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Abstract

The collapse of the Indian Oil Sardine (IOS) fishery in the early 2010s has had devastating

effects on the livelihoods of thousands of small-scale fisherfolk in Kerala. Previous stud-

ies have analyzed the decline of IOS fish populations using conventional fisheries models

that often oversimplify complex interactions and assume linear relationships, neglecting the

nonlinearity and feedback loops that can be critical in understanding the dynamics of eco-

logical systems. In contrast, our study employs a dynamical systems model to investigate

the regime shift of IOS fisheries by capturing the complex interplay of ecological and social

processes involved in the system. Our results demonstrate that the stability of the sardine

fisheries system can be attributed to both fisher behaviour and environmental factors (up-

welling, migration), and highlight the importance of addressing both factors for sustainable

management of the fishery.
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Chapter 1

Introduction

Background

Indian Oil Sardine, Sardinella longiceps, is an economically important small pelagic fish

species found in tropical waters of the southeastern Arabian Sea. Fish is commonly used in

various traditional dishes in Kerala and is an important source of protein and nutrition for

local communities. However, in the last decade, the abundance of sardine fish population

has drastically declined due to deteriorating environmental conditions and overfishing (Kripa

et al., 2018). The stock of this resource is vulnerable to significant annual fluctuations due

to various anthropogenic (e.g., overfishing), biological (e.g. spawning failure, competition

from other species occupying the same niche, and food shortages), and environmental (e.g.

El Niño, rising sea surface temperatures, erratic rainfall, and other climatic events) factors.

These factors are believed to have a significant impact on the landings of this resource (Rohit

et al., 2018).

In 2012, this resource achieved a record-breaking level of landings, yet within three years,

the fishery collapsed. Several studies have been conducted to comprehend the underlying

causes of this sudden collapse, and numerous policy recommendations have been proposed

based on the findings of fisheries researchers (Kripa et al., 2018; Mohamed et al., 2014). The

government introduced management tools like minimum legal size (MLS) with the ability to

protect juvenile fish, maintain spawning stocks and control the sizes of fish caught.
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Research gap

Although researchers have identified several potential factors that might have led to the

collapse of the system, we do not know the extent of the interactions between these factors

and how they may have contributed to the collapse of the Indian oil sardine fishery. We

were particularly interested in understanding the complex interplay of social and ecological

processes that characterize the dynamics of IOS fisheries.

The dynamics of social-ecological systems arise due to interconnected feedback loops

among biophysical processes, human behaviours, and institutional processes within specific

social and biophysical contexts (Reyers et al., 2018). Understanding the dynamical inter-

play between the constituents of systems is challenging. Conventional dynamical models of

complex systems are rarely mathematically tractable, and their numerical exploration suf-

fers both from computational and data limitations (Massing and Gross, 2021). Here, we

use a generalized modeling approach (Gross and Feudel, 2006) that can deal with limited

data availability by relying on causal relationships drawn from cross-disciplinary knowledge

from academic and grey literature, including research articles, newsletters, policy reports,

and annual reports. We use concepts such as stability to distinguish between qualitatively

different features of the system.

Research approach and methodology

We will adopt a research approach that employs dynamical systems modeling to study the

intricate causal interactions and behaviours of fisheries as a complex system. Conventional

models often involve a set of differential equations that precisely define the time evolution

of each variable. Generalized modeling in dynamical systems acknowledges the limitations

of empirical knowledge and does not assume a single definitive truth. Instead, it considers

a range of possibilities that are consistent with the available structural knowledge. By

exploring the dynamics within this ensemble, researchers can gain a better understanding

of the potential outcomes and narrow down the set of possible models. This approach

provides a more comprehensive understanding of dynamical systems while acknowledging

the uncertainties inherent in such models. Generalized modeling enables researchers to

create flexible frameworks for further exploration and refinement of the model, making it a
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valuable tool for empirical modeling in the face of uncertainty.

Generalized modeling approach has been utilized several times previously and has been

adapted to suit various fields. Initial studies focused on prey-predator models and food web

models (Gross, 2004; Gross et al., 2005). The tractability of Jacobian matrices through

generalized ecological models led to their use as a foundation for various methodological

advancements. The approach was improved by (Yeakel et al., 2011), and (Kuehn et al.,

2013) extended the approach with rigorous mathematical support. (Lade and Gross, 2012)

proposed a new type of warning signal for critical transitions based on Generalized model-

ing. The approach was subsequently applied to examine empirical socio-ecological systems,

emphasizing the importance of system stability (Lade and Niiranen, 2017).

Stability in dynamical systems refers to the tendency of a system to return to its initial

state or to remain in a certain state after a small perturbation. In a dynamical system, a

stable fixed point (Holmes and Shea-Brown, 2006) is an equilibrium point around which the

system remains within a basin of attraction (Ott, 2006), and any small perturbation of the

system’s state causes it to converge back to the fixed point over time. The eigenvalues of a

matrix that describes the linearization of the system at an equilibrium point determine the

stability of that equilibrium. Specifically, if all the eigenvalues have negative real parts, the

equilibrium is said to be asymptotically stable, meaning that the system will converge to the

equilibrium point over time. In this work, we use the real part of the dominant eigenvalue of

the jacobian matrix of the system of differential equations to represent instability. However,

this can be misleading in systems like large networks as instabilities can often arise on very

different timescales, such that the eigenvalue that is the leading one in most of the parameter

space may not be the one that causes the instability once stability is lost (Massing and Gross,

2021).

Generalized models also permit analyses of the stability of other attractors like limit cycles

(Kuehn et al., 2013). However, in the case of sardine fisheries, a fixed point is assumed even

though the system need not reside exactly at the fixed point. The system may oscillate within

the basin of attraction around the fixed point. The fixed point may also shift slowly in time

due to the effects of slow variables (Kuehn, 2011). In order to simplify the investigation of

the regime shift in the fisheries system, we limited our analysis to the local dynamics of the

system near the equilibria.
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Significance of study

In fisheries, regime shift can occur when a fishery system experiences a significant and of-

ten abrupt change in its productivity, composition, or structure, leading to a new state

that is different from the previous state (such as fisheries collapse characterized by a low

abundance regime). The present study aims to understand the role of different components

(variables, drivers) in the regime shift of the fisheries system and test different assumptions

using a formal modeling framework. Building upon existing work, we provide a more rigorous

and generalized derivation of the methodology for systems with arbitrary numbers of state

variables and intermediate variables, resulting in a clearer and more comprehensive under-

standing of the underlying framework and its practical applications. Our findings reveal that

the stability of the sardine fisheries system is influenced by a combination of fisher behaviour

and environmental factors, such as upwelling and migration. Moreover, we demonstrate that

the presence of uncertainty in non-linear links (elasticities) plays a key role in understanding

regime shifts.

Scope and limitations

Dynamical systems modeling provides an effective means to explore the behaviour of complex

systems, particularly in data-scarce environments. It enables the exploration of interesting

parameter regions and phenomena based on limited information, thus speeding up the initial

exploration. As we gain new insights and data, we may need to update the model to reflect

these changes. However, these models may not be suitable for representing individual actors’

roles and decision-making processes. Although model builders can include actor heterogene-

ity and decision-making processes through causal relationships, these representations may

be less intuitive than those in agent-based modeling. Moreover, Andrei Saltelli has identi-

fied several limitations of dynamical systems modeling, including the reliance on unverified

assumptions, the compression and linearization of analysis to convey an impression of con-

trol and prediction, and the absence of sensitivity analysis (Saltelli and Giampietro, 2015).

Despite these limitations, dynamical systems modeling offers the advantage of iteratively ex-

panding generalized models to incorporate new insights into the system, enabling sensitivity

analysis and the potential for iterative model improvement
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Chapter 2

Materials and Methods

2.1 Data

The data required for the estimation of generalized parameters were obtained from pre-

existing literature based on empirical data (Nair et al., 2016; Kripa et al., 2018; Daniel and

Thomas, 2022; Abdussamad et al., 2015; Henschke et al., 2018) and theoretical assump-

tions (Rohit et al., 2018; Annigeri, 1971). Details regarding data used for the estimation of

parameters are discussed in Appendix A.3.

The data used for analysis included the annual total oil sardine catch (in tonnes), the

total number of units of ring seine fishing gear operated during the year, the total number

of days in the reference period during which fishing activity took place, and the monthly

density of phytoplankton cells per litre. The fishing time was estimated by pooling the daily

estimates from different sampling days in a month. All of the data used in this study was

collected from secondary sources.

2.2 Procedure of Generalized Modeling

We will now discuss the procedure for formulating Generalized models. For this, the concep-

tual model was formalized into a generalized dynamical systems model, in which placeholder
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functions represent the processes governing the dynamics of state variables (Lade et al.,

2015). The relationship between each state variable and the different processes affecting

them is represented through differential equations and algebraic relationships without spec-

ifying any functional form. Appendix A.5 presents an application of this methodology to an

ecological model from the literature.

2.2.1 Identification of state variables

The selection of appropriate state variables is a key consideration in model development,

with the recommendation being to choose variables that exhibit an appropriate time lag or

function as a stock with a sufficient time span.

When it comes to interpretability, generalized modeling can benefit from the inclusion

of additional state variables without significantly impacting tractability. Therefore, it is

generally recommended to include candidate variables instead of omitting them (Massing

and Gross, 2021). Although this may result in a large but sparse Jacobian matrix, they

are often more desirable than small dense ones. This sparsity can simplify the analysis and

interpretation of the system’s dynamics, making it easier to identify important variables and

understand their roles.

2.2.2 Generalized Model Equations

Let there be n state variables such that X =
∑n

i=1 Xiei and m intermediate variables such

that Y =
∑m

i=1 Yiei. Here, ei is the standard basis denoting the index of the state variable

in state space.

The differential equations describing the generalized model can be written in the form

Ẋi =
∑
j

Fij(X, Y ) ; F : Rn+m → Rn . (2.1)

The model is also constrained by algebraic equations containing intermediate variables.

Yi =
∑
j

Gij(X, Y ) ; G : Rn+m → Rm . (2.2)
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2.2.3 Normalization

For convenience, we normalize all the variables and functions describing different processes.

For a variable Xi, we define xi = Xi

X∗
i
, where X∗

i is value of variable at steady state.

Similarly for a process F (X), we define f(x) = F (X)
F ∗ where F ∗ = F (X∗).

This gives us normalized differential equations

ẋi =
∑
j

fijF
∗
ij

X∗
i

(2.3)

At steady state, ẋi = 0, x∗ = 1 and all normalized processes run at rate 1. so,
∑

F ∗
ij = 0.

2.2.4 Jacobian matrix

Linearization is a technique that uses the Jacobian matrix to approximate the behaviour of

a nonlinear system near an equilibrium point by a linear system. The Jacobian matrix of a

dynamical system is a matrix of partial derivatives that describes the local behaviour of the

system near an equilibrium point. The linear approximation of f around the equilibrium

point is obtained by taking into account only the first-order terms in the Taylor expansion.

The basic idea behind linearization is that for sufficiently small perturbations around an

equilibrium point, a nonlinear system can be approximated by a linear system, which is

much easier to analyze. This approximation is valid only for small perturbations around

the equilibrium point, and for larger perturbations, the nonlinear behaviour of the system

becomes important. Jacobian matrices provide us with formal means to study the stability

of a system near a fixed point.

The Jacobian matrix of the differential equations is calculated symbolically and is written

in terms of generalized parameters (α, β and elasticities). To redeem the calculation of

generalized modeling outputs from the values of state variables at fixed points, we rescale

each state variable to have a value of 1 at the steady state. This allows us to write each

element in the Jacobian matrix as a sum of partial derivatives of each process corresponding

to a state variable, which are then rewritten in terms of the elasticities of functions. By

substitution, we can write the Jacobian matrix solely in terms of the generalized parameters
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(α, β and elasticities). The jacobian matrix of the state equations is of the form

Ji,j =



∂ẋ1

∂x1

∂ẋ1

∂x2
... ∂ẋ1

∂xn

∂ẋ2

∂x1

∂ẋ2

∂x2
... ∂ẋ2

∂xn

...
...

...
...

∂ẋi

∂x1

∂ẋi

∂x2
... ∂ẋi

∂xn


Each row of the jacobian matrix corresponds to a state variable and can be written as

Ji =
n∑

k=1

∂ẋi

∂xk

ek =
n∑

k=1

(∑
j

F ∗
ij

X∗
i

∂fij
∂xk

ek

)
(2.4)

Now, the terms in jacobian can be rewritten in terms of generalized parameters. The elas-

ticity parameter (exponent parameter) is defined as, η(A,B) = B
A

∂A
∂B

∣∣∣
∗
. They are the loga-

rithmic derivatives of the original functions. Apart from being easy to interpret, elasticities

provide a measure of nonlinearity that can be very robustly estimated using limited and

noisy data. So row of jacobian matrix at steady state is,

Ji =
n∑

k=1

(∑
j

F ∗
ij

X∗
i

f ∗
ij

x∗
k

η(fij, xk)ek

)
=

n∑
k=1

(∑
j

F ∗
ij

X∗
i

η(fij, xk)ek

)
(2.5)

Define alpha parameter (turnover parameter), αi = C
Xi
, where C is some combination of

different functions. Now Ji is,

Ji =
n∑

k=1

(∑
j

αi

F ∗
ij

Ci

η(fij, xk)ek

)
(2.6)

Finally, the beta parameter is introduced as the fraction of the positive(negative) influence of

a function representing a process. β(F+
ij ) =

F+∗
ij∑

j+ F+∗
ij

. Also, at steady state,
∑

F+
ij =

∑
F−
ij .

Hence,

Ji =
n∑

k=1

 ∑
∀Fij>0

αi

β(F+
ij )
∑

j F
+∗
ij

Ci

η(fij, xk)ek +
∑

∀Fij<0

αi

β(F−
ij )
∑

j F
−∗
ij

Ci

η(fij, xk)ek


=

n∑
k=1

(
αi

β(Ci)

∑
j

β(Fij)η(fij, xk)ek

)
.

(2.7)
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Notably, we are not forced to make assumptions about aspects of the system about

which we are typically uncertain, such as the precise form of the Lotka-Volterra Predator-

Prey Model (Lotka, 1925). In contrast, many more plausible structural features can be

represented.

2.2.5 Intermediate variables

In addition to state variables, other intermediate variables can also be identified to be in-

cluded in the model. They can be helpful in constraining the generalized model and limiting

the ranges of generalized parameters. We will outline a method for deriving the relationship

between different parameters from the algebraic relationships between different variables,

which can then be used to substitute variables in the Jacobian matrix. By doing so, we can

eliminate redundancy in the matrix and simplify our analysis.

An intermediate variable can be expressed in terms of algebraic relationships between

functions of all variables. Normalized equation of an intermediate variable, yi =
∑

j

gij(y)G
∗
ij

Y ∗
i

i-th row of derivative matrix of Y can be written as

J̃i =
n∑

k=1

∂yi
∂xk

ek (2.8)

Derivatives can be written as

∂yi
∂xk

=
∑
j

G∗
ij

Y ∗
i

∂gij
∂xk

(2.9)

So,

J̃i =
n∑

k=1

(∑
j

G∗
ij

Y ∗
i

∂gij
∂xk

)
ek =

n∑
k=1

(∑
j

G∗
ij

Y ∗
i

g∗ij
x∗
k

η(gij, xk)

)
ek

=
n∑

k=1

(∑
j

β(Gij)η(gij, xk)

)
ek =

n∑
k=1

η(yi, xk)ek

(2.10)
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2.3 Model Overview

We formulated an elaborate social-ecological model to examine the involvement of various

processes and mechanisms that could have contributed towards the emergence of a regime

shift in sardine fisheries in Kerala. We relied on literature available to us from the ICAR-

Central Marine Fisheries Research Institute (CMFRI), Kochi and other fisheries journals.

A conceptual model was initially developed, which represents the interrelationships and

feedback loops between different variables and factors that influence the behaviour of the

fisheries system, and it was visualized in the form of a causal loop diagram (Figure 2.1).

Further details regarding the construction of this diagram are available in Appendix A.1.

Figure 2.1: Causal Loop Diagram. Conceptual representation of the Indian Oil Sardine
fisheries model. Here, dotted lines represent potential model experiments, and dashed lines
represent ENSO teleconnections. Boxes indicate state variables of the system.

We incorporated three distinct subsystems in our model, each with a specific focus: the
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ecological subsystem, which captures the biotic and abiotic components of the ecosystem;

the fishing-related subsystem, which represents the behaviour and actions of fishers in the

system; and the market economy-related subsystem, which accounts for the economic forces

and market dynamics that influence the system.

2.4 Model Description of the IOS Fisheries System

The state variables involved in IOS fisheries model are Sardine Number, Jellyfish Number,

Fishing Gear and Fishing Time. To capture the dynamic behaviour of the system, we

developed a set of ordinary differential equations that describe how each variable changes as

a function of its own state and the state of other variables in the model. Conventional models

use precise and exact rules and equations to govern variables based on given initial conditions.

However, we have not constrained the functions used in our ordinary differential equations,

but we have assumed that the gains and losses between variables can be represented by

mathematical functions. In some cases, it may not be directly informative to rely solely on

the causal loop diagram to understand how variables change when processes depend on the

variable itself. For example, in Equation (2.12), the variable jellyfish number may depend

on itself through processes such as strobilation, senescence, and mortality.

We will now delve deeper into the model’s components by discussing the ordinary differ-

ential equations used to capture the system’s dynamic behaviour in Subsection 2.4.1. We

will also explore the algebraic relationships between variables in Subsection 2.4.2, which

govern the way variables interact with each other. In Subsection 2.4.3, we will analyze the

stability of the system using the Jacobian matrix, and in Subsection 2.4.4, we will discuss

the use of generalized parameters to simulate different scenarios. By examining each of these

components in detail, we can gain a comprehensive understanding of the IOS fisheries model.

2.4.1 Differential equations of the State Variables

In the Generalized modeling framework, we do not restrict the processes in the model to

specific functional forms, and thus we cannot meaningfully compute the steady states of the

model. However, under assumptions that the state variables change due to various gain and
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loss functions, we can write the ordinary differential equations (ODEs) of the system. In

this section, we will describe each equation governing the dynamics of the fisheries system.

Sardine Number Oil sardine grows rapidly, matures early, and a few continue to survive

beyond 18 months (Longhurst and Wooster, 1990). The increase in the sardine population

number is represented by the sardine recruitment function and migration process function.

Here, by convention, we consider the (inward) migration function to be positive based on

a schematic map portraying the distribution and migration pattern of Indian Oil Sardine,

which can be found in the CMFRI Newsletter (CMFRI, 2007). The decrease in the sardine

population number is represented by the sardine mortality and the sardine catch.

d

dt
(SardineNumber) = SardineReruitmentIntoAdult(SardineJuvenileNumber)− SardineCatch

− SardineMortalityNumber(SardineNumber) +MigrationNumber(MigrationRate)

(2.11)

Jellyfish Number Jellyfish play a critical role in the functioning of marine ecosystems

by supporting various processes and trophic interactions. These macro-plankters primarily

prey on zooplankton and fish larvae and are known to affect fish recruitment (Lynam et al.,

2005). Jellyfish blooms were seen in the inshore surface and column waters of the primary

sardine fishing area from 5 to 30 m depth zone in June 2013 and August to September 2014

(Kripa et al., 2018). Jellyfish undergo a complex life cycle that involves an alternation of

generations between a sexual medusa stage and an asexual polyp stage. Polyps can undergo

strobilation, where they divide into stacked disks that develop into juvenile medusae. Adult

medusae eventually undergo senescence. We used a pre-existing Scyphozoan jellyfish model

(Henschke et al., 2018) to incorporate medusa dynamics and strobilation.

d

dt
(JellyfishNumber) = JellyF ishMedusaStrobilation(JellyF ishNumber)

+ JellyF ishGrowth(PhytoP lanktonDensity, ZooP lanktonDensity, SardineJuvenileNumber)

− JellyF ishSenescence(JellyF ishNumber)− JellyF ishPredationMortality(JellyF ishNumber)
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(2.12)

Fishing Gear Modernisation of fisheries in Kerala has increased fishing effort and catch

since areas beyond conventional fishing grounds were also explored. We modeled two major

types of gears (Inboard ring seine and Outboard ring seine), which together account for

90% of the oil sardine catch (Abdussamad et al., 2015), separately, due to the difference in

their efficiencies. Heterogeneities in the fishing gear beyond the distinction between OBRS

and IBRS were not modeled. We also accounted for the potential loss of fishing gear due

to abandonment, market exit, or discarding, which may result in a decrease in the overall

fishing gear size. We kept the proportional gear exit same for all years (i.e., linear gear exit

w.r.t total annual fishing gear size)

d

dt
(FishingGear) = FishingGearOBRS(Profitability) + FishingGearIBRS(Profitability)

− GearExit(FishingGear,DegreeOfRegulation)

(2.13)

Fishing Time We modeled fishers as satisficers (Simon, 1955) who engage in income- or

yield-targeting, whereby fishers adjust their fishing time according to Catch per unit effort

on a particular timescale instead of trying to maximize intertemporal profits (Nguyen and

Leung, 2013). Extreme weather events have led to challenges like loss in fishing time and

false alarms affecting fisher livelihood (Martin et al., 2022). Hence, we considered the loss

in fishing days in the model.

d

dt
(FishingT ime) = FishingT ime− FishingCompensatedT ime(CPUE)

− LossInFishingT ime(EarlyWarningSignals)
(2.14)
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2.4.2 Algebraic relationships of Intermediate Variables

Ecosystem Dynamics Oil sardines are primarily planktivores (i.e., they feed on plank-

ton). Important ecological variables such as phytoplankton density and Jellyfish (predator)

number were included to capture prey-predator dynamics affecting the sardine population.

The juvenile sardine fish population was modeled separately since they are directly linked to

the regulation of fishing due to excessive capture of the spawning stock. Upwelling is a driver

that influences the maturation and migration of sardines (Kripa et al., 2018) and is believed

to play a vital role in the variability of the sardine stock. Upwelling is known to signifi-

cantly impact phytoplankton density by bringing nutrient-rich water to the surface, thereby

increasing the availability of essential nutrients for phytoplankton growth. The alongshore

wind component plays a crucial role in driving upwelling by pushing surface waters away

from the shore and allowing nutrient-rich, cooler water to rise to the surface. The inten-

sity and direction of the alongshore wind component can influence the strength of upwelling

(Muni Krishna, 2008). ENSO (El Niño-Southern Oscillation) also impacts upwelling (Kripa

et al., 2018) by altering the wind patterns in the equatorial Pacific. However, it was not

considered in the model equations since it is merely a teleconnection (Achuthavarier et al.,

2012) and not a causal link. Since variables represent

MigrationRate = Migration(Upwelling, PhytoP lanktonDensity)

MaturationRate = SardineMaturation(Upwelling, PhytoP lanktonDensity)

SardineJuvenileNumber = SardineJuvenileGrowth(MaturationRate, PhytoplanktonDensity)

− JuvenileCatchRate(NonDomesticDemand)

− JuvenileMortality(JellyF ishNumber)

PhytoP lanktonDensity = PhytoP lanktonGrowth(Upwelling)

− PhytoP lanktonConsumptionJellyfish(JellyF ishNumber)

Social Dynamics We modeled sardine adult catch and juvenile catch separately to study

the impact of juvenile fishing on the system. Fishing effort is directly proportional to fishing

gear and fishing time. CPUE, which represents the amount of sardine catch per unit of

fishing effort, is also directly proportional to the fishing effort. The elasticities for the links

associated with these intermediate variables will be 1.
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SardineCatch = SardineAdultCatch(SardineNumber, F ishingEffort)

+ SardineJuvenileCatch(SardineJuvenileNumber, F ishingEffort)

FishingEffort = FishingEffortOBRS(FishingGearOBRS, F ishingT ime)

+ FishingEffortIBRS(FishingGearIBRS, F ishingTme)

CPUE = CPUE(SardineCatch, F ishingEffort)

Market Economics and Regulations Fishing behaviour is directly linked to market

dynamics (price, profitability) through feedback loops. We modeled market price of sardine

fish as a function of local sardine catch and total substitutable commodity (external sardine

catch and aquaculture production). We did not consider other commonly available fish as

substitutable. Consumer preference plays an important role in stability and management of

multispecies fisheries (Quaas and Requate, 2013). Juvenile fishing, which was more prevalent

during the early 2010s, increased in response to non-domestic demand (Shyam et al., 2015)

from fishmeal and bait industries (Mohamed et al., 2014). We considered this in our model

by modeling juvenile fish population separately.

Price = Price(SardineCatch, ExternalSardine, AquacultureProduction)

Profitability = MarginalReturn(CPUE,Price)

DegreeOfRegulation = DegreeOfRegulation(SardineNumber, SardineJuvenileNumber)

NonDomesticDemand = NonDomesticDemand(AquacultureProduction)

Note that the variables in question are constrained to be greater than or equal to zero (i.e.,

X1, X2, ..., Xn, Y1, Y2, ..., Ym ≥ 0), as they correspond to the measurement of non-negative

real quantities.

2.4.3 Symbolic representation of the jacobian matrix

In the case of Indian Oil Sardine (IOS) fisheries, we assume the existence of a fixed point

by looking at a short time period of the IOS stock, thus considering local stability. We

may neglect the impact of slow variables on the value of the fixed point. This assumption

allows us to use the Jacobian matrix to analyze the stability of the system around this fixed

point. Specifically, we have used Equation (2.7) to derive the symbolic representation of the

Jacobian matrix, which provides insights into the system’s behaviour near the fixed point.

The 4x4 Jacobian matrix displays the first-order partial derivatives of a vector function with
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respect to the variables Sardine Number, Jellyfish Number, Fishing Gear, and Fishing Time

as the columns of the matrix, with each row specifying the corresponding variable. The

variable order in the matrix is significant, as changing it would result in a different Jacobian

matrix.
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The jacobian matrix for our model can be written as

αSN · ((1− βMN) ·
η[SRIA, SN ]− βSC ·
η[SC, SN ]− (1−

βSC) ·
η[SMN,SN ])/βSMN

αSN · ((1− βMN) ·
η[SRIA, JFN ] +

βMN ·η[MN, JFN ]−
βSC · η[SC, JFN ]−

(1− βSC) ·
η[SMN, JFN ])/βSMN

αSN · (βSC ·
η[SC, FG])/βSMN

αSN · (βSC ·
η[SC, FT ])/βSMN

αJFN · (βJFG ·
η[JFG, SN ])/βJFS

αJFN · (βJFMS ·
η[JFMS, JFN ]−

βJFPM ·
η[JFPM, JFN ]−

βJFS ·
η[JFS, JFN ])/βJFS

0 0

αFG · (βFGOBRS ·
η[FGOBRS, SN ] +

βFGIBRS ·
η[FGIBRS, SN ]−

βGE ·
η[GE,SN ])/β[GE]

0

αFG · (βFGOBRS ·
η[FGOBRS, FG] +

βFGIBRS ·
η[FGIBRS, FG]−

βGE ·
η[GE,FG])/βGE

αFG · (βFGOBRS ·
η[FGOBRS, FT ] +

βFGIBRS ·
η[FGIBRS, FT ]−

βGE ·
η[GE,FT ])/βGE

αFT · (η[FT, SN ]−
βFCT · η[FCT, SN ])

0
αFT · (η[FT, FG]−
βFCT · η[FCT, FG])

αFT · (1− βFCT ·
η[FCT, FT ]− βLFT ·

η[LFT, FT ])
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2.4.4 Generalized parameters

The generalized parameters are capable of representing a class of models rather than a

specific one and can be easily interpreted based on domain knowledge. The α parameters

determine the time scale of different state variables, which is defined by choosing a process

or combination of processes and expressing it in proportion to the state variable. The β

parameters indicate the relative influence of two processes on a state variable, which is defined

as the ratio of the positive (negative) influence of a process with respect to all corresponding

positive (negative) processes. It is noteworthy to observe that beta parameters appear in

complementary pairs, as presented in Table 2.1. The presence of this inherent symmetry in

the system enables easier calculation of relevant information, such as the Jacobian matrix, by

reducing computational complexity. Additional information regarding the method by which

this reduction is achieved can be found in section 2.2. Elasticities represent non-linearities

of links, with a value of 1 corresponding to a linear relationship.

Based on data available to us and qualitative knowledge from literature, we assign values

and ranges to these parameters for the time period from boom to the beginning of collapse

(2010-2013). In instances where data for certain parameters during the boom period were

not available, we opted to assign a uniform distribution ranging from 0 to 1.

Beta Parameter Complementary Parameter Contribution type

b SRIA b MN positive

b SC b SMN negative

b JFG b JFMS positive

b JFPM b JFS negative

b FGOBRS b FGIBRS positive

b FCT b LFT negative

Table 2.1: Complementary beta parameters. The existence of complementary param-
eters in our study is attributed to the equilibrium condition where the summation of all
positive (negative) beta parameters corresponding to a state variable is equal to one.
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2.5 Feedback loops

In dynamical systems, feedback loops refer to the circular causal relationships between the

different components of the system (Sterman, 2010). There are two types of feedback loops:

reinforcing and balancing. Reinforcing loops lead to exponential growth or decay in the

system while balancing loops stabilize the system by counteracting changes. The sign of a

feedback loop∗ can be mathematically defined using the product of the partial derivatives

of the variables involved in the loop. A positive feedback loop reinforces the change in the

variables, while a negative feedback loop balances the change and stabilizes the system. For

an arbitrary feedback loop consisting of n variables, the polarity of loop = SGN

(
∂xO

1

∂xI
1

)
=

SGN

[(
∂xO

1

∂xn

)(
∂xn

∂xn−1

)(
∂xn−1

∂xn−2

)
· · ·
(
∂x2

∂xI
1

)]
, where x1 splits into input x

I
1 and output xO

1 .

The feedback loops present in the model can be located in Appendix A.3 for reference.

2.6 Stability

The “instability” of the system is defined as the real part of the dominant eigenvalue of the

Jacobian matrix. After assigning ranges to parameters, we sampled the parameter space

using Latin hypercube sampling (LHS) (Jin et al., 2003), and the dominant eigenvalue of

the jacobian matrix was computed for the entire class of models. Latin hypercube sampling

is a statistical method for generating a quasi-random sampling distribution by dividing each

variable’s dimension space into n sections and placing only one point in each section. It is

possible that the sampling might lead to positive eigenvalues even if the system has a stable

state with a negative dominant eigenvalue. This is reasonable because the generalised model

sometimes becomes unstable due to regime shifts. This can also happen due to statistical

fluctuations in the sampled data or if the parameter space is highly nonlinear. Note that

uncertainty ranges of unknown parameters were conservatively estimated (i.e., ranges of

possible values for the parameters were chosen in a way that is deliberately wider or more

inclusive in order to account for any potential errors or variations in the underlying data or

assumptions). In any case, it is still valid to use the dominant eigenvalue as a measure of

(in)stability. The dominant eigenvalue is just one measure of the system (in)stability.

∗The sign of a feedback loop can be determined by counting the number of negative links; if the count
is even, the loop is positive, and if it is odd, the loop is negative.
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2.7 Model Validation

Sensitivity analysis tests were performed to determine the robustness and reliability of the

model under different scenarios and identify any weaknesses or uncertainties in the model

that need to be addressed. Sensitivity analysis is performed on dynamical system models

to investigate how changes in the values of input parameters or initial conditions affect the

behaviour of the system over time. By exploring the effects of parameter variations on the

model output, sensitivity analysis can help to identify the most influential parameters and

provide insights into how to improve the model. We performed One-At-a-Time (OAT) sen-

sitivity analysis and Morris sensitivity analysis (Morris, 1991). In OAT method, a single

parameter is varied while all other parameters are held constant, and the resulting changes

in the output of the system are observed. Here, the output is the dominant eigenvalue of

the jacobian matrix of the system. While OAT sensitivity analysis is a straightforward and

commonly used method for identifying influential model inputs, it may fail to capture the

complex and nonlinear relationships between parameters. In contrast, Morris sensitivity

analysis evaluates the impact of multiple parameters by generating many random trajecto-

ries, each of which perturbs multiple parameters simultaneously. While only one parameter

is varied along each trajectory, the method systematically explores the parameter space

through a large number of trajectories, providing a more comprehensive understanding of

parameter interactions and dependencies compared to OAT sensitivity analysis. A detailed

description of the methodology for conducting Morris sensitivity analysis is presented in

Appendix A.4.

2.8 System Details

The causal loop diagrams were made on Vensim PLE Version 9.3.2x64(x64). All numerical

simulations were run on Ipython 8.2.0. The sampling of the dominant eigenvalues was done

using lhs module of the pyDOE package v0.3.8 (Baudin et al., 2013) and scipy package v1.7.3

(Virtanen et al., 2020). The Morris sensitivity analysis was done using SALib package v1.4.5

(Iwanaga et al., 2022; Herman and Usher, 2017).
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Chapter 3

Results and Discussion

This chapter presents the results and analysis of the IOS fisheries model. We will address key

questions that were explored in this study, including the stability of the system, sensitivity

analysis of generalized parameters of the system and scenario analysis. By examining these

questions, we aim to provide a comprehensive understanding of the different components of

the system and their impact on the qualitative state of the system in the context of fisheries

regime change.

3.1 Is the generalized model stable at baseline?

The primary objective of the generalized modeling procedure is to evaluate (in)stability of the

system near the equilibrium point. It cannot generate time series output and thus cannot be

used for future prediction like a simulation model. Here, the “instability” of the system refers

to the real part of the dominant eigenvalue of the Jacobian matrix. Figure 3.1 shows the

distribution of the real part of dominant eigenvalues of the baseline class of systems, which

includes both stable and unstable cases. This distribution represents different combinations

of parameters belonging to various parameter ranges in the model class. The likelihood of

parameter combinations is not explicitly known from the distribution, and it is not safe to

assume that all parameter combinations are equally likely. However, a significant proportion

of the parameter combinations in the model class result in a stable system with a negative

real part of the dominant eigenvalue.
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Figure 3.1: Distribution of instability. Kernal density of distribution of dominant eigen-
values for the baseline class of models estimated from a Latin hypercube sampling simulation
with n = 6 × 106 samples (positive/negative numbers indicate an unstable/stable system).
The maximum distribution density is at eigenvalue = -0.061.

3.2 Which generalized parameters are sensitive to per-

turbations?

Observation 1. Among the beta parameters, the one associated with sardine recruitment

and migration has the most significant impact on system stability.

This parameter is particularly important given the spatial distribution of Indian Oil Sar-

dine migration, which ranges from the Gulf of Oman to the Malabar coast, with different

coastal niches playing a crucial role in stock abundance. Previous research has emphasized

the need for a better understanding of stock migration to manage the stock effectively (Kripa

et al., 2018). The sensitivity of βSRIA at baseline is µ∗ = 0.2909 with 95% confidence interval

= 0.003338 and σ = 3.312e− 01.

Observation 2. The beta parameter related to fishing gear type βFGOBRS has a negligible

effect on the stability.

During the fisheries boom, the contribution of outboard ring seine (OBRS) fishing gear

declined from 73% in 2007 to 33% in 2012, just before the collapse of fisheries. However, in

the aftermath of the fishery collapse, the aforementioned contribution quickly surged to 63%

in 2014. We decided to test the effect of fishing gear heterogeneity on the stability of the
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system and found that at baseline, βFGOBRS has the least sensitivity among beta parameters

(µ∗ = 0.01046 with 95% confidence interval = 0.0001495 and σ = 1.824e− 02).

Observation 3. The elasticity (degree of nonlinearity) of fishing time with respect to sardine

number and elasticity of fishing compensated time with respect to sardine number are the

most sensitive parameters.

A key assumption about fishing behaviour was that fishers are satisficers and therefore

were likely to increase(decrease) time spent fishing with decreasing(increasing) CPUE (Si-

mon, 1955). The assumption suggests that there will be negative feedback from CPUE to

fishing time. The sensitivity values also have high uncertainty (η[FCT, SN ] : µ∗ = 0.8273

with 95% confidence interval = 0.005641 and σ = 5.239e− 01; η[FT, SN ] : µ∗ = 0.8915 with

95% confidence interval = 0.006095 and σ = 5.494e− 01).

(a) Sensitivity values of parameters at baseline (b) Variance of Sensitivity values of parameters
at baseline

Figure 3.2: Morris SA test at baseline (a) The red dot denotes the net direction of
sensitivity (µ) and the navy blue dot denotes the average value of absolute sensitivity (µ∗).
(b) The σ values tell us about the variance or how the sensitivity value of a parameter
depends on choice of other parameters.
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3.3 The effect of sardine migration

We explored how the sensitivity of different parameters changed under different migration

scenarios. The migration we considered is inward migration during peak recruitment season.

Sardine migration and recruitment were assumed to be positive processes that contribute to

an increase in the sardine population. We adjusted the range of the beta parameter βSRIA

(which is complementary to the migration beta parameter βMN) to (0,0.33] for high migra-

tion and [0.67,1) for low migration. Sensitivity analysis was performed under both scenarios.

Observation 4. βSRIA is the most sensitive parameter under the high recruitment(low

migration) scenario (µ = 1.8986, µ∗ = 1.8988).

Figure 3.3a and Figure 3.4a demonstrate how the tradeoff between sardine population

increase resulting from migration and recruitment impacts stability under perturbations un-

der both scenarios. Note that βSRIA = 1− βMN . Reduced fish migration may be attributed

to variability in SST and upwelling conditions (Muni Krishna, 2008).

Observation 5. The overall uncertainty in the model increases under the high recruit-

ment(low migration) scenario.

The variance associated with the sensitivity of βSRIA changes from σ(βSRIA | 0 < βSRIA <

0.33) = 1.1062e−01 to σ(βSRIA | 0.67 < βSRIA < 1) = 8.74741e−01. The variance associated

with sensitivity of fishing time-related elasticity parameters σ(η[FT, SN ] | 0 < η[FT, SN ] <

0.33) = 2.7245e− 01 increases to σ(η[FT, SN ] | 0.67 < η[FT, SN ] < 1) = 8.7627e− 01 and

σ(η[FCT, SN ] | 0 < η[FCT, SN ] < 0.33) = 2.6044e−01 increases to σ(η[FCT, SN ] | 0.67 <

η[FCT, SN ] < 1) = 8.5053e−01.It is noteworthy that comparable increments are noticeable

across various parameters. Figure 3.3b and Figure 3.4b shows uncertainty associated with

different parameters under both scenarios.
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(a) Sensitivity values of parameters at high
b SRIA scenario

(b) Variance of Sensitivity values of parameters
at high b SRIA scenario

Figure 3.3: Morris SA test at at high b SRIA scenario

(a) Sensitivity values of parameters at low
b SRIA scenario

(b) Variance of Sensitivity values of parameters
at low b SRIA scenario

Figure 3.4: Morris SA test at at low b SRIA scenario
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3.4 What are the tipping points of the system?

Bifurcation-induced tipping, also known as B-tipping, occurs when a parameter shift, such

as a change in environmental conditions, reduces the basin of attraction of the original stable

state to zero (Ashwin et al., 2012). Figure 3.5a and Figure 3.5b in the context shows fold

bifurcation points for the alpha parameters and beta parameters resulting from a One-At-a-

Time analysis respectively. However, given that other factors are always at play (ceteris is

never paribus), the observed fold bifurcation points might be influenced by external variables

or unknown factors, leading to a deviation from the actual tipping points of the system.

Observation 6. An interesting observation for the specific case we examined is that the

complementary beta parameters associated with recruitment and migration (βSRIA & βMN)

have two bifurcation points at βSRIA = 0.29 , βSRIA = 0.56. The system remains stable

solely within this range. Appendix A.3 lists the parameters used for this case.

3.5 How do changes in the elasticities between inter-

mediate variables impact the stability of the sys-

tem?

The relationship between elasticity parameters of different state and intermediate variables

is expressed in Equation (2.10). This relationship can help us understand how the magnitude

of sensitivity of the intermediate variable elasticity is constrained by the sensitivity values of

state variables. Specifically, if η represents elasticity and f is a function that takes either an

intermediate y or state variable x, then the elasticity of f with respect to an intermediate

variable x can be expressed as η(f(x), x) = η(f(y), y) · η(y(x), x). However, this relationship
does not offer a straightforward indication of the direction of the change.

When 0 < η < 1, the sensitivity of the elasticity of an intermediate variable is bounded by

the sensitivity of the corresponding elasticity of a state variable. Table 3.1 provides specific

information on the elasticities related to select intermediate variables of interest.

Observation 7. By definition, η[CPUE,FG] = 1 in Table 3.1. Therefore, η[FCT, FG] =

η[FCT,CPUE] (µ(η[FCT, FG]) = 4.1565e−03; µ∗(η[FCT, FG]) = 0.2029; σ(η[FCT, FG]) =
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2.8862e− 01).

The elasticities have equal magnitudes, resulting in an equivalent absolute sensitivity

µ∗. However, increasing the fishing gear will cause a linear increase in fishing effort and a

subsequent linear decrease in CPUE, resulting in an opposite direction of sensitivity. This

means that an increase in η[FCT,CPUE] will have a stabilizing effect on the system. If

fishers sufficiently adjust their fishing time in response to an increase in CPUE, the system

may strengthen stability.

Intermediate variable Comments Elasticity Parameter (η)

Phytoplankton(PHY) Onset of collapse PHY

density increased

η[SRIA, JFN ] = η[SRIA, SJN ] ·
βSJG · η[SJN, PHY ] · βPPCJ ·
η[PHY, JFN ]

Degree of Regu-

lation(DOR)

How strict and enforced

is regulation

η[FGOBRS, SN ] =

η[FGOBRS,DOR] · η[DOR,SN ]

η[FGIBRS, SN ] =

η[FGIBRS,DOR] · η[DOR,SN ]

Catch Per Unit

Effort(CPUE)

Increased for both

OBRS and IBRS gears

till 2011 and 2012

respectively and then

decreased

η[FCT, SN ] = η[FCT,CPUE] ·
η[CPUE, SN ]

η[FCT, FG] = η[FCT,CPUE] ·
η[CPUE,FG]

Table 3.1: Summary of Intermediate variables. Elasticities between different variables
are determined by the chain rule, which does not capture the direction of change as elasticity
is always positive by convention. However, elasticities can provide valuable information about
the sensitivity of a system to changes in its variables. This sensitivity can be quantified by
taking the partial derivative of the system output, such as instability, with respect to the
elasticity parameter. By doing so, we can gain insight into how changes in one parameter
may affect the overall system and its stability.
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(a) Response of alpha (α) parameters to perturbation from baseline. Green(orange) shade indicate
stable(unstable) region.

(b) Response of beta (β) parameters to perturbation from baseline. Green(orange) shade indicate
stable(unstable) region.

Figure 3.5: Response curves of parameters. The parameter values used for this analysis
are given in Table A.1. A number of parameters exhibit fold bifurcation points, denoted by
a vertical dashed line.
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Figure 3.6: One-At-a-Time Sensitivity Analysis. Sensitivity values of parameters at
baseline stability, obtained by calculating the local derivative within an ϵ = 0.01 neighbour-
hood around the baseline values while keeping the index number consistent for both the
numerator(output) and denominator(input). Here, the output is the dominant eigenvalue of
the jacobian, and the input is the parameter value.

3.6 Is the generalized model a valid representation of

the system?

Unfortunately, it is impossible to define a prediction loss function to validate our model.

However, we can use our knowledge of the Indian Oil Sardine fishery’s known features to

assess the validity of our model by examining how various parameters change from the pe-

riod of relative abundance preceding the collapse to the onset of the collapse. As previously
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explained, the onset of a collapse is marked by a decline in the stability of the system’s

previous qualitative state (or an increase in the dominant eigenvalue of the jacobian associ-

ated with that state). This implies that parameters with positive(negative) µ values should

increase(decrease) in value.

Based on data available from CMFRI- NMFDC database, the total catch of sardine fish in

Kerala increased from 259342 tonnes in 2010 to 399786 tonnes in 2012. The beta parameter

associated with sardine catch and sardine natural mortality tradeoff, βSMN decreased as

a result. Figure 3.2 depicts the direction of µ associated with this parameter. Similar

validation can be done for all parameters provided data is available to us to verify the

direction of change. The present study faced significant limitations due to the insufficient

frequency of temporal data.
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Chapter 4

Conclusion and Outlook

In this work, we found that fish migration can have a major influence on the socio-ecological

dynamics of the Indian Oil Sardine fisheries. In particular, we investigated how the influence

of various parameters on stability changes under different scenarios of fish migration. Our

findings indicate that low fish migration intensifies uncertainty in the fisheries system and

makes it more vulnerable to changes in other parameters. Investigating the interplay between

the effect of inward fish migration and fishing behaviour revealed an important trade-off

parameter.

When the degree of nonlinearity(elasticity) associated with fishing time and fishing com-

pensated time w.r.t sardine number changes, it significantly affects the stability of the sys-

tem. However, the uncertainty associated with the sensitivity of these parameters is also

high. This could be due to uncertainty in the way fishing time is modeled (structural un-

certainty), which is reflected in the variance (σ) of sensitivity values of these parameters. A

comprehensive understanding of the role of fisher behaviour in stabilizing fisheries systems

requires a nuanced approach that incorporates the complexities of fisher behaviour. There-

fore, further research is needed to elucidate the various behavioural aspects and their effects

on the functioning of fisheries systems. Such insights can inform the development of effective

policies aimed at promoting sustainable fisheries management.

In this work, we assumed that variations in the elasticity values of fishing gear would

result in differing effects on system stability. To model this heterogeneity, we incorporated

these differences into our model. However, we found that changes in gear type did not
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significantly affect the model at baseline calibration.

Although quantitative data is not always necessary to construct a dynamical systems

model, conceptual models often rely on extensive literature review and expert input. While

system behaviour can be explored through different analyses, the limitations of conceptual

models must be acknowledged. Therefore, we recognize the uncertainty associated with the

model structure. We must be cautious while using mathematical models for prediction,

control and optimization in the paradigm of evidence based policy. Sensitivity auditing

(Saltelli et al., 2013) applies sensitivity analysis as it is used in mathematical modeling to

settings where the models are used to generate policy inference.

Generalized modeling can integrate knowledge from different domains and is well suited

in a collaborative setting. However, choosing the right model requires careful consideration

of the trade-offs between complexity, tractability, reproducibility and generalizability (Biggs

et al., 2021) . It is important to assess the suitability of different models for the task at hand

and to be transparent about the assumptions and limitations of the chosen model.

In conclusion, dynamical systems modeling is a powerful approach for studying complex

systems, but it is important to combine it with other approaches or perspectives to gain

a more comprehensive understanding of the system under investigation. By doing so, re-

searchers can develop more effective and robust models, identify key drivers of change within

the system, and gain a better understanding of the underlying social, ecological, and cultural

factors that influence the system.
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Appendix A

Appendix

A.1 Construction of the causal loop diagram(CLD)

Let f be a function that represents a causal link between two variables in a CLD. All the

functions are defined such that ∂|f |
∂xk

> 0. The polarity of the link can be determined by the

sign of the function, denoted as sgn(f). Specifically, if sgn(f) > 0, the link has a positive

polarity, indicating that an increase in the value of the independent variable leads to an

increase in the value of the dependent variable. Conversely, if sgn(f) < 0, the link has a

negative polarity, indicating that an increase in the value of the independent variable leads

to a decrease in the value of the dependent variable.

The following section provides a detailed account of the different iterations of the causal

loop diagram (CLD) used in this study. Each version of the CLD is described in terms of

its main assumptions, objectives, and causal relationships between variables. Additionally,

we highlight the changes made from the previous version and provide a rationale for these

modifications. By documenting the evolution of the CLD, we hope to provide readers with a

better understanding of the modeling process and the insights gained through each iteration.

Note that boxes represent state variables while other names are intermediate variables. A

positive directed link (X → Y) means, ceteris paribus, increase (decrease) in X increases

(decreases) Y above (below) what it would have been otherwise.
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Version 1: Initial CLD

Figure A.1: This version of the causal loop diagram (CLD) shown in the figure reveals
several notable omissions in the causal relationships between variables. Specifically, several
causal links were missing, resulting in an incomplete representation of the system’s dynamics.
Additionally, the Jellyfish population, represented by the Jellyfish biomass variable, was
considered a state variable. However, since it was not involved in any feedback loops, its
inclusion in the model would not provide meaningful insights into the system’s behaviour.
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Version 2: Revised CLD

Figure A.2: This particular version of the causal loop diagram (CLD) shown in the figure
underwent several significant updates and refinements. Notably, the causal links pertain-
ing to upwelling were updated to reflect the fact that the local thermal anomaly (LTA) is
an indicator of upwelling, rather than a direct cause. As part of this update, the Sardine
population was also added as a state variable, while upwelling was redefined as an interme-
diate variable in the model. Sardine import was replaced by External sardine catch, which
was added as a driver. To better capture the complex interconnections between different
variables, dashed lines were introduced to represent teleconnections, while dotted lines were
included to indicate potential model experiments. Additionally, several missing links were
identified and subsequently added to improve the completeness and accuracy of the model.
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Version 3: Updated CLD

Figure A.3: The updated iteration of the causal loop diagram (CLD) shown in the figure
underwent several key changes to improve its accuracy and stability. One notable update
involved the replacement of the state variable CPUE with Fishing time, as the previous
dynamical equation describing CPUE resulted in unstable fixed points due to a lack of a
balancing term to prevent infinite growth (positive reinforcement). Instead, Fishing time
was modeled using a delay equation to provide a more stable and realistic representation
of the system’s dynamics. Additionally, several missing links were identified and added
to the model based on the system of equations, helping to improve the completeness and
accuracy of the model. To reduce the complexity of the CLD, redundancies such as salinity
and subsidies were removed. These updates and refinements were critical in producing a
robust and reliable model that accurately captures the underlying causal relationships and
dynamics of the system.
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Version 4: Final CLD

Figure A.4: The final version of the causal loop diagram (CLD) shown in the figure contains
one key change that was identified while assessing the intermediate variable relationship
of phytoplankton density(PHY) with sardine number(SN). The parameter η[MN,SN ] had
very high sensitivity and variance (µ = 2.05355, µ∗ = 2.05760, σ = 1.2460). OAT response
curve revealed an unstable region between 0.4 and 1 for the baseline case. Note that mi-
gration number(MN) and sardine number(SN) are related through the intermediate variable
equation η[MN,SN ] = η[MN,PHY ] · η[PHY, SN ]. Upon further examination of the feed-
back loop SN > PHY > JFN > SJN > SN , which is a reinforcing loop, it was found that
η[PHY, SN ] needs to remain very small for the system to be stable (see Version 3). As a
result, the redundant link was removed. This decision was justified by the fact that sardine
number has a relatively small effect on phytoplankton density compared to environmental
variables (Rai and Rajashekhar, 2014). Another redundant link from fishing time(FT) to
sardine catch(SC) was also removed in this version.
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A.2 Feedback loops in the system

Important feedback loops in the system are given below

Loop Number 1 of length 1

SARDINE JUVENILE NUMBER JELLYFISH NUMBER

Loop Number 2 of length 2

SARDINE JUVENILE NUMBER JELLYFISH NUMBER PHYTOPLANKTON DENSITY

Loop Number 3 of length 2

SARDINE JUVENILE NUMBER SARDINE NUMBER PHYTOPLANKTON DENSITY

Loop Number 4 of length 3

SARDINE JUVENILE NUMBER SARDINE NUMBER PHYTOPLANKTON DENSITY

JELLYFISH NUMBER

Loop Number 5 of length 3

SARDINE JUVENILE NUMBER SARDINE NUMBER PHYTOPLANKTON DENSITY

MATURATION RATE

Loop Number 6 of length 3

SARDINE JUVENILE NUMBER JELLYFISH NUMBER PHYTOPLANKTON DENSITY

MATURATION RATE

Loop Number 7 of length 3

SARDINE JUVENILE NUMBER SARDINE CATCH SARDINE NUMBER PHYTOPLANK-

TON DENSITY

Loop Number 8 of length 4

SARDINE JUVENILE NUMBER SARDINE CATCH SARDINE NUMBER PHYTOPLANK-

TON DENSITY MATURATION RATE

Loop Number 9 of length 4

SARDINE JUVENILE NUMBER SARDINE CATCH SARDINE NUMBER PHYTOPLANK-

TON DENSITY JELLYFISH NUMBER

Loop Number 10 of length 6

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT SARDINE CATCH SARDINE NUMBER PHYTOPLANKTON DENSITY

Loop Number 11 of length 7

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT SARDINE CATCH SARDINE NUMBER PHYTOPLANKTON DENSITY
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MATURATION RATE

Loop Number 12 of length 7

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT SARDINE CATCH SARDINE NUMBER PHYTOPLANKTON DENSITY

JELLYFISH NUMBER

Loop Number 13 of length 8

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT CPUE FISHING TIME SARDINE CATCH SARDINE NUMBER PHYTO-

PLANKTON DENSITY

Loop Number 14 of length 9

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT CPUE FISHING TIME SARDINE CATCH SARDINE NUMBER PHYTO-

PLANKTON DENSITY MATURATION RATE

Loop Number 15 of length 9

SARDINE JUVENILE NUMBER DEGREE OF REGULATION FISHING GEAR FISH-

ING EFFORT CPUE FISHING TIME SARDINE CATCH SARDINE NUMBER PHYTO-

PLANKTON DENSITY JELLYFISH NUMBER
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A.3 Estimation of parameters used for calibrating the

baseline mode

Alpha (α) parameters

Name Definition Range of value

during regime shift

(2010-2015)

References & Addi-

tional Comments

Sardine Number SardineMoralityNumber
SardineNumber

1.34-2.7 (Rohit et al., 2018)

(Nair et al., 2016)

Jellyfish Number JellyfishSenescentMortality
JellyfishNumber

0.1 (Henschke et al.,

2018)

Fishing Gear Proportion of Gear

Loss for Ring Seine

Gears

0.292-0.368 (Daniel and

Thomas, 2022)

Total Mean ± S.D

of ALDFG for both

large and small RS

gears divided by

total used gear ( in

kg.vessel−1 year−1)

Fishing Time FishingT ime
FishingT ime

1 By definition
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Beta (β) parameters

Name Definition Range of value

during regime shift

(2010-2015)

References & Addi-

tional Comments

Sardine Recruitment Proportional in-

crease in sardine

number due to re-

cruitment

Uniform(0, 1) uniform distribution

assumed

Sardine Natural

Mortality

NaturalMortality
TotalMortality

0.2 (Rohit et al., 2018)

(page 74). Data

available is along the

Indian coast during

2010-2015.

Sardine Catch FishingMortality
TotalMortality

0.8 same as above.

Jellyfish Growth Proportional in-

crease in Jellyfish

number due to

gamogenesis

Uniform(0, 1) (Henschke et al.,

2018) uniform dis-

tribution assumed.

Jellyfish Strobila-

tion

Proportional in-

crease in Jellyfish

number due to

medusa strobilation

Uniform(0, 1) (Henschke et al.,

2018) uniform dis-

tribution assumed.

Jellyfish Predation

Mortality

Proportion of de-

crease in Jellyfish

number due to pre-

dation

0.85 (Henschke et al.,

2018) for scaling co-

efficient, and (Kripa

et al., 2018) for

Jellyfish data from

Kerala. Density-

dependent predation

function from the

former paper was

used for calculation.
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Name Definition Range of value

during regime shift

(2010-2015)

References & Addi-

tional Comments

Jellyfish senescence Proportion of de-

crease in Jellyfish

number due to star-

vation/senescence

0.15 Model from above

paper ((Henschke

et al., 2018)) was

used.

Fishing Gear

(OBRS)

Proportion of OBRS

gear

0.61-0.676 (Abdussamad et al.,

2015) (Time series

data available)

Fishing Gear (IBRS) Proportion of IBRS

gear

0324-0.381 (Abdussamad et al.,

2015) (Time series

data available)

Fishing compen-

sated time

Proportional de-

crease in fishing

time due to increase

in CPUE

0.92-0.96 Fishers tend to satis-

fice even though it is

technically possible

to maximise profit

by increasing effort.

This could be due to

social, economic or

cultural reasons.

Fishing time loss Proportional de-

crease in fishing

time due to extreme

events

0.04-0.08 (Martin et al., 2022)
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Elasticities (η)

Function Fj Variable Xi Range of value

during regime shift

(2010-2015)

References & Addi-

tional Comments

Sardine Natural

Mortality

Sardine Number 1 Linear mortality as-

sumption.

Sardine Catch Fishing Gear Uniform(0, 1) (Kripa et al., 2018)

Sardin Recruitment Jellyfish Number Uniform(0, 1) (Kripa et al., 2018)

Sardine Catch Jellyfish Number Uniform(0, 1) (Kripa et al., 2018)

Migration Number Jellyfish Number Uniform(0, 1) (Benoit-Bird and

Moline, 2021)

Pelagic fishes may

engage in vertical

migration, with fish

moving to deeper

depths during the

day to avoid preda-

tors and returning

to the surface at

night to feed. How-

ever, some pelagic

fish species may also

exhibit longer-term

vertical migrations.

Sardine Recruitment Sardine Number 1 Approximate flow

into adult age group

proportional to

juvenile number.
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Function Fj Variable Xi Range of value

during regime shift

(2010-2015)

References & Addi-

tional Comments

Sardine Catch Sardine Number 0.64-0.75 (Harley et al., 2001)

(Erisman et al.,

2011)

Sardine Natural

Mortality

Jellyfish Number Uniform(0, 1) (Kripa et al., 2018)

Jellyfish Growth Sardine Number Uniform(0, 1) (Kripa et al., 2018)

Jellyfish Strobila-

tion

Jellyfish Number Uniform(0, 1) (Henschke et al.,

2018)

Jellyfish Predation

Mortality

Jellyfish Number Uniform(0.5, 1.5) (Henschke et al.,

2018)

Jellyfish Senescence Jellyfish number 1 (Henschke et al.,

2018) Linearly pro-

portional to Medusa

number.

Gear Exit Fishing Gear 1 Linear exit/loss as-

sumption.

Sardine Catch Fishing Time Uniform(0.5, 1) (Lade et al., 2015)

Fishing Gear

(OBRS)

Fishing Time Uniform(0, 1)

Fishing Gear (IBRS) Fishing Time Uniform(0, 1)

Gear Exit Fishing Time Uniform(0, 1)

Fishing Compen-

sated Time

Fishing Time 1 Linear compensa-

tion assumption

Loss in Fishing Time Fishing Time Uniform(0, 1)
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Function Fj Variable Xi Range of value
during regime shift
(2010-2015)

References & Addi-
tional Comments

Fishing Compen-
sated Time

Fishing Gear Uniform(0, 1)

Fishing Time Fishing Gear Uniform(0, 1)

Fishing Time Sardine Number Uniform(0, 0.75) We chose the upper
bound to be same
as that of η(Sardine
Catch, Sardine
Number)

Fishing Compen-
sated Time

Sardine Number Uniform(0, 0.75) same as above
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Parameter Value

a SN 1.34

a JFN 0.1

a FG 0.33

a FT 1

(a) Alpha (α) parameters

Parameter Value

b SRIA 0.5*

b MN 0.5*

b SC 0.8

b SMN 0.2

b JFG 0.3*

b JFMS 0.7*

b JFPM 0.85

b JFS 0.15

b FGOBRS 0.62

b FGIBRS 0.38

b FCT 0.8*

b LFT 0.2*

(b) Beta (β) parameters

Parameter Value

EE SRIA SN 1 †

EE SC SN 0.6*

EE SMN SN 1 †

EE SRIA JFN 0.75*

EE MN JFN 0.6*

EE SC JFN 0.3*

EE SMN JFN 0.8*

EE SC FG 0.8*

EE JFG SN 0.6*

EE JFMS JFN 0.8*

EE JFPM JFN 1 †

EE JFS JFN 1 †

EE FGOBRS SN 0.3*

EE FGIBRS SN 0.4*

EE GE SN 0.35*

EE FGOBRS FG 1 †

EE FGIBRS FG 0.8*

EE GE FG 1 †

EE SC FT 0.5*

EE FGOBRS FT 0.3*

EE FGIBRS FT 0.4*

EE GE FT 0.2*

EE FCT FT 0.6*

EE LFT FT 0.5*

EE FCT FG 0.6*

EE FT FG 0.1*

EE FT SN 0.1*

EE FCT SN 0.6*

(c) Elasticities (η)

Table A.1: Baseline parameters used for the OAT sensitivity analysis

† A linear relationship is assumed.

52



* This analysis employed ad-hoc values denoted by an asterisk to represent parameters that were not de-

rived from empirical data. The selection of these values was based on heuristics, specifically to prioritize

balancing feedback loops over reinforcing feedback loops. The optimization was then implemented to achieve

convergence towards a stable fixed point.

A.4 Morris Sensitivity Analysis

Morris sensitivity analysis (Morris, 1991) is a global sensitivity analysis method used to

measure the effect of the input variables on the output of a model. It is based on the

concept of elementary effects, which are the changes in the model output caused by varying

one input variable while keeping the others constant.

The elementary effect of a single input variable is defined as:

δi =
f(x+ ei∆)− f(x)

∆

where δi is the ith elementary effect for a model with k independent inputs discretized

into a p-level grid Ω, f(x) is the model output when the ith input variable is set to a selected

value xi ∈ Ω, f(x+ei∆) is the transformed model output when all input variables except the

ith are set to their original values, ei is a vector of zeros but with a unit as its ith component,

and ∆ is a value in { 1
p−1

, ..., 1− 1
p−1

}.

To calculate the global sensitivity indices using the Morris method, the elementary effects

are first sorted according to their absolute values. The sorted effects are then grouped into

bins, and the mean absolute effect and standard deviation of the absolute effect are calculated

for each bin. The global sensitivity indices, µi and σi, are then calculated as:

µi =
1

N

N∑
k=1

δ
(k)
i , σi =

√√√√ 1

N − 1

N∑
k=1

(δ
(k)
i − µi)2

where N is the total number of evaluations. The µi value is a measure of the average effect of

the ith input variable on the model output, while the σi value is a measure of the variability

of the effect across different evaluations. Together, µi and σi provide a measure of the
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importance of the ith input variable in the model. To take into account of both positive and

negative effects when the distribution of input variable is non-uniform, a modified index was

proposed (Campolongo et al., 2007) replacing the use of the mean with µ∗, which is defined

as the estimate of the mean of the distribution of the absolute values of the elementary

effects.

To perform Morris sensitivity analysis with SALib, you must first define your model

input parameters and ranges. Then you need to run the model multiple times using different

parameter combinations generated by the SALib library. Finally, the sensitivity indices can

be calculated based on the output generated by the model runs. The sensitivity indices give

you an idea of which input parameters are most important in influencing the model output.

A.5 Worked-out Example

To deepen our understanding of the methodology, we examined an ecological model as an il-

lustrative example. We used a three-dimensional age-structured prey-predator (APP) model

(Negahbani et al., 2016) with exact equations to study the stability of the system and the

sensitivity of the parameters. The model describes interaction dynamics between a predator

and an age-structured prey composed of juvenile and adult developmental stages. The scaled

model equations are as follows:

dJ

dt
= f1(J,A, P ) = bA− J

1 + J2
− µJJ

dA

dt
= f2(J,A, P ) =

J

1 + J2
− AP − µAA

dP

dt
= f3(J,A, P ) = cAP − µPP

(A.1)

where J , A, and P are state variables describing the size of juvenile, adult and prey popula-

tions respectively. Here b is the reproduction rate of adults, and c is the predator conversion

efficiency. Death rates are µJ , µA, and µP for juvenile, adult and predator populations,

respectively.

Using (2.7), the jacobian matrix for the model in terms of generalized parameters is as

follows:
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αJ · (−βf12 · η[f12, J ]− (1−
βf12))/(1− βf12)

αJ/(1− βf12) 0

αA · η[f12, J ]/βf23 −αA/βf23 αA · (βf23 − 1)/βf23

0 αP 0

Here, we have used death rates as the respective alpha parameters for the state variables

J,A, andP .

Parameter Value

αJ 0.05

αA 0.1

αP [0, 0.43525]

βf12 [0.8, 0.952]

βf23 [0.1,0.111]

η[f12, J ] [0, 0.6]

Table A.2: Generalized parameters (APP model). We assigned values for generalized
parameters using the same values as in the original model. However, we limited the range
of αP to the stable region until the saddle-node bifurcation at the left-hand turning point.
The function fij corresponds to a process in the model equation, following the same order
as given in the paper.
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Figure A.5: Distribution of instability (APP model). Kernal density of distribution
of dominant eigenvalues for the APP model estimated from a Latin hypercube sampling
simulation (positive/negative numbers indicate an unstable/stable system). The maximum
distribution density is at eigenvalue = -0.05929. The sampled points are from the unstable
region since we chose the parameter region accordingly.

Figure A.6: Morris Sensitivity Analysis (APP model). (a) Sensitivity values of the
parameters against the real part of the dominant eigenvalue. The stability of the model
is most sensitive to αP (death rate of the predator), and it has a stabilizing effect (µ =
−0.1556, σ = 0.08857). (b) The uncertainty (σ) associated with each parameter is shown.
The parameters η, βf12 , αP have relatively higher uncertainty since their sensitivity depends
on the choice of other parameters as well.
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