beta diversity distribution on the west coast cannot be 

explained by the null model alone, implying uneven sampling to be a minor factor in shaping the 

beta diversity pattern. Among the environmental variables, salinity and productivity are significant 

variables explaining the beta diversity of this region. Consistent patterns were obtained for live and 

dead datasets indicating that at the regional scale, spatial and compositional fidelity has not changed 

significantly despite time averaging and post-mortem transportation events affecting the death 

assemblages. However, the consistency in this study should not be generalized to imply that live 

and death assemblages can always be considered congruent at regional scales, and evaluation of 

live-dead fidelity should not be overlooked even at regional scales. A possible caveat of our study is 

the lack of detailed information on seasonal variation of the live assemblages as we had to mostly 

rely on snapshots of community data from literature. As we covered data from a large region, we 

believe these caveats would not distort our findings.  

 

 



 

72 
 

 

 

 

 

CHAPTER 4 

Community evenness and sample size affect estimates of 

predation intensity and prey selection: A model-based 

validation 
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Community evenness and sample size affect estimates of predation intensity and prey 

selection: A model-based validation 

 

ABSTRACT 

 

Predation estimates inferred from the preserved records of predation traces are essential in 

evaluating the evolutionary effect of ecological interactions. It is, however, crucial to establish how 

sampling intensity and community composition of an assemblage influence the reliability of these 

measures.   

Using a resampling technique, we evaluated the effect of sampling intensity and a community’s 

evenness on the inferred predation estimates. We theoretically simulated model communities 

representing different levels of evenness, predation intensity, and predatory behavior (selective, 

non-selective). We calculated the total predation intensity and the number of prey species for each 

community. We then resampled each community without replacement and noted variations in the 

inferred measure from the accurate measure as the sampling intensity increased. Our results 

demonstrate that the evenness of a community does not influence the inferred predation intensity for 

non-selective predation. However, communities with highly selective predation are sensitive to 

evenness and sampling intensity; inferred predation intensity of these assemblages can substantially 

differ from the actual value. The inferred number of prey species is also influenced by the 

community's original evenness, predation selectivity, and predation intensity. When predation is 

selective, sampling intensity heavily influences communities with low evenness and low predation 

intensity; inferred predation intensity is underrepresented at smaller sample size. For communities 

of low evenness and predation intensity where rare species are attacked preferentially, the inferred 

prey richness differs significantly at a small sample size.  

We proposed a post-facto standardization method for comparing predation estimates of discrete 

communities that differ in the sample size. We validated its utility using the published predation 

data of the Plio-Pleistocene molluscan fossil assemblage. The present approach attempts to provide 

critical insight into the reliability of predation estimates and may help in comparing predation 

patterns across time and space. There might be a number of factors including preservation bias and 

time-averaging that may impact the final predation signature of an assemblage. It warrants for a 

future direction of research to develop a comprehensive framework of post-hoc standardization of 

assemblages with differing predation style and preservation history. 



 

74 
 

4.1 INTRODUCTION 

 

The role of predation in shaping the marine ecosystems through time has been a common 

theme of study (Vermeij 1977; Vermeij et al. 1981; Signor and Brett 1984; Langerhans 2007; 

Stanley 2008; Barnes et al. 2010; Gorzelak et al. 2012; Kotta et al. 2018; Petsios et al. 2021). The 

relationship between the prey and predator is complex in theoretical terms posing a challenge in 

predicting the evolutionary outcome of predation (DeAngelis et al. 1975; Berryman 1992; Haque 

2012; Abrams 2015). For evaluating the evolutionary effects of predation, researchers rely on the 

deep time record of predation (Kitchell and Kitchell 1980; Vermeij et al. 1981; Kelley and Hansen 

1993; Vermeij 1993; McNamara 1994; Kowalewski et al. 2005; Huntley and Kowalewski 2007; 

Baumiller et al. 2010; Klompmaker et al. 2017; Bicknell and Paterson 2018). The accurate 

estimation of predation measures is, therefore, of primary importance to studies of predator-prey 

systems.  

 For establishing predation events and inferring predation intensities, ecological studies use 

direct observations or indirect measures such as compositional characterization of digested food and 

fecal matter (Nilsen et al. 2012; Pringle et al. 2019). Although it is possible to recover direct 

observational evidence of predation events in past ecosystems by studying “caught-in-the-act” 

occurrences (Ehret et al. 2009; Ebert et al. 2015), paleoecological studies primarily rely on 

preserved predation traces, such as drill holes and repair scars (DeAngelis et al. 1985; Kelley and 

Hansen 1993; Dietl and Alexander 2000; Dietl et al. 2004; Alexander and Dietl 2005; Klompmaker 

and Kelley 2015). Based on the neontological experiments and field observations, complete drill 

holes and repair scars are interpreted as a successful attack by carnivorous gastropod (Carriker 

1951; Kitchell et al. 1981; Kowalewski 2004; Hutchings and Herbert 2013; Chattopadhyay et al. 

2014a; Mondal et al. 2014) and an unsuccessful predation attempt by durophagous predator 

respectively (Carriker 1951; Blundon and Kennedy 1982; Dietl and Alexander 2009). These traces 

recording the predation attempts on the prey’s hard shells, are some of the best quantifiable proxies 

for inferring predation from the fossil record (for review see (Alexander and Dietl 2003; Kelley and 

Hansen 2003; Klompmaker et al. 2019)). The frequency of repair scar (RF) and complete drill holes 

(DF) are used for evaluating various aspects of predation in deep time, including predation intensity 

and prey selection (Kitchell et al. 1981; Kelley and Hansen 1993; Kowalewski et al. 1998; Dietl 

2003; Kase and Ishikawa 2003; Chattopadhyay and Baumiller 2010; Chattopadhyay and Dutta 

2013; Tyler et al. 2013).  
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 Inferences about interactions from predation traces have their limitations. The implicit 

assumption for such interpretation is that other processes do not alter the quantitative data provided 

by predation traces. It is recognized, however, that biases introduced through taphonomy may 

influence the biological reliability of these measures affecting overall frequency of traces, site 

stereotypy,  prey selection, and size selection (Roy et al. 1994; Nebelsick 1999; Zuschin et al. 2003; 

Kosloski 2011; Gorzelak et al. 2013; Chattopadhyay et al. 2014b; Chojnacki and Leighton 2014; 

Sime and Kelley 2016; Dyer et al. 2018; Pruden et al. 2018; Smith et al. 2019; Salamon et al. 2020). 

Apart from taphonomy, methods of collection and subsequent analyses may also influence the 

interpretation of predation patterns. In contrast to bulk collection, targeted sampling of specific size 

class or taxon impacts inferred predation intensities (Kowalewski and Hoffmeister 2003; Kosloski 

et al. 2008; Ottens et al. 2012; Hattori et al. 2014; Chattopadhyay et al. 2016; Hausmann et al. 

2018). Theoretical investigations also demonstrated the effect of sample size on inferred predation 

intensity (Smith et al. 2018, 2022). Analytical techniques to evaluate and compare predation 

measures across groups often impact the inferences (Kowalewski 2002; Leighton 2002; Grey et al. 

2006; Stafford and Leighton 2011; Dietl and Kosloski 2013; Smith et al. 2018; Budd and Mann 

2019).  

 Aspects of a specific community, such as evenness, selectivity of predation, and sampling 

intensity may influence predation inferences drawn at the community level, such as predation 

intensity, prey selection. Such influences are crucial for studies that attempt to combine predation 

data from discrete samples and reconstruct temporal/spatial changes in predation patterns. Using 

theoretical simulation based on a resampling technique, we develop a methodological framework to 

understand the effect of community evenness, sampling intensity, and the nature of predation 

selectivity on inferred predation estimates. We attempt to estimate these effects on the inferred 

predation intensity and the number of prey species. The inferred number of prey species provides an 

insight about the choice of prey by the predator. We also propose a method of post-facto 

standardization and validate our approach using predation data from four Plio-Pleistocene fossil 

assemblages of Florida. 

 

4.2 MATERIALS AND METHODS 

 

We created several hypothetical live assemblages of molluscs that are attacked by a specific 

group of predator with differing probabilities. We use a resampling method to compare the 

predation patterns inferred from these assemblages. We assumed that all individuals are finally 
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represented in the death assemblage, each predation attempt leaves a distinct mark on the prey, and 

all predators demonstrate the same prey-selection behavior in specific situations. We acknowledge 

that some of the specific values of predation intensity, and predation selectivity might be rare to 

observe in nature. Our attempt, however, is to design and test a general framework applicable to a 

large spectrum of community structures with varying evenness and predation patterns, even if some 

end-member scenarios do not have a natural representation. It is also true that predation patterns 

observed in fossil assemblages may differ from that of the death assemblage due to taphonomic 

factors which has not been considered in the present study. 

 

4.2.1 Model assemblages: 

     We created 30 hypothetical model assemblages, each with 30 species and 3000 

individuals with varying evenness, predation intensity, and prey preferences (Table 4.1). 

Each model assemblage had a unique combination of evenness, predation intensity, and prey 

preference. To evaluate evenness, we used Pielou's evenness index which is one of the 

commonly used measures of evenness. We calculated the evenness of an assemblage (ET) as 

 

ET = H/ ln(ST) 

Where, 

H = Shannon’s diversity index 

ST = Total number of species in the assemblage 

 The evenness in these models ranged from a theoretical minimum of 0.1 to a 

theoretical maximum of 1. Model assemblages with maximum evenness of one had 100 

individuals for 30 species. Assemblages with intermediate evenness of 0.6 had five common 

species with 500 individuals each and 25 rare species with 20 individuals each (Table 4.1). 

Assemblages with low evenness of 0.4 had 910 individuals in each of the three common 

species and ten individuals in each of the 27 rare species. For assemblages with a very low 

evenness of 0.1, there is only one common species with 2710 individuals, and the remaining 

29 rare species consists of 10 individuals each. The specific values of evenness and the 

species richness are comparable to the observed values from molluscan live assemblages 

(Olszewski and Kidwell 2007). 

 We calculated the predation intensity at the level of the assemblage (PIT) as well as 

for prey species (PIprey). The total number of prey species is Sprey. PIT is calculated as 

 

PIT = NP/N 
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Where, 

NP = Number of individuals with predation mark 

N = Total number of individuals in the assemblage 

 PIprey denotes predation intensity in the species that have been attacked. The predation 

intensity of the total assemblage (PIT) was categorized into three levels: low (0.2), medium 

(0.5), and high (0.8) (Table 4.1). A certain number of individuals from specific species would 

be considered prey with predation marks as dictated by the (PIT). The prey-preference of the 

predator can either be non-selective or selective. For the sake of simplicity, here we have 

expressed the selectivity in terms of the relative abundance of species. In the case of non-

selective predation (Case 1), all species have an equal probability of being attacked 

irrespective of their abundance (Fig 4.1). Selective predation represents assemblages where 

prey species have an unequal chance of being attacked. In model assemblages with selective 

predation, we constructed three cases; the predator can attack the common species (Case 2), 

the rare species (Case 3), or a mix of common and rare species (Case 4) (Fig 4.1).  

For all models, the probability of an attack is determined by the PIT which can be 0.2, 

0.5 or 0.8. For selective predation, only certain species are available as prey and we assign 

the probability of attack as 0 to the rest of the species. In the case of selective predation on 

abundant species with low predation intensity, for instance, the probability of an attack is 

assigned as 0.2 for all the individuals of common species and 0.0 for all the individuals of 

rare species. Selective predation has not been considered for assemblages with maximum 

evenness because the probability of attack is assigned to be equal for all species in our 

designed model.      

     

4.2.2 Simulation design: 

We performed a simulation to evaluate the effect of sample size on inferred predation 

intensity (PIT.inf) and the number of prey species (Sprey.inf) for all the model assemblages. In 

the simulation, 100 individuals were drawn randomly from a model assemblage. The number 

of attacked individuals (NP) and the number of prey species (Sprey) represented by the 

attacked individuals were counted in those 100 individuals. Inferred predation intensity 

(PIT.inf) for the drawn sample is calculated as a ratio of the number of attacked individuals and 

the total number of individuals (i.e., 100 in the first draw). We kept the step size as 100 to 

gain an accurate representation of predation intensity and to avoid the issues related to 

insufficient sample size (Kosloski et al. 2008; Dietl and Kosloski 2013; Smith et al. 2022). 

The exact process is repeated 30 times without replacement until all the individuals from the 
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assemblage are sampled. Following the principles of rarefaction analysis that are known to be 

useful when attempting to standardize sampling effort, we chose to use subsampling without 

replacement (Kowalewski and Novack-Gottshall 2010). This entire process was iterated 1000 

times. The mean and standard deviation are calculated for inferred predation intensity (PIT.inf) 

and prey species richness (Sprey.inf) over 1000 iterations for a specific model assemblage. 

Difference of predation intensity (DiffPI) is calculated as the difference between PIT and PIT.inf 

for an assemblage. Similarly, the difference between Sprey and Sprey.inf is taken as the 

difference of prey species richness (DiffS). The same technique is applied to all the model 

assemblages.     

 

4.2.3 Simulated time-averaged assemblage: 

 We created a time-averaged assemblage by random selection of three model 

assemblages. Using the simulation design described before, we calculated PIT.inf and Sprey.inf 

for the time-averaged assemblage in contrast to the individual model assemblages. 

                                                                                                                                                                                                                                                                    

4.2.4 Predation dataset: 

We used published data on predation records of molluscs from four Pleistocene 

localities in Florida (Chattopadhyay and Baumiller 2010) for validating the proposed 

technique. The goal is to quantitatively evaluate if we can compare the predation estimates of 

discrete communities characterized by different evenness, predation style and sample size. 

The dataset consists of abundance, drilling frequency, and repair scar frequency of 14 

molluscan species. We drew samples without replacement from each locality with increasing 

sample size. The sample size for each draw was a hundred until the last draw; in the last 

draw, where the remaining sample size is less than 200, all are drawn. For Punta Gorda 

(total=2418 individuals), 100 individuals were drawn 23 times, and 118 individuals were 

drawn for the last (24th) draw. A similar procedure is followed for Miami Canal (total = 4794 

individuals), Mc Queens pit (total=659 individuals), and Chiquita (total=894 individuals).  

 We used a sampling standardization protocol to compare these assemblages and 

assess the sensitivity of the inferred predation intensity (PIT.inf) and inferred prey-species 

richness (Sprey.inf) on sampling intensity. The sample size of Mc Queens pit (659) is 

considered as a reference as it has the smallest sample size among all four locations. The 

distribution of inferred predation intensity (PIT) is compared for all assemblages at a sample 

size of 500 by a pairwise comparison using Kolmogorov-Smirnov (K-S) tests. If the pairwise 
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K-S test shows significant differences between all pairs of assemblages, then the variation 

between assemblages is not caused by sampling and community evenness. If two 

assemblages show non-significant difference in pairwise K-S test, then small sample size 

might be influencing inferred predation intensity and prey richness. Hence, a larger sample 

size is considered as a new reference, and the pairwise comparison using K-S test is repeated 

again for those pairs of assemblage. The same process is repeated till the maximum number 

of assemblage pairs show significant differences. Following a similar protocol, the 

distribution of inferred prey-species richness (Sprey.inf) is also compared. 

 All simulations and statistical analyses were performed in R (version 4.2.0) (R Core 

Development Team, 2012). 
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Table 4.1. A summary of the model assemblages used for this study with varying evenness, predation intensity and predator preference. 

 

Evenness Structure 

PIT for Case 1  PIT for Case 2  PIT for Case 3 PIT for Case 4  

(Preys of all species are 

attacked with a probability of 

0.2, 0.5 and 0.8 for low, 

medium and high PIprey, 

respectively) 

(Preys of only common species are 

attacked with a probability of 0.2, 0.5 

and 0.8 for low, medium and high PIprey 

respectively) 

 (Preys of only rare species are attacked with 

a probability of 0.2, 0.5 and 0.8 for low, 

medium and high PIprey respectively) 

 (Preys of one rare and one common 

species are attacked with a 

probability of 0.2, 0.5 and 0.8 for 

low, medium and high PIprey 

respectively) 

Low Medium High Low Medium High Low Medium High Low Medium High 

ET = 0.2 
N(S=1:29) =10, N(S=30) 

=2710   [1*2710 + 

29*10] = 3000 

0.2 0.5 0.8 0.18 0.45 0.72 0.02 0.05 0.08 0.18 0.45 0.73 

 

ET = 0.5 
N(S=1:3) =910, N(S=4:30) 

=10 [3*910 + 27*10] 

= 3000 

0.2 0.5 0.8 0.18 0.46 0.73 0.02 0.05 0.07 0.06 0.15 0.24 

 

ET = 0.7 
N(S=1:5) =500, N(S=6:30) 

=20 [5*500 + 25*20] 

= 3000 

0.2 0.5 0.8 0.17 0.42 0.67 0.03 0.08 0.13 0.03 0.09 0.14 

 

ET = 1 N(S=1:30) =100            

[30*100] = 3000 
0.2 0.5 0.8 NA NA NA NA NA NA NA NA NA 
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Figure 4.1. An illustrative diagram of model assemblages with varying degrees of evenness, 

predation intensity, and predation style (selective and non-selective). Mollusc drawings are 

from publicdomainpictures.net with subsequent modifications. 
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4.3 RESULTS 

 

4.3.1 Inferred predation intensity: 

                    The inferred predation intensity (PIT.inf) may vary substantially from the actual 

value of overall predation intensity (PIT) and predation intensity of prey groups (PIprey), 

especially at smaller sample sizes (Fig 4.2). For non-selective predation (Case 1), DiffPI is 

affected by the sample size, although not by evenness. At a smaller sample size, the 

difference is higher (DiffPI=0.04) implying a lower PIT.inf than the actual value of PIT. PIT.inf 

converges to PIT with increasing sample size (Fig 4.3, Table 4.5).  

 Evenness influences inferred predation intensity (PIT.inf) when the predation is non-

selective (Case 2-4) (Fig 4.3). When the common species are preferentially attacked (Case 2), 

DiffPI is low (mean = -0.0003, standard deviation = 0.0124) for communities with lower 

evenness (ET=0.2) and low original predation intensity (PIT =0.2) implying good 

correspondence between PIT.inf and PIT (Fig 4.3.2, Table 4.5). Communities with higher 

evenness (ET>0.2) showed high DiffPI (Table 5) even at a higher sample size implying that 

PIT.inf will be different from PIT (Fig 4.3.2). Except for one specific model assemblage 

(ET=0.5, PIT =0.2), all assemblages show a lower PIT.inf in comparison to original PIT (Table 

4.5). 

 When rare species are attacked (Case 3), the DiffPI vary depending on the 

combination of evenness and predation intensity. The DiffPI is positive for all communities 

with low evenness (ET=0.2) irrespective of the predation intensity (Fig 4.3.3.A-4.3.3.C, Table 

4.5) implying a lower value of PIT.inf compared to PIT. Communities with high evenness 

(ET=0.7) showed negative DiffPI, implying a higher PIT.inf compared to PIT (Fig 4.3.3.G-

4.3.3.I). The DiffPI value in communities with medium evenness (ET=0.5) depends on 

predation intensity; in those communities, PIT.inf  is lower compared to PIT for low predation 

intensity (PIT= 0.2) (Fig 4.3.3.D) and higher for higher predation intensities (Fig 4.3.3.E-

4.3.3.F, Table 4.5). The variation in DiffPI, however, is lower for Case 3 in comparison to 

comparable communities in Case 2 (Table 4.5). 

 When some combination of abundant and rare species is attacked (Case 4), the DiffPI 

vary depending on the combination of evenness and predation intensity (Fig 4.3.4). The DiffPI 

is negative for most of the communities with varying predation intensities irrespective of the 

evenness (Table 4.5) implying a higher value of PIT.inf compared to PIT. Communities with 

high evenness (ET=0.7) show a positive DiffPI for medium and high predation intensity.   
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4.3.2 Inferred number of prey species: 

The inferred number of prey species (Sprey.inf) follows a rarefaction curve where Sprey.inf 

increases with increasing sample size before plateauing and converging to the actual value of 

Sprey (Fig 4.4). The required sample size for convergence depends on evenness and selectivity 

of predation. In the case of non-selective predation (Case 1), the DiffS decreases 

exponentially with increasing sample size and then converges to zero at a range of sample 

sizes depending on the evenness and predation intensity (Fig 4.5.1, Table 4.6). At a given 

predation intensity, the convergence takes place at smaller sample size with increasing 

evenness. For example, at low predation intensity (PIT=0.2), the required sample size for 

DiffS to converge to 0 is 3000 when evenness is low (ET=0.2) (Fig 4.5.1.A) and 1200 when 

evenness is high (ET=1) (Fig 4.5.1.J, Table 4.6).  

 In selective predation when common species are preyed upon (Case 2), DiffS does not 

reflect any sensitivity to the sample size (Fig 4.5.2). This is due to the low value of Sprey that 

converges to its actual value within the first few draws (Fig 4.5.2, Table 4.6). However, when 

the rare species are attacked (Case 3), Sprey.inf is highly sensitive to the sample size because 

the required sample size for convergence of DiffS depends on evenness and predation 

intensity (Fig 4.5.3). When a specific combination of rare and abundant species is attacked 

(Case 4), Sprey.inf shows an intermediate pattern where the sensitivity on sample size is lower 

than Case 3, yet higher than that of Case 2 (Fig 4.5.4). In general, communities with higher 

evenness require small sample size for convergence of DiffS, implying less sensitivity of 

Sprey.inf on sample size at a given predation intensity (Fig 4.5.3-4.5.4). For example, at low 

predation intensity (PIT=0.2), the required sample size for DiffS to converge to 0 is 3000 

when evenness is low (ET=0.2) (Fig 4.5.3.A) and 2800 when evenness is high (ET=0.7) (Fig 

4.5.3.G, Table 4.6).  

 

4.3.3 Inferred predation estimates for time-averaged assemblage 

 The predation estimates of a time-averaged assemblage can be different from those of 

the contributing model assemblage. In the constructed time-averaged assemblage, PIT.inf 

shows high overlap with one of the contributing model assemblage (ET=0.7, PIT = 0.5, Case 

1) while the other two show no overlap (Fig. 4.6A). A similar pattern was found for Sprey.inf 

(Fig. 4.6B). 
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4.3.4 Inferred predation estimates from Florida: 

The assemblages from the four localities in Florida are different in terms of their 

evenness and sample size (Table 4.2). All the localities except Miami Canal, showed a lack of 

correlation between the relative abundance of the prey and prey-specific predation intensity 

(PIprey) for drilling and durophagous predation implying non-selective predation (Table 4.3). 

In Miami Canal, the significant positive correlation implies that this is a case of selective 

predation. There is substantial overlap in inferred predation intensity (PIT.inf) between three 

localities (Punta Gorda, Miami Canal, and Mc Queens pit) for both drilling and durophagy 

(Fig 4.7). For inferred prey species richness (Sprey.inf), the assemblages show slightly different 

patterns between drilling and durophagous predation. For drilling predation, all the 

assemblages show a substantial overlap (Fig 4.7). The durophagous predation record, 

however, shows a separation between communities with low evenness (Punta Gorda) and 

high-evenness (Mc Queens pit, Chiquita) (Fig 4.7).  

 The sample size-standardized resampling protocol (described before) shows a 

significant difference (p <0.005) in all pairwise K-S test at a reference size of 500 (Table 

4.4). This implies that the difference in the inferred predation intensity (PIT.inf) and species 

richness (Sprey.inf) across assemblages cannot be explained by the sampling intensity or the 

evenness of the assemblage.  
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Figure 4.2. Plot showing variation in inferred predation intensity (PIT.inf) with varying sample 

sizes for different model assemblages. The rows indicate the nature of the selectiveness of 

predation, and the columns indicate predation intensity in the original assemblage (PIT). The 

warmer colors represent assemblages with higher evenness. 
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Figure 4.3. Plot showing the difference between the original (PIT) and inferred predation 

intensity (PIT.inf) at varying sample size for selective and non-selective predation (Case 1-4). 

The rows indicate evenness and the columns represent original predation intensity. The red 

line represents the zero line where overall and inferred predation intensities are the same 

(PIT.inf = PIT). The grey dots and bars represent the mean and standard deviation of the 

simulated differences for specific model assemblages.  
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Figure 4.4. Plot showing variation in inferred prey species richness (Sprey.inf) with varying 

sample sizes for different model assemblages. The rows indicate the nature of the 

selectiveness of predation, and the columns indicate prey species richness in the original 

assemblage (Sprey). The warmer colors represent assemblages with higher evenness.   
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Figure 4.5. Plot showing the difference between the original (Sprey) and prey species richness 

(Sprey.inf) at varying sample size for selective and non-selective predation (Case 1-4). The 

rows indicate evenness and the columns represent original predation intensity. The red line 

represents the zero line where overall and inferred prey species richness are the same (Sprey.inf 

= Sprey). The grey dots and bars represent the mean and standard deviation of the simulated 

differences for specific model assemblages.   
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Figure 4.6. Plot showing variation in inferred predation intensity (PIT.inf) and inferred prey 

species richness (Sprey.inf) with varying sample sizes for different model assemblages in 

contrast to a time-averaged assemblage.   



 

90 
 

 

 

Figure 4.7. Plot showing variation in inferred estimates of drilling and durophagous predation 

with varying degrees of sampling for four Pleistocene molluscan assemblages of Florida with 

different evenness (ET). The top row represents the sample size variation in inferred predation 

intensity (PIinf). The bottom row shows the inferred number of prey species (Sprey.inf) with 

varying sample sizes. The warmer colours represent assemblages of higher evenness.  
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Table 4.2. A summary of the predation data from four Plio-Pleistocene fossil assemblages of Florida. 

 

 

Locality 
Evenness 

(ET) 

Sample 

size 
ST 

Drilling 

frequency 
Sprey.drill 

Repair scar 

frequency 
Sprey.repair 

Miami Canal 0.31 4794 7 0.16 7 0.01 6 

Punta Gorda 0.47 2417 5 0.18 5 0.01 4 

Chiquita 0.74 894 7 0.04 6 0.14 7 

McQueen's pit 0.87 657 6 0.15 5 0.03 6 
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Table 4.3. The result of Spearman rank order correlation test for proportional abundance and 

PIprey for the predation estimates across four Plio-Pleistocene fossil assemblages of Florida 

(Chattopadhyay and Baumiller, 2010). The statistically significant (p<0.05) results are 

marked in bold. 

 

 

 

 

  

Predation Location rho p 

Drilling 

Punta Gorda 0.87 0.05 

McQueen's pit 0.83 0.06 

Chiquita 0.68 0.08 

Miami canal 0.99 <0.001 

Durophagy 

Punta Gorda 0.21 0.74 

McQueen's pit 0.46 0.35 

Chiquita 0.24 0.61 

Miami canal   0.79  0.03 
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Table 4.4. The test-statistic (D) of Kolmogorov–Smirnov test comparing the predation 

estimates across four Plio-Pleistocene fossil assemblages of Florida using sample-

standardization protocol. All the results are statistically significant (p<0.05). 

 

 

 

 

 

Estimate Predation Location McQueen's pit Chiquita Miami Canal 

Predation 

intensity 

Drilling 

Punta Gorda 0.8 1 0.53 

McQueen's pit  0.24 0.31 

Chiquita   1 

Durophagy 

Punta Gorda 0.9 1 0.19 

McQueen's pit  0.96 0.85 

Chiquita   1 

Prey species 

richness  

Drilling 

Punta Gorda 0.38 0.31 0.13 

McQueen's pit  0.24 0.36 

Chiquita   0.29 

Durophagy 

Punta Gorda 0.84 1 0.41 

McQueen's pit  1 0.95 

Chiquita   1 
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Table 4.5. A summary of the difference in inferred predation intensity from the original value for the model assemblages. Each cell contains 

information about the mean value and standard deviation of DiffPI; the first two represents the sign and magnitude of the mean value. A positive 

mean value of DiffPI indicates a larger value of original than inferred predation intensity (PIT > PIT.inf). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Evenness 
DiffPI for Case1  DiffPI for Case2 DiffPI for Case3  DiffPI for Case4 

Low Medium High Low Medium High Low Medium High Low Medium High 

ET = 0.2 
+ve, 

<0.001, 

0.013 

+ve, 

<0.001, 

0.016 

+ve, 

<0.001, 

0.013 

 -ve, 

<0.001, 

0.012 

 -ve, 

0.001, 

0.015 

 -ve, 

0.003, 

0.014  

+ve, 

<0.001, 

0.004 

+ve, 

0.002, 

0.006 

+ve, 

0.002, 

0.008 

-ve, 

0.001, 

0.0003 

-ve, 

0.003, 

0.0004 

+ve, 

0.005, 

0.0005 

ET = 0.5 
+ve, 

<0.001, 

0.013 

+ve, 

<0.001, 

0.016 

+ve, 

<0.001, 

0.013 

-ve, 

0.002, 

0.012 

+ve, 

0.005,  

0.015 

+ve, 

0.002, 

0.014 

+ve, 

0.002, 

0.004 

+ve, 

0.005, 

0.006 

-ve, 

0.002, 

0.008 

-ve, 

0.001, 

0.0002 

-ve, 

0.003, 

0.0003 

-ve, 

0.005, 

0.0003 

ET = 0.7 
+ve, 

<0.001,  

0.012 

-ve, 

<0.001,  

0.015 

-ve, 

<0.001, 

0.012 

+ve, 

0.003, 

0.012 

+ve, 

0.004,  

0.016 

+ve, 

0.003, 

0.016 

-ve, 

0.003, 

0.006 

-ve, 

0.003,  

0.009 

-ve, 

0.003,  

0.011 

-ve, 

0.004, 

0.00009  

+ve, 

0.003,  

0.00016 

+ve, 

0.001,  

0.0003 

ET = 1 
-ve, 

<0.001,  

0.013 

+ve, 

<0.001, 

0.015 

+ve, 

<0.001, 

0.013 

NA NA NA NA NA NA NA NA NA 
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Table 4.6. A summary of the difference in inferred prey species richness from the original value for the model assemblages. Each cell contains the 

minimum sample size required for DiffS to converge to zero for each model assemblages. A smaller number indicates that the inferred prey species 

richness converges to the original value (Sprey.inf = Sprey) at smaller sample size. 

 

 

Evenness 

Required sample size for 

convergence of DiffS for  

Required sample size for 

convergence of DiffS for  
Required sample size for 

convergence of DiffS for  

Case 3  

Required sample size for 

convergence of DiffS for  

Case 4  
Case 1                         Case 2   

Low Medium High Low Medium High Low Medium High Low Medium High 

ET = 0.2 3000 2800 2100 100 100 100 3000 2700 2200 3000 2300 2200 

ET = 0.5 3000 2700 2100 100 100 100 3000 2700 2200 3000 2100 1700 

ET = 0.7 2900 1900 1400 300 100 100 2800 1900 1400 2500 1500 1000 

ET = 1 1200 700 400 NA NA NA NA NA NA NA NA NA 
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4.4 DISCUSSION  

 

 Paleontological research on predation has expanded rapidly in scope, methods, and 

goals over the years. In recent years, a number of studies focused on documenting the 

evidence of predation from times, geographic areas and taxa that are poorly known for their 

predation record (Rojas et al. 2014; Randle and Sansom 2019; Bicknell and Holland 2020; 

Gordillo and Malvé 2021; Klompmaker and Landman 2021; Gordillo et al. 2022) and using 

predation records for testing evolutionary hypotheses (Klompmaker et al. 2017; Gehling and 

Droser 2018; Harper et al. 2018; Lerosey-Aubril and Peel 2018; Petsios et al. 2021). In 

contrast, a relatively small number of studies focused on the analytical methods to evaluate 

the reliability of predation measures in recent years (Smith et al. 2018, 2019, 2022; Budd and 

Mann 2019). Our model demonstrates how inferred predation intensities may vary with 

evenness, predation selectivity and sampling intensities. It highlighted the importance of 

these factors in influencing predation estimates of live and death/fossil assemblages; it also 

underscores why it is necessary to develop a methodological framework of sample 

standardization before comparing predation estimates of assemblages separated by time and 

space. 

 

4.4.1 Effect on the inferred intensity: 

Our simulation results show that communities' evenness does not significantly change 

the inferred predation intensity when random encounters between predator and prey guide 

predation. It is, however, uncommon to find predation events to be completely random in the 

natural world. Prey species are selected by predators to maximize net energy gain, within the 

constraints of a number of factors including reproductive demands, predator interference, 

predation risk, avoidance of prey, deterrents, and predator behavior (Seitz et al. 2001; 

Stephens and Krebs 2019). In such selective predation, the inferred predation intensity may 

differ significantly from the original predation intensity. Following the considerations of 

optimal foraging theory (Hughes 1980; Pyke 1984; Burrows and Hughes 1991; Stephens and 

Krebs 2019), two aspects make the predation selective. The first is the relative ease with 

which a predator encounters a prey. Encounter in marine ecosystem is determined by a 

number of things including abundance of the prey, accessibility of the prey, landscape 

heterogeneity, predator abundance, abundance of secondary predators, habitat type (Ryer and 

Olla 1995; Seitz et al. 2001; Sims et al. 2006; Casey and Chattopadhyay 2008; Martinelli et 

al. 2015). Keeping the other factors constant, the probability of encounter increases with the 
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increasing relative abundance of a prey species (Vermeij 1983; Leighton 2002; Leonard-

Pingel and Jackson 2013); this decreases the foraging time and increases the net energy gain 

of the predator. The second aspect is the traits (morphological, ecological, behavioral) of the 

prey that dictate the net energy gain of the predator. The final selection by the predator is 

often a combination of these factors. A higher attack rate may be found in an abundant prey 

species due to its higher encounter rate than a rarer species. This would lead to scenarios 

similar to Case 2, where the inferred predation intensity of low-evenness communities would 

be higher than the actual predation intensity. This inflated measure results from the over-

representation of common species in smaller samples that are primarily attacked.  

 Most often than not, the encounter frequency does not dictate the attack frequency, 

and the selection of prey is guided by the prey traits such as size, morphology, behavior 

(Kitchell et al. 1981; Palmqvist et al. 1996; Leighton 2001; Zlotnik and Ceranka 2005; 

Chattopadhyay and Dutta 2013; Chattopadhyay et al. 2014a, 2015, 2020; Martinelli et al. 

2015; Chandroth and Chattopadhyay 2022). These would be similar to Case 3, where the 

most dominant groups are not preyed upon. The inferred predation intensity of low-evenness 

communities would be lower than the actual predation intensity. This apparent drop in 

predation intensity results from the lack of representation of rare species in smaller samples 

that are never attacked. It is especially problematic because this difference is substantial for 

all evenness. This observation is consistent with the findings by Smith et al. (2021) where 

they demonstrated the effects of overdispersion and zero inflation using count data of 

predation traces. They concluded that the major element underlying these effects was sample 

size. Their results support our findings that predation measures lack of reliability at small 

sample size.  

 

4.4.2 Effect on inferred selectivity: 

Predation is known to impact the structure of a community, including the overall 

richness, distribution and evenness (Schemske et al. 2009; Freestone et al. 2011, 2020). It is 

therefore important to evaluate the inherent dependence of the predation inferences on one  

aspect of community structure such as evenness before evaluating the evolutionary impact of 

predation on shaping the community structure in deep time. Our models demonstrate that the 

inferred number of prey species may depend on the evenness of the live community. 

Communities with low evenness differ significantly from the original prey species and yield 

fewer inferred prey species even when the predation is non-selective (Case 1). This may lead 
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to the development of an artificial selectivity, primarily driven by the preferential counting of 

the dominant species and not by the biological preference demonstrated by the predators. 

Therefore, any community with low evenness suffers from the high likelihood of 

underrepresenting the number of prey species. The deviation from the true prey-species 

richness is higher for smaller sample size and lower intensity of predation. Communities with 

higher predation intensity will provide the true prey-species richness at a smaller sample size 

than communities with lower predation intensity. Selective predation (as indicated by Case 2-

4) also creates similar deviations. 

 The sensitivity of inferred prey species richness on sample size, evenness, and 

original predation selectivity makes the comparison of prey species richness in spatially or 

temporally distinct assemblages somewhat unreliable unless they are normalized. This is 

especially important when comparing predation estimates from assemblages representing 

different time-bins or environments likely to show varying diversity/evenness.  

 

4.4.3 Paleontological case study: 

The assemblages from the four localities of Florida have been used for interpreting the 

relationship between durophagy and drilling predation (Chattopadhyay and Baumiller, 2010). 

However, the study’s conclusions did not consider sample size or evenness of the 

communities. The assemblages at these localities are quite different in terms of their evenness 

and sample size (Table 4.2). Only in Miami Canal, predatory attacks (durophagous and 

drilling) are guided by the relative abundance of prey species and hence deviates from non-

selective predation. The sample size-standardized resampling protocol revealed a significant 

difference in pair-wise comparison for all inferred predation intensity and prey species 

richness estimates. This implies that the differences in predation measure across assemblages 

are largely independent of sampling intensity or the evenness of the assemblage.  

 It is important to recognize that a number of factors played a role in this particular 

case that made these assemblages less susceptible to community evenness and sampling 

intensity. Because three localities (Punta Gorda, Mc Queens pit, Chiquita) are showing 

predation pattern that is non-selective with respective relative abundance, they are less likely 

to be affected by sample size. Moreover, they have medium to high evenness that makes 

them less sensitive to sample size. Miami Canal, however, is characterized by low evenness 

(0.31), shows evidence of selective predation and low predation intensity (PIT<0.2). 

Assemblages with these characteristics are more prone to show large difference from actual 
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predation measures at small sample size (Fig 4.3.2.A). Because Miami Canal has the largest 

sample size among the localities, makes it less likely to be affected by these factors. Hence, 

the observed Sprey.drill and Sprey.repair are least likely to be affected by these factors. 

 

4.4.4 Proposed protocol of post-facto standardization of predation data: 

We demonstrated how inferred predation estimates may be influenced by different 

assemblages with varying evenness and predation intensity. It is evident that such inferences 

are more prone to differ from the original value at small sample size. There has been a 

standard practice of excluding assemblages where the sample size is less than 30 (Kosloski et 

al. 2008) or 50 (Forcino 2011). Considering the sensitivity of the sample size also depends on 

the evenness and predation intensity, a static cutoff is not appropriate. Here we are proposing 

a resampling-based standardization protocol to identify and exclude assemblages that are not 

comparable. Such assemblages represent scenarios where the difference in observed 

predation estimates could have resulted due to small sample size. We suggest the following 

steps (Fig 8) to be followed for comparing predation patterns of spatially/temporally distinct 

assemblages to avoid misinterpretation.  

 

1. We identify the smallest sample size among the assemblages. That sample size is 

considered as reference sample size (RSS). 

2. Using the described protocol in the simulation model, inferred predation intensity 

(PIT.inf) and inferred prey-species richness (Sprey.inf) need to be calculated at a specific 

step size of 100 for all assemblages. The step size of all assemblages should be equal 

till the last step when the remaining number of individuals in that assemblage are 

drawn. The step size can be lowered till 30 if the total assemblage size is small. 

Lowering the step size any further may create erroneous results due to smaller sample 

size (Kosloski et al. 2008; Dietl and Kosloski 2013; Smith et al. 2022).  

3. The distribution of inferred predation intensity (PIT) for all assemblages should be 

compared at RSS by a pairwise comparison using Kolmogorov-Smirnov (K-S) test. If 

the pair-wise comparison yields a significant difference between two assemblages, 

then the differences in inferred predation intensity (PIT) cannot be explained by 

sample size alone and hence, likely to represent the actual variation. These pairs 

would be considered comparable at that RSS.  
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4. If assemblages show non-significant difference in pairwise K-S test, we cannot reject 

the possibility of small sample size influencing the inferred predation intensity and 

hence, should not be considered for further comparative analysis at that pre-selected 

RSS. If any such pair contains the assemblage with a sample size equal to RSS, then 

we cannot include the pair for further analysis. 

5. The next step is to compare the remaining pairs with non-significant differences at a 

larger sample size (new RSS). The new RSS is determined by selecting the smallest 

sample size of the remaining assemblages and following the above protocol (2-3) we 

will find the assemblages that can considered comparable at the new reference sample 

size. The same process can be repeated to understand the sensitivity of the inferred 

prey-species richness (Sprey.inf) on sample size. 

6. This iteration should be performed with increasing sample sizes till the maximum 

number of assemblage pairs show significant differences in distribution of inferred 

predation intensity (PIT) and prey species richness (Sprey.inf). 

 

The pairs that show non-significant difference even at the highest sample size, we cannot 

reject the influence of sampling intensity and inherent community evenness in shaping the 

predation measures. They should be excluded from comparative analyses of predation 

signals. Estimating PIprey is difficult, especially for cases where rare species are attacked; 

excluding species without any predation trace while calculating PIT may give us some 

insight.  

 

4.4.5 Caveats and implications: 

The fossil record of predation has shaped our understanding of how the nature of 

biotic interaction changed over time and its role as an evolutionary mechanism. Preserved 

traces, such as drill holes and repair scars, are some of the best quantifiable proxies of 

predation and they are often used to assess the evolutionary impact of predation in deep time 

(Vermeij et al. 1981; Alexander and Dietl 2003; Kelley and Hansen 2003). Studies aiming to 

evaluate the predation trend through time, however, are often forced to use predation data 

from discrete assemblages that differ in sample size, inherent community evenness, and the 

type of predation selectivity (Harper 2016). Our study demonstrates the effect of such factors 

on the inferred predation intensity and the recognized prey richness. Comparison between 

temporally separated collections, such as Paleozoic and Cenozoic predation records that are 
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known to be different in the sample size (and probably predatory behavior), are susceptible to 

such factors.  

 Our proposed method of post-facto standardization will be essential for such 

comparisons and to establish the true nature of biotic interaction through time. It is important 

to recognize that the proposed protocol is a preliminary attempt towards standardization, 

without considering a number of complexities. The simulations are primarily developed for 

communities that are preserving the community structure of the live communities. It is true 

that average evenness of molluscan time-averaged assemblage is shown to preserve the 

evenness of the live assemblage (Olszewski and Kidwell 2007). Other characters of the live 

assemblages, however, can substantially differ in death/fossil assemblage because they are 

typically time-averaged representing a mix of multiple generations (Kidwell et al. 1991; 

Kidwell and Flessa 1995; Kidwell 2007; Tomašových and Kidwell 2009; Kidwell and 

Tomasovych 2013; Bhattacherjee et al. 2021). In a simple hypothetical time-averaged 

assemblage where all the individuals of a live-assemblage are preserved, we have 

demonstrated that the inferred predation pattern may or may not resemble the contributing 

assemblage (Fig 4.6). If specific section of the live community is preferentially lost due to 

preservation and if the predation signature of those specimens differ from the remaining 

assemblage, the proposed standardization method will fail to detect that. For example, some 

predation attempts are size selective and larger size class often show higher predation 

resistance and lower predation intensity. Because, the preservation potential of smaller size 

class is lower than larger ones (Cooper et al. 2006), selective absence of small size class in 

the fossils would result in a low inferred predation intensity compared to the original value. 

Multiple interactions during the lifetime or after the death of the prey may change the 

frequency of the overall assemblage (Kosloski 2011; Gordillo and Archuby 2014). A 

molluscan community affected by drilling predation may also be subjected to crushing 

predation; because the durophags only go after the live prey (non-drilled), the relative 

proportion of drilled shells increase if the predators successfully destroy the shells as part of 

the predation process (Smith et al. 2019). Predation style and resulting predation trace also 

differ among predators. Two of the most common types of predations studied in the fossil, 

drilling and durophagy, are quite different in a number of aspects. It is possible to identify 

successful and unsuccessful predation by studying the completeness of the drill holes, 

successful attacks by durophagous predators often result in unrecognizable fragmentation 

(Kosloski 2011; Leighton et al. 2016; Dyer et al. 2018). Repair scars represent a failed 
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durophagous attack. Comparing drillhole and repair scars, therefore, are not without 

limitations. Our study, although attempts to recognize the possible source of analytical bias 

and to recognize them in the observed database, clearly glosses over the full complexities of 

predation style, post-mortem alteration and time-averaging. Following the direction of 

reconstructing fossil assemblages from live data using modeling approach (Olszewski 2004, 

2012), we plan to develop more inclusive frameworks in future to address such complexities.
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Figure 4.11. Flowchart of the general framework of proposed method of the post-hoc 

standardization.  
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4.5 CONCLUSION 

 

 The effect of community structure and sampling intensity on the inferred predation 

estimates is rarely explored. Using a resampling technique, our study demonstrates the impact 

of these aspects on the estimates of predation intensity and the number of prey species. Our 

results show that the communities with highly selective predation are the most sensitive to 

sampling intensity, and the inferred predation intensity of these assemblages can substantially 

deviate from the actual value. In contrast, predation intensity for non-selective predation 

tends to be unaffected by sampling intensity. Inferred prey-species richness is also influenced 

by the nature of community evenness, predation selectivity, and actual predation intensity. 

For non-selective predation, communities with low evenness and low predation intensity are 

highly sensitive to sample size. The inferred prey-species richness can be underrepresented 

significantly at smaller sample size. For selective predation, the sensitivity depends on the 

nature of selection. The inferred prey-species richness deviates significantly when rare 

species are attacked preferentially. Our study also provides a framework of post-facto 

standardization of the predation data to remove the effect of sample size/evenness during 

comparison. The proposed method, although simple, will provide fundamental framework for 

comparison of discrete assemblages as they are often characterized by a difference in sample 

size, evenness and predation selectivity.   
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CHAPTER 5 

Conclusion 
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5.1 CONCLUSION 

Marine biodiversity varies across space and through time. Identifying the drivers of 

such variation is crucial to understand the underlying ecological mechanism generating 

complex spatio-temporal distribution of marine biodiversity. The rich fossil record of marine 

fauna provides insight about the long-term processes shaping distributional pattern. In the 

context of the recent climate changes, identifying the mechanisms for ecological variation is 

of primary importance to quantify the processes which may potentially cause an ecosystem 

collapse (Jablonski 1998; Olszewski and Patzkowsky 2001; Bonelli et al. 2006; Clapham et 

al. 2006; Clapham and James 2008; Heim 2009). Apart from the ecological mechanisms, 

however, taphonomy and methodological strategies can also influence observed patterns of 

faunal distribution in the present and past ecosystem (Jurasinski 2007). To establish the 

reliability of observed faunal distribution, therefore, it is important to quantify the impact of 

taphonomy and various operational decisions about sampling protocols, analytical methods 

and data categorization before inferring any spatio-temporal patterns from fossil assemblages. 

Molluscan assemblages are one of the ubiquitous faunal assemblages found in the shallow 

marine region. They have been used extensively for large-scale quantitative paleoecological 

studies. They also have a remarkably documented fossil record because of their 

taphonomically durable shells. In this thesis, I assessed the role of taphonomy and sampling 

on various paleobiological inferences using marine molluscan assemblages. 

 It is generally assumed that the role out-of-habitat post-mortem transportation events 

in ordinary level bottom sublittoral environments with gentle slopes is insignificant, and they 

mostly experience within-habitat transportation. The results of our study on the live-dead 

fidelity and size frequency distribution (SFD) of the molluscan fauna from a shallow marine 

siliciclastic setting with a narrow shelf, high sedimentation rate and frequented by 

episodically high-energy events (Chapter 2) reject the assumption. The results demonstrate 

that the LA and DA are poorly correlated and the DA did not show the environmental 

partitioning observed in the LA. Since the entrainment velocity of the shell depends on shell 

size, I constructed a numerical simulation of the shell SFD for death assemblages (DAs) from 

live assemblages (LAs) and compared it with the observed SFD of the DAs. The results of 

the SFD based simulation as well as the high L-D mismatch indicate that DA in such areas 

are not produced by within-habitat mixing and are receiving shells via regional transport 

facilitated by tropical cyclones. The specific field locality in the east coast of India, is 
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frequently affected by cyclones originating above 15°N, causing a high degree of out-of-

habitat transport and mixing of shells between 15°N to 21°N. This study provides a method 

to use SFD to recognize out-of-habitat transport using LA and DA. The high likelihood of 

out-of-habitat transport of molluscan assemblage in storm-dominated environment also 

provide a taphonomic caution while reconstructing paleoecology based on environmental 

distinct fossil assemblages. 

Beta diversity, or within-habitat diversity is a measure of spatial distribution and 

heterogeneity of the fauna. It is highly dependent on the spatial scale and resolution of the 

study. Using a probabilistic model, I evaluated the effect of unequal spatial scales of 

sampling on beta diversity at a regional scale (Chapter 3) using LA and DA along the west 

coast of India. The results of this model provided an expected beta diversity pattern if 

unequal grid sizes of sampling had caused the variation. The observed variation in beta 

diversity in this study was different from the expected pattern produced by the null model, 

indicating that sampling scale alone cannot generate the beta diversity pattern of this region. 

Environmental parameters such as salinity, productivity, and cyclones were found to play a 

significant role in shaping the beta diversity. The model-based comparison would be useful to 

evaluate the beta diversity of fossil assemblages across different spatial scale. The observed 

consistency of the results between LA and DA indicate that DA record reliable spatial and 

compositional fidelity at regional scale. This confirms that molluscan fossil assemblages 

representing time-averaged DAs are a close approximation of regional distribution of the 

living community of the past with limited effect from time averaging and post-mortem 

transportation. 

Apart from faunal composition, different sampling strategies may also impact 

inferences of other important paleoecological processes such as biotic interactions. Predation 

is an important evolutionary driver and predation estimates play an important role in 

evaluating the evolutionary effect of ecological interactions. Predation estimates are generally 

based on the assumption that these are not influenced by methodological artefacts. Using a 

resampling technique, I evaluated the effect of sampling intensity and the prey community’s 

evenness on the inferred predation intensity and prey species richness (Chapter 4). The results 

demonstrate that the inferred predation intensity is not influenced by the evenness of a 

community when the predation is non-selective. However, the inferred predation intensity is 

sensitive to evenness and sampling intensity and can substantially deviate from the actual 
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value when the predation is highly-selective. When rare species are preferentially attacked, 

inferred predation intensity and inferred prey species richness is underrepresented at smaller 

sample size as sampling intensity heavily influences communities with low evenness and low 

predation intensity. Additionally, I also proposed a post-facto standardization method for 

comparing predation estimates of discrete communities that differ in the sample size. The 

utility of this method was tested using the published predation data of the Plio-Pleistocene 

molluscan fossil assemblage. The method will be helpful in comparing predation patterns 

across collections varying in sampling intensity and community composition. This study also 

provide critical insights into the biological reliability of predation estimates compiled across 

time and space. 

Using a combination of field observation and quantitative modelling, this thesis demonstrates 

the importance of taphonomy and methodological nuances on the inferences from mollascan 

assemblages representing recent and past ecosystem. The methods developed as part of this 

work provides a way to recognize such issues and recommends methods to rectify them 

before making important paleoecological inferences from the fossil record.   
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Chapter 2 

 

 

 

Figure.2. S1. — Size distribution of the live species that have also been found in DA. The 

sample size is marked as N. The p-value is associated with the Shapiro-Wilk test performed 

for evaluating the normality of the size distribution. 
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Figure.2.S2. Histograms of D-values from the K-S test between simulated and observed dead 

size distribution for shared species between LAs and DAs. (A) beach, (B) tidal flat, (C) 

restricted environment, (D) estuary, (E) restricted environment (with size filter), (F) estuary  

(with size filter). 
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R Script 2.S1. R Script for statistical analyses and plots in Chapter 2 1 

(Datafiles used for the codes will be available on request) 2 

############################################################ 3 

require(vegan) 4 

abundancedata=read.csv("abundance30.4.19.csv", header = T) 5 

abundanceall=abundancedata[1:34,4:60] 6 

abundanceocc=decostand(abundanceall,method="pa") 7 

envall=abundancedata[,1:2] 8 

abundancelive=abundanceall[c(14:21,27:31),1:57] 9 

abundancedead=abundanceall[c(1:13,22:26,32:34),1:57] 10 

 11 

par(mfrow=c(1,2)) 12 

par(mar=c(15,5,1,0.5)) 13 

par(pty="s") ####makes the plot square################## 14 

season=abundancedata[,3] 15 

sites=abundancedata[,2] 16 

env=c(rep("Beach",5),rep("Tidal flat",8),rep("Restricted",5),rep("Estuary",3)) 17 

attribute=data.frame(sites,env) 18 

 19 

#############Figure 2.3############################## 20 

#jpeg("Plot3.jpeg", res = 300) 21 

par(mfrow=c(3,2)) 22 

par(mar=c(8, 4.1, 1, 2.1)) 23 

#par(mar=c(1, 1, 1, 1)) 24 

 25 

par(mai = c(1,0.6,0.4,0.1)) 26 

spbarplot=read.csv("barplotdatanew.csv",header = T) 27 

Beach=subset(spbarplot,spbarplot$Env=="Beach",select =c(Species,X.)) 28 

barplot(Beach$X.,width=0.5,col="deeppink",ylim=c(0,100),las=2,ylab="%",font.axis = 4,names.arg 29 
= Beach$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 30 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels = Beach$Species, cex=1) 31 

Estuary=subset(spbarplot,spbarplot$Env=="Estuary",select =c(Species,X.)) 32 
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barplot(Estuary$X.,col="green4",ylim=c(0,100),las=2,ylab="%",font.axis = 4,names.arg = 33 
Estuary$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 34 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels = Estuary$Species, cex=1) 35 

Tidal=subset(spbarplot,spbarplot$Env=="Tidal flat",select =c(Species,X.)) 36 

barplot(Tidal$X.,col="dodgerblue2",ylim=c(0,100),las=2,ylab="%",font.axis = 4,names.arg 37 
=Tidal$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 38 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels = Tidal$Species, cex=1) 39 

Restricted=subset(spbarplot,spbarplot$Env=="Restricted",select =c(Species,X.)) 40 

barplot(Restricted$X.,col="darkorange2",ylim=c(0,100),las=2,ylab="%",font.axis = 4,names.arg = 41 
Restricted$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 42 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels = Restricted$Species, 43 
cex=1) 44 

Tidal_live=subset(spbarplot,spbarplot$Env=="Tidal flat live",select =c(Species,X.)) 45 

barplot(Tidal_live$X.,col="dodgerblue2",ylim=c(0,100),density=30,angle=11,las=2,ylab="%",font.ax46 
is = 4,names.arg = Tidal_live$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 47 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels=Tidal_live$Species, 48 
cex=1) 49 

Restricted_live=subset(spbarplot,spbarplot$Env=="Restricted live",select =c(Species,X.)) 50 

barplot(Restricted_live$X.,col="darkorange2",ylim=c(0,100),density=30,angle=11,las=2,ylab="%",fo51 
nt.axis = 4,names.arg = Restricted_live$Species,cex.axis = 1.5,cex.names = 1.5,cex.lab=1.5) 52 

#text(seq(1,6,by=1),par("usr")[3]-0.3, srt = 35, adj= 1, xpd = TRUE,labels = Restricted_live$Species, 53 
cex=1) 54 

 55 

#######Figure 2.4 A######### 56 

##################LA DA richness plot without beach and estuary########### 57 

Dead=rowSums(abundanceocc[c(1:13,22:26,32:34),]) 58 

Live1=rowSums(abundanceocc[c(14:21,27:31),])   59 

Live=c(rep(0,5),Live1,rep(0,3)) 60 

names=envall[c(1:13,22:26,32:34),2] 61 

richnessdf=cbind(as.character(names),Live,Dead) 62 

richnessdf=cbind(env,richnessdf) 63 

richnessdf=richnessdf[-c((1:5),(19:21)),] 64 

richnessdf=as.data.frame(richnessdf) 65 

colorsenv <- c("darkorange2","dodgerblue2") 66 
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attr.envir <- factor(richnessdf$env) 67 

plot(richnessdf$Live,richnessdf$Dead,type="p",pch=19,col=colorsenv[attr.envir],xlim = 68 
c(0,25),ylim=c(0,25),xlab = "Number of species in LA", ylab = "Number of species 69 
DA",cex=1.5,cex.axis=1.5,cex.lab=1.5) 70 

#text(Live,Dead,labels=names,col=colorsenv[richnessdf$env], cex= 1,pos = 3) 71 

abline(a=0, b=1, col = 1, lty=2) 72 

 73 

##################################################################################74 
################### 75 

env=abundancedata[,1:2] 76 

abundanceLD=abundancedata[,4:60] 77 

abundanceLD=t(abundanceLD) 78 

##################Live vs dead relative abundance in each sample######################## 79 

TF1=abundanceLD[1:57,c(1,9)] 80 

TF1=as.data.frame(TF1) 81 

colnames(TF1)=c("Live","Dead") 82 

Livepercent=TF1$Live/ colSums(TF1[1])*100 83 

Deadpercent=TF1$Dead/ colSums(TF1[2])*100 84 

TF1rel=as.data.frame(cbind(Livepercent,Deadpercent)) 85 

rownames(TF1rel)=rownames(abundance_species) 86 

plot(TF1rel$Livepercent,TF1rel$Deadpercent) 87 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 88 

cor$p.value 89 

cor$estimate 90 

 91 

TF2=abundanceLD[1:57,c(2,10)] 92 

TF2=as.data.frame(TF2) 93 

colnames(TF2)=c("Live","Dead") 94 

Livepercent=TF2$Live/ colSums(TF2[1])*100 95 

Deadpercent=TF2$Dead/ colSums(TF2[2])*100 96 

TF2rel=as.data.frame(cbind(Livepercent,Deadpercent)) 97 

rownames(TF2rel)=rownames(abundance_species) 98 
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plot(TF2rel$Livepercent,TF2rel$Deadpercent) 99 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 100 

cor$p.value 101 

cor$estimate 102 

 103 

TF3=abundanceLD[,c(3,11)] 104 

TF3=as.data.frame(TF3) 105 

colnames(TF3)=c("Live","Dead") 106 

Livepercent=TF3$Live/ colSums(TF3[1])*100 107 

Deadpercent=TF3$Dead/ colSums(TF3[2])*100 108 

TF3rel=as.data.frame(cbind(Livepercent,Deadpercent)) 109 

rownames(TF3rel)=rownames(abundance_species) 110 

plot(TF3rel$Livepercent,TF3rel$Deadpercent) 111 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 112 

cor$p.value 113 

cor$estimate 114 

 115 

TF4=abundanceLD[,c(4,12)] 116 

TF4=as.data.frame(TF4) 117 

colnames(TF4)=c("Live","Dead") 118 

Livepercent=TF4$Live/ colSums(TF4[1])*100 119 

Deadpercent=TF4$Dead/ colSums(TF4[2])*100 120 

TF4rel=as.data.frame(cbind(Livepercent,Deadpercent)) 121 

rownames(TF4rel)=rownames(abundance_species) 122 

plot(TF4rel$Livepercent,TF4rel$Deadpercent) 123 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 124 

cor$p.value 125 

cor$estimate 126 

 127 

TF5=abundanceLD[,c(5,13)] 128 

TF5=as.data.frame(TF5) 129 
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colnames(TF5)=c("Live","Dead") 130 

Livepercent=TF5$Live/ colSums(TF5[1])*100 131 

Deadpercent=TF5$Dead/ colSums(TF5[2])*100 132 

TF5rel=as.data.frame(cbind(Livepercent,Deadpercent)) 133 

rownames(TF5rel)=rownames(abundance_species) 134 

plot(TF5rel$Livepercent,TF5rel$Deadpercent) 135 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 136 

cor$p.value 137 

cor$estimate 138 

 139 

TF6=abundanceLD[,c(6,14)] 140 

TF6=as.data.frame(TF6) 141 

colnames(TF6)=c("Live","Dead") 142 

Livepercent=TF6$Live/ colSums(TF6[1])*100 143 

Deadpercent=TF6$Dead/ colSums(TF6[2])*100 144 

TF6rel=as.data.frame(cbind(Livepercent,Deadpercent)) 145 

rownames(TF6rel)=rownames(abundance_species) 146 

plot(TF6rel$Livepercent,TF6rel$Deadpercent) 147 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 148 

cor$p.value 149 

cor$estimate 150 

 151 

TF7=abundanceLD[,c(7,15)] 152 

TF7=as.data.frame(TF7) 153 

colnames(TF7)=c("Live","Dead") 154 

Livepercent=TF7$Live/ colSums(TF7[1])*100 155 

Deadpercent=TF7$Dead/ colSums(TF7[2])*100 156 

TF7rel=as.data.frame(cbind(Livepercent,Deadpercent)) 157 

rownames(TF7rel)=rownames(abundance_species) 158 

plot(TF7rel$Livepercent,TF7rel$Deadpercent) 159 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 160 
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cor$p.value 161 

cor$estimate 162 

 163 

TF8=abundanceLD[,c(8,16)] 164 

TF8=as.data.frame(TF8) 165 

colnames(TF8)=c("Live","Dead") 166 

Livepercent=TF8$Live/ colSums(TF8[1])*100 167 

Deadpercent=TF8$Dead/ colSums(TF8[2])*100 168 

TF8rel=as.data.frame(cbind(Livepercent,Deadpercent)) 169 

rownames(TF8rel)=rownames(abundance_species) 170 

plot(TF8rel$Livepercent,TF8rel$Deadpercent) 171 

cor=cor.test(Livepercent,Deadpercent,method = "spearman") 172 

cor$p.value 173 

cor$estimate 174 

 175 

###############restricted################################### 176 

RS1=abundanceLD[,c(17,22)] 177 

RS1=as.data.frame(RS1) 178 

colnames(RS1)=c("Live","Dead") 179 

Livepercent=RS1$Live/ colSums(RS1[1])*100 180 

Deadpercent=RS1$Dead/ colSums(RS1[2])*100 181 

RS1rel=as.data.frame(cbind(Livepercent,Deadpercent)) 182 

rownames(RS1rel)=rownames(abundance_species) 183 

plot(RS1rel$Livepercent,RS1rel$Deadpercent) 184 

corRS1=cor.test(Livepercent,Deadpercent,method = "spearman") 185 

corRS1$p.value 186 

corRS1$estimate 187 

 188 

RS2=abundanceLD[,c(18,23)] 189 

RS2=as.data.frame(RS2) 190 

colnames(RS2)=c("Live","Dead") 191 
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Livepercent=RS2$Live/ colSums(RS2[1])*100 192 

Deadpercent=RS2$Dead/ colSums(RS2[2])*100 193 

RS2rel=as.data.frame(cbind(Livepercent,Deadpercent)) 194 

rownames(RS2rel)=rownames(abundance_species) 195 

plot(RS2rel$Livepercent,RS2rel$Deadpercent) 196 

corRS2=cor.test(Livepercent,Deadpercent,method = "spearman") 197 

corRS2$p.value 198 

corRS2$estimate 199 

 200 

RS3=abundanceLD[,c(19,24)] 201 

RS3=as.data.frame(RS3) 202 

colnames(RS3)=c("Live","Dead") 203 

Livepercent=RS3$Live/ colSums(RS3[1])*100 204 

Deadpercent=RS3$Dead/ colSums(RS3[2])*100 205 

RS3rel=as.data.frame(cbind(Livepercent,Deadpercent)) 206 

rownames(RS3rel)=rownames(abundance_species) 207 

plot(RS3rel$Livepercent,RS3rel$Deadpercent) 208 

corRS3=cor.test(Livepercent,Deadpercent,method = "spearman") 209 

corRS3$p.value 210 

corRS3$estimate 211 

 212 

RS4=abundanceLD[,c(20,25)] 213 

RS4=as.data.frame(RS4) 214 

colnames(RS4)=c("Live","Dead") 215 

Livepercent=RS4$Live/ colSums(RS4[1])*100 216 

Deadpercent=RS4$Dead/ colSums(RS4[2])*100 217 

RS4rel=as.data.frame(cbind(Livepercent,Deadpercent)) 218 

rownames(RS4rel)=rownames(abundance_species) 219 

plot(RS4rel$Livepercent,RS4rel$Deadpercent) 220 

corRS4=cor.test(Livepercent,Deadpercent,method = "spearman") 221 

corRS4$p.value 222 
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corRS4$estimate 223 

 224 

 225 

RS5=abundanceLD[,c(21,26)] 226 

RS5=as.data.frame(RS5) 227 

colnames(RS5)=c("Live","Dead") 228 

Livepercent=RS5$Live/ colSums(RS5[1])*100 229 

Deadpercent=RS5$Dead/ colSums(RS5[2])*100 230 

RS5rel=as.data.frame(cbind(Livepercent,Deadpercent)) 231 

rownames(RS5rel)=rownames(abundance_species) 232 

plot(RS5rel$Livepercent,RS5rel$Deadpercent) 233 

corRS5=cor.test(Livepercent,Deadpercent,method = "spearman") 234 

corRS5$p.value 235 

corRS5$estimate 236 

 237 

#######################Figure 2.4B############################################# 238 

env=abundancedata[,1:2] 239 

abundanceLD=abundancedata[6:31,4:60] 240 

abund=as.data.frame(t(abundanceLD)) 241 

Dead=as.data.frame(rowSums(abund[,c(1:8,17:21)])) 242 

Live=as.data.frame(rowSums(abund[,c(9:16,22:26)])) 243 

abundance_species=cbind(Live,Dead) 244 

colnames(abundance_species)=c("Live","Dead") 245 

Livepercent=abundance_species$Live/ colSums(abundance_species[1])*100 246 

Deadpercent=abundance_species$Dead/ colSums(abundance_species[2])*100 247 

rel_abundance=cbind(Livepercent,Deadpercent) 248 

rownames(rel_abundance)=rownames(abundance_species) 249 

write.csv(rel_abundance,file = "rel_abundance.csv") 250 

rel_abundance=read.csv("rel_abundance.csv",header = T) 251 

pchs=c(16,17) 252 

 253 
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rel_abundance$Class=factor(rel_abundance$X) 254 

plot(rel_abundance$Livepercent,rel_abundance$Deadpercent,xlim=c(0.01, 10^2), ylim=c(0.01, 255 
10^2),log="xy",xlab="Live abundance (%)", ylab="Dead abundance (%)", 256 
col=c("red","blue"),yaxt="n",xaxt="n",cex=1.5,cex.axis=1.5,cex.lab=1.5,pch=c(16,17),asp = 1) 257 

#text(Livepercent,Deadpercent,labels=rownames(rel_abundance),cex= 0.7,pos = 4) 258 

#legend("bottomright",legend = c("Bivalve","Gastropod"),cex=0.7,pch = c(16,17),bty="n") 259 

at.x=c(0,0.01,0.1,1,10,100) 260 

at.y=c(0,0.01,0.1,1,10,100) 261 

#lab.y <- ifelse(log10(at.y) %% 1 == 0, at.y, NA) 262 

lab.x=c(0,0.01,0.1,1,10,100) 263 

lab.y=c(0,0.01,0.1,1,10,100) 264 

axis(1, at=at.x, labels=lab.x, las=1,cex.lab=1.5,cex.axis=1.5) 265 

axis(2, at=at.y, labels=lab.y, las=1,cex.lab=1.5,cex.axis=1.5)   266 

abline(a=0, b=1, col = 1, lty=2) 267 

cor=cor.test(Livepercent,Deadpercent) 268 

cor$p.value 269 

cor$estimate 270 

 271 

###############Figure 2.5####################### 272 

####################Calculating shared species between live and dead for all 273 
sites#################################################### 274 

sharedTF1=length(which(colSums(abundanceocc[c(6,14),])==2)) 275 

sharedTF2=length(which(colSums(abundanceocc[c(7,15),])==2)) 276 

sharedTF3=length(which(colSums(abundanceocc[c(8,16),])==2)) 277 

sharedTF4=length(which(colSums(abundanceocc[c(9,17),])==2)) 278 

sharedTF5=length(which(colSums(abundanceocc[c(10,18),])==2)) 279 

sharedTF6=length(which(colSums(abundanceocc[c(11,19),])==2)) 280 

sharedTF7=length(which(colSums(abundanceocc[c(12,20),])==2)) 281 

sharedTF8=length(which(colSums(abundanceocc[c(13,21),])==2)) 282 

sharedRS1=length(which(colSums(abundanceocc[c(22,27),])==2)) 283 

sharedRS2=length(which(colSums(abundanceocc[c(23,28),])==2)) 284 

sharedRS3=length(which(colSums(abundanceocc[c(24,29),])==2)) 285 
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sharedRS4=length(which(colSums(abundanceocc[c(25,30),])==2)) 286 

sharedRS5=length(which(colSums(abundanceocc[c(26,31),])==2)) 287 

#sharedrestricted=length(which(colSums(abundanceocc[c(22:26),c(27:31)])==10)) 288 

Sharedsp=rbind(sharedTF1,sharedTF2,sharedTF3,sharedTF4,sharedTF5,sharedTF6,sharedTF7,shared289 
TF8,sharedRS1,sharedRS2,sharedRS3,sharedRS4,sharedRS5) 290 

sharedsp_vect=c(rep(0,5),Sharedsp,rep(0,3)) 291 

richnessdf=as.data.frame(cbind(Live,Dead,sharedsp_vect)) 292 

richnessdf$liveonly=richnessdf$Live-richnessdf$sharedsp_vect 293 

richnessdf$deadonly=richnessdf$Dead-richnessdf$sharedsp_vect 294 

subsrichness=richnessdf[6:18,] 295 

 296 

par(mfrow=c(1,2)) 297 

par(mar=c(20,5,1,0.5)) 298 

 299 

env1=c(rep("Tidal flat",8),rep("Restricted",5)) 300 

subsrichness=cbind(env1,subsrichness) 301 

subsrichness=as.data.frame(subsrichness) 302 

 303 

###############calculating F1 and F2 304 
index########################################################### 305 

subsrichness$F1=(subsrichness$sharedsp_vect*100)/(subsrichness$liveonly+subsrichness$sharedsp_306 
vect) 307 

subsrichness$F2=(subsrichness$sharedsp_vect*100)/(subsrichness$deadonly+subsrichness$sharedsp_308 
vect) 309 

subsrichness=cbind(names[6:18],subsrichness) 310 

row.names(subsrichness)=subsrichness$`names[6:18]` 311 

subsrichness=subsrichness[,-1] 312 

mean(subsrichness$F1) 313 

mean(subsrichness$F2) 314 

colorsenv <- c("darkorange2","dodgerblue2") 315 

plot(subsrichness$Live,subsrichness$F1,col=colorsenv[subsrichness$env1],ylab = "% of LA species 316 
in DAs",xlab="Live S",cex=1.5,pch=16,cex.axis=1.5,cex.lab=1.5) 317 

text(subsrichness$Live,subsrichness$F1,labels=row.names(subsrichness), cex= 0.7,pos = 4) 318 
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plot(subsrichness$Dead,subsrichness$F2,col=colorsenv[subsrichness$env1],ylab = "% of DA species 319 
in LAs",xlab="Dead S",cex=1.5,pch=16,cex.axis=1.5,cex.lab=1.5) 320 

text(subsrichness$Dead,subsrichness$F2,labels=row.names(subsrichness), cex= 0.7,pos = 4) 321 

 322 

######################PIE SOURCE CODE#################### 323 

#' Calculate probability of interspecific encounter (PIE) 324 

#'  325 

#'  \code{calc_PIE} returns the probability of interspecific  encounter (PIE) 326 

#'  which is also known as Simpson's evenness index and Gini-Simpson index. For 327 
\code{ENS=TRUE}, 328 

#'  PIE will be converted to an asymptotic effective number of species (S_PIE). 329 

#'  330 

#' data(inv_comm) 331 

#' calc_PIE(inv_comm) 332 

#' calc_PIE(inv_comm, ENS=TRUE) 333 

calc_PIE = function(x, ENS=FALSE) { 334 

  if (class(x) == 'mob_in') { 335 

    x = x_mob_in$comm 336 

  } 337 

  x = drop(as.matrix(x)) 338 

  if (any(x < 0, na.rm = TRUE))  339 

    stop("input data must be non-negative") 340 

  if (length(dim(x)) > 1) { 341 

    total = apply(x, 1, sum) 342 

    S = apply(x, 1, function(x) return(sum(x > 0))) 343 

    x = sweep(x, 1, total, "/") 344 

  } else { 345 

    total = sum(x) 346 

    S = sum(x > 0) 347 

    x = x / total 348 

  } 349 

  x = x * x 350 
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  if (length(dim(x)) > 1) { 351 

    H = rowSums(x, na.rm = TRUE) 352 

  } else { 353 

    H = sum(x, na.rm = TRUE) 354 

  } 355 

  # calculate PIE without replacement (for total >= 2) 356 

  H = ifelse(total < 2, NA, (total / (total - 1) * (1 - H))) 357 

  if (ENS) { 358 

    # convert to effective number of species (except for PIE == 1) 359 

    H = ifelse(H==1| S == total, NA, (1/ (1-H))) 360 

  }      361 

  return(H) 362 

} 363 

par(mfrow=c(1,2)) 364 

par(mar=c(20,4.5,0.5,0.5)) 365 

 366 

###########Figure 2.6################################ 367 

##################Probability of intraspecific encounter##################  368 

envvector=c(rep("Beach",5),rep("Tidal flat",16),rep("Restricted",10),rep("Estuary",3)) 369 

abundancedata=cbind(envvector,abundancedata) 370 

abundanceTR=subset(abundancedata,select = c(5:60),envvector=="Tidal 371 
flat"|envvector=="Restricted")  372 

TF1=calc_PIE(abundanceTR[c(6,14),]) 373 

TF2=calc_PIE(abundanceTR[c(7,15),]) 374 

TF3=calc_PIE(abundanceTR[c(8,16),]) 375 

TF4=calc_PIE(abundanceTR[c(9,17),]) 376 

TF5=calc_PIE(abundanceTR[c(10,18),]) 377 

TF6=calc_PIE(abundanceTR[c(11,19),]) 378 

TF7=calc_PIE(abundanceTR[c(12,20),])  379 

TF8=calc_PIE(abundanceTR[c(13,21),]) 380 

RS1=calc_PIE(abundanceTR[c(22,27),]) 381 
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RS2=calc_PIE(abundanceTR[c(23,28),]) 382 

RS3=calc_PIE(abundanceTR[c(24,29),]) 383 

RS4=calc_PIE(abundanceTR[c(25,30),]) 384 

RS5=calc_PIE(abundanceTR[c(26,31),]) 385 

PIEtable=as.data.frame(rbind(TF1,TF2,TF3,TF4,TF5,TF6,TF7,TF8,RS1,RS2,RS3,RS4,RS5)) 386 

PIEtable[is.na(PIEtable)] <- 0 387 

env2=c(rep("Tidal flat",8),rep("Restricted",5)) 388 

PIEtable=cbind(env2,PIEtable) 389 

PIEtable=as.data.frame(PIEtable) 390 

colorsenv <- c("darkorange2","dodgerblue2") 391 

plot(PIEtable$`11`,PIEtable$`19`,col=colorsenv[PIEtable$env2],xlab="Dead PIE",ylab="Live 392 
PIE",xlim =c(0,1),ylim=c(0,1),cex=1.5,cex.lab=1.5,cex.axis=1.5,pch=16) 393 

text(PIEtable$`11`,PIEtable$`19`,col=colorsenv[PIEtable$env2],labels=row.names(PIEtable), cex= 394 
1.25,pos = 4) 395 

abline(a=0, b=1, col = 1,lty=2) 396 

cor.test(PIEtable$`11`,PIEtable$`19`,method = "spearman") 397 

################Calculating deltaPIE############### 398 

dPIE=as.numeric(as.character(PIEtable$`11`)) 399 

lPIE=as.numeric(as.character(PIEtable$`19`)) 400 

PIEtable$delPIE=dPIE-lPIE 401 

 402 

######Calculating deltaS=(log10(deadS)-log10(liveS))########## 403 

richnessdfTR=richnessdf[6:18,] 404 

#rownames(richnessdfTR)=richnessdfTR[,2] 405 

#richnessdfTR=richnessdfTR[,-1] 406 

#colnames(richnessdfTR)=c("env","L","D") 407 

richnessdfTR=as.data.frame(richnessdfTR) 408 

D=as.numeric(as.character(richnessdfTR$D)) 409 

L=as.numeric(as.character(richnessdfTR$L)) 410 

richnessdfTR$delS=log10(D)-log10(L) 411 

 412 

########plot delPIE vs delS############ 413 
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env2=c(rep("Tidal flat",8),rep("Restricted",5)) 414 

richnessdfTR=cbind(env2,richnessdfTR) 415 

richnessdfTR=as.data.frame(richnessdfTR) 416 

colorsenv <- c("darkorange2","dodgerblue2") 417 

plot(richnessdfTR$delS,PIEtable$delPIE,col=colorsenv[richnessdfTR$env2],xlab = 418 
expression(paste(Delta,"S")),ylab = 419 
expression(paste(Delta,"PIE")),cex=1.5,cex.lab=1.5,cex.axis=1.5,pch=16) 420 

text(richnessdfTR$delS,PIEtable$delPIE,col=colorsenv[PIEtable$env2],labels=row.names(PIEtable), 421 
cex= 1.25,pos = 1,offset = 0.2) 422 

abline(v=0.55,lty=1) 423 

abline(h=0.0,lty=1) 424 

cor.test(richnessdfTR$delS,PIEtable$delPIE,method = "spearman") 425 

 426 

#################Figure 2.8############################ 427 

################Creating a data frame with seasonal and environmental data for 428 
NMDS############ 429 

abundancedata=read.csv("abundance30.4.19.csv", header = T) 430 

abundancedatanew=abundancedata 431 

abundancedatanew=abundancedata[-4,]#####remove B4 locality as it has only 3 specimen## 432 

abundanceallnew=abundanceall[-4,] 433 

abundancedeadnew=abundancedead[-4,]#####remove B4 locality as it has only 3 specimen## 434 

abundancedeadTR=abundancedeadnew[-(1:4),]####deadabundancefor only tidal and 435 
restricted####### 436 

abundancedeadTR=abundancedeadTR[-(14:16),] 437 

season=abundancedatanew[,3] 438 

sites=abundancedatanew[,2] 439 

env=c(rep("Beach",4),rep("Tidal flat",8),rep("Tidal flat live",8),rep("Restricted",5),rep("Restricted 440 
live",5),rep("Estuary",3)) 441 

attribute=data.frame(season,sites,env) 442 

 443 

par(mar=c(3,5,0.25,0.25)) 444 

par(mfrow=c(2,2)) 445 

par(pty="s") 446 
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 447 

####Figure 2.8A###################### 448 

#######################################NMDS of live and dead with seasonal 449 
variation####################### 450 

attr.envir <- factor(attribute$env) 451 

div.mds=metaMDS(abundanceallnew, distance = "bray", trace = FALSE) 452 

div.mds 453 

 454 

#pchs<- c(4,5,6,7,8,9) 455 

pchs<- c(15,23,17,2,19,1) 456 

col.season <- c("deeppink", "green4", "darkorange2","darkorange2","dodgerblue2","dodgerblue2") 457 

plot(div.mds, type="n",display="sites",xlim=c(-3,5),ylim=c(-3,5),cex=1.5, cex.lab=1,cex.axis=1) 458 

points(div.mds, display="sites", pch=pchs[attr.envir], col = col.season[attr.envir],bg = 459 
"green4",cex=1.5,cex.lab=1,cex.axis=1) 460 

treat=c(rep("Treatment1",4),rep("Treatment2",8),rep("Treatment3",8),rep("Treatment4",5),rep("Treat461 
ment1",5),rep("Treatment2",3)) 462 

ordihull(div.mds,groups=treat,draw="lines",col="grey62",label=F,border=NULL) 463 

 464 

#########Figure 2.8B############# 465 

#####################NMDS of live############################################### 466 

attributelive=attribute[c(13:20,26:30),] 467 

#attr.season <- factor(attributelive$season) 468 

attr.envir2 <- factor(attributelive$env) 469 

div.mds=metaMDS(abundancelive, distance = "bray", trace = FALSE) 470 

div.mds 471 

pchs<- c(2,1) 472 

col.season <- c("darkorange2", "dodgerblue2") 473 

plot(div.mds, type="n",display="sites",xlim=c(-3,5),ylim=c(-3,5),cex=1.5,cex.lab=1,cex.axis=1) 474 

points(div.mds, display="sites", pch=pchs[attr.envir2], col = col.season[attr.envir2],cex=1.5) 475 

treat=c(rep("Treatment3",8),rep("Treatment1",5)) 476 

ordihull(div.mds,groups=treat,draw="lines",col="grey62",label=F) 477 

 478 
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#############Figure 2.8C####################################################### 479 

#######################Nmds 480 
dead##################################################### 481 

attributedead=attribute[c(1:12,21:25,31:33),] 482 

#attr.season <- factor(attributedead$season) 483 

attr.envir1 <- factor(attributedead$env) 484 

div.mds=metaMDS(abundancedeadnew, distance = "bray", trace = FALSE) 485 

div.mds 486 

pchs<- c(15,23,17,19) 487 

col.season <- c("deeppink", "green4", "darkorange2","dodgerblue2") 488 

plot(div.mds, type="n",display="sites",xlim=c(-3,5),ylim=c(-3,5),cex=1.5,cex.lab=1,cex.axis=1) 489 

points(div.mds, display="sites", pch=pchs[attr.envir1], col = col.season[attr.envir1],bg = 490 
"green4",cex=1.5) 491 

treat=c(rep("Treatment1",4),rep("Treatment2",8),rep("Treatment4",5),rep("Treatment2",3)) 492 

ordihull(div.mds,groups=treat,draw="lines",col="grey62",label=F) 493 

 494 

#######Figure 2.8D####################################### 495 

##########################NMDS dead only tidal and restricted################# 496 

attributedead2=attribute[c(5:12,21:25),] 497 

#attr.season <- factor(attributedead$season) 498 

attr.envir1 <- factor(attributedead2$env) 499 

div.mds=metaMDS(abundancedeadTR, distance = "bray", trace = FALSE) 500 

div.mds 501 

pchs<- c(17,19) 502 

col.season <- c("darkorange2","dodgerblue2") 503 

plot(div.mds, type="n",display="sites",xlim=c(-3,5),ylim=c(-3,5),cex=1.5,cex.lab=1,cex.axis=1) 504 

points(div.mds, display="sites", pch=pchs[attr.envir1], col = col.season[attr.envir1],bg = 505 
"green4",cex=1.5) 506 

treat=c(rep("Treatment2",8),rep("Treatment4",5)) 507 

ordihull(div.mds,groups=treat,draw="lines",col="grey62",label=F) 508 

#########Figure 2.12 C######################################################## 509 

distdata=read.csv("geographic vs pairwisedist occ - Copy.csv",header = T) 510 
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rownames(distdata)=distdata[,1] 511 

plot(distdata$Geographic.Distance.km.,distdata$Pairwise.distance.bray.,xlab = "Geographic distance 512 
(km)",ylab = "Pairwise distance (Bray 513 
Curtis)",ylim=c(0.60,1.1),pch=16,cex=1.5,cex.lab=1.5,cex.axis=1.5) 514 

text(distdata$Geographic.Distance.km.,distdata$Pairwise.distance.bray.,labels = rownames(distdata), 515 
cex= 1,pos = 3) 516 

distdata=distdata[,-1] 517 

plot(distdata$Geographic.Distance.km.,distdata$Pairwise.distance.euclidean.,xlab = "Geographic 518 
distance (km)",ylab = "Pairwise distance 519 
(Euclidean)",ylim=c(0,58),pch=16,cex=1.5,cex.lab=1.5,cex.axis=1.5) 520 

text(distdata$Geographic.Distance.km.,distdata$Pairwise.distance.euclidean.,labels = 521 
rownames(distdata), cex= 1,pos = 3) 522 

div.ch=as.matrix(vegdist(occeastchandi,"eucl")) 523 

div.ch.bray=as.matrix(vegdist(occeastchandi,"bray")) 524 

cor.test(distdata$Pairwise.distance.bray.,distdata$Geographic.Distance.km.,method = "spearman") 525 

distSE=distdata[7:15,] 526 

plot(distSE$Pairwise.distance.bray.,distSE$Geographic.Distance.km.,ylab = "Geographic distance 527 
(km)",xlab = "Pairwise distance (Bray Curtis)",pch=19,cex=1.5,cex.lab=1,cex.axis=1) 528 

text(distSE$Pairwise.distance.bray.,distSE$Geographic.Distance.km.,labels = distSE$X, cex= 1.5,pos 529 
= 3) 530 

cor.test(distSE$Pairwise.distance.bray.,distSE$Geographic.Distance.km.,method = "spearman") 531 

barplot(distdata$Bray.curtis.similarity,horiz = T,names.arg = 532 
c("8","9","10","11","12","13","14","15","16","17","18","19","20","21"),col="paleturquoise4", 533 
xlab="Bray Curtis similarity",ylab="Latitude",cex.axis = 1.15,cex.names = 1.15,cex.lab=1.15) 534 

 535 

#######Figure 2.S1###################### 536 

####Size distribution and normalcy test (shapiro-wilk test) of the live species that have also been 537 
found in DA####### 538 

####################cerethium normalcy test################# 539 

library(moments) 540 

mydatalive=read.csv("live measurement - Copy.csv",header=T)###after including subronils 541 
measurements### 542 

cerethium=mydata[ which(mydata$Species=="Cerethium sp1"),] 543 

plot(density(cerethium$L),main=substitute(paste(italic("Pirenella cingulata")," 544 
(N=36)")),xlim=c(0,25),xlab = "L (mm)") 545 

shapiro.test(cerethium$L) 546 
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skewness(cerethium$L) 547 

###################### 548 

tigrina=mydatalive[which(mydatalive$Species=="Notocochlis tigrina"),] 549 

hist(tigrina$L,main=substitute(paste(italic("Paractectonatica tigrina")," (N=45)")),xlim=c(0,25),xlab = 550 
"L (mm)") 551 

shapiro.test(tigrina$L) 552 

skewness(tigrina$L) 553 

############################## 554 

nassarius=mydatalive[which(mydatalive$Species=="Nassarius reticulatus"),] 555 

hist(nassarius$L,main=substitute(paste(italic("Nassarius jacksonianus")," 556 
(N=45)")),xlim=c(0,25),xlab = "L (mm)") 557 

shapiro.test(nassarius$L) 558 

skewness(nassarius$L) 559 

################################## 560 

Dosinia=mydatalive[which(mydatalive$Species=="Dosinia sp2"),] 561 

hist(Dosinia$L,main=substitute(paste(italic("Dosinia sp2")," (N=22)")),xlab = "L (mm)") 562 

shapiro.test(Dosinia$L) 563 

skewness(Dosinia$L) 564 

###################################### 565 

meretrix=mydatalive[which(mydatalive$Species=="Meretrix meretrix"),] 566 

hist(meretrix$L,main=substitute(paste(italic("Meretrix meretrix")," (N=22)")),xlab = "L (mm)") 567 

shapiro.test(meretrix$L) 568 

skewness(meretrix$L) 569 

########################################## 570 

polynices=mydatalive[which(mydatalive$Species=="Polynices didyma"),] 571 

hist(polynices$L,main=substitute(paste(italic("Neverita didyma")," (N=20)")),xlab = "L (mm)") 572 

shapiro.test(polynices$L) 573 

skewness(meretrix$L) 574 

################################################ 575 

meretrixsp1=mydatalive[which(mydatalive$Species=="Meretrix sp1"),] 576 

hist(meretrixsp1$L,main=substitute(paste(italic("Meretrix sp1")," (N=14)")),xlab = "L (mm)") 577 

shapiro.test(meretrixsp1$L) 578 
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#################################################### 579 

cardiumsp1=mydatalive[which(mydatalive$Species=="Cardium sp1"),] 580 

hist(cardiumsp1$L,main=substitute(paste(italic("Timoclea imbricata")," (N=20)")),xlim=c(4,14),xlab 581 
= "L (mm)") 582 

shapiro.test(cardiumsp1$L) 583 

#################################################### 584 

murexsp1=mydatalive[which(mydatalive$Species=="Muricidae sp1"),] 585 

hist(murexsp1$L,main=substitute(paste(italic("Murex sp1")," (N=15)")),xlab = "L (mm)") 586 

shapiro.test(murexsp1$L) 587 

#########code for generating a simulated species-specific SFD after confirming normality of each 588 
species SFD for LA#### 589 

mydata=read.csv("live measurement.csv",header=T) 590 

species1=mydata$Species 591 

L=mydata$L 592 

W=mydata$W 593 

mydata1=read.csv("live individual1.csv",header=F) 594 

Individuals=mydata1$V2 595 

#mydata1=mydata1[-7,] 596 

x=c("Cerethium sp1","Notocochlis tigrina","Nassarius reticulatus","Dosinia sp2","Polynices 597 
didyma","Natica lineata","Meretrix meretrix","Cardium sp1","Muricidae sp1", "Muricidae 598 
sp2","Meretrix sp1", "Bivalve sp1", "Bivalve sp2") 599 

#w=array(0,dim=c(length(x),1)) 600 

final=c(0,0,0) 601 

final=t(as.matrix(final)) 602 

colnames(final) <- c("c1","L","W") 603 

i=0; 604 

install.packages("truncnorm") 605 

require(truncnorm) 606 

for(val in x) 607 

{ 608 

  #i=i+1 609 

  c1=c( ) 610 
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  spsubset=subset(mydata,species1==val,select = c(L,W)) 611 

  Length=spsubset$L 612 

  Width=spsubset$W 613 

  plot(Length,Width) 614 

  mg=lm(Width~Length) 615 

  C=coefficients(mg) 616 

  n=dim(spsubset) 617 

  n=n[1] 618 

  m=mydata1[which(mydata1[,1]==val),2] 619 

  if(m>n) 620 

  { 621 

    g=m-n 622 

    g 623 

    L=rtruncnorm(g, a=min(Length), b=max(Length), mean=mean(Length), sd=sd(Length)) 624 

    W=C[1]+C[2]*L 625 

    matrix=cbind(L,W) 626 

    final1=rbind(matrix,spsubset) 627 

    k=dim(final1) 628 

    k=k[1] 629 

    c1[1:k] = val 630 

    final1=cbind(c1,final1) 631 

  } 632 

  else{ 633 

    final1=spsubset 634 

    k=dim(final1) 635 

    k=k[1] 636 

    c1[1:k] = val 637 

    final1=cbind(c1,final1) 638 

  } 639 

  final=rbind(final,final1)  640 

} 641 
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final=final[-1,] 642 

final=final[,-1] 643 

 644 

#write.table(final,file="livegenerated2019.csv") 645 

 646 

############Figure 2.S1##################### 647 

###################################################### 648 

cerethium=mydata[which(mydata$Species=="Cerethium sp1"),] 649 

notocochlis=mydata[which(mydata$Species=="Notocochlis tigrina"),] 650 

nassarius=mydata[which(mydata$Species=="Nassarius reticulatus"),] 651 

dosinia=mydata[which(mydata$Species=="Dosinia sp2"),] 652 

polynices=mydata[which(mydata$Species=="Polynices didyma"),] 653 

meretrix=mydata[which(mydata$Species=="Meretrix meretrix"),] 654 

meresp1=mydata[which(mydata$Species=="Meretrix sp1"),] 655 

cardium=mydata[which(mydata$Species=="Cardium sp1"),] 656 

murexsp1=mydata[which(mydata$Species=="Muricidae sp1"),] 657 

murexsp2=mydata[which(mydata$Species=="Muricidae sp2"),] 658 

murexsp1=rbind(murexsp1,murexsp2) 659 

natica=mydata[which(mydata$Species=="Natica lineata"),] 660 

##################################################### 661 

plot(mfrow=c(3,3)) 662 

par(mar=c(2,4,2,1)) 663 

mai = c(1, 0.1, 0.1, 0.1) 664 

par(mfrow=c(3,3),mai = c(0.4, 0.1, 0.1, 0.1)) 665 

plot(density(cerethium$L),main=substitute(paste(italic("Pirenella cingulata"))),xlab = " ") 666 

plot(density(notocochlis$L),main=substitute(paste(italic("Paractectonatica tigrina"))),xlab = " 667 
",ylab=" ") 668 

plot(density(nassarius$L),main=substitute(paste(italic("Nassarius jacksonianus"))),xlab = " ",ylab=" 669 
") 670 

plot(density(dosinia$L),main=substitute(paste(italic("Dosinia")," sp2")),xlab = " ") 671 

plot(density(meretrix$L),main=substitute(paste(italic("Meretrix meretrix"))),xlab = " ",ylab=" ") 672 

plot(density(polynices$L),main=substitute(paste(italic("Neverita didyma"))),xlab = " ",ylab=" ") 673 
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plot(density(meretrixsp1$L),main=substitute(paste(italic("Meretrix")," sp1")),xlab = "L (mm)") 674 

plot(density(cardiumsp1$L),main=substitute(paste(italic("Timoclea imbricata"))),xlab = "L 675 
(mm)",ylab=" ") 676 

plot(density(murexsp1$L),main=substitute(paste(italic("Murex")," sp1")),xlab = "L (mm)",ylab=" ") 677 

 678 

######################Figure 2.9############################### 679 

###############################box plot for shell size 680 
summary############################################## 681 

par(pty="s") 682 

beachdead=read.delim("beachnewfinal.csv",header = F) 683 

estuarydead=read.delim("deadestuarynew.txt",header = F) 684 

restricdead=read.delim("deadrestricted.txt",header = F) 685 

tidaldead=read.delim("deadtidalnew.txt",header = F) 686 

restrictlive=read.delim("restriclivemeasure.txt", header=F) 687 

tidallive=read.delim("tidallive.txt",header=F) 688 

 689 

Beach=cbind((rep("Beach",239)),beachdead) 690 

colnames(Beach)<-c("Env","Size") 691 

Tidalflat=cbind((rep("Tidal flat",406)),tidaldead) 692 

colnames(Tidalflat)<-c("Env","Size") 693 

Restricted=cbind((rep("Restricted",185)),restricdead) 694 

colnames(Restricted)<-c("Env","Size") 695 

Estuary=cbind((rep("Estuary",84)),estuarydead) 696 

colnames(Estuary)<-c("Env","Size") 697 

Restrictedlive=cbind((rep("Restricted live",38)),restrictlive) 698 

colnames(Restrictedlive)<-c("Env","Size") 699 

Tidalflatlive=cbind((rep("Tidal flat live",121)),tidallive) 700 

colnames(Tidalflatlive)<-c("Env","Size") 701 

sizedf=rbind(Beach,Tidalflat,Tidalflatlive,Restricted,Restrictedlive,Estuary) 702 

plot(sizedf$Env,sizedf$Size,col=c("deeppink", 703 
"dodgerblue2","dodgerblue2","darkorange2","darkorange2","green4"),names = c("Beach", " ", "Tidal 704 
flat", "", "Restricted", "Estuary"),ylab=expression('log '[2]*'(size)'),cex.lab=1.5,cex.axis=1.5,cex=1.5) 705 
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#sizedf2=write.csv(sizedf,"sizedf.csv") 706 

sizedf3=read.csv("sizedf.csv",header = T) 707 

require(ggplot2) 708 

names=c("Beach DA", "Tidal flat DA", "Tidal flat LA", "Restricted DA", "Restricted LA","Estuary 709 
DA") 710 

ggplot(sizedf3, aes(Env, Size, 711 
gcoroup=factor(sizedf3$Env),fill=factor(sizedf3$Env)))+scale_fill_manual(values = c("deeppink", 712 
"dodgerblue2","dodgerblue2","darkorange2","darkorange2","green4")) + 713 
scale_x_discrete(labels=c("Beach DA", "Tidal flat DA", "Tidal flat LA", "Restricted DA", "Restricted 714 
LA","Estuary DA"))+ geom_boxplot() +xlab("Environment")+ ylab(expression('log 715 
'[2]*'(size)'))+theme(panel.grid.major = element_blank(), panel.grid.minor = 716 
element_blank(),panel.background = element_blank())+theme(legend.position = 717 
"none",aspect.ratio=1,panel.border = element_rect(colour = "black", fill=NA, size=0.75))+ 718 
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))+theme(strip.text.x = 719 
element_text(size = 27, face = "bold"),strip.text.y = element_text(size = 27, face = "bold" 720 
))+theme(axis.title =  element_text(size = 25))+theme(axis.text =  element_text(size = 721 
25))+theme(aspect.ratio=1) 722 

 723 

###########Figure 2.10############################ 724 

###################Comparison of simulated and actual 725 
dead############################### 726 

beachdead=read.csv("beachnewfinal.csv",header = F) 727 

estuarydead=read.delim("deadestuarynew.txt",header = F) 728 

restricdead=read.delim("deadrestricted.txt",header = F) 729 

tidaldead=read.delim("deadtidalnew.txt",header = F) 730 

#live=read.delim("Livemax.txt",header = F) 731 

livegenerated=read.csv("livegenerated2019.csv",header = F)#file generated from the size live file## 732 

 733 

require(seewave) 734 

require(base) 735 

##############################Beach############################################## 736 

  Dist_beach=array(0,c(10000,1)) 737 

  pvalue_beach=array(0,c(10000,1)) 738 

  for(i in 1:10000) 739 

  { 740 

    D1=sample(t(livegenerated),239,replace = T) 741 
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    Dist_beach[i]=ks.test(t(beachdead),as.matrix(D1))$statistic 742 

    pvalue_beach[i]=ks.test(t(beachdead),as.matrix(D1))$p.value 743 

  } 744 

  pvalue_beach 745 

  Dist_beach 746 

  summary(Dist_beach) 747 

 748 

#######################Estuary############################### 749 

  Dist_estuary=array(0,c(10000,1)) 750 

  pvalue_estuary=array(0,c(10000,1)) 751 

  for(i in 1:10000) 752 

  { 753 

    D1=sample(t(livegenerated),84,replace = T) 754 

    Dist_estuary[i]=ks.test(t(estuarydead),as.matrix(D1))$statistic 755 

    pvalue_estuary[i]=ks.test(t(estuarydead),as.matrix(D1))$p.value 756 

  } 757 

  pvalue_estuary 758 

  Dist_estuary 759 

  summary(Dist_estuary) 760 

  ##################################Tidal flat############################# 761 

  Dist_tidal=array(0,c(10000,1)) 762 

  pvalue_tidal=array(0,c(10000,1)) 763 

  for(i in 1:10000) 764 

  { 765 

    D1=sample(t(livegenerated),406,replace = T) 766 

    Dist_tidal[i]=ks.test(t(tidaldead),as.matrix(D1))$statistic 767 

    pvalue_tidal[i]=ks.test(t(tidaldead),as.matrix(D1))$p.value 768 

  } 769 

  pvalue_tidal 770 

  Dist_tidal 771 

  summary(Dist_tidal) 772 
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####################################restricted############################# 773 

  Dist_rest=array(0,c(10000,1)) 774 

  pvalue_rest=array(0,c(10000,1)) 775 

  for(i in 1:10000) 776 

  { 777 

    D1=sample(t(livegenerated),185,replace = T) 778 

    Dist_rest[i]=ks.test(t(restricdead),as.matrix(D1))$statistic 779 

    pvalue_rest[i]=ks.test(t(restricdead),as.matrix(D1))$p.value 780 

  } 781 

  pvalue_rest 782 

  Dist_rest 783 

  summary(Dist_rest) 784 

  785 

################################Setting a cutoff size for each 786 
env############################################# 787 

######################Estuary######################### 788 

  Dist_estuary1=array(0,c(10000,1)) 789 

  pvalue_estuary1=array(0,c(10000,1)) 790 

  live_filtered = livegenerated[which(livegenerated<4),1] 791 

  for(i in 1:10000) 792 

  {  793 

    D2=sample(live_filtered,84,replace = T) 794 

    Dist_estuary1[i]=ks.test(t(estuarydead),as.matrix(D2))$statistic 795 

    pvalue_estuary1[i]=ks.test(t(estuarydead),as.matrix(D2))$p.value 796 

  } 797 

  pvalue_estuary1 798 

  Dist_estuary1 799 

  summary(Dist_estuary1) 800 

   801 

##########################################restricted##################### 802 

  Dist_rest1=array(0,c(10000,1)) 803 
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  pvalue_rest1=array(0,c(10000,1)) 804 

  live_filtered_restric = livegenerated[which(livegenerated<4.6),1] 805 

  for(i in 1:10000) 806 

  { 807 

    D2=sample(live_filtered_restric,185,replace = T) 808 

    Dist_rest1[i]=ks.test(t(restricdead),as.matrix(D2))$statistic 809 

    pvalue_rest1[i]=ks.test(t(restricdead),as.matrix(D2))$p.value 810 

  } 811 

  pvalue_rest1 812 

  Dist_rest1 813 

  summary(Dist_rest1) 814 

   815 

  ################histograms################################################### 816 

  par(mar=c(4,4,2,2)) 817 

  par(mfrow=c(3,2)) 818 

  p1=hist(Dist_beach,breaks = 7) 819 

  p2=hist(Dist_tidal,breaks = 12) 820 

  p3=hist(Dist_estuary,breaks =19) 821 

  p4=hist(Dist_rest) 822 

  p13=hist(Dist_estuary1) 823 

   p16=hist(Dist_rest1) 824 

  plot(p1,w=10,col=c("deeppink"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 825 

  826 

  plot(p2,col=c("dodgerblue2"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 827 

  plot(p4,col=c("darkorange2"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 828 

   plot(p3,col=c("green4"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 829 

  plot(p16,col=c("darkorange2"),xlim = c(0.2,1),ylim = c(0,5000),density=50,angle = 830 
30,cex.axis=1.5,ann=FALSE) 831 

   plot(p13,col=c("green4"),xlim = c(0.2,1),ylim = c(0,5000),density=50,angle = 832 
30,cex.axis=1.5,ann=FALSE) 833 

############Figure 2.S2####################################### 834 

  #######Shared species LD simulation ################## 835 
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  mydata=read.csv("livemeasurementshared.csv",header=T) 836 

  species1=mydata$Species 837 

  L=mydata$L 838 

  W=mydata$W 839 

  mydata1=read.csv("liveindividualshared.csv",header=F) 840 

  Individuals=mydata1$V2 841 

  #mydata1=mydata1[-7,] 842 

  x=c("Cerethium sp1","Notocochlis tigrina","Nassarius reticulatus","Dosinia sp2","Meretrix 843 
meretrix","Cardium sp1","Murex sp1","Meretrix sp1","Polynices didyma") 844 

  #w=array(0,dim=c(length(x),1)) 845 

  final=c(0,0,0) 846 

  final=t(as.matrix(final)) 847 

  colnames(final) <- c("c1","L","W") 848 

  i=0; 849 

  #install.packages("truncnorm") 850 

  require(truncnorm) 851 

  for(val in x) 852 

  { 853 

    #i=i+1 854 

    c1=c( ) 855 

    spsubset=subset(mydata,species1==val,select = c(L,W)) 856 

    Length=spsubset$L 857 

    Width=spsubset$W 858 

    plot(Length,Width) 859 

    mg=lm(Width~Length) 860 

    C=coefficients(mg) 861 

    n=dim(spsubset) 862 

    n=n[1] 863 

    m=mydata1[which(mydata1[,1]==val),2] 864 

    if(m>n) 865 

    { 866 
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      g=m-n 867 

      g 868 

      L=rtruncnorm(g, a=min(Length), b=max(Length), mean=mean(Length), sd=sd(Length)) 869 

      W=C[1]+C[2]*L 870 

      matrix=cbind(L,W) 871 

      final1=rbind(matrix,spsubset) 872 

      k=dim(final1) 873 

      k=k[1] 874 

      c1[1:k] = val 875 

      final1=cbind(c1,final1) 876 

    } 877 

    else{ 878 

      final1=spsubset 879 

      k=dim(final1) 880 

      k=k[1] 881 

      c1[1:k] = val 882 

      final1=cbind(c1,final1) 883 

    } 884 

    final=rbind(final,final1)  885 

  } 886 

  final=final[-1,] 887 

  final=final[,-1] 888 

   889 

  #write.table(final,file="livegenerated_shared.csv") 890 

 891 

  ###################Comparison of simulated and actual 892 
dead############################### 893 

  setwd("F:/Madhura/BACKUP/Madhura/Chandipur/R files") 894 

  beachdead=read.csv("beachsharednew.csv",header = F) 895 

  estuarydead=read.csv("estuarysharednew.csv",header = F) 896 

  restricdead=read.csv("restrictedsharednew.csv",header = F) 897 
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  tidaldead=read.csv("tidalsharednew.csv",header = F) 898 

  livegenerated=read.csv("live_generated_shared.csv",header = F)#file generated from the size live 899 
file## 900 

   901 

  require(seewave) 902 

  require(base) 903 

  ##############################Beach############################################## 904 

     Dist_beach=array(0,c(10000,1)) 905 

    pvalue_beach=array(0,c(10000,1)) 906 

    for(i in 1:10000) 907 

    { 908 

      D1=sample(t(livegenerated),27,replace = T) 909 

      Dist_beach[i]=ks.test(t(beachdead),as.matrix(D1))$statistic 910 

      pvalue_beach[i]=ks.test(t(beachdead),as.matrix(D1))$p.value 911 

    } 912 

     pvalue_beach 913 

    Dist_beach 914 

    summary(Dist_beach) 915 

    hist(as.matrix(beachdead)) 916 

  #######################Estuary############################### 917 

    Dist_estuary=array(0,c(10000,1)) 918 

    pvalue_estuary=array(0,c(10000,1)) 919 

    for(i in 1:10000) 920 

    { 921 

      D1=sample(t(livegenerated),20,replace = T) 922 

      Dist_estuary[i]=ks.test(t(estuarydead),as.matrix(D1))$statistic 923 

      pvalue_estuary[i]=ks.test(t(estuarydead),as.matrix(D1))$p.value 924 

    } 925 

    pvalue_estuary 926 

    Dist_estuary 927 

    summary(Dist_estuary) 928 
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     929 

#################################Tidal flat############################# 930 

    Dist_tidal=array(0,c(10000,1)) 931 

    pvalue_tidal=array(0,c(10000,1)) 932 

    for(i in 1:10000) 933 

    { 934 

      D1=sample(t(livegenerated),123,replace = T) 935 

      Dist_tidal[i]=ks.test(t(tidaldead),as.matrix(D1))$statistic 936 

      pvalue_tidal[i]=ks.test(t(tidaldead),as.matrix(D1))$p.value 937 

    } 938 

    pvalue_tidal 939 

    Dist_tidal 940 

    summary(Dist_tidal) 941 

    hist(as.matrix(tidaldead)) 942 

    hist(Dist_tidal) 943 

 944 

  ####################################restricted############################# 945 

    Dist_rest=array(0,c(10000,1)) 946 

    pvalue_rest=array(0,c(10000,1)) 947 

    for(i in 1:10000) 948 

    { 949 

      D1=sample(t(livegenerated),87,replace = T) 950 

      Dist_rest[i]=ks.test(t(restricdead),as.matrix(D1))$statistic 951 

      pvalue_rest[i]=ks.test(t(restricdead),as.matrix(D1))$p.value 952 

    } 953 

    pvalue_rest 954 

    Dist_rest 955 

    summary(Dist_rest) 956 

    957 

  ################################Setting a cutoff size for each 958 
env############################################# 959 
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  ##############################Beach############################################## 960 

  livebeachfiltered=read.csv("beachbivalvefiltered.csv",header = F) 961 

   962 

    Dist_beachbiv=array(0,c(10000,1)) 963 

    pvalue_beachbiv=array(0,c(10000,1)) 964 

    for(i in 1:10000) 965 

    { 966 

      D1=sample(t(livebeachfiltered),27,replace = T) 967 

      Dist_beachbiv[i]=ks.test(t(beachdead),as.matrix(D1))$statistic 968 

      pvalue_beachbiv[i]=ks.test(t(beachdead),as.matrix(D1))$p.value 969 

    } 970 

    pvalue_beachbiv 971 

    Dist_beachbiv 972 

    summary(Dist_beachbiv) 973 

 974 

  ######################Estuary######################## 975 

    Dist_estuary1=array(0,c(10000,1)) 976 

    pvalue_estuary1=array(0,c(10000,1)) 977 

    live_filtered = livegenerated[which(livegenerated<4),1] 978 

    for(i in 1:10000) 979 

    {  980 

      D2=sample(live_filtered,20,replace = T) 981 

      Dist_estuary1[i]=ks.test(t(estuarydead),as.matrix(D2))$statistic 982 

      pvalue_estuary1[i]=ks.test(t(estuarydead),as.matrix(D2))$p.value 983 

    } 984 

    pvalue_estuary1 985 

    Dist_estuary1 986 

    summary(Dist_estuary1) 987 

     988 

  #####################################Beach######################### 989 

    Dist_beach1=array(0,c(10000,1)) 990 
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    pvalue_beach1=array(0,c(10000,1)) 991 

    live_filtered_beach = livegenerated[which(livegenerated<20),1] 992 

    for(i in 1:10000) 993 

    { 994 

      D2=sample(t(live_filtered_beach),27,replace = T) 995 

      Dist_beach1[i]=ks.test(t(beachdead),as.matrix(D2))$statistic 996 

      pvalue_beach1[i]=ks.test(t(beachdead),as.matrix(D2))$p.value 997 

    } 998 

    pvalue_beach1 999 

    Dist_beach1 1000 

    summary(Dist_beach1) 1001 

 1002 

  ##########################################tidal flat####################### 1003 

    Dist_tidal1=array(0,c(10000,1)) 1004 

    pvalue_tidal1=array(0,c(10000,1)) 1005 

    live_filtered_tidal = livegenerated[which(livegenerated<12),1] 1006 

    for(i in 1:10000) 1007 

    { 1008 

      D2=sample(live_filtered_tidal,123,replace = T) 1009 

      Dist_tidal1[i]=ks.test(t(tidaldead),as.matrix(D2))$statistic 1010 

      pvalue_tidal1[i]=ks.test(t(tidaldead),as.matrix(D2))$p.value 1011 

    } 1012 

    pvalue_tidal1 1013 

    Dist_tidal1 1014 

    summary(Dist_tidal1) 1015 

   1016 

    ##########################################restricted##################### 1017 

    Dist_rest1=array(0,c(10000,1)) 1018 

    pvalue_rest1=array(0,c(10000,1)) 1019 

    live_filtered_restric = livegenerated[which(livegenerated<4.6),1] 1020 

    for(i in 1:10000) 1021 
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    { 1022 

      D2=sample(live_filtered_restric,87,replace = T) 1023 

      Dist_rest1[i]=ks.test(t(restricdead),as.matrix(D2))$statistic 1024 

      pvalue_rest1[i]=ks.test(t(restricdead),as.matrix(D2))$p.value 1025 

    } 1026 

    pvalue_rest1 1027 

    Dist_rest1 1028 

    summary(Dist_rest1) 1029 

 ############################################################################### 1030 

  par(mar=c(4,4,2,2)) 1031 

  par(mfrow=c(3,2)) 1032 

  p1=hist(Dist_beach,breaks = 24) 1033 

  p2=hist(Dist_tidal,breaks = 12) 1034 

  p3=hist(Dist_estuary,breaks =23) 1035 

  p4=hist(Dist_rest,breaks = 15) 1036 

  p13=hist(Dist_estuary1,breaks = 25) 1037 

  p16=hist(Dist_rest1,breaks = 15) 1038 

  plot(p1,col=c("deeppink"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 1039 

   plot(p2,col=c("dodgerblue2"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 1040 

   plot(p4,col=c("darkorange2"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 1041 

    plot(p3,col=c("green4"),xlim = c(0.2,1),ylim = c(0,5000),cex.axis=1.5,ann=FALSE) 1042 

   1043 

   plot(p16,col=c("darkorange2"),xlim = c(0.2,1),ylim = c(0,5000),density=50,angle = 1044 
30,cex.axis=1.5,ann=FALSE) 1045 

  plot(p13,col=c("green4"),xlim = c(0.2,1),ylim = c(0,5000),density=50,angle = 1046 
30,cex.axis=1.5,ann=FALSE)1047 
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Chapter 3 

 

Figure 3.S1: Null model predicted mean (black circles) and variance of beta diversity (red 

dash) with number of bins based on LA data. The left column represents “combined bin 

method” and the right column represents “individual bin method”. The indices of beta 

diversity used here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson 

index (βsim) (E-F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-

J). 
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Figure 3.S2: Null model predicted mean (black circles) and variance of beta diversity (red 

dash) with number of bins based on DA data. The left column represents “combined bin 

method” and the right column represents “individual bin method”. The indices of beta 

diversity used here include Bray-Curtis (βppd) (A-B), Whittaker index (βwhit) (C-D), Simpson 

index (βsim) (E-F), Sorenson index (βsor) (G-H), Nestedness component of Sorenson (βsne) (I-

J).
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Figure. 3.S3. Tracks of cyclones passing through the western coast of India from years 1977–

2014. Cyclones with higher intensity (>60 knots) have bolder lines and marked in red and 

cyclones with lower intensity (<60 knots) are marked in blue.
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Table 3.S1. Significance (p-values) of Spearman rank correlation test between environmental variables. The significant results are in bold. 

 

 

  
Productivity 
(mean) 

Productivity 
(range) 

Salinity 
(mean) 

Salinity 
(range) 

Temperature 
(mean) 

Temperature 
(range) Oxygen Cyclones Shelf area 

Productivity 
(mean) 0.692 0.059 0.001 0.002 0.003 0.923 0.817 0.061 0.081 

Productivity 
(range) NA 0.002 0.056 0.045 0.533 0.056 0.852 0.538 0.005 

Salinity (mean)   NA 0.011 0.000 0.274 0.375 0.970 0.874 0.000 

Salinity (range)     NA 0.002 0.049 0.180 0.573 0.224 0.015 

Temperature 
(mean)       NA 0.056 0.817 0.887 0.278 0.004 

Temperature 
(range)         NA 0.203 0.887 0.240 0.197 

Oxygen 
concentration           NA 0.185 0.809 0.533 

Cyclones             NA 0.910 0.817 

Shelf area               NA 0.320 
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R Script 3.S1. R Script for statistical analyses and plots in Chapter 3 are available in the 

Supplemental files of the preprint version uploaded in the biorxiv 

MS ID Number: BIORXIV/2022/514806 

MS Title: Controls of spatial grain size and environmental variables on observed beta 

diversity of molluscan assemblage at a regional scale. 
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Chapter 4 

Figure 4. S1. The plot showing variation in inferred predation intensity (PIT.inf) and inferred 

the number of prey species (Sprey.inf) with specific sample sizes for different model 

assemblages. The rows represent different degrees of selectivity of predation and the columns 

indicate predation intensity in the original assemblage (PIT). The warmer colors represent 

higher evenness. 
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R Script 4.S1. R Script for statistical analyses and plots in Chapter 4 are available in the 

Supplemental files of the preprint version uploaded in the biorxiv 

MS ID Number: BIORXIV/2022/500550 

MS Title: Community structure and sample size affect estimates of predation intensity and 

prey selection: A model-based validation. 
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