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Abstract

Understanding how the structure of neural circuits mediates its function is an area

of key interest in neuroscience, particularly in instances where circuits that are

trying to accomplish the same over-arching goal, make use of different structural

parameters. The antennal lobe - mushroom body circuit of the insect olfactory

system - that functions to represent odours experienced by the insect - is one of

the most well characterized neural circuits, with physiology and function having

been studied in great detail up to the 4th order neurons. In addition there exists

significant variations in the structural parameters of this circuit between insects.

It therefore provides a useful model in which to understand structure-function re-

lationships. In this thesis I will begin by studying the effect of including temporal

structure in neural activity on the function of this circuit. My results suggest that

this temporal structure is utilized differently by the circuit depending on the struc-

tural parameter regimes adopted, allowing different parameter regimes to function

optimally in different conditions. Such results are not predicted by the more sim-

plistic models used in earlier studies, implying that more realistic models of neural

circuitry can provide novel insight into its function. I will then show more rigorously

that there is more than one regime of structural parameters in which this circuit

can perform its function optimally.
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1 Introduction

The insect olfactory system is arguably one of the most well characterised neu-

ral circuits. Its compactness and simplicity combined with the powerful genetic

tools available have allowed for the production of a detailed understanding of its

structure and function.

The circuit begins at the olfactory sensory neurons (OSNs) that convert olfactory in-

formation from the environment into electrical signals to pass on to the higher brain

regions (Hallem and Carlson 2004a, Hallem and Carlson 2004b, Wilson 2014) .

The second level of the circuit is the Antennal Lobe (AL), the principal excitatory

neurons in the AL - Projection Neurons (PNs) - represent odours as dense spa-

tiotemporal firing patterns (Laurent and Davidowitz 1994, Laurent 1996b, Wilson

et al. 2004, Wilson 2014). The structural organisation of the AL varies across

species (examples of circuitry in the fly and locust are shown in Figure 1). The

AL then feeds information to the Mushroom Body (MB) where sparse firing of the

Kenyon Cells (KCs) represent the odour (Perez-Orive et al. 2002, Turner et al.

2008). This sparsity is maintained by a high spiking threshold and the inhibitory

inputs provided to the KCs by a pair of large GABAergic neurons [Giant GABAer-

gic Neuron - GGN - in locusts, and Anterior Paired Lateral Neurons - APL - in flies]

(Papadopoulou et al. 2011, Masuda-Nakagawa et al. 2014). These GABAergic

neurons are graded neurons whose membrane voltage is mediated by the activity

of the KCs, thus forming a feedback inhibition loop [Figure 1]. Synapses imme-

diately downstream of the KCs are plastic and thought to be the primary locus of

associative memory in the insect (Heisenberg 2003). The KCs pass their infor-

mation on to the Mushroom Body Output Neurons (MBONs). From the MBONs

7



onwards neuronal activity is related more with behavioural output than with stimu-

lus representation (Aso et al. 2014, Hige et al 2015).

Such detailed knowledge of the functional roles of each of the neurons involved in

the odour processing circuit has begun to be paired with a burgeoning understand-

ing of the connectivity between these cells and the anatomy of the system (Berck

et al 2016). The structure of the circuitry is important because it is the organiza-

tion of connections along with the intrinsic properties of the neurons that allow the

circuit to perform complex comparisons and computations . Understanding how

the structure of networks affects the computations they perform will be integral to

figuring out how the circuits perform the functions accredited to them.

These structure-function relationships are of particular interest in instances where

circuits that are trying to accomplish the same over-arching goal while making use

of different structural parameters. One such instance is the variation in the density

of connections between the PNs and KCs across insect species. While the role

of the AL-MB circuit is the same across species - ie. to represent odour identity -

different species accomplish this goal differently. In the locust, Schistocerca amer-

icana, every KC receives inputs from approximately 50 percent of all PNs (Jortner

et al. 2007), whereas in the fly, Drosophila melanogaster, every KC receives in-

puts from only 5 percent of all PNs (Turner et al 2008). In addition, the AL of the fly

is organized into approximately 50 large glomeruli. Each glomerulus is inervated

by the dendrites of 4-10 PNs all of them thus receiving the same inputs [Figure 1].

The locust AL is organized into microglomeruli where every PN receives unique

inputs [Figure 1]. In this case ORNs are multi-glomerular unlike in the fly. What do

these differences mean for the circuit's ability to represent odours?

It has been shown that the 50 percent PN-KC connectivity seen in the locust max-
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Figure 1: A schematic of the insect olfactory system contrasting the structural parameters
of the circuit in Drosophila melanogaster (a) and Schistocerca americana (b). (a) In the fly
all ORNs expressing the same olfacotry receptor send their axons to a single glomerulus
allowing for the formation of a label-line information coding stream at the level of the AL.
LNs (local inhibitory neurons) and PNs receive information from a single one of these
glomeruli. LNs that receive inputs from a given glomerulus inhibit PNs and LNs receiving
inputs from other glomeruli. PNs transfer this information to the KCs of the MB. In the fly
the PN - KC connectivity is sparse - only 5 percent of all PNs synapse onto a given KC.
(b) In the locust, ORNs are multi-glomerular, preventing the formation of a label-line code.
Also the PN - KC connectivity is dense with approximately 50 percent of all PNs synapsing
onto a given KC.
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imally differentiates the inputs to the KCs, while the 5 percent connectivity of the

fly does this poorly. This is assumed to cause many KCs to have similar activity

patterns for several odours (Jortner 2013) and would lead to poor odour discrim-

ination. This ability is important for the animals survival. If the locust network

was deemed optimal why would a fly, with a circuit designed to solve the same

problem, evolve a seemingly sub-optimal configuration. A sub-optimal olfactory

network would only make sense if there were other constraints that allowed it to

perform its function of representing and distinguishing between odours. My hy-

pothesis is that the glomerular organization of the fly AL does exactly this - it mod-

ifies the correlations in the activity of the PNs that is seen by the MB such that a 5

percent connectivity is now sufficient to allow the circuit to represent similar odours

differently.

In this study I will begin by building three different models of the PN - KC network. I

will use thesemodels to demostrate that the ability of the KC population to distinctly

represent odours that have similar representations in the PN space does in-fact

depend upon the extent of connectivity between the PNs and KCs. I will elucidate

the role of the temporal structure of PN activity in the KC response and finally show

that the glomerular organisation of the fly AL does in-fact perform the function that

I hypothesized in the previous paragraph by allowing a network with 5 percent

PN-KC connectivity to distinctly represent similar PN population inputs.
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2 Materials and Methods

2.1 Model 1 - A snapshot in time

The first model used in this study is adapted from the work of Ron Jortner (Jortner

2013). It captures a snapshot - a short interval of time - of the activity of the AL-MB

circuit [Figure 2a]. In this model the activity of a single PN is denoted by a value

of 0 or 1. A value 0 implies that the given PN is inactive, while a value of 1 implies

that it is active. The activity of 900 such PNs are strung together to form a 900

element long vector of 1s and 0s that represents the activity of the AL at the time

point in consideration [Figure 2a]. These 900 PNs send their outputs to the next

layer of cells - the KCs. Each KC receives inputs from a group of PNs. In this

study the number of PNs that send their outputs to a single KC varies from 5 to

95 percent of all PNs (in steps of 5 percent). Different odours were simulated by

randomly shuffling PN activities. A connectivity matrix is created to map PNs to

KCs. The activity of all the PNs that are connected to the same KC were summed

to give a value between 0 and the total number of active PNs . It is this summation

that the KC sees as its input. To decide which KCs are active, a threshold value

is chosen. All KCs that receive an input greater than the threshold are defined as

active. The threshold is chosen such that approximately 10 percent of the 50000

KCs in the model are active, as is seen in experimental studies (Perez-Orive et al.

2002, Turner et al. 2008).
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2.2 Model 2 - A time-course of activity

The second model of the AL - MB circuitry used in this study takes the temporal

ordering of neural activity into account [Figure 3a]. Here the activity of a single PN

is represented by a 3000 element long vector (with the ith element representing

time point i). Each element in this vector can take a value of 1 or 0 - with 1 repre-

senting the production of an action potential (AP) by the neuron at that time point

and 0 implying the lack of an AP. As in Model 1 the activities of 900 such PNs are

strung together to form a 900 X 3000 matrix that represents the activity of the AL

in a 3000ms time-course.

Once again, as in Model 1, the PNs were combined to provide inputs to the 50000

KCs, via a connectivity matrix. The KCs were modelled as leaky integrate and fire

neurons [eq. 1] (Turner et al. 2008, Papadopoulou et al. 2011).

C
m

⇤ dV

dt
= �g

L

⇤ (V � E
L

)� I
syn

(1)

Here g
L

= 0.089 mS/cm2, C
m

= 1.0 µF/cm2 and E
L

= -65.0mV. The KC generates a

spike when V > V
thresh

. The membrane potential is set to 0mV at the time point of

the spike and is reset to -65mV at the next time point immediately after the spike.

KCs receive synaptic inputs from the PNs via the term I
syn

[eq. 1]. These synapses

are thought to be cholinergic (Yasuyama and Salvaterra 1999) and are modelled

as such [eq.2 and 3] (Destexhe et al 1994, Bazhenov et al. 2001, Perez-Orive et

al. 2004, Turner et al. 2008).
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I
syn

= g
syn

⇤ [O] ⇤ (V � E
syn

) (2)

d[O]

dt
= ↵ ⇤ (1� [O]) ⇤ T � � ⇤ [O] (3)

T = A ⇤ ✓ ⇤ (t0 + t
max

� t) ⇤ (t� t0) (4)

In these equations the following terms are constants: ↵ = 0.94 ms�1, � = 0.18

ms�1, g
syn

= 0.05 mS/cm2, E
syn

= 0 mV and t
max

= 0.3 ms. ✓ is the Heaviside

function. [O] is the open probability of the ion channels on the KC membrane and

T represents the amount of neurotransmitter released by a given PN. To calculate

T at a given time point one needs to the know the time elapsed after the most

recent PN spike. Once T is calculated, the values for all PNs synapsing onto the

same KC are summed and calculation of [O] and I
syn

follow. These are fed into the

calculation of V. This is repeated for each time point in the 3000ms time-course for

all 50000 KCs.

2.3 Model 3 - Including feedback inhibition

Another aspect of the AL - MB circuit is the feedback inhibition experienced by

the KCs. It is presently assumed that this inhibition happens through a pair of

GABAergic neurons (Papadopouloue et al. 2011, Masuda-Nakagawa et al. 2014).

In the third model used in this study I have included this feedback loop into the

circuit [Figure 5a].

Here, PN activity is exactly the same as in Model 2, as is the PN-KC synapse.
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There is a slight modification in the equations used to model the KC voltage. In

Model 3 KCs receive synaptic input from both the PNs as well as the GGN.

C
m

⇤ dV

dt
= �g

L

⇤ (V � E
L

)� I
PN

� I
GGN

(5)

g
L

, C
m

and E
L

are constants with the same value as in Model 2. The equations

describing I
PN

are the same as those for I
syn

in Model 2, I
GGN

is the inhibitory

current provided to the KC by the GGN. This current is described by the following

equations (Papadopoulou et al. 2011):

I
GGN

= g
GGNKC

⇤ S ⇤ (V
GGN

� V
revGGN

) (6)

⌧ ⇤ dS

dt
= S1 � S (7)

S1 =
1

1 + exp((V
mid

� V
KC

)/V
slope

)
(8)

Here g
GGNKC

, V
revGGN

, V
mid

and V
slope

are constants. V
KC

is calculated using eq. 6.

This allows you to calculate S1 and S. However to calculate I
GGN

one also needs

the voltage of the GGN. The GGN is modelled as a leaky integrate and fire neuron,

similar to the KC model, except that the GGN is a graded neuron (Papadopoulou

et al. 2011) therefore no spiking condition is required. This is why the calculation

of I
GGN

does not require a knowledge of the most recent GGN spike.
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C ⇤ dV

dt
= g

GGN

⇤ (V
GGN

� E
GGN

)� I
KCGGN

(9)

g
GGN

and E
GGN

are constants. GGN receives inputs from the KCs via the I
KCGGN

current. The KC-GGN synapses that give rise to this current are also cholinergic

and are described in the same was as the PN-KC synapse (eq. 2, 3 and 4), with

the constants modified. Here the constants are ↵, �, g
syn

, E
syn

and t
max

.

2.4 Generating odour representation in projection neuron space

The PN population inputs to the KC network of Model 2 and 3 comprise of a

900 X 3000matrix of 1s and 0s, with 1s representing a single spike [Figure 3a]. The

statistics of the number and timing of the spikes was extracted from the literature.

These statistics were then used to generate a population activity of PNs.

PNs fire at a basal rate of 3.87±2.23 spikes per second [eq. 11]; upon odour

presentation they generate a spatio-temporal pattern of spikes that continues up

to 5 seconds after odour removal (Perez Orive et al. 2002). Odour presentation

causes an increase in the firing rate of about 10-20 percent of PNs [eq. 10] in the

population (Laurent 1996a, Kee et al. 2015). These activated neurons fire at a

rate of 19.53±10.67 spikes in a 3 second interval starting from odour onset [eq.

12]. Not all PNs show an odour specific response that initiates immediately upon

odour onset. Several neurons show increased activity many milli-seconds after

odour onset. In addition activity of a single PN appears to be contiguous in time.

None of the neurons in the papers that I referenced show increased activity at one
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time interval, followed that with a time period of basal activity and then another

period of increased activity.

Another important aspect to consider is the presence of oscillations of 20-30Hz

frequency (Laurent 1996b) in the Local Field Potenial (LFP) of the antennal lobe

of locust. While not as conclusive, similar oscillations have also been observed in

intracellular recordings from Drosophila AL (Tanaka et al. 2009). The presence

of such oscillations suggests that PNs show some correlation during their odour

induced activity pattern with more PNs spiking at the peak of the LFP. The oscilla-

tions also allow for the division of PN response into smaller epochs of 50ms each

(the duration of one oscillation at 20Hz). This division of time into epochs is useful

as now one can measure the mean time needed, from start of odour presentation,

for an active PN to fire as well as the mean amount of time in which the given PN

is active in terms of number of epochs [eq. 13 and 14]

All of the aspects of the odour induced PN population spike pattern mentioned

above have been taken into consideration while selecting parameters that would

define the PN activity and allow for its artificial generation. The parameters (and

their values) used in this process (to simulate 1 second of odour delivery and a 3

second response) are listed below (note all variables are normally distributed and

values represent mean ± standard deviation unless mentioned otherwise) :

Percentage of active neurons = (0.2± 0.05) ⇤ (n of PNs) (10)

Basal firing rate = 3.87± 2.23 spikes/s (11)
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Odour induced firing rate = 19.53± 10.67 spikes/3s (12)

Number of active epochs = 8± 4 cycles (13)

Number of epochs before activity = U(1, 20) cycles (14)

To generate one population PN response, a value of percentage of active neurons

drawn from a normal distribution with mean and variance given in eq. 11 is used.

This value is used as a probability threshold to decide if a given PN fires or not.

For each of the 900 PNs, a uniform random number is drawn to decide if the PN is

activated by odour or not. If the random value is less than the probability threshold

chosen from eq. 11 then the neuron is odour-activated.

If the neuron is odour-activated then a value of basal firing rate is drawn from

eq.12 and spikes equalling three times the value drawn are uniformly and randomly

distributed over the 3000 time points. After this a value for odour induced firing rate

is drawn from eq.13, number of active epochs from eq.14 and number of epochs

before odour-induced activity from eq.15. These three values provide information

about which of the LFP oscillation cycles additional spikes needed to be added

to the particular neuron's activity as well as how many spikes are to be added in

a single epoch. These spikes are then distributed in each of the "active" epochs

in such a way that the spike is more likely to occur at the center of the epoch

(corresponding to the peak of the LFP) than at the ends.

If the neuron is not odour-activated then only the basal firing rate is defined from

eq.12 and the basal spikes are distributed. Once all 900 PNs are described in this

way the odour representation is complete.
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In the simulations of Models 2 and 3, I have made use of two types of PN input

- odours and trials. An odour is defined by the specific PNs that are activated in

its corresponding AL representation and parameters drawn from equations 13, 14

and 15 for each of the odour-activated PNs. In different trials of the same odour,

the PNs that are activated as well as their parameters remain the same however

the exact timing of the spikes in the active epochs change. This timing of spikes

as mentioned earlier is drawn randomly (within specified "active" epochs) for each

trial. In contrast, two odours differ not only in the timing of spikes of active PNs but

also in the identity of the active PNs.

2.5 Distance between the representations of two different odours
by the same neuronal population

To quantify the difference in the representation of two different odours by the same

neuronal population I made use of a metric called Hamming Distance (HD). The

Hamming distance (Figure 2a) compares two vectors of 1s and 0s element-wise

and outputs the number of bits that differ between them. This metric was used to

define distance between representations both at the AL and the MB level.

The Hamming distance metric was also used in calculating the difference between

PN inputs received by any two KCs in the model network [Figure 2b].
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3 Results

3.1 Maximal input separation does not imply maximal output
separation in a snapshot model of the AL-MB circuit

To query the role of PN - KC connectivity in modulating the AL-MB circuit's ability to

represent odours, one first needs to ask how different the inputs received by KCs

are from one another. This was done by generating a 900 X 50000 connectivity

matrix for several values of PN-KC connectivity - ranging from 45 connections per

KC to 855 connections per KC (in steps of 45). This matrix was then used to make

comparisons between the inputs seen by each possible pair of the 50000 KCs and

calculate the mean Hamming distance between them.

The trend seen in the Hamming distances of PN inputs received by any two KCs

agrees with earlier results (Jortner 2013), with a connectivity of 50 percent maxi-

mizing the differences in inputs [Figure 2b]. However, it is the activity of the KCs

that represent the odour. If changes in PN-KC connectivity play any role in the

function of the circuit then its effect must be noticeable in the KC activity.

To investigate this, I first used a rather simplistic model that has been used in the lit-

erature to understand the working of the AL-MB circuit [Jortner 2013, Litwin-Kumar

et al 2017]. This model captures a snapshot of the activity of the circuit [Figure 2a]

and has been utilized here to understand how inputs with varying similarity in PN

space are differentiated in KC space. Four sets of 101 PN representations, each

with a different amount of similarity between any two trials of that set (20, 40, 60

and 80 percent), were fed into this model KC network. The output, population KC

activity, was then compared between trial 1 and each of the other trials belonging
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to a given set to calculate output hamming distance [Figure 2c].

The ability of the KC population to distinctly represent differing inputs showed no

dependance on the amount of connectivity between the PNs and the KCs. While

the inputs seen by a given KC are maximally different when PN-KC connectivity

is 50 percent, the output distance between KC population representations of two

different odours is not maximally different for this value of connectivity. This result

agrees with a recent study from Litwin-Kumar et al. 2017.

3.2 The temporal structure of PN input affects the ability of the
KC network to differentiate inputs

An important aspect of the ability of the AL to represent odours that has been

neglected in my first set of simulations and in earlier theoretical description of the

circuitry [Jortner et al 2007, Jortner 2013, Litwin-Kumar 2017] has been the role

of temporal patterning of odour evoked PN activity. To understand the effect that

time - and hence a more realistic pattern of inputs - has on the ability of the MB to

distinctly represent inputs, I developed Model 2 [Figure 3a].

As an initial test of this model, inputs representing 5 trials of 5 different odours were

delivered to the network of integrate and fire KCs. The first set of comparisons I

made tested the ability of this description of the network to distinguish between

trials of the same odour. I calculated the Hamming distance between the KC pop-

ulation representations of every pair of trials of the same odour and found the

mean value for each odour across PN-KC connectivity values. These results [Fig-

ure 2b] show that the ability of circuits having sparse levels of PN-KC connectivity

is poor when it comes to distinctly representing different trials of the same odour.
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Figure 2: (a) A schematic description of Model 1. The left most vector represents the PN
activity. This is permuted through a connectivity matrix to give the input seen by each KC
(a 50000 element long vector). Thresholding is then applied to define spiking KCs. PN
activity vectors can be shuffled to produce different inputs. The differences between the
population representation of two inputs is calculated using a hamming distance measure.
(b) The inputs provided to KCs [in all models used in this study] are decided randomly
and represented by a connectivity matrix. The hamming distance between inputs seen by
two KCs is calculated for all possible pairs and averaged and plotted as a function of the
PN-KC connectivity. This graph shows that the distance between inputs is maximized at 50
percent connectivity. (c) Themean hamming distance between the activity of a KC network
driven by two different inputs as a function of the PN-KC connectivity value showing that
the distance is independent of the PN-KC connectivity.
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Whereas circuits having PN-KC connectivity in the 50 - 65 percent range are good

at distinguishing between trials. It is important to note here that while the actual

values of Hamming distance seen here may not be accurate due to the integration

time used in my KC model, the shape of the curve in Figure 2b is likely to remain

the same irrespective of the integration time used and it is from this shape that

my conclusions are drawn. The integration time I have used is likely to be smaller

than that of the actual KC. This small integration time has led the circuit to strongly

differentiate between the smallest of changes in the timing of input PN spikes - as

can be seen from the HD values in Figure 2b. A more realistic model will reduce

the magnitude of the HD while not affecting the shape of the curve.

The next set of comparisons from the data at hand tested the ability of this network

to distinguish between odours. I calculated the hamming distance between the KC

population representations of every pair of trials of two different odours and found

the mean value for each odour across PN-KC connectivity values. These results

show that on average the distance between two odours in KC space is high across

a large number of connectivity schemes [Figure 3c].

It is to be noted that in my description of the results above, I have neglected the

odour representing ability of networks having connectivity denser that 65 percent.

This is because as one increases connectivity, the ability of the network to rep-

resent odours becomes increasingly variable [Figure 3d and 3e]. In some cases

20 KCs are active in response to trial 1 of an odour while close to 40000 KCs are

active in response to trial 2 of the same odour. This variability arises from the sim-

ilarity of the inputs seen by the KCs in these regimes and the inability to choose a

spiking threshold that can consistently allow for the same level of sparsity in the KC

population activity. Due to this increased variability, very dense connectivity
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Figure 3
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Figure 3: (a) A schematic description of Model 2. The matrix on the left represents the PN
activity. These inputs are combined to give the input T values that are used to calculate
Isyn. Isyn is fed into the calculation of voltage which is tracked over time to note the activity
of KCs. The differences between the population representation of two inputs is calculated
using a Hamming distance measure. The mean hamming distance over several trials
between the activity of a KC network driven by (b) two different trials of the same odour,
and (c) two different odours, as a function of the PN-KC connectivity value. (d) Depicts
the mean resolution of the KC network's ability to represent odours as a function of PN-KC
connectivity value. (e) Represents the standard deviation in the hamming distance values
calculated using different trials of 5 different odours (from (c)). Higher connectivity values
show tremendous variation and prove to be unreliable for odour representation.

regimes were not considered in the later simulations.

These results together suggest that the level of similarity of the PN population

activity used as inputs plays a role in deciding the network's ability to distinguish

between them. While very similar inputs are maximally separated by 50 percent

connectivity [Figure 3b] distant inputs can be separated by networks with a range

of connectivities from 5 - 65 percent [Figure 3c].

3.3 Dense connectivity regimes are important to distinguish
between inputs that are highly similar

To test the effect of the level of similarity of input patterns more systematically,

Model 2 was fed with 5 trials of 61 different odour inputs. The 61 odours differed

from one another in the PNs that were active. Odours differed by varying amounts

as shown in Table 1. The Hamming distances between all trials of odour 1 and all

trials of each of the other odours was calculated and pooled again to calculate the

mean value for all odour pairs that had the same amount of input difference.

As can be seen from Figure 4, the ability of networks with sparse connectivity to
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Table 1: Odours used to test the effect of input similarity on output distance

Odour Number Amount of Difference from Odour 1

1 Original Odour

2 - 6 5 percent difference in PNs

7 - 11 10 percent difference in PNs

12 - 16 15 percent difference in PNs

17 - 21 20 percent difference in PNs

22 - 26 30 percent difference in PNs

27 - 31 40 percent difference in PNs

32 - 36 50 percent difference in PNs

37 - 41 60 percent difference in PNs

42 - 46 70 percent difference in PNs

47 - 51 80 percent difference in PNs

52 - 56 90 percent difference in PNs

57 - 61 100 percent difference in PNs

distinguish between odours improves with an increase in the difference between

inputs. With inputs differing even by only 20 percent the ability of the sparsely

connected networks is significantly improved when compared to inputs differing

by 5 percent of active PNs. As I will show in my discussion section this improve-

ment, accompanied by the uni-glomerular organisation shown in Figure 1a would

improve the ability of sparsely connected circuitry to dicriminate between odours.

On the other hand, dense connectivity regimes (50 - 65 percent PN - KC connec-

tivity) are successful at discriminating between odours equally well no matter how

similar or different they are.
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Figure 4: This figure shows the mean Hamming distance (solid line) ± standard deviation
of Hamming distance (translucent area around line) between the activity of a KC network
driven by pairs of inputs as a function of PN-KC connectivity. The six lines represent the
mean HD between pairs of inputs differing by 5,10, 20, 40, 60 and 80 percent of all ac-
tive PNs. The lightest line represents 5 percent PN difference between odours and as
the lines get progressively darker the difference between the pairs of odours compared
increases. Networks with sparse connectivity are poor at distinguishing between simi-
lar odours (5,10,20 percent PN difference) but become better at distinguishing between
odours as they becomemore different (40 percent onwards). Dense connectivity networks
are effective at distinguishing between all pairs of odours.
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3.4 Addition of an autonomous inhibitory feedback loop ex-
tinguishes KC spikes and determines sparsity of KC pop-
ulation activity

In the simulations depicted so far sparsity of KC population activity was maintained

with the help of a voltage threshold the decided when a KC spiked. To ensure that

the appropriate sparsity was maintained this voltage threshold needed to be cal-

culated for every odour and for every density of PN-KC connectivity. This was

because varying strength of input PN activity affects the voltage of KCs by differ-

ent extents. While this method performed the desired function it involved a lot of

optimisation and was very time consuming.

In the olfactory system this function of spike threshold modification based on the

strength of the input is performed through an inhibitory feedback loop. While my ar-

tificial modification of spiking threshold was an approximation of this feedback loop,

to streamline the simulation process I attempted to implicitly include this feedback

loop into Model 3 [Figure 5a]. The following results depict a proof of principle that

such a feedback loop can indeed extinguish spikes in the KC and at the population

level change sparsity based on the strength of the feedback signal.

The ability of inhibitory feedback to extinguish spikes can be seen in Figure 5b,c.

When the same input is provided to a KC without any feedback inhibition as in

Figure 5b, this KC spikes 3 times over the time-course of the simulation. Once

inhibitory feedback is added two of these spikes are extinguished [Figure 5c]. At

a population level, given the same voltage threshold for spiking, different levels of

feedback inhibition cause different levels of sparsity in the population KC activity

[Table 2]. One measure of strength of inhibition [Table 2] is the conductance of
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the KC to the inhibitory current fed to it by the GGN (g
GGNKC

). While the system

works, finding the appropriate parameter values such that the feedback strength

changes to ensure same amounts of population activity sparseness for different

values of PN-KC connectivity has proven elusive.

Table 2: Sparsity of active KC population with different levels on feedback inhibition with
PN-KC connectivity of 5 percent

Model Number of Active KCs (out of 50000)

no inhibition (ie. g
GGNKC

= 0) 6070

g
GGNKC

= 0.2 1442

g
GGNKC

= 0.4 79

4 Discussions

4.1 Size of PN and KC populations explains the lack of corre-
lation between hamming distance and connectivity in the
snapshot model

The idea that the PN inputs seen by any two KCs would be maximally different

when PN-KC connectivity reached a value of 50 percent (such that a given KC

receives inputs from 50 percent of all PNs) arose from a combinatorial argument

put forward by Jortner 2013. This idea hinges on the fact that the number of ways

one can pick i objects from a group of n objects is maximal when i = n

2 . This implies

that when many such combinations of i out of n objects are chosen, the number

of differing entities between the objects in each pair of these combinations will be

maximal when i = n

2 . This idea agrees with the data described in Fig. 2b.
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Figure 5
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Figure 5: (a) A schematic description of Model 3. The matrix on the left represents the PN
activity. This is permuted through a connectivity matrix to give the input T values that are
used to calculate I

PN

. I
PN

is fed into the calculation of voltage of the KCs. The KC voltage
is pooled to provide an input to the GGN which provides feedback inhibition to the KC via
GABergic synapses. The voltage of the KCs is tracked over time and their activity is noted.
The differences between the population representation of two inputs is calculated using a
hamming distance measure. The feedback inhibition provided by the GGN does change
the activity of the KC network as can be seen in (b) and (c). (b) represents the activity of
a single neuron in a KC network without feedback inhibition. (c) represents the activity of
a single neuron in a KC network with inhibition. Inhibition does reduce the spiking activity
of cells in the network.

A naive extrapolation of this argument in the context of the KC population activity

would suggest that because the inputs to the KCs are maximally different the KC

activity would all be maximally different from one another, providing a network

with 50 percent connectivity the greatest amount of power to distinguish between

inputs. Any difference in the inputs in this regime would lead to a different set of

KCs being active. However Figure 2c shows that this is not the case. In fact, there

is no dependence between hamming distance and connectivity.

The size of the PN and KC population can explain this unintuitive result. We have

a population of 900 PNs. Now consider a 5 percent connectivity regime, in this

case 45 out of 900 PNs connect to a given KC. The number of ways in which you

can choose 45 out of 900 objects is of the order of magnitude 10105. When you only

need to choose 50000 of these combinations there is a very low probability that any

two KCs will have the same inputs. Therefore even at a very sparse level of PN-KC

connectivity the inputs to the KCs are already more than sufficiently different to

allow for KC population activity to distinguish between inputs well.
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4.2 Temporal structure increases dimensionality of inputs al-
lowing different connectivity regimes to differ in function

In the case of Model 1, where no temporal patterning of inputs exists, the only

criterion that decides whether a particular KC is active or not, is the identity of the

PNs that spike. If a sufficient number of PNs (greater than the spiking threshold)

connected to a given KC are active in a particular input pattern then that KC will

spike. In the case of this model this spiking threshold looks only at the number

of active PN inputs, therefore small changes in the identity of the spiking PNs

can lead to inputs no longer being greater than threshold and leading to this KC

no longer being active. At a population level therefore the group of KCs activated

even by similar inputs will be different no matter what the connectivity value. Thus,

agreeing with the presented data.

The argument made above however does not hold when temporal structure is

added to the inputs provided to the KC network. The activity of PNs has been

shown to have a temporal structure that is different and robust for different odours

(Laurent 1996(a); Laurent 1996(b)). It is the activity of the local inhibitory interneu-

rons that "corrals" these PNs into exhibiting such temporal structure (Assisi et al.

2011). This additional level of complexity in odour representation at the level of

the AL must be taken into account. When this is done, as in Model 2 and 3, both

the identity of the active PNs and the timing of their activity is important in deciding

whether KC receives input greater than threshold and spikes. In this situation it

is possible for a small number of appropriately timed PN spikes to cause a down-

stream KC to spike. In essence the temporal structure of inputs adds a dimension

to the input seen by the KCs that plays a significant role in deciding whether a KC

spikes or not. At low values of PN-KC connectivity, the amount of convergence
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of PNs to KCs is low, and hence there is unlikely to be a large enough number of

temporally synchronized PNs to cause a KC spike. This implies that the changing

just the temporal pattern of inputs will not be sufficient to allow for the KC pop-

ulation to distinctly represent this inputs. This agrees with the data presented in

figure 3b and 4. However as the PN-KC connectivity gets denser, the effect of tem-

poral synchrony of PN activity in causing KC spikes will also increase. Therefore

any changes in the temporal structure of two inputs will be represented in the KC

population activity as seen in figures 3b and 4. As noted earlier, for very dense

connectivity values, variability of representation is too high for these regimes to be

useful to organisms.

Adding temporal structure to these models therefore allows us to think of the func-

tion of sparse and dense connectivity in new ways. It is important to note here that

in my analysis of the data produced by Model 2 and 3, I have neglected the tempo-

ral structure of the KC activity. While I believe that there is likely to be information

stored in the temporal structure of the KC activity, I think that understanding the

affect of PN spike timing on the spatial structure of KC activity is of primary impor-

tance. Firstly, differences in the temporal structure of PN activity manifests itself as

changes in the spatial activity of pattern of the KCs clearly suggesting that this spa-

tial pattern is important. Secondly, the sparsity of KC spikes suggests to me that

timing of these spikes is unlikely to carry as much information as there presence

or absence alone will. For these reasons I believe that a study of just the spatial

activity of KCs provides a useful first picture of how density of PN-KC connectivity

affects circuit function.
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4.3 Glomerular organisation enhances the ability of the MB to
distinguish between odours

Including temporal patterning in inputs makes the study of the function of the MB

circuitry more realistic. Models of the circuit with different structural parameters

now have different functional abilities. An interesting corollary of the results shown

so far is that in the sparse connectivity regimes, odours that elicit activity from

very similar sets of PNs cannot be distinguished. This would imply that species of

insects such as the fly would be poor at distinguishing similar odours. However the

uni-glomerular organisation of the PNs seen in the fly could allow the fly to solve

this conundrum and enhances the circuit's ability to distinguish between similar

odours despite its sparse connectivity.

Consider the following simplistic description of how odours are sensed and pro-

cessed through the OSNs to give rise to the PN representation in a uni-glomerular

insect with 'g' glomeruli. OSNs are represented by a column of 's' vectors with

active OSNs getting a value of 1 and inactive OSNs getting a value 0. All OSNs ex-

pressing the sameOlfactory Receptor (OR) send projections to the same glomeruli.

If the vector of OSNs is arranged such that all OSNs expressing the same OR are

grouped together, then the following simple matrix multiplication between the OSN

vector and 'g' X 's' matrix representing theOSN to glomerulus connectivity, can take

you from OSN space to glomerular space.

2

6666664

G1

G2

...

G
g

3

7777775
=

2

6666664

1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...

0 0 0 0 0 0 . . . 1 1 1

3

7777775

2

6666664

OSN1

OSN2

...

OSN
s

3

7777775
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A similar matrix multiplication between the vector of activity of glomeruli and the

connectivity matrix between PN and glomeruli can give the vector of activity PNs

(p elements long).

2

6666666666666666664

PN1

PN2

PN3

PN4

PN5

PN6

...

PN
p

3

7777777777777777775

=

2

6666666666666666664

1 0 . . . 0

1 0 . . . 0

1 0 . . . 0

0 1 . . . 0

0 1 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

3

7777777777777777775

2

6666666666666666664

G1

G2

G3

G4

G5

G6

...

G
g

3

7777777777777777775

Multiplying the two matrices described above will give you a matrix that represents

the OSN to PN conversion.

2

6666666666666666666666664

1 1 1 0 0 0 . . . 0 0 0

1 1 1 0 0 0 . . . 0 0 0

1 1 1 0 0 0 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0

0 0 0 1 1 1 . . . 0 0 0
...

...
...

...
...

... . . . ...
...

...

0 0 0 0 0 0 . . . 1 1 1

0 0 0 0 0 0 . . . 1 1 1

0 0 0 0 0 0 . . . 1 1 1

3

7777777777777777777777775
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Each row of this matrix tells you which inputs will be received by a given PN. In

such a regime all PNs that receive inputs from the same glomeruli will behave in

similar ways in response to odour presentation (as seen from the square blocks of

ones which represent PNs that see the same inputs) . There are likely to be more

heterogeneities in the actual description of the uni-glomerular- PN olfactory circuit,

such as changes in synaptic strength leading to less than perfect correlations in

activity between PNs. However, there will still be high correlations between the

activities of these PNs (Dhawale et al. 2010). This in turn will imply that if any two

odours differ by the activity of a single PN they will also differ in the activity of all

of its sister PNs. Therefore low levels of difference between inputs is not possible

in a uni-glomerular-PN olfactory system model such as the fly.

The clear advantage of this uni-glomerular organization seen in the flies is the

ability of this kind of a network to exaggerate the difference between similar odours.

Basically if two inputs differ by a single PN in the locust system, they will now

differ by an entire glomerulus worth of PNs in the fly. This prevents highly similar

odour representations from existing allowing the fly to better discriminate between

inputs.

So while the sparse connectivity of the fly is poor at distinguishing between odours

that are very similar, when the glomerular organisation of the fly is taken into ac-

count one realizes that the PN level difference between such highly similar inputs

is exaggerated, allowing the fly to discriminate between them better. Evolution

seems to have led to two different solutions, in terms of the parameters of the in-

sect olfactory system, that allow the function of the MB network to be conserved

(in terms of odour representation). While the evolution of glomerular organisation

may have been driven by other advantages provided by the two configurations,
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the configurations that have survived have allowed for different aspect of the MB's

function to be maintained at near optimal levels.

4.4 The difference between the locust and the fly

These results together suggest that the PN-KC connectivity regimes seen in the

locust and the fly are both useful but that they optimize different aspects of KC

function. The dense connectivity regimes of the locust are optimal for distinctly

representing PN inputs no matter how similar they are whereas the lower con-

nectivity regimes are poor at ditinguishing between similar inputs. However the

uni-glomerular organization of the fly adjusts PN representations in such a way

so as to allow the fly to be a little bit better at odour distinctly representing similar

odours than just its low connectivity would allow.

When the only thing that differs between two inputs is the timing of spikes, which

in a real life situation is akin to noise, the system still differentiates between inputs

when in the locust connectivity regime. This is not useful for the organism. The fly

connectivity regime on the other hand does not exaggerate the effect of noise on

odour representation which could be crucial in recognizing odours in mixtures and

more dynamic environments.

This immediately brings tomind a wide range of experiments that can be performed

to test my claims about the ability of the fly and the locust to discriminate between

odours. If my claims were true then if one were to teach a fly and a locust to

distinguish between two odours, then because of the low effect of noise on odour

representation in the fly, it would more quickly learn the difference between the

two odours and reach its peak discrimination score. The locust on the other hand
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exaggerates noise and inter-trial differences of a given odour. It would therefore

take longer to learn which odour was which. However its peak discrimination score

is likely to be higher than that of the fly.

5 Concluding Remarks

These simulations express some results that are important not only to the under-

standing of the function of the olfactory system but also to process of studying such

systems in-silico. Temporal patterning of the input to MB affects the ability of this

structure to represent and distinguish between odours. Connectivity of the order

of 50 percent is the most effective at discriminating between odours. It can seper-

ate even very similar odours that differ only by the timing of spikes or by a small

number of activated neurons. Sparse connectivity regimes on the other hand are

poor at discriminating between similar odours but very good at reducing the effect

that noise has on odour representation. Both these characteristics can be useful in

their own way depending on the algorithm used by downstream neurons to extract

information from these representations. This result agrees with the initial hypothe-

sis put forward by Jortner (Jortner 2013), but temporal patterning of neural activity

is necessary for this conclusion to be drawn. More simplistic models that do not

include a time component suggest that effect of increasing connectivity on improv-

ing MB function saturates very quickly (agreeing with Litwin-Kumar et al. 2017).

Introducing biological realities into an in-silico model therefore provides an under-

standing of the function of neural circuitry that cannot be gained from simplistic

models.

The introduction of this temporal patterning has also led to the development of
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further evidence supporting the idea that a neural circuit can perform its function

equally well (while optimizing different aspects of its fucntion) in two different pa-

rameter regimes. Such results support the idea that there is no one global optimal

solution to a biological problem and that solutions that arise through evolution are

ones that work best in the environment in which they have evolved. In this case the

environment I am talking about is the environment of other brain structures - such

as the AL - and the functions that they perform; but in a broader sense this also

includes external environment and organisms with which the our system of inter-

est interacts. Better understanding of the mechanisms underlying circuit function

will arise from developing and studying more realistic models for the circuit under

study.
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