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Abstract

This thesis focuses on the problem of continual test time domain adaptation in deep learning,
where a trained model needs to adapt to new and changing environments during deployment. The
first contribution of this work is the development of a novel strategy for obtaining a signal for
domain shift, which enables the model to overfit without compromising its ability to adapt to future
domains. The second contribution is the presentation of a novel framework called SATA, which
uses self-knowledge distillation and contrastive learning to adapt a pre-trained model to continual
domain shift. The proposed framework improves the accuracy, time complexity, space complexity,
and stability of the machine learning model. The research conducted in this thesis contributes to
the ongoing effort to develop more robust and reliable deep learning models that can adapt to new
and changing environments.
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Introduction

Deep learning has achieved phenomenal success in several computer vision tasks like classifica-
tion, object detection, segmentation, etc [1, 2, 3, 4, 5]. However, deep neural networks have been
shown to perform poorly when tested on data from a different distribution [6] than the training
data. Unsupervised Domain Adaptation (UDA) techniques have been developed to address this
challenge. However, UDA techniques require access to labelled source data and unlabelled tar-
get data, which can be difficult due to various constraints such as privacy concerns and storage
limitations.

Moreover, in addition to having a different distribution, the test data distribution may dynam-
ically vary with time. For instance, in the context of autonomous driving, a model trained us-
ing data captured in clear weather may encounter changing weather conditions, such as cloudy
weather, heavy rain, etc., during deployment. In such cases, it is critical to continually adapt the
model during test time to ensure optimal performance in changing scenarios. Test-time adaptation
of trained models has thus emerged as an important research area, where an off-the-shelf trained
model is adapted to the testing data as and when they are encountered. The majority of successful
frameworks for this task, [7, 8], assume that the test data belongs to a single domain, a restrictive
assumption for practical applications. Researchers have recently started looking at the continual
test time adaptation setting [9], where the target distribution can change over time.

Continual adaptation during test time is particularly important in real-world scenarios where
the data distribution can be dynamic and challenging to predict. Thus, developing models that can
adapt to new and changing environments is essential. Ongoing research is focused on developing
models and algorithms that can learn to adapt and generalise to different environments, aiming to
create more robust and reliable deep learning models.

In this thesis, we present two novel ideas in the scope of the problem statement of the continual
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test time domain adaptation.

First, a novel strategy for getting a signal for domain shift. We observe that test time adaptation
algorithms are designed to adjust a model’s predictions during inference to improve its accuracy
on new data. However, if these algorithms are trained on a specific domain, they may become too
specialized and lose their ability to adapt to new or changing data. This is known as overfitting,
and it can be difficult to reverse or undo. This observation prompted the need for a signal which
can reset the adapting model to the initial model. This allows the model to overfit without the risk
of performing badly in future domains.

Next, we present a novel framework Source Anchoring and Target Alignment (SATA) which
utilises self-knowledge distillation and contrastive learning to adapt a pre-trained model to contin-
ual domain shift. We observe that our framework not only performs better in terms of accuracy but
also improves the time complexity, space complexity and stability of the machine learning model.

We begin the thesis by introducing a relevant literature review of the field. Then we present the
above two ideas in chapters 2 and 3. Both these chapters are written as self-contained scientific
articles and include their own introduction, methods and results.
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Chapter 1

Background Theory

In this section, we will provide an overview of the general topics closely related to this dissertation.
Specifically, we will introduce the concept of domain adaptation, its variants which relax many of
its assumptions and the relevant methods developed in the literature.

1.1 Related Works

1.1.1 Domain Adaptation

Domain adaptation is a subfield of machine learning that focuses on improving the performance of
models when there is a shift in the distribution of the data between the training and test datasets.
The goal of domain adaptation is to train a model on a source domain with labelled data and adapt
it to a target domain with unlabelled data, where the distributions of the two domains differ. We
aim to learn from additional target data and thereby alleviate the domain shift and improves model
performance for target data. Common setups for domain adaptation are as follows:-

• Supervised domain adaptation is a type of domain adaptation where some labelled data from
the target domain is available along with the labelled data from the source domain. The goal
is to learn a model that can generalise well to the target domain using both the source and
target labelled data.
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Figure 1.1: Schematic to demonstrate the process of source and target domain alignment for do-
main adaptation. The green domain is the source domain, and the blue domain is the target domain.

• Semi-supervised domain adaptation is a type of domain adaptation where only a small
amount of labelled data from the target domain is available, along with the labelled data
from the source domain. The goal is to learn a model that can make use of the limited target
labelled data and generalise well to the target domain using both the source and target data.

• Unsupervised domain adaptation, as mentioned earlier, is a type of domain adaptation where
no labelled data from the target domain is available. Unsupervised domain adaptation meth-
ods aim to align the source and target domain distributions and learn a model that can gen-
eralise well to the target domain using only the source domain data and the unlabelled target
domain data.
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1.1.2 Unsupervised Domain Adaptation

In this dissertation, we will be focusing on Unsupervised Domain Adaptation, more specifically
its test time-variant as it is a more realistic setup as acquiring labelled data from the target domain
can be expensive and time-consuming. Formally, we define the task of UDA as follows:

Given,

• Labelled data from the source domain,

Ds = {(xi, yi)}ns
i=1 ∼ Ps (1.1)

• Unlabelled data from the target domain,

Dt = {(xi)}ns
i=1 ∼ Pt (1.2)

here xi ∈ X is the input data (images in our case), and yi ∈ Y is the ground truth (semantic
labels in the case of image classification). As the distributions between the two domains Ds and
Dt are assumed to be different but still similar up to the content level, it is necessary to align them
in order to minimise the domain discrepancy and achieve good performance on the target domain.

There are various methods to achieve this alignment. The Deep Adaptation Network (DAN)
[10] method, for example, minimises the Maximum Mean Discrepancy (MMD) [11] between the
source and target domain distributions in the intermediate feature space. Adaptive Batch Normal-
ization (AdaBN) [12, 13] and TransNorm use normalization layers to achieve the alignment, while
Domain-Adversarial Training of Neural Networks (DANN) [14] uses a discriminator to align the
distributions in an adversarial way.

Moreover, some methods take class information into account while aligning the distributions.
For instance, [15] improve the adversarial alignment method by considering class information.

Self-training methods, on the other hand, implicitly align the distributions by making use of
pseudo-labels generated by models from previous iterations. [16, 17] are some examples of self-
training methods that have shown promising results in domain adaptation tasks.

5



1.1.3 Source-free Domain Adaptation

Source-free domain adaptation (SFDA) is a variant of domain adaptation in which the model is
adapted to the target domain without access to any samples from the source domain. In other
words, SFDA assumes that only the source-trained model is available for adapting to the labelled
target distribution.

SFDA is a more challenging problem than traditional domain adaptation, as it requires the
model to learn to recognise the domain shift using only the target domain data. Although it is
possible to train on the test data in a fresh manner, it would be inefficient. Ideally, we want to
use the already learnt semantic information of the source distribution. So, the challenge is to
leverage source information while learning about the target domain. Various methods have been
proposed to address SFDA, including deep clustering-based approaches, self-supervised learning,
and unsupervised domain adaptation methods.

One of the key advantages of SFDA is that it eliminates the need for data from the source
domain, which is often difficult or expensive to obtain and sometimes just unobtainable. Addi-
tionally, SFDA has the potential to generalise better to new target domains that were not seen
during training, as the model is adapted to the domain shift rather than being optimised for a spe-
cific source-target domain pair. However, getting labelled target data can also be very expensive.
Therefore, a variant of SFDA is SFUDA (Source free Unsupervised Domain Adaptation) which
aims to adapt to a target domain using unlabelled target data.

1.1.4 (Continual) Test time Adaptation

Test-time Adaptation (TTA) is an online variant of SFUDA that adapts the model at test time using
small batches of test data, as and when they become available. Here, the model’s parameters
or architecture are usually adjusted to handle the differences between the two domains better,
thereby improving its performance on the target domain [7, 18, 8, 19, 13]. Some of these methods
focus on modifying the original architecture during the source training like TTT [20], which trains
the model on supervised and self-supervised tasks using source data. During testing, the self-
supervised module is fine-tuned on the target data to improve performance. Recently, several
researchers are focusing on the fully test time adaptation setting [7, 13], which does not assume
any access to source data or the source training process making it more practical. TENT [7] adopts
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entropy minimisation objective for training the BN layers, while BNStatsAdapt [13] adjusts the
BN statistics during test time to align the target with the source domain.

A more realistic scenario is handled by the recently proposed continual test-time adaptation
protocol [9], where the trained model should continually adapt to a dynamic environment, where
the test domain can change over time. CoTTA [9] utilises weight-averaged and augmentation-
averaged predictions to reduce error accumulation and also stochastically restores a small part of
the neurons to the source pre-trained weights during each iteration to avoid catastrophic forgetting.
This allows for long-term adaptation of all parameters in the network while preserving source
knowledge. Recently, several modules have been developed which can aid the dynamic adaptation
to test-data. However, these modules need to be optimised along with the model during training
with source [21, 22].

Setting Source-free
Adaptation protocol Target domain
Offline Online Single Continuous

UDA ✓ ✓

SFDA ✓ ✓ ✓

TTA ✓ ✓ ✓

CTTA ✓ ✓ ✓

Table 1.1: Domain adaptation protocols

1.2 Problem Setting and Motivation

Continual test time adaptation is a machine learning technique where a model is continually
adapted during inference, or test time, to improve its performance. In other words, instead of
training a model once and using it as is for all predictions, the model is updated in real-time as
it makes predictions based on new data. Continual test time adaptation is particularly useful in
situations where the distribution of the data changes over time. For example, in a recommendation
system, user preferences may change over time, so the model needs to adapt to these changes to
continue making accurate recommendations.

Formally, we are given a model trained using source domain data Ds = {(xi, yi)}ns
i=1 ∼ Ps.

Here, (xi, yi) is source data and label which is drawn from the source distribution Ps. During
testing, the source data is usually not available due to privacy concerns or storage constraints. At
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this stage, the model encounters test data Dt = {xj}nt
j=1 ∼ Pt. In practice, the test data can belong

to a different domain compared to the source, i.e. Pt ̸= Ps. Further, Pt can change over time such
that P (1)

t ̸= P
(2)
t ̸= . . . ̸= Ps leading to our continual test time adaptation scenario.

1.3 Benchmark Dataset

The datasets that are generally used for testing the performance of domain adaptation and test
time adaptation algorithms in the thesis are CIFAR10-C, CIFAR100-C and ImageNet-C [23]. The
”C” in these datasets stand for corruption. These dataset are synthetically created by transforming
the test set of CIFAR10, CIFAR100 and ImageNet using 15 different corruption which can be
categorised in 4 types Noise, Blur, Weather, Digital. The 15 corruptions are, Gaussian Noise, Shot
Noise, Impulse Noise; Defocus Blur, Glass Blur, Motion Blur, Zoom Blur; Snow, Frost, Fog,
Brightness; Contrast, Elastic Tansform, Pixelate, Jpeg. We can see the corruption in Figure 1.2.

Figure 1.2: Different corruptions in ImageNet-C on which various Domain adaptation algorithms
are benchmarked.
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Chapter 2

A Simple Signal for Domain Shift

2.1 Introduction

The ability to continually adapt models in real-time is becoming increasingly important in today’s
fast-paced technological landscape. The traditional approach of single-domain test-time adapta-
tion, while effective in certain scenarios, can limit the performance of models when deployed in
dynamic and ever-changing environments.

This research broadly operates under a stringent assumption that the training and testing data
come from the same distribution. This assumption can be problematic when there is a significant
difference between the distribution of the training data and the distribution of the testing data, a
phenomenon known as a ”domain shift”. This can result in reduced accuracy and performance
of the model, as it has not been trained on data from the testing distribution. To mitigate this
vulnerability, various domain adaptation techniques have been developed to make the models more
robust to such shifts. These techniques aim to align the distributions of the training and testing data,
reducing the negative impact of the domain shift on model performance.

In this work, we specifically question the differences between Test-time Adaptation (TTA) and
Continual Test-time Adaptation (CTTA) and aim to bridge the gap between the two.

Why TTA can hurt CTTA? TTA methods designed for single domain adaptation tend to
overfit on the current test domain which can lead to catastrophic forgetting of discriminative infor-
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mation from source in time. This can be extremely harmful when the model could encounter new
test domains in the future.

Can we simulate TTA setting in CTTA? We recognise that a simplistic approach to CTTA is
to adapt to the test domain in a TTA manner i.e. adapt the model using a TTA algorithm and then
reset the model back to the source model everytime it encounters a domain shift. This allows the
model to learn representations by leveraging the benefits of single domain TTA and at the same
time avoid error accumulation in time by not carrying over an overfit model to the next domain.

Restating out problem statement, we have an off-the-shelf model hθ comprising of feature
extractor f and classifier g trained on a source domain Dtrain, the objective of TTA is to adapt hθ
using test batches xt arriving in an online manner from a test domain Dtest by minimizing a test
time objective as

argmin
θ

Ltest(xt; θ) (2.1)

In standard TTA addressed in [7, 8, 24], xt comes from a single test domain Dtest ̸= Dtrain.
Here, we address the CTTA setting, where the test domain Dtest can continuously change sequen-
tially as Dt,1,Dt,2,Dt,3, ...,DtN , where Dt,i ̸= Dtrain∀i.

2.2 Method

We first briefly describe some recent source-free adaptation methods, namely Tent [7] and AaD [25].
Then, we discuss the concept of Maximum mean discrepancy. Finally, we describe our Domain
Shift Detection mechanism in detail.

TENT: Tent is a seminal work, which first proposed the TTA setting to online adapt any given
off-the-shelf model hθ. Firstly, Tent proposes to use the test feature statistics in the Batch Normal-
ization (BN) layers instead of those estimated using the source data. Further, they fine-tune the
BN’s affine parameters to minimise the Shannon entropy of the test predictions, as they observe
that test entropy is correlated with the test error. For a test sample xt,

Lent(xt) = −
∑
c

pc log pc (2.2)

Attracting and Dispersing (AaD): This [25] is a simple and effective approach recently proposed
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for SFDA. They treat SFDA as an unsupervised clustering problem where they enforce consistency
between predictions of local neighbourhood features while also ensuring diversity in the feature
space. The test objective for a sample xi from a test batch xt is

LAaD(xt) = Exi∈xtL(xi); where L(xi) = −
∑
j

pTi pj + λ
∑
m∈xt

pTi pm (2.3)

where pk refers to the softmax prediction vector of the sample xk ∈ xt.

The above mentioned methods achieve state-of-the-art performance in single domain adapta-
tion setting. However, these methods suffer from error accumulation due to over-fitting in CTTA.
We observe that source model is a more reliable starting point for adaptation than continually
adapting. This is because the source model has already been trained on a large amount of data, and
it has learned some general representations that can be transferred to the new domain. By adapting
the source model on the new domain, the model can adjust its representations to better fit the new
data while retaining the knowledge learned from the source domain.

2.2.1 Maximum Mean Discrepancy

Maximum mean discrepancy (MMD) can be defined as the distance (difference) between feature
means. Let’s start with the concepts used in the definition of feature means. Firstly given an Dt,i,
a feature map ϕ maps Dt,i to an another space F such that ϕ(Dt,i) ∈ F . Assuming F satisfies the
necessary conditions, and we can compute the inner product in F :

Dt,i,Dt,j such that d(Dt,i,Dt,j) = ⟨ϕ(X), ϕ(Y )⟩F

Feature means: Given a probability measure P on Dt,i, feature means (or feature prototypes
called in the literature) is another feature map that takes ϕ(Dt,i) and maps it to the means of every
coordinate of ϕ(Dt,i):

µp (ϕ(Dt)) = [E[ϕ(Dt,i], · · · ,E[Dt,N ]]
T (1)

Inner product of feature means of Dt,i ∼ P and Dt,j ∼ Q can be written in terms of kernel
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function such that:

⟨µP (ϕ(Dt,i), µQ (ϕ(Dt,j)⟩F = EP,Q [⟨ϕ(Dt,i), ϕ(Dt,j)⟩F ] = EP,Q [d(Dt,i,Dt,j)] (2)

Maximum mean discrepancy: Given Dt,i,Dt,j maximum mean discrepancy is the distance be-
tween feature means of Dt,i,Dt,j:

MMD2(P,Q) = ∥µP − µQ∥2F (3)

For convenience we have left out the ϕ(·) parts. If we use the norm induced by the inner product
such that ∥x∥ =

√
⟨x, x⟩, the equation (3) becomes

MMD2(P,Q) = ⟨µP − µQ, µP − µQ⟩ = ⟨µP , µP ⟩ − 2⟨µP , µQ⟩+ ⟨µQ, µQ⟩

Using the equation (2), finally above expression becomes

MMD2(P,Q) = EP [d(Dt,i,Dt,i)]− 2EP,Q [d(Dt,i,Dt,j)] + EQ [d(Dt,j,Dt,j)] (4)

This is essentially the theoretical formulation that inspired us to come up with the practical
implementation of our domain signal in the CTTA setting. We then use it to demonstrate our
improved performance.

2.2.2 Domain Shift Detection

As mentioned earlier, using TTA methods like TENT can hurt in CTTA setting because of error
accumulation. This in turn degrades the model over time. Here, we propose a simple but effective
solution to this by resetting the model when a domain shift is encountered.

Can source model characterise domain shift? In CTTA, the data distribution changes over
time, meaning that each batch of samples can come from a different domain. Then during infer-
ence time the domain shifts from one corruption to another. To handle this challenge, we leverage
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(a) Batch size=25 (b) Batch size=50 (c) Batch size=200

(d) Batch size=25 (e) Batch size=50 (f) Batch size=200

Figure 2.1: We observe from the t-SNE plots for (a), (b) and (c) that the classes are better clustered
and separated as the batch-size increases. The color of these clusters also represent the order in
which 15 corruptions are seen. In (d), (e) and (f) we see the corresponding (1 - DSS) signals to the
t-SNE. The red dotted lines are where the actual domain shift happens. Further 2.2 we see that this
domain detection is not dependent on the order of corruptions.

the feature extractor of the source model f , which we empirically observed to capture domain
information. The features of each sample vf = f(x) has two components: (i) Domain-specific
component vd which represents the part of the feature that is unique to a particular domain and
distinguishes it from other domains; (ii) Class-specific component vc that is relevant to the classifi-
cation task. By separating the features into these two components, the model can learn to identify
and adapt to changes in the distribution of the data between batches, while still maintaining the
ability to perform well on the classification task.

We hypothesise that E(vf ) = E(vd) +E(vc). Given, the samples come from the same domain
all sample have same domain E(vd) = vd, also the class specific components vc would be uni-
formly spread across all classes as E(vc) = 1

C

∑C
k=1 vk = vc, where vc is a constant vector and

C denotes the number of classes. Hence, E(vf ) = vd + vc. In this formulation, any change in
the domain specific component E(vd) can in-turn be captured by E(vf ), which can be empirically
estimated.

In CTTA, given a test batch xt = x1, x2, ..., xN at time instant t, we can estimate E(vf )(t)
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Figure 2.2: Cosine Similarity between random average batch features show that the similarity is
less than the threshold between different domains thus the signal can not only be used for domain
shift detection but also prompting. [26]
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as the mean feature vector E(vf )(t) = 1
N

∑N
k=1 vf,i, where vf,i = f(xi). This shows that these

domain specific components can be used to identify or detect a domain shift. We empirically
observe that vc → 0 as N → ∞. In Figure 2.1, we visualise the average batch features using
different batch sizes and for 15 corruptions in the CIFAR-100C. As the batch size increases, the
domain clusters become more compact, indicating the aforementioned tendency. Because of this,
the domain-specific component becomes more dominant with larger batch sizes.

This naturally acts as our domain shift signal. We define the cosine similarity of consecutive
batches as Domain Shift Signal (DSS), which we compute as

DSS = CosineSimilarity(E(vf (t)),E(vf (t− 1))) (2.4)

We us this signal to detect a change in domain using a threshold τ . When Evf (t) comes from the
same domain as Evf (t − 1), DSS is high, in turn continuing the model adaptation. Otherwise,
we trigger a model reset back to the source model. We briefly describe the domain shift detection
mechanism below.

Algorithm 1: Domain Shift Detection module

Input:
Source feature extractor f
Threshold for detection τ
Domain Shift Detection:
for each batch xt:
vf,i = f(xt,i)

Evf (t) =
1
N

∑N
k=1 vf,i

DSS(Evf (t),Evf (t− 1)) =
Evf (t)

TEvf (t−1)

||Evf (t)||||Evf (t−1)||

if DSS(Evf (t),Evf (t− 1)) < τ :
Reset model to source

Continue TTA
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2.3 Experiments and Results

2.3.1 Datasets

Following the protocol in [9], we use CIFAR10C and CIFAR100C [23] datasets which are de-
signed to evaluate the robustness of classification networks. These datasets contain images that
have been corrupted with 15 different types of corruption at 5 different levels of severity. In the
case of the corruption benchmark, this sequence consists of all 15 corruptions, each encountered
at the highest severity level 5 (maximum severity).

2.3.2 Baselines

We compare the performance of TENT and AaD in three different scenarios:

TTA: Firstly, we consider the TTA setting introduced by TENT [7] where the model is set to
source whenever there is a domain shift. This domain shift information is explicitly provided to
the model.

CTTA: Next, we consider the CTTA, as introduced by CoTTA [9]. Similar to the TTA setting,
the continual benchmark also uses an off-the-shelf model pre-trained on the source domain. How-
ever, unlike the standard TTA setting, the continual setting does not require knowledge of when
the domain changes, and instead adapts the model online to a sequence of test domains.

DSS: Finally, we use our domain shift signal to mimic the TTA setting while we are in the
CTTA setting. By using the domain shift signal to dynamically set the model source even with-
out having the underlying domain shift information. Thus the model can adapt to the changing
distributions without accumulation of error, effectively mitigating the impact of domain shift.

2.3.3 Implementation details

For all the settings, TTA, CTTA and DSS we use the source model which is trained on the clean
CIFAR10, CIFAR100 or ImageNet dataset. Then the algorithms are evaluated on the corruption
benchmarks CIFAR10-C, CIFAR100-C or ImageNet-C[23], respectively. These datasets have 15
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corruptions with severity levels ranging from 1 to 5. All experiments are conducted on the highest
severity level i.e. 5. For ImageNet-C, we use the first 10,000 samples for each corruption instead
of all the points in the dataset. This is the same protocol that CoTTA [9] uses for its experiments.

For the TTA task, we keep track of the domain shift and reset the model as well as the optimizer
parameters to the initial states. For CTTA, we continually adapt the model and do not reset anything
outside the scope of the algorithms. For DSS, we reset the model and the optimizer according to
our domain shift signal.

The CIFAR10 experiments use a WideResNet-28[27] model, while the CIFAR100 experiments
use a ResNeXt-29[28] architecture. The ImageNet-C experiments are done with the source model
as Standard ResNet-50 trained on ImageNet. All source models are adopted from the RobustBench
benchmark[29].

CoTTA[9] experiments are done using the official code base, and we use the default param-
eters without any further tuning as we do not change the problem set. For TENT[7], we use the
code of TENT implemented in the CoTTA code base we use a learning rate of 1e-3 for all three
datasets. For AaD[25], we adapt the AaD loss from its codebase. We use a learning rate of 1e-4 for
CIFAR10-C and CIFAR100-C, and for ImageNet-C, we use a learning rate of 1e-7 as we observe
that any higher learning rate makes AaD unstable within a single corruption. Both for TENT and
AaD, only the BN-layers are learnable, and they use the mean and variance of the test batch as the
BN-layer statistics.
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Mean
Source 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3 43.5
CoTTA 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2
TENT-TTA 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.6
TENT-CTTA 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7
TENT-DSS 24.8 20.6 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2 18.4
AaD-TTA 26.7 24.8 35.0 12.4 33.9 13.8 11.5 16.7 16.9 14.4 8.2 12.5 22.8 18.7 26.2 19.6
AaD-CTTA 26.7 23.2 30.6 12.4 30.9 14.7 12.4 19.3 19.4 17.5 13.6 20.8 27.7 26.4 33.8 22.0
AaD-DSS 26.7 23.2 35.0 12.4 33.9 13.8 11.5 16.7 16.9 14.4 8.2 12.5 22.8 18.7 26.2 19.5

Table 2.1: Results as error percentages (lower is better) for CIFAR-10C

Computational Advantages: From Figure 3.4 and Table 3.8 we observe the computational ad-
vantages of using TENT-DSS or AaD-DSS compared to CoTTA. Figure 3.4 compares inference
time. Here, we see that CoTTA (SoTA for CTTA setting) is computationally more expensive be-
cause (i) it needs to do 32 forward pass, (ii) update all parameters, (iii) update teacher model after
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Mean
Source 73.0 68.0 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
CoTTA 40.1 37.7 39.7 26.9 38.0 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
TENT-TTA 37.1 34.65 33.7 25.1 37.66 27.15 25.4 30.5 31.5 33.3 23.8 27.8 32.7 28.4 36.5 31.0
TENT-CTTA 92.7 37.2 35.7 41.6 37.5 50.8 47.7 48.5 58.7 64.8 72.4 70.5 82.2 88.5 89.9 61.2
TENT-DSS 37.2 35.9 41.6 25.2 37.6 27.2 25.4 30.5 31.6 33.2 23.8 27.7 32.6 28.4 36.5 31.5
AaD-TTA 41.9 39.8 42.0 27.2 41.4 29.3 27.5 34.5 34.7 40.3 26.2 30.2 35.2 32.3 40.8 34.9
AaD-CTTA 41.9 40.1 43.5 31.7 46.8 39.2 41.6 58.2 67.7 76.2 79.1 90.1 93.0 93.8 94.6 62.5
AaD-DSS 41.9 40.1 43.5 27.2 41.4 29.3 27.5 34.5 35.0 40.3 26.2 30.2 35.2 32.3 40.8 35.0

Table 2.2: Results as error percentages (lower is better) for CIFAR-100C
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Source 97.8 97.1 98.2 81.7 89.8 85.2 78.0 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82.0
CoTTA 83.9 79.5 76.7 79.5 76.3 67.0 57.8 62.0 59.5 50.9 40.9 62.5 49.7 44.7 48.0 62.6
TENT-TTA 73.7 71.0 72.7 74.2 74.6 60.9 52.2 54.4 58.7 43.1 32.6 74.4 46.0 42.0 48.8 58.6
TENT-CTTA 73.7 65.9 67.4 78.0 79.9 81.8 80.2 89.7 94.2 96.4 97.0 99.6 99.4 99.3 99.5 86.8
TENT-DSS 73.7 65.9 67.4 74.2 74.6 60.9 52.2 54.4 58.7 43.1 32.6 74.4 46.0 42.0 48.8 57.9
AaD-TTA 84.3 84.9 83.8 84.7 84.3 74.0 60.8 66.0 66.5 51.5 35.3 84.3 55.2 51.2 60.2 68.5
AaD-CTTA 84.4 84.6 83.8 83.9 86.9 82.0 75.5 89.3 95.3 93.6 93.1 99.5 99.3 99.3 99.6 90.0
AaD-DSS 84.4 84.4 83.2 84.7 84.3 74.0 60.8 66.0 66.5 51.5 35.3 84.3 55.3 51.2 60.2 68.4

Table 2.3: Results as error percentages (lower is better) for ImageNet-C

backpropagation. Next, Table 3.8 shows the memory requirements is lower in TENT and AaD
compared to CoTTA due to less number of trainable parameters and models that need to be stored.

2.4 Conclusion

In this work, we propose a modular method for handling the challenge of continual test-time do-
main adaptation. We address the limitations of traditional single domain adaptation by developing
a domain shift detection mechanism that continually measures the similarity between feature repre-
sentations of consecutive batches. When a shift is detected, our method resets the model back to the
source and continues test-time adaptation. Our experiments across standard datasets, batch sizes,
and single domain test-time adaptation baselines demonstrate the effectiveness of our approach,
making it a promising solution for the continual domain test-time adaptation problem.
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Figure 2.3: Mean error rates for CIFAR-10C, CIFAR-100C and ImageNet-C using TENT and
AaD.
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Figure 2.4: Comparison of inference time of the proposed SATA framework with the state-of-the-
art CoTTA. The x-axis is time of inference per batch (sec/batch). These experiments were done on
ImageNet-C using NVIDIA GeForce RTX 3090.

Method # Parameters # Trainable % Trainable

TENT 25,557,032 128 0.0005
AaD 25,557,032 128 0.0005
CoTTA 76,671,096 25,557,032 33.333

Table 2.4: Number of (trainable) parameters as a proxy for the storage requirement of the respective
algorithms. This table is for ImageNet-C with ResNet-50 as the backbone.
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Chapter 3

SATA: Source Anchoring and Target
Alignment Network for Continual Test
Time Adaptation

3.1 Introduction

In this work, we propose a novel framework, termed Source Anchored and Target Alignment
(SATA) Network, for the task of continual test-time domain adaptation. We feel that for the model
to be practically useful in an online setting, it should satisfy the following requirements: 1) For

online adaptation, the models should work seamlessly with different (preferably small) batch sizes

which reduces the inference time and latency; 2) The updated model should continue to work well

on the source domain; 3) The framework should require less storage and minimal tunable hyper-

parameters, since validation sets are usually not available during test-time. With this motivation,
we propose to use source anchoring based self-distillation, which ensures that the model robustly
adapts to the incoming data, while not forgetting the source domain information. The proposed
SATA also utilises contrastive learning to ensure better model generalisability to unseen domains.
Here, we also utilise the source prototypes for alignment of the target features to the corresponding
source data, which help to conserve the semantic information learnt using the source. We propose
to only update the BN affine parameters like TENT [7], which helps to avoid overfitting on the
small amount of target data, in addition to reducing the storage requirements. This simple, yet
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effective framework helps us take a step forward in achieving all the objectives mentioned earlier.
Extensive experiments on three large-scale benchmark datasets, namely CIFAR-10C, CIFAR-100C
and ImageNet-C [23] for different challenging and realistic scenarios justify the effectiveness of
the proposed SATA framework. To summarize, the contributions of this work are as follows:

• We propose a novel SATA framework for the task of continual test-time domain adaptation.

• The proposed framework takes a step forward in overcoming some of the important chal-
lenges in a practical test-time adaptation setting.

• We show that the proposed source-based anchoring along with the source-guided contrastive
alignment can be successfully utilised for robustly updating the model under dynamically
changing test conditions.

• Extensive evaluation on challenging settings justifies its effectiveness for different scenarios.

We now discuss the related work specific to this chapter, followed by the proposed method and
evaluation.

3.2 Related works

3.2.1 Knowledge and Self-distillation

Knowledge distillation is a technique used to transfer knowledge from a large, complex model
(”teacher” model) to a smaller, simpler model (”student” model) [30, 31]. This is done by training
the student model to mimic the predictions of the teacher model, which has already learned useful
representations, rather than training the student model on the original labelled data. CoTTA also
utilises distillation method to enhance the adaptation to new domains, which involves the imple-
mentation of a teacher model to make accurate predictions based on the student model.

A variant termed as self-distillation or self-knowledge distillation [32], involves training a
model to mimic its own predictions. The framework in [33] shows that using a model from a
previous epoch to train the same model in future epochs can increase the training efficiency and
accuracy of the model.
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3.2.2 Contrastive learning

Contrastive learning [34, 35, 36] has shown tremendous improvement in learning visual features
for various downstream tasks. Because of its robustness researchers have used it in SFDA [37,
38, 39, 40, 41], TTA [42], Domain Generalisation (DG) [43, 44] and other studies [45, 46] to
train/adapt a pre-trained model to a target domain using only unlabelled data. In previous works,
contrastive learning has been used to get better feature representation. However, in this work, we
align target features guided by source prototypes to get meaningful target features with respect to
the source feature space. This results in meaningful clustering and good separation of classes in
unseen domains.

3.3 Proposed SATA Framework

Given the model trained using the source data, the goal is to adapt it using the limited amount
of test-data encountered in each batch in a dynamic environment, while satisfying the desirable
criteria mentioned above. Towards this goal, we propose using (i) Source Anchorisation and (ii)
Source-Guided Contrastive Alignment, which we now describe.

3.3.1 Source Anchorisation of Model

During test-time, the model has access to few test samples in a batch, which may not be represen-
tative of the corresponding target distribution. Thus, modifying the model parameters completely
on the basis of the available target data may result in simultaneously overfitting on the few tar-
get samples and also catastrophic forgetting of the source information. CoTTA [9] addressed this
challenge by (i) learning a teacher model by combining the source and a continuously adapting
student model, wherein the teacher changes gradually for robust prediction and also using (ii)
stochastic restoration to reset some of the model parameters to the source model after every batch.
Though this gives impressive performance, it has two limitations, namely (i) the complete teacher,
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student and source model needs to be stored and (ii) the hyperparameters required for computing
the teacher model and also for stochastic restoration need to be determined, which can have dif-
ferent optimal values for different datasets. To overcome these challenges, in this work, we use
self-distillation using the source model as the anchor [30, 33].

We denote the adapting model as fθ, as this is the model which is constantly updated and is
used to predict the target data. The weights θ of the adapting model is initialised to the weights
θs of the off-the-shelf source model given by fθs . Now, consider time instant k, when the model
encounters a new batch denoted byBk. Since adaptating the BN statistics has proven to be effective
in capturing the data distribution characteristics [13, 9], the BN statistics of the source model (fθs)
and the adapting model (fθ) are changed to the BN statistics of the target batch at each step. Let
these models be denoted as fkθs and fkθ respectively. fkθs (referred to as source from now) can
be thought of as a specialised model that accounts for the domain difference between the source
and the specific target batch, On the other hand, the adapting model’s weights are optimised after
every batch using the loss function that will be described later. It should also be noted that during
optimisation, only the BN parameters are updated for the adapting model [7].

The proposed self-distillation loss is inspired from the knowledge distillation loss formula-
tion used in incremental learning [47, 48] to prevent catastrophic forgetting. In this work, self-
distillation between the adapting model and the source model acts as a regulariser [49], which
encourages the adapting model to mimic the source model, which is a specialised model whose
response corresponds to domain invariant features. Thus, our adapting model is reinforced to learn
domain invariant features [49], leading to better generalisation, which we empirically observe in
Table 3.6.

The loss function is based on the prediction scores of the adapting model and source model for
a given batch of test images, Bk := {x1, x2, . . . , xNk

}. Let pij and aij denote the jth element of
fkθ (xi) (adapting model) and fkθs(xi) (source model) respectively, which gives the prediction score
of the jth class for the ith test image. The source-anchoring loss for a given batch is calculated as
follows:

L′
SA(Bk) = − 1

Nk

Nk∑
i=1

C∑
j=1

pij log(aij) (3.1)

Here, C is the number of classes, and Nk is the number of samples in the kth batch. Empirically,
we observe that using augmentations of the test images make the model more robust. Let qij denote
the prediction score of the jth class for the ith augmented test image, given by the adapting model.
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The complete source-anchoring loss is given by

LSA(Bk) = − 1

Nk

Nk∑
i=1

C∑
j=1

(pij log(aij) + qij log(aij)) (3.2)

This simple, yet effective self-distillation offers multiple advantages as follows: i) Since the modi-
fied source is used for anchoring, there is no hyper-parameter involved (like weights for combining
student with source to form the teacher model); ii) The adapting model can be directly used for
prediction continuously, without requiring any restoration to the source model; iii) Since only the
BN parameters are updated, just these parameters of the source need to be stored, resulting in much
lesser storage requirements compared to storing two different models.

3.3.2 Source-Guided Target Alignment

The goal is to learn a generalised model as it encounters data from different domains, thereby
making the features gradually domain invariant. Here, we additionally use self-supervision (in
the form of contrastive learning) for improved generalisation as used in [41, 39]. Formally, the
adapting model fkθ can be decomposed into a feature extractor, gkϕ and the fixed classifier h, i.e.

fkθ = h ◦ gkϕ (3.3)

Suppose the augmented samples for the test batch data {xi, yi}Nk
i=1 be denoted as {xi, yi}2Nk

i=Nk+1

where yi = yNk+i. We use the same augmentations for our experiments as in CoTTA [9]. These
features are then passed to a projection head pψ so that the features are mapped to a d-dimensional
hyper-sphere [34, 35].

zi = pψ ◦ gkϕ(xi) (3.4)

Now, the parameters ψ and ϕ are optimised using the contrastive loss given below:

Lcon =

2Nk∑
i=1

−1

|S−i|
∑
j∈S−i

log

(
exp(zi.zj/τ)∑
k ̸=i exp(zi.zk/τ)

)
(3.5)

here τ > 0 is the temperature hyperparameter and

S−i = {j | j ̸= i, yi = yj∀j ∈ {1, . . . , 2Nk}} (3.6)
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(a) (b)

Figure 3.2: t-SNE plot of the feature space using only LTA for adaptation. We observe that the
alignment and clustering is better with source prototypes (a) as compared to not using them (b).
The source prototypes are represented using stars.

In this work, as in [7], only the BN layers of the feature extractor are modified to account for the
changing distribution, but the classifier layer remains unchanged (to avoid overfitting on the few
target samples in each batch). This ensures that the semantic information in the feature embedding
space is not disturbed during the adaptation process. Thus, for correct classification, the target
clusters should also align with the original source representations, which is achieved using the
source-guided alignment loss. To this end, we include a third view which assigns the nearest
source prototype features as an augmented view for the test time features. Specifically, let the
source prototypes for the C classes be denoted as {πi}Ci=1. The source prototype views given by
{xi, yi}3Nk

i=2Nk+1, such that yi = y2Nk+i are calculated as follows:

gkϕ(x2Nk+i) = {πj| argmax
j

(CosineSim(πj, g
k
ϕ(xi)))} (3.7)

The effect of using prototypes as a view can be seen in Figure 3.2. We see that using this view (Eq
7 directly gives features) implicitly passes class information to the contrastive learning algorithm
resulting in improved clustering. Therefore, the source-guided target alignment loss is given by:
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LTA =

3Nk∑
i=1

−1

|S−i|
∑
j∈S−i

log

(
exp(zi.zj/τ)∑
k ̸=i exp(zi.zk/τ)

)
(3.8)

3.3.3 Final loss

Given any off-the-shelf pre-trained model and the source prototypes, during testing, using the
current test batch, we modify the BN parameters such that the following loss is minimised:

LSATA = LSA + LTA (3.9)

The adapting model is used for predicting the class of all the test samples. It is robust enough to
be updated continuously without any restoration back to the source model.

3.4 Experimental Evaluation

Here we describe the extensive experiments performed to evaluate the effectiveness of the pro-
posed framework.
Dataset Details: Here, we evaluate the proposed framework extensively on multiple benchmark
datasets, namely, CIFAR-10C, CIFAR-100C and ImageNet-C [23]. These datasets have 10, 100
and 1000 classes respectively. All the datasets contain 15 diverse forms of corruption (noise, blur,
weather, and digital) with five levels of severity, applied to the test set of all the three datasets. For
all the experiments, unless mentioned otherwise, the test sequence consists of all 15 corruptions at
the highest level of severity [9]. The goal is to adapt an off-the-shelf source model to this dynami-
cally changing environment efficiently during test time.

Research Questions: The research questions that we want to answer using the experiments are
the following:
i) How does the proposed framework perform on these datasets using the standard experimental
protocol (higher batch size) as used in [9]?
ii) How does the model perform with lower batch sizes, which are more realistic in an online set-
ting as in [7]?
iii) Are we able to learn a generalised model which also retains its good performance on the data
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BN Stats Adapt [13] 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3 20.4
TENT-continual [7] 24.8 20.6 28.6 14.4 31.1 16.5 14.1 19.1 18.6 18.6 12.2 20.3 25.7 20.8 24.9 20.7
CoTTA [9] 24.3 21.3 26.6 11.6 27.6 12.2 10.3 14.8 14.1 12.4 7.5 10.6 18.3 13.4 17.3 16.2
SATA 23.9 20.1 28.0 11.6 27.4 12.6 10.2 14.1 13.2 12.2 7.4 10.3 19.1 13.3 18.5 16.1 ± 0.06

C
IF

A
R

-1
00

C Source 73 68 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN Stats Adapt 42.1 40.7 42.7 27.6 41.9 29.7 27.9 34.9 35 41.5 26.5 30.3 35.7 32.9 41.2 35.4
TENT-continual 37.2 35.8 41.7 37.9 51.2 48.3 48.5 58.4 63.7 71.1 70.4 82.3 88 88.5 90.4 60.9
CoTTA 40.1 37.7 39.7 26.9 38 27.9 26.4 32.8 31.8 40.3 24.7 26.9 32.5 28.3 33.5 32.5
SATA 36.5 33.1 35.1 25.9 34.9 27.7 25.4 29.5 29.9 33.1 23.6 26.7 31.9 27.5 35.2 30.3 ± 0.05

Im
ag

eN
et

-C

Source 97.8 97.1 98.2 81.7 89.8 85.2 78 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82
BN Stats Adapt 85 83.7 85 84.7 84.3 73.7 61.2 66 68.2 52.1 34.9 82.7 55.9 51.3 59.8 68.6
TENT-continual 81.6 74.6 72.7 77.6 73.8 65.5 55.3 61.6 63 51.7 38.2 72.1 50.8 47.4 53.3 62.6
CoTTA 84.7 82.1 80.6 81.3 79 68.6 57.5 60.3 60.5 48.3 36.6 66.1 47.2 41.2 46 62.7
SATA 74.1 72.9 71.6 75.7 74.1 64.2 55.5 55.6 62.9 46.6 36.1 69.9 50.6 44.3 48.5 60.1 ± 0.06

Table 3.1: Error percentages (lower is better) of different algorithms for CIFAR-10C, CIFAR-100C
and ImageNet-C for batchsizes of 200, 200 and 64 respectively. For SATA the standard deviation
is reported over 5 random seeds.

from source distribution?
iv) Are both the proposed modules important?
iv) Practical considerations - How does the model fare in terms of storage cost, inference time,
number of hyperparameters to be tuned across datasets?
Implementation Details: For CIFAR-10C, we use a pre-trained WideResNet-28 [27] model from
the RobustBench benchmark [50] as in [9]. The model is updated with one gradient step per it-
eration, and the Adam optimiser with a learning rate of 1e-3 is used. The temperature is set to
the default value of 0.1. The CIFAR-100C experiment uses a pre-trained ResNeXt-29 [28] model,
which is one of the default models for CIFAR-100 in the RobustBench benchmark [50]. The same
hyperparameters as the CIFAR-10 experiment are used. For the ImageNet-C experiment, the stan-
dard pre-trained Resnet50 [51] model from RobustBench [50] is used. Here, SGD is used as the
optimiser with a learning rate of 1e-2 as in [9]. We conduct all the experiments on an NVIDIA
GeForce RTX 3090.

3.4.1 Evaluation on Standard Benchmarks

Table 3.1 reports the results on the three benckmark datasets. The batch sizes used for these
experiments are 200, 200 and 64 for CIFAR-10C, CIFAR-100C and ImageNet-C[23] respectively
as in [9]. All the results for the other approaches are directly taken from [9]. In the TENT-continual
setup, the model continuously adapts and is not reset to the source model after each corruption. We
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Source 72.3 65.7 72.9 46.9 54.3 34.8 42 25.1 41.3 26 9.3 46.7 26.6 58.5 30.3 43.5
BN Stats Adapt 32.8 30.5 40.8 17.6 39.4 18.3 17.6 22.1 21.8 20.0 12.7 17.0 28.6 25.2 31.6 25.1
TENT-continual 66.3 66.5 68.9 62.7 69.5 63.5 62.0 63.1 64.5 63.3 60.8 66.0 66.0 64.5 65.8 64.9
CoTTA 55.9 55.7 56.9 52.6 58.2 53.4 51.2 55.4 54.7 53.7 51.3 55.9 55.4 54.0 53.9 54.5
SATA 27.6 25.0 33.6 17.1 34.7 18.0 16.4 20.0 19.2 17.1 12.5 16.4 25.1 21.0 26.6 22.0

C
IF

A
R

-1
00

C Source 73 68 39.4 29.3 54.1 30.8 28.8 39.5 45.8 50.3 29.5 55.1 37.2 74.7 41.2 46.4
BN Stats Adapt 48.7 47.4 49.3 34.5 48.7 36.1 34.7 41.8 41.3 47.7 33.3 37.1 43.0 40.2 47.7 42.1
TENT-continual 96.7 96.9 96.7 96.7 96.8 96.8 96.7 96.5 96.9 96.9 96.7 96.9 96.8 96.6 96.7 96.8
CoTTA 66.5 65.6 67.2 62.5 66.5 63.1 62.0 66.1 64.4 68.8 61.8 64.9 65.4 62.5 65.7 64.9
SATA 44.2 41.8 42.1 34.5 45.1 35.7 33.9 38.7 39.4 42.9 31.7 35.8 40.7 36.3 44.1 39.1

Im
ag

eN
et

-C

Source 97.8 97.1 98.2 81.7 89.8 85.2 78 83.5 77.1 75.9 41.3 94.5 82.5 79.3 68.6 82
BN Stats Adapt 88.6 87.7 87.9 89.6 89.0 79.5 70.1 71.8 74.4 60.9 43.0 86.5 64.4 59.9 67.9 74.8
TENT-continual 80.7 78.2 85.1 96.9 99.1 99.5 99.4 99.6 99.6 99.5 99.5 99.7 99.6 99.5 99.6 97.5
CoTTA 86.5 87.2 91.9 96.5 97.5 98.2 98.9 99.1 99.4 99.5 99.5 99.7 99.5 99.6 99.6 96.8
SATA 95.0 95.0 94.4 94.3 92.0 86.8 77.7 76.2 78.3 63.4 52.2 83.6 66.3 58.8 63.9 78.5

Table 3.2: Error percentages (lower is better) of different algorithms for CIFAR-10C, CIFAR-100C
and ImageNet-C for batchsizes of 10, 10 and 8 respectively.

observe that for all the datasets, the proposed SATA outperforms all the other existing approaches.
Specifically, for the challenging ImageNet-C, we obtain an error of 60.1%, which is 2.6% better
than the previous state-of-the-art CoTTA. In addition to the gain in performance, SATA has other
advantages, as elaborated on later.

3.4.2 Evaluation with Lower Batch Sizes

A practical test-time adaptation algorithm should work satisfactorily for lower batch sizes, which
will decrease the average time for inference of a sample and thus lower the latency of the frame-
work. Recently, researchers have started to address the issue of robustness across batch sizes [52],
but many of these methods are not fully test time adaptation (FTTA) and requires source training
for initialisation.

Here, we evaluate the robustness of the proposed SATA framework for lower batch sizes and
compare the results with the state-of-the-art. Figure 3.3 shows the results for the three datasets
with decreasing batch sizes. Since the results of the other approaches were not reported for other
batch sizes, we ran the official codes and obtained the results reported in the table. To ensure
the best results for the other methods, we tuned the appropriate hyperparameters. Specifically,
for TENT, we varied the learning rate. For CoTTA, the restoration probability and model EMA
factor was reduced in proportion to the decrease in batch size. Changing any other parameters
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Figure 3.3: These figures compare the robustness of the different approaches for different batch
sizes. The x-axis is the batch size and y-axis is the error percentage (lower is better). We observe
that the proposed SATA is robust across batch sizes.

Methods
CIFAR-10C CIFAR-100C IMAGENET-C

200 150 100 50 25 10 200 150 100 50 25 10 64 32 16 8
SALoss (original image) 20.1 20.1 20.4 20.7 21.7 24.8 32.6 32.8 33.2 34.0 35.7 40.7 62.7 64.9 69.4 77.8
SALoss (original + augmented image) 17.1 17.2 17.4 18.0 19.0 22.5 31.4 31.6 32.0 32.8 34.7 39.9 61.3 63.8 68.5 76.8
SATA (SALoss + TALoss) 16.1 16.2 16.5 17.2 18.3 22.0 30.4 30.5 30.8 31.9 33.9 39.1 60.2 63.2 68.5 78.5

Table 3.3: Mean error percentage (lower is better) demonstrating the importance of the two pro-
posed components. Ablation is done on all the four datasets for multiple batch sizes.

did not substantially change the performance of the model. Note that for the proposed SATA,
no parameters were changed across the different datasets as well as batch sizes. We observe
that the improvement provided by our approach becomes clearer as the batch size decreases. For
example, for a batch size of 10, we obtain 22.0% for CIFAR-10C dataset, which is significantly
better compared to the next best obtained by BNStats. Though there is still a lot of room for
improvement for all the frameworks, this experiment justifies the effectiveness of the proposed
SATA for online setting.

3.4.3 Ablation Study

Here, we analyze the importance of the two losses in the proposed SATA framework. We ob-
serve from Table 3.3 that most of the performance improvement of SATA can be attributed to the
source-anchoring of the test samples and its augmented version. The clustering and alignment
terms further help to improve the performance, thereby achieving state-of-the-art performance for
continual test-time domain adaptation under different challenging settings.
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Avg. Error (%) Source BN Adapt TENT (cont) CoTTA SATA

CIFAR-100C 33.6 29.9 74.8 26.3 25.6

Table 3.4: Average error over all corruptions with severity presented in the gradual test time adap-
tation manner. The order of corruption used here is the same as in Table 3.1.

batchsize → 200 150 100 50 25 10

TENT 92.0 (70.9) 96.2 (75.1) 97.8 (76.7) 98.2 (77.1) 98.5 (77.4) 99.0 (77.9)
CoTTA 22.8 (1.7) 23.0 (1.9) 23.9 (2.8) 27.2 (6.1) 35.5 (14.4) 58.5 (37.4)
SATA 22.4 (1.3) 22.7 (1.6) 22.9 (1.8) 23.6 (2.5) 25.8 (4.7) 29.9 (8.8)

Table 3.5: Error on CIFAR-100 test set after the model has been adapted to all the corruptions as
in Table 3.1. (.) is the degradation in performance on source data compared to the source model,
whose error is 21.1%. This deviation can be thought of as a proxy for catastrophic forgetting.

3.5 Further Analysis

Here, we perform further analysis to evaluate the usefulness of the proposed framework and its
different components. All these analysis are done on the CIFAR-100C datasets, unless stated oth-
erwise.

Performance on gradually changing data: In the standard setup, the corruption types change
abruptly with maximum severity levels. A more realistic approach will be to evaluate the perfor-
mance of the approaches when the severity levels change gradually over a sequence of 15 corrup-
tion types. Thus we experiment with the gradual setup as also done in [9]. The representation
below shows the order in which severity is faced for every corruption.

. . .→ 2 → 1︸ ︷︷ ︸
t-1 and before

→ 1 → 2 → 3 → 4 → 5 → 4 → 3 → 2 → 1︸ ︷︷ ︸
t corruption type, with changing severity

→ 1 → 2 → . . .︸ ︷︷ ︸
t+1 and after

Table 3.4 reports the results of the proposed framework and comparisons with the existing
approaches for this setup. The results suggest that BN Adapt, CoTTA, and SATA are more effective
than the source and TENT (cont) approaches in dealing with corruption types that change gradually
over time. In particular, our approach achieves the lowest average error rate of 25.6%, followed by
the CoTTA approach with an average error rate of 26.3%. The BN Adapt approach also performs
well with an average error rate of 29.9%.
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Performance on source data: As the trained model gradually adapts to the changing testing
conditions, we want it to be able to perform well on the original source distribution, which requires
that the model has not catastrophically forgotten the original training information. For e.g., the
original model trained on clear weather conditions should continue to do well for clear weather
images, even though it has adapted to other conditions like rainy, foggy, etc.

To achieve these contrasting goals, it is important that the model has the right balance of
stability-plasticity. The stability-plasticity trade-off refers to the balance between preserving learned
knowledge and adapting to new information. Table 3.5 reports the results of using the adapted
model on a held-out testing set from the source distribution on CIFAR-100C dataset. The perfor-
mance of the original model trained on source gives an error of 21.1% on its test set. Thus the
difference gives an estimate of the catastrophic forgetting (Table 3.5). We observe that even after
adaptation, SATA is able to maintain its performance on the source distribution very well as com-
pared to CoTTA and TENT for all batch sizes.

Generalisability of the learnt model: When the source model encounters data from different
domains, we want it to gradually become more generalised, such that the features become domain
invariant. To evaluate whether this happens in practice, we perform an experiment, in which the
model is first adapted on the first 7 corruptions (gaussian to zoom). We then freeze the weights and
evaluate its performance on the last 8 corruptions (snow to jpeg). We compare the performance of
this adapted model (adapted using CoTTA and SATA) to the performance using the source model,
whose BN statistics are adapted to the corresponding batch statistics. We see from the results
in Table 3.6 that both CoTTA and the proposed framework have indeed learnt more generalised
features and is therefore performing better than the source model (BN Adapt). To understand the
generalisation capability provided by our individual losses, we also report the results using only the
source-anchoring loss (LSA). We observe that this single loss term gives comparable performance
as CoTTA, even without the target alignment loss.

Effect of source prototypes: In some cases, prototypes may not be available. We check the
performance of our method in such cases as demonstrated in Table 3.7. We observe that without
the prototypes, the performance drops slightly compared to our complete loss. This drop is small
because the other loss component (LSA) will increase if the features of the adapting model are not
aligned with the features of the source. Thus, even if only the pre-trained model is available, our
method can be used for test time adaptation.
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BN Adapt 35.6 34.9 42.1 26.9 31.0 36.0 33.5 41.7 35.2
CoTTA 31.3 30.5 36.7 25.2 27.8 31.5 29.1 36.4 31.1

SALoss 31.9 31.3 37.2 25.0 29.4 33.0 29.2 37.8 31.9
SATA 31.2 31.2 36.3 25.0 28.7 32.2 28.0 37.2 31.2

Table 3.6: This experiment on CIFAR-100C demonstrates the generalisability of the learnt model.
We observe that both CoTTA and SATA yield a more generalised model after adaptation.

CIFAR-10C CIFAR-100C ImageNet-C

SATA w/ prototypes 16.1 30.0 60.2
SATA w/o prototypes 16.2 (-0.1) 31.4 (-1.4) 61.1 (-0.9)

Table 3.7: Here, we see the performance comparison (error % - lower is better) between using
prototypes as a view v/s not using them in the target alignment loss. (.) is the drop in performance
compared to the complete loss.

Computational Advantages: The proposed SATA framework has additional advantages over the
existing approaches as follows:
1) Less memory requirements due to less number of trainable parameters;
2) Faster inference time due to lesser number of forward passes.
Number of parameters to be stored: Table 3.8 reports the total number of parameters and trainable
parameters for TENT, CoTTA and SATA. We observe that CoTTA has 33% more parameters than
SATA and the trainable parameters in SATA is only 2.1% of those in CoTTA. Thus the proposed
framework is much simpler and computationally efficient, which can be especially important in
real-time applications where time and computational resources are limited.

Method # Parameters # Trainable % Trainable

BN-Stats 6,900,132 0 0
TENT 6,900,132 128 0.002
CoTTA 20,700,396 6,900,132 33.333

SATA 13,947,976 147,840 1.060

Table 3.8: Number of (trainable) parameters as a proxy for the storage requirement of the respective
algorithms. This table is for CIFAR-100C with ResNeXt-29 as the backbone.
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Figure 3.4: Comparison of inference time of the proposed SATA framework with the state-of-the-
art CoTTA. The x-axis is time of inference per batch (sec/batch). These experiments were done on
CIFAR-100C using NVIDIA GeForce RTX 3090.

Inference time for a fixed batch size: The inference time of a model is an important factor in
test-time adaptation because it determines how quickly the model can be applied to new data. In
Figure 3.4 we have compared the inference time (in sec) per batch (of 200 samples) for CoTTA
and SATA. We see SATA is around 10 times faster than CoTTA during inference. This can be
attributed to the fact that CoTTA uses 32 forward passes in the worst case for its prediction and
also updates the teacher model after every step.

3.6 Conclusion

In this chapter, we proposed a novel SATA framework for the challenging task of continual test-
time domain adaptation. The proposed approach modifies the batch-norm affine parameters using
source anchoring-based self-distillation to ensure the model incorporates knowledge of newly en-
countered domains while avoiding catastrophic forgetting. Additionally, source prototype guided
target alignment is proposed to maintain the already learned semantic information while group-
ing target samples naturally. The approach is quite robust to decreasing batch sizes, justifying its
effectiveness for online application. But we observe that for very small batch sizes (e.g. 8 in Ima-
geNet), its performance drops slightly below BN Adapt, though even for this case, it is significantly
better than TENT and CoTTA. The SATA framework offers additional advantages like retaining
performance on the source domain, and having minimal tunable hyper-parameters and storage
requirements, in addition to achieving state-of-the-art results on all the benchmark datasets.
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Chapter 4

Conclusion

In conclusion, deep learning has made tremendous strides in computer vision tasks such as clas-
sification, object detection, and segmentation. However, deep neural networks have shown poor
performance when tested on data from a different distribution than the training data. To address
this challenge, unsupervised domain adaptation techniques have been developed, but they require
access to labelled source data and unlabelled target data. Moreover, the test data distribution may
dynamically vary with time, which is critical to continually adapt the model during test time to
ensure optimal performance in changing scenarios.

Continual adaptation during test time is particularly important in real-world scenarios where
the data distribution can be dynamic and challenging to predict. Hence, it is a critical research
area in deep learning. The ongoing research is focused on developing models and algorithms
that can learn to adapt and generalise to different environments, aiming to create more robust and
reliable deep learning models. The thesis contributes to this field by proposing novel ideas and
frameworks to address the challenges of adapting models to changing test environments. The
results are promising and open up avenues for further research and development in this area.
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