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Abstract 
 

Proteins interact with other macromolecular targets, such as small molecules, 

nucleic acids, and other proteins, via their surfaces. Protein-protein interactions are 

likely to be influenced by the geometrical and physicochemical properties of the 

surfaces of the interacting proteins. To take advantage of this for the purpose of 

protein-protein interface prediction, we modify BIPSPI, an XGBoost-based partner-

specific protein interface predictor, using geometrical and chemical features 

extracted from protein surfaces in the form of patches by means of MaSIF, a 

framework for the extraction of meaningful features from the surfaces of proteins. We 

construct a map from the surface-patch level representation constructed by MaSIF to 

the residue-pair representation used by BIPSPI. We show that the addition of 

internally sorted protein surface patches to BIPSPI’s existing residue-pair 

representation increases the mean ROC-AUC performance of the existing predictor 

from 0.9153 to 0.9222 when evaluated with 10-fold cross-validation on a subset of 

Docking Benchmark v5.5. Additionally, we also evaluate the relative impact of the 

various features used in training on the performance of the combined model in terms 

of loss reduction over tree splits. We observe that sorting protein surface patches 

internally along the feature axes increases model performance and alters the relative 

impacts of various features. Furthermore, to reduce memory consumption while 

training with protein surface patches, we develop both principal component analysis-

based and autoencoder-based approaches to patch compression. We observe that 

both methods exhibit competitive performance when trained with sorted patches but 

not unsorted patches. 
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1 Introduction 
 

Proteins play an integral role in many, if not all, biological processes critical to life. 

They are extensively involved in processes that occur at various levels of biological 

organization. In the form of enzymes, proteins mediate a wide range of chemical 

reactions critical for cellular metabolism (Jeong et al., 2000). Cellular signalling 

pathways that allow cells to respond to both intracellular and extracellular stimuli are 

constituted of numerous proteinaceous components. Certain proteins undergo 

conformational changes upon molecular recognition events, such as binding small 

molecules or peptides, serving as switches for downstream processes (Milburn et al., 

1990; Ha and Loh, 2012; Ghusinga et al., 2021; Alberstein et al., 2022). By forming 

structurally robust polymers, proteins are also capable of providing mechanical 

support, both at the level of the cell in the form of elaborate cytoskeletal frameworks 

(Fuchs and Cleveland, 1998; Herrmann et al., 2007; Fletcher and Mullins, 2010), and 

at the macroscopic level, as the building blocks of skeletal musculature (Huxley and 

Niedergerke, 1954; Clarke, 2010). 

In many cases, the biological relevance of proteins arises from their ability to bind to 

a range of other biomolecules. Proteins associate with small molecules, 

carbohydrates, nucleic acids, and other proteins. Protein-protein interactions (PPIs) 

are a critical class of interactions owing to their prevalence in cellular signalling 

pathways and regulatory networks (Søgaard-Andersen and Valentin-Hansen, 1993; 

Pawson and Nash, 2000). Knowledge of a protein’s binding partners, coupled with 

mutational studies, allows for researchers to determine the functional role it plays in 

the cell – this is of relevance i) at a fundamental level, in terms of elucidating the 

molecular processes that facilitate life and ii) from a clinical perspective, in working 

towards establishing mechanisms for diseases that either cause or arise from the 

dysregulation of these processes. Modern experimental techniques have allowed us 

to delve a step deeper by revealing the specific amino acid residues that proteins 

use to bind to each other. Mutations to a PPI’s interface residues can either 

strengthen or weaken binding. Identifying the interface of a protein-protein interaction 

enables protein biochemists to perform mutational studies to determine which 

residues are most important for an interaction (Stites, 1997; Dall’Acqua et al., 1998; 
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Zanotti et al., 2008). Protein-protein interfaces are also of clinical interest owing to 

their functional significance and are often the targets of drugs designed to inhibit 

interactions (Scott et al., 2016; Li et al., 2017; Chen et al., 2018). Interfaces have 

gained even more prominence in recent times in the context of novel methods to 

design custom protein-protein interactions (Kim et al., 2021; Cao et al., 2022; 

Marchand et al., 2022). Improvements made in our ability to resolve and characterize 

protein-protein interfaces have the potential to greatly enhance the resolution at 

which we understand protein-mediated regulatory processes and advance the 

development of novel drugs and technologies to fight diseases. 

1.1 Experimental methods for protein-protein interface 

prediction 
 

The structures of protein-protein interfaces have traditionally been determined using 

experimental methods such as X-ray crystallography (Smyth and Martin, 2000; 

Bahadur and Zacharias, 2008) and Nuclear Magnetic Resonance (NMR) 

spectroscopy (Hu et al., 2021). While such methods have been indispensable over 

the past few decades in advancing our understanding of how proteins interact, each 

method has its disadvantages. X-ray crystallography cannot be used to determine 

the structures of proteins (and, by extension, protein-protein complexes) that are 

difficult to crystallize (Zheng et al., 2015; Harkey et al., 2019). While desirable in its 

ability to resolve protein-protein interaction dynamics, NMR spectroscopy is limited in 

its capacity to determine the structures of large proteins at high resolution and is 

exceptionally motion-sensitive (Xue et al., 2015). Over the past decade, cryo-

electron microscopy (cryo-EM) has seen significant gains in popularity in light of its 

non-requirement of protein crystals and ability to capture multiple conformations in a 

single experiment (Bai et al., 2015; Benjin and Ling, 2020). Even as resolution 

continues to improve, cryo-EM instrumentation remains prohibitively expensive for 

capital-sparse research environments with microscopes achieving high resolutions 

costing several millions, notwithstanding commensurate infrastructure and operating 

costs. All of the aforementioned techniques are labour-intensive and time-consuming 

and none are high-throughput. In light of these disadvantages, there is a space for 

fast, high-throughput, and accessible computational methods of protein interface 

prediction to exist. 
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1.2 Machine learning: A Brief Primer 
 

Over the past decade, most computational methods of protein interface prediction 

have made extensive use of machine learning algorithms. ‘Machine learning’ (ML) 

methods are mathematical algorithms that make predictions on unseen data based 

on inferences made from data they are exposed to. Such methods have seen an 

enormous surge in popularity owing to generational improvements made in the fronts 

of parallel computing hardware and software and a monumental increase in the 

capacity of computing systems to collect and transfer data. 

Machine learning and deep learning-based methods are particularly powerful owing 

to their capacity to derive meaning from complex forms of data. Deep learning 

methods are able to recognize patterns in datasets that are not apparent to humans 

and use these patterns to make predictions depending on what the prediction task is 

(LeCun et al., 2015). They have proven exceptionally capable on a wide variety of 

prediction tasks involving myriad forms of data and have greatly influenced how we 

interact with and benefit from technology. Machine learning algorithms form the basis 

for voice recognition software, the recommender systems that power entertainment 

websites, and determine the advertisements we are shown on social media (Jordan 

and Mitchell, 2015; LeCun et al., 2015; Sarker, 2021).  

Prediction tasks that fall under the ambit of classification and regression are 

conventionally addressed with a class of machine learning algorithms called 

‘supervised learning’ methods. In supervised learning, numerical representations of 

input data are provided to a learning algorithm, paired with corresponding labels 

(Tarca et al., 2007; Greener et al., 2022). Learning algorithms are mathematical 

models whose parameters are optimized over an iterative process called ‘training’. 

During a model’s training phase, its parameters are altered depending on how 

different its predicted outputs are from the true labels associated with the input data. 

These algorithms vary significantly in complexity and in the inductive biases 

associated with them. The term ‘inductive bias’ refers to the set of assumptions 

made by the algorithm to make predictions on unseen data (Goyal and Bengio, 

2022). Choosing a specific learning algorithm to build a predictive model requires 

thorough domain knowledge on the programmer’s end to assess the required level of 
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model complexity and the inductive biases most appropriate for the prediction task at 

hand. 

Machine learning algorithms have evolved to accept input data of a wide variety of 

forms. Traditionally, each data point is represented mathematically as an array of 

numbers representing key features that may influence the target variable. For 

instance, a model designed to predict the value of a house might use square 

footage, number of bedrooms, and number of floors as input features. Models of 

greater complexity can accept more complex input data forms such as images, text, 

and audio clips. In some cases, feature engineering is an essential preliminary step 

that precedes training. Feature engineering is the process of pre-processing raw 

input data to extract features that are relevant to the prediction task at hand 

(Anderson and Cafarella, 2016).  

The simple example of the linear model for regression illustrates most terms used in 

the above paragraph. Linear models for regression assume that the target variable is 

a linear combination of the input variables. The parameters for a linear model are the 

coefficients associated with the input variables. The optimal parameters for a linear 

model are usually those that minimize the sum of the squared errors computed 

between the true and predicted values for the points in the training dataset. 

1.3 Machine learning for protein-protein interface 

prediction 
 

Owing to their ability to make use of complex input data representations, machine 

learning methods lend themselves exceptionally well to prediction tasks in 

computational protein biology. Conventionally, there are two broad phrasings of the 

protein-protein interface prediction problem. These are the partner-independent and 

partner-specific approaches (Xue et al., 2015). The two methods can be defined as 

follows: 

Partner-independent interface prediction: Given a protein A, predict whether residue 

ra belonging to protein A is part of the interface protein A forms with any other 

protein. 
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Partner-specific interface prediction: Given that proteins A and B bind, identify all 

pairs of residues (ra, rb), where ra belongs to A and rb belongs to B, such that ra and rb 

interact. 

Partner-specific interface prediction allows for the identification of specific residue-

pairs that are important for interactions to occur. Since they intrinsically require 

knowledge of both interacting partners, such predictors are more likely to yield 

reliable results in cases where a given protein has multiple binding partners (Xue et 

al., 2015). While regarded as two separate categories, the core machine learning 

methodologies employed in both sets of models tend to be similar, with changes 

primarily arising from differences in training datasets and representation structure. 

Machine learning methods in this space have traditionally used two broad classes of 

features: sequence-based features and structure-based features. Sequence-based 

features refer to properties of protein constituents (typically residues) that can be 

inferred directly or computed from their primary sequences. Examples of residue-

level features include isoelectric point, amino acid identity, and residue conservation. 

Conservation has consistently proven to be a powerful feature for residue-residue 

contact prediction (Ovchinnikov et al., 2014; Green et al., 2021). The intuition 

underlying why conservation-based features are strong predictors of residue-residue 

contacts is that surface residues that are involved in the formation of complexes are 

more conserved than non-interface residues (Choi et al., 2009; Teppa et al., 2017). 

The extent of a residue’s evolutionary conservation is usually quantified using its 

corresponding vector in the position-specific scoring matrix (PSSM) or hidden 

Markov model (HMM) profile corresponding to the protein’s sequence (Eddy, 1995; 

Altschul, 1997; Finn et al., 2011). These profiles are constructed through iterative 

multiple sequence alignments (MSAs) of the protein’s sequence against a non-

redundant sequence database such as UniRef or UniParc (Leinonen et al., 2004; 

Suzek et al., 2007). For a given residue, many predictors also include the PSSM 

vectors/HMM profiles of a window of sequentially neighbouring amino acids. 

Successful early sequence-only machine learning methods such as PPiPP (Ahmad 

and Mizuguchi, 2011) and PSIVER (Murakami and Mizuguchi, 2010) for protein-

protein interface prediction solely utilized such representations in combination with 

simple machine learning architectures. While the performance exhibited by these 

predictors is modest in comparison to that of modern predictors, they illustrate the 
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effectiveness of evolutionary features even when they are used with simple model 

architectures.  

Pairwise protein sequence co-variation has also been used to predict residue-

residue contacts at protein interfaces (Hopf et al., 2014; Ovchinnikov et al., 2014; 

Green et al., 2021). Statistical models have been employed to analyze multiple 

sequence alignments of pairs of sequences for the presence of co-evolving residues 

(Seemayer et al., 2014; Hopf et al., 2019). The strength of co-evolution has been 

used in conjunction with monomer accessible surface area in logistic regression 

models to predict residue-residue contacts – Green et al. (2021) report a recall of 

20.7% at a false positive rate of 0.1% on a custom held-out test set. Co-evolution 

information has also been used to construct proteome-level interaction networks for 

E. coli (Cong et al., 2019). 

Multiple sequence alignments in combination with attention-based neural network 

architectures (Vaswani et al., 2017; Veličković et al., 2018) have been used to great 

success on the task of protein structure prediction in the forms of AlphaFold2 

(Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021). AlphaFold2 has been 

recently adapted to make multimer-level predictions in the absence of structural 

information for both homomeric and heteromeric complexes through the use of multi-

chain MSAs. Dubbed AlphaFold-multimer (Evans et al., 2022), the model 

competently predicts the structures of a significant fraction of complexes in the 

Protein Data Bank (wwPDB consortium, 2019). 

Conservation-based features are expected to falter in cases where the interacting 

proteins exhibit low homology to other known protein sequences. The computation of 

multiple sequence alignments is a resource-intensive step during testing and is often 

responsible for increased time taken during inference. Recent advancements made 

in the field of natural language processing have been extended to protein sequence 

datasets to account for these limitations. Unsupervised learning methods have been 

extensively leveraged to create numerical representations (called ‘embeddings’) of 

residues that are i) context-aware and ii) encapsulate their core properties (Rives et 

al., 2021; Elnaggar et al., 2022). To construct these representations, protein 

sequences extracted from large sequence databases are ‘corrupted’ – amino acids 

at random positions are replaced with ‘masks’. A learning method is then trained to 
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predict the correct amino acid at a given position to high accuracy, using as input the 

other amino acids that constitute the sequence. The fully-trained model, sans the 

final prediction layer, is subsequently used with new input protein sequences to 

generate context-aware residue representations that can be used for various 

prediction tasks. ISPRED-SEQ (Manfredi et al., 2023), a partner-independent 

sequence-only interaction site predictor, uses residue representations constructed 

using the ESM-1b (Rives et al., 2021) and ProtT5 (Elnaggar et al., 2022) protein 

language models in combination with a 1D Convolutional Neural Network and deep 

layers to achieve an ROC-AUC of 0.82 and MCC of 0.34 on a benchmark dataset of 

448 protein chains. A similar model, EDLMPPI (Hou et al., 2023), combines ProtT5-

derived residue representations with PSSMs and physicochemical features and uses 

a bi-directional LSTM network for protein binding site prediction to achieve a similar 

ROC-AUC. It is to be noted that both methods are partner-independent. 

The most competent methods of protein-protein interface prediction use structural 

information from the input proteins in addition to features derived at the sequence-

level. A vast amount of geometrical information can be extracted from the structures 

of the interacting proteins and represented in highly-informative numerical 

representations. Structural descriptors commonly used to describe residues in 

interacting proteins include solvent accessible surface area, depth index, and 

protrusion index (Mihel et al., 2008; Minhas et al., 2014). These features can be 

computed directly from the coordinates and atom identifiers contained in a protein’s 

PDB/mmCIF representation. The secondary structure a residue is involved in is also 

a commonly used feature in protein interface prediction and is assigned to residues 

using programs such as DSSP (Kabsch and Sander, 1983). Many partner-specific 

predictors use a residue-pair data representation, where the model is trained with 

residue-pair vectors that contain the features representing cross-protein pairs of 

residues. PAIRPred (Minhas et al., 2014), one of the earliest partner-specific 

machine learning-based protein interface predictors, used a combination of 

conservation-based and structure-based features with a kernel SVM-based 

architecture to achieve a leave-one-complex-out performance of ROC-AUC 0.88 on 

Docking Benchmark v3.0 (Chen et al., 2003; Hwang et al., 2008). The use of graph 

convolutional neural networks (Kipf and Welling, 2017) for protein interface 

prediction was explored by Fout et al. (2017), where the input pair of proteins are 
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interpreted as graphs and processed with graph convolutions. In this representation, 

residues constitute the nodes of the graph and are represented with structure-based 

and sequence-based features (Fout et al., 2017). Such networks have also been 

modified to incorporate attention-layers and trained for the purpose of paratope and 

epitope prediction (Pittala and Bailey-Kellogg, 2020). Gradient-boosting-based 

methods have also seen considerable success in the field. BIPSPI (Sanchez-Garcia 

et al., 2019, 2022) is an XGBoost-based (Chen and Guestrin, 2016) predictor that 

uses an extensive array of sequence-based and structure-based features to achieve 

an impressive ROC-AUC performance of 0.9057 on Docking Benchmark v5 (Vreven 

et al., 2015). In addition to encoding the structure-based features of a residue-pair, 

the BIPSPI residue-pair vector representation also contains a summary of the 

feature values of the immediate neighbours of the focal residues defined by the 

Voronoi diagrams of the two proteins.  

Significant advancements made in deep learning architectures and computing power 

have recently allowed for the development of protein interface predictors that 

extensively utilize the geometric information contained in the interacting protein 

partners. These predictors differentiate themselves from those that use structural 

information in a residue-pair context by using low-level structural information to 

create complex latent representations of their inputs that surpass hand-crafted 

features. PINet (Dai and Bailey-Kellogg, 2021), for instance, visualizes binary 

proteins as pairs of point clouds and uses an architecture inspired by PointNet (Qi et 

al., 2017) to directly gleam geometrical information from the point clouds to avoid the 

disruption of geometry that may arise through processes such as 3D voxelization. 

Each point is represented by its coordinates in 3D space, its charge computed 

through Poisson-Boltzmann electrostatics, and hydrophobicity. The method uses a 

Spatial Transformer Network (Jaderberg et al., 2015) trained on labelled pairs of 

point clouds to perform point-level prediction that can be mapped back to the 

residue-level. PeSTo (Krapp et al., 2022) uses a similar point cloud geometric 

transformer-based approach for partner-independent protein interface prediction and 

achieves highly competitive performance on benchmark datasets, even in the 

absence of physicochemical features. Another popular method, MaSIF (Gainza et 

al., 2020), operates at the level of the protein’s surface, following the intuition that the 

shape and charge complementarity of protein surfaces plays a key role in mediating 
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protein-target interactions. MaSIF (molecular surface interaction fingerprinting) 

couples a robust protein surface patch representation (encapsulating both 

geometrical and chemical information) with a polar convolutional neural network to 

create ‘molecular fingerprints’ that can be used with a downstream learning method 

for partner-independent interface prediction. Methods that rely solely on geometrical 

and chemical features can be expected to outperform conservation-reliant methods 

in cases where the multiple sequence alignments of the input proteins are shallow. 

Such predictors have the potential to exhibit superior performance to conservation-

based predictors on tasks such as paratope-epitope binding prediction, where the 

complementarity determining regions (CDRs) of antibodies exhibit hypervariability 

(ed. JD Abbott et al., 2004). 

We hypothesize that a method combining detailed geometrical descriptions of the 

input proteins and robust conservation-based features has the potential to exhibit 

state-of-the-art performance in both high and low homology realms. To this effect, 

we attempt to improve BIPSPI (Sanchez-Garcia et al., 2019, 2022), a partner-

specific protein interface predictor, with geometrical and chemical descriptions of 

protein surfaces extracted using MaSIF’s (Gainza et al., 2020) feature extraction 

protocols. The MaSIF framework constructs a mesh of the protein’s surface, 

embedded with geometrical and chemical information, which is subsequently 

decomposed to form protein surface patches. We augment BIPSPI’s existing 

residue-pair vector representation with accurately mapped surface patches and 

ascertain whether such patches are meaningful in the context of partner-specific 

protein interface prediction by performing performance comparisons on Docking 

Benchmark v5.5 (Vreven et al., 2015) with a variety of metrics. We also compare the 

relative impact of BIPSPI’s existing feature set and the features added by MaSIF 

using feature importance computations. 

We acknowledge that, while highly informative, training and testing with patch-level 

data can be computationally expensive, both in terms of memory usage and 

operation time. Thus, we also develop unsupervised learning-based protein surface 

patch compression methods to significantly reduce the size of protein surface 

patches to tractable levels that allow for reduced memory consumption and 

increased computation speed during training, and the feasible large-scale storage of 

patches.  
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2 Methods 
 

2.1 Improving BIPSPI using protein surface patches 

extracted using MaSIF 
 

2.1.1 Problem overview 
 

The specific problem under consideration is the partner-specific protein-protein 

interface prediction problem that can be stated as ‘Given proteins A and B bind and 

their unbound structures, predict whether residue ra in protein A interacts with 

residue rb in protein B upon the formation of the complex A-B”. We approach this 

problem from a supervised learning perspective, where a machine learning algorithm 

is trained on a dataset constituted of residue-residue feature vectors pooled from a 

set of non-redundant protein-protein complexes. The residue-residue feature vectors 

are vectors constituted of numerical representations of the properties representing 

residue-pairs of the form (ra, rb) from proteins A and B, respectively. 

Feature computation is performed on the unbound structures of proteins A and B. 

We define a cross-protein pair of residues as being ‘interacting’ if they occur within 

6Å of each other in the bound form of the complex (Minhas et al., 2014; Sanchez-

Garcia et al., 2019). Residues in the bound forms of the interacting proteins are 

mapped to their counterparts in the unbound forms using a combination of structure 

and sequence-based alignments. Labels are assigned to cross-protein residue-pairs 

using residue-residue distance computations performed using the bound structures 

of proteins A and B. Figure 1 illustrates the data processing workflow associated with 

the problem. 
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Figure 1: Flowchart elucidating the workflow associated with residue-residue contact 

prediction 

We train the model on unbound structures to best simulate what is expected to be 

received at the time of practical use. While it is, in principle, possible to train on 

bound structures, we believe that models trained on unbound structures have 

greater potential to capture the effects conformational change can have at interfaces. 

The objective of this study is to modify BIPSPI, a partner-specific protein interface 

predictor, to utilize geometrical and chemical features computed using MaSIF, a 

framework for the extraction of meaningful features from the surfaces of proteins. We 

compare BIPSPI’s default performance to that achieved with the use of the additional 

surface-patch-based features. We compare a total of six models with varying sets of 

features to ascertain whether the addition of surface-derived structural features 

offers a significant improvement over the existing framework. 

To supplement the potential use of patches for protein interface prediction and other 

tasks in data-driven protein biology, we also develop a compression framework that 

significantly reduces the size of protein surface patches for reduced memory 

consumption during model training and for long-term storage. 

2.1.2 Dataset 
 

For the purpose of training and testing our model, we use Docking Benchmark v5.5 

(Guest et al., 2021). The dataset consists of 257 binary non-redundant protein-

protein complexes. 
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The dataset is structurally non-redundant in that no two complexes in the dataset 

have interacting domains that belong to the same SCOP family (Lo Conte et al., 

2000). Unlike other protein-protein interaction datasets, which solely contain bound 

forms of complexes, Docking Benchmark v5.5 contains the structures of both the 

bound and unbound forms of proteins in binary complexes. This allows for machine 

learning algorithms to receive information that is closer to what is observed at test 

time. Each complex is represented by a set of four PDB files: the bound and 

unbound forms of the ‘ligand’ protein and the bound and unbound forms of the 

‘receptor’ protein. The dataset has been used extensively in the literature to train and 

test machine learning models for protein-protein interaction prediction, allowing us to 

potentially benchmark the modified model’s performance against other predictors in 

the literature in the future. 

We exclude complexes that are unable to be processed by the MaSIF framework, 

resulting in the use of a subset of 192 binary protein-protein complexes. During 

training time, the data obtained from each complex is such that the ratio of positive to 

negative samples is 1:2. 

2.1.3 Overview of BIPSPI 
 

BIPSPI is a highly competent partner-specific protein interface predictor described in 

(Sanchez-Garcia et al., 2019). BIPSPI stands for ‘xgBoost Interface Prediction of 

Specific-Partner Interactions’. The method was trained to predict the interfaces of 

protein-protein complexes using features derived from the sequences and/or 

structures of interacting proteins. It is a tractably modifiable algorithm that can be 

trained in reasonable time-frames and is near state-of-the-art in terms of 

performance. 

Figure 2 illustrates the steps involved in the BIPSPI workflow. The first step in 

BIPSPI is a residue-pair interface classification task using a combination of 

sequence-derived and structure-derived features. In the second stage of 

classification, a second predictor is provided with the classification scores obtained 

by the first predictor and newly computed pairwise environment prediction scores 

alongside the original set of features. The predictions made by the second classifier 

are subsequently used to determine the interface of the complex. 
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Figure 2: Illustration of the steps involved in residue-residue contact prediction using BIPSPI  

Both predictors used in BIPSPI are XGBoost (Chen and Guestrin, 2016) classifiers. 

XGBoost is a gradient-boosted decision tree framework that has been shown to be 

exceptionally competent at a wide range of classification tasks that utilize tabular 

forms of data representation (Chen and Guestrin, 2016). Gradient boosting entails 

the creation of an ensemble of base learners constructed additively, such that each 

successive base learner rectifies the shortcomings of the set of base learners 

constructed in the previous iterations (Friedman, 2001).  

In gradient boosting methods, predictive models are built progressively over a set 

number of training iterations. At each step, the negative gradient is computed using 

the existing model at that iteration, the input variables, and the loss function of 

choice. The negative gradients subsequently become target variables – a base 

learner is trained to predict the set of negative gradients from the input variables. 

Subsequently, a step size to update the model is chosen in accordance with the 

gradients computed. The model is then updated by adding the base learner to the 

existing set of learners. In gradient-boosted decision tree frameworks such as 

XGBoost, the base learners are decision trees. The below algorithm presents this in 

a logical format: 

Algorithm: General Gradient Boosting 

1. Initialize the prediction function 

2. For index in range(1, M): 

a. Compute negative gradients (pseudo-residuals) with respect to the 

existing prediction function  
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b. Fit a new base-learner (regression tree) to the pseudo residuals 

computed in (a) 

c. Identify an appropriate multiplying factor for each of the terminal nodes 

of the tree constructed in (b) 

d. Update the existing function with the new base-learner constructed 

3. Output the function obtained after the Mth iteration 

The general gradient boosting algorithm described above can be easily adapted for 

classification with an appropriate choice of loss function. For binary classification, the 

loss used is the log loss function described below, where 𝑦 and 𝑝 represent the 

ground truth and 𝑃(𝑦 = 1) , respectively: 

𝐿 = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)) 

Gradient boosting algorithms are also amenable to regularization. Regularization 

refers to the process by which a model is modified to increase its capacity to 

generalize. As a means of regularization via shrinkage, the base learner constructed 

after 2.c in the above algorithm is scaled with a learning rate factor ν (where 0 < ν < 

1) prior to addition to the existing model (Friedman, 2001). The use of the shrinkage 

parameter reduces overfitting by scaling down the influence of each added base 

learner. Regularization can also be performed by restricting the number of iterations.  

XGBoost improves on the general gradient boosting algorithm by using a sparsity-

aware learning algorithm, a weighted quantile sketch to efficiently compute tree split 

proposal, and adds other computational optimizations that improve the method’s 

scalability. A detailed mathematical explanation of the algorithmic advancements 

made by XGBoost over general gradient boosting is outside the scope of this thesis 

and is best explained in (Chen and Guestrin, 2016). 

2.1.4 Sequence-derived features used by BIPSPI 
 

Most of BIPSPI’s sequence-derived features are conservation-related. The 

conservation-derived features that BIPSPI uses are computed from multiple 

sequence alignments performed on the UniRef90 (Suzek et al., 2007) database 

using PSI-BLAST (Altschul, 1997). UniRef90 is a non-redundant sequence database 

maintained by the UniProt consortium, constructed by clustering UniRef100 at 90% 
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sequence identity. Three iterations of PSI-BLAST are performed, and the PSSMs 

and PSFMs extracted from the final iteration are used. In addition to PSSMs and 

PSFMs, the multiple sequence alignments produced by PSI-BLAST are analyzed 

using AL2CO (Pei and Grishin, 2001) to compute an estimated conservation score. 

The PSFM profile represents the frequency with which each of the twenty amino 

acids is found at a specific position across the sequences considered in the multiple 

sequence alignment. The PSSM profile measures the log-likelihood of finding each 

of the twenty amino acids at that specific position against the background distribution 

of amino acids. For a given residue, in addition to its specific PSSM and PSFM 

profiles, the PSSM and PSFM profiles of a window of amino acids (5 residues to 

each side) are also used in its representation. The information contained at each 

position is also used to represent residues. 

In addition to these features, the one-hot encodings of the pair of residues along with 

those of residues in their corresponding aforementioned windows are used in the 

residue-pair representation. 

2.1.5 Structure-derived features used by BIPSPI 
 

Alongside sequence-based features, BIPSPI uses an extensive array of structural 

features at prediction time. The structural features are computed from the unbound 

structures of the interacting complexes using PSAIA (Mihel et al., 2008), DSSP 

(Kabsch and Sander, 1983), and Biopython (Cock et al., 2009). Most of the structural 

features used in BIPSPI are computed at the level of individual residues. 

The key structural features encoded in BIPSPI’s residue-pair representation are the 

following: 

Accessible Surface Area (ASA) or Accessibility: The term refers to the area of the 

residue that is accessible to solvent molecules (Lee and Richards, 1971). It is 

measured in squared Angstroms and is computed by PSAIA using the rolling ball 

algorithm (Shrake and Rupley, 1973). Figure 3 depicts the accessible surface area 

associated with a macromolecule. The method also computes the relative accessible 

surface area (RASA) (Tien et al., 2013) for each residue, which is a ratio of the 

solvent-accessible surface area to the maximum possible solvent-accessible surface 
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area for that amino acid. BIPSPI uses the total, backbone, side-chain, polar, and 

non-polar ASA and RASA values assigned to each residue. 

 

Figure 3: Accessible surface area associated with a macromolecule. A sphere of fixed radius 
is used to probe the surface of the macromolecule. 

Half-sphere Exposure (HSE): Half-sphere exposure (Hamelryck, 2005) is computed 

using the Biopython package considering a radius of 12Å. HSE contains two 

components: HSE-up and HSE-down. For a given residue, these components 

represent the number of neighbours contained within the upper and lower halves of 

the sphere defined by a radius of 12Å, the Cα atom, and the plane perpendicular to 

the plane containing the Cα-Cβ vector (Figure 4). 

 

Figure 4: Half-sphere exposure computation. For a set radius R, the number of neighbours 
contained in the upper and lower hemispheres in the figure correspond to HSE-up and HSE-

down respectively. 
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Secondary Structure: Each residue is assigned an 8-dimensional vector depending 

on the secondary structure element it is a part of in the 3D structure of the protein. 

The secondary structure label for a given amino acid is computed using DSSP 

(Kabsch and Sander, 1983). 

Depth Index (DPX) (Pintar et al., 2003): The depth index of a given residue is 

defined as the smallest distance from any of its atoms to the closest solvent-

accessible atom of the protein.  

Protrusion Index (CX): This quantity measures the extent of protrusion exhibited by 

atoms of the protein. Protrusion is computed by PSAIA using the CX algorithm 

(Pintar et al., 2002). For both depth index and protrusion index, the total mean and 

standard deviation, the side chain mean and standard deviation, and the maximum 

and minimum values for a given residue are used. 

2.1.6 Residue neighbourhood codification 
 

Each residue is also assigned a structural environment feature vector summarizing 

the value of each of its features within its local structural environment. Two residues 

are considered neighbours if they are connected by an edge in the protein’s Voronoi 

diagram defined by its Cα atoms. The neighbourhood radius used to construct the 

Voronoi diagram is 30Å. 

The second stage of classification uses the predicted interaction scores computed by 

the first XGBoost classifier. For a given pair of residues, a pairwise environment 

score is also calculated using its neighbours as defined by the proteins’ Voronoi 

diagrams. A comprehensive description of the neighbourhood codification is 

available in (Sanchez-Garcia et al., 2019). 

2.1.7 Overview of MaSIF 
 

MaSIF (Gainza et al., 2020) is a framework developed as a proof-of-concept for the 

postulation that protein surfaces contain informative geometrical and chemical 

patterns that mediate intermolecular interactions and that these patterns, while not 

directly perceivable to the eye, can be learnt by a machine learning framework and 

used for various tasks such as interface site prediction and pocket classification. The 
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method uses polar convolutional neural networks in conjunction with ‘patches’ (that 

encapsulate local geometrical and chemical patterns) extracted from the molecular 

surfaces of proteins. Owing to its non-reliance on conservation-derived features such 

as PSSMs and PSFMs, MaSIF is particularly powerful in low sequence co-homology 

realms. In its existing form, while MaSIF has been proven an effective partner-

independent interface site predictor, the method has not been employed specifically 

for the purpose of partner-specific protein-protein interface prediction. It is also to be 

noted that the MaSIF methods were trained using complexes co-crystallized in the 

bound state and not on features derived from the unbound forms of these 

complexes. 

In the context of improving the performance of BIPSPI, we are specifically interested 

in the pre-processing protocols MaSIF employs to extract data from the surfaces of 

interacting proteins. Since the features extracted using MaSIF do not explicitly draw 

from properties of the proteins, such as the folds of the various domains or the 

sequence (unlike BIPSPI), we believe that the sets of structural features encoded by 

the two methods are likely to be complementary. We use MaSIF’s feature extraction 

protocol to generate the molecular surfaces of the proteins in our dataset and 

perform feature computation for the vertices that constitute these surfaces. MaSIF 

describes each vertex on the surface of the protein using a set of five features (two 

geometrical features and three chemical features). Feature computation is performed 

at the level of the surface, following which it is decomposed into patches of set 

geodesic radius.  

The protocol first re-protonates all proteins in the dataset using reduce (Word et al., 

1999) and generates triangular molecular surface meshes from them using MSMS 

(Sanner et al., 1996). Following a regularization of the mesh, geometric and 

chemical features are assigned to the vertices that constitute the mesh. The features 

used have been described below. 

2.1.8 Geometric features used by MaSIF 
 

For each vertex on the mesh, MaSIF computes ‘Shape Index’ and ‘Distance-

dependent curvature’. 
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Shape Index 

The shape index (Gainza et al., 2020) of a vertex numerically represents the local 

geometry around it, with values extending from -1 to 1. The shape index of a specific 

vertex remains constant across the several patches it can be a part of. It is defined 

as follows, where κ1, κ2, κ1 ≥ κ2 are the principal curvatures: 

Shape Index =
2

π
tan−1

κ1 + κ2

κ1 − κ2
 

Distance-dependent curvature 

The distance-dependent curvature (DDC) (Yin et al., 2009) of a vertex is computed 

at the level of each patch. Distance-dependent curvature ranges between [-0.7, 0.7], 

and for a given vertex, quantifies the relationship between the distance from that 

vertex to the central vertex of the patch and the surface normals of the two vertices. 

The DDC of a given vertex varies across the patches it is a patch of. 

Shape Index and Distance-dependent curvature together encapsulate the local 

geometrical neighbourhood of a vertex. A patch consisting of several vertices can 

thus be expected to represent the topographical properties associated with an area 

on the surface of the protein. The propensity of a residue to be a part of the complex 

interface depends not only on geometric properties intrinsic to it but also on those of 

other residues in its vicinity. 

2.1.9 Chemical features 
 

MaSIF computes a set of three chemical features on the protein’s surface mesh. 

These are charge via Poisson-Boltzmann continuum electrostatics, free 

electron/proton donor capacity, and hydrophobicity. 

MaSIF uses the Adaptive Poisson-Boltzmann Solver (APBS) (Jurrus et al., 2018) 

suite to perform Poisson-Boltzmann continuum electrostatics computations. Each 

vertex is assigned a charge value in the range [-1, 1] after normalization. To 

determine the positions of free electrons/protons on the molecular surface, MaSIF 

uses a hydrogen-bond potential developed by Kortemme et al. (2003)  as a 

reference, assigning to each vertex a value between -1 and 1, depending on the 

potential for it to be a bond acceptor or donor respectively (Kortemme et al., 2003). 
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Finally, each vertex is assigned the hydrophobicity score of the amino acid that is the 

closest to it. 

After feature computation, the mesh is decomposed into patches of geodesic radius 

9Å. Each patch is defined by a central vertex. A geodesic is intuitively the shortest 

curve between two points along a surface. Since the protein surface representation 

generated is a discrete triangular mesh (that can be interpreted as a weighted 

graph), approximate geodesics are computed for vertices (relative to the central 

vertex) using the Dijkstra algorithm for shortest path determination on graphs. The 

number of vertices in each geodesic patch is restricted to 100 to ensure that the 

learning algorithm receives input of fixed size. 

For each protein, the feature computation steps of MaSIF outputs patch coordinates, 

the features of each vertex in a patch, and index lists denoting the vertices that 

belong to each patch. We leverage this information to map patches produced by 

MaSIF to the corresponding residue feature vectors generated by BIPSPI. 

Table 1 contains the full set of features we used across all tested models. With the 

exception of ‘Previous step predictions’, the values shown represent the number of 

variables associated with each feature per residue. 

Table 1: Features used in the training of XGBoost models. Features annotated (B) are 

associated with BIPSPI, whereas those marked (M) are computed via MaSIF. The values 

shown represent the number of variables corresponding to each feature associated with 

each individual residue in a pair. 

Feature Name Computation 

Method 

No: of variables 

One-hot encoded amino acid 

symbol in sliding window and 

structural environment (B) 

BIPSPI script 264 

Conservation (B) PSI-BLAST 

AL2CO 

662 

Solvent accessibility (B) PSAIA 50 

Hydrophobicity (B) PSAIA 5 

Depth index (B) PSAIA 30 
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Protrusion index (B) PSAIA 30 

Secondary structure (B) DSSP 16 

Half-sphere exposure (B) Biopython 35 

Shape Index (M) MaSIF script 100 

Distance-dependent curvature (M) MaSIF script 100 

Charge (M) MaSIF script 100 

H-bond potential (M) MaSIF script 100 

Hydrophobicity (M) MaSIF script 100 

Previous step predictions BIPSPI script 26 

 

2.1.10 Mapping procedure 
 

The number of vertices far exceeds the number of residues present at the surface of 

proteins – this implies that patches do not necessarily map one-to-one with residues. 

Since BIPSPI performs predictions at the level of residue-pairs and uses residue-

level features, each residue needs to be mapped to the vertex closest to it on the 

surface of the protein. Using the coordinates of each vertex and the atomic 

coordinates of the protein, we use the nearest neighbour algorithm implemented for 

𝑘-dimensional trees in SciPy (Virtanen et al., 2020) to perform this operation in an 

efficient manner. Figure 5 represents the residue to vertex mapping. While it is 

hypothetically possible to map each residue to its 𝑛 closest vertices, we decided 

against doing so as patches corresponding to proximal vertices can be expected to 

be highly redundant. 

 

Figure 5: Pictorial representation of the residue to vertex mapping. Each residue is mapped 

to the vertex closest to it on the surface of the protein. 
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While it is possible to map every residue in a protein to a patch on its surface, it 

might not make sense to perform this procedure in cases where the residue in 

question is deeply buried. To determine the fraction of residues in our proteins for 

which this condition would be applicable, we construct the inverse map connecting 

each vertex to its closest residue. Subsequently, we identify the set of residues that 

are not the closest to any vertex on the surface and compute the mean percentage 

of residues affected over ligand and receptor complexes. 

From Figure 6, we observe that, on average, only 11.43% of ligand residues and 

15.71% of receptor residues are affected by this criteria. Since the number of 

residues accounts for such a small fraction of the total number of residues, we 

believe they are unlikely to significantly influence the accuracy of our model if 

included in the training set. 

 

Figure 6: Distribution of the mean percentage of residues unmapped in ligand and receptor 

proteins respectively 

2.1.11 Patch ‘sorting’ 
 

Since XGBoost accepts only linear inputs, patches are linearized prior to use for 

training. Different rotations of a given patch correspond to different possible 

linearizations – this implies that the same area on the surface of the protein can 

result in multiple distinct numerical representations. To incorporate a degree of 

rotation invariance, we sort each patch along the five feature axes in order of 

magnitude prior to linearization. While we cognize that this procedure corrupts the 

inherent geometry of a patch, it serves to significantly reduce the amount of variance 
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seen at a given index across all patches. Sorting a patch fixes the ‘meaning’ 

associated with each position of its linear representation, potentially resulting in 

better performance when used with frameworks such as XGBoost that only accept 

linear input representations. 

2.1.12 Variants of BIPSPI considered 
 

We compare a total of six models described below: 

BIPSPI-seq: BIPSPI-seq uses only features that can be derived from the amino acid 

sequences of the chains of the interacting pairs of proteins. 

BIPSPI-default: BIPSPI-default, as the name suggests, is the default version of 

BIPSPI that uses both sequence-derived and structure-derived features. 

BIPSPI-patch: This model replaces the structural features used by BIPSPI with the 

surface patch-level features computed by MaSIF. It contains all the sequence-based 

features used in BIPSPI-seq. 

BIPSPI-default-patch: This model contains all features used in BIPSPI-default and 

includes surface patch-level features extracted using MaSIF in its residue-pair 

representation. BIPSPI-default-patch is expected to exhibit performance either equal 

or superior to that of BIPSPI-default. 

BIPSPI-patch-sorted: This model differs from BIPSPI-patch in its use of sorted 

patches instead of directly linearized patches. 

BIPSPI-default-patch-sorted: This model differs from BIPSPI-default-patch in its use 

of sorted patches instead of directly linearized patches. 

 

Figure 7: Feature sets associated with the six models under consideration 
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2.1.13 Evaluation 
 

The following evaluation metrics are used to compare the various models under 

consideration: 

ROC-AUC: The receiver operating characteristic curve (ROC curve) is a plot that 

describes the relationship between a model’s binary classification performance and 

the decision threshold chosen. Each point on the curve represents the True Positive 

Rate and False Positive Rate of the classifier computed at that specific decision 

threshold. The area under this curve (AUC) is representative of the model’s 

performance across a range of different decision thresholds. A random classifier is 

expected to have an ROC-AUC of 0.5, with a perfect predictor exhibiting a value of 

1. 

Precision (PRE): At a given decision threshold, a model’s precision is the ratio of the 

number of true positives to the total number of samples predicted as positive. 

PRE =
TP

TP + FP
 

Recall (REC) (or True Positive Rate): At a given decision threshold, a model’s recall 

is the ratio of the number of true positives to the total number of positive samples 

contained in the dataset. 

REC =
TP

TP + FN
 

Accuracy (ACC): At a given decision threshold, accuracy is the ratio of the number of 

correctly classified cases to the total number of cases. 

ACC =
TP + TN

TP + FN + FP + FN
 

Negative Predictive Value (NPV): At a given decision threshold, the negative 

predictive value of a classifier is the ratio of the number of true negatives to the total 

number of instances predicted by it as negative. 

NPV =
TN

TN + FN
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Specificity (SPC): At a given decision threshold, specificity is the ratio of the number 

of true negatives to the total number of negative instances contained in the dataset. 

SPC =
TN

TN + FP
 

False Positive Rate (FPR): At a given decision threshold, the false positive rate is the 

ratio of false positives predicted to the total number of negative instances contained 

in the dataset. 

FPR =
FP

FP + TN
 

Matthews Correlation Coefficient (MCC): This is a metric commonly used to evaluate 

the performance of models trained to perform prediction on highly imbalanced data. 

MCC is defined as follows (where TP, TN, FP, and FN stand for True Positive, True 

Negative, False Positive, and False Negative, respectively): 

MCC =
TP ⋅ TN − FP ⋅ FN

√(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)
  

The performances of the six models are evaluated using 10-fold cross-validation at 

the level of protein complexes. The dataset is randomly split into 10 ‘folds’ containing 

19 complexes each. The model is trained on nine folds and is evaluated on the 

excluded fold. This process is repeated, sequentially leaving out all ten folds. The 

model’s performance with respect to predicting the interface of a given complex is 

computed when it is tested on the fold containing the complex. The model’s overall 

performance with respect to a given evaluation metric is the mean of its performance 

with respect to the metric across all 192 complexes. All six models were trained with 

the same ten folds. 

2.1.14 Feature Importances 
 

In addition to the performance metrics for the six models, we also compute the 

feature importances associated with each of the input features used to train the 

model. Feature importances have been computed using Gain. 

The ‘Gain’ associated with a feature refers to the reduction in loss incurred at a split 

involving that feature in a tree (that is a part of the overall XGBoost model). The total 
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gain associated with a feature is the sum of its gain values across all trees it is a part 

of. We compute the relative gain associated with each feature by ascertaining the 

ratio between the total gain associated with it and the total gain accumulated across 

all features used. The expression used to compute the gain at a particular split of the 

tree is the following (Chen and Guestrin, 2016): 

Gain =
1

2
[

𝐺𝐿
2

𝐻𝐿 + λ
+

𝐺𝑅
2

𝐻𝑅 + λ
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + λ
] − γ  

As per XGBoost documentation, the first term quantifies the score on the left leaf of a 

split, the second denotes the score on the right leaf at a split, the third term 

represents the score at the leaf prior to the split, and the fourth term represents the 

regularization associated with the added leaf. 

For each feature used in our models, we compute its global importance and mean 

importance per variable. As evident from Table 1, each feature corresponds to a set 

of variables. The global importance measures a feature’s total impact on the model’s 

performance. We interpret the mean importance per variable as a measure of how 

efficient a feature is at improving the model’s performance in relation to the number 

of variables that constitute it. For example, a feature that has a large contribution to 

the total gain and is constituted of a small number of variables can be expected to 

have a high mean importance per variable. 
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2.2 Data-driven compression methods for protein 

surface patches 
 

While protein surface patches represent a rich source of information for various 

prediction tasks, such as interface site prediction and ligand binding prediction, they 

also occupy a significant amount of space. For a patch radius of 9Å, MaSIF produces 

patches constituted of 100 vertices, with each vertex represented by five dimensions. 

The surface mesh of each protein in our dataset contains several thousand vertices. 

We develop a data-driven compression method to reduce the size of computed 

patches by a significant factor. The reduction of the sizes of protein patches allows 

for the following: 

 

1)   Increase in computation speed and reduction in memory consumption during 

the training of methods that utilize patches 

For a constant input feature size, reducing the size of individual features while 

retaining the same amount of information can allow for the use of a greater number 

of distinct informative features, potentially improving model performance. The use of 

compressed informative features can also greatly facilitate the training of highly 

performant models in low computing capacity realms. 

2)   Feasible local storage of large protein surface information datasets 

Pre-computed datasets of protein surface patches can greatly accelerate inference 

speed at test time. The compression of patches can significantly increase the 

amount of protein surface data that can be stored locally and allow for fast test-time 

inference by precluding the need for surface computation. 

To accomplish this, we develop i) a principal component analysis-based (Pearson, 

1901)  method and ii) an autoencoder-based (Kramer, 1992) method of patch 

compression. Both methods described fall under the category of unsupervised 

learning methods. The data-driven models were developed and tested on a non-

redundant dataset whose construction has been described in detail below. 
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2.2.1 Dataset construction 
 

The dataset constructed to train the protein surface patch compression methods was 

designed to be non-redundant and disjoint from Docking Benchmark v5.5 to allow for 

the future use of the compression method with BIPSPI. 

A cull was performed on structures available in the Protein Data Bank using PISCES 

(Wang and Dunbrack, 2003) to select PDBs whose structures were determined 

using X-ray Crystallography. The structures selected were such that their resolutions 

were superior to 2.0Å, and they exhibited R-factor values lower than 0.25. The 

sequence similarity criteria for culling was set to 5% to minimize redundancy in the 

dataset - no pair of structures in the dataset exhibited sequence-similarity greater 

than 5%. 

The cull retrieved 2532 PDB files. The extracted PDB files were subsequently 

processed using MaSIF’s pre-processing pipeline. Surface meshes were computed 

for all proteins in the dataset. This was subsequently followed by the computation of 

chemical and geometrical features. The patches were sampled from the patch 

datasets of individual proteins such that no two patches extracted from the same 

protein shared more than 20 vertices. We hoped to maximize the percentage of 

surface data utilized from a given protein while simultaneously minimizing the 

number of vertices shared between patches. The end result was a dataset consisting 

of 109,364 patches, each patch represented by 100 vertices described by five 

features per vertex. 

2.2.2 Method I: Principal component analysis 
 

Principal component analysis is a dimensionality reduction procedure commonly 

used to visualize high-dimensional data in 2 or 3-dimensions. ‘Principal components’ 

refer to basis vectors in high-dimensional space along the direction of maximum 

variance. Assuming that the input data is standardized (i.e., the values of the 

variables are scaled such that their mean is 0 and standard deviation is 1), the 

principal components represent the eigenvectors of the covariance matrix 

constructed from the data, in decreasing order of the variance explained. By 
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construction, they are orthogonal linear combinations of the original input variables 

that maximize the variance of the samples projected on to them. 

Given a data matrix containing 𝑛 samples, described by 𝑚 variables each, the 

following steps are involved in principal component analysis:  

1. Standardize the data matrix: Scale each of the 𝑚 variables in the dataset in 

accordance with its computed mean and standard deviation 

2. Construct a covariance matrix from the standardized dataset: Given a 

standardized 𝑛 × 𝑚 data matrix 𝐒, the covariance matrix 𝐂 can be computed as 

𝐂 =
1

𝑛−1
𝐒∗𝐒 

3. Compute the eigenvalues and eigenvectors of the covariance matrix 

4. Sort the eigenvectors in order of decreasing eigenvalues 

5. Choose a subset consisting of the first 𝑘 eigenvectors to project the samples in 

the data matrix onto. These represent the basis vectors along the direction of 

maximum variance.  

The procedure also allows for the computation of the percentage of variance 

explained by each principal component. The proportion of variance explained by a 

principal component is the ratio of its corresponding eigenvalue to the sum of all 

eigenvalues of the covariance matrix. 

Variance explained by PCi =
λ𝑖

λ1 + ⋯ + λ𝑛
 

The magnitude of this ‘explained variance ratio’ is indicative of how effective a 

principal component is at capturing the variance inherent to the dataset. As principal 

components are uncorrelated (i.e., orthogonal in space), the percentage variance 

accounted for by a subset of principal components can be computed through the 

direct addition of their explained variances. 

To reduce the dimensionality of the original dataset, a set constituted of the first 𝑛 

principal components that captures a substantial proportion of the sample variance is 

constructed. The data is subsequently projected along the 𝑛 principal components 

considered. If 1, 2, or 3 dimensions capture a significant fraction of sample variance, 

the data can be visualized in plots for researchers attempting to observe the relative 
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spatial positioning of various datapoints. In this case, what fraction can be deemed 

‘substantial’ is at the discretion of the researcher. 

The patches of dimension [100, 5] contained in the sampled non-redundant patch 

dataset are linearized to 500 dimensions. The [109364, 500] dataset is then 

segmented into train, validation, and test sets of sizes 80000, 20000, and 9364, 

respectively. The training dataset is standardized along the axes of the variables to 

mean 0 and standard deviation 1. The standard deviation and mean for the 500 

variables computed from the training dataset are used to scale the validation and 

test sets. The standardization procedure is performed to ensure that the magnitudes 

of the various features are comparable to not lend undue importance to certain 

features owing to their high absolute magnitudes. The number of components used 

to compute explained variance ratio and reconstruction loss was varied from 5 to 500 

in increments of 5. The explained variance ratio and reconstruction loss were 

subsequently plotted against the number of components and have been included in 

Section 3.2.1. 

2.2.3 Method II: Autoencoder 
 

An autoencoder (Kramer, 1992) is an unsupervised learning architecture designed 

for the purpose of representation learning. In most practical use cases, an 

autoencoder consists of two families of functions 𝐴 (parametrized by 𝜙) and 𝐵 

(parametrized by 𝜓), where 𝐴 transforms input from an 𝑛-dimensional real-valued 

representation to a 𝑝-dimensional latent representation, and 𝐵 transforms the 𝑝-

dimensional latent representation back to 𝑛-dimensions, where 𝐴 and 𝐵 minimize the 

expected “distortion” between the input and output representations (Bank et al., 

2021).  

𝐴𝜙 ∶ ℝ𝑛 → ℝ𝑝 

𝐵𝜓 ∶ ℝ𝑝 → ℝ𝑛 

The most used reconstruction loss in autoencoders is squared error, defined as 

follows where 𝑥 is the 𝑖𝑛𝑝𝑢𝑡 and 𝑥̃ is the reconstruction produced by the 

autoencoder: 

𝑟(𝑥, 𝑥̃) = ‖𝑥 − 𝑥̃‖2
2 
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When used in the context of data compression, an autoencoder learns from input 

data, the optimal functions 𝐴𝜙 and 𝐵𝜓 to convert high-dimensional data of a given 

type to a low-dimensional latent space while retaining as much information contained 

in the original sample as possible. The appropriate 𝜙 and 𝜓 are those that minimize 

the loss defined as: 

𝐿(𝜙, 𝜓) =
1

𝑁
∑ ‖𝑥𝑖 − 𝐵𝜓 (𝐴𝜙(𝑥𝑖))‖

2

2
𝑁

𝑖=1

 

In practice, 𝐴 and 𝐵 are usually neural networks called the ‘encoder’ and ‘decoder’ - 

the loss minimization procedure is performed using gradient descent. It can be 

mathematically shown that if purely linear operations are used to construct an 

autoencoder with a single fully-connected hidden layer of size 𝑝, the weights trained 

span the same subspace as the one spanned by principal component analysis with 𝑝 

principal components when trained with the squared error loss function (Plaut, 2018). 

The advantage accorded to an autoencoder through the use of non-linear activations 

is the ability to learn a non-linear manifold. In practice, the encoder and decoder are 

both constituted of several hidden layers. 

Autoencoders designed for the purpose of compression use a ‘bottleneck layer’. The 

bottleneck layer is generally the narrowest point of the autoencoder architecture and 

is conventionally the last layer of the encoder. The value of a bottleneck layer is two-

fold in that 1) in the context of compression, it is directly responsible for 

dimensionality reduction, and 2) it prevents the network from overfitting and learning 

the identity function for the given dataset (Bank et al., 2021). Intuitively, if the original 

𝑛-dimensional input can be fully reconstructed by the decoder using the 𝑝-

dimensional latent representation encoded by the encoder, the latter completely 

encapsulates the information contained in the former. Figure 8 depicts the structure 

of a compressional autoencoder. 
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Figure 8: Diagram representing the structure of a compressional autoencoder 

The protein patch dataset is segmented into train, validation, and test sets of sizes 

80000, 20000, and 9364 patches, respectively. Similar to the protocol for principal 

component analysis, the training dataset was standardized to mean 0 and standard 

deviation 1. This removes the dependence of the reconstruction error on the 

magnitudes of the input variables. The patches in the validation set and test sets 

were linearized and transformed using the sample mean and standard deviation 

computed for the training set. 

The reconstruction error used to train and validate the models is the Mean Squared 

Error loss function. Mean Squared Error (MSE) measures the average squared 

deviation between the true input and its reconstruction produced by the autoencoder 

across all the samples in the dataset. The best models during model selection are 

those with the lowest validation set MSE. 

Though there are an infinite number of possible encoder and decoder structures that 

can be tested, we consider only symmetric architectures, where the number of layers 

in the encoder and decoder varies from 1-3, and the number of hidden units in each 

layer varies between 200, 300, and 400. Under these self-imposed constraints, we 

tested a set of 19 architectures each for autoencoders with bottleneck layers of size 

50 and 100 dimensions, respectively. These constitute 10x and 5x reductions in the 
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size of the 500-dimensional input vector, respectively. The autoencoder models are 

subsequently trained for 500 epochs with a batch size of 128 using the ‘Adam’ 

optimizer set to a learning rate of 0.0001. A single update to the model’s weights is 

carried out when its weights are altered based on the losses and corresponding 

gradients computed on a batch of 128 datapoints. An ‘epoch’ represents a full pass 

through the dataset – the same operation is performed using all remaining disjoint 

batches of size 128 constructed from the dataset. The training dataset is shuffled 

prior to each training epoch. ‘Adam’ is a method that adaptively alters the learning 

rate of the algorithm in response to the values of the computed gradients (Kingma 

and Ba, 2015). 

The MSE losses are computed on the training and validation sets at the end of each 

epoch. Plots describing the evolution of these errors over 500 epochs are generated 

and are available in Section 3.2.1. As these curves can be noisy, the mean validation 

loss computed for the model over the final 50 epochs of training is used as a metric 

to compare the 19 models during model selection. 

Similar to our hypothesis that the use of sorted patches could result in better 

classification performance, we believe that PCA-based and autoencoder-based 

compression methods trained on sorted patches could exhibit significantly improved 

MSE performance in comparison to those trained with geometrically-intact patches. 

We train the PCA and autoencoder-based approaches with both sorted and unsorted 

patches and report training and validation loss statistics. 
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3 Results and Discussion 
 

3.1 Improving BIPSPI with protein surface patches 

extracted using MaSIF 
 

3.1.1 Results 
 

 

Figure 9: Receiver operating characteristic curves and precision-recall curves for all six 

models trained for the task of residue-residue contact prediction 

Figure 9 illustrates the receiver operating characteristic curves and precision-recall 

curves of the six models tested. In addition to structural features, all models shown 

here use the same set of sequence-derived features. We observe that the model 

trained with structural features from both MaSIF and BIPSPI exhibits the best ROC-

AUC performance across the six models that were tested. We also observe that for a 

given feature set, sorting the input surface patches appears to improve classification 

performance: the XGBoost models trained on sorted patches, BIPSPI-default-patch-

sorted and BIPSPI-patch-sorted, perform better than their counterparts trained on 

unsorted patches, BIPSPI-default-patch and BIPSPI-patch respectively. The model 

trained solely with sequence-derived features and BIPSPI’s default structural 

features (BIPSPI-default) exhibits marginally better performance than both models 

that utilize sequence-derived features and MaSIF’s structural features (BIPSPI-

default-patch and BIPSPI-patch). These trends are mirrored in the precision-recall 
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curves plotted in Figure 9. The baseline in both plots represents the performance 

expected of a random classifier. We have also included the performance of the 

model trained only on sequence data (BIPSPI-seq) as an additional baseline to 

quantify the improvement in performance brought forth by the use of structure-

derived features. The model trained only on sequence-based features exhibits 

performance considerably inferior to that of the remaining models. 

Table 2: Performance summary of the six models evaluated using 10-fold cross-validation 

across nine performance metrics. All models were trained using the same ten folds. 

Model Name 
ROC-AUC 

pooled 

ROC-

AUC 

mean 

MCC PRE REC ACC FPR SPC NPV 

BIPSPI-

default-patch-

sorted 

0.9333 0.9222 0.1052 0.0249 0.4866 0.9713 0.0280 0.9720 0.9992 

BIPSPI-

default-patch 
0.9301 0.9190 0.1013 0.0225 0.5053 0.9670 0.0324 0.9676 0.9992 

BIPSPI-patch-

sorted 
0.9257 0.9137 0.1006 0.0222 0.5054 0.9665 0.0328 0.9672 0.9992 

BIPSPI-patch 0.9197 0.9080 0.0946 0.0227 0.4382 0.9714 0.0278 0.9722 0.9992 

BIPSPI-default 0.9284 0.9153 0.0999 0.0216 0.5127 0.9648 0.0345 0.9655 0.9993 

BIPSPI-seq 0.8463 0.8229 0.0644 0.0146 0.3385 0.9652 0.0339 0.9661 0.9990 

 

Table 2 contains performance metrics computed for all six models using 10-fold 

cross-validation on the 192 complexes contained in our dataset. BIPSPI-default-

patch-sorted exhibits the best performance across most computed metrics. Similar to 

what is observed in the receiver operating characteristic and precision-recall curves 

(Figure 9), for pairs of models trained with the same set of features, the variants 

trained on sorted patches exhibit better performance than their counterparts trained 

on unsorted patches. The values for metrics such as MCC, FPR, and ACC are 

computed by identifying a ‘best threshold’ that maximizes the performance of each of 

the classifiers. Two ROC-AUC scores are computed. ROC-AUC mean refers to the 

mean of the AUCs achieved on individual complexes during 10-fold cross-validation. 

ROC-AUC pooled represents the model’s AUC as computed from the results pooled 

from all complexes. 
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Figure 10: Receiver operating characteristic curves and precision-recall curves for BIPSPI-

default-patch-sorted and BIPSPI-default 

Figure 10 directly compares the receiver operating characteristic curves and 

precision-recall curves of the best-performing model (BIPSPI-default-patch-sorted) to 

those of the unmodified version of BIPSPI (BIPSPI-default). The addition of sorted 

patches generated by MaSIF to BIPSPI’s structure-based feature set improves the 

ROC-AUC mean by 0.69 and PR-AUC by 0.0039. 

 

 

Figure 11: Receiver operating characteristic curves and precision-recall curves for 1-step 

and 2-step variants of BIPSPI-default-patch-sorted 
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From Figure 11, it is clear that there is a significant improvement in performance 

between the 1-step and 2-step variants of the model trained on structural features 

from both MaSIF (sorted) and BIPSPI. This trend is consistent across all six models. 

 

In addition to the receiver operating characteristic and precision-recall curves, we 

also use XGBoost’s in-built feature importance computation function to identify the 

features the algorithm considers to be the most important for performing predictions 

for all five models that use structural features. Feature importances were computed 

for the 1-step and 2-step variants of each of the five models that use structural 

features. Since each feature corresponds to a set of variables, we also compute the 

mean importance per variable of all features used by our models. We show both 

‘grouped’ and ‘comprehensive’ plots for each of the five models that use structure-

based features. In grouped plots, the structural features are grouped as either MaSIF 

features, BIPSPI features, Conservation features, or ‘Other features’ depending on 

their sources. Only ‘amino acid identity’ belongs to the ‘Other features’ category. The 

comprehensive plots represent the relative importance of all features used by the 

model as individual wedges on the pie chart. While the 2-step variants perform better 

than the 1-step variants, the feature importance plots for the former are heavily 

influenced by the predictions made in the first step and are hence less informative for 

the purpose of ascertaining the relative impacts of the various features used. As a 

result, we present only the feature importances computed for the 1-step classifiers in 

this section. Feature importance plots for the 2-step classifiers are available in the 

attached appendix. 

 

Figures 12 and 13 represent the extent of importance the XGBoost model trained on 

the default set of BIPSPI features assigns to the various input features during 

training. Conservation appears to be the most influential of all the features, 

accounting for 64.98% of the total gain across all splits, and is almost four times as 

important as the second-most important feature (Accessibility), which accounts for 

16.96%. Accessibility, however, appears to have the highest per-variable importance 

of all the features. Amino acid identities appear to be the least important to the model 

during training from the perspective of mean importance per variable.  The feature 

importances computed for the model trained on the default set of features represent 
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a control that the feature importances computed for the other models can be 

compared to. 

 

 

Figure 12: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default. The structural features associated with BIPSPI are grouped 

together in a single category called ‘BIPSPI features’. 

 

 

Figure 13: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default 
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As is evident from Figures 14 and 15, when BIPSPI’s structural features are replaced 

with patches (unsorted), the extent of influence held by conservation drops 

significantly from 64.98% to 56.98%. While conservation still is the most important 

type of feature, the extent of influence structural features have on the model has 

increased substantially in comparison to their proportions seen in BIPSPI-default. 

Distance-dependent curvature appears to be the most important of the five features 

contained in the patches, accounting for 12.42% of the total importance. Out of the 

three chemical features, free electron donor/acceptor potential (H-bond) has the 

least importance. It is to be noted that while the influence of structural features has 

increased compared to BIPSPI-default, the performance of the model is noticeably 

worse, clocking in at an ROC-AUC mean of 0.9080 in comparison to the 0.9153 

exhibited by BIPSPI-default. The geometrical features appear to have higher global 

and mean importances than the chemical features in the patches. 

 

 

Figure 14: Global and mean feature importances associated with the features used in the 

training of BIPSPI-patch. The structural features associated with MaSIF are grouped 

together in a single category called ‘MaSIF features’. 
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Figure 15: Global and mean feature importances associated with the features used in the 

training of BIPSPI-patch 

Figures 16 and 17 show that supplying the model with sorted patches appears to 

improve performance while simultaneously reducing the reliance of the model on 

patch-based features during training. The extent of influence of sequence and 

structure-based features for BIPSPI-patch-sorted is comparable to that exhibited by 

BIPSPI-default. The conservation class of features regains its position as the most 

influential, surpassing its importance in the control model. Consistent with what was 

observed in BIPSPI-patch, distance-dependent curvature appears to be the most 

important MaSIF-derived feature during training, accounting for 7.19% of the total 

importance. The similarities continue with charge and hydrophobicity remaining 

comparable and free electron donor/acceptor potential being the least important 

feature. The performance of the model trained on sorted patches is superior to that 

of the model trained on unsorted patches.  
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Figure 16: Global and mean feature importances associated with the features used in the 

training of BIPSPI-patch-sorted. The structural features associated with MaSIF are grouped 

together in a single category called ‘MaSIF features’. 

 

 

Figure 17: Global and mean feature importances associated with the features used in the 

training of BIPSPI-patch-sorted 
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Figure 18: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default-patch. The structural features associated with BIPSPI and MaSIF 

are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF features’. 

 

 

Figure 19: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default-patch 

Figures 18 and 19 describe the relative importance of the different features used in 

the model that combines the structure-derived features from both MaSIF and 
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BIPSPI. The model was trained with unsorted versions of the patches generated by 

MaSIF. Similar to the case where the model was trained solely on sequence-based 

features and unsorted MaSIF patches (BIPSPI-patch), the impact of conservation-

based features is significantly lower, accounting for only 46.41% of the total 

importance. In spite of the fact that there are fewer BIPSPI structural features, both 

feature sets are approximately equally important to the model for prediction 

performance: only 166 structural feature variables are associated with BIPSPI, 

compared to the 500 feature variables associated with MaSIF per residue. It is 

interesting to note that while the hydrophobicity features computed by MaSIF have a 

significantly larger global impact than those computed by BIPSPI, the two are highly 

comparable from the perspective of mean importance. Accessibility continues to be 

the feature with the highest mean importance per variable, with amino acid identities 

being the least important.  

 

 

Figure 20: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default-patch-sorted. The structural features associated with BIPSPI and 

MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF 

features’. 



44 
 

 

Figure 21: Global and mean feature importances associated with the features used in the 

training of BIPSPI-default-patch-sorted 

Figures 20 and 21 illustrate the feature importances computed for a 1-step XGBoost 

classifier trained on structural features extracted from BIPSPI and MaSIF. The 

MaSIF patches used to train the model are sorted. We observe that the model is 

more strongly impacted by BIPSPI-derived features than MaSIF-derived features. 

BIPSPI features retain a similar fraction of global impact here as they do in BIPSPI-

default-patch, with the relative proportions amongst the BIPSPI features being 

conserved as well. Out of the BIPSPI-derived structural features, accessibility is the 

most important, accounting for 14.81% of the total importance. From the set of 

features contained in the MaSIF patches, charge is the most impactful, making up 

4.40% of the total importance. Sorting patches, in a close parallel to Figure 16, 

appears to reduce their influence in making predictions. The geometrical features 

computed by MaSIF appear to be less important to the performance of this model 

than the chemical features. BIPSPI-default-patch-sorted places less importance on 

the conservation class of features than BIPSPI-default. Such features account for 

53.64% of the total importance in BIPSPI-default-patch-sorted, compared to the 

64.98% importance ascribed to them in BIPSPI-default.  We observe from the mean 

importance plots for this model that the BIPSPI features appear to be more efficient 

in relaying information compared to those from MaSIF, evidenced by their higher 

mean importances per variable.  
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3.1.2 Discussion 
 

Our objective was to ascertain if the addition of geometrical and chemical features 

derived from the surfaces of proteins in the form of patches could improve the 

performance of BIPSPI, a partner-specific interface predictor. Through our 

experiments, we have demonstrated that protein surface patches are informative 

features for the purpose of residue-residue contact prediction at protein-protein 

interfaces. The addition of MaSIF-derived features to the sequence-only model 

improves ROC-AUC mean performance from 0.8222 to 0.9080, confirming the 

relevance of the newly added features.  

 

We observe that the addition of MaSIF-derived patches to BIPSPI’s existing feature 

set has a positive effect on the method’s performance on the task of residue-residue 

contact prediction. Both models that combine MaSIF-generated patches and 

structural features derived from BIPSPI, BIPSPI-default-patch-sorted and BIPSPI-

default-patch, exhibit performance superior to that of BIPSPI-default across the most 

relevant tested metrics. While the addition of patches has a positive impact on model 

performance, it is interesting to note that the internal sorting of patches improves 

performance marginally further. 

 

Out of the five features added via the use of MaSIF-generated patches, distance-

dependent curvature is consistently the most important across all models trained 

with them. Protein-protein binding is strongly influenced by geometrical and chemical 

complementarity. Distance-dependent curvature measures the curvature around 

each vertex as a function of distance - it is likely that the models have learnt which 

combinations of the vertex-level distance-dependent curvatures across ligand and 

receptor residues correspond to potentially complementary surfaces. 

 
From BIPSPI’s structure-derived feature set, accessibility appears to have the 

greatest importance from the perspective of both global and mean importance per 

variable. This aligns well with literature attesting to the capacity of Solvent 

Accessible Surface Area to be used for protein-protein and protein-nucleic acid 

interface hotspot prediction (Martins et al., 2014; Munteanu et al., 2015). Relative 

accessible surface area has also been reported to be an effective predictor of the 
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extent of binding-induced conformational change in protein complexes (Marsh and 

Teichmann, 2011), potentially hinting at its utility in predicting protein-protein 

interfaces. Protrusion index is another structural feature computed by BIPSPI that 

has a considerable impact on the accuracy of the models tested. Protrusion has 

been shown in the literature to correlate to a certain extent with accessibility and, in 

conjunction with other features, has been used for the allied problem of protein-

protein interface hot-spot prediction. It is surprising to note that protrusion has a 

significantly higher impact on performance than shape index, a property that is 

expected to capture similar information by encapsulating the local curvature around 

a residue. 

 

It appears that most of BIPSPI’s existing structural features are more efficient at 

relaying structural information than MaSIF’s. In our best-performing model, BIPSPI’s 

features were of greater importance than MaSIF’s at a global level (26.34% vs 

17.58%) and were far more impactful from the perspective of mean importance per 

variable. From our analysis of feature importances for all five models using structural 

features, we observe that the use of unsorted patches significantly changes the 

proportion of impact associated with the various features during the training process. 

Generally, the use of unsorted patches appears to increase the impact of MaSIF-

based features on the models’ predictions. Sorting patches internally with respect to 

their five constituent features reduces these proportions significantly while improving 

performance. When models using sorted and unsorted patches are analyzed from 

the perspective of the number of splits each feature is involved in, it is observed that 

the relative number of splits involving MaSIF-derived features is significantly higher 

in the latter. Figure 22 illustrates the number of splits involving MaSIF-derived 

features per tree against the iteration index of the XGBoost models for BIPSPI-

default-patch-sorted and BIPSPI-default-patch. We observe that in the early stages 

of training, the model using unsorted patches generates trees that contain a much 

higher number of MaSIF-associated splits than the model using sorted patches. 
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Figure 22: Comparison of the number of splits involving MaSIF features as a function of tree 
index for BIPSPI-default-patch-sorted and BIPSPI-default-patch 

 

We suspect that this behaviour is connected to the significantly higher variance 

associated with each index of the patch representation over all the patches the 

model is exposed to. While sorting a patch compromises the inherent geometry 

associated with it, it imposes the same structure on all patches in the dataset. The 

imposition of order greatly reduces the variance in values observed across patches 

at a particular index. Better put, unlike the case of unsorted patches, each position in 

the numerical representation of a sorted patch has the same meaning. For instance, 

in a sorted patch consisting of 100 vertices described by the five features computed 

by MaSIF, the first row will always correspond to the magnitude of the charge on the 

most negatively charged vertex, the shape index of the vertex with the highest 

concavity, the vertex with the highest hydrogen bond acceptor potential and similarly 

so. The next row will correspond to the sequentially subsequent values for the 

abovementioned properties. We believe that the improvement in performance upon 

sorting patches arises as a result of this imposition of meaning on the indices of the 

linearized representation of the patch. 

 

The conservation-based class of features, in most cases, has the highest global 

impact on the model’s performance. The extent to which conservation influences 

predictions is unsurprising - residues that constitute the interfaces of protein-protein 
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interactions are likely to have been preserved over the course of evolution, as 

protein-protein interactions mediate several essential life processes (Choi et al., 

2009; Teppa et al., 2017). We believe it could be fruitful to extend the notion of 

evolutionary conservation (and co-evolution) to the level of the protein surface patch 

to provide learning methods with a notion of the extent of evolutionary 

complementarity exhibited by a pair of patches. We expect methods trained with 

patch-level evolutionary information to exhibit superior performance to those trained 

solely with residue-level conservation data and hope to construct an appropriate 

representation for this purpose in the future. Furthermore, in addition to conventional 

sequence-derived features, we also believe that the use of context-aware residue 

representations produced using protein language models such as ESM-1b (Rives et 

al., 2021) and ProtT5 (Elnaggar et al., 2022) has the potential to improve 

performance on this prediction task. 

 

While the use of protein surface patches has improved the performance of BIPSPI, 

we cognize that a gradient-boosting-based framework is unlikely the best 

architecture to utilize them to their true potential. XGBoost and other machine-

learning frameworks that accept only linear forms of input are inherently limited in 

their ability to utilize geometric information. A patch, fundamentally, is an area on the 

surface of the protein: while properties such as shape index and distance-dependent 

curvature capture the local geometry around a vertex, the positional relationships 

between various vertices within a given patch are lost during the process of 

linearization. It is plausible that a convolutional neural network-based architecture or 

a graph neural network that operates directly on the graph induced by the surface 

mesh of the protein is likely to exhibit better performance on the task of partner-

specific protein interface prediction than a framework such as XGBoost that requires 

linearization. An alternate approach would be to randomly sample various rotations 

of a given patch and create multiple representations of the same residue-pair, each 

using linearizations of different rotations of their constituent patches. The model 

could subsequently be trained with these representations – this would show the 

learning method that multiple rotations of a given patch correspond to the same 

information. 
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3.2 Data-driven compression methods for protein 

surface patches 
 

3.2.1 Results 
 

 

Figure 23: Percentage explained variance and reconstruction loss (MSE) as a function of the 

number of principal components used for the principal component analysis method fitted to 

the dataset of unsorted patches 

We observe suboptimal compression performance in the case where principal 

component analysis is performed on a dataset constituted of unsorted patches. 

Figure 23 illustrates the percentage variance explained as a function of the number 

of principal components considered and the loss incurred when the input is 

reconstructed from the first 𝑛 principal components. To obtain a reconstruction loss 

of less than 0.05, over 425 principal components are required, indicating that the 

capacity of unsorted patches to be compressed by principal component analysis is 

minimal. We also observe that the reconstruction loss computed on the validation set 

closely mirrors that computed on the training set. 
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Figure 24: Percentage explained variance and reconstruction loss (MSE) as a function of the 

number of principal components used for principal component analysis fitted to the dataset 

of sorted patches 

In stark contrast to the case of unsorted patches, principal component analysis 

appears to perform exceptionally well in the case where the method is fit to sorted 

patches (Figure 24). The method achieves a reconstruction loss of less than 0.05 

with less than 35 components, and crossing a reconstruction loss of 0.01 requires 

only 105 components. Similar to what was observed in the case of unsorted patches, 

the reconstruction losses incurred on the training and validation sets mirror each 

other very closely. There appears to be an inflection point in both plots at 

approximately 30 components, from where performance begins to asymptote. 

 

 

Figure 25: Training and validation loss (MSE) vs training epoch index for autoencoder 

models with latent dimension size of 100 trained on unsorted patches 
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We subsequently test the performance of the autoencoder models trained with 

unsorted patches. The average reconstruction loss on the validation set across all 19 

tested models is 0.5352. The best-performing model (MSE = 0.5108) was the most 

complex, consisting of three hidden layers (each of 400 hidden units) each for the 

encoder and decoder. The training and validation losses for the 19 models contained 

in Table 3 are computed by averaging results over the final 50 epochs of training to 

account for noise. We conclude that the autoencoder architectures tested are 

unsuitable for the lossless compression of unsorted patches generated by MaSIF. 

From Table 3 and Figure 25, we do not observe a clear relationship between model 

complexity and validation set performance. 

Table 3: Training and validation losses (MSE) averaged over the final 50 iterations of training 

for all 19 tested models with latent dimension size of 100 trained with unsorted patches 

Architecture Training Loss Validation Loss 

400400400_400400400 0.49862033 0.51084647 

400400_400400 0.50906376 0.51960411 

400400300_300400400 0.5086854 0.52003612 

400400200_200400400 0.51521921 0.52563242 

400_400 0.51966519 0.52751778 

400300300_300300400 0.5190646 0.52996238 

400300_300400 0.52020196 0.53064663 

400300200_200300400 0.52332491 0.53270997 

300300_300300 0.52759914 0.53614796 

400200200_200200400 0.52944333 0.53757512 

300300300_300300300 0.53029686 0.53863717 

300_300 0.5338754 0.54014334 

300300200_200300300 0.53314305 0.54084669 

400200_200400 0.53431434 0.54268245 

300200200_200200300 0.53652639 0.54318872 

200_200 0.54138824 0.54646923 

200200200_200200200 0.54265775 0.54829711 

300200_200300 0.54070021 0.54859973 

200200_200200 0.54426069 0.55018174 

 



52 
 

 

Figure 26: Training and validation losses (MSE) vs training epoch index for autoencoder 

models with latent dimension size of 50 trained on unsorted patches. 

We observe from Figure 26 that performance is significantly worse when the size of 

the latent dimension is halved from 100 to 50. The validation loss averaged across 

all 19 models increases from MSE 0.5352 to MSE 0.6359. The models employing 

400-dimensional hidden layers appear to exhibit better performance than those using 

only 300 and 200-dimensional hidden layers. The decrease in performance 

compared to the models using a bottleneck size of 100 dimensions is expected as 

the reduction in latent dimension size corresponds to a significantly harder 

compression task. Table 4 lists the training and validation losses for all 19 models 

using unsorted patches in conjunction with a latent dimension size of 50 hidden 

units.  

Table 4: Training and validation losses (MSE) averaged over the final 50 iterations of training 

for all 19 tested models with latent dimension size of 50 trained with unsorted patches. 

Architecture Training Loss Validation Loss 

400400_400400 0.61223592 0.62675255 

400400400_400400400 0.61156837 0.62865261 

400400300_300400400 0.61261756 0.62898205 

400400200_200400400 0.61570714 0.6295598 

400300_300400 0.61722149 0.62983679 

400300200_200300400 0.61689694 0.63103127 

400300300_300300400 0.61724137 0.63197572 
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300300300_300300300 0.62145022 0.63232813 

400200200_200200400 0.62203821 0.63382337 

400_400 0.62227445 0.63467881 

400200_200400 0.62378838 0.63509277 

300200200_200200300 0.62751627 0.6377372 

300300_300300 0.6290283 0.63906111 

300300200_200300300 0.62955692 0.63977616 

300200_200300 0.6306161 0.64027539 

300_300 0.63724325 0.64659616 

200200200_200200200 0.63955658 0.64766513 

200200_200200 0.64607298 0.65275298 

200_200 0.64667923 0.65371706 

 

 

 

Figure 27: Training and validation losses (MSE) vs training epoch index for autoencoder 

models with latent dimension size of 100 trained on sorted patches. 

From Figure 27, we observe that the autoencoder models trained on sorted patches 

exhibit vastly superior performance to identical models trained on unsorted patches. 

Table 5 contains the mean training and validation losses achieved for all 19 models 

over the final 50 epochs of model training.  
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Table 5: Training and validation losses (MSE) averaged over the final 50 iterations of training 

for all 19 tested models with latent dimension size of 100 trained with sorted patches 

Architecture Training Loss Validation Loss 

400_400 0.00692446 0.00782732 

300_300 0.00717828 0.00809767 

300300_300300 0.00748921 0.00867917 

200_200 0.00785857 0.00885369 

400300_300400 0.00769637 0.00885858 

300200_200300 0.00785881 0.00897441 

400200_200400 0.0078138 0.00911418 

400400_400400 0.00782203 0.00920799 

200200_200200 0.00839622 0.00952031 

400400200_200400400 0.00820127 0.00962707 

400300200_200300400 0.0085139 0.00975329 

400300300_300300400 0.00855657 0.00982589 

400200200_200200400 0.00846929 0.00991788 

400400300_300400400 0.00849327 0.0099296 

300300200_200300300 0.00873274 0.00995838 

300300300_300300300 0.00863568 0.01010596 

400400400_400400400 0.00860751 0.01024261 

300200200_200200300 0.00940295 0.01075625 

200200200_200200200 0.01013257 0.01128386 

 

The best model achieves an average reconstruction loss of 0.0078 on the validation 

dataset over the final 50 epochs of training. When trained for 500 epochs, it achieves 

a test set reconstruction loss of 0.0073. This is highly competitive and allows for 

compression with exceptionally minimal information loss. The performances of the 

models were compared using the mean of the validation losses computed for the last 

50 epochs of training. While all models are significantly more competitive than their 

counterparts trained on unsorted patches, it is interesting to note that increasing 

model size does not appear to result in substantial improvements to validation set 

performance. In fact, we observe that the simpler models exhibit better performance 

than models that have a greater degree of complexity – models with single-layer 
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encoders and decoders perform better than those with two and three layers. The 

models exhibit a mean validation set MSE of 0.0095. 

 

 

Figure 28: Training and validation losses (MSE) vs training epoch index for autoencoder 

models with latent dimension size of 50 trained on sorted patches. 

Encouraged by the exceptional performance of the models with latent dimension size 

100, we tested the same architectures with a latent dimension size of 50 (Figure 28). 

This increased the extent of compression from 5x to 10x. Table 6 contains the mean 

training and validation losses achieved for all 19 models over the final 50 epochs of 

model training.  

Table 6: Training and validation losses (MSE) averaged over the final 50 iterations of training 

for all 19 tested models with latent dimension size of 50 trained with sorted patches. 

Architecture Training Loss Validation Loss 

400400_400400 0.014832 0.01628916 

400_400 0.01525211 0.01638039 

400300_300400 0.01526113 0.01658419 

300300_300300 0.0154943 0.01674393 

400200_200400 0.01558173 0.01690069 

300_300 0.01577537 0.01697213 

400400400_400400400 0.01537724 0.01697219 

400300300_300300400 0.0156564 0.01706572 

400200200_200200400 0.0160742 0.01745806 
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200200_200200 0.01637748 0.01764264 

400400200_200400400 0.01611265 0.01768556 

300300300_300300300 0.01616417 0.01769364 

300200_200300 0.0163793 0.01769536 

400400300_300400400 0.01610283 0.0179201 

400300200_200300400 0.01628153 0.01804864 

300300200_200300300 0.01674769 0.0181483 

200200200_200200200 0.01713168 0.01850336 

200_200 0.01756568 0.01872389 

300200200_200200300 0.01828892 0.01982203 

 

The best model achieves an average reconstruction loss of 0.0163 on the validation 

dataset over the final 50 epochs of training. When trained for 500 epochs, it achieves 

a test set reconstruction loss of 0.0159. On average, the models perform marginally 

worse than those with a latent dimension size of 100. The mean validation loss 

exhibited across the tested models is 0.0175. The trend of less complex models 

exhibiting marginally superior performance is visible with this class of models as well. 

 

3.2.2 Discussion 
 

Across both methods of compression, we observe that performance improves by 

several orders of magnitude when the patches in the training and validation datasets 

are sorted prior to training. For both sorted and unsorted patches, the autoencoder 

models built with 100-dimensional bottleneck layers exhibited better performance 

than those trained with 50-dimensional bottlenecks. This is expected as the latter 

represents a considerably higher degree of compression. As is expected for principal 

component analysis, increasing the number of principal components used in the 

reconstruction decreases the magnitude of loss incurred.  

 

In the context of the training and validation sets used, the sorted variant of the 

dataset exhibits considerably lower variances for 491 of the 500 variables across 

patches in comparison to the variant of the dataset where patches are unsorted. 

Similar to the case observed during the training of BIPSPI with sorted patches, 
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sorting patches specifies the interpretation associated with each index of the patch 

vector. This is likely the reason why it appears to be significantly easier for learning-

based compression methods to compress a sorted patch than an unsorted patch. 

We reiterate that sorting happens within a patch along the five MaSIF features and 

not at the level of the dataset. 

 

From our experiments, we conclude that sorting is a necessary prerequisite for the 

successful compression of protein surface patches. The methods developed and 

tested by us are highly competent at the task of compressing sorted protein surface 

patches. We believe that the compressed representations can be directly used to 

train protein-protein interface prediction models such as BIPSPI that are reliant on 

linear input representations or for other allied problems such as protein-ligand 

binding prediction or interface hotspot prediction. The significantly smaller size of the 

patch representation can either facilitate faster training owing to the reduced size of 

the input data or make space to allow for the use of additional sequence/structure-

derived features, such as context-aware residue representations created by protein 

language models. 

 

To compare the two unsupervised learning methods, the PCA-based methods using 

50 and 100 principal components were tested on the held-out test set. At a 

compressed representation size of 100 dimensions, the PCA-based method exhibits 

marginally higher reconstruction loss (MSE 0.0102) on the test set than that incurred 

by the most performant comparable autoencoder model (MSE 0.0073). The 

difference is significantly higher at a compressed representation size of 50 

dimensions (MSE 0.0269 vs MSE 0.0159). While the autoencoder appears to be 

more performant at the task of compression, we believe that the choice of method 

should depend on the user’s priorities. If minimizing reconstruction error to near-

lossless levels is the objective, the autoencoder method is preferred. However, in the 

event that interpretability and ease of use are of greater importance, the PCA 

method is a sufficiently competent alternative.  

 

As sorting corrupts the geometrical relationships between the various vertices that 

constitute a patch, we acknowledge that the linearized compressed patch 

representation is likely to be suboptimal when used in conjunction with learning 
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algorithms that can take positional information regarding the various inputs into 

account. To create compressed input representations for such models, we 

recommend using rotation-invariant deep-learning-based models. We believe the 

polar convolutional neural network-based method MaSIF uses to generate 

fingerprints can be adapted for the purpose of patch compression, owing to its ability 

to learn local geometrical patterns within patches using convolutional filters and its 

integration of multiple rotations of each patch to incorporate rotation invariance. 
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Appendix 
 

Feature importance for 2-step classifiers (Gain).  

 

Figure 29: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default. The structural features associated with BIPSPI are grouped 

together in a single category called ‘BIPSPI features’. 

 

 

Figure 30: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default 
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Figure 31: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-patch. The structural features associated with MaSIF are grouped 

together in a single category called ‘MaSIF features’. 

 

 

 

Figure 32: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-patch 
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Figure 33: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-patch-sorted. The structural features associated with MaSIF are 

grouped together in a single category called ‘MaSIF features’. 

 

 

 

Figure 34: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-patch-sorted 
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Figure 35: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default-patch. The structural features associated with BIPSPI and 

MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF 
features’. 

 

 

Figure 36: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default-patch 
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Figure 37: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default-patch-sorted. The structural features associated with BIPSPI 
and MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF 

features’. 

 

 

Figure 38: Global and mean feature importances (gain) associated with the features used in 
the training of BIPSPI-default-patch-sorted 
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Feature importance in terms of frequency 

In addition to the feature importance computed in terms of ‘gain’ (presented in the 

main text), we also compute feature importance in terms of ‘frequency’. Here, the 

relative importance of a feature is computed as the ratio of the number of times a 

given feature is involved in tree splits across all trees that constitute the model to the 

total number of splits contained across all trees in the model. Since it only relies on 

the number of times a given feature is used, it is not as informative as ‘gain’ in 

relaying the impact of the features used in the various models. 

 

 

 

 

Figure 39: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default. The structural features associated with BIPSPI are 

grouped together in a single category called ‘BIPSPI features’. 
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Figure 40: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default 

 

 

 

Figure 41: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-patch. The structural features associated with MaSIF are 

grouped together in a single category called ‘MaSIF features’. 
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Figure 42: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-patch 

 

 

Figure 43: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-patch-sorted. The structural features associated with MaSIF 

are grouped together in a single category called ‘MaSIF features’. 
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Figure 44: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-patch-sorted 

 

Figure 45: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default-patch. The structural features associated with BIPSPI 
and MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF 

features’. 
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Figure 46: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default-patch 

 

 

Figure 47: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default-patch-sorted. The structural features associated with 
BIPSPI and MaSIF are grouped into two separate categories called 'BIPSPI features' and 

‘MaSIF features’. 
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Figure 48: Global and mean feature importances (frequency) associated with the features 
used in the training of BIPSPI-default-patch-sorted 
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