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Abstract

We investigate the non-interacting 2D Anderson model with Rashba type spin-orbit coupling

over the localized-delocalized phase transition. We calculate a coarse-grained picture of the

disorder strength - SOC coupling strength phase diagram. We also investigate the persistence

of information about the initial state through imbalance measurements. We compare the

imbalance retention for different densities such as charge density, Si for different initial

conditions. We show that the charge and spin imbalances behave in qualitatively different

ways as we move through the parameter space. The spin imbalance is less robust than the

charge imbalance for small spin-orbit coupling but more robust at large coupling values. The

dependence of the charge imbalance on the presence/absence of a spin pattern in the initial

condition is also investigated.
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Chapter 1

Introduction

Classical and quantum systems show quite different contrasting behaviour in response to

potential landscapes. Classical systems can localize a particle within a region of space only

if the energy of the particle is lower than the height of the potential barrier surrounding the

particle. However, quantum systems display tunnelling which in typical systems disallows

a particle to be restricted by a finite potential barrier. Any particle that is blocked by a

finite potential barrier will tunnel to the other side of the barrier. The amplitude of the

wavefunction decreases exponentially with the width of the barrier but the wavefunction is

non-zero in the region beyond the barrier and the amplitude does not decrease beyond the

width of the barrier if the potential outside is flat. This means that a quantum particle in

a finite potential well has a non-zero chance of “escaping” to beyond the well irrespective

of the height and width of the potential, as long as they are finite. However, Anderson

localization is a phenomenon that allows a quantum system to localize a particle within a

small region despite the potential landscape being finite and the barrier not being higher

than the particle’s energy [2].

A disordered potential, simply called disorder, is a potential field whose values are ran-

dom. In practical systems, disorder is the result of impurity, imperfections and other defects

in the sample. Since all samples that can be prepared inevitably contain such factors, most

samples that can be produced in a lab will have some degree of disorder. The presence of

disorder in the system leads to significant effects on the system dynamics and usually cannot

be be neglected or ignored. These effects can be non-perturbative and hence require careful
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consideration. Anderson localization is one such effect which we study in this work.

The Anderson localization effect happens in systems with sufficiently large disorder in

the potential. The presence of a disordered potential, a potential whose values are drawn

randomly from a distribution, can localize a particle within a small region of space [2]. The

kinetic energy of the particle need not be smaller than the average height of the potential

surrounding the particle. The effect occurs due to the presence of multiple, coherent scat-

terers leading to an exponentially decreasing probability of the particle being transmitted

across the sample.

Since disorder is found in most practical systems and coherent scattering requires waves

which are also ubiquitous in nature, the phenomenon can be seen in various systems. It

can be seen in light waves in diffusive media [34, 32], photonic crystals [30], [7] and atomic

matter waves in a cold atom systems [24, 5, 28].

This localization has consequences for the transport properties of the particle in that

medium. Most notably, a strongly localized system will act as an insulator while a delo-

calized system will act as a metallic conductor. So the effect gives rise to a metal-insulator

transition that shows localized behaviour for strong disorder and delocalized behaviour for

weak disorder in certain systems.

In typical quantum systems, most of the eigenstates are delocalized. These have support

over a significant portion of the Hilbert space. Any initial state with a a positional structure

will evolve as independent, delocalized eigenstates leading to the delocalization of the parti-

cles over time. Typically, this final state would be a thermal state of the system. As a result,

the positional information about the initial state would be lost as the system evolves. This

process of erasure of the information about the initial conditions at the macroscopic scale

is thermalization. If the system is integrable, the initial state could be reconstructed using

the conserved quantities measured at later times. However, typical quantum systems are

non-integrable and thus, we are usually unable to get any information about the structure

of the initial state.

In contrast, disordered systems displaying localization also exhibit dynamics that may

not lead to a thermal state. Starting from an initial particle configuration, localized systems

have been shown to retain the information about the spatial pattern of the particles in the

initial state whereas this memory is lost in delocalized systems [8]. As a result, disordered
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systems show interesting qualities that allow them to retain the information about the initial

state. This robust persistence of memory of the initial states make them good candidates

for preserving spatial patterns in the system states that may be important for a sample for

other effects and experiments.

Systems with interactions that show localization are an important category of systems

as they exhibit non-equilibrium dynamics since they may not thermalize when starting from

certain initial states. Adding interactions can lead to delocalization in systems that otherwise

show localization. Therefore, localized interacting systems are special and are categorized

differently than their non-interacting counterparts. This phenomenon is called Many-Body

Localization and is a topic of intense study. In this work, however, we consider only systems

without interaction.

Spin-orbit coupling in condensed matter systems is an interaction between the spin of

a particle and the magnetic field induced by its motion. This coupling, therefore, makes

the particle motion spin-dependent by connecting the spin of the particle to its orbital

motion. Adding spin orbit coupling to the 2D Anderson model leads to the appearance of

a metal-insulator transition in this system since the spin-orbit coupling in general causes a

delocalizing effect on the particles. [13] This phase transition now occurs in a 2D parameter

space since the disorder strength and the spin-orbit coupling strength are now both factors

that affect the localization effect.

The addition of spin-orbit coupling breaks the conservation of spin i.e the spin rotational

symmetry and allows for a richer dynamics to come into play in our systems since now the

spin density and the charge density both show localization. This is in contrast to systems

without spin interactions where only the charge density shows localization. By adding spin-

orbit coupling to the system, we can now probe the relationship between the memory of

the initial spin patterns and the initial charge patterns. We show in our work that the two

show qualitatively different behaviour in the presence of spin-orbit coupling and that they

are independent of the other.

The difference in the behaviour spin and charge memory retention in such systems may

be important in creating procedures that need to create and maintain particular spin and

charge patterns in a 2D system. One key motivation to study the effects of spin and charge

patterns would be to see if the presence of one of spin or charge patterns could give rise to a

pattern in another quantity or play a significant role in the decay of the information about
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this quantity. Since disorder is ubiquitous, these results would form the foundation for any

further work that may focus on similar systems with added interactions.

The setups described in this work may be experimentally realized through cold atom

experiments. Recent experimental work has enabled construction of spin-orbit coupled cold

atomic systems in optical lattices [20]. Huang et al have shown experimental realizations of

2D spin-orbit coupled Fermi gases [18] and theoretically 2D Anderson transitions have been

studied for cold atoms in speckle potentials [27, 35]. Therefore, they provide the possibility

of an experimental verification of our results.

6



Chapter 2

Localization in Disordered Quantum

Systems

2.1 Localization

We define localization of a particle at point x as the wavefunction of a particle that shows

amplitudes which decay at least exponentially with the peak at x. The main question is

that if we start with an initial state where the particle is present at x, will the wavefunction

remain localized at the point x at long times?

x

(x)

Figure 2.1: Example of a localized (blue) and a delocalized state (orange).

The characteristic length scale of the exponential decay is called the localization length.

In practice, the localization of a state can be quantified using various quantities which may
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be easier to measure. The localization length is one such quantity, but it is often hard to

measure directly and is often inferred from other quantities or by fitting.

One way to quantify localization is in terms of Inverse Participation Ratio (IPR). IPR is

defined as

IPR[ψ(x)] =
∑
x

|ψ(x)|4 (2.1)

For a delocalized state, the IPR scales with the system size L as 1/L. For a localized

state, the IPR remains nearly constant with the system size. This allows us to distinguish

between states by computing them for different system sizes. Since it involves matching

states for different system sizes, we have not adopted this approach in our work.

The localization length can be found by calculating the Green’s function of the system

and using the fact that the Green’s function squares will decay exponentially with distance

over length scales corresponding to the localization length. We use this in the first part of

our work.

The localization length can also be found from the long time imbalance of certain quan-

tities like particle and spin densities in the system. This is discussed in Chapter 4.

2.2 Anderson Localization

The Anderson model is one of the simplest examples of systems showing localization. The

model, introduced by P. W. Anderson [2], is given by

H =
∑
i

ϵic
†
ici − t

∑
⟨ij⟩

c†icj (2.2)

where t is the hopping strength, ϵi are random onsite potentials (known as disorder)

drawn from a uniform distribution [−W/2,W/2] and W is called the disorder strength.
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Figure 2.2: ⟨ψ2⟩ for the 1D Anderson model starting from initial state of a Gaussian
wavepacket at W = 3 over 100 disorder realizations and after t = 100

In the absence of disorder, the Anderson model is a tight-binding model whose solutions

are plane waves. In 1D, the model shows localization at any non-zero disorder strength W .

The model has been studied extensively since it was proposed by Anderson in 1958. The

localization length is comparable to the mean free path length scale. [33]

In 2D on a square lattice, the model still remains localized for any non-zero disorder [1]

[12]. However, the localization effect is much weaker in the sense that, the localization length

ξ can be very large, especially for weak disorder. ξ can often exceed the size of finite size

systems, which leads to the system appearing delocalized in simulations even though it is

not in the infinite size limit. The d = 2 case is the lower critical dimension for the Anderson

transition which is visible in higher dimensions.

In 3D cubic lattice, the system shows a phase transition between the system being local-

ized and the system being delocalized as the disorder strength is varied. [2] This is known

as the Anderson Metal-Insulator transition. The system shows delocalization, thus behaving

as a metal, for weak disorder (W < Wc) and localization with insulator characteristics for

strong disorder (W > Wc).
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d = 3

β

ln gc

d = 2

d = 1

1

-1

0

Figure 2.3: Schematic plot of β-function

2.3 Scaling Theory

One way to understand the Anderson phase transtion is via scaling theory introduced by

Abrahams et al [1]. For a d-dimensional metallic sample of side length L, the conductance

g(L) scales as Ld−2 in the classical (Drude) limit. We define the β-function as

β(g) := L
d

dL
ln g(L) =

d ln g(L)

d ln (L/L0)
(2.3)

= d− 2 (to leading order) (2.4)

This is also known as the “renormalization flow”. When the β-function is negative, the

conductance decreases with L, so it represents an insulating phase. On the other hand, a

positive β-function represents a conducting phase as the conductance increases with L.

For d = 1, the β-function is always negative and limg→∞ β(g) = −1. Therefore, the

system is always localized and insulating. For d = 2, the function is still negative, but the

asymptotic value is zero. Therefore, we need further correction terms to understand whether

the system admits a transition or not. It turns out that the β-function is always negative

and the asymptotic value is zero because of “Weak Localization” corrections.

β(g) = d− 2− cd
g
+O(g−2) (2.5)
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where a microscopic calculation is needed to find the value of the coefficient cd (which is

dimension dependent).

For the 2D case, we can integrate out the expression to get g(L) = g0−c2 lnL/L0. Taking

L0 = l, where l is the mean free path, we have g0 = g(L0) ≫ 1 since conduction is ballistic

at that length scale. The localization length can be found by using g(ξloc) = O(1) as this is

where the transition to strong localization would occur. Therefore, we get ξloc ∼ lexp(g0/c2).

Scaling theory, with correction terms, thus predicts that all states are localized in 2D even for

small disorder. However, this is a very large localization length as c2 = O(1). Experimentally

achieving reasonable values for localization is challenging.

For d = 3, the β-function, crosses over from negative to positive and the point of crossing

indicates the phase transition. The derivative of the β-function at the critical point also

gives us the critical exponent of the transition. On the insulator side, the localization length

ξloc diverges as (W −Wc)
−ν where ν = 1/[dβ/dg]gc . On the metallic side, the β > 0 branch

of the renormalization flow gives us D ∝ (Wc −W )ν for the diffusion constant D.

2.4 Weak Localization

In 2D, the scaling theory of localization requires a correction term to predict the resultant

effect as d = 2 forms the lower critical dimension for the transition. In the 2D Anderson

model, the phenomenon of Weak Localization results in the presence of localization even at

arbitrarily low disorders. However, the localization length in these cases can be extremely

large and can easily exceed the system size in finite size systems. [1].

Weak localization is a constructive interference effect that increases the probability of

a particle to return to it’s original site. In order to calculate this effect, we need to do a

microscopic calculation for the intensity transport averaged over an ensemble of disorder

instances.

We can calculate this by considering perturbative corrections wherein each site is consid-

ered a scatterer due to its disorder potential.
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First, we consider the Bethe-Salpeter equation for the intensity propogator Φ = ⟨GRGA⟩

Φ = ⟨GR⟩ ⟨GA⟩+ ⟨GR⟩ ⟨GA⟩UΦ (2.6)

where U is the intensity scattering operator and depends on the details of the disorder.

r

r'

r

r'

Figure 2.4: Crossed Diagram

The contributions to U come from the diffusion scattering along with the weak localization

corrections. The leading order terms come from the classical, incoherent scattering process

which leads to diffusive behaviour. The corrections terms can be calculated by considering

the coherent scattering processes which involve an intermediate propogation between site r

and r′ as shown in Figure 2.4. The first type of correction terms we can consider are the

diagrams with two crossed lines. The two lines are time-reversed counterparts. Usually, the

phase difference between the ψ and ψ∗ amplitudes is large and the contributions average to

nearly zero when we do an ensemble average. However, the Weak Localization corrections

correspond to closed loop diagrams where r = r′. There is no phase difference between

a closed loop and its time-reversed counterpart, leading to constructive interference which

enhances the backscattering probability. This is true irrespective of the number of scatterers

along the loop path. Therefore, our weak localization correction consists of all the maximally

crossed diagrams.

Uc = + + ...
Figure 2.5: Cooperon Contribution

This Cooperon correction term enhances the probability of the particle returning to it’s
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original location. Overall, this correction term leads to the 2D Anderson model showing

localization even for small disorder, even though the localization length may be large.
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Chapter 3

Spin-Orbit Coupled Anderson Model

3.1 Spin-Orbit Coupling

Spin-orbit coupling involves the kinetic degrees of freedom of a particle influencing and being

influenced by the direction of its intrinsic spin magnetic moment. It is found to be ubiquitous

in nature. Although the origin of spin-orbit coupling is relativistic, the strength and form of

the coupling are strongly dependent on the material and the lattice environment in which the

particle resides [23]. The effect of spin-orbit coupling tends to be larger in heavier elements

[31]. The lack of inversion symmetry in a material is known to further enhance the effect of

spin-orbit coupling exhibited by the material [15]. In fact, researchers have tried to engineer

systems with strong spin-orbit coupling by constructiing heterostructres of materials [11].

Spin-orbit coupling is an essential part of many interesting systems in modern condensed

matter topics such as spintronics [36], topological insulators [16] and heterostructres hosting

exotic Majorana modes [22], which can be useful in topological quantum computing. It is

also an important ingredient for observing magnetic skyrmions [25] and for use in modern

racetrack memories [6]. Since practical material samples always have intrinsic disorder, it

is important to study the effects of disorder, particularly the physics of localization, in the

presence of spin-orbit coupling.

In 2D, a system of fermions with disorder on a square lattice with local nearest neighbour

hopping is always localized but with an extremely large localization length for weak disorder
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[1]. In 3D, such a system exhibits a phase transition from a partially localized phase with

a mobility edge to a completely localized phase [2]. In the presence of spin-orbit coupling,

however, the same transition can now be seen in 2D. This can be seen from scaling theory,

originally introduced by Abrahams et al, due to the effect of weak anti-localization [13, 17].

The presence of spin-orbit coupling in a disordered system opens up new pathways for

the particle to move as the spin can now hop to a neighbouring lattice site in two ways,

one which conserves the spin and one which involves a spin flip. Since localization occurs

due to a coherent interference of return probability amplitudes, the addition of spin-orbit

coupling changes the localization behaviour of the system. The spin-orbit coupling breaks

the spin symmetry of the system and the spin of the particle is no longer a conserved quantity.

The time-reversed analog of a closed path now has different spins as spins flip under time-

reversal. Therefore, the interference is destructive, leading to Weak Anti-Localization. As a

result, the system now exhibits two competing parameters, the disorder strength (W ) which

increases the tendency to localize as W increases and the spin-orbit coupling strength (α)

which increases the tendency of the system to delocalize.

This richer dynamics introduced by the spin-orbit coupling into the system leads to

questions surrounding the localization behaviours of the spin and charge densities in such

systems. We can ask whether the localization lengths for the two are the same and if they

show different behaviours as W and α are varied. We expect the spin and charge densities

to delocalize at large spin-orbit coupling strengths. At low values of spin-orbit coupling

strength, we expect both the charge and spin to be localized but they could show differences

in their behaviour as the disorder strength and spin-orbit coupling strength are varied. This

difference in localization behaviour can have implications for the spin and charge transport in

the system since localization will suppress the conductance of the spin/charge in the system.

Having different localization lengths and behaviours over the parameter space would lead to

interesting consequences as they may show transport at different rates.

3.2 Model

We work with spin 1/2 fermions on a 2D square lattice governed by a tight-binding hamilto-

nian with nearest neighbour hopping, random onsite potentials and Rashba type spin-orbit

coupling. Open boundary conditions are used. The hamiltonian for this system is given by
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Eq 3.1:

H =
∑
i,σ

ϵic
†
i,σci,σ − t

∑
⟨ij⟩,σ

c†i,σcj,σ + α
∑
⟨ij⟩,σ

V σ,−σ
ij c†i,σcj,−σ (3.1)

Hsoc = α
∑
⟨ij⟩,σ

V σ,−σ
ij c†i,σcj,−σ

= α

[
c†(x−1,y),↑c(x,y),↓ − c†(x+1,y),↑c(x,y),↓ − ic†(x,y−1),↑c(x,y),↓ + ic†(x,y+1),↑c(x,y),↓ (3.2)

− c†(x−1,y),↓c(x,y),↑ + c†(x+1,y),↓c(x,y),↑ − ic†(x,y−1),↓c(x,y),↑ + ic†(x,y+1),↓c(x,y),↑

]

Each onsite potential ϵi is drawn from a uniform random distribution ϵi ∈ [−W/2,W/2].
The hopping is restricted to nearest neighbour sites with a strength t which we set to unity

for the remainder of this work. The spin-orbit coupling, with strength α, is restricted to

nearest neighbour terms only and is expanded in Eq 3.2. A schematic for the spin-orbit

coupling is shown in Figure 3.1.

↑ ↓↓

↓

↓

i

−i
1−1

↓ ↑↑

↑

↑

i

−i
−11

Figure 3.1: Coefficients for the nearest neighbour spin-orbit coupling phases V αβ
ij .

This system has been studied previously in literature. Evangelou et al showed that there

exists a metal-insulator transition in this system [13]. The exponent for this transition has

been calculated to increasing degrees of precision to ν = 2.73± 0.02 by several authors [13,

3, 14, 4]. Here ν is the critical exponent which describes the divergence of the localization

length ξloc ∼ (W −Wc)
−ν . Fastenrath et al have studied the phase diagram of the transition

numerically. Their calculations, however, are limited to a maximum system size of L = 20

and their data points lie on selective planes of the parameter space. They calculated the

17



E

(E) Delocalized
States

Localized
States

(a) Delocalized Phase

E

(E) Localized
States

(b) Localized Phase

Figure 3.2: Schematic Diagram of Density of States before and after transition.

phase diagram in W − α for E = 0 on a maximum system size of L = 20 with a transfer

matrix calculation over a limited number of data points and the phase diagram in the E−W
plane was calculated for a particular value of spin-orbit coupling strength α = 1. This was

done by looking at the intersection of 1/ξren(E), where ξren is the renormalized localization

length, curves for different system sizes L = 4 to L = 16 computed through a transfer matrix

approach. This gives us a very limited picture of the phase diagram and is also limited to

small system sizes. Therefore, we have attempted to analyze it by a different method.

While energy-dependent localization lengths of this system are beyond the scope of this

thesis, the above mentioned studies allow us to visualize the spectral structure in ways that

help us understand some of the results ahead. The localization lengths ξαβ can be extracted

from each eigenstate individually giving rise to a localization length ξαβ(E) as a function of

energy. This function shows a mobility edge in the spectrum which separates the localized

eigenstates and delocalized eigenstates. In the delocalized phase, the spectrum has a mobility

edge which separates the eigenstates into delocalized states in the bulk of the spectrum and

localized states near the edge of the spectrum. As the system moves to the localized phase,

the mobility edges move towards the centre and vanish at the phase transition with all the

eigenstates being localized [14]. We can see this in the schematic diagram of the density of

states in Figure 3.2.

We attempt to calculate an overall picture of the phase space formed by the disorder

strength and the spin-orbit coupling strength for the whole system. For each (W,α), we create

18
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Figure 3.3: (a) ⟨|GR
↑↑|2⟩dis vs r for a localized state at W = 13 α = 0.3. (b) ⟨|GR

↑↑|2⟩dis vs r
for a delocalized state (α = 1.5, in green) and an intermediate state (α = 1.0, in blue) at
W = 13.

the hamiltonian H in Eq 3.1 by drawing ϵi from a uniform distribution. This corresponds to

a particular disorder realization drawn from an ensemble of possible disordered potentials.

We diagonalize H using exact diagonalization to get the eigenfunctions ψn and eigenvalues

En. We then construct |GR(i, α; j, β)|2 using these eigenfunctions. |GR(i, α; j, β)|2 is the

square of the retarded Green’s function at long times indicating the probability of a particle

initially at rj with spin β moving to ri with spin α at long time,. We do this because we can

extract the localization length from the |GR(i, α; j, β)|2 values.

However, we can only draw conclusions from a quantity that has been averaged over the

disorder ensemble. Therefore, we average |GR(i, α; j, β)|2 over the 100 disorder realizations.

The |GR(i, α; j, β)|2 from each individual disorder realization does not possess translational

invariance. However, the disorder averaged ⟨|GR(i, α; j, β)|2⟩dis has translational invariance

which allows us to construct the function ⟨|GR|2⟩dis (r). In the localized phase, we have

⟨|GR
αβ|2⟩dis (r) ∝ e

−2r
ξαβ since the quantity represents the probability of a particle with spin β

moving a distance r with spin α at long times. [2]. Therefore, the localization lengths can

be inferred by fitting an exponential to the calculated quantities.
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GR(i, α, t; j, β, 0) =
∑
n

ψ∗
n(i, α)ψn(j, β)e

−iEnt

⟨|GR(i, α, t; j, β, 0)|2⟩dis =
〈∑

n,n′

ψ∗
n(i, α)ψn(j, β)ψn′(i, α)ψ∗

n′(j, β)e−i(En−En′ )t

〉
dis

(3.3)

≈
〈∑

n

|ψn(i, α)|2|ψn(j, β)|2

+
∑
n

ψ∗
n(i, α)ψn(j, β)ψn̄(i, α)ψ

∗
n̄(j, β)

〉
dis

Here we have taken the approximation that the crossed terms contribute negligibly when

summed over as (En − En′) is nearly random, and thus, the sum over cross terms averages

out to nearly zero. The only surviving terms are where En = En′ . However, the system has

time reversal symmetry and therefore, the spectrum exhibits a Kramer’s degeneracy. This

gives rise to the second term involving degenerate pairs of eigenfunctions (ψn, ψn̄).

The exponentially decaying behaviour ⟨|GR
αβ|2⟩dis (r) ∝ e

−2r
ξαβ is characteristic of the func-

tion at large r. At large r, the function becomes quite small and the number of data points

also decrease as r increases. This expectation is illustrated in Figure 3.6b. Therefore, line

fitting to ⟨|GR
αβ|2⟩dis (r) involves determining a range of r values over which the proportional-

ity holds. Since our goal is to obtain an overall, coarse-grained picture of the phase diagram

rather than finding exact critical exponents and characteristics of the transition, this method

is sufficient.

As an example, we consider the phase point (W = 13, α = 0.3). The ⟨|GR
↑↑|2⟩dis (r) is

plotted in Figure 3.3a. This point lies in the localized phase. We can see that the behaviour

near r = 0 is markedly different as compared the behaviour at larger r. Moreover, for

r ∼ L = 40, we see a deviation from the linearity. We have ignored the data points beyond

r = L since r ∈ [L,
√
2L] contains significantly lower number of data points than the rest of

the graph. As such, this data matches our expectation and yields a small localization length.

In contrast, the delocalized and intermediate state in Figure 3.3b do not decrease as fast

as the localized state. They depict significantly lower slopes and the associated localization

lengths are much larger. In fact, the associated localization length for the delocalized state
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Figure 3.4: (a) ξ−1
↑↑ as a function of α for W = 13. (b) ξ↑↑ for different disorder strengths W

as a function of spin-orbit coupling strength α.

is much larger than the system size. The ξ↑↑ for the intermediate state is around O(L/2).

If the localization length is larger than half the system size, then on a finite size system the

state is effectively delocalized. Therefore, we set r = L/2 as a boundary for separating the

localized and delocalized states. The dashed line in Figure 3.4b shows this distinction. In

this manner, we now try to visualize the parameter space W − α.

We considered a parameter space of α ∈ [0, 2] with spacing 0.1,W ∈ [8, 18] with spacing 1

on a 40×40 lattice with open boundary conditions. The hamiltonian was diagonalized using

exact diagonalization and the |GR|2 matrices were constructed. This matrix was averaged

over 100 disorder realizations and then ⟨|GR|2⟩dis (r) was constructed. The four functions

ln ⟨|GR
↑↑|2⟩dis (r), ln ⟨|G

R
↑↓|2⟩ (r), ln ⟨|GR

↓↑|2⟩ (r) and ln ⟨|GR
↓↓|2⟩ (r) were then fitted linearly in

order to determine the corresponding localization lengths.

We see in Figure 3.5a and 3.5b that the localization lengths are small for low α and large

W and the localization length increases as the disorder strength W is decreased and when

the coupling strength α is increased. When the localization length is greater than half of the

system size L, we consider the system to be delocalized.

The localization lengths increase as the spin-orbit coupling is increased and ξ diverges

with increasing α. We can estimate that the system remains localized for ξ sufficiently lower

than L/2 as beyond L/2, the wavefunction would have support over most of the finite size
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Figure 3.5: (a) ξ↑↑ over the parameter space for 40 × 40 lattice (b) ξ↑↓ over the parameter
space for 40× 40 lattice

lattice. Overall, we see that the phase diagram does not look very different for the ξ↑↑ and

ξ↑↓. This is exemplified in Figure 3.6a. We can interpret this as an indication that the

spin-conserving hopping channels and the spin-flipping hopping channels have nearly the

same localization length. Since there is no significant separation of scales at large r, we may

conclude that the localization lengths associated with charge and spin densities will not be

vastly different deep in the localized phase.

3.3 Problems in the Approach

There are a few issues with this approach of fitting exponentials to the Green’s function

squared. First, the range of r over which the fitting should take place is variable. The

localization length extracted from the fit is sensitive to the range over which the fitting takes

place. As a result, estimating the range correctly is crucial in order to obtain higher accuracy

results. The proportionality ⟨|GR
αβ|2⟩dis (r) ∝ e

−2r
ξαβ is valid only for large r. For small values

of r upto a microscopic length scale, the function shows a non-universal behaviour which

does not match the exponential decay. This length scale is not available to us and varies

significantly with the parameters. Second, since the simulations are done on finite system

sizes, at large values of r, we have decreasing number of data points. We have set an upper

bound of r < L for fitting in order to combat this issue, however, this limits our r range.
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Figure 3.6: (a) ξ↑↑ (blue) vs ξ↑↓ (orange) for W = 13 (b) Schematic plot of ⟨|GR
αβ|2⟩dis (r).

Third, the function ⟨|GR
αβ|2⟩dis (r) decreases rapidly with r. As a result, for large r the values

are quite small. Therefore, the reliability of our calculations goes down since our resolution

scale is O(1/L2).

These issues will continue to persist even if we go for a larger system size. Therefore,

we must turn to a different, more reliable and simpler to measure quantity in order to

characterize the localization effect. We choose spin and charge imbalance as our tools for

doing this as described in the next chapter.
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Chapter 4

Memory of Initial States

4.1 Thermalization and Memory Retention

In a typical large system, the state of the system at long times can be determined by just

knowing the Hamiltonian. This is the prediction of statistical mechanics that states that

the system will move into an equilibrium thermal state irrespective of the initial state at

long times and this thermal state is determined solely by the system’s energy spectrum.

The process of thermalization thus involves the removal of the information about the ini-

tial state of the system in terms of quantities accessible through local observables. The

information about the initial state, which is technically preserved by unitary evolution, is

made inaccessible since it would require global operators to access them [26]. This involves

the transport of local analogs of conserved macroscopic observables in order to achieve the

thermal state. In contrast, certain quantum systems do not thermalize despite not being

integrable. Systems that show Many Body Localization (MBL) fall under this category [26].

These systems do not evolve into a thermal state, instead they evolve into non-equilibrium

states that are highly dependent on the initial state. As a result, they retain information

about the initial state even at long times. This is because localization suppresses transport

and hence impedes the thermalization process.

Recent experiments in 1D disordered, interacting systems have shown that such systems

retain characteristics of their initial states while in the MBL phase [29, 21]. The systems

in [29, 21] were initially prepared in a charge density wave with atoms occupying even sites
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Figure 4.1: Schematic of initial state used in experiments [29, 21]

while the odd sites are empty as shown in Figure 4.1. Then the system was allowed to evolve

in time. This spatial distribution of charge, with the atoms mostly on the A sublattice with

B being mostly empty, is shown to be retained by the system in the MBL phase even at long

times. Choi et al have done a similar experiment in 2D, but with the following initial state:

charge present on the entire left half of the system with the right half being empty [10]. They

observe a similar retention of the initial spatial distribution. The reason these experiments

are interesting is that the Hamiltonian, after disorder averaging, is symmetric with respect

to the A and B sublattices shown in Figure 4.1. The information discriminating between the

two sublattices is only contained in the initial condition. Therefore, these results depict that

the information about the initial state is accessible through a local observable. In a typical

thermalizing system, the spatial charge distribution of initial state would get scrambled and

homogenized through transport of the charge between regions of the system removing the

information about the spatial charge distribution of the initial state. In the presence of

localization, the particles mostly remain localized to their initial positions. As a result, the

spatial distribution is retained even with time evolution and the transport mechanism of

scrambling and homogenization is suppressed.

These experiments measured imbalance, an observable that quantifies the memory of the

spatial pattern of the initial state. In these experiments, the particle imbalance is defined

as I = (Neven −Nodd)/(Neven +Nodd) where Neven/odd represents the total charge density on

even/odd sites. This particle imbalance measures whether the particles are still localized

on the A sublattice or whether they have moved to the B sublattice. This is a relatively

simpler observable than the elusive localization length which can’t be directly observed.

The experiments in [29, 21, 10] show that imbalance is nearly zero in the delocalized phase

whereas it is non-zero and significant in the MBL phase.

While we do not consider interacting systems in our work here, these publications have

inspired us to use imbalance as a measure of the localization in our system. Since non-

interacting systems provide the baseline understanding that is needed in order to study

systems with interactions, we have adopted the same tools for the non-interacting case in

this work.
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Chakraborty et al have shown numerically and analytically that the memory of initial

states is retained in several interacting and non-interacting disordered systems of spinless

fermions in 1D and 2D [8]. They have used Schwinger-Keldysh Field Theory to calculate

imbalance in these systems. We build upon this work and extend the scheme to spin-1/2

fermions in the spin-orbit coupled 2D Anderson model.

With the addition of spin degrees of freedom, the system exhibits localization in spin and

charge, therefore, we can compare and contrast the memory retention of the spin density

and the charge density and their possible relations with each other. One can ask how the

memory retention of spin and charge density are affected by the spin-orbit coupling strength.

The spin and charge density also need not be independent of each other. It is possible that

the memory retention of the initial charge configuration is dependent on the spin pattern in

the initial configuration.

We show in this chapter that in the system of fermions in the 2D spin-orbit coupled

Anderson model on a square lattice, the memory retention of the initial charge density and

initial spin density both are high in the localized phase but they decreases to zero as we

move into the delocalized phase. However, the two are not equal for all α. Interestingly, the

memory retention of initial charge density and initial spin density show qualitatively different

behaviours as a function of the spin-orbit coupling strength. In particular, the memory

retention of the charge density is more robust with respect to increasing spin-orbit coupling

for low values of α as compared to the memory retention of the spin density. However,

at large spin-orbit coupling strengths, the memory retention of the initial spin density is

higher than that of the initial charge density. The memory retention of the initial charge

configuration is also shown to be independent of the spin pattern of the initial configuration.

4.2 Calculation of Imbalance

For the case of spinless fermions, Chakraborty et al [8] have discussed the persistence of

memory of the initial state particle density configuration in the form of imbalances of particle

density even at long times. We define imbalance IAB
O (t) for any quantity O over the sets A

and B as
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IAB
O (t) =

∑
i∈AOi(t)−

∑
i∈B Oi(t)∑

i∈AOi(0)−
∑

i∈B Oi(0)
(4.1)

This definition of imbalance is a generalized version for any quantity O. Previous works

have largely considered only the particle/charge density imbalance. However, since our

systems have spin degrees of freedom which are significant, we have generalized the definition

to include other quantities such as Sz, Sx and Sy. The normalization ensures that the

imbalance at t = 0 is always unity. Since imbalance typically gets reduced by time evolution,

IAB
O ∈ [−1, 1]. This allows us to compare the memory retention of different quantities such

as charge imbalance and Sz spin imbalance.

In systems that show localization, the imbalance present in the initial configuration has

been shown to remain present at long times such as in the 1D and 2D Anderson model and

in the 1D Aubry-Andre model. In 1D, the imbalance can also be calculated analytically for

simple initial conditions. It can be calculated numerically for the other cases in 1D and 2D.

Here we repeat the calculation for the spin-orbit coupling case since we expect the imbalance

to remain persistent in the localized phase but not in the delocalized phase.

To calculate the imbalance, we need to first compute the charge and spin densities as

well as the quantities Sx, Sy, Sz. In order to calculate these quantities, we use the Schwinger-

Keldysh Field Theory. In this theory, the time evolution is expanded in terms of two contour

integrals in ρ(t) = U(t)ρ0U
†(t), where ρ represents the density matrix of system state, the

one for U(t) and one for U †(t) [19]. This gives rise to two fields ψ+ and ψ−. As a result, the

theory has two independent one-particle Green’s functions. The retarded Green’s function

GR(i, α, t; j, β, t
′) corresponds to the amplitude that a particle at in state |j, β⟩ at time t′

would end up in the state |i, α⟩ at time t(t > t′) without any additional excitations. The other

is the Keldysh Green’s function GK(i, α, t; j, β, t
′) which encapsulates information about the

densities and currents in the system. It represents the actual amplitude that the particle at

j, β at time t′ propogates to i, α at time t.

We consider the fermions in 2D Anderson model with Rashba type spin-orbit coupling

on a finite lattice of side length L and with open boundary conditions. To study the the

system, we calculate the relations between GK and the densities.
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iGK(µ, t; ν, t
′) = ⟨[cµ(t)c†ν(t′)]⟩ (4.2)

iGK(µ, t; ν, t) = ⟨δµν − 2c†ν⟩

Here ⟨. . .⟩ represents the expectation value. So we get

⟨ni,↑⟩ =
1

2
[1− iGK(i, ↑, t; i, ↑, t)] (4.3)

⟨ni,↓⟩ =
1

2
[1− iGK(i, ↓, t; i, ↓, t)]

⟨S−
i ⟩ =

−i
2
GK(i, ↑, t; i, ↓, t)

⟨S+
i ⟩ =

−i
2
GK(i, ↓, t; i, ↑, t)

From the work done by Chakraborty, Gorantla, Sensarma, we have a relation that allows

us to compute GK [9],

iGK(i, α, t; i, β, t) =
∑
k,γ

GR(i, α, t; k, γ, 0)G
∗
R(i, β, t; k, γ, 0)(1− 2nk,γ(0)) (4.4)

We expand the GRG
∗
R term into eigenfunctions of the hamiltonian,

GR(i, α; k, γ)G
∗
R(i, β; k, γ) =

∑
n,n′

ψn(i, α)ψ
∗
n(k, γ)ψ

∗
n′(i, β)ψn′(k, γ)e−i(En−En′ )t

Finally, the quantities are calculated at long times, therefore, we can take the limit

t → ∞. Since En − En′ is generally random, the summation consists of random phases

leading to the term becoming negligibly small except when En = En′ . This occurs for n = n′

and for any degeneracies in the system. Since our system has fermions and time-reversal

symmetry, we see a double degeneracy for each energy level. However, there are no other
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symmetries giving rise to degeneracies, so these are the only degeneracies in the spectrum.

Defining ψn̄ as the Kramer pair partner of ψn, we obtain,

GR(i, α; k, γ)G
∗
R(i, β; k, γ) =

∑
n

ψn(i, α)ψ
∗
n(i, β)|ψn(k, γ)|2 (4.5)

+
∑
n

ψn(i, α)ψ
∗
n(k, γ)ψ

∗
n̄(i, β)ψn̄(k, γ)

The quantities ⟨n↑⟩, ⟨n↓⟩, ⟨ρcharge⟩, ⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩ can all be expressed linearly in terms

of the Keldysh Green’s function GK . Therefore, the imbalances can be written as

I∞ =
1

I0

(∑
i∈A

G∞
K (i, α; i, β)−

∑
i∈B

G∞
K (i, α; i, β)

)
(4.6)

=
∑
i∈A

∑
k,γ

G∞
R (i, α; k, γ)G∞

R (i, β; k, γ)∗(1− 2n0
k,γ)

−
∑
i∈B

∑
k,γ

G∞
R (i, α; k, γ)G∞

R (i, β; k, γ)∗(1− 2n0
k,γ)

We compute GRG
∗
R for different initial spin and charge configurations on a 100 × 100

lattice and average it over 100 disorder realizations. After averaging, the quantity obtained

is a translationally invariant quantity since the disorder is drawn from a uniform probability

distribution. So the imbalances calculated are the disorder averages of the imbalances of the

expectation values of quantities such as n↑, n↓, ρcharge, Sz, Sx and Sy.

4.3 Results

In this section we present the results for the long time charge and spin imbalances in a

2D disordered spin-orbit coupled system. A key question which we would like to answer

is whether the initial charge and spin patterns are equally robust to changes in spin-orbit

coupling or whether one is more robust than the other.
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Figure 4.2: (a) represents the initial state which is anti-ferromagnetic (Néel state); (b)
represents the sets the imbalance is calculated over: Set A in red, Set B in blue; (c) shows
the Sz imbalance over a 100× 100 lattice.

We first consider the dynamics of the system starting from a Néel state i.e. a checkerboard

pattern with alternating sites, labelled as A and B sublattices, occupied by a single ↑ spin

and a single ↓ spin. In this initial state, the imbalance in Sz between the A sublattice and B

sublattice is 1. The long time Sz imbalance measures how much memory of the initial spin

pattern is retained by the system.

The Sz spin imbalance is non-zero in the localized phase and decays to zero as we move

to the delocalized phase. The imbalance decreases with increasing α and increases with

increasing W . The imbalance near α = 0 decays quite rapidly as the spin-orbit coupling is

introduced. The decay to zero varies with (W,α) as we can see the the imbalance for W = 8

is nearly zero by time α = 1 is reached, however, for W = 18, the imbalance is still non-zero

for α = 3.

We want to contrast this with the memory of charge density retained from a charge

density wave. We start with a checkerboard pattern of charge density where A sublattice

is doubly occupied and the B sublattice is singly occupied creating a charge density wave

with (π, π) wavevector. However, this does not uniquely determine the spin configuration of

B sublattice. Therefore, we consider two different cases: (i) The spins on the B sublattice

are ordered ferromagnetically along one diagonal but anti-ferromagnetically along the per-

pendicular diagonal. (ii) The spins on B sublattice are assigned either ↑ or ↓ randomly with
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Figure 4.3: (a) represents the initial state which is which is a charge density wave with Sz = 0
on both the alternating sublattices; (b) represents the sets the imbalance is calculated over:
Set A in red, Set B in blue; (c) shows the charge imbalance over a 100× 100 lattice.

equal probability subject to the condition that there are an equal number of ↑ spins and ↓
spins. In this case, we average over these random spin configurations.

Figure 4.3c shows that the long time charge imbalance is finite in the absence of spin-orbit

coupling. It decreases as the spin-orbit strength α increases and increases with increasing

disorder strength W . Figure 4.4a also shows similar trends. In fact, the two are practi-

cally indistinguishable. This means that the presence of the spin pattern did not affect the

behaviour of the charge imbalance. We can also note that the curvature of the imbalance

curves is opposite of what the Sz spin imbalance in the previous case showed.
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Figure 4.4: (a) represents the average over initial states that are charge density waves with
the alternate sites (purple) being |↑⟩ or |↓⟩ with equal probability while keeping

∑
B Sz = 0

over all the purple sites in each state; (b) represents the sets the imbalance is calculated
over: Set A in red, Set B in blue; (c) shows the average charge imbalance over a 100× 100
lattice for all the random initial states.

4.4 Memory of Spin and Charge Imbalance

We compare the Sz spin imbalance for the spin density wave (Néel state) (Figure 4.2a)

and the charge imbalance for the charge density wave (Figure 4.3a). Both of these show an

imbalance of 1 for the initial state. The hamiltonianH in Eq 3.1 does not distinguish between

the A and B sublattices (Figure 4.2b) across which the two imbalances are measured.

The results in Figure 4.5 show that the two types of imbalance show qualitatively different

behaviour as the spin-orbit coupling strength is varied.

At α = 0, both the charge and the spin imbalance are equal for all W . This case

corresponds to the spinless fermion case. We only have a single localization length scale in

this system and therefore, both the imbalances are equal. From [8], we can write the particle

imbalance for the spinless fermion case as Ispinlessp = f(ξ(W )). Since each particle possesses

a unit positive charge, Icharge = f(ξ(W )). Now, both the ↑ spin particles and the ↓ spin

particles act as independent species of particles since there is no spin-orbit coupling. As a

result, the Sz imbalance is given by ISz =
(
1
2

)
In↑ −

(−1
2

)
In↓ . As the spin is conserved during

hopping, the spin plays no role in the determination of imbalance, therefore In↑ = In↓ =
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Figure 4.5: The charge imbalance (represented by circles) starting from the Charge Density
Wave (Figure 4.3a) compared with the Sz imbalance (represented by triangles) starting from
the Néel state (Figure 4.2a). The imbalances are equal for α = 0, but the charge imbalance
is more robust for small α while the Sz decreases rapidly on introduction of the spin-orbit
coupling. On the other hand, Sz imbalance is slower to approach zero for larger α than the
charge imbalance.

f(ξ(W )). So the charge imbalance from the charge density wave and spin imbalance from

the Néel state are equal for α = 0.

Icharge|CDW
α=0 = ISz |AFM

α=0 = f(ξ(W )) (4.7)

At low α, the spin imbalance decays rapidly in comparison to the charge imbalance.

The charge imbalance shows behaviour similar to an order parameter with a near quadratic

decrease. The spin imbalance showcases a non-analytic behaviour similar to a α1/2 decrease.

This O(α2) vs O(α1/2) decrease is shown in Figure 4.6a and 4.6b.
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Figure 4.6: (a) indicates the charge imbalance (represented by circles) and Sz imbalance
(represented by triangles) for a charge and density wave resp. plotted wrt different powers
of the spin-orbit coupling strength.

This behaviour of the spin imbalance seems non-analytic and is quite interesting. It

is likely due to the availability of channels that do not conserve spins. This difference

between charge and spin imbalance indicates the presence of different localization length

scales involved in the problem, one associated with spin and the other with charge. These

results need to be understood in greater detail from simpler models. We are currently working

on these simpler models but that is beyond the scope of this thesis. The non-analyticity of

the spin imbalance, in particular, presents an interesting theoretical challenge.

4.4.1 Possible Use Cases

The differences in response of the spin and charge imbalance to the addition of spin-orbit

coupling represents a unique physical phenomena which could potentially be useful in a

variety of different fields. Consider a 2D layer of spin-orbit coupled disordered in its insulating

(localized) phase attached to a semiconductor or a metal strip which carries spin currents.

By tuning the spin-orbit coupling strength in the insulator, one may be able to enable the

spin degrees of freedom to thermalize and act as a thermal bath for the spin current while

retaining the charge density distribution. This effect may allow the production of a controlled

bath that regulates the degrees of freedom that the attached metal/semiconductor system

is allowed to interact with. If we construct an initial state where the high energy charge

and spin configurations are in the bulk of the insulator, the spin degrees of freedom would
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delocalize faster and thus dominate the interaction with the attached system for low spin-

orbit coupling. At high spin-orbit coupling both the charge and spin degrees of freedom

would interact with the attached system.

The rapid decay in the retention of spin memory may also allow the creation of a spin-fuse.

Consider a 2D layer of disordered spin-orbit coupled material in the localized phase. Under

the normal circumstances, this strip would be insulating. However, if it was bombarded

with a small number of heavy particles, the embedding of these heavy impurities could

cause changes to the lattice symmetry locally that may enhance the effect of spin-orbit

coupling. When bombarded with a critical number of heavy particles, the sample could

start conducting enough to be measured. In this manner, it may act as as a fuse or a

detector of certain heavy particles.

4.5 Additional Checks

We can also ask the question whether the dynamics depends on whether the charge imbalance

is symmetric with respect to holes and particles. In order to check this, we consider an initial

state similar to Figure 4.3a but with the double occupancy sites on sublattice A replaced by

holes. The charge imbalance for such an hole initial state is nearly identical to that of the

doublon initial state.

We can also ask the question whether the Sz spin imbalance in the Néel state is dependent

on the absence of a background charge configuration. In order to check this, we consider the

initial state from Figure 4.3a which we used to measure charge imbalance. Instead, we now

measure the Sz spin imbalance but on A and B sublattices defined as in Figure 4.8c. This

spin imbalance is nearly the same as the spin imbalance for the Néel state. Therefore, the

presence of doubly occupied sites in the middle has not affected the spin imbalance.
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Figure 4.7: (a) represents the initial state which is a charge density wave that has holes
instead of doublons as opposed to Figure 4.3a; (b) represents the sets the imbalance is
calculated over: Set A in red, Set B in blue; (c) shows the charge imbalance over a 100×100
lattice.
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Figure 4.8: (a) represents the initial state which is which is a charge density wave with Sz = 0
on both the alternating sublattices; (b) represents the sets the imbalance is calculated over:
Set A in red, Set B in blue, Ignored sites in grey; (c) shows the charge imbalance over a
100× 100 lattice.
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Chapter 5

Conclusion

The presence of spin-orbit coupling in a 2D Anderson model leads to a metal-insulator

transition whose overall phase space has been determined. The system retains memory of

its initial state in the localized phase. This has been quantified by the imbalance in charge

density and Sz for different initial conditions. The charge imbalance and spin imbalance

behave in qualitatively different ways and the charge density imbalance behaviour is not

dependent on the presence or absence of a spin pattern in the initial condition. The memory

retention of the initial charge density is more robust to the addition of spin-orbit coupling

than the memory retention of the initial spin density. The spin imbalance seems to have

non-analytic behaviour for low α.

5.1 Future Directions

The Sz spin imbalance decays rapidly with the introduction of a non-zero spin-orbit coupling

strength. The behaviour of the this imbalance seems to be non-analytic. However, under-

standing this requires deeper analysis starting from simpler models. Establishing the origin

and true nature of this apparent non-analyticity is a very interesting theoretical challenge.

This may be in part due to the addition of channels accesible to the particle that do not

conserve Sz whereas all the channels conserve charge.

The memory retention capacity of any system that exhibits storage capabilities is limited
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by a range of frequencies which remain undissipated and accessible to the observer even

after long times. This characteristic range of frequencies is particular to each information

retention device and our system is no exception. We have considered charge density waves

and spin density waves largely with a (π, π) wavevector. However, the imbalance may depend

on the frequency of the density waves present in the initial state. This, however, requires

a deeper analysis since our GK expression derives from a Keldysh Field Theory result that

is only valid when the initial state is a fock state and general spin spiral waves will not be

fock states. These states would allow us to deal with larger number of imbalances in terms

of Sx and Sy as well. Therefore, they may show interdependent Sx, Sy, Sz imbalances. The

frequency dependence of the imbalance can also allow us to construct initial states that are

relatively robust to the effect of spin-orbit coupling.

The difference in the qualitative behaviour between the charge and spin imbalance may

allow one to construct devices that can tune the spin-orbit coupling in order to utilize the

relative suppression of transport by the localization to allow the memory of either the charge

configuration or the spin configuration to thermalize while the other is retained.
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Appendix A

Calculating GRG
∗
R

This section is devoted to a discussion on how GRG
∗
R was computed in an efficient manner.

The construction of GRG
∗
R from the eigenfunctions involves an O(L6) summation. This can

be sped up by casting the computations involved as matrix multiplications. For each GRG
∗
R

calculation, there are two parts which contribute to the final matrix. The non-degenerate

part is straightforward and similar to the spinless case in [8]. However, the presence of

spinful fermions in the system means that there exists a double degeneracy which gives pairs

of eigenvectors which have the same eigenvalue. These eigenvectors contribute significantly,

therefore, we have a term involving these degenerate energies for each GRG
∗
R.

GR(i, α; k, γ)G
∗
R(i, β; k, γ) = (AαβZT )i,2k+γ + [Cαβ(Cγγ)T ]ik + [Cβα(Cγγ)T ]∗ik (A.1)

where we define

Aαβ
in = ψn,2i+αψ

∗
n,2i+β (A.2)

Z2k+γ,n = |ψ2k+γ,n|2 (A.3)

Cαβ
ip = ψ2p,2i+αψ

∗
2p+1,2i+β (A.4)

41



This is convenient since the diagonalization procedure used will often return the eigen-

vectors in the form ψn(i, σ) = ψn,2i+σ. So indices used are n running over 0 to 2L2 − 1 while

i, p, k run over 0 to L2 − 1.

These GR(i, α; k, γ)G
∗
R(i, β; k, γ) matrices are not symmetric and are, in general, com-

plex. Since GR(i, α; k, γ)G
∗
R(i, β; k, γ) = Gαβ

i,2k+γ is a non-square matrix, there are no hermi-

tian or symmetric matrix simplifications in the computations or storage. However, we do

have GR(i, α; k, γ)G
∗
R(i, β; k, γ) = [GR(i, β; k, γ)G

∗
R(i, α; k, γ)]

∗. This allows us to reduce the

number of calculations of complex matrix multiplications.
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