
Predicting residue-residue contacts at

protein-protein interfaces using surface

features - a machine learning approach

A Thesis

submitted to

Indian Institute of Science Education and Research Pune in partial

fulfilment of the requirements for the BS-MS Dual Degree Programme

by

Adithyan Unni

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

May 2023

Supervisor: Dr. Carlos Óscar Sorzano Sánchez

Centro Nacional de Biotecnología (CSIC), Madrid

© Adithyan Unni 2023

i

Certificate

This is to certify that this dissertation entitled ‘Predicting residue-residue

contacts at protein-protein interfaces using surface features - a machine

learning approach’ towards the partial fulfilment of the BS-MS dual

degree programme at the Indian Institute of Science Education and

Research, Pune represents study/work carried out by Adithyan Unni at

the Indian Institute of Science Education and Research, Pune, under the

supervision of Dr. Carlos Óscar Sorzano Sánchez, Principal Investigator,

Centro Nacional de Biotecnología (CSIC), Madrid, during the academic

year 2022-2023.

Dr. Carlos Óscar Sorzano Sánchez

Committee:

Dr. Carlos Óscar Sorzano Sánchez

Dr. M.S. Madhusudhan

ii

This thesis is dedicated to my grandparents.

iii

Declaration

I hereby declare that the matter embodied in the report entitled
‘Predicting residue-residue contacts at protein-protein interfaces using
surface features - a machine learning approach’ are the results of the
work carried out by me at the Indian Institute of Science Education and
Research, Pune, under the supervision of Dr. Carlos Óscar Sorzano
Sánchez, Principal Investigator, Centro Nacional de Biotecnología
(CSIC), Madrid and the same has not been submitted elsewhere for any
other degree.

 Adithyan Unni

 Date: 6th May 2023

iv

Table of Contents

List of Tables vi

List of Figures vii

Abstract xii

Acknowledgements xiii

Contributions xiv

1 Introduction 1

1.1 Experimental methods for protein-protein interface prediction 2

1.2 Machine learning: A Brief Primer 3

1.3 Machine learning for protein-protein interface prediction 4

2 Methods 10

2.1 Improving BIPSPI using protein surface patches extracted using MaSIF 10

2.1.1 Problem overview 10

2.1.2 Dataset 11

2.1.3 Overview of BIPSPI 12

2.1.4 Sequence-derived features used by BIPSPI 14

2.1.5 Structure-derived features used by BIPSPI 15

2.1.6 Residue neighbourhood codification 17

2.1.7 Overview of MaSIF 17

2.1.8 Geometric features used by MaSIF 18

2.1.9 Chemical features 19

2.1.10 Mapping procedure 21

2.1.11 Patch ‘sorting’ 22

2.1.12 Variants of BIPSPI considered 23

2.1.13 Evaluation 24

2.1.14 Feature Importances 25

2.2 Data-driven compression methods for protein surface patches 27

v

2.2.1 Dataset construction 28

2.2.2 Method I: Principal component analysis 28

2.2.3 Method II: Autoencoder 30

3 Results and Discussion 34

3.1 Improving BIPSPI with protein surface patches extracted using MaSIF 34

3.1.1 Results 34

3.1.2 Discussion 45

3.2 Data-driven compression methods for protein surface patches 49

3.2.1 Results 49

3.2.2 Discussion 56

References 59

Appendix 69

vi

List of Tables

Table 1: Features used in the training of XGBoost models 20

Table 2: Performance summary of the six models evaluated using 10-fold cross-

validation across nine performance metrics 35

Table 3: Training and validation losses (MSE) averaged over the final 50 iterations of

training for all 19 tested models with latent dimension size of 100 trained with

unsorted patches 51

Table 4: Training and validation losses (MSE) averaged over the final 50 iterations of

training for all 19 tested models with latent dimension size of 50 trained with

unsorted patches 52

Table 5: Training and validation losses (MSE) averaged over the final 50 iterations of

training for all 19 tested models with latent dimension size of 100 trained with sorted

patches 54

Table 6: Training and validation losses (MSE) averaged over the final 50 iterations of

training for all 19 tested models with latent dimension size of 50 trained with sorted

patches 55

vii

List of Figures

Figure 1: Flowchart elucidating the workflow associated with residue-residue contact

prediction 11

Figure 2: Illustration of the steps involved in residue-residue contact prediction using

BIPSPI 13

Figure 3: Accessible surface area associated with a macromolecule. A sphere of

fixed radius is used to probe the surface of the macromolecule. 16

Figure 4: Half-sphere exposure computation 16

Figure 5: Pictorial representation of residue to vertex mapping 21

Figure 6: Distribution of the mean percentage of residues unmapped in ligand and

receptor proteins 22

Figure 7: Feature sets associated with the six models under consideration 23

Figure 8: Diagram representing the structure of a compressional autoencoder 32

Figure 9: Receiver operating characteristic curves and precision-recall curves for all

six models trained for the task of residue-residue contact prediction 34

Figure 10: Receiver operating characteristic curves and precision-recall curves for

BIPSPI-default-patch-sorted and BIPSPI-default 36

Figure 11: Receiver operating characteristic curves and precision-recall curves for 1-

step and 2-step variants of BIPSPI-default-patch-sorted 36

Figure 12: Global and mean feature importances associated with the features used

in the training of BIPSPI-default (grouped) 38

viii

Figure 13: Global and mean feature importances associated with the features used

in the training of BIPSPI-default (comprehensive) 38

Figure 14: Global and mean feature importances associated with the features used

in the training of BIPSPI-patch (grouped) 39

Figure 15: Global and mean feature importances associated with the features used

in the training of BIPSPI-patch (comprehensive) 40

Figure 16: Global and mean feature importances associated with the features used

in the training of BIPSPI-patch-sorted (grouped) 41

Figure 17: Global and mean feature importances associated with the features used

in the training of BIPSPI-patch-sorted (comprehensive) 41

Figure 18: Global and mean feature importances associated with the features used

in the training of BIPSPI-default-patch (grouped) 42

Figure 19: Global and mean feature importances associated with the features used

in the training of BIPSPI-default-patch (comprehensive) 42

Figure 20: Global and mean feature importances associated with the features used

in the training of BIPSPI-default-patch-sorted (grouped) 43

Figure 21: Global and mean feature importances associated with the features used

in the training of BIPSPI-default-patch-sorted (comprehensive) 44

Figure 22: Comparison of the number of splits involving MaSIF features as a function

of tree index for BIPSPI-default-patch-sorted and BIPSPI-default-patch 47

Figure 23: Percentage explained variance and reconstruction loss (MSE) as a

function of the number of principal components used for principal component

analysis method fitted to the dataset of unsorted patches 49

ix

Figure 24: Percentage explained variance and reconstruction loss (MSE) as a

function of the number of principal components used for principal component

analysis fitted to the dataset of sorted patches 50

Figure 25: Training and validation loss (MSE) vs training epoch index for

autoencoder models with latent dimension size of 100 trained on unsorted patches50

Figure 26: Training and validation losses (MSE) vs training epoch index for

autoencoder models with latent dimension size of 50 trained on unsorted patches 52

Figure 27: Training and validation losses (MSE) vs training epoch index for

autoencoder models with latent dimension size of 100 trained on sorted patches 53

Figure 28: Training and validation losses (MSE) vs training epoch index for

autoencoder models with latent dimension size of 50 trained on sorted patches 55

Figure 29: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default (grouped 2-step) 69

Figure 30: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default (comprehensive 2-step) 69

Figure 31: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-patch (grouped 2-step) 70

Figure 32: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-patch (comprehensive 2-step) 70

Figure 33: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-patch-sorted (grouped 2-step) 71

Figure 34: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-patch-sorted (comprehensive 2-step) 71

x

Figure 35: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default-patch (grouped 2-step) 72

Figure 36: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default-patch (comprehensive 2-step) 72

Figure 37: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default-patch-sorted (grouped 2-step) 73

Figure 38: Global and mean feature importances (gain) associated with the features

used in the training of BIPSPI-default-patch-sorted (comprehensive 2-step) 73

Figure 39: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default (grouped) 74

Figure 40: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default (comprehensive) 75

Figure 41: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-patch (grouped) 75

Figure 42: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-patch (comprehensive) 76

Figure 43: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-patch-sorted (grouped) 76

Figure 44: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-patch-sorted (comprehensive) 77

Figure 45: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default-patch (grouped) 77

Figure 46: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default-patch (comprehensive) 78

xi

Figure 47: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default-patch-sorted (grouped) 78

Figure 48: Global and mean feature importances (frequency) associated with the

features used in the training of BIPSPI-default-patch-sorted (comprehensive) 79

xii

Abstract

Proteins interact with other macromolecular targets, such as small molecules,

nucleic acids, and other proteins, via their surfaces. Protein-protein interactions are

likely to be influenced by the geometrical and physicochemical properties of the

surfaces of the interacting proteins. To take advantage of this for the purpose of

protein-protein interface prediction, we modify BIPSPI, an XGBoost-based partner-

specific protein interface predictor, using geometrical and chemical features

extracted from protein surfaces in the form of patches by means of MaSIF, a

framework for the extraction of meaningful features from the surfaces of proteins. We

construct a map from the surface-patch level representation constructed by MaSIF to

the residue-pair representation used by BIPSPI. We show that the addition of

internally sorted protein surface patches to BIPSPI’s existing residue-pair

representation increases the mean ROC-AUC performance of the existing predictor

from 0.9153 to 0.9222 when evaluated with 10-fold cross-validation on a subset of

Docking Benchmark v5.5. Additionally, we also evaluate the relative impact of the

various features used in training on the performance of the combined model in terms

of loss reduction over tree splits. We observe that sorting protein surface patches

internally along the feature axes increases model performance and alters the relative

impacts of various features. Furthermore, to reduce memory consumption while

training with protein surface patches, we develop both principal component analysis-

based and autoencoder-based approaches to patch compression. We observe that

both methods exhibit competitive performance when trained with sorted patches but

not unsorted patches.

xiii

Acknowledgements

At the outset, I would like to extend my gratitude to my supervisor, Dr. Carlos Óscar

Sorzano Sánchez, for his extensive guidance and support throughout the course of

my thesis. I am especially grateful for the opportunity he offered me to work on a

problem I have been passionate about for years and for the freedom accorded to me

in the time I have worked with him to pursue ideas I believed in. I would also like to

express my sincere gratitude to Dr. M.S. Madhusudhan for his continued support

over the time I have spent at IISER Pune. Whether it be a project on residue depth

prediction, academic advice, or just to chat cool protein science, I consider myself

fortunate to have had access to his office over the past few years. Together, Dr.

Sorzano and Dr. Madhusudhan have set immeasurably high standards for the

support and guidance I should expect from academic advisors in the future.

I would be remiss if I did not mention the wonderful folks I worked with in Spain. I

would like to thank Dani, Mikel, Giedre, Fede, Borja, Oier, Irene, Patricia, Marcos,

and everyone else at the B.13 for having fostered a lab environment that is

incomparably supportive and hospitable. It is not often that one is excited to wake up

at 5:00 AM to catch the train to work on a chilly December morning – Madrid felt like

Mumbai in their warmth.

I am deeply indebted to my friends from IISER who have been by my side over the

past five years, through the highs and lows, the hills and troughs. I’m grateful to

Atreyi, Jatin, Chinmay, Shruthi, Suryadeepto, Siddharth, Shivani, Arjun, Chebi,

Kunjal, Devjyoti, Vasudha, Aarcha, Rohit, and so many more for moulding me into

the person I have become today.

None of this would have been possible without the love and support of my mum,

dad, and grandparents. They have supported my dreams to pursue research from

when I discovered chemistry videos on YouTube. I am eternally grateful for

everything they have done for me. I continually strive to make them proud and hope

to take them along as I journey through science.

xiv

Contributions

Contributor name Contributor role

Adithyan Unni, Carlos Óscar Sorzano
Sánchez

Conceptualization Ideas

Adithyan Unni Methodology

Adithyan Unni Software

Adithyan Unni Validation

Adithyan Unni Formal analysis

Adithyan Unni Investigation

Carlos Óscar Sorzano Sánchez Resources

Adithyan Unni Data Curation

Adithyan Unni Writing - original draft preparation

Adithyan Unni, Carlos Óscar Sorzano
Sánchez

Writing - review and editing

Adithyan Unni Visualization

Carlos Óscar Sorzano Sánchez Supervision

Adithyan Unni, Carlos Óscar Sorzano
Sánchez

Project administration

Carlos Óscar Sorzano Sánchez Funding acquisition

This contributor syntax is based on the Journal of Cell Science CRediT Taxonomy1.

1 https://journals.biologists.com/jcs/pages/author-contributions

1

1 Introduction

Proteins play an integral role in many, if not all, biological processes critical to life.

They are extensively involved in processes that occur at various levels of biological

organization. In the form of enzymes, proteins mediate a wide range of chemical

reactions critical for cellular metabolism (Jeong et al., 2000). Cellular signalling

pathways that allow cells to respond to both intracellular and extracellular stimuli are

constituted of numerous proteinaceous components. Certain proteins undergo

conformational changes upon molecular recognition events, such as binding small

molecules or peptides, serving as switches for downstream processes (Milburn et al.,

1990; Ha and Loh, 2012; Ghusinga et al., 2021; Alberstein et al., 2022). By forming

structurally robust polymers, proteins are also capable of providing mechanical

support, both at the level of the cell in the form of elaborate cytoskeletal frameworks

(Fuchs and Cleveland, 1998; Herrmann et al., 2007; Fletcher and Mullins, 2010), and

at the macroscopic level, as the building blocks of skeletal musculature (Huxley and

Niedergerke, 1954; Clarke, 2010).

In many cases, the biological relevance of proteins arises from their ability to bind to

a range of other biomolecules. Proteins associate with small molecules,

carbohydrates, nucleic acids, and other proteins. Protein-protein interactions (PPIs)

are a critical class of interactions owing to their prevalence in cellular signalling

pathways and regulatory networks (Søgaard-Andersen and Valentin-Hansen, 1993;

Pawson and Nash, 2000). Knowledge of a protein’s binding partners, coupled with

mutational studies, allows for researchers to determine the functional role it plays in

the cell – this is of relevance i) at a fundamental level, in terms of elucidating the

molecular processes that facilitate life and ii) from a clinical perspective, in working

towards establishing mechanisms for diseases that either cause or arise from the

dysregulation of these processes. Modern experimental techniques have allowed us

to delve a step deeper by revealing the specific amino acid residues that proteins

use to bind to each other. Mutations to a PPI’s interface residues can either

strengthen or weaken binding. Identifying the interface of a protein-protein interaction

enables protein biochemists to perform mutational studies to determine which

residues are most important for an interaction (Stites, 1997; Dall’Acqua et al., 1998;

2

Zanotti et al., 2008). Protein-protein interfaces are also of clinical interest owing to

their functional significance and are often the targets of drugs designed to inhibit

interactions (Scott et al., 2016; Li et al., 2017; Chen et al., 2018). Interfaces have

gained even more prominence in recent times in the context of novel methods to

design custom protein-protein interactions (Kim et al., 2021; Cao et al., 2022;

Marchand et al., 2022). Improvements made in our ability to resolve and characterize

protein-protein interfaces have the potential to greatly enhance the resolution at

which we understand protein-mediated regulatory processes and advance the

development of novel drugs and technologies to fight diseases.

1.1 Experimental methods for protein-protein interface

prediction

The structures of protein-protein interfaces have traditionally been determined using

experimental methods such as X-ray crystallography (Smyth and Martin, 2000;

Bahadur and Zacharias, 2008) and Nuclear Magnetic Resonance (NMR)

spectroscopy (Hu et al., 2021). While such methods have been indispensable over

the past few decades in advancing our understanding of how proteins interact, each

method has its disadvantages. X-ray crystallography cannot be used to determine

the structures of proteins (and, by extension, protein-protein complexes) that are

difficult to crystallize (Zheng et al., 2015; Harkey et al., 2019). While desirable in its

ability to resolve protein-protein interaction dynamics, NMR spectroscopy is limited in

its capacity to determine the structures of large proteins at high resolution and is

exceptionally motion-sensitive (Xue et al., 2015). Over the past decade, cryo-

electron microscopy (cryo-EM) has seen significant gains in popularity in light of its

non-requirement of protein crystals and ability to capture multiple conformations in a

single experiment (Bai et al., 2015; Benjin and Ling, 2020). Even as resolution

continues to improve, cryo-EM instrumentation remains prohibitively expensive for

capital-sparse research environments with microscopes achieving high resolutions

costing several millions, notwithstanding commensurate infrastructure and operating

costs. All of the aforementioned techniques are labour-intensive and time-consuming

and none are high-throughput. In light of these disadvantages, there is a space for

fast, high-throughput, and accessible computational methods of protein interface

prediction to exist.

3

1.2 Machine learning: A Brief Primer

Over the past decade, most computational methods of protein interface prediction

have made extensive use of machine learning algorithms. ‘Machine learning’ (ML)

methods are mathematical algorithms that make predictions on unseen data based

on inferences made from data they are exposed to. Such methods have seen an

enormous surge in popularity owing to generational improvements made in the fronts

of parallel computing hardware and software and a monumental increase in the

capacity of computing systems to collect and transfer data.

Machine learning and deep learning-based methods are particularly powerful owing

to their capacity to derive meaning from complex forms of data. Deep learning

methods are able to recognize patterns in datasets that are not apparent to humans

and use these patterns to make predictions depending on what the prediction task is

(LeCun et al., 2015). They have proven exceptionally capable on a wide variety of

prediction tasks involving myriad forms of data and have greatly influenced how we

interact with and benefit from technology. Machine learning algorithms form the basis

for voice recognition software, the recommender systems that power entertainment

websites, and determine the advertisements we are shown on social media (Jordan

and Mitchell, 2015; LeCun et al., 2015; Sarker, 2021).

Prediction tasks that fall under the ambit of classification and regression are

conventionally addressed with a class of machine learning algorithms called

‘supervised learning’ methods. In supervised learning, numerical representations of

input data are provided to a learning algorithm, paired with corresponding labels

(Tarca et al., 2007; Greener et al., 2022). Learning algorithms are mathematical

models whose parameters are optimized over an iterative process called ‘training’.

During a model’s training phase, its parameters are altered depending on how

different its predicted outputs are from the true labels associated with the input data.

These algorithms vary significantly in complexity and in the inductive biases

associated with them. The term ‘inductive bias’ refers to the set of assumptions

made by the algorithm to make predictions on unseen data (Goyal and Bengio,

2022). Choosing a specific learning algorithm to build a predictive model requires

thorough domain knowledge on the programmer’s end to assess the required level of

4

model complexity and the inductive biases most appropriate for the prediction task at

hand.

Machine learning algorithms have evolved to accept input data of a wide variety of

forms. Traditionally, each data point is represented mathematically as an array of

numbers representing key features that may influence the target variable. For

instance, a model designed to predict the value of a house might use square

footage, number of bedrooms, and number of floors as input features. Models of

greater complexity can accept more complex input data forms such as images, text,

and audio clips. In some cases, feature engineering is an essential preliminary step

that precedes training. Feature engineering is the process of pre-processing raw

input data to extract features that are relevant to the prediction task at hand

(Anderson and Cafarella, 2016).

The simple example of the linear model for regression illustrates most terms used in

the above paragraph. Linear models for regression assume that the target variable is

a linear combination of the input variables. The parameters for a linear model are the

coefficients associated with the input variables. The optimal parameters for a linear

model are usually those that minimize the sum of the squared errors computed

between the true and predicted values for the points in the training dataset.

1.3 Machine learning for protein-protein interface

prediction

Owing to their ability to make use of complex input data representations, machine

learning methods lend themselves exceptionally well to prediction tasks in

computational protein biology. Conventionally, there are two broad phrasings of the

protein-protein interface prediction problem. These are the partner-independent and

partner-specific approaches (Xue et al., 2015). The two methods can be defined as

follows:

Partner-independent interface prediction: Given a protein A, predict whether residue

ra belonging to protein A is part of the interface protein A forms with any other

protein.

5

Partner-specific interface prediction: Given that proteins A and B bind, identify all

pairs of residues (ra, rb), where ra belongs to A and rb belongs to B, such that ra and rb

interact.

Partner-specific interface prediction allows for the identification of specific residue-

pairs that are important for interactions to occur. Since they intrinsically require

knowledge of both interacting partners, such predictors are more likely to yield

reliable results in cases where a given protein has multiple binding partners (Xue et

al., 2015). While regarded as two separate categories, the core machine learning

methodologies employed in both sets of models tend to be similar, with changes

primarily arising from differences in training datasets and representation structure.

Machine learning methods in this space have traditionally used two broad classes of

features: sequence-based features and structure-based features. Sequence-based

features refer to properties of protein constituents (typically residues) that can be

inferred directly or computed from their primary sequences. Examples of residue-

level features include isoelectric point, amino acid identity, and residue conservation.

Conservation has consistently proven to be a powerful feature for residue-residue

contact prediction (Ovchinnikov et al., 2014; Green et al., 2021). The intuition

underlying why conservation-based features are strong predictors of residue-residue

contacts is that surface residues that are involved in the formation of complexes are

more conserved than non-interface residues (Choi et al., 2009; Teppa et al., 2017).

The extent of a residue’s evolutionary conservation is usually quantified using its

corresponding vector in the position-specific scoring matrix (PSSM) or hidden

Markov model (HMM) profile corresponding to the protein’s sequence (Eddy, 1995;

Altschul, 1997; Finn et al., 2011). These profiles are constructed through iterative

multiple sequence alignments (MSAs) of the protein’s sequence against a non-

redundant sequence database such as UniRef or UniParc (Leinonen et al., 2004;

Suzek et al., 2007). For a given residue, many predictors also include the PSSM

vectors/HMM profiles of a window of sequentially neighbouring amino acids.

Successful early sequence-only machine learning methods such as PPiPP (Ahmad

and Mizuguchi, 2011) and PSIVER (Murakami and Mizuguchi, 2010) for protein-

protein interface prediction solely utilized such representations in combination with

simple machine learning architectures. While the performance exhibited by these

predictors is modest in comparison to that of modern predictors, they illustrate the

6

effectiveness of evolutionary features even when they are used with simple model

architectures.

Pairwise protein sequence co-variation has also been used to predict residue-

residue contacts at protein interfaces (Hopf et al., 2014; Ovchinnikov et al., 2014;

Green et al., 2021). Statistical models have been employed to analyze multiple

sequence alignments of pairs of sequences for the presence of co-evolving residues

(Seemayer et al., 2014; Hopf et al., 2019). The strength of co-evolution has been

used in conjunction with monomer accessible surface area in logistic regression

models to predict residue-residue contacts – Green et al. (2021) report a recall of

20.7% at a false positive rate of 0.1% on a custom held-out test set. Co-evolution

information has also been used to construct proteome-level interaction networks for

E. coli (Cong et al., 2019).

Multiple sequence alignments in combination with attention-based neural network

architectures (Vaswani et al., 2017; Veličković et al., 2018) have been used to great

success on the task of protein structure prediction in the forms of AlphaFold2

(Jumper et al., 2021) and RoseTTAFold (Baek et al., 2021). AlphaFold2 has been

recently adapted to make multimer-level predictions in the absence of structural

information for both homomeric and heteromeric complexes through the use of multi-

chain MSAs. Dubbed AlphaFold-multimer (Evans et al., 2022), the model

competently predicts the structures of a significant fraction of complexes in the

Protein Data Bank (wwPDB consortium, 2019).

Conservation-based features are expected to falter in cases where the interacting

proteins exhibit low homology to other known protein sequences. The computation of

multiple sequence alignments is a resource-intensive step during testing and is often

responsible for increased time taken during inference. Recent advancements made

in the field of natural language processing have been extended to protein sequence

datasets to account for these limitations. Unsupervised learning methods have been

extensively leveraged to create numerical representations (called ‘embeddings’) of

residues that are i) context-aware and ii) encapsulate their core properties (Rives et

al., 2021; Elnaggar et al., 2022). To construct these representations, protein

sequences extracted from large sequence databases are ‘corrupted’ – amino acids

at random positions are replaced with ‘masks’. A learning method is then trained to

7

predict the correct amino acid at a given position to high accuracy, using as input the

other amino acids that constitute the sequence. The fully-trained model, sans the

final prediction layer, is subsequently used with new input protein sequences to

generate context-aware residue representations that can be used for various

prediction tasks. ISPRED-SEQ (Manfredi et al., 2023), a partner-independent

sequence-only interaction site predictor, uses residue representations constructed

using the ESM-1b (Rives et al., 2021) and ProtT5 (Elnaggar et al., 2022) protein

language models in combination with a 1D Convolutional Neural Network and deep

layers to achieve an ROC-AUC of 0.82 and MCC of 0.34 on a benchmark dataset of

448 protein chains. A similar model, EDLMPPI (Hou et al., 2023), combines ProtT5-

derived residue representations with PSSMs and physicochemical features and uses

a bi-directional LSTM network for protein binding site prediction to achieve a similar

ROC-AUC. It is to be noted that both methods are partner-independent.

The most competent methods of protein-protein interface prediction use structural

information from the input proteins in addition to features derived at the sequence-

level. A vast amount of geometrical information can be extracted from the structures

of the interacting proteins and represented in highly-informative numerical

representations. Structural descriptors commonly used to describe residues in

interacting proteins include solvent accessible surface area, depth index, and

protrusion index (Mihel et al., 2008; Minhas et al., 2014). These features can be

computed directly from the coordinates and atom identifiers contained in a protein’s

PDB/mmCIF representation. The secondary structure a residue is involved in is also

a commonly used feature in protein interface prediction and is assigned to residues

using programs such as DSSP (Kabsch and Sander, 1983). Many partner-specific

predictors use a residue-pair data representation, where the model is trained with

residue-pair vectors that contain the features representing cross-protein pairs of

residues. PAIRPred (Minhas et al., 2014), one of the earliest partner-specific

machine learning-based protein interface predictors, used a combination of

conservation-based and structure-based features with a kernel SVM-based

architecture to achieve a leave-one-complex-out performance of ROC-AUC 0.88 on

Docking Benchmark v3.0 (Chen et al., 2003; Hwang et al., 2008). The use of graph

convolutional neural networks (Kipf and Welling, 2017) for protein interface

prediction was explored by Fout et al. (2017), where the input pair of proteins are

8

interpreted as graphs and processed with graph convolutions. In this representation,

residues constitute the nodes of the graph and are represented with structure-based

and sequence-based features (Fout et al., 2017). Such networks have also been

modified to incorporate attention-layers and trained for the purpose of paratope and

epitope prediction (Pittala and Bailey-Kellogg, 2020). Gradient-boosting-based

methods have also seen considerable success in the field. BIPSPI (Sanchez-Garcia

et al., 2019, 2022) is an XGBoost-based (Chen and Guestrin, 2016) predictor that

uses an extensive array of sequence-based and structure-based features to achieve

an impressive ROC-AUC performance of 0.9057 on Docking Benchmark v5 (Vreven

et al., 2015). In addition to encoding the structure-based features of a residue-pair,

the BIPSPI residue-pair vector representation also contains a summary of the

feature values of the immediate neighbours of the focal residues defined by the

Voronoi diagrams of the two proteins.

Significant advancements made in deep learning architectures and computing power

have recently allowed for the development of protein interface predictors that

extensively utilize the geometric information contained in the interacting protein

partners. These predictors differentiate themselves from those that use structural

information in a residue-pair context by using low-level structural information to

create complex latent representations of their inputs that surpass hand-crafted

features. PINet (Dai and Bailey-Kellogg, 2021), for instance, visualizes binary

proteins as pairs of point clouds and uses an architecture inspired by PointNet (Qi et

al., 2017) to directly gleam geometrical information from the point clouds to avoid the

disruption of geometry that may arise through processes such as 3D voxelization.

Each point is represented by its coordinates in 3D space, its charge computed

through Poisson-Boltzmann electrostatics, and hydrophobicity. The method uses a

Spatial Transformer Network (Jaderberg et al., 2015) trained on labelled pairs of

point clouds to perform point-level prediction that can be mapped back to the

residue-level. PeSTo (Krapp et al., 2022) uses a similar point cloud geometric

transformer-based approach for partner-independent protein interface prediction and

achieves highly competitive performance on benchmark datasets, even in the

absence of physicochemical features. Another popular method, MaSIF (Gainza et

al., 2020), operates at the level of the protein’s surface, following the intuition that the

shape and charge complementarity of protein surfaces plays a key role in mediating

9

protein-target interactions. MaSIF (molecular surface interaction fingerprinting)

couples a robust protein surface patch representation (encapsulating both

geometrical and chemical information) with a polar convolutional neural network to

create ‘molecular fingerprints’ that can be used with a downstream learning method

for partner-independent interface prediction. Methods that rely solely on geometrical

and chemical features can be expected to outperform conservation-reliant methods

in cases where the multiple sequence alignments of the input proteins are shallow.

Such predictors have the potential to exhibit superior performance to conservation-

based predictors on tasks such as paratope-epitope binding prediction, where the

complementarity determining regions (CDRs) of antibodies exhibit hypervariability

(ed. JD Abbott et al., 2004).

We hypothesize that a method combining detailed geometrical descriptions of the

input proteins and robust conservation-based features has the potential to exhibit

state-of-the-art performance in both high and low homology realms. To this effect,

we attempt to improve BIPSPI (Sanchez-Garcia et al., 2019, 2022), a partner-

specific protein interface predictor, with geometrical and chemical descriptions of

protein surfaces extracted using MaSIF’s (Gainza et al., 2020) feature extraction

protocols. The MaSIF framework constructs a mesh of the protein’s surface,

embedded with geometrical and chemical information, which is subsequently

decomposed to form protein surface patches. We augment BIPSPI’s existing

residue-pair vector representation with accurately mapped surface patches and

ascertain whether such patches are meaningful in the context of partner-specific

protein interface prediction by performing performance comparisons on Docking

Benchmark v5.5 (Vreven et al., 2015) with a variety of metrics. We also compare the

relative impact of BIPSPI’s existing feature set and the features added by MaSIF

using feature importance computations.

We acknowledge that, while highly informative, training and testing with patch-level

data can be computationally expensive, both in terms of memory usage and

operation time. Thus, we also develop unsupervised learning-based protein surface

patch compression methods to significantly reduce the size of protein surface

patches to tractable levels that allow for reduced memory consumption and

increased computation speed during training, and the feasible large-scale storage of

patches.

10

2 Methods

2.1 Improving BIPSPI using protein surface patches

extracted using MaSIF

2.1.1 Problem overview

The specific problem under consideration is the partner-specific protein-protein

interface prediction problem that can be stated as ‘Given proteins A and B bind and

their unbound structures, predict whether residue ra in protein A interacts with

residue rb in protein B upon the formation of the complex A-B”. We approach this

problem from a supervised learning perspective, where a machine learning algorithm

is trained on a dataset constituted of residue-residue feature vectors pooled from a

set of non-redundant protein-protein complexes. The residue-residue feature vectors

are vectors constituted of numerical representations of the properties representing

residue-pairs of the form (ra, rb) from proteins A and B, respectively.

Feature computation is performed on the unbound structures of proteins A and B.

We define a cross-protein pair of residues as being ‘interacting’ if they occur within

6Å of each other in the bound form of the complex (Minhas et al., 2014; Sanchez-

Garcia et al., 2019). Residues in the bound forms of the interacting proteins are

mapped to their counterparts in the unbound forms using a combination of structure

and sequence-based alignments. Labels are assigned to cross-protein residue-pairs

using residue-residue distance computations performed using the bound structures

of proteins A and B. Figure 1 illustrates the data processing workflow associated with

the problem.

11

Figure 1: Flowchart elucidating the workflow associated with residue-residue contact

prediction

We train the model on unbound structures to best simulate what is expected to be

received at the time of practical use. While it is, in principle, possible to train on

bound structures, we believe that models trained on unbound structures have

greater potential to capture the effects conformational change can have at interfaces.

The objective of this study is to modify BIPSPI, a partner-specific protein interface

predictor, to utilize geometrical and chemical features computed using MaSIF, a

framework for the extraction of meaningful features from the surfaces of proteins. We

compare BIPSPI’s default performance to that achieved with the use of the additional

surface-patch-based features. We compare a total of six models with varying sets of

features to ascertain whether the addition of surface-derived structural features

offers a significant improvement over the existing framework.

To supplement the potential use of patches for protein interface prediction and other

tasks in data-driven protein biology, we also develop a compression framework that

significantly reduces the size of protein surface patches for reduced memory

consumption during model training and for long-term storage.

2.1.2 Dataset

For the purpose of training and testing our model, we use Docking Benchmark v5.5

(Guest et al., 2021). The dataset consists of 257 binary non-redundant protein-

protein complexes.

12

The dataset is structurally non-redundant in that no two complexes in the dataset

have interacting domains that belong to the same SCOP family (Lo Conte et al.,

2000). Unlike other protein-protein interaction datasets, which solely contain bound

forms of complexes, Docking Benchmark v5.5 contains the structures of both the

bound and unbound forms of proteins in binary complexes. This allows for machine

learning algorithms to receive information that is closer to what is observed at test

time. Each complex is represented by a set of four PDB files: the bound and

unbound forms of the ‘ligand’ protein and the bound and unbound forms of the

‘receptor’ protein. The dataset has been used extensively in the literature to train and

test machine learning models for protein-protein interaction prediction, allowing us to

potentially benchmark the modified model’s performance against other predictors in

the literature in the future.

We exclude complexes that are unable to be processed by the MaSIF framework,

resulting in the use of a subset of 192 binary protein-protein complexes. During

training time, the data obtained from each complex is such that the ratio of positive to

negative samples is 1:2.

2.1.3 Overview of BIPSPI

BIPSPI is a highly competent partner-specific protein interface predictor described in

(Sanchez-Garcia et al., 2019). BIPSPI stands for ‘xgBoost Interface Prediction of

Specific-Partner Interactions’. The method was trained to predict the interfaces of

protein-protein complexes using features derived from the sequences and/or

structures of interacting proteins. It is a tractably modifiable algorithm that can be

trained in reasonable time-frames and is near state-of-the-art in terms of

performance.

Figure 2 illustrates the steps involved in the BIPSPI workflow. The first step in

BIPSPI is a residue-pair interface classification task using a combination of

sequence-derived and structure-derived features. In the second stage of

classification, a second predictor is provided with the classification scores obtained

by the first predictor and newly computed pairwise environment prediction scores

alongside the original set of features. The predictions made by the second classifier

are subsequently used to determine the interface of the complex.

13

Figure 2: Illustration of the steps involved in residue-residue contact prediction using BIPSPI

Both predictors used in BIPSPI are XGBoost (Chen and Guestrin, 2016) classifiers.

XGBoost is a gradient-boosted decision tree framework that has been shown to be

exceptionally competent at a wide range of classification tasks that utilize tabular

forms of data representation (Chen and Guestrin, 2016). Gradient boosting entails

the creation of an ensemble of base learners constructed additively, such that each

successive base learner rectifies the shortcomings of the set of base learners

constructed in the previous iterations (Friedman, 2001).

In gradient boosting methods, predictive models are built progressively over a set

number of training iterations. At each step, the negative gradient is computed using

the existing model at that iteration, the input variables, and the loss function of

choice. The negative gradients subsequently become target variables – a base

learner is trained to predict the set of negative gradients from the input variables.

Subsequently, a step size to update the model is chosen in accordance with the

gradients computed. The model is then updated by adding the base learner to the

existing set of learners. In gradient-boosted decision tree frameworks such as

XGBoost, the base learners are decision trees. The below algorithm presents this in

a logical format:

Algorithm: General Gradient Boosting

1. Initialize the prediction function

2. For index in range(1, M):

a. Compute negative gradients (pseudo-residuals) with respect to the

existing prediction function

14

b. Fit a new base-learner (regression tree) to the pseudo residuals

computed in (a)

c. Identify an appropriate multiplying factor for each of the terminal nodes

of the tree constructed in (b)

d. Update the existing function with the new base-learner constructed

3. Output the function obtained after the Mth iteration

The general gradient boosting algorithm described above can be easily adapted for

classification with an appropriate choice of loss function. For binary classification, the

loss used is the log loss function described below, where 𝑦 and 𝑝 represent the

ground truth and 𝑃(𝑦 = 1) , respectively:

𝐿 = −(𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝))

Gradient boosting algorithms are also amenable to regularization. Regularization

refers to the process by which a model is modified to increase its capacity to

generalize. As a means of regularization via shrinkage, the base learner constructed

after 2.c in the above algorithm is scaled with a learning rate factor ν (where 0 < ν <

1) prior to addition to the existing model (Friedman, 2001). The use of the shrinkage

parameter reduces overfitting by scaling down the influence of each added base

learner. Regularization can also be performed by restricting the number of iterations.

XGBoost improves on the general gradient boosting algorithm by using a sparsity-

aware learning algorithm, a weighted quantile sketch to efficiently compute tree split

proposal, and adds other computational optimizations that improve the method’s

scalability. A detailed mathematical explanation of the algorithmic advancements

made by XGBoost over general gradient boosting is outside the scope of this thesis

and is best explained in (Chen and Guestrin, 2016).

2.1.4 Sequence-derived features used by BIPSPI

Most of BIPSPI’s sequence-derived features are conservation-related. The

conservation-derived features that BIPSPI uses are computed from multiple

sequence alignments performed on the UniRef90 (Suzek et al., 2007) database

using PSI-BLAST (Altschul, 1997). UniRef90 is a non-redundant sequence database

maintained by the UniProt consortium, constructed by clustering UniRef100 at 90%

15

sequence identity. Three iterations of PSI-BLAST are performed, and the PSSMs

and PSFMs extracted from the final iteration are used. In addition to PSSMs and

PSFMs, the multiple sequence alignments produced by PSI-BLAST are analyzed

using AL2CO (Pei and Grishin, 2001) to compute an estimated conservation score.

The PSFM profile represents the frequency with which each of the twenty amino

acids is found at a specific position across the sequences considered in the multiple

sequence alignment. The PSSM profile measures the log-likelihood of finding each

of the twenty amino acids at that specific position against the background distribution

of amino acids. For a given residue, in addition to its specific PSSM and PSFM

profiles, the PSSM and PSFM profiles of a window of amino acids (5 residues to

each side) are also used in its representation. The information contained at each

position is also used to represent residues.

In addition to these features, the one-hot encodings of the pair of residues along with

those of residues in their corresponding aforementioned windows are used in the

residue-pair representation.

2.1.5 Structure-derived features used by BIPSPI

Alongside sequence-based features, BIPSPI uses an extensive array of structural

features at prediction time. The structural features are computed from the unbound

structures of the interacting complexes using PSAIA (Mihel et al., 2008), DSSP

(Kabsch and Sander, 1983), and Biopython (Cock et al., 2009). Most of the structural

features used in BIPSPI are computed at the level of individual residues.

The key structural features encoded in BIPSPI’s residue-pair representation are the

following:

Accessible Surface Area (ASA) or Accessibility: The term refers to the area of the

residue that is accessible to solvent molecules (Lee and Richards, 1971). It is

measured in squared Angstroms and is computed by PSAIA using the rolling ball

algorithm (Shrake and Rupley, 1973). Figure 3 depicts the accessible surface area

associated with a macromolecule. The method also computes the relative accessible

surface area (RASA) (Tien et al., 2013) for each residue, which is a ratio of the

solvent-accessible surface area to the maximum possible solvent-accessible surface

16

area for that amino acid. BIPSPI uses the total, backbone, side-chain, polar, and

non-polar ASA and RASA values assigned to each residue.

Figure 3: Accessible surface area associated with a macromolecule. A sphere of fixed radius
is used to probe the surface of the macromolecule.

Half-sphere Exposure (HSE): Half-sphere exposure (Hamelryck, 2005) is computed

using the Biopython package considering a radius of 12Å. HSE contains two

components: HSE-up and HSE-down. For a given residue, these components

represent the number of neighbours contained within the upper and lower halves of

the sphere defined by a radius of 12Å, the Cα atom, and the plane perpendicular to

the plane containing the Cα-Cβ vector (Figure 4).

Figure 4: Half-sphere exposure computation. For a set radius R, the number of neighbours
contained in the upper and lower hemispheres in the figure correspond to HSE-up and HSE-

down respectively.

17

Secondary Structure: Each residue is assigned an 8-dimensional vector depending

on the secondary structure element it is a part of in the 3D structure of the protein.

The secondary structure label for a given amino acid is computed using DSSP

(Kabsch and Sander, 1983).

Depth Index (DPX) (Pintar et al., 2003): The depth index of a given residue is

defined as the smallest distance from any of its atoms to the closest solvent-

accessible atom of the protein.

Protrusion Index (CX): This quantity measures the extent of protrusion exhibited by

atoms of the protein. Protrusion is computed by PSAIA using the CX algorithm

(Pintar et al., 2002). For both depth index and protrusion index, the total mean and

standard deviation, the side chain mean and standard deviation, and the maximum

and minimum values for a given residue are used.

2.1.6 Residue neighbourhood codification

Each residue is also assigned a structural environment feature vector summarizing

the value of each of its features within its local structural environment. Two residues

are considered neighbours if they are connected by an edge in the protein’s Voronoi

diagram defined by its Cα atoms. The neighbourhood radius used to construct the

Voronoi diagram is 30Å.

The second stage of classification uses the predicted interaction scores computed by

the first XGBoost classifier. For a given pair of residues, a pairwise environment

score is also calculated using its neighbours as defined by the proteins’ Voronoi

diagrams. A comprehensive description of the neighbourhood codification is

available in (Sanchez-Garcia et al., 2019).

2.1.7 Overview of MaSIF

MaSIF (Gainza et al., 2020) is a framework developed as a proof-of-concept for the

postulation that protein surfaces contain informative geometrical and chemical

patterns that mediate intermolecular interactions and that these patterns, while not

directly perceivable to the eye, can be learnt by a machine learning framework and

used for various tasks such as interface site prediction and pocket classification. The

18

method uses polar convolutional neural networks in conjunction with ‘patches’ (that

encapsulate local geometrical and chemical patterns) extracted from the molecular

surfaces of proteins. Owing to its non-reliance on conservation-derived features such

as PSSMs and PSFMs, MaSIF is particularly powerful in low sequence co-homology

realms. In its existing form, while MaSIF has been proven an effective partner-

independent interface site predictor, the method has not been employed specifically

for the purpose of partner-specific protein-protein interface prediction. It is also to be

noted that the MaSIF methods were trained using complexes co-crystallized in the

bound state and not on features derived from the unbound forms of these

complexes.

In the context of improving the performance of BIPSPI, we are specifically interested

in the pre-processing protocols MaSIF employs to extract data from the surfaces of

interacting proteins. Since the features extracted using MaSIF do not explicitly draw

from properties of the proteins, such as the folds of the various domains or the

sequence (unlike BIPSPI), we believe that the sets of structural features encoded by

the two methods are likely to be complementary. We use MaSIF’s feature extraction

protocol to generate the molecular surfaces of the proteins in our dataset and

perform feature computation for the vertices that constitute these surfaces. MaSIF

describes each vertex on the surface of the protein using a set of five features (two

geometrical features and three chemical features). Feature computation is performed

at the level of the surface, following which it is decomposed into patches of set

geodesic radius.

The protocol first re-protonates all proteins in the dataset using reduce (Word et al.,

1999) and generates triangular molecular surface meshes from them using MSMS

(Sanner et al., 1996). Following a regularization of the mesh, geometric and

chemical features are assigned to the vertices that constitute the mesh. The features

used have been described below.

2.1.8 Geometric features used by MaSIF

For each vertex on the mesh, MaSIF computes ‘Shape Index’ and ‘Distance-

dependent curvature’.

19

Shape Index

The shape index (Gainza et al., 2020) of a vertex numerically represents the local

geometry around it, with values extending from -1 to 1. The shape index of a specific

vertex remains constant across the several patches it can be a part of. It is defined

as follows, where κ1, κ2, κ1 ≥ κ2 are the principal curvatures:

Shape Index =
2

π
tan−1

κ1 + κ2

κ1 − κ2

Distance-dependent curvature

The distance-dependent curvature (DDC) (Yin et al., 2009) of a vertex is computed

at the level of each patch. Distance-dependent curvature ranges between [-0.7, 0.7],

and for a given vertex, quantifies the relationship between the distance from that

vertex to the central vertex of the patch and the surface normals of the two vertices.

The DDC of a given vertex varies across the patches it is a patch of.

Shape Index and Distance-dependent curvature together encapsulate the local

geometrical neighbourhood of a vertex. A patch consisting of several vertices can

thus be expected to represent the topographical properties associated with an area

on the surface of the protein. The propensity of a residue to be a part of the complex

interface depends not only on geometric properties intrinsic to it but also on those of

other residues in its vicinity.

2.1.9 Chemical features

MaSIF computes a set of three chemical features on the protein’s surface mesh.

These are charge via Poisson-Boltzmann continuum electrostatics, free

electron/proton donor capacity, and hydrophobicity.

MaSIF uses the Adaptive Poisson-Boltzmann Solver (APBS) (Jurrus et al., 2018)

suite to perform Poisson-Boltzmann continuum electrostatics computations. Each

vertex is assigned a charge value in the range [-1, 1] after normalization. To

determine the positions of free electrons/protons on the molecular surface, MaSIF

uses a hydrogen-bond potential developed by Kortemme et al. (2003) as a

reference, assigning to each vertex a value between -1 and 1, depending on the

potential for it to be a bond acceptor or donor respectively (Kortemme et al., 2003).

20

Finally, each vertex is assigned the hydrophobicity score of the amino acid that is the

closest to it.

After feature computation, the mesh is decomposed into patches of geodesic radius

9Å. Each patch is defined by a central vertex. A geodesic is intuitively the shortest

curve between two points along a surface. Since the protein surface representation

generated is a discrete triangular mesh (that can be interpreted as a weighted

graph), approximate geodesics are computed for vertices (relative to the central

vertex) using the Dijkstra algorithm for shortest path determination on graphs. The

number of vertices in each geodesic patch is restricted to 100 to ensure that the

learning algorithm receives input of fixed size.

For each protein, the feature computation steps of MaSIF outputs patch coordinates,

the features of each vertex in a patch, and index lists denoting the vertices that

belong to each patch. We leverage this information to map patches produced by

MaSIF to the corresponding residue feature vectors generated by BIPSPI.

Table 1 contains the full set of features we used across all tested models. With the

exception of ‘Previous step predictions’, the values shown represent the number of

variables associated with each feature per residue.

Table 1: Features used in the training of XGBoost models. Features annotated (B) are

associated with BIPSPI, whereas those marked (M) are computed via MaSIF. The values

shown represent the number of variables corresponding to each feature associated with

each individual residue in a pair.

Feature Name Computation

Method

No: of variables

One-hot encoded amino acid

symbol in sliding window and

structural environment (B)

BIPSPI script 264

Conservation (B) PSI-BLAST

AL2CO

662

Solvent accessibility (B) PSAIA 50

Hydrophobicity (B) PSAIA 5

Depth index (B) PSAIA 30

21

Protrusion index (B) PSAIA 30

Secondary structure (B) DSSP 16

Half-sphere exposure (B) Biopython 35

Shape Index (M) MaSIF script 100

Distance-dependent curvature (M) MaSIF script 100

Charge (M) MaSIF script 100

H-bond potential (M) MaSIF script 100

Hydrophobicity (M) MaSIF script 100

Previous step predictions BIPSPI script 26

2.1.10 Mapping procedure

The number of vertices far exceeds the number of residues present at the surface of

proteins – this implies that patches do not necessarily map one-to-one with residues.

Since BIPSPI performs predictions at the level of residue-pairs and uses residue-

level features, each residue needs to be mapped to the vertex closest to it on the

surface of the protein. Using the coordinates of each vertex and the atomic

coordinates of the protein, we use the nearest neighbour algorithm implemented for

𝑘-dimensional trees in SciPy (Virtanen et al., 2020) to perform this operation in an

efficient manner. Figure 5 represents the residue to vertex mapping. While it is

hypothetically possible to map each residue to its 𝑛 closest vertices, we decided

against doing so as patches corresponding to proximal vertices can be expected to

be highly redundant.

Figure 5: Pictorial representation of the residue to vertex mapping. Each residue is mapped

to the vertex closest to it on the surface of the protein.

22

While it is possible to map every residue in a protein to a patch on its surface, it

might not make sense to perform this procedure in cases where the residue in

question is deeply buried. To determine the fraction of residues in our proteins for

which this condition would be applicable, we construct the inverse map connecting

each vertex to its closest residue. Subsequently, we identify the set of residues that

are not the closest to any vertex on the surface and compute the mean percentage

of residues affected over ligand and receptor complexes.

From Figure 6, we observe that, on average, only 11.43% of ligand residues and

15.71% of receptor residues are affected by this criteria. Since the number of

residues accounts for such a small fraction of the total number of residues, we

believe they are unlikely to significantly influence the accuracy of our model if

included in the training set.

Figure 6: Distribution of the mean percentage of residues unmapped in ligand and receptor

proteins respectively

2.1.11 Patch ‘sorting’

Since XGBoost accepts only linear inputs, patches are linearized prior to use for

training. Different rotations of a given patch correspond to different possible

linearizations – this implies that the same area on the surface of the protein can

result in multiple distinct numerical representations. To incorporate a degree of

rotation invariance, we sort each patch along the five feature axes in order of

magnitude prior to linearization. While we cognize that this procedure corrupts the

inherent geometry of a patch, it serves to significantly reduce the amount of variance

23

seen at a given index across all patches. Sorting a patch fixes the ‘meaning’

associated with each position of its linear representation, potentially resulting in

better performance when used with frameworks such as XGBoost that only accept

linear input representations.

2.1.12 Variants of BIPSPI considered

We compare a total of six models described below:

BIPSPI-seq: BIPSPI-seq uses only features that can be derived from the amino acid

sequences of the chains of the interacting pairs of proteins.

BIPSPI-default: BIPSPI-default, as the name suggests, is the default version of

BIPSPI that uses both sequence-derived and structure-derived features.

BIPSPI-patch: This model replaces the structural features used by BIPSPI with the

surface patch-level features computed by MaSIF. It contains all the sequence-based

features used in BIPSPI-seq.

BIPSPI-default-patch: This model contains all features used in BIPSPI-default and

includes surface patch-level features extracted using MaSIF in its residue-pair

representation. BIPSPI-default-patch is expected to exhibit performance either equal

or superior to that of BIPSPI-default.

BIPSPI-patch-sorted: This model differs from BIPSPI-patch in its use of sorted

patches instead of directly linearized patches.

BIPSPI-default-patch-sorted: This model differs from BIPSPI-default-patch in its use

of sorted patches instead of directly linearized patches.

Figure 7: Feature sets associated with the six models under consideration

24

2.1.13 Evaluation

The following evaluation metrics are used to compare the various models under

consideration:

ROC-AUC: The receiver operating characteristic curve (ROC curve) is a plot that

describes the relationship between a model’s binary classification performance and

the decision threshold chosen. Each point on the curve represents the True Positive

Rate and False Positive Rate of the classifier computed at that specific decision

threshold. The area under this curve (AUC) is representative of the model’s

performance across a range of different decision thresholds. A random classifier is

expected to have an ROC-AUC of 0.5, with a perfect predictor exhibiting a value of

1.

Precision (PRE): At a given decision threshold, a model’s precision is the ratio of the

number of true positives to the total number of samples predicted as positive.

PRE =
TP

TP + FP

Recall (REC) (or True Positive Rate): At a given decision threshold, a model’s recall

is the ratio of the number of true positives to the total number of positive samples

contained in the dataset.

REC =
TP

TP + FN

Accuracy (ACC): At a given decision threshold, accuracy is the ratio of the number of

correctly classified cases to the total number of cases.

ACC =
TP + TN

TP + FN + FP + FN

Negative Predictive Value (NPV): At a given decision threshold, the negative

predictive value of a classifier is the ratio of the number of true negatives to the total

number of instances predicted by it as negative.

NPV =
TN

TN + FN

25

Specificity (SPC): At a given decision threshold, specificity is the ratio of the number

of true negatives to the total number of negative instances contained in the dataset.

SPC =
TN

TN + FP

False Positive Rate (FPR): At a given decision threshold, the false positive rate is the

ratio of false positives predicted to the total number of negative instances contained

in the dataset.

FPR =
FP

FP + TN

Matthews Correlation Coefficient (MCC): This is a metric commonly used to evaluate

the performance of models trained to perform prediction on highly imbalanced data.

MCC is defined as follows (where TP, TN, FP, and FN stand for True Positive, True

Negative, False Positive, and False Negative, respectively):

MCC =
TP ⋅ TN − FP ⋅ FN

√(TP + FP) ⋅ (TP + FN) ⋅ (TN + FP) ⋅ (TN + FN)
 

The performances of the six models are evaluated using 10-fold cross-validation at

the level of protein complexes. The dataset is randomly split into 10 ‘folds’ containing

19 complexes each. The model is trained on nine folds and is evaluated on the

excluded fold. This process is repeated, sequentially leaving out all ten folds. The

model’s performance with respect to predicting the interface of a given complex is

computed when it is tested on the fold containing the complex. The model’s overall

performance with respect to a given evaluation metric is the mean of its performance

with respect to the metric across all 192 complexes. All six models were trained with

the same ten folds.

2.1.14 Feature Importances

In addition to the performance metrics for the six models, we also compute the

feature importances associated with each of the input features used to train the

model. Feature importances have been computed using Gain.

The ‘Gain’ associated with a feature refers to the reduction in loss incurred at a split

involving that feature in a tree (that is a part of the overall XGBoost model). The total

26

gain associated with a feature is the sum of its gain values across all trees it is a part

of. We compute the relative gain associated with each feature by ascertaining the

ratio between the total gain associated with it and the total gain accumulated across

all features used. The expression used to compute the gain at a particular split of the

tree is the following (Chen and Guestrin, 2016):

Gain =
1

2
[

𝐺𝐿
2

𝐻𝐿 + λ
+

𝐺𝑅
2

𝐻𝑅 + λ
−

(𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + λ
] − γ 

As per XGBoost documentation, the first term quantifies the score on the left leaf of a

split, the second denotes the score on the right leaf at a split, the third term

represents the score at the leaf prior to the split, and the fourth term represents the

regularization associated with the added leaf.

For each feature used in our models, we compute its global importance and mean

importance per variable. As evident from Table 1, each feature corresponds to a set

of variables. The global importance measures a feature’s total impact on the model’s

performance. We interpret the mean importance per variable as a measure of how

efficient a feature is at improving the model’s performance in relation to the number

of variables that constitute it. For example, a feature that has a large contribution to

the total gain and is constituted of a small number of variables can be expected to

have a high mean importance per variable.

27

2.2 Data-driven compression methods for protein

surface patches

While protein surface patches represent a rich source of information for various

prediction tasks, such as interface site prediction and ligand binding prediction, they

also occupy a significant amount of space. For a patch radius of 9Å, MaSIF produces

patches constituted of 100 vertices, with each vertex represented by five dimensions.

The surface mesh of each protein in our dataset contains several thousand vertices.

We develop a data-driven compression method to reduce the size of computed

patches by a significant factor. The reduction of the sizes of protein patches allows

for the following:

1) Increase in computation speed and reduction in memory consumption during

the training of methods that utilize patches

For a constant input feature size, reducing the size of individual features while

retaining the same amount of information can allow for the use of a greater number

of distinct informative features, potentially improving model performance. The use of

compressed informative features can also greatly facilitate the training of highly

performant models in low computing capacity realms.

2) Feasible local storage of large protein surface information datasets

Pre-computed datasets of protein surface patches can greatly accelerate inference

speed at test time. The compression of patches can significantly increase the

amount of protein surface data that can be stored locally and allow for fast test-time

inference by precluding the need for surface computation.

To accomplish this, we develop i) a principal component analysis-based (Pearson,

1901) method and ii) an autoencoder-based (Kramer, 1992) method of patch

compression. Both methods described fall under the category of unsupervised

learning methods. The data-driven models were developed and tested on a non-

redundant dataset whose construction has been described in detail below.

28

2.2.1 Dataset construction

The dataset constructed to train the protein surface patch compression methods was

designed to be non-redundant and disjoint from Docking Benchmark v5.5 to allow for

the future use of the compression method with BIPSPI.

A cull was performed on structures available in the Protein Data Bank using PISCES

(Wang and Dunbrack, 2003) to select PDBs whose structures were determined

using X-ray Crystallography. The structures selected were such that their resolutions

were superior to 2.0Å, and they exhibited R-factor values lower than 0.25. The

sequence similarity criteria for culling was set to 5% to minimize redundancy in the

dataset - no pair of structures in the dataset exhibited sequence-similarity greater

than 5%.

The cull retrieved 2532 PDB files. The extracted PDB files were subsequently

processed using MaSIF’s pre-processing pipeline. Surface meshes were computed

for all proteins in the dataset. This was subsequently followed by the computation of

chemical and geometrical features. The patches were sampled from the patch

datasets of individual proteins such that no two patches extracted from the same

protein shared more than 20 vertices. We hoped to maximize the percentage of

surface data utilized from a given protein while simultaneously minimizing the

number of vertices shared between patches. The end result was a dataset consisting

of 109,364 patches, each patch represented by 100 vertices described by five

features per vertex.

2.2.2 Method I: Principal component analysis

Principal component analysis is a dimensionality reduction procedure commonly

used to visualize high-dimensional data in 2 or 3-dimensions. ‘Principal components’

refer to basis vectors in high-dimensional space along the direction of maximum

variance. Assuming that the input data is standardized (i.e., the values of the

variables are scaled such that their mean is 0 and standard deviation is 1), the

principal components represent the eigenvectors of the covariance matrix

constructed from the data, in decreasing order of the variance explained. By

29

construction, they are orthogonal linear combinations of the original input variables

that maximize the variance of the samples projected on to them.

Given a data matrix containing 𝑛 samples, described by 𝑚 variables each, the

following steps are involved in principal component analysis:

1. Standardize the data matrix: Scale each of the 𝑚 variables in the dataset in

accordance with its computed mean and standard deviation

2. Construct a covariance matrix from the standardized dataset: Given a

standardized 𝑛 × 𝑚 data matrix 𝐒, the covariance matrix 𝐂 can be computed as

𝐂 =
1

𝑛−1
𝐒∗𝐒

3. Compute the eigenvalues and eigenvectors of the covariance matrix

4. Sort the eigenvectors in order of decreasing eigenvalues

5. Choose a subset consisting of the first 𝑘 eigenvectors to project the samples in

the data matrix onto. These represent the basis vectors along the direction of

maximum variance.

The procedure also allows for the computation of the percentage of variance

explained by each principal component. The proportion of variance explained by a

principal component is the ratio of its corresponding eigenvalue to the sum of all

eigenvalues of the covariance matrix.

Variance explained by PCi =
λ𝑖

λ1 + ⋯ + λ𝑛

The magnitude of this ‘explained variance ratio’ is indicative of how effective a

principal component is at capturing the variance inherent to the dataset. As principal

components are uncorrelated (i.e., orthogonal in space), the percentage variance

accounted for by a subset of principal components can be computed through the

direct addition of their explained variances.

To reduce the dimensionality of the original dataset, a set constituted of the first 𝑛

principal components that captures a substantial proportion of the sample variance is

constructed. The data is subsequently projected along the 𝑛 principal components

considered. If 1, 2, or 3 dimensions capture a significant fraction of sample variance,

the data can be visualized in plots for researchers attempting to observe the relative

30

spatial positioning of various datapoints. In this case, what fraction can be deemed

‘substantial’ is at the discretion of the researcher.

The patches of dimension [100, 5] contained in the sampled non-redundant patch

dataset are linearized to 500 dimensions. The [109364, 500] dataset is then

segmented into train, validation, and test sets of sizes 80000, 20000, and 9364,

respectively. The training dataset is standardized along the axes of the variables to

mean 0 and standard deviation 1. The standard deviation and mean for the 500

variables computed from the training dataset are used to scale the validation and

test sets. The standardization procedure is performed to ensure that the magnitudes

of the various features are comparable to not lend undue importance to certain

features owing to their high absolute magnitudes. The number of components used

to compute explained variance ratio and reconstruction loss was varied from 5 to 500

in increments of 5. The explained variance ratio and reconstruction loss were

subsequently plotted against the number of components and have been included in

Section 3.2.1.

2.2.3 Method II: Autoencoder

An autoencoder (Kramer, 1992) is an unsupervised learning architecture designed

for the purpose of representation learning. In most practical use cases, an

autoencoder consists of two families of functions 𝐴 (parametrized by 𝜙) and 𝐵

(parametrized by 𝜓), where 𝐴 transforms input from an 𝑛-dimensional real-valued

representation to a 𝑝-dimensional latent representation, and 𝐵 transforms the 𝑝-

dimensional latent representation back to 𝑛-dimensions, where 𝐴 and 𝐵 minimize the

expected “distortion” between the input and output representations (Bank et al.,

2021).

𝐴𝜙 ∶ ℝ𝑛 → ℝ𝑝

𝐵𝜓 ∶ ℝ𝑝 → ℝ𝑛

The most used reconstruction loss in autoencoders is squared error, defined as

follows where 𝑥 is the 𝑖𝑛𝑝𝑢𝑡 and 𝑥̃ is the reconstruction produced by the

autoencoder:

𝑟(𝑥, 𝑥̃) = ‖𝑥 − 𝑥̃‖2
2

31

When used in the context of data compression, an autoencoder learns from input

data, the optimal functions 𝐴𝜙 and 𝐵𝜓 to convert high-dimensional data of a given

type to a low-dimensional latent space while retaining as much information contained

in the original sample as possible. The appropriate 𝜙 and 𝜓 are those that minimize

the loss defined as:

𝐿(𝜙, 𝜓) =
1

𝑁
∑ ‖𝑥𝑖 − 𝐵𝜓 (𝐴𝜙(𝑥𝑖))‖

2

2
𝑁

𝑖=1

In practice, 𝐴 and 𝐵 are usually neural networks called the ‘encoder’ and ‘decoder’ -

the loss minimization procedure is performed using gradient descent. It can be

mathematically shown that if purely linear operations are used to construct an

autoencoder with a single fully-connected hidden layer of size 𝑝, the weights trained

span the same subspace as the one spanned by principal component analysis with 𝑝

principal components when trained with the squared error loss function (Plaut, 2018).

The advantage accorded to an autoencoder through the use of non-linear activations

is the ability to learn a non-linear manifold. In practice, the encoder and decoder are

both constituted of several hidden layers.

Autoencoders designed for the purpose of compression use a ‘bottleneck layer’. The

bottleneck layer is generally the narrowest point of the autoencoder architecture and

is conventionally the last layer of the encoder. The value of a bottleneck layer is two-

fold in that 1) in the context of compression, it is directly responsible for

dimensionality reduction, and 2) it prevents the network from overfitting and learning

the identity function for the given dataset (Bank et al., 2021). Intuitively, if the original

𝑛-dimensional input can be fully reconstructed by the decoder using the 𝑝-

dimensional latent representation encoded by the encoder, the latter completely

encapsulates the information contained in the former. Figure 8 depicts the structure

of a compressional autoencoder.

32

Figure 8: Diagram representing the structure of a compressional autoencoder

The protein patch dataset is segmented into train, validation, and test sets of sizes

80000, 20000, and 9364 patches, respectively. Similar to the protocol for principal

component analysis, the training dataset was standardized to mean 0 and standard

deviation 1. This removes the dependence of the reconstruction error on the

magnitudes of the input variables. The patches in the validation set and test sets

were linearized and transformed using the sample mean and standard deviation

computed for the training set.

The reconstruction error used to train and validate the models is the Mean Squared

Error loss function. Mean Squared Error (MSE) measures the average squared

deviation between the true input and its reconstruction produced by the autoencoder

across all the samples in the dataset. The best models during model selection are

those with the lowest validation set MSE.

Though there are an infinite number of possible encoder and decoder structures that

can be tested, we consider only symmetric architectures, where the number of layers

in the encoder and decoder varies from 1-3, and the number of hidden units in each

layer varies between 200, 300, and 400. Under these self-imposed constraints, we

tested a set of 19 architectures each for autoencoders with bottleneck layers of size

50 and 100 dimensions, respectively. These constitute 10x and 5x reductions in the

33

size of the 500-dimensional input vector, respectively. The autoencoder models are

subsequently trained for 500 epochs with a batch size of 128 using the ‘Adam’

optimizer set to a learning rate of 0.0001. A single update to the model’s weights is

carried out when its weights are altered based on the losses and corresponding

gradients computed on a batch of 128 datapoints. An ‘epoch’ represents a full pass

through the dataset – the same operation is performed using all remaining disjoint

batches of size 128 constructed from the dataset. The training dataset is shuffled

prior to each training epoch. ‘Adam’ is a method that adaptively alters the learning

rate of the algorithm in response to the values of the computed gradients (Kingma

and Ba, 2015).

The MSE losses are computed on the training and validation sets at the end of each

epoch. Plots describing the evolution of these errors over 500 epochs are generated

and are available in Section 3.2.1. As these curves can be noisy, the mean validation

loss computed for the model over the final 50 epochs of training is used as a metric

to compare the 19 models during model selection.

Similar to our hypothesis that the use of sorted patches could result in better

classification performance, we believe that PCA-based and autoencoder-based

compression methods trained on sorted patches could exhibit significantly improved

MSE performance in comparison to those trained with geometrically-intact patches.

We train the PCA and autoencoder-based approaches with both sorted and unsorted

patches and report training and validation loss statistics.

34

3 Results and Discussion

3.1 Improving BIPSPI with protein surface patches

extracted using MaSIF

3.1.1 Results

Figure 9: Receiver operating characteristic curves and precision-recall curves for all six

models trained for the task of residue-residue contact prediction

Figure 9 illustrates the receiver operating characteristic curves and precision-recall

curves of the six models tested. In addition to structural features, all models shown

here use the same set of sequence-derived features. We observe that the model

trained with structural features from both MaSIF and BIPSPI exhibits the best ROC-

AUC performance across the six models that were tested. We also observe that for a

given feature set, sorting the input surface patches appears to improve classification

performance: the XGBoost models trained on sorted patches, BIPSPI-default-patch-

sorted and BIPSPI-patch-sorted, perform better than their counterparts trained on

unsorted patches, BIPSPI-default-patch and BIPSPI-patch respectively. The model

trained solely with sequence-derived features and BIPSPI’s default structural

features (BIPSPI-default) exhibits marginally better performance than both models

that utilize sequence-derived features and MaSIF’s structural features (BIPSPI-

default-patch and BIPSPI-patch). These trends are mirrored in the precision-recall

35

curves plotted in Figure 9. The baseline in both plots represents the performance

expected of a random classifier. We have also included the performance of the

model trained only on sequence data (BIPSPI-seq) as an additional baseline to

quantify the improvement in performance brought forth by the use of structure-

derived features. The model trained only on sequence-based features exhibits

performance considerably inferior to that of the remaining models.

Table 2: Performance summary of the six models evaluated using 10-fold cross-validation

across nine performance metrics. All models were trained using the same ten folds.

Model Name
ROC-AUC

pooled

ROC-

AUC

mean

MCC PRE REC ACC FPR SPC NPV

BIPSPI-

default-patch-

sorted

0.9333 0.9222 0.1052 0.0249 0.4866 0.9713 0.0280 0.9720 0.9992

BIPSPI-

default-patch
0.9301 0.9190 0.1013 0.0225 0.5053 0.9670 0.0324 0.9676 0.9992

BIPSPI-patch-

sorted
0.9257 0.9137 0.1006 0.0222 0.5054 0.9665 0.0328 0.9672 0.9992

BIPSPI-patch 0.9197 0.9080 0.0946 0.0227 0.4382 0.9714 0.0278 0.9722 0.9992

BIPSPI-default 0.9284 0.9153 0.0999 0.0216 0.5127 0.9648 0.0345 0.9655 0.9993

BIPSPI-seq 0.8463 0.8229 0.0644 0.0146 0.3385 0.9652 0.0339 0.9661 0.9990

Table 2 contains performance metrics computed for all six models using 10-fold

cross-validation on the 192 complexes contained in our dataset. BIPSPI-default-

patch-sorted exhibits the best performance across most computed metrics. Similar to

what is observed in the receiver operating characteristic and precision-recall curves

(Figure 9), for pairs of models trained with the same set of features, the variants

trained on sorted patches exhibit better performance than their counterparts trained

on unsorted patches. The values for metrics such as MCC, FPR, and ACC are

computed by identifying a ‘best threshold’ that maximizes the performance of each of

the classifiers. Two ROC-AUC scores are computed. ROC-AUC mean refers to the

mean of the AUCs achieved on individual complexes during 10-fold cross-validation.

ROC-AUC pooled represents the model’s AUC as computed from the results pooled

from all complexes.

36

Figure 10: Receiver operating characteristic curves and precision-recall curves for BIPSPI-

default-patch-sorted and BIPSPI-default

Figure 10 directly compares the receiver operating characteristic curves and

precision-recall curves of the best-performing model (BIPSPI-default-patch-sorted) to

those of the unmodified version of BIPSPI (BIPSPI-default). The addition of sorted

patches generated by MaSIF to BIPSPI’s structure-based feature set improves the

ROC-AUC mean by 0.69 and PR-AUC by 0.0039.

Figure 11: Receiver operating characteristic curves and precision-recall curves for 1-step

and 2-step variants of BIPSPI-default-patch-sorted

37

From Figure 11, it is clear that there is a significant improvement in performance

between the 1-step and 2-step variants of the model trained on structural features

from both MaSIF (sorted) and BIPSPI. This trend is consistent across all six models.

In addition to the receiver operating characteristic and precision-recall curves, we

also use XGBoost’s in-built feature importance computation function to identify the

features the algorithm considers to be the most important for performing predictions

for all five models that use structural features. Feature importances were computed

for the 1-step and 2-step variants of each of the five models that use structural

features. Since each feature corresponds to a set of variables, we also compute the

mean importance per variable of all features used by our models. We show both

‘grouped’ and ‘comprehensive’ plots for each of the five models that use structure-

based features. In grouped plots, the structural features are grouped as either MaSIF

features, BIPSPI features, Conservation features, or ‘Other features’ depending on

their sources. Only ‘amino acid identity’ belongs to the ‘Other features’ category. The

comprehensive plots represent the relative importance of all features used by the

model as individual wedges on the pie chart. While the 2-step variants perform better

than the 1-step variants, the feature importance plots for the former are heavily

influenced by the predictions made in the first step and are hence less informative for

the purpose of ascertaining the relative impacts of the various features used. As a

result, we present only the feature importances computed for the 1-step classifiers in

this section. Feature importance plots for the 2-step classifiers are available in the

attached appendix.

Figures 12 and 13 represent the extent of importance the XGBoost model trained on

the default set of BIPSPI features assigns to the various input features during

training. Conservation appears to be the most influential of all the features,

accounting for 64.98% of the total gain across all splits, and is almost four times as

important as the second-most important feature (Accessibility), which accounts for

16.96%. Accessibility, however, appears to have the highest per-variable importance

of all the features. Amino acid identities appear to be the least important to the model

during training from the perspective of mean importance per variable. The feature

importances computed for the model trained on the default set of features represent

38

a control that the feature importances computed for the other models can be

compared to.

Figure 12: Global and mean feature importances associated with the features used in the

training of BIPSPI-default. The structural features associated with BIPSPI are grouped

together in a single category called ‘BIPSPI features’.

Figure 13: Global and mean feature importances associated with the features used in the

training of BIPSPI-default

39

As is evident from Figures 14 and 15, when BIPSPI’s structural features are replaced

with patches (unsorted), the extent of influence held by conservation drops

significantly from 64.98% to 56.98%. While conservation still is the most important

type of feature, the extent of influence structural features have on the model has

increased substantially in comparison to their proportions seen in BIPSPI-default.

Distance-dependent curvature appears to be the most important of the five features

contained in the patches, accounting for 12.42% of the total importance. Out of the

three chemical features, free electron donor/acceptor potential (H-bond) has the

least importance. It is to be noted that while the influence of structural features has

increased compared to BIPSPI-default, the performance of the model is noticeably

worse, clocking in at an ROC-AUC mean of 0.9080 in comparison to the 0.9153

exhibited by BIPSPI-default. The geometrical features appear to have higher global

and mean importances than the chemical features in the patches.

Figure 14: Global and mean feature importances associated with the features used in the

training of BIPSPI-patch. The structural features associated with MaSIF are grouped

together in a single category called ‘MaSIF features’.

40

Figure 15: Global and mean feature importances associated with the features used in the

training of BIPSPI-patch

Figures 16 and 17 show that supplying the model with sorted patches appears to

improve performance while simultaneously reducing the reliance of the model on

patch-based features during training. The extent of influence of sequence and

structure-based features for BIPSPI-patch-sorted is comparable to that exhibited by

BIPSPI-default. The conservation class of features regains its position as the most

influential, surpassing its importance in the control model. Consistent with what was

observed in BIPSPI-patch, distance-dependent curvature appears to be the most

important MaSIF-derived feature during training, accounting for 7.19% of the total

importance. The similarities continue with charge and hydrophobicity remaining

comparable and free electron donor/acceptor potential being the least important

feature. The performance of the model trained on sorted patches is superior to that

of the model trained on unsorted patches.

41

Figure 16: Global and mean feature importances associated with the features used in the

training of BIPSPI-patch-sorted. The structural features associated with MaSIF are grouped

together in a single category called ‘MaSIF features’.

Figure 17: Global and mean feature importances associated with the features used in the

training of BIPSPI-patch-sorted

42

Figure 18: Global and mean feature importances associated with the features used in the

training of BIPSPI-default-patch. The structural features associated with BIPSPI and MaSIF

are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF features’.

Figure 19: Global and mean feature importances associated with the features used in the

training of BIPSPI-default-patch

Figures 18 and 19 describe the relative importance of the different features used in

the model that combines the structure-derived features from both MaSIF and

43

BIPSPI. The model was trained with unsorted versions of the patches generated by

MaSIF. Similar to the case where the model was trained solely on sequence-based

features and unsorted MaSIF patches (BIPSPI-patch), the impact of conservation-

based features is significantly lower, accounting for only 46.41% of the total

importance. In spite of the fact that there are fewer BIPSPI structural features, both

feature sets are approximately equally important to the model for prediction

performance: only 166 structural feature variables are associated with BIPSPI,

compared to the 500 feature variables associated with MaSIF per residue. It is

interesting to note that while the hydrophobicity features computed by MaSIF have a

significantly larger global impact than those computed by BIPSPI, the two are highly

comparable from the perspective of mean importance. Accessibility continues to be

the feature with the highest mean importance per variable, with amino acid identities

being the least important.

Figure 20: Global and mean feature importances associated with the features used in the

training of BIPSPI-default-patch-sorted. The structural features associated with BIPSPI and

MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF

features’.

44

Figure 21: Global and mean feature importances associated with the features used in the

training of BIPSPI-default-patch-sorted

Figures 20 and 21 illustrate the feature importances computed for a 1-step XGBoost

classifier trained on structural features extracted from BIPSPI and MaSIF. The

MaSIF patches used to train the model are sorted. We observe that the model is

more strongly impacted by BIPSPI-derived features than MaSIF-derived features.

BIPSPI features retain a similar fraction of global impact here as they do in BIPSPI-

default-patch, with the relative proportions amongst the BIPSPI features being

conserved as well. Out of the BIPSPI-derived structural features, accessibility is the

most important, accounting for 14.81% of the total importance. From the set of

features contained in the MaSIF patches, charge is the most impactful, making up

4.40% of the total importance. Sorting patches, in a close parallel to Figure 16,

appears to reduce their influence in making predictions. The geometrical features

computed by MaSIF appear to be less important to the performance of this model

than the chemical features. BIPSPI-default-patch-sorted places less importance on

the conservation class of features than BIPSPI-default. Such features account for

53.64% of the total importance in BIPSPI-default-patch-sorted, compared to the

64.98% importance ascribed to them in BIPSPI-default. We observe from the mean

importance plots for this model that the BIPSPI features appear to be more efficient

in relaying information compared to those from MaSIF, evidenced by their higher

mean importances per variable.

45

3.1.2 Discussion

Our objective was to ascertain if the addition of geometrical and chemical features

derived from the surfaces of proteins in the form of patches could improve the

performance of BIPSPI, a partner-specific interface predictor. Through our

experiments, we have demonstrated that protein surface patches are informative

features for the purpose of residue-residue contact prediction at protein-protein

interfaces. The addition of MaSIF-derived features to the sequence-only model

improves ROC-AUC mean performance from 0.8222 to 0.9080, confirming the

relevance of the newly added features.

We observe that the addition of MaSIF-derived patches to BIPSPI’s existing feature

set has a positive effect on the method’s performance on the task of residue-residue

contact prediction. Both models that combine MaSIF-generated patches and

structural features derived from BIPSPI, BIPSPI-default-patch-sorted and BIPSPI-

default-patch, exhibit performance superior to that of BIPSPI-default across the most

relevant tested metrics. While the addition of patches has a positive impact on model

performance, it is interesting to note that the internal sorting of patches improves

performance marginally further.

Out of the five features added via the use of MaSIF-generated patches, distance-

dependent curvature is consistently the most important across all models trained

with them. Protein-protein binding is strongly influenced by geometrical and chemical

complementarity. Distance-dependent curvature measures the curvature around

each vertex as a function of distance - it is likely that the models have learnt which

combinations of the vertex-level distance-dependent curvatures across ligand and

receptor residues correspond to potentially complementary surfaces.

From BIPSPI’s structure-derived feature set, accessibility appears to have the

greatest importance from the perspective of both global and mean importance per

variable. This aligns well with literature attesting to the capacity of Solvent

Accessible Surface Area to be used for protein-protein and protein-nucleic acid

interface hotspot prediction (Martins et al., 2014; Munteanu et al., 2015). Relative

accessible surface area has also been reported to be an effective predictor of the

46

extent of binding-induced conformational change in protein complexes (Marsh and

Teichmann, 2011), potentially hinting at its utility in predicting protein-protein

interfaces. Protrusion index is another structural feature computed by BIPSPI that

has a considerable impact on the accuracy of the models tested. Protrusion has

been shown in the literature to correlate to a certain extent with accessibility and, in

conjunction with other features, has been used for the allied problem of protein-

protein interface hot-spot prediction. It is surprising to note that protrusion has a

significantly higher impact on performance than shape index, a property that is

expected to capture similar information by encapsulating the local curvature around

a residue.

It appears that most of BIPSPI’s existing structural features are more efficient at

relaying structural information than MaSIF’s. In our best-performing model, BIPSPI’s

features were of greater importance than MaSIF’s at a global level (26.34% vs

17.58%) and were far more impactful from the perspective of mean importance per

variable. From our analysis of feature importances for all five models using structural

features, we observe that the use of unsorted patches significantly changes the

proportion of impact associated with the various features during the training process.

Generally, the use of unsorted patches appears to increase the impact of MaSIF-

based features on the models’ predictions. Sorting patches internally with respect to

their five constituent features reduces these proportions significantly while improving

performance. When models using sorted and unsorted patches are analyzed from

the perspective of the number of splits each feature is involved in, it is observed that

the relative number of splits involving MaSIF-derived features is significantly higher

in the latter. Figure 22 illustrates the number of splits involving MaSIF-derived

features per tree against the iteration index of the XGBoost models for BIPSPI-

default-patch-sorted and BIPSPI-default-patch. We observe that in the early stages

of training, the model using unsorted patches generates trees that contain a much

higher number of MaSIF-associated splits than the model using sorted patches.

47

Figure 22: Comparison of the number of splits involving MaSIF features as a function of tree
index for BIPSPI-default-patch-sorted and BIPSPI-default-patch

We suspect that this behaviour is connected to the significantly higher variance

associated with each index of the patch representation over all the patches the

model is exposed to. While sorting a patch compromises the inherent geometry

associated with it, it imposes the same structure on all patches in the dataset. The

imposition of order greatly reduces the variance in values observed across patches

at a particular index. Better put, unlike the case of unsorted patches, each position in

the numerical representation of a sorted patch has the same meaning. For instance,

in a sorted patch consisting of 100 vertices described by the five features computed

by MaSIF, the first row will always correspond to the magnitude of the charge on the

most negatively charged vertex, the shape index of the vertex with the highest

concavity, the vertex with the highest hydrogen bond acceptor potential and similarly

so. The next row will correspond to the sequentially subsequent values for the

abovementioned properties. We believe that the improvement in performance upon

sorting patches arises as a result of this imposition of meaning on the indices of the

linearized representation of the patch.

The conservation-based class of features, in most cases, has the highest global

impact on the model’s performance. The extent to which conservation influences

predictions is unsurprising - residues that constitute the interfaces of protein-protein

48

interactions are likely to have been preserved over the course of evolution, as

protein-protein interactions mediate several essential life processes (Choi et al.,

2009; Teppa et al., 2017). We believe it could be fruitful to extend the notion of

evolutionary conservation (and co-evolution) to the level of the protein surface patch

to provide learning methods with a notion of the extent of evolutionary

complementarity exhibited by a pair of patches. We expect methods trained with

patch-level evolutionary information to exhibit superior performance to those trained

solely with residue-level conservation data and hope to construct an appropriate

representation for this purpose in the future. Furthermore, in addition to conventional

sequence-derived features, we also believe that the use of context-aware residue

representations produced using protein language models such as ESM-1b (Rives et

al., 2021) and ProtT5 (Elnaggar et al., 2022) has the potential to improve

performance on this prediction task.

While the use of protein surface patches has improved the performance of BIPSPI,

we cognize that a gradient-boosting-based framework is unlikely the best

architecture to utilize them to their true potential. XGBoost and other machine-

learning frameworks that accept only linear forms of input are inherently limited in

their ability to utilize geometric information. A patch, fundamentally, is an area on the

surface of the protein: while properties such as shape index and distance-dependent

curvature capture the local geometry around a vertex, the positional relationships

between various vertices within a given patch are lost during the process of

linearization. It is plausible that a convolutional neural network-based architecture or

a graph neural network that operates directly on the graph induced by the surface

mesh of the protein is likely to exhibit better performance on the task of partner-

specific protein interface prediction than a framework such as XGBoost that requires

linearization. An alternate approach would be to randomly sample various rotations

of a given patch and create multiple representations of the same residue-pair, each

using linearizations of different rotations of their constituent patches. The model

could subsequently be trained with these representations – this would show the

learning method that multiple rotations of a given patch correspond to the same

information.

49

3.2 Data-driven compression methods for protein

surface patches

3.2.1 Results

Figure 23: Percentage explained variance and reconstruction loss (MSE) as a function of the

number of principal components used for the principal component analysis method fitted to

the dataset of unsorted patches

We observe suboptimal compression performance in the case where principal

component analysis is performed on a dataset constituted of unsorted patches.

Figure 23 illustrates the percentage variance explained as a function of the number

of principal components considered and the loss incurred when the input is

reconstructed from the first 𝑛 principal components. To obtain a reconstruction loss

of less than 0.05, over 425 principal components are required, indicating that the

capacity of unsorted patches to be compressed by principal component analysis is

minimal. We also observe that the reconstruction loss computed on the validation set

closely mirrors that computed on the training set.

50

Figure 24: Percentage explained variance and reconstruction loss (MSE) as a function of the

number of principal components used for principal component analysis fitted to the dataset

of sorted patches

In stark contrast to the case of unsorted patches, principal component analysis

appears to perform exceptionally well in the case where the method is fit to sorted

patches (Figure 24). The method achieves a reconstruction loss of less than 0.05

with less than 35 components, and crossing a reconstruction loss of 0.01 requires

only 105 components. Similar to what was observed in the case of unsorted patches,

the reconstruction losses incurred on the training and validation sets mirror each

other very closely. There appears to be an inflection point in both plots at

approximately 30 components, from where performance begins to asymptote.

Figure 25: Training and validation loss (MSE) vs training epoch index for autoencoder

models with latent dimension size of 100 trained on unsorted patches

51

We subsequently test the performance of the autoencoder models trained with

unsorted patches. The average reconstruction loss on the validation set across all 19

tested models is 0.5352. The best-performing model (MSE = 0.5108) was the most

complex, consisting of three hidden layers (each of 400 hidden units) each for the

encoder and decoder. The training and validation losses for the 19 models contained

in Table 3 are computed by averaging results over the final 50 epochs of training to

account for noise. We conclude that the autoencoder architectures tested are

unsuitable for the lossless compression of unsorted patches generated by MaSIF.

From Table 3 and Figure 25, we do not observe a clear relationship between model

complexity and validation set performance.

Table 3: Training and validation losses (MSE) averaged over the final 50 iterations of training

for all 19 tested models with latent dimension size of 100 trained with unsorted patches

Architecture Training Loss Validation Loss

400400400_400400400 0.49862033 0.51084647

400400_400400 0.50906376 0.51960411

400400300_300400400 0.5086854 0.52003612

400400200_200400400 0.51521921 0.52563242

400_400 0.51966519 0.52751778

400300300_300300400 0.5190646 0.52996238

400300_300400 0.52020196 0.53064663

400300200_200300400 0.52332491 0.53270997

300300_300300 0.52759914 0.53614796

400200200_200200400 0.52944333 0.53757512

300300300_300300300 0.53029686 0.53863717

300_300 0.5338754 0.54014334

300300200_200300300 0.53314305 0.54084669

400200_200400 0.53431434 0.54268245

300200200_200200300 0.53652639 0.54318872

200_200 0.54138824 0.54646923

200200200_200200200 0.54265775 0.54829711

300200_200300 0.54070021 0.54859973

200200_200200 0.54426069 0.55018174

52

Figure 26: Training and validation losses (MSE) vs training epoch index for autoencoder

models with latent dimension size of 50 trained on unsorted patches.

We observe from Figure 26 that performance is significantly worse when the size of

the latent dimension is halved from 100 to 50. The validation loss averaged across

all 19 models increases from MSE 0.5352 to MSE 0.6359. The models employing

400-dimensional hidden layers appear to exhibit better performance than those using

only 300 and 200-dimensional hidden layers. The decrease in performance

compared to the models using a bottleneck size of 100 dimensions is expected as

the reduction in latent dimension size corresponds to a significantly harder

compression task. Table 4 lists the training and validation losses for all 19 models

using unsorted patches in conjunction with a latent dimension size of 50 hidden

units.

Table 4: Training and validation losses (MSE) averaged over the final 50 iterations of training

for all 19 tested models with latent dimension size of 50 trained with unsorted patches.

Architecture Training Loss Validation Loss

400400_400400 0.61223592 0.62675255

400400400_400400400 0.61156837 0.62865261

400400300_300400400 0.61261756 0.62898205

400400200_200400400 0.61570714 0.6295598

400300_300400 0.61722149 0.62983679

400300200_200300400 0.61689694 0.63103127

400300300_300300400 0.61724137 0.63197572

53

300300300_300300300 0.62145022 0.63232813

400200200_200200400 0.62203821 0.63382337

400_400 0.62227445 0.63467881

400200_200400 0.62378838 0.63509277

300200200_200200300 0.62751627 0.6377372

300300_300300 0.6290283 0.63906111

300300200_200300300 0.62955692 0.63977616

300200_200300 0.6306161 0.64027539

300_300 0.63724325 0.64659616

200200200_200200200 0.63955658 0.64766513

200200_200200 0.64607298 0.65275298

200_200 0.64667923 0.65371706

Figure 27: Training and validation losses (MSE) vs training epoch index for autoencoder

models with latent dimension size of 100 trained on sorted patches.

From Figure 27, we observe that the autoencoder models trained on sorted patches

exhibit vastly superior performance to identical models trained on unsorted patches.

Table 5 contains the mean training and validation losses achieved for all 19 models

over the final 50 epochs of model training.

54

Table 5: Training and validation losses (MSE) averaged over the final 50 iterations of training

for all 19 tested models with latent dimension size of 100 trained with sorted patches

Architecture Training Loss Validation Loss

400_400 0.00692446 0.00782732

300_300 0.00717828 0.00809767

300300_300300 0.00748921 0.00867917

200_200 0.00785857 0.00885369

400300_300400 0.00769637 0.00885858

300200_200300 0.00785881 0.00897441

400200_200400 0.0078138 0.00911418

400400_400400 0.00782203 0.00920799

200200_200200 0.00839622 0.00952031

400400200_200400400 0.00820127 0.00962707

400300200_200300400 0.0085139 0.00975329

400300300_300300400 0.00855657 0.00982589

400200200_200200400 0.00846929 0.00991788

400400300_300400400 0.00849327 0.0099296

300300200_200300300 0.00873274 0.00995838

300300300_300300300 0.00863568 0.01010596

400400400_400400400 0.00860751 0.01024261

300200200_200200300 0.00940295 0.01075625

200200200_200200200 0.01013257 0.01128386

The best model achieves an average reconstruction loss of 0.0078 on the validation

dataset over the final 50 epochs of training. When trained for 500 epochs, it achieves

a test set reconstruction loss of 0.0073. This is highly competitive and allows for

compression with exceptionally minimal information loss. The performances of the

models were compared using the mean of the validation losses computed for the last

50 epochs of training. While all models are significantly more competitive than their

counterparts trained on unsorted patches, it is interesting to note that increasing

model size does not appear to result in substantial improvements to validation set

performance. In fact, we observe that the simpler models exhibit better performance

than models that have a greater degree of complexity – models with single-layer

55

encoders and decoders perform better than those with two and three layers. The

models exhibit a mean validation set MSE of 0.0095.

Figure 28: Training and validation losses (MSE) vs training epoch index for autoencoder

models with latent dimension size of 50 trained on sorted patches.

Encouraged by the exceptional performance of the models with latent dimension size

100, we tested the same architectures with a latent dimension size of 50 (Figure 28).

This increased the extent of compression from 5x to 10x. Table 6 contains the mean

training and validation losses achieved for all 19 models over the final 50 epochs of

model training.

Table 6: Training and validation losses (MSE) averaged over the final 50 iterations of training

for all 19 tested models with latent dimension size of 50 trained with sorted patches.

Architecture Training Loss Validation Loss

400400_400400 0.014832 0.01628916

400_400 0.01525211 0.01638039

400300_300400 0.01526113 0.01658419

300300_300300 0.0154943 0.01674393

400200_200400 0.01558173 0.01690069

300_300 0.01577537 0.01697213

400400400_400400400 0.01537724 0.01697219

400300300_300300400 0.0156564 0.01706572

400200200_200200400 0.0160742 0.01745806

56

200200_200200 0.01637748 0.01764264

400400200_200400400 0.01611265 0.01768556

300300300_300300300 0.01616417 0.01769364

300200_200300 0.0163793 0.01769536

400400300_300400400 0.01610283 0.0179201

400300200_200300400 0.01628153 0.01804864

300300200_200300300 0.01674769 0.0181483

200200200_200200200 0.01713168 0.01850336

200_200 0.01756568 0.01872389

300200200_200200300 0.01828892 0.01982203

The best model achieves an average reconstruction loss of 0.0163 on the validation

dataset over the final 50 epochs of training. When trained for 500 epochs, it achieves

a test set reconstruction loss of 0.0159. On average, the models perform marginally

worse than those with a latent dimension size of 100. The mean validation loss

exhibited across the tested models is 0.0175. The trend of less complex models

exhibiting marginally superior performance is visible with this class of models as well.

3.2.2 Discussion

Across both methods of compression, we observe that performance improves by

several orders of magnitude when the patches in the training and validation datasets

are sorted prior to training. For both sorted and unsorted patches, the autoencoder

models built with 100-dimensional bottleneck layers exhibited better performance

than those trained with 50-dimensional bottlenecks. This is expected as the latter

represents a considerably higher degree of compression. As is expected for principal

component analysis, increasing the number of principal components used in the

reconstruction decreases the magnitude of loss incurred.

In the context of the training and validation sets used, the sorted variant of the

dataset exhibits considerably lower variances for 491 of the 500 variables across

patches in comparison to the variant of the dataset where patches are unsorted.

Similar to the case observed during the training of BIPSPI with sorted patches,

57

sorting patches specifies the interpretation associated with each index of the patch

vector. This is likely the reason why it appears to be significantly easier for learning-

based compression methods to compress a sorted patch than an unsorted patch.

We reiterate that sorting happens within a patch along the five MaSIF features and

not at the level of the dataset.

From our experiments, we conclude that sorting is a necessary prerequisite for the

successful compression of protein surface patches. The methods developed and

tested by us are highly competent at the task of compressing sorted protein surface

patches. We believe that the compressed representations can be directly used to

train protein-protein interface prediction models such as BIPSPI that are reliant on

linear input representations or for other allied problems such as protein-ligand

binding prediction or interface hotspot prediction. The significantly smaller size of the

patch representation can either facilitate faster training owing to the reduced size of

the input data or make space to allow for the use of additional sequence/structure-

derived features, such as context-aware residue representations created by protein

language models.

To compare the two unsupervised learning methods, the PCA-based methods using

50 and 100 principal components were tested on the held-out test set. At a

compressed representation size of 100 dimensions, the PCA-based method exhibits

marginally higher reconstruction loss (MSE 0.0102) on the test set than that incurred

by the most performant comparable autoencoder model (MSE 0.0073). The

difference is significantly higher at a compressed representation size of 50

dimensions (MSE 0.0269 vs MSE 0.0159). While the autoencoder appears to be

more performant at the task of compression, we believe that the choice of method

should depend on the user’s priorities. If minimizing reconstruction error to near-

lossless levels is the objective, the autoencoder method is preferred. However, in the

event that interpretability and ease of use are of greater importance, the PCA

method is a sufficiently competent alternative.

As sorting corrupts the geometrical relationships between the various vertices that

constitute a patch, we acknowledge that the linearized compressed patch

representation is likely to be suboptimal when used in conjunction with learning

58

algorithms that can take positional information regarding the various inputs into

account. To create compressed input representations for such models, we

recommend using rotation-invariant deep-learning-based models. We believe the

polar convolutional neural network-based method MaSIF uses to generate

fingerprints can be adapted for the purpose of patch compression, owing to its ability

to learn local geometrical patterns within patches using convolutional filters and its

integration of multiple rotations of each patch to incorporate rotation invariance.

59

References

Ahmad, S, and Mizuguchi, K (2011). Partner-Aware Prediction of Interacting

Residues in Protein-Protein Complexes from Sequence Data. PLOS ONE 6, e29104.

Alberstein, RG, Guo, AB, and Kortemme, T (2022). Design principles of protein

switches. Curr Opin Struct Biol 72, 71–78.

Altschul, S (1997). Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Research 25, 3389–3402.

Anderson, MR, and Cafarella, M (2016). Input selection for fast feature engineering.

In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), 577–588.

Baek, M et al. (2021). Accurate prediction of protein structures and interactions using

a three-track neural network. Science 373, 871–876.

Bahadur, RP, and Zacharias, M (2008). The interface of protein-protein complexes:

Analysis of contacts and prediction of interactions. Cell Mol Life Sci 65, 1059–1072.

Bai, X, McMullan, G, and Scheres, SHW (2015). How cryo-EM is revolutionizing

structural biology. Trends in Biochemical Sciences 40, 49–57.

Bank, D, Koenigstein, N, and Giryes, R (2021). Autoencoders.

Benjin, X, and Ling, L (2020). Developments, applications, and prospects of

cryo‐electron microscopy. Protein Sci 29, 872–882.

Cao, L et al. (2022). Design of protein-binding proteins from the target structure

alone. Nature 605, 551–560.

Chen, R, Mintseris, J, Janin, J, and Weng, Z (2003). A protein-protein docking

benchmark. Proteins 52, 88–91.

Chen, T, and Guestrin, C (2016). XGBoost: A Scalable Tree Boosting System. In:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, 785–794.

60

Chen, X et al. (2018). DCZ3112, a novel Hsp90 inhibitor, exerts potent antitumor

activity against HER2-positive breast cancer through disruption of Hsp90-Cdc37

interaction. Cancer Lett 434, 70–80.

Choi, YS, Yang, J-S, Choi, Y, Ryu, SH, and Kim, S (2009). Evolutionary

conservation in multiple faces of protein interaction. Proteins 77, 14–25.

Clarke, M (2010). Muscle sliding filaments. Nat Rev Mol Cell Biol 9, s7–s7.

Cock, PJA et al. (2009). Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics 25, 1422–1423.

Cong, Q, Anishchenko, I, Ovchinnikov, S, and Baker, D (2019). Protein interaction

networks revealed by proteome coevolution. Science 365, 185–189.

Dai, B, and Bailey-Kellogg, C (2021). Protein interaction interface region prediction

by geometric deep learning. Bioinform.

Dall’Acqua, W et al. (1998). A Mutational Analysis of Binding Interactions in an

Antigen−Antibody Protein−Protein Complex. Biochemistry 37, 7981–7991.

Eddy, SR (1995). Multiple alignment using hidden Markov models. Proc Int Conf

Intell Syst Mol Biol 3, 114–120.

Elnaggar, A et al. (2022). ProtTrans: Toward Understanding the Language of Life

Through Self-Supervised Learning. IEEE Trans Pattern Anal Mach Intell 44, 7112–

7127.

Evans, R et al. (2022). Protein complex prediction with AlphaFold-Multimer.

2021.10.04.463034.

Finn, RD, Clements, J, and Eddy, SR (2011). HMMER web server: interactive

sequence similarity searching. Nucleic Acids Res 39, W29–W37.

Fletcher, DA, and Mullins, RD (2010). Cell mechanics and the cytoskeleton. Nature

463, 485–492.

61

Fout, A, Byrd, J, Shariat, B, and Ben-Hur, A (2017). Protein Interface Prediction

using Graph Convolutional Networks. In: Advances in Neural Information Processing

Systems, Curran Associates, Inc.

Friedman, JH (2001). Greedy function approximation: A gradient boosting machine.

The Annals of Statistics 29, 1189–1232.

Fuchs, E, and Cleveland, DW (1998). A Structural Scaffolding of Intermediate

Filaments in Health and Disease. Science 279, 514–519.

Gainza, P, Sverrisson, F, Monti, F, Rodolà, E, Boscaini, D, Bronstein, MM, and

Correia, BE (2020). Deciphering interaction fingerprints from protein molecular

surfaces using geometric deep learning. Nat Methods 17, 184–192.

Ghusinga, KR, Jones, RD, Jones, AM, and Elston, TC (2021). Molecular switch

architecture determines response properties of signaling pathways. Proceedings of

the National Academy of Sciences 118, e2013401118.

Goyal, A, and Bengio, Y (2022). Inductive biases for deep learning of higher-level

cognition. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences 478, 20210068.

Green, AG, Elhabashy, H, Brock, KP, Maddamsetti, R, Kohlbacher, O, and Marks,

DS (2021). Large-scale discovery of protein interactions at residue resolution using

co-evolution calculated from genomic sequences. Nat Commun 12, 1396.

Greener, JG, Kandathil, SM, Moffat, L, and Jones, DT (2022). A guide to machine

learning for biologists. Nat Rev Mol Cell Biol 23, 40–55.

Guest, JD, Vreven, T, Zhou, J, Moal, I, Jeliazkov, JR, Gray, JJ, Weng, Z, and Pierce,

BG (2021). An expanded benchmark for antibody-antigen docking and affinity

prediction reveals insights into antibody recognition determinants. Structure 29, 606-

621.e5.

Ha, J-H, and Loh, SN (2012). Protein conformational switches: from nature to

design. Chemistry 18, 7984–7999.

62

Hamelryck, T (2005). An amino acid has two sides: a new 2D measure provides a

different view of solvent exposure. Proteins 59, 38–48.

Harkey, T, Govind Kumar, V, Hettige, J, Tabari, SH, Immadisetty, K, and Moradi, M

(2019). The Role of a Crystallographically Unresolved Cytoplasmic Loop in

Stabilizing the Bacterial Membrane Insertase YidC2. Sci Rep 9, 14451.

Herrmann, H, Bär, H, Kreplak, L, Strelkov, SV, and Aebi, U (2007). Intermediate

filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8, 562–

573.

Hopf, TA et al. (2019). The EVcouplings Python framework for coevolutionary

sequence analysis. Bioinformatics 35, 1582–1584.

Hopf, TA, Schärfe, CPI, Rodrigues, JPGLM, Green, AG, Kohlbacher, O, Sander, C,

Bonvin, AMJJ, and Marks, DS (2014). Sequence co-evolution gives 3D contacts and

structures of protein complexes. ELife 3, e03430.

Hou, Z, Yang, Y, Ma, Z, Wong, K, and Li, X (2023). Learning the protein language of

proteome-wide protein-protein binding sites via explainable ensemble deep learning.

Commun Biol 6, 1–15.

Hu, Y, Cheng, K, He, L, Zhang, X, Jiang, B, Jiang, L, Li, C, Wang, G, Yang, Y, and

Liu, M (2021). NMR-Based Methods for Protein Analysis. Anal Chem 93, 1866–

1879.

Huxley, AF, and Niedergerke, R (1954). Structural Changes in Muscle During

Contraction: Interference Microscopy of Living Muscle Fibres. Nature 173, 971–973.

Hwang, H, Pierce, B, Mintseris, J, Janin, J, and Weng, Z (2008). Protein–protein

docking benchmark version 3.0. Proteins: Structure, Function, and Bioinformatics 73,

705–709.

Jaderberg, M, Simonyan, K, Zisserman, A, and kavukcuoglu, koray (2015). Spatial

Transformer Networks. In: Advances in Neural Information Processing Systems,

Curran Associates, Inc.

63

Jeong, H, Tombor, B, Albert, R, Oltvai, ZN, and Barabási, A-L (2000). The large-

scale organization of metabolic networks. Nature 407, 651–654.

Jordan, MI, and Mitchell, TM (2015). Machine learning: Trends, perspectives, and

prospects. Science 349, 255–260.

Jumper, J et al. (2021). Highly accurate protein structure prediction with AlphaFold.

Nature 596, 583–589.

Jurrus, E et al. (2018). Improvements to the APBS biomolecular solvation software

suite. Protein Science 27, 112–128.

Kabsch, W, and Sander, C (1983). Dictionary of protein secondary structure: pattern

recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–

2637.

Kim, TY, Cha, JS, Kim, H, Choi, Y, Cho, H-S, and Kim, H-S (2021). Computationally-

guided design and affinity improvement of a protein binder targeting a specific site on

HER2. Computational and Structural Biotechnology Journal 19, 1325–1334.

Kingma, DP, and Ba, J (2015). Adam: A Method for Stochastic Optimization. In: 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA,

USA, May 7-9, 2015, Conference Track Proceedings, ed. Y Bengio, and Y LeCun.

Kipf, TN, and Welling, M (2017). Semi-Supervised Classification with Graph

Convolutional Networks.

Kortemme, T, Morozov, AV, and Baker, D (2003). An orientation-dependent

hydrogen bonding potential improves prediction of specificity and structure for

proteins and protein-protein complexes. J Mol Biol 326, 1239–1259.

Kramer, MA (1992). Autoassociative neural networks. Computers & Chemical

Engineering 16, 313–328.

Krapp, LF, Abriata, LA, Rodriguez, FC, and Peraro, MD (2022). PeSTo: parameter-

free geometric deep learning for accurate prediction of protein interacting interfaces.

2022.05.09.491165.

64

LeCun, Y, Bengio, Y, and Hinton, G (2015). Deep learning. Nature 521, 436–444.

Lee, B, and Richards, FM (1971). The interpretation of protein structures: Estimation

of static accessibility. Journal of Molecular Biology 55, 379-IN4.

Leinonen, R, Diez, FG, Binns, D, Fleischmann, W, Lopez, R, and Apweiler, R (2004).

UniProt archive. Bioinformatics 20, 3236–3237.

Li, Z et al. (2017). The OncoPPi network of cancer-focused protein–protein

interactions to inform biological insights and therapeutic strategies. Nat Commun 8,

14356.

Lo Conte, L, Ailey, B, Hubbard, TJP, Brenner, SE, Murzin, AG, and Chothia, C

(2000). SCOP: a Structural Classification of Proteins database. Nucleic Acids Res

28, 257–259.

Manfredi, M, Savojardo, C, Martelli, PL, and Casadio, R (2023). ISPRED-SEQ: Deep

Neural Networks and Embeddings for Predicting Interaction Sites in Protein

Sequences. Journal of Molecular Biology, 167963.

Marchand, A, Van Hall-Beauvais, AK, and Correia, BE (2022). Computational design

of novel protein–protein interactions – An overview on methodological approaches

and applications. Current Opinion in Structural Biology 74, 102370.

Marsh, JA, and Teichmann, SA (2011). Relative Solvent Accessible Surface Area

Predicts Protein Conformational Changes upon Binding. Structure 19, 859–867.

Martins, JM, Ramos, RM, Pimenta, AC, and Moreira, IS (2014). Solvent-accessible

surface area: How well can be applied to hot-spot detection? Proteins: Structure,

Function, and Bioinformatics 82, 479–490.

Mihel, J, Šikić, M, Tomić, S, Jeren, B, and Vlahoviček, K (2008). PSAIA – Protein

Structure and Interaction Analyzer. BMC Structural Biology 8, 21.

Milburn, MV, Tong, L, deVos, AM, Brünger, A, Yamaizumi, Z, Nishimura, S, and Kim,

SH (1990). Molecular switch for signal transduction: structural differences between

active and inactive forms of protooncogenic ras proteins. Science 247, 939–945.

65

Minhas, F ul AA, Geiss, BJ, and Ben-Hur, A (2014). PAIRpred: partner-specific

prediction of interacting residues from sequence and structure. Proteins 82, 1142–

1155.

Munteanu, CR, Pimenta, AC, Fernandez-Lozano, C, Melo, A, Cordeiro, MNDS, and

Moreira, IS (2015). Solvent Accessible Surface Area-Based Hot-Spot Detection

Methods for Protein–Protein and Protein–Nucleic Acid Interfaces. J Chem Inf Model

55, 1077–1086.

Murakami, Y, and Mizuguchi, K (2010). Applying the Naïve Bayes classifier with

kernel density estimation to the prediction of protein-protein interaction sites.

Bioinformatics 26, 1841–1848.

Ovchinnikov, S, Kamisetty, H, and Baker, D (2014). Robust and accurate prediction

of residue–residue interactions across protein interfaces using evolutionary

information. ELife 3, e02030.

Pawson, T, and Nash, P (2000). Protein–protein interactions define specificity in

signal transduction. Genes Dev 14, 1027–1047.

Pearson, K (1901). LIII. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

Science 2, 559–572.

Pei, J, and Grishin, NV (2001). AL2CO: calculation of positional conservation in a

protein sequence alignment. Bioinformatics 17, 700–712.

Pintar, A, Carugo, O, and Pongor, S (2002). CX, an algorithm that identifies

protruding atoms in proteins. Bioinformatics 18, 980–984.

Pintar, A, Carugo, O, and Pongor, S (2003). DPX: for the analysis of the protein

core. Bioinformatics 19, 313–314.

Pittala, S, and Bailey-Kellogg, C (2020). Learning context-aware structural

representations to predict antigen and antibody binding interfaces. Bioinformatics 36,

3996–4003.

66

Plaut, E (2018). From Principal Subspaces to Principal Components with Linear

Autoencoders.

Qi, CR, Su, H, Mo, K, and Guibas, LJ (2017). PointNet: Deep Learning on Point Sets

for 3D Classification and Segmentation. 652–660.

Rives, A et al. (2021). Biological structure and function emerge from scaling

unsupervised learning to 250 million protein sequences. Proceedings of the National

Academy of Sciences 118, e2016239118.

Sanchez-Garcia, R, Macias, JR, Sorzano, COS, Carazo, JM, and Segura, J (2022).

BIPSPI+: Mining Type-Specific Datasets of Protein Complexes to Improve Protein

Binding Site Prediction. Journal of Molecular Biology 434, 167556.

Sanchez-Garcia, R, Sorzano, COS, Carazo, JM, and Segura, J (2019). BIPSPI: a

method for the prediction of partner-specific protein–protein interfaces.

Bioinformatics 35, 470–477.

Sanner, MF, Olson, AJ, and Spehner, J-C (1996). Reduced surface: An efficient way

to compute molecular surfaces. Biopolymers 38, 305–320.

Sarker, IH (2021). Machine Learning: Algorithms, Real-World Applications and

Research Directions. SN COMPUT SCI 2, 160.

Scott, DE, Bayly, AR, Abell, C, and Skidmore, J (2016). Small molecules, big targets:

drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov

15, 533–550.

Seemayer, S, Gruber, M, and Söding, J (2014). CCMpred—fast and precise

prediction of protein residue–residue contacts from correlated mutations.

Bioinformatics 30, 3128–3130.

Shrake, A, and Rupley, JA (1973). Environment and exposure to solvent of protein

atoms. Lysozyme and insulin. Journal of Molecular Biology 79, 351–371.

Smyth, MS, and Martin, JHJ (2000). x Ray crystallography. Molecular Pathology 53,

8–14.

67

Søgaard-Andersen, L, and Valentin-Hansen, P (1993). Protein-protein interactions in

gene regulation: the cAMP-CRP complex sets the specificity of a second DNA-

binding protein, the CytR repressor. Cell 75, 557–566.

Stites, WE (1997). Protein−Protein Interactions:  Interface Structure, Binding

Thermodynamics, and Mutational Analysis. Chem Rev 97, 1233–1250.

Suzek, BE, Huang, H, McGarvey, P, Mazumder, R, and Wu, CH (2007). UniRef:

comprehensive and non-redundant UniProt reference clusters. Bioinformatics 23,

1282–1288.

Tarca, AL, Carey, VJ, Chen, X, Romero, R, and Drăghici, S (2007). Machine

Learning and Its Applications to Biology. PLoS Comput Biol 3, e116.

Teppa, E, Zea, DJ, and Marino‐Buslje, C (2017). Protein–protein interactions leave

evolutionary footprints: High molecular coevolution at the core of interfaces. Protein

Sci 26, 2438–2444.

Tien, MZ, Meyer, AG, Sydykova, DK, Spielman, SJ, and Wilke, CO (2013).

Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS One 8,

e80635.

Vaswani, A, Shazeer, N, Parmar, N, Uszkoreit, J, Jones, L, Gomez, AN, Kaiser, L,

and Polosukhin, I (2017). Attention Is All You Need.

Veličković, P, Cucurull, G, Casanova, A, Romero, A, Liò, P, and Bengio, Y (2018).

Graph Attention Networks.

Virtanen, P et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nat Methods 17, 261–272.

Vreven, T et al. (2015). Updates to the Integrated Protein-Protein Interaction

Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2. J Mol

Biol 427, 3031–3041.

Wang, G, and Dunbrack, RL, Jr (2003). PISCES: a protein sequence culling server.

Bioinformatics 19, 1589–1591.

68

Word, JM, Lovell, SC, Richardson, JS, and Richardson, DC (1999). Asparagine and

glutamine: using hydrogen atom contacts in the choice of side-chain amide

orientation11Edited by J. Thornton. Journal of Molecular Biology 285, 1735–1747.

wwPDB consortium (2019). Protein Data Bank: the single global archive for 3D

macromolecular structure data. Nucleic Acids Research 47, D520–D528.

Xue, LC, Dobbs, D, Bonvin, AMJJ, and Honavar, V (2015). Computational prediction

of protein interfaces: A review of data driven methods. FEBS Lett 589, 3516–3526.

Yin, S, Proctor, EA, Lugovskoy, AA, and Dokholyan, NV (2009). Fast screening of

protein surfaces using geometric invariant fingerprints. Proceedings of the National

Academy of Sciences 106, 16622–16626.

Zanotti, G, Folli, C, Cendron, L, Alfieri, B, Nishida, SK, Gliubich, F, Pasquato, N,

Negro, A, and Berni, R (2008). Structural and mutational analyses of protein–protein

interactions between transthyretin and retinol-binding protein. The FEBS Journal

275, 5841–5854.

Zheng, H, Handing, KB, Zimmerman, MD, Shabalin, IG, Almo, SC, and Minor, W

(2015). X-ray crystallography over the past decade for novel drug discovery – where

are we heading next? Expert Opin Drug Discov 10, 975–989.

(2004). Hypervariable region. In: Rheumatology and Immunology Therapy, ed. JD

Abbott et al., Berlin, Heidelberg: Springer, 424–424.

69

Appendix

Feature importance for 2-step classifiers (Gain).

Figure 29: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default. The structural features associated with BIPSPI are grouped

together in a single category called ‘BIPSPI features’.

Figure 30: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default

70

Figure 31: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-patch. The structural features associated with MaSIF are grouped

together in a single category called ‘MaSIF features’.

Figure 32: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-patch

71

Figure 33: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-patch-sorted. The structural features associated with MaSIF are

grouped together in a single category called ‘MaSIF features’.

Figure 34: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-patch-sorted

72

Figure 35: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default-patch. The structural features associated with BIPSPI and

MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF
features’.

Figure 36: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default-patch

73

Figure 37: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default-patch-sorted. The structural features associated with BIPSPI
and MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF

features’.

Figure 38: Global and mean feature importances (gain) associated with the features used in
the training of BIPSPI-default-patch-sorted

74

Feature importance in terms of frequency

In addition to the feature importance computed in terms of ‘gain’ (presented in the

main text), we also compute feature importance in terms of ‘frequency’. Here, the

relative importance of a feature is computed as the ratio of the number of times a

given feature is involved in tree splits across all trees that constitute the model to the

total number of splits contained across all trees in the model. Since it only relies on

the number of times a given feature is used, it is not as informative as ‘gain’ in

relaying the impact of the features used in the various models.

Figure 39: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default. The structural features associated with BIPSPI are

grouped together in a single category called ‘BIPSPI features’.

75

Figure 40: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default

Figure 41: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-patch. The structural features associated with MaSIF are

grouped together in a single category called ‘MaSIF features’.

76

Figure 42: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-patch

Figure 43: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-patch-sorted. The structural features associated with MaSIF

are grouped together in a single category called ‘MaSIF features’.

77

Figure 44: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-patch-sorted

Figure 45: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default-patch. The structural features associated with BIPSPI
and MaSIF are grouped into two separate categories called 'BIPSPI features' and ‘MaSIF

features’.

78

Figure 46: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default-patch

Figure 47: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default-patch-sorted. The structural features associated with
BIPSPI and MaSIF are grouped into two separate categories called 'BIPSPI features' and

‘MaSIF features’.

79

Figure 48: Global and mean feature importances (frequency) associated with the features
used in the training of BIPSPI-default-patch-sorted

		2023-05-09T00:25:04+0200
	SORZANO SANCHEZ CARLOS OSCAR - 25669302Z

