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Abstract

Component-wise semi-Markov processes (CSM) constitute a larger class of pure jump pro-
cesses which includes semi-Markov, and Markov pure jump processes. This thesis examines
semi-Markov as well as CSM processes with dependent components. In order to better un-
derstand the interactions among components of CSM processes having bounded transition
rates, we consider a family of stochastic flows using a system of SDEs driven by Poisson
random measure (PRM), with an additional gaping parameter. More specifically, we have
demonstrated that the proposed system of SDEs driven by a PRM does, in fact, has a
unique solution. Then, we prove that a solution satisfies the desired law. Thus we establish
a semimartingale representation of the homogeneous or nonhomogeneous semi-Markv pro-
cess. Finally, we pick up an appropriate flow by fixing the gaping parameter. We derive
expressions of the probabilities of meeting and merging of a pair of semi-Markov processes,
solving the same equation but with different initial conditions. We also obtain a set of suffi-
cient conditions for any two solutions merge eventually with probability one. The theoretical
results are elaborated with the help of numerous numerical examples. An SMP with a spe-
cific law is what makes up each component of a vector-valued CSM. These parts might be
governed by the same set of rules, or they might not. The current investigation of CSM
focuses heavily on the junctures at which the constituent parts come together and form a
whole. When the parts are unrelated to one another, questions about such occurrences can
be answered right away. The questions become interesting, however, when the parts are
driven by dependent or identical noises. We were able to derive the infinitesimal generator
for CSMs with arbitrarily number of components driven by a single PRM. Additionally, we
have defined correlated PRM and provided a semimartingale representation of a CSM driven
by correlated PRM.

ix



Notations

Let a and b be real numbers.

1. a+ = max(0, a)

2. a ∧ b = min(a, b)

3. a ∨ b = max(a, b)

B(Rd) : The Borel sigma algebra on Rd.
md : The Lebesgue measure on Rd.
N0 : The set of non-negative integers.
R+: The set of non-negative real numbers.
R̄+ := [0,∞].
D := {1, 2, . . . , d}.
P(A) : The power set of A.
Ck : {f : Rd → Rd | f is k times differentiable}.
C∞ : {f : Rd → Rd | k ∈ N0f ∈ Ck}.
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Preliminary

We recall a few standard definitions and results in this chapter along with some additional
remarks. Readers may consult [8, 33, 36] for more details.

0.1 Measure theory concepts

Definition 0.1.1. Let Ω be a nonempty set, and let F be a σ-algebra on Ω. Then the pair
(Ω,F) is called a measurable space. If P is a measure on (Ω,F), then the triplet (Ω,F , P )
is called a measure space. If in addition, P is a probability measure i.e. P (Ω) = 1, then
(Ω,F,P) is called a probability space. A measure space is complete if for any A ∈ F
with P (A) = 0 =⇒ P(A) ⊂ F .

Definition 0.1.2. a. Let (Ωi,Fi) be a measurable space for each i = 1, 2. Then a function
f : Ω1 → Ω2 is measurable, if

f−1(A) ∈ F1, ∀A ∈ F2.

b. Let S be a polish space and (Ω,F , P ) be a probability space. A map X : Ω → S is called
a random variable, if,

X−1(A) ∈ F ,∀A ∈ B(S).

Theorem 0.1.3 (Monotone convergence Theorem). Let (Ω,F , P ) be a measure space and
let fn : Ω → R+, n ≥ 1 be the sequence of non-negative F-measurable functions such that
fn → f pointwise a.e. and f1 ≤ f2 ≤ . . ., then

lim
n→∞

∫
fn =

∫
f.

3



Theorem 0.1.4 (Dominated Convergence Theorem). Let fn : Ω → R, n ≥ 1 is a sequence
of measurable functions on a measure space (Ω,F , P ) such that fn → f point wise a.e., and
if there exists an integrable function g such that |fn(x)| ≤ g(x) a.e.(P) for all n, then f is
integrable and

lim
n→∞

∫
fn =

∫
f.

0.2 Probability theory concepts

Definition 0.2.1. Let (Ω,F , P ) be a probability space. A family {Ft}0≤t<∞ sub-σ-algebras
of F is called filtration if for s < t,Fs ⊆ Ft. For convenience, we will usually write F for the
filtration {Ft}0≤t<∞. Also, the quadruplet (Ω,F ,F, P ) is called a filtered probability space.

Definition 0.2.2. Let (Ω,F ,F, P ) be the filtered probability space. A random variable
T : Ω → R̄+ is a stopping time if the event {T ≤ t} ∈ Ft, every 0 ≤ t <∞.

Definition 0.2.3 (Usual Hypothesis). A filtered complete probability space (Ω,F ,F, P ) is
said to satisfy the usual hypotheses if

(i) F0 contains all the P -null sets of F ;

(ii) Ft = ∩u>tFu, all t, 0 ≤ t <∞; that is, the filtration F is right continuous.

Definition 0.2.4 (Stochastic Process). Let T ⊂ R+, S be a polish space . A stochastic
process X on (Ω,F , P ) is a collection of S valued random variables {Xt}t∈T. The process
X is said to be adapted to F, a filtration of F if Xt ∈ Ft (that is, X is Ft measurable) for
each t ∈ T.

Theorem 0.2.5. Let S, T be stopping times. Then S ∧ T = min(S, T ), S ∨ T = max(S, T ),
S + T , αS, where α > 1 are stopping times.

Definition 0.2.6 (Expectation). Let X be a real valued random variable on a probability
space (Ω,F , P ). Then the integral of X with respect to measure P is said to be expectation
of X, denoted by EX,and defined by EX :=

∫
Ω
X(ω)P (dω).

Definition 0.2.7. Let G be a sub-σ-algebra of F . The conditional expectation of a non-
negative random variable X with respect to G is a non-negative random variable, denoted by
E[X | G] such that

1. E[X | G] is G-measurable.

2. for every A ∈ G, ∫
A

XdP =

∫
A

E[X | G]dP a.s.

4



0.2. Probability theory concepts

The conditional expectation of any random variable X with respect to G, if EX exists, is
given by E[X | G] := E[X+ | G]− E[X− | G].

Properties of conditional expectation of real valued:

Proposition 0.2.8. Let (Ω,F , P ) be a probability space and let Y be a measurable real valued
random variable with E|Y | < ∞. Let G1 ⊂ G2 ⊂ F be two sub σ-algebras contained in F .
Then

1. if X is G1-measurable then E[X | G1] = X.

2. E[Y | G1] = E[E[Y | G2] | G1].

3. E[Y | G1] = E[E[Y | G1] | G2].

4. For any bounded G1-measurable random variable U , E[Y U | G1] = UE[Y | G1].

Definition 0.2.9. Let (Ω,F , P ) be a probability space and let G ⊂ F be a sub σ-algebra.
For B ∈ F , the conditional probability of B given G, denoted by P (B | G), is defined as

P (B | G) = E(1B | G).

Thus Z ≡ P (B | G) is a measurable function such that

P (A ∩B) = E(Z1A) for all A ∈ G,

where 1A is the indicator function of the set A.

Note that, for a fixed G, B 7→ P (B | G)(ω) need not produce a probability measure on
(Ω,F), P a.e. ω.

Definition 0.2.10. Let X be a random variable on a probability space (Ω,F , P ) taking values
in a complete, separable metric space (S,B(S)). Let G be a sub-σ-algebra of F . A regular
conditional distribution of X given G is a function Q : Ω× B(S) → [0, 1] such that

1. for each ω ∈ Ω, Q(ω, ·) is a probability measure on (S,B(S)),

2. for each B ∈ B(S), the mapping ω → Q(ω,B) is G-measurable, and

3. for each B ∈ B(S), P [X ∈ B | G](ω) = Q(ω,B), P a.e. ω.

Definition 0.2.11. Let (Ω1,F1) and (Ω2,F2) be measurable spaces. Let Q be a mapping
from Ω1 × F2 into R̄+. Then, Q is called a transition kernel from (Ω1,F1) into (Ω2,F2)
if

5



1. the mapping x 7→ Q(x,B) is F1-measurable for every set B in F2, and

2. the mapping B 7→ Q(x,B) is measure on (Ω2,F2) for every x in Ω1.

Remark 0.2.12. A transition Kernel from (Ω,F) into (Ω,F) is called simply a transition
kernel on (Ω,F). Such a kernel is called Markov kernel on (Ω,F) if Q(x,Ω) = 1 for every
x.

Definition 0.2.13. A general continuous-time Markov process is a process X on a filtered
probability space (Ω,F ,F, P ) and taking values in a polish space S, satisfying

P [Xt ∈ A | Fs] = P [Xt ∈ A | Xs] (0.2.1)

for all A ∈ B(S) and for each s < t.

Definition 0.2.14. Let X be a stochastic process on the filtered probability space (Ω,F ,F, P )
and taking values in a Polish space S. Also, f be a Borel measurable function on (S,B(S)).
Then X is said to be a strong Markov process, if for every stopping time τ which is
adapted to F , and t > 0 satisfies

E[f(Xτ+t) | Fτ ] = E[f(Xτ+t) | Xτ ].

Definition 0.2.15. X = {Xt}t≥0 defined on a complete probability space (Ω,F , P ) is an
semi-Markov process(SMP) with state space X := {1, 2, . . .} ⊂ R if

1. X is piece-wise constant r.c.l.l. process with discontinuities at T1 < T2 < · · · , and

2. for each n ≥ 1, j ∈ X , and y > 0,

P [XTn+1 = j, Tn+1 − Tn ≤ y | (X0, T0), (XTk
, Tk) ∀1 ≤ k ≤ n]

= P [XTn+1 = j, Tn+1 − Tn ≤ y | XTn ] (0.2.2)

where T0 ≤ 0 < T1.

X is pure if Tn
a.s.−−→ ∞ as n→ ∞. If the right side of (0.2.2) is independent on n, then the

SMP X is called time-homogeneous. Otherwise, X is called non-homogeneous SMP. Here,
Tn is called nth transition time of X.

Definition 0.2.16. Let X be a random variable taking values in N0, it is understood that
the relevant σ-algebra on N0 is the discrete σ-algebra of all subsets. Then X is said to have
the Poisson distribution with mean c if

P{X = n} =
e−ccn

n!
, n ∈ N0.

6



0.2. Probability theory concepts

Definition 0.2.17. A mappingM : Ω×S → R+ is called a random measure if ω 7→M(ω)(A)
is a random variable for each A in S and if A 7→M(ω)(A) is a measure on (S,S) for each ω
in Ω. We shall denote by M(A) the former random variable: then , we may regard M as the
collection of random variables M(A), A ∈ S. We shall denote by M(ω) the latter measure
A 7→M(ω)(A).

Definition 0.2.18. Let (S,S) be the measurable space and let ν be a measure on it. A
random measure ℘ on (S,S) is said to Poisson random measure(PRM) with mean ν
if it satisfies the following:

1. for every A ∈ S, the random variable ℘(A) has the Poisson distribution with mean
ν(A), and

2. whenever A1, . . . , An are in S and disjoint, the random variables ℘(A1), . . . , ℘(An) are
independent, this being true for every n ≥ 2.

Remark 0.2.19. For each ω, the realization of the random measure is a well-defined deter-
ministic measure. Let ℘ be a Poisson random measure on R+ × Rd, and it is a measure in
d+1 dimensions. Since ℘(·)(A) is an integer-valued random variable for all A ∈ B(R+×Rd),
it is clear that ℘(ω)(·) is a counting measure almost surely. Hence the d + 1 dimensional
measure ℘(ω)(dt, dv) is not absolutely continuous w.r.t. md+1(dt, dv), the Lebesgue mea-
sure. Indeed ℘(ω)(dt, dv) is supported only on a countable set. So for any bounded set B,∫
[0,T ]

∫
B
g(t, v)℘(ω)(dt, dv), an integral that is meaningfull for each ω ∈ Ω, can also be written

as
∑

[0,T ]

∑
B g(t, v)℘(ω)({t}, {v}),

∑
[0,T ]

∫
B
g(t, v)℘(ω)({t}, dv),

∫
[0,T ]

∑
B g(t, v)℘(ω)(dt, {v})

or simply with slight abuse of notation
∫
[0,T ]

∫
B
g(t, v)℘(ω)({t}, dv) or

∫
[0,T ]

∫
B
g(t, v)℘(ω)(dt, {v}).

We will follow this notation in the subsequent chapters.

Theorem 0.2.20. Let f, g : R → R, δa a Dirac measure with atom at a, then

f

(∫
g(x)δa(dx)

)
= f ◦ g(a) =

∫
f ◦ g(x)δa(dx),

where f ◦ g is composition of two function.

Theorem 0.2.21. Let ℘ be a PRM on (S,S). For a fixed t > 0 and B ∈ S, ℘(ω)({t}×B) = 0
P a.e. ω.

We restate Theorem 3.4 (p-474) of [8] below.

Theorem 0.2.22. Let E denote (Rd, ∥·∥) a d-dimensional Euclidean space and (M(d,m), ∥·
∥M), the space of all d×m matrices with a norm ∥ · ∥M . Consider a SDE of the form

Zt = Z0 +

t∫
0

a(Zs) ds+

t∫
0

b(Zs) dWs +

∫
[0,t]×R+

J(Zs−, v)℘(ds, dv) (0.2.3)

7



whereW and ℘ are m-dimensional Wiener Process, and Poisson random measure on R+×R+

having intensity m2 respectively. The maps a : E → E, b : E → M(d,m), J : E × R+ → E,
are assumed to obey the following conditions.

1. Lipschitz condition : There is a constant c in R+ such that ∥a(z) − a(z′)∥ ≤ c∥z −
z′∥ and ∥b(z)− b(z′)∥M ≤ c∥z − z′∥, ∀z, z′ ∈ E.

2. There is a constant C in R+ such that J(z, v) = 0 for v > C for all z in E.

Then there exists almost surely unique solution to (0.2.3) that is piece-wise continuous, r.c.l.l.
and locally bounded.

Theorem 0.2.23 (Theorem IX.3.8, pg 475, [8]). Let X be a unique solution of (0.2.3), then
for each time t, the process X̂ = (Xt+u)u∈R+ is conditionally independent of Ft given Xt;

given that Xt = y, the conditional law of X̂ is the same as the law of X under P y. Here P y

is the conditional probability measure given {X0 = y}.

Theorem 0.2.24 (Theorem IX.3.9, pg 475, [8]). Let X be a unique solution of the (0.2.3),
then the process X is strong Markov: For every F-stopping time T , the variable XT is FT -
measurable, and X̂ = (XT+u)u∈R+ is conditionally independent of FT given Xt; moreover,

for y in E, on the event {XT = y}, the conditional law of X̂ given XT is the same as the
law of X under P y.

Definition 0.2.25. Let T ⊂ R+. A real-valued stochastic process X = {Xt}t∈T on the filtered
probability space (Ω,F ,F, P ) is called an F-submartingale if X is adapted to F each Xt

is integrable, and E(Xt − Xs | Fs) ≥ 0 whenever s < t. It is called F-supermartingale
if −X is an F-submartingale, and F-martingale if it is both F-supermartingale and an
F-submartingale.

Definition 0.2.26. The process X is said to be the Doobs property for (S, T ) provided
S and T be stopping times with S ≤ T , XS and XT be well defined and integrable, and
XS = E[XT | XS]. And the process X is said to be Doobs martingale on [0, η] if η
is a stopping time and X has the property for (S, T ) for all stopping times S and T with
0 ≤ S ≤ T ≤ η.

Definition 0.2.27 (Definition V.5.17, pg 219,[8]). Let η be a stopping time. The process
X is called a local martingale on [0, η) if there exist an increasing sequence of stopping
times Tn with limit η such that (Xt − X0)t∈R+ is a Doob martingale on [0, Tn] for every n.
If it is a local martingale on R+, then it is simply called a local martingale.

Definition 0.2.28. An adapted, r.c.l.l. process A is finite variation process(FV) if
almost surely the paths of A are of finite variation on each compact interval of [0,∞).

8



0.2. Probability theory concepts

Definition 0.2.29 (Definition V.5.18,pg 220, [8]). A stochastic process X on the filtered
probability space (Ω,F ,F, P ) is called a semimartingale if it can be decomposed as X =
L+ V , where L is a local martingale and V is locally of finite variation. And also L and V
are adapted to the same filtration as of X.

Lemma 0.2.30 (Itô formula, Theorem 2.32, pg 78, [33]). Let X be a semimartingale and
let f be a C2 real function. Then f(X) is again a semimartingale, and the following formula
holds

f(Xt)− f(X0) =

∫ t

0+
f ′(Xs−)dXs +

1

2

∫ t

0+
f ′′(Xs−d[X,X]cs

+
∑
0<s<t

{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs} (0.2.4)

where [X,Y] is the quadratic covariation of X and Y , [X,X]cs is quadratic variation of path
by path continuous part of [X,X] and ∆Xt := Xt −Xt−.

Definition 0.2.31. [25, pg 79] Let C be the set of continuous maps from Rd into itself. Let
{ϕs,t; 0 ≤ s < t} (or simply denoted by {ϕs,t} be a family of C-valued random variables. It
is called a stochastic flow of C∞ maps if it satisfies:

1. Maps ϕs,t : Rd → Rd are C∞ a.s. for any s < t.

2. ϕt,u ◦ϕs,t = ϕs,u a.s. for any s < t < u. Here ϕ ◦ψ is the composition of two maps ϕ, ψ
of Rd into itself.

Furthermore if it satisfies the following (1’) and the above (2), then it is called a stochastic
flow of diffeomorphisms.

1’ Maps ϕs,t : Rd → Rd are diffeomorphisms a.s. for any s < t.

A stochastic flow {ϕs,t} is called continuous if ϕs,t(x), x ∈ Rd and its derivatives ∂iϕs,t(x)
are continuous with respect to (x, s, t)(s < t) a.s. for any multi-index i.

9
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Chapter 1

Introduction

A semi-Markov process is a pure jump process such that the embedded chain is Markov, but
the conditional distribution of the sojourn time need not be exponential. So a semi-Markov
process does not enjoy the memoryless property of its Markov counterpart. In this thesis
we consider a general class of semi-Markov processes on countable state-space, and having
differentiable kernel such that the embedded Markov chain may or may not be homogeneous.
The rate matrices may also have infinite trace. We only assume uniform bound on entries
of the rate matrix.

The class of semi-Markov processes (SMP) subsumes the class of pure jump Markov pro-
cesses. A component-wise semi-Markov (CSM) process, on the other hand, is a member of
an even larger class of pure jump processes. Each component of a vector valued CSM is an
SMP having a given law. These components may or may not be independent and the laws
may or may not be identical.

It is known that for certain processes their law can be represented using the martingale
formulation. Writing down a stochastic process on an Euclidean space as a solution of a
stochastic differential equation (SDE) also gives another way of representing the law. Such
SDEs may also be viewed as the semimartingale representation of the said process. Needless
to mention, an SDE represents a stochastic flow too. We establish a family of semimartingale
representations, involving Poisson random measure (PRM), of this class of semi-Markov
processes. In particular, we have proved existence of almost sure unique solution to the
proposed system of SDEs driven by a PRM. Then we show that a solution indeed possesses
the desired semi-Markov law.

Solutions of an SDE with different initial conditions, together form a vector valued
process where each component has identical law. Moreover, they being driven by the same
noise, are not independent. This also gives rise to a CSM or system of semi-Markov processes,
having dependent components, provided the SDE of an SMP has been considered in the first
place. In the present study of CSM, our major focus is on the meeting and merging events
of the components. Questions related to these events have immediate answers when the

11



Chapter 1 : Introduction

components are independent. However, when the components are driven by dependent or
identical noises, the questions are worth pondering.

We suitably select a particular flow by fixing the gaping parameter, for which we
study interactions of a pair of semi-Markov processes, solving the same equation but having
two different initial conditions. We have obtained expressions of the meeting and merging
probabilities in the next transition. A set of sufficient conditions are obtained under which
any two solutions of the flow eventually meet or merge with probability one. Many numerical
examples are considered for clarifying the intricacies and implications of the theoretical
results. In one example the distribution of time of first meeting and merging are obtained
and are compared with that of the holding times, for the purpose of illustration.

Apparently [26] and [37], which were presented at the International Congress of Mathe-
maticians held at Amsterdam in 1954, are the first available literature that discuss the
mathematical aspects of semi-Markov processes (SMP). In Lévy’s work, [26], the definition
of SMP was presented as a generalization of Markov chain. Around the same time, inde-
pendent to Lévy’s work, Smith [37] and then Tackas [38] have also introduced SMP. We
provided a modern version of the definition, see Definition 0.2.15. We often call pure ho-
mogeneous SMP’ as semi-Markov process or SMP only. SMP has been defined by many
authors using the renewal processes unlike Definition 0.2.15. For example, in [34], Pyke has
introduced the SMPs by specifying the conditional distribution of next state and holding
time given the past states and past holding times. We notice that the σ-algebra generated
by the transition times is identical to that generated by the initial time and past holding
times. Thus the conditional distribution in [34] is identical to the conditional probability
in Definition 0.2.15. In [34], a concept of regularity has been introduced for assuring that
the chain is pure. Besides, classification of the states has also been studied there. On the
other hand in [35], by considering the finite state SMPs, Pyke has derived expressions for the
distribution functions of first passage times, as well as for the marginal distribution function.
Furthermore, the limiting behavior of a Markov Renewal process has been discussed, and
the stationary probabilities have been derived. Various aspects and approaches regarding
limiting behavior has also been studied by Orey [31], around the same time. In [12], Bennet
has studied some properties of sub-chain of SMP, which are obtained via regenerating points,
if exists. SMP beyond the class of time homogeneity has been first studied in [18] and [28].
Various different aspects and generalisations of non-homogeneous SMP(NHSMP) has further
been explored in [20, 22, 21, 23]. In these references several applications of NHSMP has also
been emphasised.

It has been noted by several authors (see Nummelin [30], Athreya et al [2] and references
therein) that an SMP can be augmented with the age process to obtain a jointly Markov
process whose Feller property and infinitesimal generator can be derived (see [24, Chapter
2]). In a recent work [11] Elliott has presented a semimartingale representation of semi-
Markov chain in contrast to the traditional description of a semi-Markov chain in terms
of a renewal process. This presentation is different from that in [13] and [14] where a

12



§1.0

semimartingale representation appears using an integration with respect to a Poisson random
measure(PRM). Such semimartingale representations are useful for studying several aspects
including the stochastic flow of semi-Markov dynamics.

The non-homogeneous SMP, augmented with the age and transition count processes
is represented as semi-martingales using a system of stochastic integral equations involving
a Poisson random measure. The coefficients of the equation depend on a given transition
rate function and an an additional gaping parameter. It is worth noting that neither the
coefficients are compactly supported nor the intensity measure of the PRM is finite. Note
that, compactly supported coefficient or finiteness of intensity measure are the standard
assumptions under which an SDE involving PRM is studied commonly (see [8, 19]). So, we
produce a self-contained proof of the existence and uniqueness of the solution to the SDE.
This extends the results obtained for homogeneous semi-Markov process. Subsequently,
we extend the results by showing that the state component of the solution is a pure non-
homogeneous SMP with the given non-homogeneous transition rate function. We also derive
the law of the bivariate process obtained from two solutions of the equation having two
different initial conditions.

The CSM is a generalization of semi-Markov processes into a broader class of pure
jump processes. The combination of state processes of more than one semi-Markov dynam-
ics forms a semi-Markov system(SMS) or a component-wise semi-Markov (CSM) process
having dependent or independent components. The SMSs [39, 41, 40], or CSMs [9, 10] with
independent components have been introduced for modelling some random dynamics. How-
ever, a CSM with dependent components has not been studied in the literature yet. The
CSM, studied in [10] possesses a well defined bounded transition rate function and hence
that has been used to characterize the CSM. However, the definition of CSM does not imply
existence of a rate function. In view of this it is important to find an alternative way of char-
acterizing a general type of CSM. Needless to mention, the kernel characterization should
be most suitable in this regard. We recall that the transition rate exists if and only if the
kernel is almost everywhere differentiable. In that case, the rate can be expressed in terms
of the kernel and vice versa. It is also easy to note that the knowledge of kernels of all indi-
vidual components of CSM is sufficient to characterize the CSM, provided the components
are independent to each other. However, in this thesis we consider an extension of CSM,
appearing in [10], by dropping the independence condition. We further allow the state-space
of each component be non-identical and at most countable. So, we propose characterization
of CSM using a novel notion of kernel. The way we define the kernel, is broad enough to
include both the dependent and independent component cases and both the homogeneous
and non-homogeneous cases. As per our knowledge, this is the first effort in the literature to
characterize a general CSM using a kernel based approach. Then we derived the infinitesimal
generator formula for CSM with arbitrary components driven by one PRM.

The study of meeting and coalescence of stochastic processes is an active branch of
probability theory. Some of the earliest instances of such study dates back to Arratia [1],
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Chapter 1 : Introduction

and Harris [17] where they have considered merging of one dimensional Brownian flow. On
the other hand mixing for a class of non Markov flows have been investigated by Melbourne
and Terhesiu [29]. However, to the best of our knowledge, questions regarding meeting and
merging have not been addressed in the literature for stochastic flow of SMPs.

In [4] for the stability analysis of Markov modulated diffusions, the merging of Markov
chains has been crucially used. In view of this, we believe that the study of meeting and
merging of multiple semi-Markov particles are relevant for investigating stability properties
of a diffusion that is modulated by semi-Markov processes.

We give an outline of the remaining chapter here. In Chapter 2, we look at a broad
category of semimartingale representations of SMPs with a fixed instantaneous transition
rate. An expression for the conditional probability of meeting and merging in the next
transition, merging at a meeting time, is derived. We also construct a set of sufficient
conditions under which a pair of SMPs will eventually meet and merge with probability one.
The work presented in this chapter 3 results from a collaboration with Dr. Subhamay Saha.
We have given a semimartingale representation of a class of semi-Markov processes; this
representation is more general than the class introduced in Chapter 2, as it includes non-
homogeneous semi-Markov processes. Again we have considered a particular pair of solutions
of SDE (3.2.6)-(3.2.8) with two distinct initial conditions and investigate the various event
of the meeting and merging. We derived an expression of the conditional probability of
meeting in the next transition, coherent meeting and merging in the next transition and
eventual meeting and merging. Also, the number of transitions required to encounter a
meeting is shown to have all moments finite. In Chapter 4, the theoretical results are
elaborated with the help of several numerical examples. We have considered numerical
examples of homogeneous SMP and non-homogeneous Markov processes, where we calculated
the probability of meeting in the next transition and the expected first meeting time for
homogeneous SMP and the probability of coherent meeting in the next transition. We
have provided an algorithm for simulating homogeneous SMP and non-homogeneous Markov
processes. In Chapter 5, we introduced the definition of general CSM on countable state
space; also its associated kernels and showed that it satisfies the transition kernel definition.
We also defined the marginal of lth component. Further, We have introduced the correlated
PRM; with the help of this, we have given a semi-Martingale representation of a general
CSM and computed the infinitesimal generator of CSM with d components driven by a
single PRM.
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Chapter 2

Homogeneous semi-Markov processes

2.1 Introduction

Apparently [26] and [37], which were presented at the International Congress of Mathe-
maticians held at Amsterdam in 1954, are the first available literature that discuss the
mathematical aspects of semi-Markov processes (SMP). In Lévy’s work, [26], the definition
of SMP was presented as a generalization of Markov chain. Around the same time, indepen-
dent to Lévy’s work, Smith [37] and then Tackas [38] have also introduced SMP. In Chapter
1 Definition 0.2.15, we provided a modern version of the definition.

As the study of non-homogeneous or impure SMP is excluded from this chapter, from now
we will call ‘pure homogeneous SMP’ as semi-Markov process or SMP only. We also recall
that in Chapter 1 of [16], a book by Boris Harmalov, a stepped SMP is introduced and in
subsequent chapters further generalizations to continuous state space appears. We confine
ourselves to the study of SMPs on a countable state space.

SMP has been defined by many authors using the renewal processes unlike Definition 0.2.15.
For example, in [34], Pyke has introduced the SMPs by specifying the conditional distribution
of next state and holding time given the past states and past holding times. We notice
that the σ-algebra generated by the transition times is identical to that generated by the
initial time and past holding times. Thus the conditional distribution in [34] is identical
to the conditional probability in Definition 0.2.15. In [34], a concept of regularity has been
introduced for assuring that the chain is pure. Besides, classification of the states has also
been studied there. On the other hand in [35], by considering the finite state SMPs, Pyke
has derived expressions for the distribution functions of first passage times, as well as for
the marginal distribution function. Furthermore, the limiting behavior of a Markov Renewal
process has been discussed, and the stationary probabilities have been derived. Various
aspects and approaches regarding limiting behavior has also been studied by Orey [31],
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Chapter 2 : Homogeneous semi-Markov processes

around the same time. In [12], Bennet has studied some properties of sub-chain of SMP,
which are obtained via regenerating points, if exists.

It has been noted by several authors (see Nummelin [30], Athreya et al [2] and references
therein) that an SMP can be augmented with the age process to obtain a jointly Markov
process whose Feller property and infinitesimal generator can be derived (see [24, Chapter
2]). In a recent work [11] Elliott has presented a semimartingale dynamics of semi-Markov
chain in contrast to the traditional description of a semi-Markov chain in terms of a renewal
process. This presentation is different from that in [13] and [14] where a semimartingale rep-
resentation appears using an integration with respect to a Poisson random measure(PRM).
Such semimartingale representations are useful for studying several aspects including the
stochastic flow of semi-Markov dynamics.

A study of merging for a couple of renewal processes on the the same probability space
appears in [27]. In this work, Lindvall studied coupling events for monotonic hazard rate
case only. In this connection a previous work by Brown [6] on comparisons of such renewal
processes is worth mentioning. More recently, for studying dietary contamination dynamics,
Bouguet [5] applied the notion of merging of renewal processes. However, as per our knowl-
edge, questions regarding meeting and merging have not been addressed in the literature
for SMPs with the general bounded measurable transition rates. We address this question
in this Chapter using the SDE representation [15] of SMPs. However, as per our knowl-
edge, questions regarding meeting and merging have not been addressed in the literature for
stochastic flow of SMPs.

Here, we consider a wide class of semimartingale representations of an SMP with a given
instantaneous transition rate. With the help of an additional gaping parameter, given a
semi-Markov dynamics, we could consider a family of stochastic flows. The law of a sin-
gle solution of course do not depend on the gaping parameter. However, we show, the
joint distribution of a couple of solutions with different initial conditions do depend on the
additional gaping parameter. Then we suitably select a particular flow, for which the in-
vestigation of meeting and merging of two solutions of the same SDE, starting with two
different states, becomes convenient. Although the study of meeting and merging event of a
finite-state continuous-time irreducible Markov chain is straightforward, that is not the case
for semi-Markov counterpart. We show with an example, that the meeting time need not be
a merging time for a pair of SMPs. We derive an expression of the conditional probability
of merging at a meeting time. A set of sufficient conditions are also obtained under which a
pair of SMPs eventually merge with probability one.
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2.2. Semimartingle Representation for Homogeneous Semi-Markov Processes

2.2 Semimartingle Representation for Homogeneous Semi-

Markov Processes

As the study of non-homogeneous or impure SMP is excluded from this chapter, from now
we will call ‘pure homogeneous SMP’ as semi-Markov process or SMP only. Let (Ω,F , P )
be the underlying probability space and X the state space, a countable subset of R. Endow
the set X2 := {(i, j) ∈ X 2 | i ̸= j} with a total order ≺. Let B(Rd) denote the Borel
σ-algebra on Rd and md denote the Lebesgue measure on Rd. Let λ := (λij) denote a matrix
in which the ith diagonal element is λii(y) := −

∑
j∈X\{i} λij(y) and for each (i, j) ∈ X2,

λij : [0,∞) → (0,∞) is a bounded measurable function such that

(A1) C :=
∑

i∈X
∑

j∈X\{i} ∥λij∥∞ <∞, and

(A2) limy→∞ γi(y) = ∞, where γi(y) :=
∫ y

0
λi(y

′)dy′, where λi(y) := |λii(y)|.

For each (i, j) ∈ X2, we consider another measurable function λ̃ij : [0,∞) → (0,∞) and a
collection of generic intervals such that λ̃ij(y) ≤ ∥λij∥∞ for almost every y ≥ 0 and

λij(y) ≤ λ̃ij(y), and Λij(y) =

 ∑
(i′,j′)≺(i,j)

λ̃i′j′(y)

 +
[
0, λij(y)

)
(2.2.1)

for each y ≥ 0, where a+B = {a+ b | b ∈ B} for a ∈ R, B ⊂ R. From (2.2.1), it is clear that
for every y ≥ 0, {Λij(y) : (i, j) ∈ X2} is a collection of disjoint intervals which is denoted by
Λ. We define hΛ and gΛ on X × R+ × R as

hΛ(i, y, v) : =
∑

j∈X\{i}

(j − i)1Λij(y)(v) (2.2.2)

gΛ(i, y, v) : = y
∑

j∈X\{i}

1Λij(y)(v) (2.2.3)

where R+ denotes the set of non-negative real numbers. We consider the following system
of stochastic differential equations in X and Y

Xt = X0 +

∫ t

0+

∫
R
hΛ(Xu−, Yu−, v)℘(du, dv) (2.2.4)

Yt = Y0 + t−
∫ t

0+

∫
R
gΛ(Xu−, Yu−, v)℘(du, dv) (2.2.5)

for t > 0, where the domain of integration
∫ t

0+
is (0, t], and the PRM ℘(du, dv) is on R+×R

with intensity m2(du, dv), and defined on the probability space (Ω,F , P ). We also assume
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Chapter 2 : Homogeneous semi-Markov processes

that {℘((0, t]×dv)}t≥0 is adapted to {Ft}t≥0, a filtration of F satisfying the usual hypothesis.
Evidently, λ̃ controls the left end points of the intervals in Λ and so can be utilized to regulate
relation between solutions to (2.2.4)-(2.2.5) with different initial conditions. Indeed a specific
choice namely, λ̃ij = ∥λij∥∞ a.e. simplifies the relation between the intervals Λij(y) with
different values of i, j and y. Thanks to the independence of ℘ measure of disjoint sets, the
system (2.2.4)-(2.2.5) defines a non-Brownian stochastic flow with independent increments.
Some special cases of such a system have been considered by many authors following [13].
However, as per our knowledge, system (2.2.4)-(2.2.5) of this generality has not been studied
before. Although some special cases give rise to solutions with law identical to that of
(2.2.4)-(2.2.5), but they correspond to a particular flow. For example, in [14] and [32] λ̃ has
been taken identical to λ. Here in (2.2.1) we consider a larger family of flows by introducing
the additional parameter λ̃. Evidently, λ̃ controls the left end points of the intervals in Λ
and so can be utilized to regulate relation between solutions to (2.2.4)-(2.2.5) with different
initial conditions. Indeed a specific choice of λ̃, namely, λ̃ij = ∥λij∥∞ simplifies the relation
between the intervals Λij(y) with different values of i, j and y. We need the following lemma
for proving the subsequent theorem that asserts the existence and uniqueness of solution to
this general system.

Lemma 2.2.1. For each fixed ω ∈ Ω, consider the set D := {s′ ∈ (0, ∞) | ℘(ω)({s′}×E) >
0}, where E ∈ B(R), and ℘ is a Poisson random measure with intensity m2. If m1(E) <∞,
then set D has no limit point in R almost surely.

Proof. Evidently, from Remark 0.2.19, ℘(ω)(D × E) = ℘(ω)((0,∞) × E) = ∞ if
m1(E) > 0. Hence, D is non-empty iff m1(E) > 0. If m1(E) < ∞, for any natural
number n, ℘(ω)([0, n] × E) is a Poisson random variable with mean n × m1(E). Hence
P (℘([0, n]×E) <∞) = 1. Thus D∩ [0, n] is finite with probability 1 for each n ≥ 1. Hence
P ( ∩

n>1
{ω | D ∩ [0, n] is finite}) = 1. Therefore, D has no limit point in R w.p. 1.

Theorem 2.2.2. There exists a unique strong solution (X, Y ) = {(Xt, Yt)}t≥0 to the coupled
system of stochastic integral equations (2.2.4)-(2.2.5). Furthermore, almost surely X and Y
have r.c.l.l. piece-wise constant and piece-wise linear paths respectively.

Remark 2.2.3. We recall Theorem 0.2.22. Thus for proving the first part of Theorem 2.2.2
it is enough to rewrite Equations (2.2.4)-(2.2.5) in the form of (0.2.3). To this end we embed
X in R by identifying that with the set of natural numbers and take d = 2, Zt = (Xt, Yt).
For each i ∈ X , y ≥ 0, we also set a((i, y)) = (0, 1), b((i, y)) = O2×2, the null matrix of
order 2, and J((i, y), v) = (hΛ,−gΛ)(i, y, v). Clearly Condition (1) is valid as a and b are
constant functions in this case. For verifying (2), we note that (2.2.2) and (2.2.3) imply that
for each i and almost every y, hΛ and gΛ are sums of functions which are non-zero only on
the intervals Λij(y) for j ∈ X \ {i}. Furthermore, Λij(y) is contained in

[
0,
∑

X2
∥λij∥∞

]
for

each i, j and almost every y. Hence the support of J(i, y, ·) is contained in
[
0,
∑

X2
∥λij∥∞

]
which is a finite interval by (A1). Thus Condition (2) is also true. Hence the first part of
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Theorem 2.2.2 follows from Theorem 3.4 (p-474) of [8]. However, the second part, which
asserts a specific property of the solution, should be justified separately. It turns out that for
this cause, it is essential to first spell out (2.2.4)-(2.2.5), in the similar line of what appears in
[8]. In view of this, we include below a self contained proof of the first part before attempting
to prove the second part.

Proof. (Theorem 2.2.2) By Assumption (A1), C =
∑

X2
∥λij∥∞ is finite. Hence for almost

every y ≥ 0, the total absolute length of the generic intervals
∑

(i,j)∈X2
|Λij(y)| ≤ C. For each

ω ∈ Ω, we define the set D := {s ∈ (0, ∞)|℘(ω)({s} × [0, C]) > 0} be the time coordinate
of the point masses of a realisation of the PRM ℘(ω). Interval [0, C] has finite Lebesgue
measure which is the vertical section of the intensity measure of ℘(ω). By Lemma 2.2.1, D
has no limit points in R with probability 1. Thus we can enumerate D, say D = {σn}∞n=1,
where σ1 < · · · < σn < σn+1 < · · · for each ω. For each n ∈ N, σn : Ω → (0,∞] and
{σn ≤ t} = {ω | ℘((0, t]× [0, C]) ≥ n} ∈ Ft, as ℘((0, t]× [0, C]) is Ft measurable. Hence σn
is a stopping time for each n ≥ 1.

For a fixed ω, we plan to construct a solution to equations (2.2.4)-(2.2.5) on the time interval
[0, σ1]. Then we extend this solution to the time interval (σ1, σ2], and so on. Since

℘(ω)([0, σ1)× [0, C]) = 0,

for t ∈ [0, σ1)

Xt(ω) = X0 +

∫
(0,t]

∫
[0,C]

hΛ(Xu−, Yu−, v)℘(ω) (du, dv) = X0

and

Yt(ω) = Y0 + t−
∫
(0,t]

∫
[0,C]

gΛ(Xu−, Yu−, v)℘(ω) (du, dv) = Y0 + t.

This gives unique solution on [0, σ1). Moreover by using above, at t = σ1,

Xσ1(ω) =X0 +

∫
[0,C]

hΛ(X0, Yσ1−, v)℘(ω)({σ1} × dv),

Yσ1(ω) =Y0 + σ1 −
∫
[0,C]

gΛ(X0, Yσ1−, v)℘(ω)({σ1} × dv).

Hence this is the unique solution in the time interval [0, σ1]. Continuing in the similar way
we can construct solution for each consecutive interval (σn, σn+1], where n ≥ 1. Now we
recall that σn is increasing and diverges to infinity with probability 1, due to Lemma 2.2.1.
Therefore, these intervals cover the entire positive real time-axis. Hence, the solution is
globally determined with probability 1.

Furthermore, for a fixed ω, Xt(ω) = Xσn(ω) for all t ∈ [σn(ω), σn+1(ω)). Hence X is an r.c.l.l.
and piece-wise constant process almost surely. Next we show the piece-wise linear feature
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of Y . First we note that
∫
[0,C]

gΛ(Xt−, Yt−, v)℘(ω)({t} × dv) is zero for all t ∈ (σn, σn+1)

for every n ≥ 1. Let n1 := min{l ≥ 1:
∫
[0,C]

gΛ(Xσl−, Yσl−, v)℘(ω)({σl} × dv) ̸= 0}. Then

t = σn1 is the first time when the integral
∫
[0,C]

gλ̃(Xt−, Yt−, v)℘(ω)({t} × dv) is non-zero.

Consequently, Yt = Y0 + t for all t ∈ [0, σn1) and hence Yσn1− = Y0 + σn1 and

0 ̸=
∫
(0,σn1 ]

∫
[0,C]

gΛ(Xt−, Yt−, v)℘(ω)({t} × dv)

=

∫
[0,C]

gΛ(Xσn1−, Yσn1−, v)℘(ω)({σn1} × dv) = Yσn1−

using the fact that ℘(ω)({σn1} × [0, C]) = 1 and gΛ(i, y, v) ∈ {0, y}. Thus from (2.2.5) and
above expressions

Yσn1
=Y0 + σn1 −

∫
(0,σn1 ]

∫
[0,C]

gΛ(Xt−, Yt−, v)℘(ω)({t} × dv)

=Yσn1− − Yσn1− = 0.

Thus Yσn1
= 0. In general, for every m ≥ 1, we set

nm+1 := min

{
l > nm :

∫
[0,C]

gΛ(Xσl−, Yσl−, v)℘(ω)({σl} × dv) ̸= 0

}
. (2.2.6)

In other words, for every t ≥ 0,∫
R
gΛ(Xt−, Yt−, v)℘({t} × dv) =

{
Yσnm− , if t = σnm for some m ≥ 1
0 , otherwise.

(2.2.7)

Then by summarising above observations, one gets from (2.2.5) that for every t ∈ [0,∞)

Yt =Y0 + t−
∑

{r≥1|σnr≤t}

Yσnr− (2.2.8)

=Y0 + t−
∞∑
r=1

(Yσnr−)1[σnr ,∞)(t)

holds with probability 1. Hence Y is r.c.l.l, and piece-wise linear.

2.3 Semi-Markov Law of the Solution

Definition 2.3.1. The sequence of transition times {Tn}n≥1 is given by Tn := inf{t >
Tn−1 ∨ 0 : Xt ̸= Xt−} where T0 := −Y0. We define the holding time τn := Tn − Tn−1

for all n ≥ 1. The number of transitions until time t is denoted by Nt which is given by
max{m ≥ 0 | Tm ≤ t}.
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2.3. Semi-Markov Law of the Solution

From the above definition

Xu −Xu− =

∫
R
hΛ (Xu−, Yu−, v)℘({u} × dv) (2.3.1)

is non-zero if and only if u = Tn for some positive integer n.

Remark 2.3.2. From (2.2.2) and (2.2.3) it is evident that for each i ∈ X , y > 0, the maps
hΛ(i, y, ·) and gΛ(i, y, ·) have identical supports. Hence the integral

∫
[0,C]

gΛ(Xt−, Yt−, v)℘({t}×
dv) is nonzero if and only if

∫
[0,C]

hΛ(Xt−, Yt−, v)℘({t}× dv) is nonzero since Yt− > 0 for all

t ≥ 0. We also recall that it is shown in the above proof that Y jumps only at time t when∫
[0,C]

gΛ(Xt−, Yt−, v)℘({t} × dv) is nonzero. Therefore, X and Y jump simultaneously as

X jumps only at time t when
∫
[0,C]

hΛ(Xt−, Yt−, v)℘({t} × dv) is nonzero. In other words,

the sequence {σnm}m≥1, where nm is as in (2.2.6), gives the times of consecutive jumps of
X. Again, under (A1), due to Lemma 2.2.1, σnm → ∞ almost surely. Thus all the jump
times of X are included in {σnm}m≥1 which is a sub-sequence in D. Hence, σnm = Tm for
all m ≥ 1.

Lemma 2.3.3. For each n ∈ N, (i) YTn = 0, and (ii) YTn− = Tn − Tn−1. Also (iii)
Yt = t− TNt, where Nt is as in Definition 2.3.1.

Proof. (i) By (2.2.8) and Remark 2.3.2 we obtain, for all n ∈ N,

YTn =Y0 + Tn −
∑

{r≥1|Tr≤Tn}

YTr−

=

Y0 + Tn −
∑

{r≥1|Tr<Tn}

YTr−

− YTn−

=YTn− − YTn− = 0

as (2.2.8) implies (by replacing ≤ by <) Yt− = Y0 + t −
∑

{r≥1|Tr<t} YTr−. Alternatively, by

taking the left limit t ↑ Tn in (2.2.8),

YTn− =Y0 + Tn −
∑

{r≥1|Tr<Tn}

YTr−. (2.3.2)

Hence we have shown above that

Yt = 0 iff t = Tn for some n ∈ N. (2.3.3)

(ii) We obtain for n ≥ 2, by adding and subtracting Tn−1 on the right side of (2.3.2),

YTn− =Tn − Tn−1 +

(
Y0 + Tn−1 −

n−1∑
r=1

YTr−

)
.
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Chapter 2 : Homogeneous semi-Markov processes

Again using (2.2.8) with t = Tn−1, the above is equal to Tn−Tn−1+YTn−1 = Tn−Tn−1, since
YTn−1 = 0 from (2.3.3). To complete the proof, we should show YT1− = T1 − T0. This is true
as

YT1− =Y0 + T1 −
∑

{r≥1|Tr<T1}

YTr−

=− T0 + T1

using T0 = −Y0 from Definition 2.3.1.

(iii) From (2.2.8), and Definition 2.3.1, and part (ii) of the lemma, we have

Yt =Y0 + t−
∑

{r≥1|Tr≤t}

(Tr − Tr−1)

=− T0 + t−
Nt∑
r=1

(Tr − Tr−1) = t− TNt .

This completes the proof.

Theorem 2.3.4. Let Z = (X, Y ) = {(Xt, Yt)}t≥0 be the unique strong solution to (2.2.4)-
(2.2.5). Then the following hold.

i. The process Z is a strong Markov process.

ii. The embedded chain for the pure jump process X is Markov.

Proof. We have already seen in Remark 2.2.3 that the finite support condition on the
integrands in (2.2.4)-(2.2.5) hold true. Indeed all conditions mentioned in Remark 2.2.3 are
true. So by Theorem IX.3.8, and IX.3.9 of [8] (p-475), the process Z is strong Markov, i.e.,
Ẑ = (ZT+u)u∈R+ is conditionally independent of FT given ZT , where T is any {Ft}t stopping
time. We also recall that for each n(≥ 0) ∈ Z, Tn is a stopping time. Hence, due to the
strong Markov property, ZTn+1 is conditionally independent to the σ-algebra FTn given ZTn .
That is, {(XTn , YTn)}n is Markov. Finally, due to (2.3.3), the embedded chain, {XTn}n is
Markov.

Theorem 2.3.5. Let (X, Y ) = {(Xt, Yt)}t≥0 be the solution to (2.2.4)-(2.2.5), then {Xt}t≥0

is an SMP.

Proof. We have already seen in the proof of Theorem 2.2.2, that X is an r.c.l.l process.
Next, we need to show (0.2.2), i.e., for each n ≥ 0,

P [XTn+1 = j, Tn+1−Tn ≤ y | XT0 , T0, XT1 , T1, . . . , XTn , Tn] = P [XTn+1 = j, Tn+1−Tn ≤ y | XTn ].
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2.3. Semi-Markov Law of the Solution

We note that

P (XTn+1 = j, Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn))

=P (Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn))

× P (XTn+1 = j | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y}). (2.3.4)

Each of the two probabilities on the right side is further simplified below. For almost every
ω ∈ Ω, equation (2.2.7), Remark 2.3.2 and Lemma 2.3.3 imply that for any n ≥ 0∫

(Tn,Tn+t]

∫
R
gΛ(XTn , u− Tn, v)℘(du, dv) =

{
0, for t < Tn+1 − Tn

Tn+1 − Tn, for t = Tn+1 − Tn.

Hence, by a suitable change of variable, almost surely Tn+1 − Tn is the first occurrence of a
non-zero value of the following map

t 7→
∫
(0,t]

∫
R
gΛ(XTn , u, v)℘(Tn + du, dv)

and that occurs at t = Tn+1 − Tn. Again, since ℘(Tn + du, dv) is independent to FTn we
obtain, Tn+1 − Tn is conditionally independent to FTn given XTn . Thus

P (Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn))

= P (Tn+1 − Tn ≤ y | XTn). (2.3.5)

By substituting u = Tn+1 in Equation (2.3.1), and using Lemma 2.3.3 we get

XTn+1 = XTn +

∫
R
hΛ(XTn , Tn+1 − Tn, v)℘({Tn+1} × dv), (2.3.6)

as XTn+1− = XTn and YTn+1− = Tn+1 − Tn. Thus using (2.3.6)

P
(
XTn+1 = j | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y}

)
= P

(∫
R
hΛ(XTn , Tn+1 − Tn, v)℘({Tn + (Tn+1 − Tn)} × dv) =j −XTn

∣∣∣
(XT0 , T0), (XT1 , T1), . . . , (XTn , Tn),{Tn+1 − Tn ≤ y}

)
.

Again, using the independence of ℘(Tn + du, dv) to FTn and conditional independence of
Tn+1 − Tn to FTn given XTn we conclude, the above expression is equal to

P

(∫
R
hΛ(XTn , Tn+1 − Tn, v)℘({Tn + (Tn+1 − Tn)} × dv) = j −XTn

∣∣∣ XTn , {Tn+1 − Tn ≤ y}
)

= P
(
XTn+1 = j | XTn , {Tn+1 − Tn ≤ y}

)
(2.3.7)
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Chapter 2 : Homogeneous semi-Markov processes

using (2.3.6). Thus, using the simplifications (2.3.7) and (2.3.5) in (2.3.4), we obtain

P (XTn+1 = j, Tn+1 − Tn ≤ y | (XT0 , T0), (XT1 , T1), . . . , (XTn , Tn))

= P (Tn+1 − Tn ≤ y | XTn)P
(
XTn+1 = j | XTn , {Tn+1 − Tn ≤ y}

)
= P

(
XTn+1 = j, Tn+1 − Tn ≤ y | XTn

)
.

Hence, X is an SMP.

2.4 Expression of Transition Kernel

In this section we derive an expression of the transition kernel. For each i ∈ X , we define a
function F (· | i) : [0,∞) → [0, 1] as

F (y | i) := 1− e−γi(y) (2.4.1)

where γi(y) is as in (A2). Since, γi(y), being an integral of a bounded Lebesgue measurable
function, is absolutely continuous in y, and hence differentiable almost everywhere. Let f(y |
i) be the almost everywhere derivative of F (y | i). We also define a matrix p := (pij(y))X×X ,
such that

pij(y) :=


λij(y)

−λii(y)
, if j ̸= i

0, if j = i.
(2.4.2)

This ensures that p is a transition probability matrix for each y ≥ 0. The following
proposition asserts that p gives the conditional probability of selecting a state at the time of
transition given the holding time and location of the previous state. Furthermore, the map
F (y | i) as in (2.4.1) is also asserted as the conditional cumulative distribution function of
the holding time given the state is i.

Proposition 2.4.1. Let Z = (X, Y ) be the solution to (2.2.4)-(2.2.5), then the following
hold.

i. F (· | i) is the conditional cumulative distribution function of the holding time of the
process X.

ii. For i ̸= j, pij(y) = P [XTn+1 = j | XTn = i, YTn+1− = y].

Proof. Using (2.2.3) and (2.2.7), the conditional probability of no transition in the next y
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2.4. Expression of Transition Kernel

unit time, given that the state at the nth transition is i, is given by,

P [Xt = Xt−,∀t ∈ (Tn, Tn + y] | XTn = i]

= P

[∫
R
gΛ(Xu−, u− Tn, v)℘({u} × dv) = 0,∀u ∈ (Tn, Tn + y] | XTn = i

]

= P

℘
(u, v) ∈ (Tn, Tn + y]× R+ | v ∈

⋃
j ̸=XTn

ΛXTn ,j
(u− Tn)

 = 0 | XTn = i


= e−γi(y) (2.4.3)

since, the intensity of ℘ is Lebesgue measure, and the Lebesgue measure of {(u, v) ∈ (Tn, Tn+

y]×R+ | v ∈ ∪j ̸=iΛi,j(u−Tn)} is
∫ Tn+y

Tn

∑
j ̸=i λij(u−Tn)du which is equal to γi(y) (see (A2)).

Using (2.4.3), the conditional cumulative distribution function at y of τn+1, the holding time
after the nth transition, given the nth state, is

P [τn+1 ≤ y | XTn = i] = 1− P [Xt = Xt−,∀t ∈ (Tn, Tn + y] | XTn = i]

= 1− e−γi(y)

for all y ≥ 0 and i ∈ X . Thus (i) follows from (2.4.1).

We note that, for j ̸= i, P [XTn+1 = j | XTn = i, YTn+1− = y] is the conditional probability
of the event that the (n + 1)th state is j, given that Tn+1 = Tn + y and the nth state is i.
Using (2.3.6), the above is the conditional probability that a Poisson point mass appears in
{Tn + y}×Λij(y) given that the point mass lies somewhere in {Tn + y}×∪j ̸=iΛij(y) and no
transition of X occurs during (Tn, Tn + y). If these three events are denoted by A, B, and
C respectively, then the conditional probability P (A | B ∩C) can be simplified as P (A | B)
because C is independent to both A and B. Thus using the Lebesgue intensity of ℘,

P
[
XTn+1 = j | XTn = i, YTn+1− = y

]
= P

[
℘({Tn + y} × Λij(y)) = 1 | ℘({Tn + y} ×

⋃
j ̸=i

Λij(y)) = 1

]

=
|Λij(y)|

|
⋃

j ̸=i Λij(y)|

=
λij(y)

λi(y)

for every y ≥ 0, j ̸= i. Thus (ii) follows from (2.4.2).

Remark 2.4.2. We note that under Assumptions (A1) and (A2), F (y | i) < 1 for all y ≥ 0
and limy→∞F (y | i) = 1. Thus, the holding times are unbounded but finite almost surely. By
dropping (A1), one may include a class of SMPs having bounded holding times. However,
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Chapter 2 : Homogeneous semi-Markov processes

we exclude that class from our discussion. It is also important to note that the SMPs having
discontinuous cdf of holding time are also not considered in the present setting. Nevertheless,
the present study subsumes countable-state continuous time Markov chains and the processes
having age dependent transitions as appears in [14]. Moreover, in Theorem 2.4.4, we obtain
the transition kernel that is homogeneous in time. In other words, we have excluded the
time-inhomogeneous SMP from the present study too.

Proposition 2.4.3. We have, for almost every y ≥ 0,

pij(y)
f(y | i)

1− F (y | i)
=

{
λij(y), for i ̸= j,

0, for i = j.

Proof. By differentiating both sides of (2.4.1), we obtain f(y | i) = λi(y)e
−γi(y) for a.e.

y ≥ 0. This is equal to λi(y)(1− F (y | i)) using (2.4.1). Hence, for a.e. y ≥ 0, and i ∈ X

f(y | i)
1− F (y | i)

= λi(y). (2.4.4)

If i ̸= j, for a.e. y ≥ 0, using (2.4.2)

pij(y)
f(y | i)

1− F (y | i)
=− λii(y)×

λij(y)

−λii(y)
= λij(y).

The case for i = j follows from (2.4.2) directly.

Theorem 2.4.4. Let X be an SMP as in Theorem 2.3.5. Then, the associated kernel is
given by

P [XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i] =

∫ y

0

e−γi(s)λij(s) ds,

which is denoted by Qij(y) for every y > 0, and i ̸= j.

Proof. Using Proposition 2.4.1(i) and (ii) and Lemma 2.3.3

P
[
XTn+1 = j, YTn+1− ≤ y | XTn = i

]
= E

[
P
(
XTn+1 = j, YTn+1− ≤ y | XTn = i, YTn+1−

)
| XTn = i

]
=

∫ ∞

0

1[0,y](s)P
[
XTn+1 = j | XTn = i, YTn+1− = s

]
f(s | i) ds

=

∫ y

0

pij(s)f(s | i) ds.

For each i ̸= j, using Proposition 2.4.3 and (2.4.1), the right side of above can be rewritten
as ∫ y

0

(1− F (s | i))λij(s) ds =

∫ y

0

e−γi(s)λij(s) ds = Qij(y).
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2.5. Homogeneous Component-wise Semi-Markov Process

Proposition 2.4.5. Let X be an SMP as in Theorem 2.3.5. Then, λ is the instantaneous
transition rate matrix.

Proof. The rate of transition from state i to j at age y is given by

lim
h→0

1

h

[
P (XTn+1 = j, Tn+1 − Tn ∈ (y, y + h] | XTn = i, {Tn+1 − Tn > y})

]
= lim

h→0

1

h

P (XTn+1 = j, Tn+1 − Tn ∈ (y, y + h] | XTn = i)

P (Tn+1 − Tn > y | XTn = i)

= lim
h→0

1

h

P (XTn+1 = j, Tn+1 − Tn ≤ y + h | XTn = i)− P (XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i)

1− P (Tn+1 − Tn ≤ y | XTn = i)
.

Using Theorem 2.4.4, the above limit is equal to
d
dy

Qij(y)

1−F (y|i) which can further be simplified as

λij(y).

Remark 2.4.6. We have obtained Qij(y) =
∫ y

0
pij(s)f(s | i) ds in the proof of Theorem

2.4.4, which expresses Qij(·) in terms of the pij(·), and f(· | i). These parameters give
the age dependent transition probabilities and the conditional holding time densities. In an
alternative conditioning, the kernel can also be expressed as

Qij(y) = P
[
XTn+1 = j | XTn = i

]
P
[
Tn+1 − Tn ≤ y | XTn = i,XTn+1 = j

]
,

which is the product of transition probabilities of embedded chain and the conditional cdf
of holding time given the current and the next state. This representation of the kernel is
more general as that does not require absolute continuity of holding time CDF. For this
reason, this factorisation of kernel is more popular in the literature. We also recall that the
transition kernel Q characterizes an SMP. We have seen in the above two resuls that if Q is
differentiable, the instantaneous transition rate matrix λ exists, and each of Q and λ can be
expressed in terms of the other.

2.5 Homogeneous Component-wise Semi-Markov Pro-

cess

Notation 2.5.1. Fix i, j ∈ X and y1, y2 ≥ 0. Let Z1 = (X1, Y 1) and Z2 = (X2, Y 2) be the
strong solutions of (2.2.4)-(2.2.5) with initial conditions

X1
0 = i, Y 1

0 = y1, and X2
0 = j, Y 2

0 = y2

respectively. The jump times of Z := (Z1, Z2) is denoted by {Tn}n∈N0 and given by T0 := 0
and Tn := inf{t > Tn−1 : t ∈ T 1 ∪ T 2} for all n ≥ 1 where T l denotes the collection of
transition times of X l for each l = 1, 2.
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Chapter 2 : Homogeneous semi-Markov processes

The above notation is adopted henceforth. We impose the following restriction on λ̃.

(A3) For all (i, j) ∈ X2, and for almost every y ≥ 0, set λ̃ij(y) = ∥λij∥∞.

Remark 2.5.2. In the preceding subsection we have seen that the law of the solution to
(2.2.4)-(2.2.5) depends only on the λ matrix and the initial position and does not depend
on the choice of λ̃. Hence, (A3) does not impose any condition on the law of Z1 or Z2

separately. However, the law of Z depends on the choice of λ̃. Therefore, (A3) selects a
specific flow from the family specified in (2.2.1). We select that, as the absence of (A3)
significantly complicates the relations between the intervals Λij(y) with different values of i,
j and y and thus ramifies the relation between Z1 and Z2. On the other hand (A3) implies
a very simple relation, namely ∪y≥0Λij(y) are disjoint for different values of i and j. This
helps us to compute expressions of various parameters related to the law of Z = (Z1, Z2).
This assumption is central for our study of mixing and merging times of Z.

All the subsequent results, which assume (A3), do hold under a relaxed condition that
for an α ≥ 1, λ̃i′j′(y) = α∥λi′j′∥∞ for all y ≥ 0 and (i′, j′) ∈ X2. Even the proof of
Theorem 2.2.2 also works after replacing C by αC. Nevertheless, this relaxation is artificial
as that does not enlarge the scope of stochastic flow under consideration. So, for avoiding
cumbersome notations arising due to an artificial relaxation, we follow (A3) only.

Since, Z1 and Z2 as in Notation 2.5.1 are Markov, Z = (Z1, Z2) is also Markov. It has
state and age components X = (X1, X2) and Y = (Y 1, Y 2) respectively. While each of X1

and X2 is semi-Markov, the pure jump process X is not. Rather, X is a component-wise
semi-Markov process (CSM) and the Markov process Z is called the augmented process of
CSM X. A CSM with independent components has been introduced for modelling financial
assets in [10]. However, a CSM with dependent components has not been studied in the
literature yet. Since, for our case, the components of the CSM X are driven by a single
Poisson random measure, they are not independent. In view of this, it is interesting to
derive the law of X by finding the generator of Z. To this end, we recall Itô’s lemma for
r.c.l.l. semimartingales. Let φ : (X ×R+)

2 → R be bounded and continuously differentiable
in its continuous variables. Using the expression of J in Remark 2.2.3, we write

dφ(Z1
t , Z

2
t )−

(
∂

∂y1
+

∂

∂y2

)
φ(Z1

t , Z
2
t )dt

= φ(Z1
t , Z

2
t )− φ(Z1

t−, Z
2
t−)

= φ

(
Z1

t− +

∫
R+

J(Z1
t−, v)℘(dt, dv), Z

2
t− +

∫
R+

J(Z2
t−, v)℘(dt, dv)

)
− φ(Z1

t−, Z
2
t−)

=

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
℘(dt, dv)

=

(∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

)
dt+ dMt
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where M is the martingale obtained by integration wrt the compensated PRM ℘(dt, dv) −
dtdv. We get the third equality by using Therorem 0.2.20. For simplifying the above integral
term, we impose (A3) and divide the derivation in two complementary cases.

Case1: Assume X1
t− ̸= X2

t−. Now under (A3), the intervals ΛX1
t−j1(Y

1
t−) and ΛX2

t−j2(Y
2
t−)

are disjoint for every j1 and j2. Thus by considering these intervals where the integrand is
non-zero constants, we get

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=

∫
2
∪

k=1

 ∪
j ̸=Xk

t−

Λ
Xk

t−j
(Y k

t−)


[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=
∑

j ̸=X1
t−

[
φ(j, 0, Z2

t−)− φ(Z1
t−, Z

2
t−)
]
|ΛX1

t−j(Y
1
t−)|

+
∑

j ̸=X2
t−

[
φ(Z1

t−, j, 0)− φ(Z1
t−, Z

2
t−)
]
|ΛX2

t−j(Y
2
t−)|

where |I| is the length of the interval I.
Case2: Assume that X1

t− = X2
t− = i say. Also recall that under (A3), the intervals Λij(y1)

and Λij(y2) are having identical left end points. So, ΛX1
t−j1(Y

1
t−) and ΛX2

t−j2(Y
2
t−) are not

disjoint when j1 = j2. Thus

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=

∫
∪
j ̸=i

(Λij(Y 1
t−)∪Λij(Y 2

t−))
[φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)]dv

=
∑
j ̸=i

[φ(j, 0, Z2
t−)− φ(Z1

t−, Z
2
t−)]|Λij(Y

1
t−) \ Λij(Y

2
t−)|

+
∑
j ̸=i

[φ(Z1
t−, j, 0)− φ(Z1

t−, Z
2
t−)]|Λij(Y

2
t−) \ Λij(Y

1
t−)|

+
∑
j ̸=i

[φ(j, 0, j, 0)− φ(Z1
t−, Z

2
t−)]|Λij(Y

1
t−) ∩ Λij(Y

2
t−)|.

Thus by combining the expressions under both the cases, the generator A of (Z1, Z2) is given
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Chapter 2 : Homogeneous semi-Markov processes

by

Aφ(z1, z2) =
(

∂

∂y1
+

∂

∂y2

)
φ(z1, z2) +

∑
j /∈{i1}

(λi1j(y1)− δi1i2λi2j(y2))
+[φ(j, 0, z2)− φ(z1, z2)]

+
∑
j /∈{i2}

(λi2j(y2)− δi1i2λi1j(y1))
+[φ(z1, j, 0)− φ(z1, z2)]

+ δi1i2
∑

j /∈{i1,i2}

(λi1j(y1) ∧ λi2j(y2))[φ(j, 0, j, 0)− φ(z1, z2)]. (2.5.1)

where z1 = (i1, y1), z2 = (i2, y2), δij is Kronecker delta, a+ = max(0, a) and a∧b = min(a, b).
This leads to the following theorem.

Theorem 2.5.3. Under (A3), the infinitesimal generator A of the augmented process Z =
(Z1, Z2) is given by (2.5.1) where Z1 = (X1, Y 1) and Z2 = (X2, Y 2) are as in Notation
2.5.1.

From the above derivation of generator of Z, it is not difficult to guess its expression
when Z1 and Z2 are driven by two different independent Poisson random measures. Indeed,
the intervals ΛX1

t−j1(Y
1
t−) and ΛX2

t−j2(Y
2
t−) can be treated as if they are disjoint for any value

of X1
t− and X2

t−. Thus an expression like (2.5.1) can be obtained where δi1i2 should be
replaced by zero irrespective of i1, i2. This is agreeing with (2.10) of [10]. In that case
Aφ(z1, z2) = A1φ(·, z2)(z1) +A2φ(z1, ·)(z2), where Ai denotes the infinitesimal generator of
Zi.

Remark 2.5.4. Although given a ω ∈ Ω for two different families λ̃1 and λ̃2 one obtains
two different solutions paths for SDE (2.2.4)-(2.2.5), the law does not differ. Indeed it is
evident from SDE (2.2.4)-(2.2.5) that the law of (X, Y ) does not depend on the choice of λ̃
and depends only on the λ matrix and the initial position. Hence, (A3) imposes no condition
on the laws of Z1 and Z2 separately. However, the law of Z depends on the choice of λ̃.
Therefore, (A3) selects a specific flow from the family specified in (2.2.1). We select that, as
the absence of (A3) significantly complicates the relations between the intervals Λij(y) with
different values of i, j and y and thus ramifies the relation between Z1 and Z2. On the other
hand (A3) implies a very simple relation, namely ∪y≥0Λij(y) are disjoint for different values
of i and j. This helps us to compute expressions of various probabilities related to meeting
and merging times of X1 and X2. This assumption is central for our study.

2.6 Meeting and Merging at the Next Transition

Definitions 2.6.1. Given an {Ft}t≥0 stopping time T , the time τ of subsequent meeting
by the processes X1 and X2 is given by τ := inf{t > T : X1

t = X2
t ,min(Y 1

t , Y
2
t ) = 0}. If
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2.6. Meeting and Merging at the Next Transition

{τ < ∞}, then X1 and X2 are said to meet eventually. If at a meeting time τ , their
transition counts [see Definition 2.3.1] N1

τ and N2
τ are identical, then the said meeting is

called coherent. The merging time of X1 and X2 is given by τ ′ := inf{t′ ≥ 0 | X1
t =

X2
t ,∀t ≥ t′} and if {τ ′ <∞}, then they are said to merge.

The nature of meeting and merging for a semi-Markov family is more involved than those
for the Markovian special case. We clarify this in the next section.

Markov pure jump process, although a special case of (2.2.4)-(2.2.5), deserves a separate
mention due to its importance. Hence we first consider a special case where λ is independent
of the age variable y and satisfies (A1). Evidently, (A2) holds too. Furthermore, assume
that λ̃ij(y) = λij, a constant function for each (i, j) ∈ X2. Hence (2.2.4) reduces to

Xt = X0 +

∫ t

0+
h̃(Xs−, v)℘(ds, dv) (2.6.1)

where h̃(i, v) := hΛ(i, y, v) =
∑

j∈X\{i}(j−i)1Λij(y)(v) is constant in y, as the intervals Λij(y),

do not vary with y variable. Uniqueness result of (2.6.1) implies the following.

Theorem 2.6.2. Let X1 and X2 be strong solutions of SDE (2.6.1) with initial states X1
0 = i

and X2
0 = j respectively. Then, if X1 and X2 meet, they merge at the first meeting.

Proof. For a ω ∈ Ω, if there exists a t′ > 0 such that X1
t′ = X2

t′ = k for some k ∈ X 1, then
using (2.6.1) for t > t′, both X1 and X2 solve

Xt = Xt′ +

∫ t

t′+
h̃(Xs−, v)℘(ds, dv) = k +

∫ t

t′+
h̃(Xs−, v)℘(ds, dv).

Now using almost sure uniqueness of the strong solution of the above SDE, X1 and X2 would
be identical from time t′ onward. Thus X1 and X2 merge at their first meeting time.

It is interesting to note that, if λ is constant, the merging time of X1 and X2, as given in
Theorem 2.6.2, is a stopping time. This is because, merging and meeting times coincide, and
the latter is a stopping time. This consequence is not valid for a general semi-Markov family.
Indeed, if X1 and X2 are as in Notation 2.5.1, at the meeting time they may have unequal
ages and those age variables appear in the SDE (2.2.4)-(2.2.5). So, the mere uniqueness of
the SDE does not imply merging at the first meeting time. We produce below an example
of a meeting event which is not the merging of a semi-Markov family.

Example 2.6.3. Let X = {1, 2}, with (1, 2) ≺ (2, 1); also λ12(y) = λ21(y) = y
1+y

, and

λ̃12(y) = λ̃21(y) = sup(0,∞) | y
1+y

| = 1 for all y ≥ 0. Thus for every (i, j) ∈ X2, Λij(y) = [i −
1, i−1+ y

1+y
). We further assume that Z l = (X l, Y l) is the strong solution of (2.2.4)-(2.2.5)

with above parameters and initial conditions (X l
0, Y

l
0 ) = (l,1{2}(l)) for l = 1, 2 respectively.

Now fix a sample ω ∈ Ω such that ℘(ω)|[0,3/2]×[0,2] = δ(1,3/2) + δ(3/2,1/2), the addition of
two Dirac measures at (1, 3/2) and (3/2, 1/2) respectively. Then none of the processes has

1Note that, it is not necessary that X1 and X2 transit to state k at the same time.
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Figure 2.1: The t and v variables are plotted along horizontal and vertical axes. The point
masses are shown by black dots. The intervals relevant for transitions of the first and second
processes are plotted vertically and shown in blue and red respectively.

transition until time t = 1. Hence, for both l = 1, 2,

X l
1− = l, and, Y l

1− = Y l
0 + 1−

∫
(0,1)

∫
R
gΛ(X

l
u−, Y

l
u−, v)℘(du, dv)(ω) = 1{2}(l) + 1 = l.

Then from (2.2.4)

X l
1 =X

l
1− +

∫
R
hΛ(X

l
1−, Y

l
1−, v)℘({1}, dv)(ω) = l + hΛ(l, l, 3/2).

Therefore, using (2.2.2) and the intervals Λ12(1),Λ21(2), we get X
1
1 = 1+(2−1)1[0,1/2)(3/2) =

1 and X2
1 = 2 + (1 − 2)1[1,1+2/3)(3/2) = 1. Thus, t = 1 is a meeting time. However, this

is not a merging time, because at t = 3/2, X1 and X2 separate, which is shown below. We
note that until t = 3/2, X1 and X2 are at state 1 since t = 0, and t = 1 respectively. So,
while the pre-transition state X l

3/2− is 1 for each l = 1, 2, the pre-transition ages Y 1
3/2−, and

Y 2
3/2− are 3/2 and 1/2 respectively. Consequently,

X l
3/2 =1 +

∫
R
hΛ(1, Y

l
3/2−, v)℘({3/2}, dv)(ω) = 1 + 1Λ12(Y l

3/2−)(1/2) =

{
2, for l = 1

1, for l = 2

since, 1/2 ∈ Λ12(3/2) = [0, 3/2
1+3/2

) = [0, 3/5) and 1/2 /∈ Λ12(1/2) = [0, 1/2
1+1/2

) = [0, 1/3).

Theorem 2.6.4. Assume (A3). Let Z1 = (X1, Y 1) and Z2 = (X2, Y 2) be as in Notation
2.5.1 where i ̸= j. The probability of X1 and X2 meeting in the next transition is∫ ∞

0

e−
∫ y
0 (λi(y1+t)+λj(y2+t))dt(λij(y1 + y) + λji(y2 + y))dy.
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2.6. Meeting and Merging at the Next Transition

Proof. In this proof we will utilise that for every y′ ≥ 0 and y′′ ≥ 0, ∪k ̸=iΛik(y
′) is disjoint

to ∪k ̸=jΛjk(y
′′) when i ̸= j. This is consequence of definitions of the intervals in (2.2.1), and

(A3). Non-meeting event in the next transition of X1 and X2, happens in two ways.
Case 1: X1 has the first transition to a state which is different from X2

0 before X2 transits
for the first time. This event can be written as E := {X1

T1− ̸= X1
T1
, X1

T1
̸= X2

T1
}. We will

make use of P (E | F0) = E[P (E | T1) | F0] and, the expression of conditional density ηT1 of
T1 given {X1

T0
= i,X2

T0
= j, Y 1

T0
= y1, Y

2
T0

= y2}. Clearly,

P (E|T1 = y) =

m1( ∪
k/∈{i,j}

Λik(y1 + y))

m1( ∪
k/∈{i}

Λik(y1 + y) ∪ ∪
k/∈{j}

Λjk(y2 + y))
=
λi(y1 + y)− λij(y1 + y)

λi(y1 + y) + λj(y2 + y)
.

Moreover,
ηT1(y) = e−m2(B)(λi(y1 + y) + λj(y2 + y)),

where B := ∪
t∈[0,y)

(
{t} ×

(
( ∪
k/∈{i}

Λik(y1 + t)) ∪ ( ∪
k/∈{j}

Λjk(y2 + t))

))
. Indeed, the event of no

transition of X1 and X2 until first y unit of time, is equivalent to {℘(B) = 0}, the non-
occurrence of Poisson point mass in B. Clearly, P ({℘(B) = 0} | X1

T0
= i,X2

T0
= j, Y 1

T0
=

y1, Y
2
T0

= y2) is equal to e
−m2(B), and m2(B) =

∫ y

0
(λi(y1 + t) + λj(y2 + t))dt. Hence

P (E | F0) =

∫ ∞

0

P (E | T1 = y)ηT1(y)dy

=

∫ ∞

0

e−
∫ y
0 (λi(y1+t)+λj(y2+t))dt[λi(y1 + y)− λij(y1 + y)]dy. (2.6.2)

Similarly for Case 2, i.e., X2 has the first transition to a state, different from X1
0 , before X

1

transits for the first time is given by,

P (X2
T1− ̸= X2

T1
, X2

T1
̸= X1

T1
| F0) =

∫ ∞

0

e−
∫ y
0 (λi(y1+t)+λj(y2+t))dt[λj(y2 + y)− λji(y2 + y)]dy.

(2.6.3)

Hence the total probability (denoted by a′(i,j,y1,y2)) of not meeting in the next transition is

sum of the probabilities appearing in (2.6.2), and (2.6.3).
Using ϕ1(y) := e−

∫ y
0 (λi(y1+t)+λj(y2+t))dt (λi(y1 + y) + λj(y2 + y)),

a′(i,j,y1,y2) =

∫ ∞

0

(
ϕ1(y)− e−

∫ y
0 (λi(y1+t)+λj(y2+t))dt [(λij(y1 + y) + λji(y2 + y))]

)
dy (2.6.4)

= 1−
∫ ∞

0

e−
∫ y
0 (λi(y1+t)+λj(y2+t))dt(λij(y1 + y) + λji(y2 + y))dy

as
∫∞
0
ϕ1(y)dy = 1. Hence 1−a′(i,j,y1,y2), the probability of meeting of X1 and X2 in the next

transition has the desired expression.
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Chapter 2 : Homogeneous semi-Markov processes

Definition 2.6.5. Let Z1 = (X1, Y 1) and Z2 = (X2, Y 2) be the strong solutions of (2.2.4)-
(2.2.5) with two different sets of initial conditions. Let P(k, y) denote the regular conditional
probability of merging of X1 and X2 at a meeting time given meeting occurred in finite time,
k is the meeting state, and y is the age of the chain which arrives at k prior to the meeting
time.

Theorem 2.6.6. Assume (A3). Let Z1 = (X1, Y 1) and Z2 = (X2, Y 2) be the strong solu-
tions of (2.2.4)-(2.2.5) with two different sets of initial conditions. If at a time instant t′,
X1

t′ = X2
t′ = k ∈ X with Y 1

t′ ∧ Y 2
t′ = 0 and Y 1

t′ ∨ Y 2
t′ = y > 0, then the probability P(k, y) that

X1, and X2 are merged at t′ is given by,

P(k, y) =

∫ ∞

0

e
−

∫ y′
0

∑
k′ ̸=k

(λkk′ (t)∨λkk′ (y+t))dt
[∑
k′ ̸=k

λkk′(y
′) ∧ λkk′(y + y′)

]
dy′ (2.6.5)

where a ∨ b = max(a, b) and a ∧ b = min(a, b).

Proof. Let t′ denote a meeting time of X1 and X2. It is given that t′ is finite, with
X1

t′ = k = X2
t′ , Y

1
t′ ∧ Y 2

t′ = 0 and Y 1
t′ ∨ Y 2

t′ = y > 0. Let ϑ denote the duration both the
processes stay at k before either of them transit to some other state. Clearly, the event of no
transition of X1 and X2 for next y′ unit of time after t′, is equivalent to the event where no

Poisson point mass belongs to the set B := ∪
t∈[0,y′)

(
{t′ + t} × ∪

k′ /∈{k}
(Λkk′(t) ∪ Λkk′(y + t))

)
.

Evidently, this event occurs with probability e−m2(B), as m2 is the intensity of the Poisson
random measure. Since, simultaneous occurrence of this event and the event of a Poisson
point mass lying on the line segment {t′ + y′} × ∪

k′ /∈{k}
(Λkk′(y

′) ∪ Λkk′(y + y′)) is equivalent

to the occurrence of {ϑ = y′}, the expression of conditional density ηϑ of ϑ is given by
ηϑ(y

′) = e−m2(B)m1( ∪
k′ /∈{k}

Ak′(y
′)), where Ak′(y

′) := Λkk′(y
′) ∪ Λkk′(y + y′) for every k′ ̸= k.

As λ̃i′j′(y) is set as constant ∥λi′j′∥∞ for almost every y (Assumption (A3)), due to the
definitions of the intervals in (2.2.1), for almost every y ≥ 0 and y′ ≥ 0 the collection
{Ak′(y

′)}k′∈X\{k} is disjoint. Moreover, due to (A3) the left end points of the intervals Λkk′(y
′)

and Λkk′(y+y
′) are common (see (2.2.1)). Thus the Lebesgue measures of Λkk′(y

′)∪Λkk′(y+y
′)

and Λkk′(y
′) ∩ Λkk′(y + y′) are λkk′(y

′) ∨ λkk′(y + y′) and λkk′(y
′) ∧ λkk′(y + y′) respectively.

Thus ηϑ(y
′) = exp(−

∫ y′

0

∑
k′ ̸=k

(λkk′(t) ∨ λkk′(y + t))dt)
∑

k′ ̸=k λkk′(y
′) ∨ λkk′(y + y′).

We consider two cases regarding the transition of X1 and X2, at t′ + ϑ which are (i)
simultaneous, and (ii) non-simultaneous. Case (ii) implies that X1 and X2 will depart in
the next transition. So, under case (ii), t′ is not a merging time. Consequently, case (i) is
necessary for t′ to be the merging time. We show that case (i) is a sufficient condition too.
We recall that at t′ + ϑ the Poisson point mass (which is responsible for the transition) lies
in only one of the members of the disjoint family {Ak′(ϑ)}k′ with probability one. Therefore,
under case (i), at t′ + ϑ, X1 and X2 enter into an identical state and the ages Y 1 and Y 2

34



2.6. Meeting and Merging at the Next Transition

become zero and therefore, the uniqueness of the SDE (2.2.4)-(2.2.5) implies merging at time
t′.

For case (i) to occur, the point mass must lie in {t′+ϑ}×∪k′ /∈{k}Λkk′(ϑ)∩Λkk′(y+ϑ).
On the other hand if the point mass lies in {t′+ϑ}×∪k′ /∈{k} (Ak′(ϑ) \ Λkk′(ϑ) ∩ Λkk′(y + ϑ)),
then the transition at t′ + ϑ is of case (ii). Hence, for almost every y and y′, the conditional

probability of merging given ϑ = y′ is equal to
∑

k′ ̸=k λkk′ (y
′)∧λkk′ (y+y′)∑

k′ ̸=k

(λkk′ (y
′)∨λkk′ (y+y′))

. Thus

P
(
X1

t = X2
t ,∀t ≥ t′ | {t′ <∞}, X1

t′ = X2
t′ = k, Y 1

t′ ∧ Y 2
t′ = 0, Y 1

t′ ∨ Y 2
t′ = y

)
is equal to∫ ∞

0

P
(
X1

t = X2
t ,∀t ≥ t′ | {t′ <∞}, X1

t′ = X2
t′ = k, Y 1

t′ ∧ Y 2
t′ = 0, Y 1

t′ ∨ Y 2
t′ = y, ϑ = y′

)
ηϑ(y

′)dy′

=

∫ ∞

0

e
−

∫ y′
0

∑
k′ ̸=k

(λkk′ (t)∨λkk′ (y+t))dt
(∑

k′ ̸=k

λkk′(y
′) ∧ λkk′(y + y′)

)
dy′.

This completes the proof.

Remark 2.6.7. It is interesting to note that for Markov special case, where the transition
rate matrix λ is independent of the age variable y, a direct calculation gives that P(k, y) =
1. This makes Theorem 2.6.2, a corollary of the above theorem. On the other hand by
considering the two-state semi-Markov chain given in Example 2.6.3, one can obtain for
each k = 1, 2, limy→∞ P(k, y) =

∫∞
0
e−y′ y′

1+y′
dy′ < 1

2

∫ 1

0
e−y′dy′ +

∫∞
1
e−y′dy′ = 1+e−1

2
< 1.

This further clarifies that a meeting time for the flow in Example 2.6.3 need not be a merging
time. Below we show that the chance of merging for a general semi-Markov chain increases
to 1 as y decreases to zero, provided that the transition rate is continuous at zero.

Proposition 2.6.8. Assume (A3) and that y 7→ λ(y) is continuous at zero. As y tends to
zero, P(k, y) converges to 1.

Proof. From Theorem 2.6.6

lim
y→0

P(k, y) = lim
y→0

∫ ∞

0

e
−

∫ y′
0

∑
k′ ̸=k

(λkk′ (t)∨λkk′ (y+t))dt
(∑

k′ ̸=k

λkk′(y
′) ∧ λkk′(y + y′)

)
dy′.

Due to the continuity of λ in y, the integrand converges pointwise to

ψ(y′) :=
∑
k′ ̸=k

λkk′(y
′) exp

(
−
∫ y′

0

∑
k′ ̸=k

λkk′(t)dt

)
.

The integrand is also uniformly dominated by ψ, which is integrable on [0,∞). Indeed∫
[0,∞)

ψ(y′)dy′ = 1. Thus the result follows using dominated convergence theorem.
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2.7 Eventual Meeting, Merging, and Time

It is important to note that the strict positivity of entries of the rate matrix, as assumed in
this chapter, implies irreducibility of the process. It is also known that mere irreducibility
of a Markov chain does not ensure the convergence. However, the meeting event of two
chains may take place even if the chains do not converge. The discrete time Markov chain
on two states having zero probability of transition to the same state constitutes an example
where chains with different initial states never meet due to its periodicity. Nevertheless,
the same phenomena is untrue for its continuous time version. Indeed, if two such chains
(Markov/semi-Markov), having bounded transition rate and driven by the same noise (the
Poisson random measure) start from two different states, they meet surely at the next tran-
sition. In this chapter, due to the consideration of processes having bounded transition rate,
the discrete time scenario is excluded. Thus an ergodicity assumption is not needed for as-
suring eventual meeting. The next theorem establishes eventual meeting of Markov special
case under finiteness assumption of the state space.

Theorem 2.7.1. Let X1 and X2 be as in Theorem 2.6.2.

1. The conditional probability of meeting in the next transition given F0 is
(λij+λji)

λi+λj
.

2. If X is finite, X1 and X2 eventually meet with probability 1.

Proof. Recall X1
0 = i, X2

0 = j, and the sequence {Tn} from Notation 2.5.1. By applying
Theorem 2.6.4 for the Markov special case, we can write the conditional probability of
meeting in the next transition of X1 and X2, given the initial conditions as∫ ∞

0

e−
∫ y
0 (λi+λj)dt(λij + λji)dy =

(λij + λji)

(λi + λj)

∫ ∞

0

e−(λi+λj)y(λi + λj)dy =
(λij + λji)

(λi + λj)
.

Hence the part (1) is proved. Since, λij > 0 for all i ̸= j and X is finite, mini,j
(λij+λji)

λi+λj
> 0.

Thus maxi,j a(i,j) < 1 where a(i,j) denotes the probability of not meeting in the next transition.
Now since {Tn} is a sequence of stopping times, using Theorem 2.3.4(1), we get

E
[
1{X1

Tn
̸=X2

Tn
} | FTn−1

]
= a(X1

Tn−1
,X2

Tn−1
) ≤ max

i,j
a(i,j) < 1. (2.7.1)

The event of never meeting of processes X1 and X2 is identical to the repeated occurrence
of {X1

Tn
̸= X2

Tn
} for all n ≥ 1. Hence, using the fact (thanks to (A2)) that the chains

experience infinitely many transitions with probability 1, the probability of never meeting,
P (X1

t ̸= X2
t ,∀t ≥ 0 | F0) matches with limN→∞ P

(
∩N

n=1{X1
Tn

̸= X2
Tn
} | F0

)
. Next if

E

[
N∏

n=1

1{X1
Tn

̸=X2
Tn

} | F0

]
≤ max

i,j
a(i,j)E

[
N−1∏
n=1

1{X1
Tn

̸=X2
Tn

} | F0

]
, (2.7.2)
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holds for all N ≥ 1, using that repeatedly, we get

P
(
∩N

n=1{X1
Tn

̸= X2
Tn
} | F0

)
= E

[
N∏

n=1

1{X1
Tn

̸=X2
Tn

} | F0

]
≤
(
max
i,j

a(i,j)

)N

for all N ≥ 1. The right side clearly vanishes as N → ∞, and thus P (X1
t ̸= X2

t ,∀t ≥ 0 | F0)
is zero as desired, provided (2.7.2) holds. Finally (2.7.2) is shown using (2.7.1) below

E

[
N∏

n=1

1{X1
Tn

̸=X2
Tn

} | F0

]
= E

[
E

[
N∏

n=1

1{X1
Tn

̸=X2
Tn

} | FTN−1

]
| F0

]

= E

[(
N−1∏
n=1

1{X1
Tn

̸=X2
Tn

}

)
E
[
1{X1

TN
̸=X2

TN
} | FTN−1

]
| F0

]

≤ max
i,j

a(i,j)E

[
N−1∏
n=1

1{X1
Tn

̸=X2
Tn

} | F0

]

for all N ≥ 1. Hence the proof of part(2) is complete.

In the above proof, the second part of the theorem has been proved using the first part.
However, the former has been proved in Lemma 3.5 of [4] without utilizing part 1, under
identical assumption in a different approach.

It is important to note that for ensuring almost sure eventual meeting, we have assumed
finiteness of X in the above theorem, whereas in the proof we have used mini,j

(λij+λji)

λi+λj
> 0

only. In the following lemma we show that under (A1), these conditions are equivalent.

Lemma 2.7.2. Let λ be a transition rate matrix of a Markov chain obeying (A1). If X is

infinite, inf
i,j

(λij+λji)

λi+λj
is zero.

Proof. Fix a j ∈ X . Since, due to Assumption (A1),
∑∞

i=1 λi <∞, given ϵ > 0 there exists
an iϵ,j such that λi < ϵλj ∀i > iϵ,j. So we get an inequality λij ≤ λi < ϵλj for all i > iϵ,j.
Using this inequality we have the following relation,

λij + λji
λi + λj

<
ϵλj + λji
λi + λj

<
ϵλj + λji

λj
= ϵ+

λji
λj
, (2.7.3)

for all i > iϵ,j. For each j we also have λj =
∑

i∈X\{j}
λji < ∞. Hence, there exists a i∗j,ϵ such

that for all i > i∗j,ϵ we have λji < ϵλj. Now, using (2.7.3), we get for each i > max(iϵ,j, i
∗
j,ϵ),

λij + λji
λi + λj

< ϵ+
ϵλj
λj

= 2ϵ.
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Since ϵ is arbitrary, the above implies that for each j ∈ X ,

lim
i→∞

λij + λji
λi + λj

= 0. (2.7.4)

Similarly by interchanging the roles of i and j in the above argument, one obtains

lim
j→∞

λij + λji
λi + λj

= 0 (2.7.5)

for each i ∈ X . Hence from (2.7.4), and (2.7.5), we conclude inf
i,j
(
λij+λji

λi+λj
) = 0.

Next we wish to investigate the eventual meeting event for semi-Markov family. Clearly, in
view of Theorem 2.7.1(2), a condition like inf(i,j)∈X2,y1,y2,y

(λij(y1+y)+λji(y2+y))

λi(y1+y)+λj(y2+y)
> 0 is needed

for this purpose. However, finiteness of X is not enough to ensure that. We consider the
following assumption.

(A4) X is finite and sup(i,j)∈X2,y1≥0,y2≥0

∥∥∥1− (λij(y1+·)+λji(y2+·))
λi(y1+·)+λj(y2+·)

∥∥∥
L∞

< 1.

Theorem 2.7.3. Assume (A1)-(A4) and that X1 and X2 are as in Notation 2.5.1. Then
X1 and X2 eventually meet with probability 1.

Proof. Using ϕ2(y) := 1− (λij(y1+y)+λji(y2+y))

λi(y1+y)+λj(y2+y)
, we rewrite (2.6.4) as

a′(i,j,y1,y2) =

∫ ∞

0

ϕ1(y)ϕ2(y)dy ≤ ∥ϕ1∥L1∥ϕ2∥L∞ = ∥ϕ2∥L∞ .

Now by a direct application of (A4), we get that supremum of ∥ϕ2∥L∞ over all (i, j) ∈
X2, y1 ≥ 0, y2 ≥ 0 is less than 1, which implies that

sup
(i,j)∈X2,y1≥0,y2≥0

a′(i,j,y1,y2) < 1. (2.7.6)

Again as in the proof of Theorem 2.7.1, the total probability of never meeting is the
probability of intersection of occurrence of not meeting in next transition for every tran-
sition, and (A2) ensures almost sure infinite transitions. Moreover, since (Z1, Z2) is strong
Markov (Theorem 2.3.4(1)) and {Tn}n≥1 are stopping times P

(
{X1

Tn
̸= X2

Tn
} | FTn−1

)
=

a′
(X1

Tn−1
,X2

Tn−1
,Y 1

Tn−1
,Y 2

Tn−1
)
which is not more than the left side of (2.7.6). Therefore, in the

similar line of the proof of Theorem 2.7.1, we get

E

[
N∏

n=1

1{X1
Tn

̸=X2
Tn

} | F0

]
≤

(
sup

(i,j)∈X2,y1≥0,y2≥0

a′(i,j,y1,y2)

)N

(2.7.7)

and P (X1
t ̸= X2

t ,∀t ≥ 0 | F0) = limN→∞E
[∏N

n=1 1{X1
Tn

̸=X2
Tn

} | F0

]
. This limit is zero from

(2.7.6) and (2.7.7). Thus the probability of never meeting is zero.
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Under (A1)-(A4), the pair (X1, X2) not only surely meet, the expected number of transitions
needed for meeting is also finite. A rather stronger result is shown below.

Theorem 2.7.4. Assume (A1)-(A4) and that X1 and X2 are as in Notation 2.5.1. If N
denotes the number of collective transitions until the first meeting time of X1 and X2, then
E[N r] <∞ for any r ≥ 1.

Proof. For the sake of brevity, we write a′
(Z1

Tn
,Z2

Tn
)
for a′

(X1
Tn

,X2
Tn

,Y 1
Tn

,Y 2
Tn

)
, a notation that

appears in the proof of Theorem 2.6.4. Since N denotes the number of collective transitions
until the first meeting time, using the above notation and (2.7.7), we get for all n ≥ 0

P (N = n+ 1) =E

[(
n∏

r=1

1{X1
Tr

̸=X2
Tr

}

)
E
(
1{X1

Tn+1
=X2

Tn+1
} | FTn

)]

≤

(
sup
z1,z2

a′(z1,z2)

)n(
1− inf

z1,z2
a′(z1,z2)

)
,

by following the convention that product and intersection of an empty family are 1 and
empty set respectively. Thus the rth raw moment, E[N r] is

∞∑
n=1

nrP (N = n) ≤
(
1− inf

z1,z2
a′(z1,z2)

)(
sup
z1,z2

a′(z1,z2)

)−1 ∞∑
n=1

nr

(
sup
z1,z2

a′(z1,z2)

)n

.

The infinite series on the right converges provided supz1,z2 a
′
(z1,z2) < 1 which is ensured in

(2.7.6) due to the assumption (A4). To be more precise, that series sum is expressed as
Li−r(supz1,z2 a

′
(z1,z2)) where Lir(z) is polylogarithm function of order r and with argument

z. Thus we conclude that N has finite moments.

We end this section with the final result below. That requires essential infimum of at least
one entry of each row of λ to be nonzero.

Theorem 2.7.5. Assume (A1)-(A4) and that X1 and X2 are as in Notation 2.5.1. Further
assume that for each k ∈ X there is at least one k′ ∈ X \ {k} such that ∥λkk′−1∥L∞ < ∞.
Then X1 and X2 eventually merge with probability 1.

Proof. Since (A1)-(A4) hold, Theorem 2.7.3 ensures eventual meeting with probability 1.
Hence T1 < ∞ with probability 1, where T1 denotes the first meeting time (see Definition
2.6.1 ). If T1 is NMT (not a merging time), X1 and X2 separate at the next transition and
again due to Theorem 2.7.3, they meet at T2, say, which is again finite almost surely. By
repeating this argument, if X1 and X2 never merge, we obtain an infinite sequence {Tn}n of
meeting times where each of them are finite almost surely. Using kn := X1

Tn = X2
Tn and yn :=
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Chapter 2 : Homogeneous semi-Markov processes

max(Y 1
Tn , Y

2
Tn), we get P ({Tn is NMT} | FTn) = P ({Tn is NMT} | kn, yn) = 1 − P(kn, yn),

since {Tn}n≥1 is a sequence of stopping times and (Z1, Z2) is strong Markov. Therefore,

E

[
N∏

n=1

1{Tn is NMT}

]
=E

[
N−1∏
n=1

1{Tn is NMT}E
[
1{TN is NMT} | FTN

]]

≤
(
1− inf

k∈X ,y≥0
P(k, y)

)
E

[
N−1∏
n=1

1{Tn is NMT}

]
.

Since the event of never merging can be expressed as ∩n≥1{Tn is NMT}, an upper bounded
of its probability can be obtained by using the above inequality repeatedly, i.e.,

P (Tn is NMT,∀n ≥ 1) = lim
N→∞

E

[
N∏

n=1

1{Tn is NMT}

]
≤ lim

N→∞

(
1− inf

k∈X ,y≥0
P(k, y)

)N

.

(2.7.8)

This confirms that the probability of never merging is zero, provided infk∈X ,y≥0P(k, y) > 0.
Since, (A3) holds, from Theorem 2.6.6,

P(k, y) ≥
∫ ∞

0

e
−

∑
k′ ̸=k

∥λkk′∥∞y′ ∑
k′ ̸=k

∥λkk′−1∥−1
∞ dy′

or, inf
k∈X ,y≥0

P(k, y) ≥
(∫ ∞

0

e−Cy′dy′
)
min
k∈X

∑
k′ ̸=k

∥λkk′−1∥−1
∞ .

Since for each k ∈ X , there is a k′ ∈ X \ {k} such that ∥λkk′−1∥L∞ <∞, and X is finite, the
right side of above inequality is positive. Thus infk∈X ,y≥0P(k, y) > 0 as desired.

2.8 Conclusion

In this chapter we make use of a particular type of semimartingale representation of a class
of semi-Markov processes. We have then studied various aspects of a pair of solutions having
two different initial conditions. Several questions regarding the meeting and merging of
stochastic flow of SMP have been answered by considering a solution pair. We have obtained
explicit expressions of probabilities of many relevant events in terms of the transition rate
matrix.

The study of eventual meeting and merging in Section 7 is carried out for finite state-
space case. These results could be examined for certain infinite state cases, like birth-death
processes, or more generally, where all entries of λ, except k nearest neighbours of diagonal
are zero. The present study which has been carried out for the time-homogeneous case, is
worth investigating for the time non-homogeneous case. We study that in the next chapter.
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Chapter 3

Non-Homogeneous semi-Markov
processes

3.1 Introduction

In this chapter also we confine ourselves to the study of SMPs on a countable state space.
The continuous-time discrete-state non-homogeneous Markov chains are included in this
class. The class we consider in this chapter is such that the embedded discrete time Markov
chain is allowed to be non-homogeneous. However, a more general non-homogeneity that
appears in a continuous time Markov process having time dependent transition rate is not
included. SMP beyond the class of time homogeneity has been first studied in [18] and [28].
Various different aspects and generalisations of non-homogeneous SMP(NHSMP) has further
been explored in [20, 22, 21, 23]. In these references several applications of NHSMP has also
been emphasised.

The non-homogeneous SMP, augmented with the age and transition count processes is repre-
sented as semi-martingales using a system of stochastic integral equations involving a Poisson
random measure. The coefficients of the equation depend on a given transition rate function
and an additional gaping parameter. It is worth noting that neither the coefficients are
compactly supported nor the intensity measure of the PRM is finite. Note that, compactly
supported coefficient or finiteness of intensity measure are the standard assumptions under
which an SDE involving PRM is studied commonly. So, we produce a self-contained proof
of the existence and uniqueness of the solution to the SDE in this chapter. This extends the
results obtained in Section 2.2. Subsequently, we extend the results presented in Sections
2.3-2.5 by showing that the state component of the solution is a pure non-homogeneous
SMP with the given non-homogeneous transition rate function. We also derive the law of
the bivariate process obtained from two solutions of the equation having two different initial
conditions.
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Chapter 3 : Non-Homogeneous semi-Markov processes

In the study of stochastic flow on a discrete state space, meeting and merging events are of
significant importance. Investigation of meeting and merging of homogeneous semi-Markov
processes (SMP) appears in the preceding chapter, which is not an off-the-shelf problem. In
contrast to the traditional description of a semi-Markov chain in terms of a renewal process,
a semimartingale representation (see [11, 13, 14] for more details) has been crucially used in
that chapter. In the present chapter, we extend many results of sixth and seventh sections
of earlier chapter for a larger class of SMPs where the embedded Markov chain may not
be homogeneous. Following Chapter 2, with the help of an additional gaping parameter,
we have obtained explicit formulae for probabilities of various meeting and merging related
events of a generalized semi-Markov stochastic flow.

The study of meeting and coalescence of stochastic processes is an active branch of
probability theory. Some of the earliest instances of such study dates back to Arratia [1],
and Harris [17] where they have considered merging of one dimensional Brownian flow. On
the other hand mixing for a class of non Markov flows have been investigated by Melbourne
and Terhesiu [29]. However, to the best of our knowledge, questions regarding meeting and
merging have not been addressed in the literature for stochastic flow of non-homogeneous
SMPs. In [4] for the stability analysis of Markov modulated diffusions, the merging of Markov
chains has been crucially used. In view of this, we believe that the study of meeting and
merging of multiple semi-Markov particles are relevant for investigating stability properties
of a diffusion that is modulated by semi-Markov processes.

It is shown in Chapter 2 that for a homogeneous semi-Markov flow, unlike the Markov
counterpart, a pair of solutions may not merge when they meet. Moreover, in general the
merging time is not a stopping time, although the meeting time is. The study becomes even
more involved in the absence of time homogeneity. In this chapter we explain this with an
example of a non-homogeneous Markov flow on binary state-space, where a pair of chains
meet almost surely but never merge. The absence of homogeneity for the semi-Markov flow
ramifies the analysis further.

We derive an expression of the conditional probability of meeting in the next transition.
Using the notion of coherent meeting, where both of the chains have identical transition
count at the meeting time, we obtain a lower bound of probability of merging in the next
transition. We further provide with a sufficient condition under which should a meeting is
non coherent, is not a merging. Moreover, we show that under such circumstances, the lower
bounds are the actual merging probabilities. A set of sufficient conditions are also obtained
under which a pair of SMPs eventually meet or merge with probability one. The number
of transitions required to encounter a meeting is shown to have all moments finite. Many
numerical examples are considered which highlight the intricacies and implications of the
theoretical results. In one of the numerical examples the distribution of time of first meeting
and merging are obtained and are compared with that of the holding times, for the purpose
of illustration.
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3.2 Semimartingle Representation for Non-homogeneous

Semi-Markov Processes

Let (Ω,F , {Ft}t≥0, P ) be the underlying filtered probability space satisfying the usual hy-
pothesis and X = {1, 2, . . .} the state space. We wish to construct a semi-Markov pro-
cess on this state space with a given transition rate function. To this end we first em-
bed X in R and endow with a total order ≺1, which in turn induces a total order ≺2

on X2 := {(i, j) ∈ X 2 | i ̸= j} by following lexicographic order. For each y ∈ R+,
n ∈ N0, λ(y, n) := (λij(y, n)) denote a matrix in which the ith diagonal element is negative
of λi(y, n) :=

∑
j∈X\{i} λij(y, n) and for each (i, j) ∈ X2, λij : R+ × N0 → R+ is a bounded

measurable function satisfying the following two assumptions.

(B1). If ci :=
∑

j∈X\{i}
∥λij(·, ·)∥L∞

(R+×N0)
, c := supi ci <∞.

(B2). For each n in N0, and i in X , limy→∞ γi(y, n) = ∞, where γi(y, n) :=
∫ y

0
λi(y

′, n)dy′.

For each (i, j) ∈ X2, we consider another measurable function λ̃ij : R+ ×N0 → R+ such that
for each y ∈ R+, and n ∈ N0

λij(y, n) ≤ λ̃ij(y, n), (3.2.1)

and also for almost every y ∈ R+ and n ∈ N0

λ̃ij(y, n) ≤ ∥λij(·, ·)∥L∞
(R+×N0)

. (3.2.2)

Now for each y ∈ R+, and n ∈ N0, with the help of λ(y, n) and λ̃(y, n) := (λ̃ij(y, n)), we
introduce a disjoint collection of intervals Λ := {Λij(y, n) : (i, j) ∈ X2}, by

Λij(y, n) =

 ∑
(i′,j′)≺2(i,j)

λ̃i′j′(y, n)

 +
[
0, λij(y, n)

)
(3.2.3)

where a + B = {a + b | b ∈ B} for a ∈ R, B ⊂ R. Clearly, for each y and n, the interval
Λij(y, n) is of length λij(y, n). If Ci := ci +

∑
k≺1i

ck, according to (B1) and (3.2.2), the set
Λi(y, n) := ∪j∈X\{i}Λij(y, n) is contained in the finite interval [0, Ci], for almost every y ∈ R+

and each n. Using the above intervals we define hΛ : X × R+ × N0 × R → R as

hΛ(i, y, n, v) :=
∑

j∈X\{i}

(j − i)1Λij(y,n)(v) (3.2.4)

and gΛ : X × R+ × N0 × R → R as

gΛ(i, y, n, v) :=
∑

j∈X\{i}

1Λij(y,n)(v). (3.2.5)
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These functions are piece-wise constant in v variable. Using these, we consider the following
system of coupled stochastic integral equations in X, Y and N

Xt = X0 +

∫ t

0+

∫
R
hΛ(Xu−, Yu−, Nu−, v)℘(du, dv) (3.2.6)

Yt = Y0 + t−
∫ t

0+

(Yu−)

∫
R
gΛ(Xu−, Yu−, Nu−, v)℘(du, dv) (3.2.7)

Nt =

∫ t

0+

∫
R
gΛ(Xu−, Yu−, Nu−, v)℘(du, dv) (3.2.8)

for t ≥ 0, where
∫ t

0+
is integration over the interval (0, t], ℘(du, dv) is a PRM on R+×R with

intensity m2(du, dv), and defined on the probability space (Ω,F , P ). We also assume that
{℘((0, t] × dv)}t≥0 is adapted to {Ft}t≥0. For t ≥ 0, we rewrite the above coupled integral
equation (3.2.6)-(3.2.8) as a vector form given by,

Zt = Z0 +

∫ t

0

a(Zu−)du+

∫ t

0+

∫
R
J(Zu−, v)℘(du, dv), (3.2.9)

where for each t ≥ 0, Zt = (Xt, Yt, Nt), N0 = 0, z = (i, y, n), a(z) = (0, 1, 0), and J(z, v)
is the vector (hΛ(z, v),−ygΛ(z, v), gΛ(z, v)). Note that the assumption (B1) is weaker than
(A1).

Remark 3.2.1. The existing results on the general theory of SDE are not directly applicable
for assuring existence and uniqueness of solution to the system of integral equations (3.2.6)-
(3.2.8). We recall that Theorem 3.4 (p-474) of [8] assumes compact support of the integrands
whereas Theorem IV.9.1 (p-231) of [19] assumes finiteness of the intensity measure on the
complement of a neighbourhood of origin. For the system (3.2.6)-(3.2.8) neither the inte-
grands are compactly supported nor the intensity of Poisson random measure is finite in the
complement of any bounded set. For this reason we produce an original proof of existence
and uniqueness of (3.2.6)-(3.2.8).

Theorem 3.2.2. Under assumption (B1), there exists an increasing sequence of stopping
times {Tn}∞n=1 such that the following hold.

1. The coupled system of stochastic integral equations (3.2.6)-(3.2.8) has a unique strong
solution (X, Y,N) = (Xt, Yt, Nt)t∈[0,τ) where τ = limn→∞ Tn.

2. Almost surely X, Y , and N have r.c.l.l. paths respectively and they jump only at Tn,
for each n. While X and N are piece-wise constants, Y is piece-wise linear.

3. We set T0 := −Y0. For each n ∈ N, (i) YTn = 0, (ii) YTn− = Tn − Tn−1, and (iii)
NTn = n. Also (iv) Yt = t− TNt for all t ∈ R+.
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Proof. We recall that due to Assumption (B1) and (3.2.2), for almost every y ∈ R+, and
each i, n the union of intervals {Λij(y, n) | j ∈ X \ {i}} is contained in [0, Ci]. For each ω ∈ Ω
and i ∈ X we define the set Di := {s ∈ (0,∞) | ℘(ω)({s} × [0, Ci]) > 0}, the collection of
time coordinates of the point masses of a realisation of the PRM ℘(ω) in which the second
component is not more than Ci. Since, the interval [0, Ci] has finite Lebesgue measure, by
Lemma 2.2.1, Di has no limit points in R with probability 1. Thus for each i ∈ X we can
enumerate Di, in increasing order

Di = {σi
l}∞l=1, where σ

i
1 < · · · < σi

l < σi
l+1 < · · · for each ω. (3.2.10)

For each l ∈ N, σi
l : Ω → (0,∞] and {σi

l ≤ t} = {ω | ℘((0, t] × [0, Ci]) ≥ l} ∈ Ft, as
℘((0, t]× [0, Ci]) is Ft measurable. Hence σi

l is a stopping time for each i ∈ X and l ≥ 1. As
Di has no limit points, σi

l ↑ ∞ as l → ∞ almost surely.

Here we plan to construct an increasing sequence of stopping times {σ̄m}∞m=1 so that we can
first define a solution to equations (3.2.6)-(3.2.8) on the time interval [0, σ̄1] and then on the
next time interval (σ̄1, σ̄2], and so on. For a fixed ω ∈ Ω, X, Y at time t = 0 are X0 ∈ X ,
and Y0 ∈ R+ respectively. Using (3.2.10), we consider the increasing sequence DX0 and call
the first element of this sequence as σ̄1. Clearly σ̄1 is a stopping time. Moreover,

℘(ω) ([0, σ̄1)× [0, CX0 ]) = 0,

and thus for t ∈ [0, σ̄1)

Xt(ω) = X0 +

∫ t

0+

∫ CX0

0

hΛ(Xu−, Yu−, Nu−, v)℘(ω)(du, dv) = X0,

Yt(ω) = Y0 + t−
∫ t

0+

∫ CX0

0

(Yu−)gΛ(Xu−, Yu−, Nu−, v)℘(ω)(du, dv) = Y0 + t,

Nt(ω) =

∫ t

0+

∫ CX0

0

gΛ(Xu−, Yu−, Nu−, v)℘(ω)(du, dv) = 0.

Note that in the above integrations the domain R has been replaced by the compact set
[0, CX0 ], as the integrands vanish outside this interval. Hence at t = σ̄1,

Xσ̄1(ω) = X0 +

∫ CX0

0

hΛ(X0, Yσ̄1−, N0, v)℘(ω)({σ̄1} × dv),

Yσ̄1(ω) = Y0 + σ̄1 −
∫ CX0

0

(Yσ̄1−)gΛ(X0, Yσ̄1−, N0, v)℘(ω)({σ̄1} × dv),

Nσ̄1(ω) =

∫ CX0

0

gΛ(X0, Yσ̄1−, N0, v)℘(ω)({σ̄1} × dv).

Hence the solution is unique in the time interval [0, σ̄1]. Again by using (3.2.10), we have
an increasing sequence DXσ̄1

. As DXσ̄1
∩ (σ̄1,∞) is nonempty almost surely, there is the first

element of the set, denoted by σ̄2.
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We would next argue that σ̄2 is a {Ft}-stopping time. First we observe {σ̄2 ≤
t} = ({σ̄1 ≥ t} ∩ {σ̄2 ≤ t}) ∪ ({σ̄1 < t} ∩ {σ̄2 ≤ t}). The first event {σ̄1 ≥ t} ∩
{σ̄2 ≤ t} is empty set and the second event {σ̄1 < t} ∩ {σ̄2 ≤ t} can be written as
∪

s∈Q,s<t
({℘(ω) ([0, s]× [0, CX0 ]) = 1} ∩ {℘(ω) ((s, t]× [0, CXs ]) ̸= 0}) ∈ Ft. Thus we have,

℘(ω)
(
(σ̄1, σ̄2)× [0, CXσ̄1

]
)
= 0

and for t ∈ (σ̄1, σ̄2), as before

Xt(ω) = Xσ̄1 +

∫ t

σ̄1+

∫ CXσ̄1

0

hΛ(Xu−, Yu−, Nu−, v)℘(ω) (du, dv) = Xσ̄1 ,

Yt(ω) = Yσ̄1 + (t− σ̄1)−
∫ t

σ̄1+

∫ CXσ̄1

0

(Yu−)gΛ(Xu−, Yu−, Nu−, v)℘(ω) (du, dv) = Yσ̄1 + (t− σ̄1),

Nt(ω) = Nσ̄1 +

∫ t

σ̄1+

∫ CXσ̄1

0

gΛ(Xu−, Yu−, Nu−, v)℘(ω)(du, dv) = Nσ̄1 .

Hence by using above equalities, at t = σ̄2,

Xσ̄2(ω) = Xσ̄1 +

∫ CXσ̄1

0

hΛ(Xσ̄1 , Yσ̄2−, Nσ̄1 , v)℘(ω)({σ̄2} × dv),

Yσ̄2(ω) = Yσ̄1 + (σ̄2 − σ̄1)−
∫ CXσ̄1

0

(Yσ̄1−)gΛ(Xσ̄1 , Yσ̄2−, Nσ̄1 , v)℘(ω)({σ̄2} × dv),

Nσ̄2(ω) = Nσ̄1 +

∫ CXσ̄1

0

gΛ(Xσ̄1 , Yσ̄2−, Nσ̄1 , v)℘(ω)({σ̄2} × dv).

Continuing in the similar way we can construct a solution in a unique manner for each
consecutive interval (σ̄m, σ̄m+1], where m ≥ 2. Again, with the similar argument {σ̄m}m≥0

are Ft-stopping times. Moreover, for a fixed ω, Xt(ω) = Xσ̄m(ω) for all t ∈ [σ̄m(ω), σ̄m+1(ω)).
Hence X is an r.c.l.l. and piece-wise constant process almost surely on [0, limm→∞ σ̄m]. By
this, Part (1) and (2) would have followed if {σ̄m}m≥1 were the jump times, which may not
be true. For this reason, now we select an appropriate sub-sequence of σ̄m which are the

jump times. To this end we first note that
∫ CXt−
0 gΛ(Xt−, Yt−, Nt−, v)℘(ω)({t} × dv) is zero

for all t ∈ (σ̄m, σ̄m+1) for every m ≥ 1. Using this and Xσ̄m− = Xσ̄m−1 , Nσ̄m− = Nσ̄m−1 we
introduce

l1 := min{m ≥ 1:

∫ CXσ̄m−1

0

gΛ(Xσ̄m−1 , Yσ̄m−, Nσ̄m−1 , v)℘(ω)({σ̄m} × dv) ̸= 0}. (3.2.11)

From (3.2.4) and (3.2.5) it is evident that hΛ and gΛ have identical supports in v variable.
Hence the integral∫
I
hΛ(Xt−, Yt−, Nt−v)℘({t} × dv) is non-zero if and only if

∫
I
gΛ(Xt−, Yt−, Nt−v)℘({t} × dv)

is non-zero, where I is any interval. Then t = σ̄l1 is the first time when both the integrals∫
[0,CXt− ]

gΛ(Xt−, Yt−, Nt−, v)℘(ω)({t}×dv) and

∫
[0,CXt− ]

hΛ(Xt−, Yt−, Nt−, v)℘(ω)({t}×dv)
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are non-zero. Consequently, Yt = Y0 + t, Xt = X0, and Nt = 0, for all t ∈ [0, σ̄l1). Hence
Xσ̄l1

− = X0, Yσ̄l1
− = Y0 + σ̄l1 and Nσ̄l1

− = 0. Furthermore, at t = σ̄l1 ,

0 ̸=
∫ σ̄l1

0+

∫ CXσ̄l1−1

0

gΛ(Xt−, Yt−, Nt−, v)℘(ω)(dt, dv)

=

∫ CXσ̄l1−1

0

gΛ(Xσ̄l1−1
, Yσ̄l1

−, Nσ̄l1−1
, v)℘(ω)({σ̄l1} × dv) = 1,

using (3.2.11) and the facts that ℘(ω)({σ̄l1} × [0, CXσ̄l1−1
]) = 1 and gΛ(i, y, n, v) ∈ {0, 1} for

every i, y, n, and v. Thus from (3.2.8) and above expressions

Nσ̄l1
=

∫ σ̄l1

0+

∫ CXσ̄l1−1

0

gΛ(Xt−, Yt−, Nt−, v)℘(ω)(dt, dv) = 1.

Similarly, using (3.2.7) we have Yσ̄l1
= 0. To see this, we write Yσ̄l1

= Yσ̄l1−
+ (Yσ̄l1

− Yσ̄l1
−),

i.e.,

Yσ̄l1
=Yσ̄l1−

−
∫ CXσ̄l1−1

0

(Yσ̄l1
−)gΛ(Xσ̄l1

−, Yσ̄l1
−, Nσ̄l1

−, v)℘(ω)({σ̄l1} × dv)

=Yσ̄l1
− − Yσ̄l1

− = 0.

In general, for every n ≥ 1, we set

ln+1 := min

{
m > ln :

∫ CXσ̄m−1

0

gΛ(Xσ̄m−1 , Yσ̄m−, Nσ̄m−1 , v)℘(ω)({σ̄m} × dv) ̸= 0

}
.

(3.2.12)
In other words, for every t ≥ 0,∫

R
gΛ(Xt−, Yt−, Nt− v)℘({t} × dv) =

{
1 , if t = σ̄ln for some n ≥ 1
0 , otherwise.

(3.2.13)

From (3.2.13) and (3.2.8) we get

Nt =
∑

{r≥1|σ̄lr≤t}

1 =
∞∑
r=1

1[σ̄lr ,∞)(t). (3.2.14)

Moreover, from (3.2.13) and (3.2.7) we get

Yt =Y0 + t−
∑

{r≥1|σ̄lr≤t}

Yσ̄lr− = Y0 + t−
∞∑
r=1

(Yσ̄lr−)1[σ̄lr ,∞)(t). (3.2.15)

Furthermore, as the support of gΛ and hΛ are identical, from (3.2.12) we have that the
integral ∫

R
hΛ(Xt−, Yt−, Nt− v)℘({t} × dv)
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is nonzero if and only if t = σ̄ln for some n ≥ 1. Therefore, if n ≥ 1 is such that σ̄ln ≤ t <
σ̄ln+1 , then Xt = Xσ̄ln

. Thus we can write

Xt =X0 +
∑

{r≥1|σ̄lr≤t}

(Xσ̄lr
−Xσ̄lr−1

) = X0 +
∞∑
r=1

(Xσ̄lr
−Xσ̄lr−1

)1[σ̄lr ,∞)(t).

Hence X and N are r.c.l.l., and piece-wise constant and Y is r.c.l.l., and piece-wise
linear. We denote Tn := σ̄ln for each n ≥ 1. From above, it is evident that {Tn}n≥1 is
the desired sequence of stopping times at which the processes X, Y , and N jump and the
properties in parts (1) and (2) hold.

Next for proving part (3), we first rewrite (3.2.15)

Yt =Y0 + t−
∑

{r≥1|Tr≤t}

YTr−

and thus for all n ∈ N,

YTn =Y0 + Tn −
∑

{r≥1|Tr≤Tn}

YTr−

=

Y0 + Tn −
∑

{r≥1|Tr<Tn}

YTr−

− YTn−

=YTn− − YTn− = 0.

Thus (i) holds. For showing (ii) we first recall that YT1− = Y0+T1, which is same as T1−T0.
Now for n > 1 using YTn−1 = 0 we get

YTn− =

Y0 + Tn −
∑

{r≥1|Tr<Tn}

YTr−


=(Tn − Tn−1) +

Y0 + Tn−1 −
∑

{r≥1|Tr≤Tn−1}

YTr−


=(Tn − Tn−1) + YTn−1 = (Tn − Tn−1).

Hence (ii) is shown. Again, (3.2.14) implies that Nt = max{r : Tr ≤ t}. That is NTn =
max{r : Tr ≤ Tn} = n, which proves (iii). Finally, (iv) follows using (3.2.15) and (ii) as
below

Yt =Y0 + t−
∑

{1≤r≤Nt}

(Tr − Tr−1) = Y0 + t− (TNt − T0) = t− TNt .
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Figure 3.1: Illustration of a sample path of the joint process (X, Y,N) where the state space
is X = {1, 2, 3}. The state, age, and counting processes are plotted in blue, red, and black
against the horizontal time axis.

Remark 3.2.3. The jump times {Tn}n≥1 of the process X are called the transition times.
We need to prove that this sequence diverges to infinity almost surely for establishing that
the solution is globally determined with probability 1. This is accomplished in the following
Theorem.

Theorem 3.2.4. There exists a unique strong solution Z = (Xt, Yt, Nt)t≥0 of the coupled
SDE (3.2.6)-(3.2.8)

Proof. Let {Tn}n≥1 be as in Theorem 3.2.2. Now we will show that Tn diverges. Let
τ := limn→∞ Tn. Clearly, for a fixed ϵ > 0, the event {τ < ∞} is a subset of ∪n0≥1{Tn −
Tn−1 < ϵ, ∀n ≥ n0}. For the sake of brevity, we denote {Tn − Tn−1 < ϵ} as An for
each n. Therefore, we will show P (∩n≥n0An) = 0 for each n0 which is enough for proving
P (τ < ∞) = 0. To this end we first compute the conditional probability of the event An

given the observations till Tn−1, using the properties of Poisson random measure. Indeed,
using part (3) of Theorem 3.2.2, occurrence of An is same as having Poisson random measure

of ∪0<y<ϵ

(
{Tn−1 + y} × ΛXTn−1

(y, n− 1)
)
positive. Thus using the Lebesgue intensity of ℘,

we have

P
(
An | Tn−1, XTn−1 , . . . , T0, X0

)
= P

(
℘

(
∪

0<y<ϵ

(
{Tn−1 + y} × ΛXTn−1

(y, n− 1)
))

̸= 0 | Tn−1, XTn−1 , . . . , T0, X0

)
=
(
1− e

−
∫ ϵ
0 λXTn−1

(y,n−1)dy
)

≤
(
1− e−ϵc

)
(3.2.16)
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which is a deterministic constant. We recall that the last inequality is due to Assumption
(B1). Next we note that if

E

[ ∏
n0≤n≤l

1An

]
≤
(
1− e−ϵc

)
E

[ ∏
n0≤n≤l−1

1An

]
(3.2.17)

holds for all l ≥ n0, using that repeatedly, we get

P (∩n0≤nAn) ≤ P (∩n0≤n≤lAn) = E

[ ∏
n0≤n≤l

1An

]
≤ (1− e−ϵc)l−n0+1

for all l ≥ n0. The right side clearly vanishes as l → ∞, and thus P (∩n0≤nAn) = 0, as desired,
provided (3.2.17) holds. Finally we show (3.2.17) below using the property of conditional
expectation, and inequality (3.2.16)

E

[ ∏
n0≤n≤l

1An

]
= E

[
E

[ ∏
n0≤n≤l

1An

∣∣∣ Tl−1, XTl−1
, . . . , T0, X0

]]

= E

[( ∏
n0≤n≤l−1

1An

)
E
[
1Al

∣∣∣ Tl−1, XTl−1
, . . . , T0, X0

]]

≤
(
1− e−ϵc

)
E

[ ∏
n0≤n≤l−1

1An

]

for all l ≥ n0. Hence the proof is complete.

The above theorem essentially asserts that the jump process X is pure. In the next section
we show that X is a semi-Markov process.
The results in earlier chapter can be easily extended for NHSMP. However, for the sake of
completeness we give full details of this extension in the following Theorems 3.3.1, 3.4.1,
3.4.4 and Proposition 3.4.3, 3.4.5.

3.3 Semi-Markov Law of the Solution

Theorem 3.3.1. Let Z = (X, Y,N) = {(Xt, Yt, Nt)}t≥0 be a unique strong solution to
(3.2.6)-(3.2.8). Then the following hold.

i. The process {Xt}t≥0 is a pure SMP.

ii. The embedded chain {XTn}n≥1 is a discrete time Markov chain.
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Proof. First we will prove that X is SMP. We have already seen in the proof of Theorem
3.2.2, that X is an r.c.l.l. process. Next, we need to show (0.2.2), i.e., for each n ∈ N,
y ∈ R0, j ∈ X

P [XTn+1 = j, Tn+1 − Tn ≤ y | X0, T0, XT1 , T1, . . . , XTn , Tn]

= P [XTn+1 = j, Tn+1 − Tn ≤ y | XTn ]. (3.3.1)

We note that the left side is equal to

P (Tn+1 − Tn ≤ y | (X0, T0), (XT1 , T1), . . . , (XTn , Tn))

×P (XTn+1 = j | (X0, T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y}). (3.3.2)

Each of the two conditional probabilities is further simplified below. For almost every ω ∈ Ω,
Equation (3.2.13) and Theorem 3.2.2 part (3)(iii)-(iv) imply that for any n ≥ 1∫ Tn+t

Tn+

(u− Tn)

∫
R
gΛ(XTn , u− Tn, n, v)℘(du, dv) =

{
0, for t < Tn+1 − Tn

Tn+1 − Tn, for t = Tn+1 − Tn.

Hence, by a suitable change of variable, almost surely Tn+1 − Tn is the first occurrence of a
non-zero value of the following map

t 7→
∫ t

0+

u

∫
R
gΛ(XTn , u, n, v)℘(Tn + du, dv)

and that occurs at t = Tn+1 − Tn. Again, since ℘(Tn + du, dv) is independent to FTn we
obtain, Tn+1 − Tn is conditionally independent to FTn given XTn . Thus for all n ≥ 1

P (Tn+1 − Tn ≤ y | (X0, T0), (XT1 , T1), . . . , (XTn , Tn))

= P (Tn+1 − Tn ≤ y | XTn). (3.3.3)

By substituting t equal to Tn and Tn+1 in Equation (3.2.6), and using Theorem 3.2.2 part
(3) (ii)-(iii) we get

XTn+1 = XTn +

∫
R
hΛ(XTn , Tn+1 − Tn, n, v)℘({Tn+1} × dv), (3.3.4)

as XTn+1− = XTn , YTn+1− = Tn+1 − Tn and NTn+1− = n. Thus using (3.3.4)

P
(
XTn+1 = j | (X0, T0), (XT1 , T1), . . . , (XTn , Tn), {Tn+1 − Tn ≤ y}

)
= P

(∫
R
hΛ(XTn , Tn+1 − Tn, n, v)℘({Tn + (Tn+1 − Tn)} × dv) =j −XTn

∣∣∣
(X0, T0), (XT1 , T1), . . . , (XTn , Tn),{Tn+1 − Tn ≤ y}

)
.
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Again, using the independence of ℘(Tn + du, dv) to FTn and conditional independence of
Tn+1 − Tn to FTn given XTn we conclude, the right side expression is equal to

P

(∫
R
hΛ(XTn , Tn+1 − Tn, n, v)℘({Tn + (Tn+1 − Tn)} × dv) =j −XTn

∣∣∣
XTn ,{Tn+1 − Tn ≤ y}

)
which is again equal to P

(
XTn+1 = j | XTn , {Tn+1 − Tn ≤ y}

)
using (3.3.4). Thus, using this

simplification and (3.3.3) in (3.3.2), we obtain for all n ≥ 1

P (XTn+1 = j, Tn+1 − Tn ≤ y | (X0, T0), (XT1 , T1), . . . , (XTn , Tn))

= P (Tn+1 − Tn ≤ y | XTn)P
(
XTn+1 = j | XTn , {Tn+1 − Tn ≤ y}

)
= P

(
XTn+1 = j, Tn+1 − Tn ≤ y | XTn

)
.

Hence, part (i) is proved.
For every n ≥ 1, taking y → ∞ on both sides in Equation (3.3.1), we get

P [XTn+1 = j | XT0 , T0, XT1 , T1, . . . , XTn , Tn] = P [XTn+1 = j | XTn ].

Hence the part (ii).

Theorem 3.3.2. Let Z = (X, Y,N) = {(Xt, Yt, Nt)}t≥0 be a unique strong solution to
(3.2.6)-(3.2.8) with an additional condition that X is finite, i.e., X = {1, 2, . . . , k} for some
natural number k. Then the process Z is a strong Markov process.

Proof. We note that for each z := (i, y, n) ∈ X × R+ × N0, the support of the functions
hΛ(z, ·), and gλ(z, ·) are contained in Λi(y, n). On the other hand, for almost every y > 0,
Λi(y, n) is contained in the interval [0,

∑
i∈X

∥λi∥L∞
(R+×N0)

), which is a finite interval due to (B1)

provided X is finite. Hence by following the line of argument of Theorem 2.3.5 of Chapter
2, which uses [8, Theorem IX.3.9], we obtain the result.

3.4 Expression of Transition Kernel

For each i ∈ X , n ∈ N0, we define a function F (· | i, n) : [0,∞) → [0, 1] as

F (y | i, n) := 1− e−γi(y,n) (3.4.1)

where γi(y, n) is as in (B2). Clearly, F (· | i, n) is differentiable almost everywhere. To see
this, we note that γi(y, n) is an integral of a bounded Lebesgue measurable function, and
thus is absolutely continuous in y. Let f(y | i, n) be the almost everywhere derivative of
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F (y | i, n). We also define for each y ∈ R+, n ∈ N0, a matrix p(y, n) := (pij(y, n))X×X , such
that

pij(y, n) :=


λij(y, n)

λi(y, n)
1(0,∞)(λi(y, n)), if j ̸= i

1{0}(λi(y, n)), if j = i.
(3.4.2)

Since, λij(y, n) ≥ 0 and
∑

j∈X\{i} λij(y, n) = λi(y, n), for each n ∈ N0 and y ∈ R+, p(y, n)

is a transition probability matrix. The following theorem asserts that p(y, n) gives the
conditional probability of selecting a state at the time of n + 1st transition given the age y
and location i of the previous state. Furthermore, the map F (· | i, n) as in (3.4.1) is also
asserted as the conditional cumulative distribution function of the holding time at the nth
state given that is i.

Theorem 3.4.1. Let Z = (X, Y,N) be a solution to (3.2.6)-(3.2.8), i ∈ X , y ∈ R+ and
n ≥ 1 then the following hold.

i. F (· | i, n), as in (3.4.1), is the conditional cumulative distribution function of the holding
time of the process X.

ii. For all j ̸= XTn, pXTnj
(Tn+1 − Tn, n) = P [XTn+1 = j | XTn , Tn+1 − Tn] almost surely,

where pij(·, ·) is as in (3.4.2).

Proof. We recall that, the intensity of ℘ is Lebesgue measure, and the Lebesgue measure
of {(u, v) ∈ (Tn, Tn + y)×R+ | v ∈ Λi(u− Tn, n)} is

∫ Tn+y

Tn
λi(u− Tn, n)du which is equal to

γi(y, n) (see (B2)). Using (3.2.5) and (3.2.13), the conditional probability of no transition
in the next y unit time, given that the nth transition happens now to state i, is given by
e−γi(y,n). Using the above fact, the conditional cumulative distribution function at y of the
holding time after the nth transition, given the state i, is

P [Tn+1 − Tn ≤ y | XTn = i] = 1− P [Xt = Xt−,∀t ∈ (Tn, Tn + y] | XTn = i]

= 1− e−γi(y,n)

for all y ∈ R+ and i ∈ X . Thus (i) follows from (3.4.1).

We note that, for j ̸= i, P [XTn+1 = j | XTn = i, Tn+1 − Tn = y] is the conditional probability
of the event that the n + 1st state is j, given that Tn+1 = Tn + y and the nth state is i.
Using (3.3.4), the above is the conditional probability that a Poisson point mass appears in
{Tn + y} ×Λij(y, n) given that the point mass lies somewhere in {Tn + y} ×Λi(y, n) and no
transition of X occurs during (Tn, Tn + y). If these three events are denoted by A, B, and
C respectively, then the conditional probability P (A | B ∩C) can be simplified as P (A | B)

53



Chapter 3 : Non-Homogeneous semi-Markov processes

because C is independent to both A and B. Thus using the Lebesgue intensity of ℘,

P
[
XTn+1 = j | XTn = i, Tn+1 − Tn = y

]
= P [℘({Tn + y} × Λij(y, n)) = 1 | ℘({Tn + y} × Λi(y, n)) = 1]

=
|Λij(y, n)|
|Λi(y, n)|

=
λij(y, n)

λi(y, n)

for every y ∈ R+, and j ̸= i, provided λi(y, n) ̸= 0. Thus from (3.4.2), we get pij(y, n) is
equal to
P
[
XTn+1 = j | XTn = i, Tn+1 − Tn = y

]
when λi(y, n) ̸= 0. Next we note that λi(y, n) = 0 if

and only if
d
dy
F (y | i, n) = 0, i.e., the density of Tn+1 − Tn is zero at y. Hence (ii) holds.

Remark 3.4.2. Using (3.4.1), we note that under Assumptions (B1) and (B2), F (y | i, n) <
1 for all y ∈ R+ and limy→∞F (y | i, n) = 1 using (3.4.1). Thus, the holding times are
unbounded but finite almost surely. By dropping (B1), one may include a class of SMPs
having bounded holding times. However, we exclude that class from our discussion. It is
also important to note that the SMPs having discontinuous cdf of holding times are also not
considered in the present setting. Nevertheless, the present study subsumes countable-state
continuous time Markov chains and the processes having age dependent transitions as appear
in [14, 32].

Proposition 3.4.3. We have, for almost every y ≥ 0 and n ≥ 1,

pij(y, n)
f(y | i, n)

1− F (y | i, n)
=

{
λij(y, n), for i ̸= j,

0, for i = j.

Proof. By differentiating both sides of (3.4.1), we obtain f(y | i, n) = λi(y, n)e
−γi(y,n)

for every y ∈ R+. This is equal to λi(y, n)(1 − F (y | i, n)) using (3.4.1). Hence, for every
y ∈ R+, n ≥ 1 and i ∈ X

f(y | i, n)
1− F (y | i, n)

= λi(y, n). (3.4.3)

If i ̸= j, for every y ∈ R+, using (3.4.2)

pij(y, n)
f(y | i, n)

1− F (y | i, n)
=
λij(y, n)

λi(y, n)
× λi(y, n)1(0,∞)(λi(y, n)) = λij(y, n)

as 0 ≤ λij(y, n) ≤ λi(y, n). The case for i = j follows from (3.4.2) and (2.4.4) directly as

pii(y, n)
f(y | i, n)

1− F (y | i, n)
is equal to λi(y, n)1{0}(λi(y, n)) which is zero.
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3.4. Expression of Transition Kernel

Theorem 3.4.4. Let X be a SMP as in Theorem 3.3.1. Then, the associated kernel is given
by

P [XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i] =

∫ y

0

e−γi(s,n)λij(s, n) ds,

which is denoted by Qij(y, n) for every y > 0, n ≥ 1 and i ̸= j.

Proof. Using Theorem 3.4.1 (i) and (ii) and Theorem 3.2.2 part (3) (ii)

P
[
XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i

]
= E

[
P
(
XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i, Tn+1 − Tn

)
| XTn = i

]
=

∫ ∞

0

1[0,y](s)P
[
XTn+1 = j | XTn = i, Tn+1 − Tn = s

]
f(s | i, n) ds

=

∫ y

0

pij(s, n)f(s | i, n) ds.

For each i ̸= j, using Proposition 3.4.3 and (3.4.1), the right side of above can be rewritten
as ∫ y

0

(1− F (s | i, n))λij(s, n) ds =

∫ y

0

e−γi(s,n)λij(s, n) ds = Qij(y, n).

Proposition 3.4.5. Let X be a SMP as in Theorem 3.3.1. Then, λ(n, y) is the instantaneous
transition rate matrix.

Proof. The rate of transition from state i to j at age y is given by

lim
h→0

1

h

[
P (XTn+1 = j, Tn+1 − Tn ∈ (y, y + h] | XTn = i, {Tn+1 − Tn > y})

]
= lim

h→0

1

h

P (XTn+1 = j, Tn+1 − Tn ∈ (y, y + h] | XTn = i)

P (Tn+1 − Tn > y | XTn = i)

= lim
h→0

1

h

P (XTn+1 = j, Tn+1 − Tn ≤ y + h | XTn = i)− P (XTn+1 = j, Tn+1 − Tn ≤ y | XTn = i)

1− P (Tn+1 − Tn ≤ y | XTn = i)
.

Using Theorem 3.4.4, the above limit is equal to
d
dy

Qij(y,n)

1−F (y|i,n) which can further be simplified as

λij(y, n).

Example 3.4.6. Let X = {1, 2, 3} and k1, k2, k3 be some real constants and for all i, j in
X , n ≥ 0 and y ≥ 0,

λij(y, n) =


y sin2(kiy)

1+y
if j − i modulo 3 = 1

y cos2(kiy)
1+y

if j − i modulo 3 = 2

0 else.
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Chapter 3 : Non-Homogeneous semi-Markov processes

Hence, from (3.4.1) λi(y, n) =
y

1+y
and F (y | i, n) = 1−exp (−

∫ y

0
y′

1+y′
dy′) = 1−e−y+ln(1+y) =

1− (1 + y)e−y. Consequently, for each y ≥ 0, i ∈ X , n ∈ N0, f(y | i, n) = ye−y, the density
of Gamma distribution with shape parameter 2 and rate parameter 1 and using (3.4.2) for
j ̸= i

pij(y, n) =

 0 sin2(k1y) cos2(k1y)
cos2(k2y) 0 sin2(k2y)
sin2(k3y) cos2(k3y) 0

 .

Remark 3.4.7. We have obtained Qij(y, n) =
∫ y

0
pij(s, n)f(s | i, n) ds in the proof of The-

orem 3.4.4, which expresses Qij(·, n) in terms of the pij(·, n), and f(· | i, n). These pa-
rameters give the age dependent transition probabilities and the conditional holding time
densities. In an alternative conditioning, the kernel can also be expressed as Qij(y, n) =
P
[
XTn+1 = j | XTn = i

]
P
[
Tn+1 − Tn ≤ y | XTn = i,XTn+1 = j

]
, which is the product of tran-

sition probabilities of embedded chain and the conditional cdf of holding time given the current
and the next states. Generally an SMP is characterized using the transition kernel Q. Al-
though, instantaneous transition rate matrix λ also characterizes an SMP, Q is considered
more fundamental as λ exists only if Q is differentiable. In that case, each of Q and λ can
be expressed in terms of another, which is evident from the above two results.

3.5 Non-homogeneous Component-wise Semi-Markov

Process

It is interesting to note that although a pair of Markov processes form a Markov process
again, a pair of SMPs do not form a SMP. Hence, the process whose components are SMPs
needs a separate study. On the other hand, such processes arise naturally by solving (3.2.6)-
(3.2.8) with two different initial conditions. While the law of SMP can be identified by its
transition kernel, the same is not obvious for a pair of correlated SMPs. In view of this, we
identify the law of a pair of SMPs by deriving the infinitesimal generator of its augmented
process.

Definition 3.5.1. A pure jump process X on a countable state space X is called a component-
wise Semi-Markov Process (CSM) if there is a bijection Γ : X →

∏d
i=1 Xi, such that each

component of Γ(X) is a semi-Markov process, where d is a positive integer and for each
i ≤ d, Xi is an at-most countable non-empty set.

Without loss of generality, we assume that X =
∏d

i=1Xi and X
i is a semi-Markov process

on Xi for each i ≤ d. Here Γ is the identity map. Next we consider a specific CSM process
of dimension 2.

Notation 3.5.2. Fix i, j ∈ X and y1, y2 ≥ 0. Let Z1 = (X1, Y 1, N1) and Z2 = (X2, Y 2, N2)
be the strong solutions of (3.2.6)-(3.2.8) with two different initial conditions. At a fixed time
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3.5. Non-homogeneous Component-wise Semi-Markov Process

s(> 0) we denote

i = X1
s , y1 = Y 1

s , n1 = N1
s (3.5.1)

and

j = X2
s , y2 = Y 2

s , n2 = N2
s (3.5.2)

respectively. We also denote (Z1, Z2) as Z. The successive transition times of X1 and X2

are denoted by {T 1
n} and {T 2

n} respectively. Let τ(t) denote the time of next transition after
a given time t of either of the chains, thus τ(t) := T 1

N1
t +1

∧T 2
N2

t +1
. If τ (n) denotes composition

of n number of map τ , then {τ (n)(s)}n gives a sequence of stopping times, representing the
successive transitions of the combined process (X1, X2) after time s.

For the sake of computing some specific parameters connected to the law of Z, we limit
ourselves to the following choice of λ̃.

(B3) For almost every y ≥ 0, n ∈ N0 and (i, j) ∈ X2, λ̃ij(y, n) = ∥λij(·, ·)∥L∞
(R+×N0)

.

We next extend Theorem 2.5.3 in the present settings below. As before Z = (Z1, Z2)
is Markov. It has state, component-wise age and component-wise number of transitions
X = (X1, X2), Y = (Y 1, Y 2) and N = (N1, N2) respectively. The Markov process Z is
called the augmented process of CSM X. Under (B3), the infinitesimal generator A of
the augmented process Z = (Z1, Z2) is obtained below using Itô’s lemma for r.c.l.l. semi-
martingales. The arguments are analogous to those in the proof of Theorem 2.5.3. The
details are produced below for the sake of completeness. Let φ : (X × R+ × N0)

2 → R be
bounded and continuously differentiable in its continuous variables. Then using (3.2.9)

dφ(Z1
t , Z

2
t )−

(
∂

∂y1
+

∂

∂y2

)
φ(Z1

t , Z
2
t )dt

= φ(Z1
t , Z

2
t )− φ(Z1

t−, Z
2
t−)

= φ

(
Z1

t− +

∫
R+

J(Z1
t−, v)℘(dt, dv), Z

2
t− +

∫
R+

J(Z2
t−, v)℘(dt, dv)

)
− φ(Z1

t−, Z
2
t−)

=

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
℘(dt, dv)

=

(∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

)
dt+ dMt

where M is the martingale obtained by integration wrt the compensated Poisson random
measure ℘(dt, dv) − dtdv. We get the third equality by using the Theorem 0.2.20. For
simplifying the above integral term, we impose (B3) and divide the derivation in two com-
plementary cases.
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Case 1: AssumeX1
t− ̸= X2

t−. Now under (B3), the intervals ΛX1
t−j1(Y

1
t−, N

1
t−) and ΛX2

t−j2(Y
2
t−, N

2
t−)

are disjoint for every j1 ∈ X \ {X1
t−}, j2 ∈ X \ {X2

t−} and N1
t−, N

2
t−. Thus by considering

these intervals where the integrand is non-zero constants, we get

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=

∫
2⋃

k=1

 ∪
j∈X\{Xk

t−}
Λ
Xk

t−j
(Y k

t−,Nk
t−)


[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=
∑

j∈X\{X1
t−}

[
φ(j, 0, N1

t− + 1, Z2
t−)− φ(Z1

t−, Z
2
t−)
]
|ΛX1

t−j(Y
1
t−, N

1
t−)|

+
∑

j∈X\{X2
t−}

[
φ(Z1

t−, j, 0, N
2
t− + 1)− φ(Z1

t−, Z
2
t−)
]
|ΛX2

t−j(Y
2
t−, N

2
t−)|

Case 2: Assume thatX1
t− = X2

t− = i say. Also recall that under (B3), the intervals Λij(y1, n1)
and Λij(y2, n2) are having identical left end points for almost every y1, y2 ≥ 0 and n1, n2 ∈ N0.
So, ΛX1

t−j1(Y
1
t−, N

1
t−) and ΛX2

t−j2(Y
2
t−, N

2
t−) are not disjoint when j1 = j2. Therefore,

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)
]
dv

=

∫
∪

j∈X\{i}
(Λij(Y 1

t−,N1
t−)∪Λij(Y 2

t−,N2
t−))

[φ(Z1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v))− φ(Z1
t−, Z

2
t−)]dv

=
∑

j∈X\{i}

[φ(j, 0, N1
t− + 1, Z2

t−)− φ(Z1
t−, Z

2
t−)]|Λij(Y

1
t−, N

1
t−) \ Λij(Y

2
t−, N

2
t−)|

+
∑

j∈X\{i}

[φ(Z1
t−, j, 0, N

2
t− + 1)− φ(Z1

t−, Z
2
t−)]|Λij(Y

2
t−, N

2
t−) \ Λij(Y

1
t−, N

1
t−)|

+
∑

j∈X\{i}

[φ(j, 0, N1
t− + 1, j, 0, N2

t− + 1, )− φ(Z1
t−, Z

2
t−)]|Λij(Y

1
t−, N

1
t−) ∩ Λij(Y

2
t−, N

2
t−)|.
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3.6. Meeting and Merging at the Next Transition

Hence by combining the expressions under both the cases,

Aφ(z1, z2) :=
(

∂

∂y1
+

∂

∂y2

)
φ(z1, z2) +

∫
R+

[φ(z1 + J(z1, v), z2 + J(z2, v))− φ(z1, z2)] dv

=

(
∂

∂y1
+

∂

∂y2

)
φ(z1, z2)

+
∑

j∈X\{i1}

(λi1j(y1, n1)− δi1i2λi2j(y2, n2))
+[φ(j, 0, n1 + 1, z2)− φ(z1, z2)]

(3.5.3)

+
∑

j∈X\{i2}

(λi2j(y2, n2)− δi1,i2λi1j(y1, n1))
+[φ(z1, j, 0, n2 + 1)− φ(z1, z2)]

+ δi1,i2
∑

j∈X\{i1,i2}

(λi1j(y1, n1) ∧ λi2j(y2, n2))[φ(j, 0, n1 + 1, j, 0, n2 + 1)− φ(z1, z2)]

(3.5.4)

where z1 = (i1, y1, n1), z2 = (i2, y2, n2). This leads to the following Theorem.

Theorem 3.5.3. Under (B3), the infinitesimal generator A of the augmented process Z =
(Z1, Z2) is given by (3.5.3) where Z1 = (X1, Y 1, N1) and Z2 = (X2, Y 2, N2) are as in
Notation 3.5.2.

The following notation is used in computing the meeting and merging probabilities through-
out the chapter.

3.6 Meeting and Merging at the Next Transition

We follow Notation 3.5.2 throughout this section. By closely following Chapter 2, we de-
fine the meeting and merging related time instances and events below. We also recall the
Definition 2.6.1 for the meeting, coherent meeting and merging related events and times.

Consider a specific case of the coupled integral equation (3.2.6)-(3.2.8) where the tran-
sition rate matrix λ is independent of the age variable y and satisfies (B1). Evidently, (B2)
holds too. Furthermore, assume that λ̃i′j′(y, n) = λ̃i′j′(n), a constant function for each
(i′, j′) ∈ X2 and n ≥ 1. Hence (3.2.6) and (3.2.8) reduces to

Xt = X0 +

∫ t

0+
h̃(Xu−, Nu−, v)℘(du, dv), (3.6.1)

Nt =

∫ t

0+
g̃(Xu−, Nu−, v)℘(du, dv), (3.6.2)

59



Chapter 3 : Non-Homogeneous semi-Markov processes

where h̃(i, n, v) := hΛ(i, y, n, v) =
∑

j∈X\{i}(j − i)1Λij(y,n)(v), g̃(i, n, v) := gΛ(i, y, n, v) =∑
j∈X\{i} 1Λij(y,n)(v) are constant in y, as the intervals Λij(y, n), defined using λ̃ij(y, n) do

not vary with y variable but depends on n. It is evident that the strong solution of (3.6.1)-
(3.6.2) gives a continuous time non-homogeneous Markov chain X on X . In view of Theorem
3.2.2, the age of the Markov process at time t is given by Yt := t − TNt , where T0 = 0 and
{Tn}n≥1 denotes the consecutive transition times of X.

Theorem 3.6.1. Let (X1, N1) and (X2, N2) be strong solutions of SDE (3.6.1)-(3.6.2) with
initial conditions X1

0 = i and X2
0 = j respectively. A coherent meeting of X1 and X2, is a

merging event.

Proof. We will make use of the comments in Remark 0.2.19 regarding integration wrt PRM
for each sample point ω ∈ Ω. For a ω ∈ Ω, if there exists a t′ > 0 such that X1

t′ = X2
t′ = k

and also if N1
t′ = N2

t′ = n, for some k ∈ X , n ∈ N0 then using (3.6.1)-(3.6.2), both X1 and
X2 solve

Xt = Xt′ +

∫ t

t′+
h̃(Xu−, Nu−, v)℘(du, dv) = k +

∫ t

t′+
h̃(Xu−, Nu−, v)℘(du, dv)

Nt = Nt′ +

∫ t

t′+
g̃(Xu−, Nu−, v)℘(du, dv) = n+

∫ t

t′+
g̃(Xu−, Nu−, v)℘(du, dv)

for all t > t′. Now using almost sure uniqueness of the strong solution of the above SDE,
(X1, N1) and (X2, N2) would be identical from time t′ onward. Thus (X1, N1) and (X2, N2)
merge at time t′.

It is interesting to note that if they meet at t′ and N1
t′ ̸= N2

t′ , then t
′ cannot be assured

as the time of merging for a given arbitrary rate parameter. Indeed for certain choice of
parameters, the probability of t′ being merging time is zero. We produce an example below.

Example 3.6.2. Let X = {1, 2}, with (1, 2) ≺2 (2, 1); also λ12(y, n) = 1 + r(n) and
λ21(y, n) = 1, where r(n) is 0 or 1 if n is even or odd respectively. Thus λ̃12(y, n) = 2
and λ̃21(y, n) = 1 for all y ≥ 0. Hence, for every n ∈ N0, Λ12(y, n) = [0, 1 + r(n)) and
Λ21(y, n) = [2, 3). We further assume that Z l = (X l, N l) is the strong solution of (3.6.1)-
(3.6.2) with above parameters and initial conditions X l

0 = l for l = 1, 2 respectively. Now for
the purpose of illustration, fix a sample ω ∈ Ω such that ℘(ω)|[0,3]×[0,3] = δ(1,5/2) + δ(3/2,3/2),
the addition of two Dirac measures at (1, 5/2) and (3/2, 3/2) respectively. Then none of the
processes has transition before time t = 1. Hence, for both l = 1, 2, X l

1− = l, and N l
1− = 0.

Then from (3.6.1)

X l
1 =X

l
1− +

∫
R
h̃(X l

1−, N
l
1−, v)℘({1}, dv)(ω) = l + h̃(l, 0, 5/2).

Therefore, using (3.2.4) and the intervals Λ12(Y
1
1−, 0),Λ21(Y

2
1−, 0), we get X1

1 = 1 + (2 −
1)1[0,1+r(0))(5/2) = 1 and X2

1 = 2 + (1 − 2)1[2,3)(5/2) = 1. Hence, t = 1 is a meeting time.

60



3.6. Meeting and Merging at the Next Transition

Figure 3.2: The t and v variables are plotted along horizontal and vertical axes. The point
masses are shown by black dots. The intervals relevant for transitions of the first and second
processes are plotted vertically and shown in blue and red respectively.

However, using (3.2.5), we get N1
1 = 0 ̸= 1 = N2

1 and so merging at t = 1 is not guaranteed
(Theorem 3.6.1). Indeed, at t = 3/2, X1 and X2 separate, which is shown below. We note
that for t = 3/2, the pre-transition state X l

3/2− is 1 for each l = 1, 2, on the other hand

N1
3/2−, and N

2
3/2− are 0 and 1 respectively. Consequently,

X l
3/2 =1 +

∫
R
h̃(1, N l

3/2−, v)℘({3/2}, dv)(ω) = 1 + 1Λ12(Y l
3/2−,N l

3/2−)(3/2) =

{
1, for l = 1

2, for l = 2

since, 3/2 /∈ Λ12(Y
1
3/2−, 0) = [0, 1 + r(0)) = [0, 1) and 3/2 ∈ Λ12(Y

2
3/2−, 1) = [0, 1 + r(1)) =

[0, 2). Therefore, the meeting time t = 1 is not a merging time for the above mentioned
realisation. Indeed, half is the conditional probability of separation in the next transition
after t = 1 given ℘(ω)|[0,1]×[0,3] = δ(1,5/2).

Interestingly, due to the binary nature of the state space and the initial conditions, no
meetings are coherent. In particular, if at any time t both the chains are at state 1, then
N1

t and N2
t are even and odd respectively. So, the probability of getting separated in the next

transition is half. Hence, using the recurrence of state 1, the probability of merging, given
the initial conditions, is zero.

The above example clearly indicates that for the binary state space, conditions X1
0 ̸=

X2
0 and N1

0 = N2
0 = 0 imply that at any time t, N1

t and N2
t are either both odds or evens,

provided X1
t ̸= X2

t . In other words, X1
t ̸= X2

t implies |N1
t −N2

t | is even. That need not be
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the case when the state space is not binary. In particular, for a non-binary state space, an
event {X1

t ̸= X2
t } ∩ {|N1

t −N2
t | = 1} may occur for some t > 0 with a positive probability.

Given this event the conditional probability of coherent meeting at the next transition may
be positive. Finally a coherent meeting may become a merging.

We provide with a lower bound of this probability in the following Theorem.

Theorem 3.6.3. Let (X1, N1) and (X2, N2) be strong solutions of SDE (3.6.1)-(3.6.2) with
initial conditions as in (3.5.1)-(3.5.2) and i ̸= j.

1. The conditional probability of meeting in the next transition given Fs is
(λij(n1)+λji(n2))

λi(n1)+λj(n2)
.

2. If |n2 −n1| = 1, then the conditional probability of merging in next transition given Fs

is at least

α(i, n1, j, n2) =

{
λij(n1)

λi(n1)+λj(n2)
if n1 + 1 = n2,

λji(n2)

λi(n1)+λj(n2)
if n1 = n2 + 1.

(3.6.3)

The first part of Theorem 3.6.3 can be viewed as a generalization of Theorem 2.7.1(1) of
Chapter 2, where two solutions of homogeneous Markov case have been studied. On the other
hand this part is a special case when we would derive an expression of the meeting probability
in the next transition for the non-homogeneous semi-Markov case in the following theorem.
Following theorem not only extends the first part of Theorem 3.6.3 but also Theorem 2.6.4
of Chapter 2. We present a proof of both parts of Theorem 3.6.3 after the proof of Theorem
3.6.4. The proof of Theorem 3.6.4 is very close to that of Theorem 2.6.4 of Chapter 2 in
spirit. However, since the model assumptions are very different, we produce the proof with
full details.

Theorem 3.6.4. Assume (B1)-(B3). Let Z1 = (X1, Y 1, N1) and Z2 = (X2, Y 2, N2) be as
in (3.5.1) and (3.5.2) respectively where i ̸= j. The conditional probability that X1 and X2

meet in the next transition given Fs is∫ ∞

0

e−
∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt(λij(y1 + y, n1) + λji(y2 + y, n2))dy.

Proof. We recall Notation 3.5.2 regarding the initial conditions and the collective transition
time sequence of X1 and X2. That is the processes X1, X2 at time s are at states i, j with
ages y1, y2 and having transited n1, n2 times respectively. The event of no meeting in the
next transition of X1 and X2, has two following sub-cases.
Case 1: After time s, but before X2 transits, X1 transits to a state different from X2

s . This
event can be written as E = {X1

T 1
n1+1

̸= X2
T 2
n2

, T 1
n1+1 < T 2

n2+1}. We will make use of

P (E | Fs) = E[P (E | Fs, T
1
n1+1 ∧ T 2

n2+1) | Fs]
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and, the expression of conditional density ηT 1
n1+1∧T 2

n2+1
of T 1

n1+1 ∧ T 2
n2+1 given Fs. Clearly,

P (E | T 1
n1+1 ∧ T 2

n2+1 = s+ y,Fs) is

m1( ∪
k∈X\{i,j}

Λik(y1 + y, n1))

m1( ∪
k∈X\{i}

Λik(y1 + y, n1) ∪ ∪
k∈X\{j}

Λjk(y2 + y, n2))
=
λi(y1 + y, n1)− λij(y1 + y, n1)

λi(y1 + y, n1) + λj(y2 + y, n2)
.

Moreover ηT 1
n1+1∧T 2

n2+1
(s+ y) = e−m2(B)(λi(y1 + y, n1) + λj(y2 + y, n2)), where

B := ∪
t∈[0,y)

(
{s+ t} ×

(
( ∪
k∈X\{i}

Λik(y1 + t, n1)) ∪ ( ∪
k∈X\{j}

Λjk(y2 + t, n2))

))
.

Indeed, given Fs, the event of no transition of X1 and X2 from s to s + y unit of time,
is equivalent to {℘(B) = 0}, the non-occurence of Poission point mass in B. Clearly,
P (℘(B) = 0) is equal to e−m2(B) and m2(B) =

∫ y

0
(λi(y1 + t, n1) + λj(y2 + t, n2))dt. Hence

the probability of the event in Case 1 is

P (E | Fs) =

∫ ∞

0

P (E | Fs, T
1
n1+1 ∧ T 2

n2+1 = s+ y)ηT 1
n1+1∧T 2

n2+1
(s+ y)dy

=

∫ ∞

0

e−
∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt[λi(y1 + y, n1)− λij(y1 + y, n2)]dy. (3.6.4)

Case 2: Similar to Case-1, the concerned event is the transition of X2 before X1 to a state,
different from X1

s . The conditional probability of this event given Fs is written below

P (X2
T 2
n2+1

̸= X1
T 1
n1
, T 2

n2+1 < T 1
n1+1 | Fs)

=

∫ ∞

0

e−
∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt[λj(y2 + y, n2)− λji(y2 + y, n2)]dy. (3.6.5)

Hence the total probability (denoted by a′(z1,z2)) of not meeting in the next transition is sum

of the probabilities appearing in (3.6.4), and (3.6.5), where z1 = (i, y1, n1), z2 = (j, y2, n2).
Using

ϕ1(y) := e−
∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt (λi(y1 + y, n1) + λj(y2 + y, n2)) ,

a′(z1,z2) =

∫ ∞

0

(
ϕ1(y)− e−

∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt [λij(y1 + y, n1) + λji(y2 + y, n2)]

)
dy

(3.6.6)

= 1−
∫ ∞

0

e−
∫ y
0 (λi(y1+t,n1)+λj(y2+t,n2))dt[λij(y1 + y, n1) + λji(y2 + y, n2)]dy

as
∫∞
0
ϕ1(y)dy = 1. Since the probability of meeting of X1 and X2 in the next transition is

1− a′(z1,z2), the result follows from the above expression of a′.
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Proof. [of Theorem 3.6.3] We recall the initial condition at time s from Notation 3.5.2.
As a direct application of Theorem 3.6.4 the conditional probability of meeting in the next
transition of X1 and X2, given Fs can be written as∫ ∞

0

e−
∫ y
0 (λi(n1)+λj(n2))dt(λij(n1) + λji(n2))dy

=
(λij(n1) + λji(n2))

(λi(n1) + λj(n2))

∫ ∞

0

e−(λi(n1)+λj(n2))y(λi(n1) + λj(n2))dy

=
(λij(n1) + λji(n2))

(λi(n1) + λj(n2))

as the integral on the right side is 1. Therefore, the part (1) is true.

Next we wish to compute the probability of an event where merging occurs in the next
transition given that X1

s = i, N1
s = n1, X

2
s = j,N2

s = n2. We are also provided with i ̸= j
and |n2 − n1| = 1. Merging in the next transition is guaranteed if that becomes a coherent
meeting (see Theorem 3.6.1). We first consider the case n2 = n1+1. Given this, for a coherent
meeting, X1 must transit before X2 does after the time s, and the transition must be to the
state j. Indeed, then at time t = T 1

n1+1, X
1 and X2 meet with N1

t = n1 + 1 = n2 = N2
t , and

they stay merged by Theorem 3.6.1. Following a very similar argument as in Theorem 3.6.4,
the conditional probability of the above mentioned coherent meeting is computed as follows,∫ ∞

0

P ({X1
T 1
n1+1

= X2
T 2
n2
, T 1

n1+1 < T 2
n2+1} | Fs, T

1
n1+1 ∧ T 2

n2+1 = s+ y)ηT 1
n1+1∧T 2

n2+1
(s+ y)dy

=

∫ ∞

0

λij(n1)

λi(n1) + λj(n2)
e−(λi(n1)+λj(n2))y(λi(n1) + λj(n2))dy

=
λij(n1)

λi(n1) + λj(n2)
.

Similarly, if n1 = n2 + 1, the event {X2
T 2
n2+1

= X1
T 1
n1

, T 2
n2+1 < T 1

n1+1} having probability

λji(n2)

λi(n1)+λj(n2)
, implies merging in next transition due to Theorem 3.6.1. Hence the proof is

complete for both the cases.

Next we wish to compute the conditional probability of occurrence of merging in the
next transition after time s, given (3.5.1)-(3.5.2), provided i ̸= j and |n2 − n1| = 1. We first
consider the case n2 = n1+1. In the proof of Theorem 3.6.4, we have seen that meeting at the
next transition occurs in two ways. One of them is coherent where X1 transits to j before X2

leaves j after the time s. Indeed then at time t = T 1
n1+1, X

1
t = X2

t , N
1
t = n1 + 1 = n2 = N2

t ,
Y 1
t = 0, and Y 2

t = y2 + (t − s). The conditional probability of this coherent meeting given
Fs is ∫ ∞

0

e−
∫ y
0 (λi(y1+u,n1)+λj(y2+u,n2))duλij(y1 + y, n1)dy, (3.6.7)
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whose derivation is analogous with that in Case 1 of Theorem 3.6.4. This meeting time
becomes merging time only if subsequently, both the chains transit simultaneously to an
identical state. To see this, we first note that non-simultaneous transition separates. On the
other hand, in addition to identical N values, at the time of simultaneous transition, state
and age variables of both the chains also become identical. Consequently, they merge due to
the uniqueness result of (3.2.6)-(3.2.8) (see Theorem 3.2.2(1)). An expression (see Theorem
2.6.6, Chapter 2) of the conditional probability of such simultaneous transition given the
fact that X1 has already transited to j at s+ y before X2 could leave j after s, is∫ ∞

0

e
−

∫ y′
0

∑
j′ ̸=j

(λjj′ (u,n2)∨λjj′ (y2+y+u,n2))du
[∑
j′ ̸=j

λjj′(y
′, n2) ∧ λjj′(y2 + y + y′, n2)

]
dy′ (3.6.8)

and denoted by P(j, y2 + y, n2). Thus the probability of the combined event given Fs is∫ ∞

0

P(j, y2 + y, n2)e
−

∫ y
0 (λi(y1+u,n1)+λj(y2+u,n2))duλij(y1 + y, n1)dy. (3.6.9)

This gives a lower bound of the merging probability given Fs, should i ̸= j and n2 = n1 +1.
Analogously, if n1 = n2 + 1, an expression of a lower bound of merging probability similar
to (3.6.9) can be obtained with two modifications. First of all, in view of the requirement of
second chain’s transition to the state of the first, the last multiplicative term in the integrand
of (3.6.9) should be replaced by λji(y2 + y, n2). Secondly, the variables j, y2 and n2 should
be replaced by i, y1 and n1 in (3.6.8) to get P(i, y1 + y, n1). This gives the conditional
probability of simultaneous transition given the fact that X2 has already transited to i at
s+ y before X1 could leave i after s. Thus we have proved the following result.

Theorem 3.6.5. Assume (B1)-(B3) and that X1 and X2 are as in Notation 3.5.2. If
|n2 − n1| = 1 and i ̸= j, then the conditional probability that X1 and X2 merge in the next
transition given Fs is at least

α(z1, z2) =

{∫∞
0

P(j, y2 + y, n2)e
−

∫ y
0 (λi(y1+u,n1)+λj(y2+u,n2))duλij(y1 + y, n1)dy if n1 + 1 = n2,∫∞

0
P(i, y1 + y, n1)e

−
∫ y
0 (λi(y1+u,n1)+λj(y2+u,n2))duλji(y2 + y, n2)dy if n1 = n2 + 1.

The above theorem should be viewed as an extension of part (2) of Theorem 3.6.3
to the case of non-homogeneous semi-Markov processes. To see this, we first note that for
Markov special case P term is 1, as λ does not vary with the age variable. Finally, for
the same reason the integration in the above expression of α can easily be calculated and
matched with the expression in Theorem 3.6.3. A more precise assertion under an additional
assumption is stated below.

Theorem 3.6.6. Assume (B1)-(B3) and that X1 and X2 are as in Notation 3.5.2. Also
assume that the infimum inf{∥λi′(·, n′

1)− λi′(·, n′
2)∥L∞(R+) | n′

1 − n′
2 ̸= 0, i′ ∈ X} is positive.

If i ̸= j, then the conditional probability that X1 and X2 merge in the next transition given
Fs is α(z1, z2), provided |n2 − n1| = 1, and zero otherwise.
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Proof. From the proof of Theorem 3.6.5, we know that α(z1, z2) gives the conditional
probability of occurrence of a coherent meeting which is also merging given Fs with |n2−n1| =
1 and i ̸= j. Thus it is enough to prove that a meeting is not merging if it is not coherent,
provided infimum of ∥λi′(·, n′

1)− λi′(·, n′
2)∥L∞(R+) over all i

′ ∈ X , and n′
1 ̸= n′

2 is positive.

Similar to (3.6.7), the conditional probability of non-coherent meeting in the next
transition can be expressed. That meeting becomes merging if the pair never separate. We
also recall that (B2) implies that the chains must transit infinitely many times almost surely.
Therefore, if the pair never separate, they must transit simultaneously to the identical states
infinitely many often and the difference of N values stay unchanged in successive transitions.
At the time of non-coherent meeting, N1−N2(̸= 0) takes value, due to the initial conditions,
n2−n1−1 (or n2−n1+1) if the first (or the second) chain transits to another’s state before
the other one leaves.

Assume that the next transition is non-coherent meeting, led by transition of the
second chain before the first’s departure. An expression similar to (3.6.8) of the conditional
probability of having m + 1th transition, after s, non-separated given the fact that the
previous transition has been simultaneous and the common state has been i′, is∫ ∞

0

e
−

∫ y′
0

∑
j′ ̸=i′

(λi′j′ (u,n2+m)∨λi′j′ (u,n1+m−1))du
[∑
j′ ̸=i′

λi′j′(y
′, n2 +m) ∧ λi′j′(y′, n1 +m− 1)

]
dy′

(3.6.10)

for every m ≥ 2. As (n2+m)− (n1+m−1) = n2−n1+1 ̸= 0, ∥λi′(·, n1+m−1)−λi′(·, n2+
m)∥L∞(R+) is nonzero. Consequently, (3.6.10) is strictly smaller than 1, since∑

j′ ̸=i′

(λi′j′(·, n2 +m) ∨ λi′j′(·, n1 +m− 1))−
∑
j′ ̸=i′

λi′j′(·, n2 +m) ∧ λi′j′(·, n1 +m− 1)

is positive and its L∞(R+) norm is bounded away from zero. This implies that the conditional
probability of repeated occurrence of non-separation, given the transition following s is a
non-coherent meeting, is zero. Thus we have proved that the meeting is not a merging with
probability 1 if it is non-coherent.

3.7 Eventual Meeting, Merging, and Time

Having obtained in Theorem 3.6.4, an expression of conditional probability of meeting in
the next transition for a general semi-Markov case, we next find a sufficient condition for
sure occurrence of eventual meeting. Before addressing this for semi-Markov case, we first
investigate the Markov special case in the next Theorem. The proof of this result is in
the similar line of proof of Theorem 2.6.4(2) of Chapter 2, where the result is stated for
homogeneous Markov case.
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Theorem 3.7.1. Assume (B1)-(B3), Let (X1, N1) and (X2, N2) be strong solutions of
SDE (3.6.1)-(3.6.2) with two different initial conditions. If X = {1, 2, . . . , k} is finite and

inf
i,j,n1,n2

(λij(n1)+λji(n2))

λi(n1)+λj(n2)
> 0, then X1 and X2 eventually meet with probability 1.

Proof. Let s > 0 be the initial time. Since inf
i,j,n1,n2

(λij(n1)+λji(n2))

λi(n1)+λj(n2)
> 0, the supremum

of a(i,j,n1,n2) := 1 − (λij(n1)+λji(n2))

λi(n1)+λj(n2)
is less than 1. From Theorem 3.6.3(1) we know that

a(i, j, n1, n2) denotes the conditional probability of not meeting in the next transition. We
also recall that {τ (n)(s)} gives a sequence of stopping times, representing the transitions of
combined process (X1, X2). Now using Theorem 3.3.2, we get

E

[
1{X1

τn+1(s)
̸=X2

τ(n+1)(s)
} | Fτ (n)(s)

]
= a(X1

τ(n)(s)
,X2

τ(n)(s)
,N1

τ(n)(s)
,N2

τ(n)(s)
) ≤ sup

i,j,n1,n2

a(i,j,n1,n2) < 1.

(3.7.1)

Therefore, using (3.7.1), we get

E

[
m∏

n=1

1{X1

τ(n)(s)
̸=X2

τ(n)(s)
} | Fs

]

= E

[
E

[
m∏

n=1

1{X1

τ(n)(s)
̸=X2

τ(n)(s)
} | Fτ (m−1)(s)

]
| Fs

]

= E

[(
m−1∏
n=1

1{X1

τ(n)(s)
̸=X2

τ(n)(s)
}

)
E

[
1{X1

τ(m)(s)
̸=X2

τ(m)(s)
} | Fτ (m−1)(s)

]
| Fs

]

≤ sup
i,j,n1,n2

a(i,j,n1,n2)E

[
m−1∏
n=1

1{X1

τ(n)(s)
̸=X2

τ(n)(s)
} | Fs

]
for all m ≥ 1. Using this repeatedly, we get for all m ≥ 1

P
(
∩m

n=1{X1
τ (n)(s) ̸= X2

τ (n)(s)} | Fs

)
= E

[
m∏

n=1

1{X1

τ(n)(s)
̸=X2

τ(n)(s)
} | Fs

]
≤
(

sup
i,j,n1,n2

a(i,j,n1,n2)

)m

.

(3.7.2)

The left side value is the probability of the event of not meeting of processes X1 and X2

till time τ (m)(s). Hence, using the fact (thanks to (B2)) that the chains experience infinitely
many transitions with probability 1, the probability of never meeting, P (X1

t ̸= X2
t , ∀t ≥ s | Fs)

is the limit of left side of (3.7.2) as m→ ∞. Since, right side of (3.7.2) vanishes as m→ ∞,
P (X1

t ̸= X2
t ,∀t ≥ s | Fs) is zero as desired.

Remark 3.7.2. In Theorem 3.7.1, we assume X is finite and inf
i,j,n1,n2

(λij(n1)+λji(n2))

λi(n1)+λj(n2)
> 0 in

addition to (B1)-(B3) for the SDE (3.6.1) - (3.6.2). Below, in Lemma 3.7.3, by considering
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a homogeneous Markov special case, we show that under (B1) the positivity of the infimum
indeed implies finiteness of X . Hence, a separate mention of finiteness of X in Theorem
3.7.1 is redundant.

Lemma 3.7.3. Let λ be a transition rate matrix obeying (B1) and being constant in n and

y variables. If X is infinite, inf
i,j

(λij+λji)

λi+λj
is zero.

Proof. Given ϵ > 0, for each i ∈ X , there is a j∗i,ϵ ∈ X such that
λij

λi
< ϵ for all j ≥ j∗i,ϵ.

This is due to the fact that
∑

j∈X\{i}
λij <∞. Hence using λi > 0, λj > 0,

λij + λji
λi + λj

<
λij
λi

+
λji
λj

< ϵ+
λji
λj

for all j ≥ j∗i,ϵ and for all i ∈ X . Therefore,

inf
i,j

λij + λji
λi + λj

< ϵ+ inf
i

inf
j≥j∗i,ϵ

pji (3.7.3)

where pji :=
λji

λj
gives the probability of transition from j to i. Let if possible there is a

n ∈ N such that inf
i

inf
j≥j∗i,ϵ

pji >
1
n
. Then we choose i1, i2, . . . , in+1 distinctly from X and set

j∗ = max
1≤k≤n+1

j∗ik,ϵ.

Then pj∗ik >
1
n

∀k ≤ n+ 1. Hence contradiction. Thus inf
i

inf
j≥j∗i,ϵ

pij = 0. By applying this to

(3.7.3) and by noting that ϵ is an arbitrary positive number, we conclude that inf
i,j

λij+λji

λi+λj
=

0.

From Theorem 3.7.1 (2), one can infer that a suitably extended but a similar condition
on the rate matrix may guarantee an eventual meeting event for the semi-Markov family.
One such condition is presented below in (B4).

(B4) X = {1, 2, . . . , k} is a finite state space, and

sup
(i,j)∈X2,y1,y2,n1,n2≥0

∥∥∥∥1− (λij(y1 + ·, ·) + λji(y2 + ·, ·))
λi(y1 + ·, ·) + λj(y2 + ·, ·)

∥∥∥∥
L∞

< 1.

Theorem 3.7.4. Assume (B1)-(B4) and that X1 and X2 are as in Notation 3.5.2. Then
X1 and X2 eventually meet with probability 1.
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Proof. Using ϕ2(y) := 1 − (λij(y1+y,n1)+λji(y2+y,n2))

λi(y1+y,n1)+λj(y2+y,n2)
, and Hölder inequality, from (3.6.6) we

get

a′(z1,z2) =

∫ ∞

0

ϕ1(y)ϕ2(y)dy ≤ ∥ϕ1∥L1∥ϕ2∥L∞ = ∥ϕ2∥L∞ .

Now by a direct application of (B4), we get that supremum of ∥ϕ2∥L∞ over all (i, j) ∈
X2, y1 ≥ 0, y2 ≥ 0 is less than 1, which implies that

sup
(i,j)∈X2,y1,y2,n1,n2≥0

a′(z1,z2) < 1. (3.7.4)

Again, the total probability of never meeting is the probability of intersection of non-
occurrence of meeting in all transitions. On the other hand, (B2) ensures almost sure infi-
nite transitions. Moreover, since (Z1, Z2) is strong Markov (Theorem 3.3.2) and {Tn :=
τ (n)(s)}n≥1 are stopping times P

(
{X1

Tn
̸= X2

Tn
} | FTn−1

)
= a′

(Z1
Tn−1

,Z2
Tn−1

)
which is upper

bounded by a value less than 1 (see (3.7.4)). Therefore, in the similar line of the proof
of Theorem 3.7.1, we get

E

[
m∏

n=1

1{X1
Tn

̸=X2
Tn

} | Fs

]
≤

(
sup

(i,j)∈X2,y1,y2,n1,n2≥0

a′(z1,z2)

)m

. (3.7.5)

Thus from (3.7.4) and (3.7.5), P (X1
t ̸= X2

t , ∀t ≥ s | Fs) = limN→∞E
[∏N

n=1 1{X1
Tn

̸=X2
Tn

} | Fs

]
=

0. In other words, the probability of never meeting is zero.

The above theorem asserts that the waiting time for the first meeting is a finite stopping
time almost surely, provided (B1)-(B4) hold. A comprehensive study of its distribution is
rather involved, even in the homogeneous Markov special case. However, the tail property
of number of required transitions for meeting is considerably straight forward. We produce
a result below which is an immediate extension of Theorem 2.7.4 of Chapter 2.

Theorem 3.7.5. Assume (B1)-(B4) and that X1 and X2 are as in Notation 3.5.2. If
N̄ denotes the number of collective transitions, until X1 and X2 meet after time s, then
E[N̄ r|Fs] is finite for any r ≥ 1.

Proof. Since N̄ denotes the number of collective transitions until the meeting after s, using
(3.7.5), we get for all n ≥ 0

P (N̄ = n+ 1|Fs) =E

[(
n∏

r=1

1{X1
Tr

̸=X2
Tr

}

)
E
(
1{X1

Tn+1
=X2

Tn+1
} | FTn

)
|Fs

]

≤

(
sup
z1,z2

a′(z1,z2)

)n(
1− inf

z1,z2
a′(z1,z2)

)
,
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where Tn := τ (n)(s), by following the convention that product and intersection of an empty
family are 1 and empty set respectively. Thus the rth raw moment, E[N̄ r|Fs] is

∞∑
n=1

nrP (N̄ = n|Fs) ≤
(
1− inf

z1,z2
a′(z1,z2)

)(
sup
z1,z2

a′(z1,z2)

)−1 ∞∑
n=1

nr

(
sup
z1,z2

a′(z1,z2)

)n

.

The infinite series on the right converges provided supz1,z2 a
′
(z1,z2) < 1 which is ensured in

(3.7.4) due to the assumption (B4). Thus we conclude that N̄ has finite moments.

We note that if the pair of SMPs do not separate in the subsequent transition after
meeting, they merge, provided either the meeting being coherent or the rate function λ(y, n)
is independent of n. This is because the state and age become identical in the subsequent
simultaneous transition after meeting and hence merging is assured from the uniqueness
of the driving SDE. In fact this phenomena has been used to prove Theorem 3.6.5 for
coherent case and also the almost sure eventual merging in Theorem 2.7.5 of Chapter 2
for homogeneous case. However, for the non-homogeneous case, the event of subsequent
few number of non-separations after a non-coherent meeting, does not imply a merging.
Therefore, the argument of Theorem 2.7.5 of Chapter 2 cannot be extended directly. On
the other hand calculation or estimation of the probability of eventual coherent meeting in
any reasonable generality is hard. In this connection we recall that probability of coherent
meeting is zero for the binary state-space case, (see Example 3.6.2). Despite these intricacies,
it is not hard to propose some sufficient conditions under which the eventual merging is
guaranteed. We explain this in the following remark.

Remark 3.7.6. Imagine that the transition law λ is such that the conditional probability of
an eventual coherent meeting given Fs, is one. Further assume that the conditional probability
of subsequent separation, given a coherent meeting has occurred, is upper bounded by a number
less than 1. Then as the coherent meeting will occur repeatedly with probability one, the
argument of Theorem 2.7.5 of Chapter 2 can be mimicked. Indeed the probability of repeated
occurrence of separation following all consecutive coherent meeting becomes zero. In other
words, the pair eventually merge almost surely.

We have not expressed or estimated the conditional probability of coherent meeting in
terms of λ. So, a sufficient condition, expressed algebraically, on λ is missing from the above
comment. Coherent meeting in the next transition is possible only if the difference of the
counts of transitions of both the chains is 1 prior to the meeting. This condition appears
rather restrictive. However, if the sequence of functions {λ(·, n)}n is periodic in n, there are
other meetings which play the same role as the coherent meetings do in the above analysis.
This allows one to extend the scope of all the results related to merging for the special case
of periodic rates. Moreover, some assumptions on λ can also be simplified. The following
remark explains these.

Remark 3.7.7. Given a transition rate function λ, define n∗ ∈ N0 as the smallest values
such that {λ(·, n)}n is periodic on {n ∈ N0 | n ≥ n∗}. If n∗ < ∞, let ν ∈ N denote the
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periodicity. Note that if λ(·, n) is constant in n, then n∗ = 0, and ν = 1. On the other
extreme, when {λ(·, n)}n possesses no periodicity, n∗ = +∞, due to the convention that
minimum of an empty set is +∞. Next we list some observations below. Owing to the
directness of their justification, we omit the proofs.

1. The assertions in the part (2) of Theorem 3.6.3 and in Theorem 3.6.5 still hold if the
conditions n1 + 1 = n2 and n2 + 1 = n1 are extended as n2 − n1 = 1(mod ν) and
n1 − n2 = 1(mod ν) respectively, provided n∗ ≤ n1, n2 <∞.

2. If n∗ ≤ n1, n2 <∞, the assertion of Theorem 3.6.6 holds true for a relaxed constraint
on infimum, namely inf{∥λi′(·, n′

1) − λi′(·, n′
2)∥L∞(R+) | n′

1 − n′
2 ̸= 0(mod ν), i′ ∈ X}

is positive. In the statement the condition |n2 − n1| = 1 may also be replaced by
|n2 − n1| = 1(mod ν).

3. The positivity condition on the infimum in Theorem 2.7.1, holds true if X is finite, the
constant function λ(·, n) is positive for each n, and n∗ is finite.

4. The supremum in (A4) is strictly less than 1 if λ(·, n) is bounded away from zero for
each n, and n∗ is finite.

Remark 3.7.8. Consider a pair of solutions (X1, N1) and (X2, N2) of SDE (3.6.1)-(3.6.2)
with initial conditions X1

0 = i and X2
0 = j respectively. Clearly the discrete time process

W := (W 1,W 2) is a Markov chain, where W l
n := (X l

Tn
, N l

Tn
), Tn = τn(0) for each l = 1, 2

and n ≥ 0. Now if the given λ is such that n∗ and ν are finite, and n%ν denotes n mod
ν, using the map (i, n) 7→ π(i, n) := (i, n ∧ n∗ + max(0, n − n∗)%ν) ∈ X × {0, 1, . . . , n∗ +
ν − 1}, we obtain a new bi-variate chain W̄ := (W̄ 1, W̄ 2) where W̄ l := {π(W l

n)}n∈N0. Under
finiteness assumption on X , W̄ is a finite state homogeneous Markov chain. Furthermore, if
eventual merging is an almost sure event, the states of W̄ corresponding to the non-meeting
instances of (X1, X2) are transient. If in addition, inf{|λi′(n′

1)− λi′(n
′
2)| : either n′

1 − n′
2 ̸=

0(mod ν) or n1, n2 ≤ n∗, and i′ ∈ X} is positive, every state of W̄ , where W̄ 1 mismatch
with W̄ 2 is transient, in view of Theorem 3.6.6. Thus for every initial condition, the set of
transient states of W̄ includes (X × {0, 1, . . . , n∗ + ν − 1})2 \ {(i, n′, i, n′) | i ∈ X , n′ ≥ n∗}.

3.8 Conclusion

In this chapter, we have explored a stochastic differential equation (SDE) representation of
a broad category of semi-Markov processes on a countable state-space, where the kernel is
differentiable and the underlying Markov chain may or may not be homogeneous. The system
of SDEs is driven by a Poisson random measure with Lebesgue intensity. The coefficients are
chosen depending on the given transition rate function and an additional gaping parameter.
Since, the coefficients are not compactly supported and also the intensity measure is not
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finite, the existence result is not straightforward. We have first proved the local existence
and then established the global existence of a unique strong solution. We then show that the
state component of the solution is a pure semi-Markov process with the given transition rate
function and the other two components are the age and transition count processes. Although
the law of a single solution does not depend on the additional gaping parameter, the joint
distribution of a couple of solutions with different initial conditions does depend on that.
Under a simplified assumption on the gaping parameter, we derive the law of the bivariate
process by calculating the infinitesimal generator of the augmented process.

To the best of our knowledge, the SDE under consideration or its any generalizations
have not been studied in the literature. The approach of the proof of existence is signif-
icantly original. The SDE also gives a semi-Martingale representation of a semi-Markov
process which need not be time-homogeneous. This representation is also not present in the
literature. The detailed proof of the fact that the solution gives a semi-Markov process with
desired transition kernel is valuable for all future study of this representation. This is a vital
contribution of this chapter. Finally, the semimartingale representation has been used to
generate a correlated semi-Markov system with multiple members.

In veiw of the immense applicability of the correlated semi-Markov system, the for-
mulation and the results presented in this chapter are important. It is evident that SDE
(3.2.6)-(3.2.8) generates a semi-Markov flow. We have studied the associated flow by inves-
tigating meeting and merging related events for solutions starting with two different initial
conditions. The pair of the state components, thus obtained, form a component-wise semi-
Markov process having dependent components. Some sufficient conditions for almost sure
meeting and merging of the components have also been obtained. In next chapter we have
illustrated and complemented some of the theoretical findings of this and earlier chapter by
providing with several numerical examples.
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Numerical Examples

4.1 Numerical Results

4.1.1 Example of a Homogeneous SMP

Let X = {1, 2}, with (1, 2) ≺2 (2, 1). Furthermore, assume for each y ≥ 0 and n ∈ N0,
λ12(y, n) = y

1+y
= λ21(y, n), and hence (A3) implies λ̃12(y, n) = 1 = λ̃21(y, n), Λ12(y, n) =

[0, y
1+y

), and Λ21(y, n) = [1, 1 + y
1+y

). Since, these intervals do not depend on n, (2.2.4)-

(2.2.5) have a unique strong solution for a given initial condition and the X component
constitutes a homogeneous SMP. Let (X l, Y l) denote a solution with X l

0 = l, Y l
0 = 0 for each

l = 1, 2 respectively. If τ denotes the time of first meeting of X1 and X2, P (τ > t | F0) =
P ({T 1

1 > t} ∩ {T 2
1 > t} | F0). Since F0 = σ{X1

0 , X
2
0 , Y

1
0 , Y

2
0 }, and X1

0 ̸= X2
0 , the events

{T 1
1 > t} and {T 2

1 > t} are independent. Moreover, using the formula ye−y of holding time
density function at each state (see Chapter 2, Theorem 2.4.1(i) and Y 1

0 = Y 2
0 = 0, we get

P (τ > t | F0) =

(∫ ∞

t

ye−ydy

)2

= e−2t(1 + t)2.

Thus the expected first meeting time E(τ | F0) is∫ ∞

0

P (τ > t | F0)dt =

∫ ∞

0

e−2t(1 + t)2dt =
−1

4
e−2t(2t2 + 6t+ 5)

∣∣∣∣∣
∞

0

= 5/4. (4.1.1)

Similarly the expected holding time at each state can be calculated as
∫∞
0
y2e−ydy = Γ(3) =

2. It is important to note that this example does not satisfy the sufficient condition, as
stated in Chapter 2, Theorem 2.7.5, for eventual merging of homogeneous semi-Markov flow.
Indeed ∥λ−1

12 ∥L∞ = ∞ = ∥λ−1
21 ∥L∞ . Nevertheless, the finiteness of norm of the reciprocal
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has been used in the proof of Chapter 2, Theorem 2.7.5 only for showing that P(k, y) is
bounded away from zero. For this particular example, an exact expression of P(k, y, n) can
be obtained and shown to be bounded away from zero. Indeed, from Chapter 2 Theorem
2.6.6, for all y ≥ 0

P(k, y) =

∫ ∞

0

e−
∫ y′
0

y+t
1+y+t

dt y′

1 + y′
dy′ = 1 +

y

1 + y
e

∫ −1

−∞

et

t
dt ≥ 1 + e

∫ −1

−∞

et

t
dt ≈ 0.403653.

Thus eventual merging happens almost surely. The combined process ((X1, Y 1), (X2, Y 2)),
being sampled 9×105 times using Monte Carlo simulation, gives the sample mean of merging
time (For algorithm see chapter 4 section 2.1). That turns out to be 2.00, correct up to 2
decimal places. Using these samples the plots of the empirical probability density functions
for meeting and merging times are also obtained and compared with the plot of the holding
time density function in Figure 4.1.

Figure 4.1: For the numerical example in subsection 4.1.1, true probability density function of
holding time, and estimated probability density functions of first meeting time and merging
time are plotted in green, blue and red respectively.

4.1.2 Example of a Non-Homogeneous Markov process

Assume X = {1, 2, 3}, and the transition rate function for each y ≥ 0 is given by

λ(y, n) =

{
2A if n is odd

A if n is even
; where, A =

−1 2
3

1
3

1 −2 1
1
3

2
3

−1

 . (4.1.2)
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n Λ12(·, n) Λ13(·, n) Λ21(·, n) Λ23(·, n) Λ31(·, n) Λ32(·, n)

Even
[
0, 2

3

) [
4
3
, 5
3

)
[2, 3) [4, 5)

[
6, 19

3

) [
20
3
, 22

3

)
Odd

[
0, 4

3

) [
4
3
, 2
)

[2, 4) [4, 6)
[
6, 20

3

) [
20
3
, 8
)

Table 4.1: For the numerical example in Subsection 4.1.2, the intervals Λij(·, ·) are presented
for both even and odd values of n and each (i, j) ∈ X2.

Then using (B3) and following the lexicographic ordering, we get the intervals, listed in
Table 4.1. As the parameters do not depend on y variable, the intervals also do not. For
this example, the SDE (3.6.1)-(3.6.2) has a unique solution for a given initial condition. The
X component of the solution gives a non-homogeneous Markov process on {1, 2, 3} with
rate matrix λ as define in (4.1.2). In the fourth column of Table 4.2, we list the values of

Sr.No. (X1
0 , X

2
0 ) (N1

0 , N
2
0 ) α(X1

0 , N
1
0 , X

2
0 , N

2
0 ) estimated value

1 (1,2) (even, odd) 2/15 0.13

2 (1,2) (odd, even) 1/4 0.25

3 (1,3) (even, odd) 1/9 0.11

4 (1,3) (odd, even) 1/9 0.11

5 (2,3) (even, odd) 1/4 0.25

6 (2,3) (odd, even) 2/15 0.13

Table 4.2: Theoretical and estimated probabilities of Merging in the next transition for all
initial conditions

α as in (3.6.3) for a pair of solutions with all possible initial conditions. These values are
the probabilities of merging in the next transition, thanks to Theorem 3.6.6 and Remark
3.7.7(2). These values are also contrasted with the estimated merging probabilities listed
on the 5th column. This relative frequency based estimators’ values have been rounded to
two decimal places and computed using 9 × 105 number of samples generated by Monte
Carlo simulation of pair of solutions corresponding to each initial condition(For algorithm
see chapter 4 section 2.2).
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4.2 Algorithms for the Simulation Studies

We have simulated the system of stochastic differential equations for semi-Markov processes.

4.2.1 Algorithm for dynamics of homogeneous SMP

from scipy.stats import poisson

import random as rd

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import scipy as sp

import math

from statistics import mean

simu =900000 ## Total number of Simulations

meet =[]; merg =[]; merge_time =[]; first_meet =[]; // Global Variables

for k in range (9000000):

## Generation of Poisson Points

T=30; grid =1;A=[]; N_part =0

N=poisson.rvs(mu=2*T,size=grid)

## Total number of Poisson point Masses(PPM)

N_total=sum(N); u=[];z=[];

for j in range(grid):

for i in range(N[j]):

## this is coordinate in time direction

u.append(T*rd.random ()+j*T);

## this is coordinate in space direction

z.append (2*rd.random ());

v=np.array(u); ## converted the list into array

k=np.argsort(v);

u=v[k]; ## sorted in ascending order

B=np.column_stack ((u,z)); ## Locus of PPM.

## Simulation of First SMP

X_1 =[[0 ,1 ,0]]; ## initial condition of first SMP.

## First transition of SMP due to first PPM

X_1.append ([u[0],X_1 [0][1] ,u[0]]);

## First guess of (time , state , age) due to first PPM

c=X_1 [1][2]; ##storing pre transition age value in variable c.

if (X_1 [0][1] == 1 and (c/(1+c)) > B[0][1]):

## comparing PPM with first interval

X_1 [1][1]=2; X_1 [1][2]=0; ## correcting the first guess depending

on transition

elif (X_1 [0][1]==2 and 1<=B[0][1] and B[0][1] < 1+(c/(1+c))): ##

comparing PPM with second interval

X_1 [1][1]=1; X_1 [1][2]=0; ## correcting the first guess depending

on transition

for i in range(1,N_total):
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X_1.append ([u[i],X_1[i][1],X_1[i][2]+u[i]-u[i -1]]);## First guess

of (time , state , age) due ith PPM

c=X_1[i+1][2]; ##storing pre transition age value in variable c.

if (X_1[i][1] == 1 and (c/(1+c)) > B[i][1]):## comparing PPM with

first interval

X_1[i+1][1]=2; X_1[i+1][2]=0;## correcting the ith guess

depending on transition

elif (X_1[i][1]==2 and 1<=B[i][1] and B[i][1] < 1+(c/(1+c))): ##

comparing PPM with second interval

X_1[i+1][1]=1; X_1[i+1][2]=0; ## correcting the ith guess

depending on transition

# print(len(X_1))

## Simulation of Second SMP

X_2 =[[0 ,2 ,0]]; ## initial condition of second SMP.

## First transition of SMP due to first PPM

X_2.append ([u[0],X_2 [0][1] ,u[0]]); ## First guess of (time , state , age

) due to first PPM

c=X_2 [1][2]; ##storing pre -transition age value in variable c.

if (X_2 [0][1] == 1 and (c/(1+c)) > B[0][1]):

X_2 [1][1]=2; X_2 [1][2]=0; ## correcting the first guess depending

on transition

elif (X_2 [0][1]==2 and 1<=B[0][1] and B[0][1] < 1+(c/(1+c))):

X_2 [1][1]=1; X_2 [1][2]=0; ## correcting the first guess depending

on transition

for i in range(1,N_total):

X_2.append ([u[i],X_2[i][1],X_2[i][2]+u[i]-u[i -1]]); c=X_2[i+1][2];

if (X_2[i][1] == 1 and (c/(1+c)) > B[i][1]): ## comparing PPM with

first interval

X_2[i+1][1]=2; X_2[i+1][2]=0; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==2 and 1<=B[i][1] and B[i][1] < 1+(c/(1+c))): ##

comparing PPM with second interval

X_2[i+1][1]=1; X_2[i+1][2]=0; ## correcting the ith guess

depending on transition

# print(len(X_2))

## Storing the time of meeting of two Simulations

tmeet =[]; ## Reinitialise after each simulation

for i in range(1,N_total):

if (X_1[i -1][1]!= X_2[i -1][1] and X_1[i][1]== X_2[i][1]):

tmeet.append ([X_1[i],X_2[i]]);

meet.append ([X_1[i],X_2[i]]);

first_meet.append(tmeet [0][0][0]);

## Storing the merging time of two Simulations

for i in range(N_total):

## Checking merging condition

if (X_1[i][2]== 0 and 0 == X_2[i][2] and X_1[i][1]== X_2[i][1]):

merg.append ([X_1[i],X_2[i]]); ## Storing whole merging event

merge_time.append(tmeet [(len(tmeet) -1)][0][0]); ## Storing the

merging time.

break; ##Since after merging meeting is prohibited , if merged

the last meeting time is merging time.
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print(len(merg)); ## Number of times merged out off 9 lakhs simulation.

print(max(merge_time))

print(max(first_meet))

## Graph plot

columns =200; ## Bins in histogram

x = np.arange(0, max(max(merge_time),max(first_meet)), 0.05)

y_1=x*np.exp(-x)

pf = np.array(first_meet)

y_2 , binedges=np.histogram(pf ,bins=columns)

bincenters = (0.5 * (binedges [1:] + binedges [: -1]))

bin_width =( binedges [1:]- binedges [: -1])

y_2_=y_2/(len(first_meet)*bin_width)

y_2=y_2_.astype(np.float)

pg = np.array(merge_time)

y_3 , binedges_1=np.histogram(pg ,bins=columns);

bincenters_1 = (0.5 * (binedges_1 [1:] + binedges_1 [:-1]))

bin_width_1 =( binedges_1 [1:]- binedges_1 [: -1])

y_3_=y_3/(len(merge_time)*bin_width_1);

y_3=y_3_.astype(np.float)

plt.plot(x,y_1 ,c=’green’,label=’holding␣time’)

plt.plot(bincenters , y_2_ , ’-’, c=’blue’,label=’first␣meeting␣time’)

plt.plot(bincenters_1 , y_3_ , ’-’, c=’red’,label=’merge␣time’)

plt.title(’Probability␣density␣functions ’)

plt.xlabel(’Time’)

plt.ylabel(’’)

plt.legend ()

plt.xlim([0, 10])

plt.show

plt.savefig(’2S_HSMP.png’,format="png", dpi = 600) ## Saving the image 2

H_HSMP with 600 dpi in png format

print("Average␣first␣Meet␣time"mean(first_meet))

print("Average␣of␣Merge␣time"mean(merge_time))

4.2.2 Algorithm for Non-Homogeneous Markov Process

## program for simulating multiple merging of two non -homogeneous Markov

Process

from scipy.stats import poisson

import random as rd

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import math

simu =900000 ## Total number of Simulations

meet =[]; merg =[]; merge_time =[]; first_meet =[]; nco_meet =[]; nco_time =[];

for k in range(simu):

## Generation of Poisson Points

T=30; grid =1;A=[];

N=poisson.rvs(mu=8*T,size=grid)
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N_total=sum(N); u=[];z=[]; ## Total number of Poisson point Masses(PPM

)

for j in range(grid):

for i in range(N[j]):

u.append(T*rd.random ()+j*T); ## this is coordinate in time

direction

z.append (8*rd.random ()); ## this is coordinate in space

direction

v=np.array(u); ## converted the list variable into array

k=np.argsort(v);

u=v[k]; ## sorted in ascending order

B=np.column_stack ((u,z)); ## Locus of PPM.

## Simulation of First NHMP

X_1 =[[0 ,1 ,0]]; ## initial condition of first NHMP.

for i in range(N_total):

X_1.append ([u[i],X_1[i][1],X_1[i][2]]);## guess of (time , state , age

) due to ith PPM

if ((X_1[i][2]) %2==1): ## when pre -transition count is odd

if (X_1[i][1] == 1 and (4/3 > B[i][1])):## comparing PPM with

first interval

X_1[i+1][1]=2; X_1[i+1][2]+=1;## correcting the first guess

depending on transition

elif (X_1[i][1]==1 and 4/3<=B[i][1] and B[i][1] < 2): ## comparing

PPM with second interval

X_1[i+1][1]=3; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==2 and 2<=B[i][1] and B[i][1] < 4): ## comparing

PPM with third interval

X_1[i+1][1]=1; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==2 and 4<=B[i][1] and B[i][1] < 6): ## comparing

PPM with fourth interval

X_1[i+1][1]=3; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==3 and 6<=B[i][1] and B[i][1] < 20/3): ##

comparing PPM with fifth interval

X_1[i+1][1]=1; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==3 and 20/3 <=B[i][1] and B[i][1] < 8): ##

comparing PPM with sixth interval

X_1[i+1][1]=2; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif ((X_1[i][2]) %2==0): ## when pre -transition count is even

if (X_1[i][1] == 1 and (2/3 > B[i][1])): ## comparing PPM with

first interval

X_1[i+1][1]=2; X_1[i+1][2]+=1;## correcting the first guess

depending on transition

elif (X_1[i][1]==1 and 4/3<=B[i][1] and B[i][1] < 5/3): ##
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comparing PPM with second interval

X_1[i+1][1]=3; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==2 and 2<=B[i][1] and B[i][1] < 3): ## comparing

PPM with third interval

X_1[i+1][1]=1; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==2 and 4<=B[i][1] and B[i][1] < 5): ## comparing

PPM with fourth interval

X_1[i+1][1]=3; X_1[i+1][2]+=1;## correcting the first guess

depending on transition

elif (X_1[i][1]==3 and 6<=B[i][1] and B[i][1] < 19/3): ##

comparing PPM with fifth interval

X_1[i+1][1]=1; X_1[i+1][2]+=1; ## correcting the first guess

depending on transition

elif (X_1[i][1]==3 and 20/3 <=B[i][1] and B[i][1] < 22/3): ##

comparing PPM with sixth interval

X_1[i+1][1]=2; X_1[i+1][2]+=1;## correcting the first guess

depending on transition

## Simulation of Second NHMP

X_2 =[[0 ,2 ,0]]; ## initial condition of first NHMP.

for i in range(N_total):

X_2.append ([u[i],X_2[i][1],X_2[i][2]]);## Guess of (time ,state ,age)

due to ith PPM

if ((X_2[i][2]) %2==1): ## When pre -transition count is odd

if (X_2[i][1] == 1 and (4/3 > B[i][1])):## comparing PPM with

first interval

X_2[i+1][1]=2; X_2[i+1][2]+=1;## correcting the ith guess

depending on transition

elif (X_2[i][1]==1 and 4/3<=B[i][1] and B[i][1] < 2): ## comparing

PPM with second interval

X_2[i+1][1]=3; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==2 and 2<=B[i][1] and B[i][1] < 4): ## comparing

PPM with third interval

X_2[i+1][1]=1; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==2 and 4<=B[i][1] and B[i][1] < 6): ## comparing

PPM with fourth interval

X_2[i+1][1]=3; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==3 and 6<=B[i][1] and B[i][1] < 20/3): ##

comparing PPM with fifth interval

X_2[i+1][1]=1; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==3 and 20/3 <=B[i][1] and B[i][1] < 8): ##

comparing PPM with sixth interval

X_2[i+1][1]=2; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition
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elif ((X_2[i][2]) %2==0): ## when pre -transition count is even

if (X_2[i][1] == 1 and (2/3 > B[i][1])): ## comparing PPM with

first interval

X_2[i+1][1]=2; X_2[i+1][2]+=1;## correcting the ith guess

depending on transition

elif (X_2[i][1]==1 and 4/3<=B[i][1] and B[i][1] < 5/3): ##

comparing PPM with second interval

X_2[i+1][1]=3; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==2 and 2<=B[i][1] and B[i][1] < 3): ## comparing

PPM with third interval

X_2[i+1][1]=1; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==2 and 4<=B[i][1] and B[i][1] < 5): ## comparing

PPM with fourth interval

X_2[i+1][1]=3; X_2[i+1][2]+=1;## correcting the ith guess

depending on transition

elif (X_2[i][1]==3 and 6<=B[i][1] and B[i][1] < 19/3): ##

comparing PPM with fifth interval

X_2[i+1][1]=1; X_2[i+1][2]+=1; ## correcting the ith guess

depending on transition

elif (X_2[i][1]==3 and 20/3 <=B[i][1] and B[i][1] < 22/3): ##

comparing PPM with sixth interval

X_2[i+1][1]=2; X_2[i+1][2]+=1;## correcting the ith guess

depending on transition

## Storing the time of meeting of two Simulations

tmeet =[]; ## Reinitialise after each simulation

for i in range(1,N_total):

if (X_1[i -1][1]!= X_2[i -1][1] and X_1[i][1]== X_2[i][1]): ## pre -

transition states are different and meeting happens

tmeet.append ([X_1[i],X_2[i]]);

meet.append ([X_1[i],X_2[i]]);

first_meet.append(tmeet [0][0][0]);

## Merging in the next transition

if (tmeet !=[]):

first_meet.append(tmeet [0][0][0]);

if (X_1 [0][2]==0 and X_2 [0][2]==1):

for i in range(1,N_total):

if(X_1[i][1]== X_2 [0][1] and X_1[i][2]==1 and X_2[i][2]==1):

merge_in_next +=1;

break;

elif(X_1 [0][2]==1 and X_2 [0][2]==0):

for i in range(1,N_total):

if(X_1 [0][1]== X_2[i][1] and X_1[i][2]==1 and X_2[i][2]==1):

merge_in_next +=1;

break;

print("Total␣Simulation",simu)

print("Number␣of␣Times␣Merge␣in␣Next␣Transition",merge_in_next)

print("Probability␣of␣Merging␣in␣next␣transition",merge_in_next/simu)

columns =100; ## Bins in the histogram
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if (first_meet != []):

pf = np.array(first_meet)

y_2 , binedges=np.histogram(pf ,bins =2* columns)

bincenters = (0.5 * (binedges [1:] + binedges [: -1]))

bin_width =( binedges [1:]- binedges [: -1])

y_2_=y_2/(len(first_meet)*bin_width)

y_2=y_2_.astype(np.float)

plt.plot(bincenters , y_2_ , ’-’, c=’blue’,label=’first␣meet␣time’)

plt.title(’probability␣density␣function ’)

plt.xlabel(’Time’)

plt.ylabel(’’)

plt.legend ()

plt.xlim ([ -0.1 ,7])

plt.savefig(’1_2_3S_NHMP.png’,format="png", dpi =600)

plt.show()

print("Average␣of␣first␣Meet␣",sum(first_meet)/len(first_meet))
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Chapter 5

Component-wise Semi-Markov
Process

5.1 General CSM

Definition 5.1.1. A pure jump process X on a countable state space X is called a Component-
wise Semi-Markov Process (CSM) if there is a bijection Γ : X →

∏d
l=1X l, such that each

component of Γ(X) is a semi-Markov process, where d is a positive integer and for each
l ∈ D := {1, 2, . . . , d}, X l is an at-most countable non-empty set.

Component-wise semi-Markov process (CSM) on finite state-space with independent com-
ponents has first been introduced in [10]. The CSM is a generalization of semi-Markov
processes into a broader class of pure jump processes. The CSM, studied in [10] possesses a
well defined bounded transition rate function and hence that has been used to characterize
the CSM. However, the definition of CSM does not imply existence of a rate function. In
view of this it is important to find an alternative way of characterizing a general type of
CSM. Needless to mention, the kernel characterization should be most suitable in this re-
gard. We recall that the transition rate exists if and only if the kernel is almost everywhere
differentiable. In that case, the rate can be expressed in terms of the kernel and vice versa.
It is also easy to note that the knowledge of kernels of all individual components of CSM is
sufficient to characterize the CSM, provided the components are independent to each other.
However, in this chapter we consider an extension of CSM, appearing in [10], by dropping
the independence condition. We further allow the state-space of each component be non-
identical and at most countable. So, we propose characterization of CSM using a novel notion
of kernel. The way we define the kernel, is broad enough to include both the dependent and
independent component cases and both the homogeneous and non-homogeneous cases. As
per our knowledge this is the first effort in the literature to characterize a general CSM using
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a kernel-based approach.

5.1.1 Kernel associated with general CSM

Without loss of generality, we assume that X =
∏d

l=1 X l and X l is a semi-Markov process
on X l for each l ∈ D. Here Γ is the identity map. The process X = (X1, . . . , Xd) is the
CSM. Let x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) be the state and age of CSM, where
xl ∈ X l and yl ≥ 0. Assume that {Tn}n∈N0 is an increasing sequence of positive numbers
such that T0 := 0 and Tn := inf{t > Tn−1 : t ∈ T 1∪· · ·∪T d}, where T l denotes the collection
of transition times of X l for each l ∈ D. We further define the component-wise age process
Y = (Y 1, . . . , Y d) of the CSM recursively. For each l ∈ D, Y l

T0
= 0 and

Y l
Tm

=

{
Y l
Tm−1

+ (Tm − Tm−1), if X l
Tm

= X l
Tm−1

0, otherwise

for all m ≥ 1. It is evident from above that for each m ≥ 1, YTm is measurable wrt the
σ- algebra generated by {XTm , XTm−1 , · · · , XT0 , Tm, · · · , T0}. Furthermore, for a CSM the

following holds, for each y2 ∈ Rd
+, x2 ∈

∏d
i=1Xi

P

[⋂
l∈D

(
{X l

T l

nl
m+1

= xl2} ∩ {T l
nl
m+1 − Tm ≤ yl2}

)
| XTm , YTm

]

= P

[⋂
l∈D

(
{X l

T l

nl
m+1

= xl2} ∩ {T l
nl
m+1 − Tm ≤ yl2}

)
| XTm , XTm−1 , · · · , XT0 , Tm, · · · , T0

]
where nl

m := N l
Tm
, N l

t is the number of transitions in l component till time t. For each

m ≥ 1, y1, y2 ∈ Rd
+, x1, x2 ∈

∏d
i=1 Xi the transition kernel of CSM is given by,

Qm
x1,y1

(x2, y2) := P

[⋂
l∈D

(
{X l

T l

nl
m+1

= xl2} ∩ {T l
nl
m+1 − Tm ≤ yl2}

)
| XTm = x1, YTm = y1

]
.

(5.1.1)

Definition 5.1.2. If the transition kernel Qm for a general CSM is constant in m then we
call the CSM homogeneous, otherwise non-homogeneous.

There are two natural questions. (i) Does Qm
x1,y1

(x2, y2) coincide with the kernel function of
semi-Markov process if d = 1? (ii) Does Qm result in a unique kernel if d > 1? The answer
to the first is affirmative and is evident. Indeed if d = 1, there is only one component. Thus
T 1 = T and T 1

N1
Tm

+1
= Tm+1. Hence, for x1, x2 ∈ X and y1, y2 ≥ 0,m ∈ N0 from (5.1.1) we

get

Qm
x1,y1

(x2, y2) = P
[(
{XTm+1 = x2} ∩ {Tm+1 − Tm ≤ y2}

)
| XTm = x1, YTm = y1

]
.
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The right side is indeed the well known kernel function for a semi-Markov process. The
second question is also answered affirmatively in the following theorem.

Theorem 5.1.3. Let X = (X1, X2, . . . , Xd) be a CSM on X , and for each m ≥ 1, x1, x2 ∈
X , y1, y2 ∈ R+

d, Qm
x1,y1

(x2, y2) be defined by (5.1.1). Also denote E := X × R+
d, and

E := B(X × R+
d), the Borel σ algebra on E. Then the map (x1, y1, x2, y2) 7→ Qm

x1,y1
(x2, y2)

determines a unique regular conditional distribution Qm satisfying

1. for each (x1, y1), B 7→ Qm(x1, y1, B) is a probability measure on (E, E) such that
Qm(x1, y1, {x2} ×

∏d
l=1(−∞, yl2]) = Qm

x1,y1
(x2, y2);

2. for each B ∈ E, (x1, y1) 7→ Qm(x1, y1, B) is measurable wrt (E, E).

For a fixed m ∈ N, the measurability of Qm w.r.t. y1 is due to the definition 5.1.1.
Therefore, the above theorem can be proved in the similar line of the proof of [7, Theorem
7.2.2, page 225]. We omit the details.

Several different transition related probabilities can be obtained from the kernel. For the
purpose of illustration we present expressions of only couple of them here.

Definition 5.1.4 (Marginal kernel of lth component). Given X is a CSM, then the Marginal
kernel of lth component is denoted by Q̄m,l

x1,y1
(x′, r) and is defined as below

Q̄m,l
x1,y1

(x′, r) :=
∑
l′ /∈{l}

lim
yl′→∞

∑
xl′
2 ∈X l′

Qm
x1,y1

(x2, y2)
∣∣∣
yl2=r,xl

2=x′
.

Remark 5.1.5. Using the definition 5.1.4 of marginal kernel of lth component, Q̄m,l
x1,y1

(x′, r)
is equal to P ({X l

T l

nl
m+1

= x′} ∩ {T l
nl
m+1

− Tm ≤ r} | XTm = x1, YTm = y1), the conditional

probability of transition of lth component to x′ within next r unit of time given the CSM is
at x1 with the component-wise ages being y1 at the mth transition time.

Definition 5.1.6. Let τ l(t) denote the remaining duration after time t before the lth compo-
nent of X has the next transition. In fact τ l(t) = T l

N l
t+1

− t.

Let Fτ l(Tm)(· | x1, y1) denote the conditional c.d.f. of τ l(Tm) given XTm = x1 and YTm = y1.
For r ≥ 0,

Fτ l(Tm)(r | x1, y1)
= P (τ l(Tm) ≤ r | XTm = x1, YTm = y1)

= P (T l
nl
m+1

− Tm ≤ r | XTm = x1, YTm = y1)

=
∑
x′∈X l

P ({X l
T l

nl
m+1

= x′} ∩ {T l
nl
m+1 − Tm ≤ r} | XTm = x1, YTm = y1)

=
∑
x′∈X l

Q̄m,l
x1,y1

(x′, r). (5.1.2)
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Note that the way we define Tm, that gives the time of mth transition of the CSM process.
More precisely, the transition instance of CSM where multiple components transit together
is also recorded as a single transition of the CSM. Therefore, m =

∑
l∈D n

l
m holds only if no

two states transit together at or before time Tm. Let l(t) denote the set of components of X,
where the subsequent transition of CSM happens after time t. In fact if all components of a
CSM process are independent, l(t) is singleton with probability one. However, the dependent
components may transit together in finite time with positive probability. At those occasions
l(t) fail to remain almost sure singleton.

5.2 Semimartingale Representation of CSM Process

Let (Ω,F , {Ft}t≥0, P ) be the underlying filtered probability space satisfying the usual hy-
pothesis. Given a right stochastic matrix W = (wll′)1≤l,l′≤d and d number of independent
Poisson random measures (PRM) ℘1, . . . , ℘d on R2 × [0, 1] with intensity m3, define ℘̄l as

℘̄l(A) =
d∑

l′=1

℘l′(A× [0, wll′ ]), l ∈ D (5.2.1)

where A is any measurable subset of R2. It is easy to see that {℘̄l}l∈D are PRM on R2. Notice
that ℘̄1, . . . , ℘̄d are not independent to each other. We also assume that ℘1, . . . , ℘d are such
that {℘̄l((0, t]× dv)}t≥0 is adapted to {Ft}t≥0. We further assume that and X l = {1, 2, . . .}
the state space. We wish to construct a semi-Markov process on this state pace with a
given transition rate function. The transition rate function, under consideration is allowed
to yield a non-homogeneous embedded Markov chain. To this end we first embed this set
in N and endow with its usual total order ≺1, which in turn induces a total order ≺2 on
X l

2 := {(i, j) ∈ X l ×X l | i ̸= j} by following lexicographic order. Let λl(y, n) := (λlij(y, n))
denote a matrix in which the ith diagonal element is λlii(y, n) := −

∑
j∈X l\{i} λ

l
ij(y, n) and

for each (i, j) ∈ X l
2, λ

l
ij : R+ × N0 → R+ is a bounded measurable function satisfying the

following two assumptions.

D1. cl := sup
i
cli, where c

l
i := ∥λli(·, ·)∥L∞

(R+×N0)
, and λli(y, n) := |λlii(y, n)|.

D2. For each n ≥ 0 and l ∈ D, limy→∞ γli(y, n) = ∞, where γli(y, n) :=
∫ y

0
λli(y

′, n)dy′.

Let C l
i := cli +

∑
k≺1i

clk. For each (i, j) ∈ X l
2 and l ∈ D we consider another measurable

function λ̃lij : R+ × N0 → R+ such that for each y ≥ 0, l ∈ D and n ∈ N0

λlij(y, n) ≤ λ̃lij(y, n), (5.2.2)
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and also for almost every y ≥ 0 and n ∈ N0

λ̃lij(y, n) ≤ ∥λli(·, ·)∥L∞
(R+×N0)

. (5.2.3)

Now for each y ≥ 0, and n ∈ N0, with the help of λl(y, n) and λ̃l(y, n) := (λ̃lij(y, n)), we
introduce a collection of disjoint intervals Λl := {Λl

ij(y, n) : (i, j) ∈ X l
2}, by

Λl
ij(y, n) =

 ∑
(i′,j′)≺2(i,j)

λ̃li′j′(y, n)

 +
[
0, λlij(y, n)

)
(5.2.4)

where a + B = {a + b | b ∈ B} for a ∈ R, B ⊂ R. Clearly, for each i, j, n and l, the
interval Λl

ij(y, n) is of length λ
l
ij(y, n) for each y ≥ 0, and for almost every y ≥ 0 the union

Λl
i(y, n) := ∪j∈X\{i}Λ

l
ij(y, n) is contained in a finite interval

[
0, C l

i

]
, according to (D1). Using

the above intervals we define hlΛ : X × R+ × N0 × R → R as

hlΛ(i, y, n, v) :=
∑

j∈X l\{i}

(j − i)1Λl
ij(y,n)

(v), (5.2.5)

and glΛ : X × R+ × N0 × R → R as

glΛ(i, y, n, v) :=
∑

j∈X l\{i}

1Λl
ij(y,n)

(v). (5.2.6)

These functions are piece-wise constant in v variable. Using these, we consider the following
system of coupled stochastic integral equations in X l, Y l, and N l for t > 0, where ℘̄l is
defined before.

X l
t = X l

0 +

∫ t

0+

∫
R
hlΛ(X

l
u−, Y

l
u−, N

l
u−, v)℘̄l(du, dv) (5.2.7)

Y l
t = Y l

0 + t−
∫ t

0+

(Y l
u−)

∫
R
glΛ(X

l
u−, Y

l
u−, N

l
u−, v)℘̄l(du, dv) (5.2.8)

N l
t =

∫ t

0+

∫
R
glΛ(X

l
u−, Y

l
u−, N

l
u−, v)℘̄l(du, dv). (5.2.9)

We assume the vector notation for t > 0,

Z l
t = Z l

0 +

∫ t

0

A(Z l
u−)du+

∫
[0,t]×R+

J l(Z l
u−, v)℘̄l(du, dv), l ∈ D (5.2.10)

where Z l
t =

(
X l

t , Y
l
t , N

l
t

)′
, Z l

0 =
(
X l

0, Y
l
0 , N

l
0

)′
, A =

(
0, 1, 0

)′
, J l =

(
hlΛ,−yglΛ, glΛ

)′
and ℘̄l are

PRM as in (5.2.1).

Remark 5.2.1. For each l ∈ D, Z l = (X l, Y l, N l) exists uniquely from Theorem 3.2.2 and
Theorem 3.2.4.
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Remark 5.2.2. If W = Id×d, then from (5.2.1) ℘̄l(A) = ℘l(A× [0, 1]). As {℘l | l ∈ D} are
independent PRMs on R2 × [0, 1], the collection {℘̄l | l ∈ D} becomes independent too. Thus
(5.2.10), produces a CSM process with independent components. Such CSM have been used
for modelling financial asset price dynamics in [9] and [10].

Remark 5.2.3. For a fixed j1 we set W = (wij) where wij =

{
1, if j = j1

0, otherwise
.

Hence, from (5.2.1) ℘̄l(A) = ℘j1(A × [0, 1]) for each l ∈ D. Thus in (5.2.10) a single
PRM drives each component of Z = (Z1, . . . , Zd). In addition to this, if J1, J2, . . . , Jd are
all identical, Z can be viewed as the vector of solutions of the same equation with possibly
different initial conditions. A CSM X = (X1, . . . , Xd) obtained from such solutions have
been closely studied in preceding chapters.

5.3 Infinitesimal Generator of CSM

Notation 5.3.1. Fix il ∈ X l and yl ≥ 0, l ∈ D. Let Z l = (X l, Y l, N l), l ∈ D be the strong
solutions of (5.2.7)-(5.2.9) with initial conditions for fixed time s(> 0)

il = X l
s, yl = Y l

s , nl = N l
s, l ∈ D. (5.3.1)

We also denote (Z1, Z2, · · · , Zd) as Z, (X1, . . . , Xd) as X, (Y 1, . . . , Y d) as Y and (N1, . . . , Nd)
as N , where Z is the augmented process, X is CSM and Y,N are its age and transition
counts.

Next we restrict ourselves to the following choice of λ̃ for the ease of deriving the law of Z.

D3. For almost every l ∈ D and y ≥ 0 and (i′, j′) ∈ X l
2, λ̃i′j′(y) = ∥λli′j′(·, ·)∥L∞

R+×N0
.

Infinitesimal Generator of CSM with two component driven by one PRM is presented
in Chapter 2 (2.5.1)(both components are homogeneous SMP’s) and Chapter 3(3.5.3)(both
components are non-homogeneous SMP’s), in the next subsection we calculate the infinites-
imal generator of CSM with three component where each component is non-homogeneous
SMP driven by one PRM.

5.3.1 CSM with 3 components and single PRM

Let us consider the case for d = 3 and assume for each l = 1, 2, 3 PRMs ℘̄1 = ℘̄2 = ℘̄3 =
℘,X 1 = X 2 = X 3 and J1 = J2 = J3 = J . Also Since, Z1, Z2 and Z3 as in Notation
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5.3.1 are Markov, Z = (Z1, Z2, Z3) is also Markov. It has state, age components and
transition counts X = (X1, X2, X3), Y = (Y 1, Y 2, Y 3) and N = (N1, N2, N3) respectively.
While each of X1,X2 and X3 is semi-Markov, the pure jump process X is not. Rather, X
is a component-wise semi-Markov process (CSM) and the Markov process Z is called the
augmented process of CSM X. A CSM with independent components has been introduced
for modelling financial assets in [10]. However, a CSM with dependent components has not
been studied in the literature yet. Since, for our case, the components of the CSM X are
driven by a single Poisson random measure, they are not independent. In view of this, it
is interesting to derive the law of X by finding the generator of Z. To this end, we recall
Itô’s lemma for r.c.l.l. semi-martingales. Let φ : (X × R+ × N0)

3 → R be bounded and
continuously differentiable in its continuous variables, then

dφ(Z1
t , Z

2
t , Z

3)−
(

∂

∂y1
+

∂

∂y2
+

∂

∂y3

)
φ(Z1

t , Z
2
t , Z

3)dt

= φ(Z1
t , Z

2
t , Z

3
t )− φ(Z1

t−, Z
2
t−, Z

3
t−)

= φ

(
Z1

t− +

∫
R+

J(Z1
t−, v)℘(dt, dv), Z

2
t− +

∫
R+

J(Z2
t−, v)℘(dt, dv), Z

3
t− +

∫
R+

J(Z3
t−, v)℘(dt, dv)

)
− φ(Z1

t−, Z
2
t−, Z

3
t−)

=

∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)
]
℘(dt, dv)

=

(∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v)))− φ(Z1
t−, Z

2
t−, Z

3
t−)
]
dv

)
dt+ dMt

where M is the martingale obtained by integration w.r.t the compensated Poisson
random measure ℘(dt, dv)− dtdv. And the third equality holds true due to Theorem 0.2.20.
To simplify the above integral term, we impose (D3) and divide the derivation into five
disjoint and exhaustive cases. Those are based on equality of the states of the components
before transition. To be more precise, the cases where all three components are different,
any two are identical and different from the only remaining one, and where all three are at
identical state are considered.

Case 1: Assume X1
t−, X

2
t− and X3

t− are all distinct. Then under (D3), ΛX1
t−j1(Y

1
t−, N

1
t−),

ΛX2
t−j2(Y

2
t−, N

2
t−) and ΛX3

t−j2(Y
3
t−, N

3
t−) are disjoint for every j1 ̸= X1

t−, j2 ̸= X2
t− and j3 ̸= X3

t−.
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Thus, by considering these intervals where the integrand is non-zero constants, we get∫
R+

[φ(Z1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=

∫
3⋃

k=1

 ∪
j∈X l\{Xk

t−}
Λ
Xk

t−j
(Y k

t−,Nk
t−)

[φ(Z
1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))

− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=
∑

j ̸=X1
t−

[φ((j, 0, N1
t− + 1), Z2

t−, Z
3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]|ΛX1

t−j(Y
1
t−, N

1
t−)|

+
∑

j ̸=X2
t−

[φ(Z1
t−, (j, 0, N

2
t− + 1), Z3

t−)− φ(Z1
t−, Z

2
t−, Z

3
t−)]|ΛX2

t−j(Y
2
t−, N

2
t−)|

+
∑

j ̸=X3
t−

[φ(Z1
t−, Z

2
t−, (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|ΛX3

t−j(Y
3
t−, N

3
t−)|.

Case 2: Assume that X1
t− = X2

t− = i ̸= X3
t−. Now under (D3), the intervals ΛX1

t−j1(Y
1
t−, N

1
t−),

ΛX2
t−j2(Y

2
t−, N

2
t−) have identical left end points for every j1, j2 ̸= i and ΛX3

t−j3(Y
3
t−, N

3
t−) is

disjoint with ΛX1
t−j1(Y

1
t−, N

1
t−) and ΛX2

t−j2(Y
2
t−, N

2
t−) for every j1, j2 ̸= i. Thus, by considering

the intervals where the integrand is non-zero constants, we get∫
R+

[φ(Z1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=

∫
3⋃

k=1

 ∪
j∈X l\{Xk

t−}
Λ
Xk

t−j
(Y k

t−,Nk
t−)

[φ(Z
1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))

− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=
∑
j ̸=i

[φ((j, 0, N1
t− + 1), Z2

t−, Z
3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

1
t−, N

1
t−) \ Λij(Y

2
t−, N

2
t−)|

+
∑
j ̸=i

[φ(Z1
t−, (j, 0, N

2
t− + 1), Z3

t−)− φ(Z1
t−, Z

2
t−, Z

3
t−)]|Λij(Y

2
t−, N

2
t−) \ Λij(Y

1
t−, N

1
t−)|

+
∑
j ̸=i

[φ((j, 0, N1
t− + 1), (j, 0, N2

t− + 1), Z3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

1
t−, N

1
t−) ∩ Λij(Y

2
t−, N

2
t−)|

+
∑

j ̸=X3
t−

[φ(Z1
t−, Z

2
t−, (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|ΛX3

t−j(Y
3
t−, N

3
t−)|.

Case 3: Assume thatX1
t− = X3

t− = i ̸= X2
t−. Again under (D3), the intervals ΛX1

t−j1(Y
1
t−, N

1
t−),

ΛX3
t−j3(Y

3
t−, N

3
t−) have identical left end points for every j1, j3 ̸= i and ΛX2

t−j2(Y
2
t−, N

2
t−) is dis-

joint with intervals ΛX1
t−j1(Y

1
t−, N

1
t−) and ΛX3

t−j3(Y
3
t−, N

3
t−) for every j1, j3 ̸= i, and j2 ̸= X2

t−.
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Thus, by considering these intervals where the integrand is non-zero constants, we get∫
R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)
]
dv

=

∫
3⋃

k=1

 ∪
j∈X l\{Xk

t−}
Λ
Xk

t−j
(Y k

t−,Nk
t−)

[φ(Z
1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))

− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=
∑
j ̸=i

[φ((j, 0, N1
t− + 1), Z2

t−, Z
3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

1
t−, N

1
t−) \ Λij(Y

3
t−, N

3
t−)|

+
∑
j ̸=i

[φ(Z1
t−, Z

2
t−, (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

3
t−, N

3
t−) \ Λij(Y

1
t−, N

1
t−)|

+
∑
j ̸=i

[φ((j, 0, N1
t− + 1), Z2

t−, (j, 0, N
3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

1
t−, N

1
t−) ∩ Λij(Y

3
t−, N

3
t−)|

+
∑

j ̸=X2
t−

[
φ(Z1

t−, (j, 0, N
2
t− + 1), Z3

t−)− φ(Z1
t−, Z

2
t−, Z

3
t−)
]
|ΛX2

t−j(Y
2
t−, N

2
t−)|.

Case 4: Assume that X1
t− ̸= X2

t− = X3
t− = i. Now under (D3), the intervals ΛX2

t−j2(Y
2
t−, N

2
t−),

ΛX3
t−j3(Y

3
t−, N

3
t−) have identical left end points for every j2, j3 ̸= i and ΛX1

t−j1(Y
1
t−, N

1
t−) is

disjoint with the intervals ΛX2
t−j2(Y

2
t−, N

2
t−) and ΛX3

t−j3(Y
3
t−, N

3
t−) for every j1 ̸= X1

t−, j2, j3 ̸= i.
Thus, by considering these intervals where the integrand is non-zero constants, we get∫

R+

[
φ(Z1

t− + J(Z1
t−, v), Z

2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)
]
dv

=

∫
3⋃

k=1

 ∪
j∈X l\{Xk

t−}
Λ
Xk

t−j
(Y k

t−,Nk
t−)

[φ(Z
1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))

− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=
∑
j ̸=i

[φ((Z1
t−, (j, 0, N

2
t− + 1), Z3

t−)− φ(Z1
t−, Z

2
t−, Z

3
t−)]|Λij(Y

2
t−, N

2
t−) \ Λij(Y

3
t−, N

3
t−)|

+
∑
j ̸=i

[φ(Z1
t−, Z

3
t−, (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

3
t−, N

3
t−) \ Λij(Y

2
t−, N

2
t−)|

+
∑
j ̸=i

[φ(Z1
t−, (j, 0, N

2
t−), (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]|Λij(Y

2
t−, N

2
t−) ∩ Λij(Y

3
t−, N

3
t−)|

+
∑

j ̸=X1
t−

[
φ((j, 0, N1

t− + 1), Z2
t−, Z

3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)
]
|ΛX1

t−j(Y
1
t−, N

1
t−)|.

Case 5: Assume that X1
t− = X2

t− = X3
t− = i. Then under (D3), the intervals Λij(Y

1
t−, N

1
t−),

Λij(Y
2
t−, N

2
t−) and Λij(Y

3
t−, N

3
t−) are having identical left end points. So, ΛX1

t−j1(Y
1
t−, N

1
t−),
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ΛX2
t−j2(Y

2
t−, N

2
t−) and ΛX3

t−j(Y
3
t−, N

3
t−) are not disjoint when j1 = j2 = j3. Thus

∫
R+

[φ(Z1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=

∫
(

3
∪

k=1
( ∪
j ̸=i

Λij(Y k
t−,Nk

t−)))

[φ(Z1
t− + J(Z1

t−, v), Z
2
t− + J(Z2

t−, v), Z
3
t− + J(Z3

t−, v))

− φ(Z1
t−, Z

2
t−, Z

3
t−)]dv

=
∑
j ̸=i

[φ((j, 0, N1
t− + 1), Z2

t−, Z
3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]×

|Λij(Y
1
t−, N

1
t−) \ (Λij(Y

2
t−, N

2
t−) ∪ Λij(Y

3
t−, N

3
t−))|

+
∑
j ̸=i

[φ(Z1
t−, (j, 0, N

2
t− + 1), Z3

t−)− φ(Z1
t−, Z

2
t−, Z

3
t−)]×

|Λij(Y
2
t−, N

2
t−) \ (Λij(Y

1
t−, N

1
t−) ∪ Λij(Y

3
t−, N

3
t−))|

+
∑
j ̸=i

[φ(Z1
t−, Z

2
t−, (j, 0, N

3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]×

|Λij(Y
3
t−, N

3
t−) \ (Λij(Y

1
t−, N

1
t−) ∪ Λij(Y

2
t−, N

2
t−))|

+
∑
j ̸=i

[φ((j, 0, N1
t− + 1), (j, 0, N2

t− + 1), Z3
t−)− φ(Z1

t−, Z
2
t−, Z

3
t−)]×

|Λij(Y
1
t−, N

1
t−) ∩ Λij(Y

2
t−, N

2
t−) \ Λij(Y

3
t−, N

3
t−)|

+
∑
j ̸=i

[φ((j, 0, N1
t− + 1), Z2

t−, (j, 0, N
3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]×

|Λij(Y
1
t−, N

1
t−) ∩ Λij(Y

3
t−, N

3
t−) \ Λij(Y

2
t−, N

2
t−)|

+
∑
j ̸=i

[φ(Z1
t−, (j, 0, N

2
t− + 1), (j, 0, N3

t− + 1))− φ(Z1
t−, Z

2
t−, Z

3
t−)]×

|Λij(Y
2
t−, N

2
t−) ∩ Λij(Y

3
t−, N

3
t−) \ Λij(Y

1
t−, N

1
t−)|

+
∑
j ̸=i

[φ((j, 0, N1
t− + 1), (j, 0, N2

t− + 1), (j, 0, N3
t− + 1))− φ(Z1

t−, Z
2
t−, Z

3
t−)]×

|Λij(Y
1
t−, N

1
t−) ∩ Λij(Y

2
t−, N

2
t−) ∩ Λij(Y

3
t−, N

3
t−)|.

Thus, by combining the expressions under all the cases, the generator A of (Z1, Z2, Z3) is
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given by

Aφ(z1, z2, z3)

=

(
∂

∂y1
+

∂

∂y2
+

∂

∂y3

)
φ(z1, z2, z3)

+
∑
j /∈{i1}

[φ((j, 0, n1 + 1), z2, z3)− φ(z1, z2, z3)] [λi1j(y1, n1)− δi1,i2(1− δi1,i3)λi2j(y2, n2)

− δi1,i3(1− δi1,i2)λi3j(y3, n3)− δi1,i2δi1,i3(λi2j(y2, n2) ∨ λi3j(y3, n3))]
+

+
∑
j /∈{i2}

[φ(z1, (j, 0, n2 + 1), z3)− φ(z1, z2, z3)] [λi2j(y2, n2)− δi1,i2(1− δi2,i3)λi1j(y1, n1)

− δi2,i3(1− δi1,i2)λi3j(y3, n3)− δi1,i2δi2,i3(λi1j(y1, n1) ∨ λi3j(y3, n3))]
+

+
∑
j /∈{i3}

[φ(z1, z2, (j, 0, n3 + 1))− φ(z1, z2, z3)] [λi3j(y3, n3)− δi1,i3(1− δi2,i3)λi1j(y1, n1)

− δi2,i3(1− δi1,i3)λi2j(y2, n2)− δi1,i3δi2,i3(λi1j(y1, n1) ∨ λi2j(y2, n2))]
+

+ δi1,i2
∑

j /∈{i1,i2}

[φ((j, 0, n1 + 1), (j, 0, n2 + 1), z3)− φ(z1, z2, z3)]×

[(λi1j(y1, n1) ∧ λi2j(y2, n2))− δi1,i3λi3j(y3, n3)]
+

+ δi1,i3
∑

j /∈{i1,i3}

[φ((j, 0, n1 + 1), z2, (j, 0, n3 + 1))− φ(z1, z2, z3)]×

[(λi1j(y1, n1) ∧ λi3j(y3, n3))− δi1,i2λi2j(y2, n2)]
+

+ δi2,i3
∑

j /∈{i2,i3}

[φ(z1, (j, 0, n2 + 1), (j, 0, n3 + 1))− φ(z1, z2, z3)]×

[(λi2j(y2, n2) ∧ λi3j(y3, n3))− δi1,i3λi1j(y1, n1)]
+

+ δi1,i2δi1,i3
∑

j /∈{i1,i2,i3}

[φ((j, 0, n1 + 1), (j, 0, n2 + 1), (j, 0, n3 + 1))− φ(z1, z2, z3)]×

[λi1j(y1, n1) ∧ λi2j(y2, n2) ∧ λi3j(y3, n3)] (5.3.2)

where z1 = (i1, y1, n1), z2 = (i2, y2, n2), z3 = (i3, y3, n3), and δi,j =

{
1, if i = j

0, otherwise.
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5.3.2 CSM with arbitrary components and single PRM

Let z = (z1, z2, . . . , zd) and z
′ = (z′1, z

′
2, . . . , z

′
d), where zl = (xl, yl, nl), z

′
l = (x′l, y

′
l, n

′
l) are in

X l × R+ × N0. For any given z and z′ we define

i(z, z′) :={l ∈ D | x′l ̸= xl, y
′
l = 0, n′

l = nl + 1},
x(z, z′) :={xl | l ∈ i(z, z′)},

and x′(z, z′) :={x′l | l ∈ i(z, z′)}.

Evidently, x(z, z′) = x′(z, z′) = ∅, the empty set if i(z, z′) is empty. Set

δA :=

{
1 if A is singleton
0 otherwise.

Furthermore assume that max∅ v = 0 for any v : D → R+. If X 1 = · · · = X d = X and λ1 =
λ2 = · · · = λd = λ, using the above notations we define for any ϕ :

∏d
l=1(X ×R+ ×N0) → R

Aϕ(z) =
d∑

l=1

∂

∂yl
ϕ(z) +

∑
z′

δx(z,z′)δx′(z,z′)

 ∏
l∈D\i(z,z′)

δ{zl,z′l}

×

 min
l∈i(z,z′)

λxl,x
′
l
(yl, nl)− max

{l∈D\i(z,z′)
|xl∈x(z,z′)}

λxl,x
′
l
(yl, nl)

+

(ϕ(z′)− ϕ(z))

(5.3.3)

provided ϕ has first order partial derivatives w.r.t yl for each l ∈ D.

Theorem 5.3.2. Assume (D1)-(D3). Further assume that ℘̄1 = · · · = ℘̄d = ℘, X 1 =
· · · = X d and λ1 = · · · = λd = λ. Then the infinitesimal generator A of the solution to
(5.2.7)-(5.2.9) is given by (5.3.3).

Proof. The partial differential operators appearing in the first additive term is due to the
time like continuous growth of age variable during non-occurrence of transitions. We would
justify the remaining terms below.

It is evident from the derivation of (5.3.2) that in the expression of the generator the incre-
ment factor ϕ(z′) − ϕ(z) should be multiplied by the corresponding rate. The rate of the
increment of course depends on z and z′, the states before and after the transition respec-
tively. As, due to a transition the age and the transition count becomes zero and increases
by one respectively, the set i(z, z′) denotes the set of components which observe transitions.
In addition to that, the components of z and z′ other than those in i(z, z′) remain identical.
So the rate possesses a factor

∏
l∈D\i(z,z′) δ{zl,z′l}, which is one if and only if zl = z′l for all

l ∈ D \ i(z, z′) and zero otherwise. We also observe that due to (D3) for almost every y and
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every n, the collection {Λi,j(y, n) | i ̸= j} contains disjoint intervals. So, for every transition,
being caused due to a single point mass, the prior states of the transiting components are
all identical. Also for the same reason the future states of all transiting components are
identical. Therefore, the factor δx(z,z′)δx′(z,z′) appears in the rate.

It is important to note that under the condition of δx(z,z′) = 1, the members of i(z, z′) are
not the only components for which the x components of z coincide to those for i(z, z′). That
is i(z, z′) could be a proper subset of {l ∈ D | xl ∈ x(z, z′)}. In other words, components
in i(z, z′) undergo transition and those in {l ∈ D | xl ∈ x(z, z′)} \ i(z, z′) do not undergo
transition. Given δx(z,z′) = 1, this can happen only if the Possion point mass appears in
∩l∈i(z,z′)Λxl,x

′
l
(yl, nl) and do not appear in ∪(Λxl,x

′
l
(yl, nl) | xl ∈ x(z, z′), l /∈ i(z, z′)). The sec-

ond set is empty if the union is over an empty family. As the left end points of all the intervals
in the expression of the intersection and union are coincident (thanks to (D3)), the Lebesgue
measure of these two sets are min

l∈i(z,z′)
λxl,x

′
l
(yl, nl) and max{l∈D\i(z,z′)|xl∈x(z,z′)} λxl,x

′
l
(yl, nl) re-

spectively. Note that this is valid even if the second set is empty due to our convention.
Therefore, as the left end points are identical, the length of the set after subtracting the lat-

ter from the former is

(
min

l∈i(z,z′)
λxl,x

′
l
(yl, nl)−max{l∈D\i(z,z′)

|xl∈x(z,z′)}
λxl,x

′
l
(yl, nl)

)+

. This completes

the proof.

Remark 5.3.3. Note that the expression of the infinitesimal generator involves a summation
over z′ ∈ (X × R+ × N0)

d. Although this appears as an uncountable sum, only at most
countable number of terms may survive. Indeed, due to the definition of δA and i(z, z′), the
factor

∏
l∈D\i(z,z′) δ{zl,z′l} is nonzero only if y′l is either zero or the same as yl for each l ∈ D.

Now, D being finite and X being at most countable, the summation has only a countable
many nonzero terms. In fact this has at most (2d − 1)× card(X ) many nonzero terms.
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Chapter 6

Conclusions

In this thesis, we have considered semimartingale representations of certain classes of ho-
mogeneous and non-homogeneous semi-Markov processes. These representations are via
stochastic differential equations involving Poisson random measures. The combination of
state processes of two solutions (having two different initial conditions) of this equation forms
a semi-Markov system(SMS) or a component-wise semi-Markov (CSM) process having de-
pendent components. The SMSs [39, 41, 40], or CSMs [9, 10] with independent components
have been introduced by several authors for modelling some random dynamics. However, a
CSM with dependent components has not been studied in the literature yet. The law of the
CSM has been calculated in terms of the infinitesimal generator of the augmented process.
As per our knowledge, the present thesis is the first work on the correlated semi-Markov
system. The immense applicability of semi-Markov processes and semi-Markov systems is
well known. So, the formulation and the results related to the correlated semi-Markov sys-
tem, presented in this thesis have significantly expanded the scope of further theoretical
and applied studies. In particular this has opened up the possibility of studying a system
generated by a semi-Markov flow. The questions related to the meeting and merging events
of multiple particles of a semi-Markov flow have far reaching implications. In view of these,
the present thesis appears as a stepping stone for several future studies.

There are many promising future research directions. We list some of those below.

• We have shown that the probability of eventual merging is one under some conditions
on the model parameters. We have also produced an example of parameter values which
does not fulfil the condition but a pair of solutions are shown to merge with probability
one. In view of this, a further study of eventual merging under more relaxed condition
for homogeneous or non-homogeneous semi-Markov flow appears interesting. For the
non-homogeneous case transition rate matrix λ(y, n) may be considered periodic in n.

• We recall that for studying stability of Markov Modulated diffusion, in [3, Lemma 3.3],
the meeting time of a pair of Markov chains has been crucially utilized for constructing
a merged pair. For the homogeneous Markov case, the meeting of a pair of solution
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of the same SDE is identical to merging, which is not true for the semi-Markov case.
Therefore, the argument presented in [3] is not applicable for studying the stability
of semi-Markov Modulated diffusion. On the other hand the study of merging of
semi-Markov solutions, presented in this thesis has enhanced our understanding of the
related dynamics. We believe, the results and the line of arguments appearing in this
thesis will be useful in the study of stability of semi-Markov Modulated diffusion.

• In this thesis we have seen that a pair of solutions of the SDE for semi-Markov process
constitute a CSM. In principle, any number of such solutions together form a CSM
process with dependent components. Nevertheless, these processes have differentiable
kernels, which is a restriction on the general class of CSM processes. In this thesis we
have proposed definition of a much wider class of homogeneous and non-homogeneous
CSM. We have described the law using a kernel function. However, the expressions of
various important transitions parameters in terms of the kernel is still in the dark. For
example, further investigation is needed to express the conditional probability of one
step transition in terms of the kernel function. An expression of conditional distribution
of the holding time in terms of the kernel function is also important for many relevant
studies.

• The law of a pair of solutions, that constitutes a CSM, has been presented in this thesis
in terms of the infinitesimal generator. Moreover, a compact expression of the same
when d(≫ 2) number of solutions are considered has also been obtained in the fifth
Chapter. However, the questions related to the meeting and merging of d(> 2) number
of solutions is unaddressed in this thesis. Further research is needed for answering these
questions.

• Instead of considering the flow of a semi-Markov dynamics, one may consider the flow
of a CSM with correlated components (correlated PRMs). Asymptotic analysis of such
dynamics could be of great interest among researchers. This thesis just introduces such
dynamics and shows the existence but does not study the asymptotic properties.

Other than the above mentioned theoretical studies, many applied branches may also be
benefited from the investigations presented in this thesis. However, this thesis contains
no study of applications. The potential application could be in studying and controlling
queueing network or modelling investment strategy in quantitative finance, to name a few.
Briefly we describe a queueing design that can be modelled and studied using the semi-
Markov flow, introduced in this thesis.

Imagine there are finite or countably many service stations in a system and the total number
of servers in the system is finite and fixed. Customers arrive at each station with a fixed
arrival rate. A customer when arrives at a station is either served immediately by all, some
or none of the servers in the station and then the customer leaves. The servers, which
have served on an arrival of a customer, are transferred to another randomly chosen station
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together. In a station which of the servers serve, are decided based on a predetermined
preference order depending on the duration (or experience) of the servers in that station.

Such queueing and service design can be modeled by the stochastic flow of semi-Markov
process. In particular, each station is a state in the statespace, each server is a solution of
the SDE, each arrival of customer corresponds to the appearance of Poisson point mass and
each service is a transition. In view of this, the merging event is same as assemblage of all
servers together in a single station and become indistinguishable.
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