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Abstract

Component-wise semi-Markov processes (CSM) constitute a larger class of pure jump pro-
cesses which includes semi-Markov, and Markov pure jump processes. This thesis examines
semi-Markov as well as CSM processes with dependent components. In order to better un-
derstand the interactions among components of CSM processes having bounded transition
rates, we consider a family of stochastic flows using a system of SDEs driven by Poisson
random measure (PRM), with an additional gaping parameter. More specifically, we have
demonstrated that the proposed system of SDEs driven by a PRM does, in fact, has a
unique solution. Then, we prove that a solution satisfies the desired law. Thus we establish
a semimartingale representation of the homogeneous or nonhomogeneous semi-Markv pro-
cess. Finally, we pick up an appropriate flow by fixing the gaping parameter. We derive
expressions of the probabilities of meeting and merging of a pair of semi-Markov processes,
solving the same equation but with different initial conditions. We also obtain a set of suffi-
cient conditions for any two solutions merge eventually with probability one. The theoretical
results are elaborated with the help of numerous numerical examples. An SMP with a spe-
cific law is what makes up each component of a vector-valued CSM. These parts might be
governed by the same set of rules, or they might not. The current investigation of CSM
focuses heavily on the junctures at which the constituent parts come together and form a
whole. When the parts are unrelated to one another, questions about such occurrences can
be answered right away. The questions become interesting, however, when the parts are
driven by dependent or identical noises. We were able to derive the infinitesimal generator
for CSMs with arbitrarily number of components driven by a single PRM. Additionally, we
have defined correlated PRM and provided a semimartingale representation of a CSM driven
by correlated PRM.
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Notations

Let a and b be real numbers.

1. a™ = max(0, a)
2. a Ab=min(a,b)

3. a Vb= max(a,b)

B(R?) : The Borel sigma algebra on R
mg : The Lebesgue measure on RY.
Ny : The set of non-negative integers.
R, : The set of non-negative real numbers.
R, := [0, 00].
={1,2,...,d}.
P(A) : The power set of A.
Ch:{f:RY - R?| fis k times differentiable}.
C®:{f:R* = R?| ke Nyf €C}.






Preliminary

We recall a few standard definitions and results in this chapter along with some additional
remarks. Readers may consult [8, 33, 36] for more details.

0.1 Measure theory concepts

Definition 0.1.1. Let Q be a nonempty set, and let F be a o-algebra on 2. Then the pair
(Q, F) is called a measurable space. If P is a measure on (2, F), then the triplet (Q, F, P)
is called a measure space. If in addition, P is a probability measure i.e. P()) =1, then
(Q,F,P) is called a probability space. A measure space is complete if for any A € F
with P(A) =0 = P(A) C F.

Definition 0.1.2. a. Let (€, F;) be a measurable space for each i = 1,2. Then a function
f Q1 — Qg is measurable, if

f1(A) € Fi,VA € F.

b. Let S be a polish space and (2, F, P) be a probability space. A map X : Q — S is called
a random variable, if,
X1 (A) e F VA € B(9).

Theorem 0.1.3 (Monotone convergence Theorem). Let (2, F, P) be a measure space and
let f, : @ — Ry, n > 1 be the sequence of non-negative F-measurable functions such that
fn — f pointwise a.e. and fi < fo < ..., then

i [ = [ s

3



Theorem 0.1.4 (Dominated Convergence Theorem). Let f, : Q@ — R,n > 1 is a sequence
of measurable functions on a measure space (2, F, P) such that f, — f point wise a.e., and
if there exists an integrable function g such that |f,(x)| < g(x) a.e.(P) for all n, then f is

integrable and
n—oo

0.2 Probability theory concepts

Definition 0.2.1. Let (Q, F, P) be a probability space. A family {F;}o<t<oo Sub-o-algebras
of F s called filtration if for s < t, Fs C F;. For convenience, we will usually write F for the
filtration {F; }o<i<oo- Also, the quadruplet (0, F,F, P) is called a filtered probability space.

Definition 0.2.2. Let (Q,F,F,P) be the filtered probability space. A random variable
T:Q — R, is a stopping time if the event {T <t} € F;, every 0 <t < oo.

Definition 0.2.3 (Usual Hypothesis). A filtered complete probability space (2, F,F, P) is
said to satisfy the usual hypotheses if

(i) Fo contains all the P-null sets of F;

(11) Fi = NustFu, allt, 0 <t < oo; that is, the filtration F is right continuous.

Definition 0.2.4 (Stochastic Process). Let T C R, S be a polish space . A stochastic
process X on (Q, F, P) is a collection of S valued random variables {X;}ier. The process
X is said to be adapted to F, a filtration of F if X; € Fy (that is, X is F; measurable) for
each t € T.

Theorem 0.2.5. Let S, T be stopping times. Then SAT = min(S,T), SVT = max(S,T),
S+T, aS, where a > 1 are stopping times.

Definition 0.2.6 (Expectation). Let X be a real valued random variable on a probability
space (2, F, P). Then the integral of X with respect to measure P is said to be expectation
of X, denoted by EX ,and defined by EX = [, X (w)P(dw).

Definition 0.2.7. Let G be a sub-o-algebra of F. The conditional expectation of a non-
negative random variable X with respect to G is a non-negative random variable, denoted by
E[X | G] such that

1. E[X | G] is G-measurable.

2. for every A€ @G,
/XdP:/E[X | GldP a.s.
A A

4



0.2. Probability theory concepts

The conditional expectation of any random wvariable X with respect to G, if EX exists, is
gwen by E[X | G] := E[Xt | G] — E[X™ | G].
Properties of conditional expectation of real valued:
Proposition 0.2.8. Let (2, F, P) be a probability space and let Y be a measurable real valued
random variable with E|Y| < oo. Let Gy C Gy C F be two sub o-algebras contained in F.
Then

1. if X is Gi-measurable then E[X | G| = X.

2. E[Y | Gi] = E[E]Y | Go] | Gu].

5. E[Y | Gi] = E[E[Y | Gi] | Ga.

4. For any bounded G,-measurable random variable U, E[YU | Gi] = UE[Y | Gi].

Definition 0.2.9. Let (2, F, P) be a probability space and let G C F be a sub o-algebra.
For B € F, the conditional probability of B given G, denoted by P(B | G), is defined as

P(B|G)=E(p|g).
Thus Z = P(B | G) is a measurable function such that
P(ANB) = E(Z1,) for all A € G,

where 1 4 is the indicator function of the set A.
Note that, for a fixed G, B — P(B | G)(w) need not produce a probability measure on
(Q,F), Pae. w.
Definition 0.2.10. Let X be a random variable on a probability space (Q, F, P) taking values
in a complete, separable metric space (S,B(S)). Let G be a sub-c-algebra of F. A regular
conditional distribution of X given G is a function @Q : Q x B(S) — [0, 1] such that

1. for each w € Q,Q(w,-) is a probability measure on (S, B(S)),

2. for each B € B(S), the mapping w — Q(w, B) is G-measurable, and

3. for each B € B(S), P[X € B|G](w) = Q(w, B), P a.e. w.

Definition 0.2.11. Let (Q1, F1) and (Qq, F2) be measurable spaces. Let @ be a mapping
from Qq x Fy into Ry. Then, Q is called a transition kernel from (21, F1) into (g, F2)

if



1. the mapping x — Q(x, B) is Fi-measurable for every set B in Fy, and
2. the mapping B — Q(x, B) is measure on (Qq, Fo) for every x in §2.

Remark 0.2.12. A transition Kernel from (Q,F) into (Q,F) is called simply a transition
kernel on (2, F). Such a kernel is called Markov kernel on (2, F) if Q(x,Q) = 1 for every

Z.

Definition 0.2.13. A general continuous-time Markov process is a process X on a filtered
probability space (2, F,F, P) and taking values in a polish space S, satisfying

PX, e A|F]=P[X; € A| X (0.2.1)
for all A € B(S) and for each s < t.

Definition 0.2.14. Let X be a stochastic process on the filtered probability space (2, F,F, P)
and taking values in a Polish space S. Also, f be a Borel measurable function on (S, B(S)).
Then X is said to be a strong Markov process, if for every stopping time T which is
adapted to F, and t > 0 satisfies

E[f(Xrth) ‘ ]:r] = E[f(XT-‘rt) ’ Xr]‘

Definition 0.2.15. X = {X;};>¢ defined on a complete probability space (2, F,P) is an
semi-Markov process(SMP) with state space X :={1,2,...} C R if

1. X 1s piece-wise constant r.c.l.l. process with discontinuities at Ty < Ty < ---, and
2. for eachn>1,7€ X, and y > 0,

PlX1,., = J,Toy1 — T <y | (Xo,T0), (X1, Tie) V1 < k < n]
= P[XTn+1 = jaTn-i-l -1, <y ’ XTn] (022)

where Ty < 0 < T7.

X is pure if T, ©= 00 asn — oo. If the right side of (0.2.2) is independent on n, then the
SMP X is called time-homogeneous. Otherwise, X 1is called non-homogeneous SMP. Here,
T, is called n' transition time of X.

Definition 0.2.16. Let X be a random variable taking values in Ny, it is understood that
the relevant o-algebra on Ny is the discrete o-algebra of all subsets. Then X is said to have
the Poisson distribution with mean c if

—C.n

P{X =n} = %,nGNO.

6



0.2. Probability theory concepts

Definition 0.2.17. A mapping M : QxS — R is called a random measure if w — M (w)(A)
is a random variable for each A in S and if A — M(w)(A) is a measure on (S,S) for each w
in Q. We shall denote by M(A) the former random variable: then , we may regard M as the
collection of random variables M(A), A € S. We shall denote by M(w) the latter measure
A= M(w)(A).

Definition 0.2.18. Let (S,S) be the measurable space and let v be a measure on it. A
random measure o on (S,S) is said to Poisson random measure(PRM) with mean v
iof it satisfies the following:

1. for every A € S, the random variable p(A) has the Poisson distribution with mean
v(A), and

2. whenever Ay, ..., A, arein S and disjoint, the random variables p(A1),. .., p(A,) are
independent, this being true for every n > 2.

Remark 0.2.19. For each w, the realization of the random measure is a well-defined deter-
ministic measure. Let o be a Poisson random measure on R, x R?, and it is a measure in
d+1 dimensions. Since p(-)(A) is an integer-valued random variable for all A € B(R, xR?),
it is clear that (w)(+) is a counting measure almost surely. Hence the d + 1 dimensional
measure p(w)(dt,dv) is not absolutely continuous w.r.t. mgy1(dt,dv), the Lebesque mea-
sure. Indeed p(w)(dt,dv) is supported only on a countable set. So for any bounded set B,
f[o,T] [ 9(t,v)p(w)(dt, dv), an integral that is meaningfull for each w € Q, can also be written

as Yo7y 2op 9t V)W) {th {v}), Yo [z 9t v)pw)({t}, dv), o225 9(t v)p(w)(dt, {v})
or simply with slight abuse of notation f[O,T] J5 9(t,v)p(w)({t}, dv) or f[O,T] [ 9(t,v)p(w)(dt, {v}).
We will follow this notation in the subsequent chapters.

Theorem 0.2.20. Let f,g: R — R, 6, a Dirac measure with atom at a, then

([ stontan) = ot = [ sogtaan),

where f o g is composition of two function.

Theorem 0.2.21. Let p be a PRM on (S,S). Fora firedt >0 and B € S, p(w)({t}xB) =0

P ae w.

We restate Theorem 3.4 (p-474) of [8] below.
Theorem 0.2.22. Let E denote (R?, ||-||) a d-dimensional Euclidean space and (M (d, m), ||-

|lar), the space of all d x m matrices with a norm || - ||p. Consider a SDE of the form
t t
2= Zo+ / a(Z,) ds + / b(Z,) AV, + / J(Z v)e(ds, dov) (0.2.3)
[0,t] xRy
0 0



where W and ¢ are m-dimensional Wiener Process, and Poisson random measure on Ry xR
having intensity mq respectively. The maps a: E — E, b: E — M(d,m), J: E xR, — F,
are assumed to obey the following conditions.

1. Lipschitz condition: There is a constant ¢ in Ry such that ||a(z) — a(2')|| < ¢||z —
2| and ||b(z) —b(2)||m < ||z =7, V=z, 2 €E.

2. There is a constant C in Ry such that J(z,v) =0 forv > C for all z in E.

Then there exists almost surely unique solution to (0.2.3) that is piece-wise continuous, r.c.l.1.
and locally bounded.

Theorem 0.2.23 (Theorem IX.3.8, pg 475, [8]). Let X be a unique solution of (0.2.3), then
for each time t, the process X = (Xt+u)uer, @5 conditionally independent of F; given Xi;
gwen that Xy, =y, the conditional law ofX 15 the same as the law of X under PY. Here PY
is the conditional probability measure given {Xo = y}.

Theorem 0.2.24 (Theorem 1X.3.9, pg 475, [8]). Let X be a unique solution of the (0.2.3),
then the process X is strong Markov: For every F-stopping time T, the variable Xt is Fr-
measurable, and X = (Xriy)uer, @5 conditionally independent of Fp given X;; moreover,

fory in E, on the event { X1 = y}, the conditional law ofX given X is the same as the
law of X under PY.

Definition 0.2.25. Let T C Ry. A real-valued stochastic process X = {X;}ier on the filtered
probability space (2, F,F, P) is called an F-submartingale if X is adapted to F each X,
is integrable, and E(X; — X | Fs) > 0 whenever s < t. It is called F-supermartingale
if =X is an F-submartingale, and F-martingale if it is both F-supermartingale and an
F-submartingale.

Definition 0.2.26. The process X is said to be the Doobs property for (S,T) provided
S and T be stopping times with S < T, Xg and Xy be well defined and integrable, and
Xs = E[Xr | Xg|. And the process X is said to be Doobs martingale on [0,n] if n
is a stopping time and X has the property for (S,T) for all stopping times S and T with
0<S<T <.

Definition 0.2.27 (Definition V.5.17, pg 219,[8]). Let n be a stopping time. The process
X is called a local martingale on [0,7n) if there exist an increasing sequence of stopping
times T,, with limit n such that (X; — Xo)ier, s a Doob martingale on [0,T,] for every n.
If it is a local martingale on R, then it is simply called a local martingale.

Definition 0.2.28. An adapted, r.c.l.l. process A is finite variation process(FV) if
almost surely the paths of A are of finite variation on each compact interval of [0, 00).

8



0.2. Probability theory concepts

Definition 0.2.29 (Definition V.5.18 pg 220, [8]). A stochastic process X on the filtered
probability space (2, F,F, P) is called a semimartingale if it can be decomposed as X =
L+ YV, where L is a local martingale and V' is locally of finite variation. And also L and V'
are adapted to the same filtration as of X.

Lemma 0.2.30 (It6 formula, Theorem 2.32, pg 78, [33]). Let X be a semimartingale and
let f be a C? real function. Then f(X) is again a semimartingale, and the following formula

holds

£ = £ = [ X g [
+ Z {f(Xs) - f(Xs—> - f/(Xs—)AXS} (024)

where [X,Y] is the quadratic covariation of X and Y, [X, X|¢ is quadratic variation of path
by path continuous part of [ X, X] and AX,; := X, — X,_.

Definition 0.2.31. /25, pg 79] Let C be the set of continuous maps from R? into itself. Let
{ps1:0 < s <t} (or simply denoted by {¢s+} be a family of C-valued random variables. It
15 called a stochastic flow of C* maps if it satisfies:

1. Maps ¢y : RT — R? are C* a.s. for any s < t.

2. Qru0Gst = G5y a.5. for any s <t < wu. Here ¢ o) is the composition of two maps ¢,
of R into itself.

Furthermore if it satisfies the following (1°) and the above (2), then it is called a stochastic
flow of diffeomorphisms.

17 Maps ¢ : RT — R are diffeomorphisms a.s. for any s < t.

A stochastic flow {¢s:} is called continuous if ¢, (x), v € R and its derivatives 0 ()
are continuous with respect to (x,s,t)(s <t) a.s. for any multi-index i.
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Chapter 1

Introduction

A semi-Markov process is a pure jump process such that the embedded chain is Markov, but
the conditional distribution of the sojourn time need not be exponential. So a semi-Markov
process does not enjoy the memoryless property of its Markov counterpart. In this thesis
we consider a general class of semi-Markov processes on countable state-space, and having
differentiable kernel such that the embedded Markov chain may or may not be homogeneous.
The rate matrices may also have infinite trace. We only assume uniform bound on entries
of the rate matrix.

The class of semi-Markov processes (SMP) subsumes the class of pure jump Markov pro-
cesses. A component-wise semi-Markov (CSM) process, on the other hand, is a member of
an even larger class of pure jump processes. Each component of a vector valued CSM is an
SMP having a given law. These components may or may not be independent and the laws
may or may not be identical.

It is known that for certain processes their law can be represented using the martingale
formulation. Writing down a stochastic process on an Euclidean space as a solution of a
stochastic differential equation (SDE) also gives another way of representing the law. Such
SDEs may also be viewed as the semimartingale representation of the said process. Needless
to mention, an SDE represents a stochastic flow too. We establish a family of semimartingale
representations, involving Poisson random measure (PRM), of this class of semi-Markov
processes. In particular, we have proved existence of almost sure unique solution to the
proposed system of SDEs driven by a PRM. Then we show that a solution indeed possesses
the desired semi-Markov law.

Solutions of an SDE with different initial conditions, together form a vector valued
process where each component has identical law. Moreover, they being driven by the same
noise, are not independent. This also gives rise to a CSM or system of semi-Markov processes,
having dependent components, provided the SDE of an SMP has been considered in the first
place. In the present study of CSM, our major focus is on the meeting and merging events
of the components. Questions related to these events have immediate answers when the

11



Chapter 1 : Introduction

components are independent. However, when the components are driven by dependent or
identical noises, the questions are worth pondering.

We suitably select a particular flow by fixing the gaping parameter, for which we
study interactions of a pair of semi-Markov processes, solving the same equation but having
two different initial conditions. We have obtained expressions of the meeting and merging
probabilities in the next transition. A set of sufficient conditions are obtained under which
any two solutions of the flow eventually meet or merge with probability one. Many numerical
examples are considered for clarifying the intricacies and implications of the theoretical
results. In one example the distribution of time of first meeting and merging are obtained
and are compared with that of the holding times, for the purpose of illustration.

Apparently [26] and [37], which were presented at the International Congress of Mathe-
maticians held at Amsterdam in 1954, are the first available literature that discuss the
mathematical aspects of semi-Markov processes (SMP). In Lévy’s work, [26], the definition
of SMP was presented as a generalization of Markov chain. Around the same time, inde-
pendent to Lévy’s work, Smith [37] and then Tackas [38] have also introduced SMP. We
provided a modern version of the definition, see Definition 0.2.15. We often call pure ho-
mogeneous SMP’ as semi-Markov process or SMP only. SMP has been defined by many
authors using the renewal processes unlike Definition 0.2.15. For example, in [34], Pyke has
introduced the SMPs by specifying the conditional distribution of next state and holding
time given the past states and past holding times. We notice that the o-algebra generated
by the transition times is identical to that generated by the initial time and past holding
times. Thus the conditional distribution in [34] is identical to the conditional probability
in Definition 0.2.15. In [34], a concept of regularity has been introduced for assuring that
the chain is pure. Besides, classification of the states has also been studied there. On the
other hand in [35], by considering the finite state SMPs, Pyke has derived expressions for the
distribution functions of first passage times, as well as for the marginal distribution function.
Furthermore, the limiting behavior of a Markov Renewal process has been discussed, and
the stationary probabilities have been derived. Various aspects and approaches regarding
limiting behavior has also been studied by Orey [31], around the same time. In [12], Bennet
has studied some properties of sub-chain of SMP, which are obtained via regenerating points,
if exists. SMP beyond the class of time homogeneity has been first studied in [18] and [28].
Various different aspects and generalisations of non-homogeneous SMP(NHSMP) has further
been explored in [20, 22, 21, 23]. In these references several applications of NHSMP has also
been emphasised.

It has been noted by several authors (see Nummelin [30], Athreya et al [2] and references
therein) that an SMP can be augmented with the age process to obtain a jointly Markov
process whose Feller property and infinitesimal generator can be derived (see [24, Chapter
2]). In a recent work [11] Elliott has presented a semimartingale representation of semi-
Markov chain in contrast to the traditional description of a semi-Markov chain in terms
of a renewal process. This presentation is different from that in [13] and [14] where a
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semimartingale representation appears using an integration with respect to a Poisson random
measure(PRM). Such semimartingale representations are useful for studying several aspects
including the stochastic flow of semi-Markov dynamics.

The non-homogeneous SMP, augmented with the age and transition count processes
is represented as semi-martingales using a system of stochastic integral equations involving
a Poisson random measure. The coefficients of the equation depend on a given transition
rate function and an an additional gaping parameter. It is worth noting that neither the
coefficients are compactly supported nor the intensity measure of the PRM is finite. Note
that, compactly supported coefficient or finiteness of intensity measure are the standard
assumptions under which an SDE involving PRM is studied commonly (see [8, 19]). So, we
produce a self-contained proof of the existence and uniqueness of the solution to the SDE.
This extends the results obtained for homogeneous semi-Markov process. Subsequently,
we extend the results by showing that the state component of the solution is a pure non-
homogeneous SMP with the given non-homogeneous transition rate function. We also derive
the law of the bivariate process obtained from two solutions of the equation having two
different initial conditions.

The CSM is a generalization of semi-Markov processes into a broader class of pure
jump processes. The combination of state processes of more than one semi-Markov dynam-
ics forms a semi-Markov system(SMS) or a component-wise semi-Markov (CSM) process
having dependent or independent components. The SMSs [39, 41, 40|, or CSMs [9, 10] with
independent components have been introduced for modelling some random dynamics. How-
ever, a CSM with dependent components has not been studied in the literature yet. The
CSM, studied in [10] possesses a well defined bounded transition rate function and hence
that has been used to characterize the CSM. However, the definition of CSM does not imply
existence of a rate function. In view of this it is important to find an alternative way of char-
acterizing a general type of CSM. Needless to mention, the kernel characterization should
be most suitable in this regard. We recall that the transition rate exists if and only if the
kernel is almost everywhere differentiable. In that case, the rate can be expressed in terms
of the kernel and vice versa. It is also easy to note that the knowledge of kernels of all indi-
vidual components of CSM is sufficient to characterize the CSM, provided the components
are independent to each other. However, in this thesis we consider an extension of CSM,
appearing in [10], by dropping the independence condition. We further allow the state-space
of each component be non-identical and at most countable. So, we propose characterization
of CSM using a novel notion of kernel. The way we define the kernel, is broad enough to
include both the dependent and independent component cases and both the homogeneous
and non-homogeneous cases. As per our knowledge, this is the first effort in the literature to
characterize a general CSM using a kernel based approach. Then we derived the infinitesimal
generator formula for CSM with arbitrary components driven by one PRM.

The study of meeting and coalescence of stochastic processes is an active branch of
probability theory. Some of the earliest instances of such study dates back to Arratia [1],
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Chapter 1 : Introduction

and Harris [17] where they have considered merging of one dimensional Brownian flow. On
the other hand mixing for a class of non Markov flows have been investigated by Melbourne
and Terhesiu [29]. However, to the best of our knowledge, questions regarding meeting and
merging have not been addressed in the literature for stochastic flow of SMPs.

In [4] for the stability analysis of Markov modulated diffusions, the merging of Markov
chains has been crucially used. In view of this, we believe that the study of meeting and
merging of multiple semi-Markov particles are relevant for investigating stability properties
of a diffusion that is modulated by semi-Markov processes.

We give an outline of the remaining chapter here. In Chapter 2, we look at a broad
category of semimartingale representations of SMPs with a fixed instantaneous transition
rate. An expression for the conditional probability of meeting and merging in the next
transition, merging at a meeting time, is derived. We also construct a set of sufficient
conditions under which a pair of SMPs will eventually meet and merge with probability one.
The work presented in this chapter 3 results from a collaboration with Dr. Subhamay Saha.
We have given a semimartingale representation of a class of semi-Markov processes; this
representation is more general than the class introduced in Chapter 2, as it includes non-
homogeneous semi-Markov processes. Again we have considered a particular pair of solutions
of SDE (3.2.6)-(3.2.8) with two distinct initial conditions and investigate the various event
of the meeting and merging. We derived an expression of the conditional probability of
meeting in the next transition, coherent meeting and merging in the next transition and
eventual meeting and merging. Also, the number of transitions required to encounter a
meeting is shown to have all moments finite. In Chapter 4, the theoretical results are
elaborated with the help of several numerical examples. We have considered numerical
examples of homogeneous SMP and non-homogeneous Markov processes, where we calculated
the probability of meeting in the next transition and the expected first meeting time for
homogeneous SMP and the probability of coherent meeting in the next transition. We
have provided an algorithm for simulating homogeneous SMP and non-homogeneous Markov
processes. In Chapter 5, we introduced the definition of general CSM on countable state
space; also its associated kernels and showed that it satisfies the transition kernel definition.
We also defined the marginal of 1'" component. Further, We have introduced the correlated
PRM; with the help of this, we have given a semi-Martingale representation of a general
CSM and computed the infinitesimal generator of CSM with d components driven by a
single PRM.
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Chapter 2

Homogeneous semi-Markov processes

2.1 Introduction

Apparently [26] and [37], which were presented at the International Congress of Mathe-
maticians held at Amsterdam in 1954, are the first available literature that discuss the
mathematical aspects of semi-Markov processes (SMP). In Lévy’s work, [26], the definition
of SMP was presented as a generalization of Markov chain. Around the same time, indepen-
dent to Lévy’s work, Smith [37] and then Tackas [38] have also introduced SMP. In Chapter
1 Definition 0.2.15, we provided a modern version of the definition.

As the study of non-homogeneous or impure SMP is excluded from this chapter, from now
we will call ‘pure homogeneous SMP’ as semi-Markov process or SMP only. We also recall
that in Chapter 1 of [16], a book by Boris Harmalov, a stepped SMP is introduced and in
subsequent chapters further generalizations to continuous state space appears. We confine
ourselves to the study of SMPs on a countable state space.

SMP has been defined by many authors using the renewal processes unlike Definition 0.2.15.
For example, in [34], Pyke has introduced the SMPs by specifying the conditional distribution
of next state and holding time given the past states and past holding times. We notice
that the o-algebra generated by the transition times is identical to that generated by the
initial time and past holding times. Thus the conditional distribution in [34] is identical
to the conditional probability in Definition 0.2.15. In [34], a concept of regularity has been
introduced for assuring that the chain is pure. Besides, classification of the states has also
been studied there. On the other hand in [35], by considering the finite state SMPs, Pyke
has derived expressions for the distribution functions of first passage times, as well as for
the marginal distribution function. Furthermore, the limiting behavior of a Markov Renewal
process has been discussed, and the stationary probabilities have been derived. Various
aspects and approaches regarding limiting behavior has also been studied by Orey [31],
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around the same time. In [12], Bennet has studied some properties of sub-chain of SMP,
which are obtained via regenerating points, if exists.

It has been noted by several authors (see Nummelin [30], Athreya et al [2] and references
therein) that an SMP can be augmented with the age process to obtain a jointly Markov
process whose Feller property and infinitesimal generator can be derived (see [24, Chapter
2]). In a recent work [11] Elliott has presented a semimartingale dynamics of semi-Markov
chain in contrast to the traditional description of a semi-Markov chain in terms of a renewal
process. This presentation is different from that in [13] and [14] where a semimartingale rep-
resentation appears using an integration with respect to a Poisson random measure(PRM).
Such semimartingale representations are useful for studying several aspects including the
stochastic flow of semi-Markov dynamics.

A study of merging for a couple of renewal processes on the the same probability space
appears in [27]. In this work, Lindvall studied coupling events for monotonic hazard rate
case only. In this connection a previous work by Brown [6] on comparisons of such renewal
processes is worth mentioning. More recently, for studying dietary contamination dynamics,
Bouguet [5] applied the notion of merging of renewal processes. However, as per our knowl-
edge, questions regarding meeting and merging have not been addressed in the literature
for SMPs with the general bounded measurable transition rates. We address this question
in this Chapter using the SDE representation [15] of SMPs. However, as per our knowl-
edge, questions regarding meeting and merging have not been addressed in the literature for
stochastic flow of SMPs.

Here, we consider a wide class of semimartingale representations of an SMP with a given
instantaneous transition rate. With the help of an additional gaping parameter, given a
semi-Markov dynamics, we could consider a family of stochastic flows. The law of a sin-
gle solution of course do not depend on the gaping parameter. However, we show, the
joint distribution of a couple of solutions with different initial conditions do depend on the
additional gaping parameter. Then we suitably select a particular flow, for which the in-
vestigation of meeting and merging of two solutions of the same SDE, starting with two
different states, becomes convenient. Although the study of meeting and merging event of a
finite-state continuous-time irreducible Markov chain is straightforward, that is not the case
for semi-Markov counterpart. We show with an example, that the meeting time need not be
a merging time for a pair of SMPs. We derive an expression of the conditional probability
of merging at a meeting time. A set of sufficient conditions are also obtained under which a
pair of SMPs eventually merge with probability one.
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2.2 Semimartingle Representation for Homogeneous Semi-
Markov Processes

As the study of non-homogeneous or impure SMP is excluded from this chapter, from now
we will call ‘pure homogeneous SMP’ as semi-Markov process or SMP only. Let (Q, F, P)
be the underlying probability space and X the state space, a countable subset of R. Endow
the set X := {(i,j) € X? | i # j} with a total order <. Let B(R?) denote the Borel
o-algebra on R? and my denote the Lebesgue measure on R%. Let A := (\;;) denote a matrix
in which the i*" diagonal element is \;(y) := — > jexv Aij(y) and for each (4,j) € A,
Aij: [0,00) — (0,00) is a bounded measurable function such that

(A1) C:=> "y ZjeX\{i} [ Aijlloo < 00, and

(A2) limy o0 Yi(y) = oo, where 7;(y) := foy Ai(y')dy', where Ai(y) == [Xi(y)]-

For each (7,j) € Ay, we consider another measurable function Aij: [0,00) = (0,00) and a
collection of generic intervals such that \;;(y) < ||\l for almost every y > 0 and

Ni(y) < X(y), and Ag(y) = | D Aip(y) +[0,Aij(y)) (2.2.1)

(,4)=(i,9)

for each y > 0, where a+ B = {a+0b | b € B} for a € R, B C R. From (2.2.1), it is clear that
for every y > 0, {A;;(y): (i,7) € X2} is a collection of disjoint intervals which is denoted by
A. We define hy and gy on X x R, x R as

ha(i,y,0) i = D (G = D)la, () (22.2)
jeN(i)

gA<i7y7 U) =Y Z ]lAij(y) (U) (223)
jeX\{i}

where R, denotes the set of non-negative real numbers. We consider the following system
of stochastic differential equations in X and Y

t
Xt:X0+/ /hA(Xu,Yu,v)p(du, dv) (2.2.4)
o+ JR

t
Yi=Yy+1t— / /gA(Xu_, Y., v)p(du, dv) (2.2.5)
ot JR

for t > 0, where the domain of integration ngr is (0, ], and the PRM p(du, dv) is on Ry xR
with intensity ms(du, dv), and defined on the probability space (2, F, P). We also assume
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that {©((0, ] X dv) }+>¢ is adapted to {F; }i>0, a filtration of F satisfying the usual hypothesis.
Evidently, )\ controls the left end points of the intervals in A and so can be utilized to regulate
relation between solutions to (2.2.4)-(2.2.5) with different initial conditions. Indeed a specific
choice namely, A;; = ||Aij|loo a.c. simplifies the relation between the intervals A;(y) with
different values of ¢, j and y. Thanks to the independence of p measure of disjoint sets, the
system (2.2.4)-(2.2.5) defines a non-Brownian stochastic flow with independent increments.
Some special cases of such a system have been considered by many authors following [13].
However, as per our knowledge, system (2.2.4)-(2.2.5) of this generality has not been studied
before. Although some special cases give rise to solutions with law identical to that of
(2.2.4)-(2.2.5), but they correspond to a particular flow. For example, in [14] and [32] A has
been taken identical to A. Here in (2.2.1) we consider a larger family of flows by introducing
the additional parameter . Evidently, A controls the left end points of the intervals in A
and so can be utilized to regulate relation between solutions to (2.2.4)-(2.2.5) with different
initial conditions. Indeed a specific choice of A, namely, \ij = ||\ |0 simplifies the relation
between the intervals A;;(y) with different values of ¢, j and y. We need the following lemma
for proving the subsequent theorem that asserts the existence and uniqueness of solution to
this general system.

Lemma 2.2.1. For each fivzed w € 2, consider the set D :={s' € (0, 00) | p(w)({s'} x E) >
0}, where E € B(R), and @ is a Poisson random measure with intensity msy. If my(F) < oo,
then set D has no limit point in R almost surely.

Proof.  Evidently, from Remark 0.2.19, p(w)(D x E) = p(w)((0,00) x E) = oo if
my(F) > 0. Hence, D is non-empty iff m;(E) > 0. If mi(E) < oo, for any natural
number n, p(w)([0,n] x E) is a Poisson random variable with mean n x m;(F). Hence
P(p([0,n] x E) < 00) = 1. Thus DN [0, n] is finite with probability 1 for each n > 1. Hence
P(ngl{w | DN [0,n] is finite}) = 1. Therefore, D has no limit point in R w.p. 1.

Theorem 2.2.2. There ezists a unique strong solution (X,Y) = {(Xy, Y3) }+>0 to the coupled
system of stochastic integral equations (2.2.4)-(2.2.5). Furthermore, almost surely X and Y
have r.c.l.l. piece-wise constant and piece-wise linear paths respectively.

Remark 2.2.3. We recall Theorem 0.2.22. Thus for proving the first part of Theorem 2.2.2
it is enough to rewrite Equations (2.2.4)-(2.2.5) in the form of (0.2.3). To this end we embed
X in R by identifying that with the set of natural numbers and take d = 2, Z, = (X;,Y,).
For each i € X, y > 0, we also set a((i,y)) = (0,1), b((i,y)) = Oaxa, the null matriz of
order 2, and J((i,y),v) = (ha,—ga)(i,y,v). Clearly Condition (1) is valid as a and b are
constant functions in this case. For verifying (2), we note that (2.2.2) and (2.2.3) imply that
for each i and almost every y, hy and gx are sums of functions which are non-zero only on
the intervals Ay;(y) for j € X\ {i}. Furthermore, Ay;(y) is contained in [0, 4, [|Nijlle] for
each i,j and almost every y. Hence the support of J(i,y,-) is contained in [0, > ox, H)\ijﬂoo}
which is a finite interval by (A1). Thus Condition (2) is also true. Hence the first part of
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Theorem 2.2.2 follows from Theorem 3.4 (p-474) of [8]. However, the second part, which
asserts a specific property of the solution, should be justified separately. It turns out that for
this cause, it is essential to first spell out (2.2.4)-(2.2.5), in the similar line of what appears in
[8]. In view of this, we include below a self contained proof of the first part before attempting
to prove the second part.

Proof. (Theorem 2.2.2) By Assumption (A1), C' = }_, |[|Aille is finite. Hence for almost
every y > 0, the total absolute length of the generic intervals 3, . », [As;(y)| < C. For each
w € €, we define the set D := {s € (0, o0)|p(w)({s} x [0, C]) > 0} be the time coordinate
of the point masses of a realisation of the PRM p(w). Interval [0,C] has finite Lebesgue
measure which is the vertical section of the intensity measure of p(w). By Lemma 2.2.1, D
has no limit points in R with probability 1. Thus we can enumerate D, say D = {0,}>2,,
where 01 < -+ < 0, < Opy1 < --- for each w. For each n € N, 0,: Q@ — (0,00] and
{o, <t} ={w | p((0,t] x [0,C]) > n} € F, as p((0,t] x [0,C]) is F; measurable. Hence o,
is a stopping time for each n > 1.

For a fixed w, we plan to construct a solution to equations (2.2.4)-(2.2.5) on the time interval
[0, o1]. Then we extend this solution to the time interval (o1, 03], and so on. Since

p(W)([0, o1) x [0, C]) =

for t € [0, o1)
) =Xot [ [ haXu Yo, o)) (du, o) = Xy
(0,¢] J0,C]
and
Yi(w) Yg—i—t—/ / ey V)p(w) (du, dv) =Yy +t.
0,4 [oc

This gives unique solution on [0, 0q). Moreover by using above, at t = o7,

XMM=%+AQManrwmmebww

YM@=%+m—AqumEWUMWMmbWW

Hence this is the unique solution in the time interval [0, oy]. Continuing in the similar way
we can construct solution for each consecutive interval (o, 0,.1], where n > 1. Now we
recall that o, is increasing and diverges to infinity with probability 1, due to Lemma 2.2.1.
Therefore, these intervals cover the entire positive real time-axis. Hence, the solution is
globally determined with probability 1.

Furthermore, for a fixed w, Xi(w) = X, () for all t € [0, (w), 0p41(w)). Hence X is an r.c.Ll.
and piece-wise constant process almost surely. Next we show the piece-wise linear feature
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of Y. First we note that f[o,o] g (Xi—, Yo, v)p(w)({t} x dv) is zero for all t € (0, 0541)
for every n > 1. Let ny := min{l > 1: f[o a IA(Xo—, Yo, v)p(w)({or} x dv) # 0}. Then
t = o, is the first time when the integral f[o q g5(Xi—, Yio, v)p(w)({t} x dv) is non-zero.
Consequently, Y; = Yy +t for all ¢ € [0,0,,) and hence Y, — =Y, + 0, and

0+ /(} / e Y o)1) x )

_ /[ Ko Yoy Vo) () 5 ) =,
0,C

using the fact that p(w)({o,,} x [0,C]) =1 and ga(i,y,v) € {0,y}. Thus from (2.2.5) and
above expressions

Vo Voton = [ [ o, Yie, 0ot ({2} x do)
(0,0n4] J10,C]

=Y, -Y.

T T O0ny— Onq—

=0.

Thus Y,, = 0. In general, for every m > 1, we set

Nyl = Min {l > Nyt / 9A(Xo—, Yo, v)p(w)({or} x dv) # O} . (2.2.6)
[0,C]

In other words, for every t > 0,

Y,, - ,itt=o0,, for some m >1

/RgA(Xt’ Yie, vlp({th x dv) = { 0 , otherwise. (2.27)

Then by summarising above observations, one gets from (2.2.5) that for every ¢ € [0, 00)

Yi=Yo+t— Y Y, _ (2.2.8)
{r>1|on, <t}
:Yb + t - Z(Yo'nr_)]‘[o'nr7oo) (t)
r=1
holds with probability 1. Hence Y is r.c.l.], and piece-wise linear. O

2.3 Semi-Markov Law of the Solution

Definition 2.3.1. The sequence of transition times {T,},>1 is given by T, := inf{t >
T,.1 V0 : Xy # X, } where Ty := —Yy. We define the holding time 7, := T, — T,,_1
for all n > 1. The number of transitions until time t is denoted by N; which is given by
max{m >0 | T,, <t}.
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From the above definition
X, - X, = / ha (Xu Yo 0)o({u} x dov) (2.3.1)
R

is non-zero if and only if u = T, for some positive integer n.

Remark 2.3.2. From (2.2.2) and (2.2.3) it is evident that for each i € X, y > 0, the maps
ha(i,y,+) and ga(i,y, ) have identical supports. Hence the integral f[QC} g (X, Yo, v)p({t} x
dv) is nonzero if and only if f[O,C] ha(Xi—, Y, 0)p({t} x dv) is nonzero since Y;_ > 0 for all
t > 0. We also recall that it is shown in the above proof that' Y jumps only at time t when
f[O,C] gA( X, Yo, v)p({t} x dv) is nonzero. Therefore, X and Y jump simultaneously as
X jumps only at time t when f[O,C] ha(Xi—, Yie, v)p({t} x dv) is nonzero. In other words,
the sequence {0y, }m>1, where n, is as in (2.2.6), gives the times of consecutive jumps of
X. Again, under (A1), due to Lemma 2.2.1, 0,, — oo almost surely. Thus all the jump

times of X are included in {o,,, }m>1 which is a sub-sequence in D. Hence, o,, = T, for
allm > 1.

Lemma 2.3.3. For each n € N, (i) Yy, = 0, and (it) Yr,_ = T, — T,,—1. Also (iii)
Y, =t —"Ty,, where Ny is as in Definition 2.3.1.

Proof. (i) By (2.2.8) and Remark 2.3.2 we obtain, for all n € N,

Yo, =Yo+Tu— > Vi

{r>1|T-<T,}

=|Y%+T.— > Y |-Yn-
{r>1|T-<Th}

:YTH_ - YTn— - 0

as (2.2.8) implies (by replacing < by <) Yi- = Yo +1{— 3 1~y p oy Yr,—. Alternatively, by
taking the left limit ¢ 1 7,, in (2.2.8),

Yr,- =Yo+T.— > Yi_. (2.3.2)

{r>1T-<Tn}
Hence we have shown above that
Y, =0iff t =T, for some n € N. (2.3.3)
(ii) We obtain for n > 2, by adding and subtracting 7;,_; on the right side of (2.3.2),

n—1
Y, =T, = Tpor + (YO TR YTT_> .

r=1
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Again using (2.2.8) with ¢t = T,,_1, the above is equal to T,, — T,,_1+ Yy, _, =T, — T,,_1, since
Yr, , =0 from (2.3.3). To complete the proof, we should show Yy, =T — Tj. This is true
as

YT1— :)/() + T1 - Z YTT—

{r>1|T,<T}

=—-To+ T
using Ty = —Y{ from Definition 2.3.1.

(iii) From (2.2.8), and Definition 2.3.1, and part (ii) of the lemma, we have

i=Yo+t— > (T,—T)
{r>1|T-<t}
N
=-To+t—> (T, —T,_y) =t —Ty,.

r=1
This completes the proof. n

Theorem 2.3.4. Let Z = (X,Y) = {(Xy, Vi) hi>0 be the unique strong solution to (2.2.4)-
(2.2.5). Then the following hold.

1. The process Z is a strong Markov process.

1. The embedded chain for the pure jump process X is Markov.

Proof. We have already seen in Remark 2.2.3 that the finite support condition on the
integrands in (2.2.4)-(2.2.5) hold true. Indeed all conditions mentioned in Remark 2.2.3 are
true. So by Theorem IX.3.8, and 1X.3.9 of [8] (p-475), the process Z is strong Markov, i.e.,
7 = (Z74u)uer, is conditionally independent of Fr given Zp, where T is any {F;}; stopping
time. We also recall that for each n(> 0) € Z, T,, is a stopping time. Hence, due to the
strong Markov property, Zr, ., is conditionally independent to the o-algebra Fr, given Zg,.
That is, {(Xr,, Yr,)}n is Markov. Finally, due to (2.3.3), the embedded chain, {Xr, }, is
Markov. [l

Theorem 2.3.5. Let (X,Y) = {(Xt, Yi)}i>0 be the solution to (2.2.4)-(2.2.5), then {X:}i>o
s an SMP.

Proof. We have already seen in the proof of Theorem 2.2.2, that X is an r.c.l.l process.
Next, we need to show (0.2.2), i.e., for each n > 0,

P[XTn-H = j? Tn+1_Tn <y | XT07T07XT17T17 S 7XTn7Tn] = P[XTn-H = j7 Tn+1_Tn <y | XTn]'
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We note that

P(XTnJrl - j7 Tn+1 - Tn S Yy | (XToa T0)7 (XT17T1)7 sy (XTann))

:P(Tn-i-l - Tn S Yy | (XTOJ T0)7 (XTU Tl)? teey (XTna Tn))
X P<XTn+1 = ] | (XToa T0)7 (XT17T1)7 R (XTna Tn)a {Tn+1 - Tn < y}) (234)

Each of the two probabilities on the right side is further simplified below. For almost every
w € Q, equation (2.2.7), Remark 2.3.2 and Lemma 2.3.3 imply that for any n > 0

y for t < Ty =T,
/ / gA(XTm u—"T,, U) p(du’ dv) — ) or 41
(Tn,Tn+t] /R Thir — T, fort="T,. —T,.

Hence, by a suitable change of variable, almost surely T;,.1 — T, is the first occurrence of a
non-zero value of the following map

t— / /QA(XTn, u, v) (T, + du, dv)
04 JR

and that occurs at ¢t = T,,11 — T,,. Again, since p(7,, + du, dv) is independent to Fr, we
obtain, T,,.1 — T, is conditionally independent to F. given Xp . Thus

P (Tn+1 - Tn S Yy ‘ (XT();TO)’ (XT17 Tl)? teey (XTnaTn))

By substituting u = T},41 in Equation (2.3.1), and using Lemma 2.3.3 we get

XTn+1 - XTn + / hA(XTna Tn+1 - Tna 'U) KJ({Tn-ﬁ-l} X dU), (236)
R

as Xp,,,— = Xp, and Yp, - = T4 — T5,. Thus using (2.3.6)
P (XTn+1 = ] | (XTm TO)y (XTlaTl)a R (XTn7 Tn)7 {Tn+1 - Tn < y})

= P(/ ha( Xz, Ther — T, 0) @({Tn + (Thg1 — Tn)} x dv) =j — X,
R

(XTm T0)7 (XTlaTl)a SR (XTn) Tn)a{Tn-i-l - Tn S ?/}) .

Again, using the independence of (T, + du,dv) to Fr, and conditional independence of
Th+1 — T, to Fr, given X1, we conclude, the above expression is equal to

P ( [ a0 T = Tor) (T + (T = T} x ) = = X, | X, (s = T < y})
R

=P (XT"+1 =5 | X, AT — Tn < y}) (2.3.7)
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Chapter 2 : Homogeneous semi-Markov processes

using (2.3.6). Thus, using the simplifications (2.3.7) and (2.3.5) in (2.3.4), we obtain

P(XTn+1 =J Tn+1 -1, < Y ’ (XT07T0)> (XTuTl)a SRR (XTnaTn»
=P (Tn+1 -1, <y ‘ XTn) P (XTn+l =7 ‘ XTm {Tn+1 -1, < y})
= P (XT7L+1 = j7 Tn+1 - Tn S y ’ XTn) N

Hence, X is an SMP. O

2.4 Expression of Transition Kernel

In this section we derive an expression of the transition kernel. For each ¢ € X', we define a
function F(- |4): [0,00) — [0, 1] as

F(y|i)=1—enW (2.4.1)

where ~;(y) is as in (A2). Since, ¥;(y), being an integral of a bounded Lebesgue measurable
function, is absolutely continuous in y, and hence differentiable almost everywhere. Let f(y |
i) be the almost everywhere derivative of F'(y | 7). We also define a matrix p := (p;;(y)) xxx,

such that
i

pii(y) =< —Ni(y)’ (2.4.2)
0, if j=1.

This ensures that p is a transition probability matrix for each y > 0. The following
proposition asserts that p gives the conditional probability of selecting a state at the time of
transition given the holding time and location of the previous state. Furthermore, the map
F(y | i) as in (2.4.1) is also asserted as the conditional cumulative distribution function of
the holding time given the state is i.

Proposition 2.4.1. Let Z = (X,Y) be the solution to (2.2.4)-(2.2.5), then the following
hold.

i. F(- 1) is the conditional cumulative distribution function of the holding time of the
process X .

. Fori 7£ j? plj(y) = P[XTn-H :.7 | XTn = Z.7YTn+1* = y]

Proof. Using (2.2.3) and (2.2.7), the conditional probability of no transition in the next y
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2.4. Expression of Transition Kernel

unit time, given that the state at the n'® transition is 4, is given by,

P[Xt = Xt—th € (Tann+y] ‘ XTn = Z]

_p /9A<Xu_, w =Ty, v)p({u} x dv) = 0,Yu € (Tp, Ty + 3] | Xr, — i
R

=P |pq (uv) € (T, Ty+yl xRy |ve | Axyu—T,) p=0| Xy, =i
J#XT,

— W) (2.4.3)

since, the intensity of @ is Lebesgue measure, and the Lebesgue measure of {(u,v) € (T, T, +
Y xRy | v € Upihyj(u—Tn)bis [ 52, Ayj(u—T,)du which is equal to 7i(y) (see (A2)).
Using (2.4.3), the conditional cumulative distribution function at y of 7,11, the holding time
after the n'" transition, given the n'® state, is

Plrpa <y| Xr, =1 =1-PX,=X,_,Vte (T, T, +y] | Xz, = 1]
—1— e

for all y > 0 and ¢ € X. Thus (i) follows from (2.4.1).

We note that, for j # i, P[Xy, , = j | X1, =4,Yr,,,— = y] is the conditional probability
of the event that the (n + 1)th state is j, given that 7,1 = T,, + y and the nth state is i.
Using (2.3.6), the above is the conditional probability that a Poisson point mass appears in
{T,, +y} x A;;(y) given that the point mass lies somewhere in {7, +y} x U;£A;;(y) and no
transition of X occurs during (7},,7T,, + y). If these three events are denoted by A, B, and
C respectively, then the conditional probability P(A | BN C') can be simplified as P(A | B)
because C' is independent to both A and B. Thus using the Lebesgue intensity of g,

P [XTn-H =7 ’ XTn = Z.>YVTn-~-1— = y}

=P |p({T +y} x Ay(y) = 1| o({T0 + v} x [ JAi(w) =1
i

for every y > 0,7 # i. Thus (ii) follows from (2.4.2). O

Remark 2.4.2. We note that under Assumptions (A1) and (A2), F(y |i) <1 forally >0
and lim,_, F(y | i) = 1. Thus, the holding times are unbounded but finite almost surely. By
dropping (A1), one may include a class of SMPs having bounded holding times. However,
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Chapter 2 : Homogeneous semi-Markov processes

we exclude that class from our discussion. It is also important to note that the SMPs having
discontinuous cdf of holding time are also not considered in the present setting. Nevertheless,
the present study subsumes countable-state continuous time Markov chains and the processes
having age dependent transitions as appears in [14]. Moreover, in Theorem 2.4.4, we obtain
the transition kernel that is homogeneous in time. In other words, we have excluded the
time-inhomogeneous SMP from the present study too.

Proposition 2.4.3. We have, for almost every y > 0,

3 flyld)  — JAly),  fori#j,
Puly)q —Flyli) {0, fori = j.

Proof. By differentiating both sides of (2.4.1), we obtain f(y | i) = A\;(y)e @ for a.e.
y > 0. This is equal to \;(y)(1 — F(y | 7)) using (2.4.1). Hence, for a.e. y >0, and i € X

fy 14)
VT ). 9.4.4
L =) (2.4.4)
If i # 7, for a.e. y > 0, using (2.4.2)
fly 14) i (Y)

Dij — = — )\ X = N\;i(y).

2 — ) x )
The case for i = j follows from (2.4.2) directly. O

Theorem 2.4.4. Let X be an SMP as in Theorem 2.3.5. Then, the associated kernel is
given by

Y
P[XTn-H = jv Tn—i—l - Tn S Yy | XTn = Z] = / 6_%(8))\2']'(8) dS,
0

which is denoted by Q;;(y) for every y > 0, and i # j.

Proof. Using Proposition 2.4.1(i) and (ii) and Lemma 2.3.3
P [XTnJrl =7, YTn+1* <y ’ XTn = Z} =K [P (XT7L+1 =7J YTn-H* <y | XTn = i7YTn+17) ‘ XTn = Z]
:/ Loy (8)P [ X7y =5 | X1y =0, Y7, = = s] f(s|i)ds
0
y .
~ [ uo)fs iy ds.
0

For each i # j, using Proposition 2.4.3 and (2.4.1), the right side of above can be rewritten
as

/Oy(l — F(s|1)\j(s)ds = /Oy e‘”i(s)/\ij(s) ds = Qi;(y).
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2.5. Homogeneous Component-wise Semi-Markov Process

Proposition 2.4.5. Let X be an SMP as in Theorem 2.3.5. Then, X\ is the instantaneous
transition rate matriz.

Proof. The rate of transition from state ¢ to 5 at age y is given by

1 : .
lim E |:P<XTn+l =7, T —Tn € (y7 y+ h] | XTn =1, {Tn‘H —Tn > y})}

h—0
= lim lP(XTn-H = ja Tn-l—l - Tn € (ya Y+ h] | XTn = Z)

h—0 h P(Top —T, >y | X, =1)

h—0 h 1—P(Tn+1—Tn§y|XTn:Z) ’

40,

Using Theorem 2.4.4, the above limit is equal to fy_i;y% which can further be simplified as
Aij(Y)- u
Remark 2.4.6. We have obtained Q;;(y fo pij(s)f(s | i)ds in the proof of Theorem

2.4.4, which expresses Q;;(-) in terms of the pi;(+), and f(- | 9). These parameters give
the age dependent transition probabilities and the conditional holding time densities. In an
alternative conditioning, the kernel can also be expressed as

Ql]( ) [XTn-H j ’ XTn = 7’} P [TnJrl - T, < Yy ‘ XTn = Z‘7‘)(Tn+1 = ]} >

which is the product of transition probabilities of embedded chain and the conditional cdf
of holding time given the current and the next state. This representation of the kernel is
more general as that does not require absolute continuity of holding time CDF. For this
reason, this factorisation of kernel is more popular in the literature. We also recall that the
transition kernel Q) characterizes an SMP. We have seen in the above two resuls that if Q) is
differentiable, the instantaneous transition rate matriz \ exists, and each of () and X\ can be
expressed in terms of the other.

2.5 Homogeneous Component-wise Semi-Markov Pro-
cess

Notation 2.5.1. Fizi,j € X and yi,y2 > 0. Let Z' = (X1, Y1) and Z? = (X?,Y?) be the
strong solutions of (2.2.4)-(2.2.5) with initial conditions
Xé:ivyblzylv Cdeg:ij()QZfW

respectively. The jump times of Z := (Z', Z?) is denoted by {T, }nen, and given by Ty := 0
and T,, = inf{t > T,,_y:t € T* UT?} for all n > 1 where T" denotes the collection of
transition times of X' for each | =1, 2.
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Chapter 2 : Homogeneous semi-Markov processes

The above notation is adopted henceforth. We impose the following restriction on .

(A3) For all (i,7) € X, and for almost every y > 0, set Ai;(y) = || Aijloo-

Remark 2.5.2. In the preceding subsection we have seen that the law of the solution to
(2.2.4)-(2.2.5) depends only on the X\ matriz and the initial position and does not depend
on the choice of . Hence, (A3) does not impose any condition on the law of Z' or Z?
separately. However, the law of Z depends on the choice of . Therefore, (A3) selects a
specific flow from the family specified in (2.2.1). We select that, as the absence of (A3)
significantly complicates the relations between the intervals A;;(y) with different values of i,
j and y and thus ramifies the relation between Zy and Zy. On the other hand (A3) implies
a very simple relation, namely Uy>o\;;(y) are disjoint for different values of i and j. This
helps us to compute expressions of various parameters related to the law of Z = (Z*, Z?).
This assumption is central for our study of mixing and merging times of Z.

All the subsequent results, which assume (A3), do hold under a relazed condition that
for an a > 1, X\iyi(y) = a|Mijillee for all y > 0 and (i',5') € Xo. Even the proof of
Theorem 2.2.2 also works after replacing C' by aC'. Nevertheless, this relazation is artificial
as that does not enlarge the scope of stochastic flow under consideration. So, for avoiding
cumbersome notations arising due to an artificial relazation, we follow (A3) only.

Since, Z! and Z? as in Notation 2.5.1 are Markov, Z = (Z', Z?) is also Markov. It has
state and age components X = (X', X?) and Y = (Y'!,Y?) respectively. While each of X!
and X? is semi-Markov, the pure jump process X is not. Rather, X is a component-wise
semi-Markov process (CSM) and the Markov process Z is called the augmented process of
CSM X. A CSM with independent components has been introduced for modelling financial
assets in [10]. However, a CSM with dependent components has not been studied in the
literature yet. Since, for our case, the components of the CSM X are driven by a single
Poisson random measure, they are not independent. In view of this, it is interesting to
derive the law of X by finding the generator of Z. To this end, we recall Itd’s lemma for
r.c.L.l. semimartingales. Let ¢: (X x R, )? — R be bounded and continuously differentiable
in its continuous variables. Using the expression of J in Remark 2.2.3, we write

0 0
b7 — | —/— + — VAR /o
dSO( ts t) (ayl"‘am)@( ts t)dt

=¢(41+/ JZL Dot d), 7+ [ Iz ﬁdw)—ﬂﬂ,ﬁ)
Ry Ry

= [ otz + (2 0).22 22 0) - (2L 2] sl do)

= (/ [go(Zt{ + J(Ztlf,v), Zt{ + J(thf, v)) — (p(Ztlf, fo)] dv) dt + dM,
Ry
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2.5. Homogeneous Component-wise Semi-Markov Process

where M is the martingale obtained by integration wrt the compensated PRM p(dt, dv) —
dtdv. We get the third equality by using Therorem 0.2.20. For simplifying the above integral
term, we impose (A3) and divide the derivation in two complementary cases.

are disjoint for every j; and js. Thus by considering these intervals where the integrand is
non-zero constants, we get

Casel: Assume X/ # X? . Now under (A3), the intervals Ay ; (VL) and Ayz 5 (V)

| @ v 2z 0.22 4 922 0) - o2 2] o
Ry

_ /
U U A (YE
E=1 (j;éxk’ Xf_J( )

t—

) [@(Ztlf + J<Ztlfﬂ U)? thf + J(thi, U)) - Qp(Ztlf? fo)] dv

= D [90.0,22) = o(Z, Z0)] IAxy (VD))

XL

+ Z Zt1—7j7 90<Zt1—7Zt2—):| |AX,527]<}/;2—)|

where || is the length of the interval I.
Case2: Assume that X} = X7 =i say. Also recall that under (A3), the intervals A;;(y1)

and Ajj(y2) are having identical left end points. So, Ax; ; (VL) and Ay: ;,(Y;2) are not
disjoint when j; = jo. Thus
| e v 320,22 4 92 0) - o2 2] o
R

_ / o (A A0 ))[w(Ztl_ + J(ZL ), 2+ J(Z2 ) — (ZL, Z2 ) dv
Z] U Z]

—Z (4,0, 27) = p(Zy—, ZE ]|y (Yi0) \ A (2]

J#i

+ > 1p(Z,5,0) = o(Z), Z )M (Y2 \ Ay (V1))
i

+ ) [(4,0,4,0) = (Z, ZE)IAi(YE) N A (V2]
i

Thus by combining the expressions under both the cases, the generator A of (Z', Z?) is given
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Chapter 2 : Homogeneous semi-Markov processes

by
o 0 L
Ap(z1,22) = an " on P(z1,2) + ) (Mg (B1) = i o (12)) T[0(4, 0, 2) — (21, 2)]
j¢{i}
+ > Mani(W2) = G hiny (1)) (21, 4,0) — (21, 22))]
J¢{iz}
+ 0 Y (Mg (®1) Ay (42) (5,0, ,0) — 9(21, 20)) (2.5.1)
J¢{inia}

where 21 = (i1,41), 22 = (i2,Y2), ;; is Kronecker delta, a™ = max(0, @) and a Ab = min(a, b).
This leads to the following theorem.

Theorem 2.5.3. Under (A3), the infinitesimal generator A of the augmented process Z =
(Z1,Z?) is given by (2.5.1) where Z' = (X', Y1) and Z* = (X?,Y?) are as in Notation
2.5.1.

From the above derivation of generator of Z, it is not difficult to guess its expression
when Z; and Z, are driven by two different independent Poisson random measures. Indeed,
the intervals Ayy ; (Y1) and Az ;,(Y;?) can be treated as if they are disjoint for any value
of X! and X? . Thus an expression like (2.5.1) can be obtained where d;,;, should be
replaced by zero irrespective of i1,45. This is agreeing with (2.10) of [10]. In that case
Ap(z1, 22) = A1¢(+, 22)(21) + A2p(21, ) (22), where A; denotes the infinitesimal generator of
A

Remark 2.5.4. Although given a w € Q for two different families \' and X* one obtains
two different solutions paths for SDE (2.2.4)-(2.2.5), the law does not differ. Indeed it is
evident from SDE (2.2.4)-(2.2.5) that the law of (X,Y) does not depend on the choice of \
and depends only on the A matriz and the initial position. Hence, (A8) imposes no condition
on the laws of Z' and Z? separately. However, the law of Z depends on the choice of .
Therefore, (A3) selects a specific flow from the family specified in (2.2.1). We select that, as
the absence of (A3) significantly complicates the relations between the intervals A;;(y) with
different values of i, j and y and thus ramifies the relation between Zy and Zy. On the other
hand (A3) implies a very simple relation, namely Uy>o\;;(y) are disjoint for different values
of i and j. This helps us to compute expressions of various probabilities related to meeting
and merging times of X' and X?. This assumption is central for our study.

2.6 Meeting and Merging at the Next Transition

Definitions 2.6.1. Given an {F;}i>0 stopping time T, the time T of subsequent meeting
by the processes X' and X? is given by 7 := inf{t > T : X}! = X2 min(Y,},;Y?) = 0}. If
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2.6. Meeting and Merging at the Next Transition

{r < oo}, then X' and X? are said to meet eventually. If at a meeting time 7, their
transition counts [see Definition 2.3.1] N} and N? are identical, then the said meeting is
called coherent. The merging time of X' and X? is given by 7 := inf{t’ > 0| X} =
X2Vt > t'} and if {7/ < oo}, then they are said to merge.

The nature of meeting and merging for a semi-Markov family is more involved than those
for the Markovian special case. We clarify this in the next section.

Markov pure jump process, although a special case of (2.2.4)-(2.2.5), deserves a separate
mention due to its importance. Hence we first consider a special case where X is independent
of the age variable y and satisfies (A1l). Evidently, (A2) holds too. Furthermore, assume
that A;;(y) = Aij, a constant function for each (i, j) € X,. Hence (2.2.4) reduces to

t

Xt=X0+/ hX,_,v)p(ds, dv) (2.6.1)
0+

where h(i,v) := ha(i,y,v) = > jeaiiy (U =) La, () (v) is constant in y, as the intervals Ay;(y),
do not vary with y variable. Uniqueness result of (2.6.1) implies the following.

Theorem 2.6.2. Let X' and X? be strong solutions of SDE (2.6.1) with initial states X} = i
and X2 = j respectively. Then, if X' and X?* meet, they merge at the first meeting.

Proof. For a w € Q, if there exists a t' > 0 such that X = X7 = k for some k € X!, then
using (2.6.1) for t > ¢/, both X! and X? solve

t t
Xo=Xo+ [ B o)plds,de) =+ [ RO v)p(ds,do).
vt +

Now using almost sure uniqueness of the strong solution of the above SDE, X! and X? would
be identical from time ¢ onward. Thus X! and X2 merge at their first meeting time.

It is interesting to note that, if \ is constant, the merging time of X' and X2, as given in
Theorem 2.6.2, is a stopping time. This is because, merging and meeting times coincide, and
the latter is a stopping time. This consequence is not valid for a general semi-Markov family.
Indeed, if X' and X? are as in Notation 2.5.1, at the meeting time they may have unequal
ages and those age variables appear in the SDE (2.2.4)-(2.2.5). So, the mere uniqueness of
the SDE does not imply merging at the first meeting time. We produce below an example
of a meeting event which is not the merging of a semi-Markov family.

Example 2.6.3. Let X = {1,2}, with (1,2) < (2,1); also Ai2(y) = Aau(y) = .
A2(y) = Aa1(y) = sup(g ) |ﬁ| =1 for ally > 0. Thus for every (i,5) € Xa, Nij(y) = [i —
Li—1+¢%4). We further assume that Z' = (X1 Y") is the strong solution of (2.2.4)-(2.2.5)
with above parameters and initial conditions (X{,Y)) = (I, 1(23(1)) for I = 1,2 respectively.
Now fix a sample w € 0 such that p(w)|jps/2x02 = 0a,3/2) + 03/2,1/2), the addition of
two Dirac measures at (1,3/2) and (3/2,1/2) respectively. Then none of the processes has

and

'Note that, it is not necessary that X' and X? transit to state k at the same time.
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1.5 ey (1,3/2)

0.5

0 0.5 1 1.5

Figure 2.1: The t and v variables are plotted along horizontal and vertical axes. The point
masses are shown by black dots. The intervals relevant for transitions of the first and second
processes are plotted vertically and shown in blue and red respectively.

transition until time t = 1. Hence, for both [ = 1,2,
XL =1, and, Y. =Yl 41— /(0 )/RgA(XfL,YJ,U)p(du,dv)(w) =1()+1=1L
1
Then from (2.2.4)
X=X+ [ (XY op({1), o)) = L+ ha(,1,3/2),

Therefore, using (2.2.2) and the intervals A12(1), Ay (2), we get X{ = 1+(2—1)191/2)(3/2) =
1 and X =2+ (1 —2)Lp149/3(3/2) = 1. Thus, t = 1 is a meeting time. However, this
is not a merging time, because at t = 3/2, X' and X? separate, which is shown below. We
note that until t = 3/2, X' and X? are at state 1 since t = 0, and t = 1 respectively. So,
while the pre-transition state Xé/z_ is 1 for each |l = 1,2, the pre-transition ages Y31/2_, and
)/}32/2_ are 3/2 and 1/2 respectively. Consequently,

2, forl=1

l l
X =1+ [ na(L Vs 000({3/2h o)) = 1+ Loy, (1/2) = {17 P

since, 1/2 € Mp(3/2) = [0, 12555) = [0,3/5) and 1/2 ¢ Ais(1/2) = [0, 5575) = [0,1/3).

Theorem 2.6.4. Assume (A3). Let Z' = (X', Y1) and Z* = (X?,Y?) be as in Notation
2.5.1 where i # j. The probability of X' and X? meeting in the next transition is

/ e foy(Ai(y1+t)+kj(yz+t))dt()\ij(yl + ) + Ni(ye +y))dy.
0
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Proof. In this proof we will utilise that for every ¢’ > 0 and y” > 0, U A (y') is disjoint
to Uk Ajk(y”) when i # j. This is consequence of definitions of the intervals in (2.2.1), and
(A3). Non-meeting event in the next transition of X' and X2, happens in two ways.

Case 1: X! has the first transition to a state which is different from Xg before X? transits
for the first time. This event can be written as £ := {X},_ # X},, X7, # X7} We will
make use of P(E | Fo) = E[P(E | TY) | .7-"0} and, the expression of conditional density np, of
Ty given {X}, =14, X3, =5, Y3 =, Y7 = y2}. Clearly,

U Al
ml( ket {ig} e +9)) iy ) = Nii(yn +y)

Ai
mi(, ¢Lfi}/\m(yl +y)U kgL{Jj}Ajk(yz +y) Ny +y) + Ay +y)

P(5|T1 = y) =
Moreover,
nr (y) = e B Ny + ) + N (y2 +v),

where B (= U t} x U A; +))U( U A; +t Indeed, the event of no
o (o (G At + )0 (0 A+ 1))

transition of X' and X? until first y unit of time, is equivalent to {p(B) = 0}, the non-
occurrence of Poisson point mass in B. Clearly, ({p( ) =0} | X7, =4, X5, = 4.y =
y1, Y =) is equal to e ™25 and my(B) = [(Ni(y1 +t) + Aj(y2 + t))dt. Hence

PE|F) = [ PEIT =@y
0
= [ e RO O g) = A1+ ). (26.2)
0

Similarly for Case 2, i.e., X? has the first transition to a state, different from X}, before X*
transits for the first time is given by,

-HX%#Xéwﬁ%#XELR%=A e ISt OEX N[y () ) — A (4 + )] dy
(2.6.3)

Hence the total probability (denoted by a’(ijyl y2)> of not meeting in the next transition is

sum of the probabilities appearing in (2.6.2), and (2.6.3).
Using ¢y (y) = e Jo B0t (X (4 + ) + 3 (12 + ),

a/(i,j,yl,yz) - / <¢1 (y) —e” Jo Gty b 2g (k) [(Nij (1 +y) + Njily2 + y))]) dy (2.6.4)
0

=1 [ e RO ) 4 A+ )y
0

as [ ¢1(y)dy = 1. Hence 1— (” y1ue)» Uhe probability of meeting of X' and X? in the next
transition has the desired expression. O
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Definition 2.6.5. Let Z' = (X', Y!) and Z% = (X?,Y?) be the strong solutions of (2.2.4)-
(2.2.5) with two different sets of initial conditions. Let P(k,y) denote the reqular conditional
probability of merging of X' and X? at a meeting time given meeting occurred in finite time,
k is the meeting state, and y is the age of the chain which arrives at k prior to the meeting
time.

Theorem 2.6.6. Assume (A3). Let Z' = (X', Y') and Z? = (X?,Y?) be the strong solu-
tions of (2.2.4)-(2.2.5) with two different sets of initial conditions. If at a time instant t',
X =X2=keX withY, NY?=0and Y, VY7 =y >0, then the probability P(k,y) that
X1, and X? are merged at t' is given by,

oo — [ = O (VMg () / , ,
P(k,y) = / o " S M () A dewry + o) | dy 265)
0

where a V' b = max(a,b) and a A b = min(a,b).

Proof. Let t' denote a meeting time of X' and X2 It is given that t' is finite, with
X =k=X2,Y)ANY?=0and Y] VY7 =y > 0. Let ¥ denote the duration both the
processes stay at k: before either of them transit to some other state. Clearly, the event of no
transition of X! and X? for next 3 unit of time after ¢, is equivalent to the event where no
Poisson point mass belongs to the set B := [ <{t’ +1t} x gL% (Agr (1) U A (y + t))>
te[0,y)
Evidently, this event occurs with probability e=™2(®), as m, is the intensity of the Poisson
random measure. Since, simultaneous occurrence of this event and the event of a Poisson

point mass lying on the line segment {¢' + ¢’} x /g{ (A (v') U A (y + o)) is equivalent
to the occurrence of {9 = y'}, the expression of conditional density 1y of ¢ is given by

ne(y') = e*mQ(B)ml(k/gk}Ak,( y')), where Ap(v') = A (v') U Agwr (y + o) for every k' # k.

As Ay (y) is set as constant || Ay for almost every y (Assumption (A3)), due to the
definitions of the intervals in (2.2.1), for almost every y > 0 and y' > 0 the collection
{ Ak (Y') brrea (ry 1s disjoint. Moreover, due to (A3) the left end points of the intervals Ay (y')
and Ay (y+y') are common (see (2.2.1)). Thus the Lebesgue measures of A (¢ )UA g (y+7/)
and Akk’( ) N A (ZJ Ty ") are A (') V A (y + ¢') and A (y') A A (y + o) respectively.
Thus 7719 = exp fO =, )\kk’ \/ Akl (y + t))dt) Zk’;ﬁk Nik! (y/) \V/ Akk’(y + y/).

We consider two cases regarding the transition of X' and X2, at #' + 9 which are (i)
simultaneous, and (ii) non-simultaneous. Case (ii) implies that X' and X? will depart in
the next transition. So, under case (ii), ¢’ is not a merging time. Consequently, case (i) is
necessary for ¢’ to be the merging time. We show that case (i) is a sufficient condition too.
We recall that at ¢’ + 9 the Poisson point mass (which is responsible for the transition) lies
in only one of the members of the disjoint family { A (¢) }x with probability one. Therefore,
under case (i), at ¢ + 9, X' and X? enter into an identical state and the ages Y and Y?
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2.6. Meeting and Merging at the Next Transition

become zero and therefore, the uniqueness of the SDE (2.2.4)-(2.2.5) implies merging at time
t.

For case (i) to occur, the point mass must lie in {#' + U} X Up ¢y A (9) N Apwr (y +9).
On the other hand if the point mass lies in {t' +9U} X Up gy (Aw (9) \ Mg (9) N Mg (y + 09)),
then the transition at ¢’ 4 1 is of case (ii). Hence, for almost every y and ¥/, the conditional

Mnr (YA (y+y
Zk’;ﬁk kk’( ) kk’( ) Thus

> O WOV (y+y')
k! £k

probability of merging given ¢ = ¢/ is equal to

P(X! =X} Vt>t | {t <o}, X)=X) =k, Y, ANY;]=0,Y, VY] =y)

is equal to

/ P(X}= X2Vt > 1| {# < 00}, Xb = X3 = kY AYZ =0,V VY2 = 3,9 = /) o (y/)dy/
0

> _foy/ >0 (Mgt OV Age (y+t))dt
:/ e K #k (Z /\kk’(y,) A/\kk'(y‘f‘y/)) dy’.
0

This completes the proof. O]

Remark 2.6.7. It is interesting to note that for Markov special case, where the transition
rate matrix X is independent of the age variable y, a direct calculation gives that P(k,y) =
1. This makes Theorem 2.6.2, a corollary of the above theorem. On the other hand by
considering the two-state semi-Markov chain given in Example 2.6.3, one can obtain for
each k = 1,2, limy_,oo P(k,y) = [~ eV #ly,dy’ < %fol e Vdy + I e Vdy = % < 1.
This further clarifies that a meeting time for the flow in Example 2.6.3 need not be a merging
time. Below we show that the chance of merging for a general semi-Markov chain increases

to 1 as y decreases to zero, provided that the transition rate is continuous at zero.

Proposition 2.6.8. Assume (A3) and that y — \(y) is continuous at zero. As vy tends to
zero, P(k,y) converges to 1.

Proof. From Theorem 2.6.6
oo [V S s (VA (yrH1))e <

lim P(k,y) = lim e M#
y—0 y—0 0

Z At (Y') A Ao (y + Z/,)) dy'.

Due to the continuity of A in y, the integrand converges pointwise to
y/
W(y') = Z Awi (y') exp <—/ Z/\kk’(t)dt) :
K £k L
The integrand is also uniformly dominated by 1, which is integrable on [0,00). Indeed

fmm) ¥(y")dy' = 1. Thus the result follows using dominated convergence theorem. ]
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Chapter 2 : Homogeneous semi-Markov processes

2.7 Eventual Meeting, Merging, and Time

It is important to note that the strict positivity of entries of the rate matrix, as assumed in
this chapter, implies irreducibility of the process. It is also known that mere irreducibility
of a Markov chain does not ensure the convergence. However, the meeting event of two
chains may take place even if the chains do not converge. The discrete time Markov chain
on two states having zero probability of transition to the same state constitutes an example
where chains with different initial states never meet due to its periodicity. Nevertheless,
the same phenomena is untrue for its continuous time version. Indeed, if two such chains
(Markov/semi-Markov), having bounded transition rate and driven by the same noise (the
Poisson random measure) start from two different states, they meet surely at the next tran-
sition. In this chapter, due to the consideration of processes having bounded transition rate,
the discrete time scenario is excluded. Thus an ergodicity assumption is not needed for as-
suring eventual meeting. The next theorem establishes eventual meeting of Markov special
case under finiteness assumption of the state space.

Theorem 2.7.1. Let X' and X? be as in Theorem 2.6.2.

(Nij+Aji)
JTA

1. The conditional probability of meeting in the next transition given Fy is Yy

2. If X is finite, X' and X? eventually meet with probability 1.

Proof. Recall X} =i, X2 = j, and the sequence {T,,} from Notation 2.5.1. By applying
Theorem 2.6.4 for the Markov special case, we can write the conditional probability of
meeting in the next transition of X! and X?, given the initial conditions as

o Nij F i) [ o Aij + i
/0 e Jo Nt (N Ny ) dy = M/O e~ NN\ A )dy = A + i)

(A + ) (Ai+2X5)
Hence the part (1) is proved. Since, A;; > 0 for all i # j and X is finite, min, ; (A/\:Kj) > 0.

Thus max; j a(; j) < 1 where a(; j) denotes the probability of not meeting in the next transition.
Now since {7},} is a sequence of stopping times, using Theorem 2.3.4(1), we get

Xz ) Smaxag) < 1. (2.7.1)

n—1 ,]

E []l{x;nyéx%n} | ‘FTn—l] = q(x1

The event of never meeting of processes X! and X? is identical to the repeated occurrence
of {X}. # X7} for all n > 1. Hence, using the fact (thanks to (A2)) that the chains
experience infinitely many transitions with probability 1, the probability of never meeting,
P (X} # X2Vt > 0| Fy) matches with limy_, P (M. {X}, # X7 } | Fo). Next if

N N-1
E H Tixs #x3 3 | ]:0] < max agi g B H Lixy 2xz y | ]:o] ; (2.7.2)
n=1 7 n=1
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2.7. Eventual Meeting, Merging, and Time

holds for all N > 1, using that repeatedly, we get

N
H]l{xl £X3,} !fo] < (Hgf;xa(i,j))

n=1

( 1{X17£X2}‘}—0—

for all N > 1. The right side clearly vanishes as N — oo, and thus P (X} # X2Vt > 0 | Fy)
is zero as desired, provided (2.7.2) holds. Finally (2.7.2) is shown using (2.7.1) below

N
I 00, 2520 | me] | fﬂ]

n=1

N
It a2y | 7o

n=1

N-1
L \n=1

N—-1
I Loy exzy | 7 0]

n=1

< maxag ;)b
17-]

for all N > 1. Hence the proof of part(2) is complete. ]

In the above proof, the second part of the theorem has been proved using the first part.
However, the former has been proved in Lemma 3.5 of [4] without utilizing part 1, under
identical assumption in a different approach.

It is important to note that for ensuring almost sure eventual meeting, we have assumed

finiteness of & in the above theorem, whereas in the proof we have used min, ; ()‘/\”Jr;i”) >0

only. In the following lemma we show that under (A1), these conditions are equivalent.

Lemma 2.7.2. Let A be a transition rate matriz of a Markov chain obeying (Al1). If X is

1J+ Jl)

( .
infinite, 1njf N, s zero.

Proof. Fix a j € X'. Since, due to Assumption (Al), >>°, A\; < 0o, given € > 0 there exists
an i.; such that \; < e\; Vi > i.;. So we get an inequality \;; < \; < e, for all ¢ > i ;.
Using this inequality we have the following relation,

Ai + A Ai A A A
for all i > i