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Abstract

This thesis presents a proof-of-concept for a novel de-novo drug design algorithm that uses

forcefield parameters to generate molecules in 3D space directly in the active site of a target.

The algorithm e�ciently samples possible molecules and their bound conformations using

an approach inspired by Configurational-Bias Monte Carlo (CBMC). It is wholly atomistic

and strings together atoms to construct the final molecule and uses forcefield interaction

parameters to find the optimal binding partner for the target. The atom types used are

parameterized in CHARMM-27 and are well-established. We have previously validated the

algorithm’s accuracy in predicting strong binders through rigorous free-energy calculations.

Adding to this physics-based approach, we use reinforcement learning to bias the atom

type selection towards making molecules synthesizable using SYBA, an established classifier

for predicting whether a molecule is synthesizable. The program shows good results by

generating a diverse set of synthesizable molecules for streptavidin and HSP90, which are

our test systems. The algorithm can also suggest modifications to existing ligands, thus

allowing it to inspire ligand a�nity improvement through minor modifications.
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Chapter 1

Introduction

Modern medicine has revolutionized the treatment of most common ailments that have

plagued humanity for centuries. As our understanding of both disease and the human body

grows, we tend to get better at treating the disease.

Some of the most successful methods for such design involve a combination of rational design

of libraries of compounds and brute-force validation techniques such as high-throughput

screening (HTS). Such techniques involve screening a large library of small molecules against

the target, looking for signs of activity, and this is an expensive process. As a result,

computational methods tend to be an attractive area of research as they can cut down the

expenses by having a much better hit-rate than traditional HTS methods [1].

1.1 Structure-based drug-design (SBDD)

The working principle used to design many drug molecules that are in use today is structure-

based drug design (SBDD), which is a rather recent development [2].

In SBDD, we use information of the 3D structure of the protein target. We expect a drug

molecule to be a small molecule with the capacity to specifically interact with this protein and

cause a noticeable change in its activity at minute concentrations. Specificity is necessary to

ensure that the drugs have as few side e↵ects as possible. Low concentrations are required

to ensure that the human body can tolerate the required dosage of the drug.

The protein data bank (PDB) [3] has now grown to contain an extensive collection of 3D

structures of proteins, many of which are found in the human body, allowing the use of these

1



2 CHAPTER 1. INTRODUCTION

structures for SBDD. Meeting all the above requirements is rather tricky, and the dream of

being able to design a suitable ligand (drug molecule) for any given protein is still a complex

problem to solve.

1.2 Use of computers in SBDD

The field of computational drug design is itself very vast. Standard methods in computa-

tional drug design involve screening a large library of known drugs in-silico - known as virtual

screening. This screening has the advantage that most compounds screened are known drugs

with complete dosage studies, but it limits us to finding molecules from a pre-decided list

for repurposing.

Molecular docking is another commonly used method. Molecules could be designed by any

method, including manual inspection of the binding pocket and the chemist’s intuition.

Docking is the process of searching through possible binding conformations of the molecule

in the active site to find the one that has the best possible interactions. Docking is also

helpful to rank potential binders in the order of their interaction strength - a prerequisite

for a high success rate of virtual screening techniques that use docking as their screening

protocol. For example, a study looked at 18 million drug-like compounds and analyzed them

by docking them to the Dengue virus’ NS3 protein [4].

However, this only solves some problems. Docking does not capture the motion of the recep-

tor, and more importantly, docking cannot produce new molecules as potential candidates -

it can only screen existing ones. These limitations build up to one common requirement:

We need a method capable of producing potential binders for a given protein

target

1.3 De-novo drug design: How and where is it used?

De-novo stands for “anew”, meaning that the molecules are designed completely from

scratch, with no knowledge of existing ones. This starkly contrasts with ligand-based design,

where new molecules are predicted based on known molecules.

While the ligand-based design does have its advantages in that it is better guided and has a

greater success rate [1], there are cases where de-novo drug design is unavoidable.
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1.3.1 Drugging the undruggable

Many proteins in the human body are in dire need of small-molecule drugs, which, if found,

could revolutionize medicine for certain ailments. However, by contemporary methods, these

regions have been labelled undruggable, which implies (using heuristic metrics) that designing

a ligand to bind to the required region is unlikely to succeed owing to weak/poor interactions,

and the requirement of particular interactions whose satisfaction is too restrictive to allow

the design of suitable candidates [5].

Ligand-based design is not possible in these cases and other such cases where very few (if

any) non-natural binders are known. De-novo drug design requires no such information and

is likely to produce new candidate molecular sca↵olds beyond human conception.

1.3.2 Antibiotic Resistence

The use of antibiotics started soon after the discovery of Penicillin in the 1900s. Penicillin

and its derivatives were a rapid success in the field of antibiotic treatment, but this success

was soon met by resistance. For a multitude of reasons [6] (including the frequent use of

antibiotics and the exposure of wild bacteria to antibiotics through poor waste management),

many strains of bacteria started developing resistance to common antibiotics.

While there have been (and still are) constant e↵orts towards developing newer antibiotics to

which resistance has not yet been developed, many methods still rely on modifying existing

antibiotics, which are quickly met with resistance. De-novo design has the potential to

produce molecules that have never before been used as antibiotics, giving us the edge in this

constant arms race.

1.4 The scope of this project

Having su�cient motivation for de-novo drug design, this thesis focuses on presenting a new

algorithm for such de-novo drug design. The project has two parts:

1. As will be explained in the Theory section, this algorithm is designed to use atom-

types (a parameterized representation of atoms for computational modelling) and an

approach inspired by Configurational-Bias Monte-Carlo [7] to generate molecules atom-
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istically (atom-by-atom) in a binding pose at the (user-specified) active site of the

target protein.

2. Given that the molecules we are generating are potential drug candidates, the molecules

generated must satisfy some properties, such as being synthesizable and drug-like. We

use pre-existing models for this project and show how a reinforcement algorithm is

capable of biasing a completely random atomistic generation at each step to end up

with a collection of synthesizable molecules.

1.5 Comparison with existing de-novo drug design al-

gorithms

Many algorithms are already present that have similar goals. However, this method di↵ers

from most of them in some key ways.

Some methods [8] [9] [10] tend to generate molecules independently of the protein (sometimes bi-

asing for certain molecule-level features), followed by docking to screen for hits. This method

relies both on the accuracy of docking and results in many generated molecules failing the

screening phase, causing the algorithms to likely be very slow or ine�cient. Additionally, to

our knowledge, this is the only method to implement reinforcement learning on an algorithm

that generates molecules in the protein’s active site.

Many methods of de-novo drug design are not atomistic in that they use fragments [8] [11] [12] [13]

instead of atom-level construction of molecules. While these methods are likely to have bet-

ter accuracy and hit rate, they are likely to fall into the same trap of producing molecules

with sca↵olds similar to known molecules [14], defeating the purpose of de-novo design in the

first place.

Putting all these points together, having a trainable, atomistic, generative model that pro-

duces 3D bound structures as a part of the generation itself could prove to be a valuable

tool in the field of Computational SBDD. The program (unimaginatively titled “DeNovo”)

presented in this thesis achieves these goals as a proof-of-concept.



Chapter 2

Theory

The program derives its theory from multiple di↵erent concepts. This section will briefly

cover the necessary background theory. There will be references pointing to works that go

into the theory in greater detail. How exactly the various parts of the theory described here

come together to make a de-novo drug design program will be discussed in the next chapter.

2.1 Role of proteins and competitive inhibition

Proteins very carefully regulate almost every biological process in our body. Since proteins

play such a key role in maintaining healthy conditions, any imbalance or disruption in their

regular activity causes diseases. Even diseases caused by pathogens usually have stages in

which some proteins from the pathogen interact with the human body (such as when SARS-

CoV-2 infections were found to be mediated by the Spike-ACE2 interactions [15]).

As a result, if there were some way for us to manually interfere with the malfunctioning pro-

teins, resulting in the modification of their activity, we could potentially treat most diseases.

While many forms of interactions are possible between a protein and a ligand, computa-

tionally, the problem of finding competitive inhibitors is comparatively well-defined. This is

because most other interactions (such as activation or allosteric inhibition) require a certain

kind of interaction between the protein and the ligand and relies heavily on the protein’s

capability to respond to this ligand binding, which makes it situational at best. However,

competitive inhibition is achieved when the drug molecule competes with (rather outcom-

petes) the natural binding partner of the protein and forces a far lower frequency of actual

5



6 CHAPTER 2. THEORY

Figure 2.1: Competitive inhibition [1]: The drug forcibly replaces the natural ligand

binding to this partner. In most cases, the actual active site of an enzyme is likely to be well-

known. In the case of competitive inhibition, the sole requirement is that the drug molecule

binds as strongly as possible to the active site (so long as it is specific to the target protein

only). Competitive inhibition is also quite well sought after, as many diseases require us to

prevent a certain protein-ligand or protein-protein interaction (for example, the Spike-ACE2

interaction mentioned above).

Calculating binding interaction is a much more tangible (although still challenging problem)

to solve computationally. With the help of generic small-molecule forcefields (explained in

the next section), we can produce a numerical measure of interaction between a ligand and

a protein, given its bound 3D configuration. A short derivation to explain how binding

strength (or binding free energy) relate to the strength of a competitive inhibitor is shown

below:

Let E be the enzyme/protein and S be its natural substrate/ligand. Let D be the drug.

Consider these competiting binding reactions and their corresponding equilibrium constants:

E + S ��*)�� [ES] (Keq = Ks ) and E + D ��*)�� [ED] (Keq = Kd) (2.1)

This gives us (by definition of equilibrium constants):

Ks =
[ES]

[E][S]
and Kd =

[ED]

[E][D]
=) Kd

Ks

=
[ED][S]

[ES][D]
(2.2)
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For proper inhibition, we have these two conditions:

[ED] >> [ES] (we want to override the natural substrate with the drug)

[S] >> [D] (the natural ligand is abundant, while the drug will only be present in traces)

This means that we want to have Kd >> Ks (By using above conditions in eq. 2.2),

which requires that we have the protein-drug interaction be as strong as possible (from the

relation �RTln(Kd) = �Gbind, where low �Gbind represents strong interactions).

With this goal in mind, we optimize the interactions between the protein and ligand during

the drug generation phase.

2.2 The concept of forcefields and atom types

In recent years, performing computer simulations of chemical systems has become rather

common. However, these systems are rarely simulated to complete perfection due to obvious

computational limitations. Even in a numerical simulation of the system, performing full-

scale quantum calculations at each step is also not feasible for most simulations with long

enough timescales.

Forcefields [16] model the chemical systems using simple parameters, reproducing bulk prop-

erties as best as possible and developing these parameters in a generic way so that they

can be extended to most molecules. This modelling allows simulations to proceed by simply

solving the classical laws of motion under extremely simple potentials. Most forcefields have

an additive potential, i.e. the net potential energy of the system is merely the sum of the

potential energy of interaction computed between all pairs of atoms, and the potential for

each pair is independent of the positions of all the other particles [16].

This property and the fact that forcefields also provide atom geometry information allow

us to generate molecules in the protein active site. Atom types are atom classes for force-

fields. Forcefields classify interactions into basic categories: Bonds, Angles and Dihedral

angles model bonded interactions, while electrostatic interactions and van-der-waals’ inter-

actions are modelled by partial charges, and a distance-dependent dispersion force such as

the LJ-Potential, which are classified as non-bonded interactions.
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2.3 Metropolis Monte-Carlo

Every de-novo drug design method needs two things apart from an algorithm capable of

generating chemically rational molecules - a scoring function and an optimization algorithm.

Some methods use Genetic Algorithms as their optimization algorithm, while others prefer

learned models. DeNovo primarily uses Metropolis Monte-Carlo criteria to e↵ectively span

the vast chemical space of potential binder molecules, allowing it to spend more time in

regions of chemical space with strong binders. Metropolis Monte-Carlo is a Markov-Chain

Monte-Carlo (MCMC) algorithm that allows us to e�ciently sample points from a particular

underlying distribution and is applied to statistical mechanics problems where it was found

to be a computationally tangible method for exploring large phase spaces [17].

2.4 Configurational-Bias Monte Carlo (CBMC)

CBMC started by trying to sample the distribution of lengths of “growing molecular chains”

(i.e. polymers) to compute the length, size, and other parameters for growing polymers [7].

The algorithm was later extended by Siepmann and Frenkel in their work on a sampling

scheme for flexible chains [18]. This is where the method used in this project takes its inspi-

ration.

Consider a polymer that is composed of N monomers placed in sequence. Suppose we were

to sample all the configurations of this polymer in 2D space (2D is for the simplicity of

visualization. Extension to 3D is relatively straightforward). In computational models, this

is commonly achieved by placing the atoms on a grid, where each unit distance on the grid

corresponds to the distance between two monomers (see figure below): Most randomly picked

coordinates would end up causing the polymer to clash with itself (and this problem worsens

as the polymer’s length increases). In order to avoid this problem, a growth algorithm was

devised by which the generated configurations have a high chance of being stable. This

method ensures that the configurations of the polymer are sampled as they would occur in

nature - according to the Boltzmann distribution of their energy.

Let there be a symmetric global energy function E(i, j) ⌘ E(j, i) that computes the inter-

action energy between two non-bonded monomers in a polymer based on their positions in
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Figure 2.2: A depiction of a model linear homo-octamer placed on a 2D grid.
a and c show examples of clashing (disallowed) configurations while b is an allowed

configuration.

space. We further assume:

Epolymer =
X

i

X

j>i

E(i, j) where E(i, j) = 0 if i and j are connected monomers

The polymer is repeatedly “grown” in a computer by adding one monomer at a time. The

next monomer can be added in any of the 4 (6 in 3D) directions from the endpoint (See figure

below). The key to this algorithm is the weights given to each of the n allowed positions for

each added monomer:

wj = exp (���Ej) and the normalization constant Ai =
1

n

nX

j=1

wj (2.3)

The number of allowed positions may di↵er at each step (such as if there is a blockage - see

part (c) of the figure below). This variation is why n is part of the normalization, and this

can be dropped if n is known and fixed. The same chain is grown multiple times, and for a

sequence of N monomers placed, we define the Rosenbluth weight to be:

W :=
NY

i=1

Ai (Ai is as calculated in eqn. 2.3) (2.4)

So when a new conformation is grown using this algorithm, it is picked with a probability

of acceptance given by:

Pacc = min

✓
1,

Wnew

Wold

◆
(2.5)
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Figure 2.3: Growing a polymer one monomer at a time.
(a) shows how the energy function is implemented. (b) shows how multiple possible

positions are considered and how �E is computed, which is needed for computing the
weights (wis). (c) shows how the number of trial positions may vary.

This reweighting is necessary to reproduce the Boltzmann distribution of conformations in

the final ensemble of accepted configurations, which is explained in detail in the original

paper [18] and is not particularly relevant here.

Before we conclude the theory of CBMC, it is important to recall that our drug design

algorithm requires the space of allowed positions to be continuous and not gridded. So an

extension of this algorithm to continuous space [19] is used. In this extension, a fixed number

of trial positions are generated subject to any known constraints, directly in real space. We

then compute�E for each of these positions, and select the ith configuration with probability

proportional to the boltzmann factor of the energy change for each:

P (Xi) / exp (���Ei)

In the limit of sampling a large enough number of points in the continuous space, this

sampling produces the correct ensemble of configurations, but in continuous space. An

explicit use of this continuous sampling is explained along with the algorithm in section

3.1.1.

2.5 Graph Representations for molecules

Throughout all the discussions, we have referred to molecules as atoms stringed together.

This depiction is a handy way to represent molecules to computers. Two common represen-
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tations [20] are the graph representation, and the SMILES [21] representation (which we will

not discuss here). A graph is constructed with the atoms as the nodes (vertices) of the graph

and connections representing the bonds.

To feed a graph into computer programs, we commonly use two matrices: A node matrix,

which is essentially a list of vectors - one for each node. Each vector contains all the necessary

information to represent its corresponding node. In this figure is an example molecule in its

Figure 2.4: A graph representation of a small molecule
The feature vectors used here are one-hot encodings, which are described later. Hydrogen
atoms are omitted from the matrices for clarity (treat CH3 as one unit). The feature

vector for each atom is of size f .

graph form. There are five atoms, and the first “matrix” is a set of node feature vectors.

These “feature vectors” have predetermined size (f as denoted in figure 2.4).

The adjacency matrix is a description of connections. It is an nxn matrix (n is the no. of

atoms), where all entries are 0, except at index (i,j) if atoms i and j are connected by a

chemical bond, in which case it is 1. Notice how this definition also makes the adjacency

matrix symmetric.

2.5.1 About feature vectors

A feature vector is the representation of a complex object using a vector of numbers. The

vector is usually of fixed size, and each position in the vector represents one feature of the

object (hence the name). For example, one can represent an atom type uniquely with five

entries: Atomic number (to distinguish the element), Atomic mass (to distinguish isotopes),
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number of connected atoms (to judge hybridization), partial charge (a measure of how elec-

tronegative the neighbours are) and a boolean value to tell if it is part of a cycle or not.

Usually, feature vectors are much more elaborate with how features are presented to facilitate

machine-learning applications.

2.6 Machine Learning on Graphs

Machine Learning refers to the broad scope of a computer learning (picking up useful pat-

terns) from data presented to it. We have already seen how to represent molecules to

computers as graphs in section 2.5. Using these graphs as inputs, models can be trained to

use the structure provided by the graphs to make meaningful predictions.

As a starting point, one can imagine a machine-learning model to be a function that takes

in a set of numbers (a vector) and produces another sequence of numbers as output. The

output can then be interpreted based on how the model was trained.

2.6.1 Graph Convolution

Graph convolution is the process of incorporating the information from the neighbouring

nodes into each node. Essentially, this provides knowledge of the “environment” for each

node. It transforms the information at every node first, usually through a linear filter (essen-

tially multiplying the input vector by a learnable matrix). After the transformation, figure

2.5 shows how the merging of information is achieved. When studying chemical structures,

knowing about the local neighbourhood of an atom can be important. Carbon atoms con-

nected to oxygen atoms will behave di↵erently from those connected to nitrogen atoms.

While atom types usually capture this information, some are generic and require this infor-

mation to be incorporated from the neighbour.

2.7 Reinforcement Learning

Reinforcement Learning is a subfield of machine learning where instead of learning from

labelled data, the computer learns actions through a series of steps. A reward is given to the



2.7. REINFORCEMENT LEARNING 13

Figure 2.5: Schematic depiction a graph convolution operation.
Graph convolution combines the information from the neighbouring nodes with the existing
information to provide a richer representation of each node. Vectors numbered 1-5 denote
the original feature vectors. Vectors numbered 1*-5* denote the (final) convolved feature

vectors.

computer after each step, and the goal of the learning algorithm is to learn to pick actions

that maximize the net reward.

A simple example is that of a 3-state system. Imagine three tiles, as shown in Figure 2.6,

where the computer always starts at the same point and has two choices: It can choose to

move right (which will cause it to fall into a pit) or down (which will take it to its goal).

These are arbitrarily defined positions, but the rewards can also be tuned for real scenarios.

Now the agent is forced to pick a direction (only right or down are allowed). If it picks

the correct side, it is rewarded. If it picks the wrong side, it is given a negative reward

(punishment). The goal is to get the largest possible reward.

The machine learns by repeatedly playing the same game. Say it starts by randomly picking

either side with equal probability. Every time it gets a positive reward, it is motivated to

make the same choice next time, biasing the odds that it will again pick the same direction

in the next run of the game. Similarly, it is discouraged from picking the wrong side by a

negative reward.

The math of this selection is implemented as the REINFORCE algorithm [22] (there are other

reinforcement learning algorithms, but this is by far the simplest and is what is used for this

project). The description of REINFORCE here is quite brief.
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Figure 2.6: A sample 3-state reinforcement learning problem
The average of the feature vectors of all the neighbours is taken to be the “information”

from the neighbourhood. This is added into the original feature vector.

2.7.1 The REINFORCE algorithm

The REINFORCE method with policy gradients optimizes our policy network. In this

project, we use a neural network as our policy function. A policy function is essentially

the learnable function that determines the machine’s next action, given its current state.

A policy network is this choice function described as a neural network. In the previous

example, this would be the function that gives the probability of picking right (or down)

from the starting point. The inputs to this function would be all the information available

to the system at the initial position (which could be the colour of the tiles on either side -

red and green).

If the policy function is di↵erentiable (as for neural networks), the reinforce algorithm takes

a gradient descent form, hence the name policy gradients. The following derivation assumes

some familiarity with the notation of reinforcement learning:

Let ⇡✓ be the policy function. An episode is an entire sequence of states and actions until

the “game” ends (in reinforcement-learning terminology, every such learning setup is called

a game, where the actions the computer picks are analogous to a human’s interaction with

a joystick controlling the game). Let us say we want to learn from a given episode.

The first hurdle we hit is that of credit assignment. A decision taken in the first step might
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a↵ect the reward five steps later. So we cannot assume that changing the decision just one

step before a particularly bad reward solves anything. This problem, however, usually sorts

itself out through multiple runs, as the decision that leads to poor rewards consistently will

eventually be correlated to those poor rewards after many runs of the game. However, this

raises an interesting point. The decision at step 0 will influence all the rewards received.

The decision at step 5, however, can only influence rewards received after step 5.

An estimate for the reward received by taking action ai in state si is essentially approximated

after multiple runs by:

Rs,a ⇡
1

N

NX

run=1

v
run
t where v

run
t :=

X

i�t

r
run
t (2.6)

Here, rrunt is the reward at the tth step in the runth run. Now we can estimate the expected

reward for a policy ⇡✓ from a state s as:

E[Rnet
✓ (s)] =

X

a2A

⇡✓(s, a)Rs,a (where A is the set of all allowed actions) (2.7)

Here ⇡✓(s, a) is the probability of picking action a at state s with our current policy. To

optimize, we can use gradient descent as we assumed ⇡ was di↵erentiable with respect to its

parameters:

r✓E[Rnet
✓ (s)] =

X

a2A

@⇡✓(s, a)

@✓
Rs,a =

X

a2A

⇡✓(s, a)
@[log⇡✓(s, a)]

@✓
Rs,a

Now in a set of episodes under policy ⇡✓, it can be assumed that the actions for any state

s are picked according to the probability ⇡✓(s, a) So we can approximate the gradient for

every state si by:

r✓E[Rnet
✓ (si)] ⇡

X

e2E,s=si

@[log⇡✓(si, a)]

@✓
Rsi,a (2.8)

We can approximate Rs,a from equation 2.6, and since we have an estimate for the gradient,

we can modify the parameters by gradient ascent to maximize the reward for each state. A

clean derivation showing convergence of the algorithm and a more practical setting can be

found here [23].
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Chapter 3

Methods

The algorithm is built by combining multiple ideas, most of which have been discussed in

the previous section. This section describes how everything comes together.

3.1 The physics-based generation algorithm

This form of a novel physics-based atomistic drug-generation algorithm was first envisioned

by Dr. Arnab Mukherjee. The first implementation of the algorithm was developed by Ritu-

parno Chowdhury by using atom type definitions from GROMACS’ [24] force-field parameters.

Venkata Sai Sreyas later improved this method by introducing rule based constraints and

tuning atom type parameters thus enforcing chemical variability and consistency. The algo-

rithm itself has been previously tested on real systems and has shown to be computationally

consistent [31].

3.1.1 Growing a molecule atom-by-atom

DeNovo uses an atomistic drug generation algorithm, meaning that the molecule is generated

one atom at a time. The algorithm needs to make chemically rational molecules. So along

with the list of parametrized atom types, we also provide forcefield parameters. These

parameters include the Lennard-Jones (LJ) parameters (� - the atomic diameter and ✏ -

the attractive strength) and partial charges (to calculate dipoles and estimate charge-based

17
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interactions such as hydrogen bonds and dipole-dipole interactions).

We also provide the expected valency for each atom type. For example, CT3 is a tetrahedral

carbon atom bound to 3 hydrogen atoms. So it has four neighbours. CA is an aromatic

benzene-like carbon atom. It has 3 neighbours (because it is sp2 hybridized, there will be one

double-bond). This means that the atom types determine the local geometry. How DeNovo

incorporates these requirements is elaborated below.

User Inputs:

Target Size

A program can go on stringing atoms together forever. To avoid this, the user must input

a target size for how big a molecule should get. The program will stop adding atoms after

reaching the target size unless the addition is required for satisfying atom-type definitions

(see section 3.1.1).

If the program is being applied to a target protein for the first time (or if no target size is

known), it is possible to sweep over all possible sizes starting from 10 atoms to almost 45-50

atoms. One instance of the program is run for each size.

The target size counts only heavy atoms - i.e. non-hydrogen atoms.

The hotspot

The hotspot or active-site is the region of the protein to be targetted. If we already know

where the natural substrate binds, we can use that knowledge to determine the target region.

The target region is usually specified by providing the program with the key residues in the

active site that are expected to interact with any new ligand. However, this selection is only

suggestive of the binding site. While the program starts making molecules from that region,

it is not constrained to keep the molecule there unless specifically requested by the user.

Seed Count The generation of a molecule must start with one atom. This single atom is

placed randomly at the active site and is called the seed atom. DeNovo generates molecules

by randomly spreading out seed atoms, then picking one seed at random and using it as

a starting point. The user is expected to input the seed count. The seed count tells the

program how many random positions to generate as starting points before generation. In

general, we expect better coverage of the target region but longer convergence times with

more seeds.

Oscillation Count As the molecules are selected by a Metropolis Monte-Carlo (MMC)

scheme, there are expected to be oscillations (ups and downs) in the interaction energy

of the new molecules as they are generated. The program is not built around sampling a
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Figure 3.1: Oscillations in the interaction energy of MMC accepted molecules
There are two batches shown in the figure. The average line is drawn for each batch.

Molecules above the mean are rejected, and those below are accepted

Boltzmann distribution of molecules but rather on finding strong binders, so we don’t take

all the accepted molecules. Instead, after a few oscillations (decided by the user), we average

out the energy of the last batch. Only molecules with lower (thus stronger) interaction

energy to the protein (compared to the mean) are selected. This process is schematically

shown in Figure 3.1

A larger oscillation count usually results in more consistent results and better molecules, but

it makes the program take longer to finish.

Seed atom positioning

The program starts by generating a large number (determined by the user) of starting points

from where the molecule generation will begin. At each such random position, a seed atom

is placed, ensuring that the seed atom is not unstable at that point (i.e. does not physically

clash with any of the protein’s atoms). For every molecule that will be generated, one of

these is the starting point.

The seed positions are generated as spherical shells around a fixed point. Usually, the fixed

point is taken to be the centre of geometry of the active site (as marked by the user). A
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large number of seeds are generated before each generation to ensure proper spanning of the

3D space.

Selection of atom-types

When seed atoms are generated, after choosing the positions, the program randomly deter-

mines which atom the seed will be. There is freedom for the user to choose which atoms

will be picked and how frequently, but most commonly, they are carbon atoms. Sometimes

there will also be oxygen and nitrogen atoms.

From here on, the molecules must be generated bottom-up. So, deciding the atom type is

necessary for each step (i.e. whenever an atom is supposed to be added). By definition,

atom-types have “rules” as demonstrated in figure 3.2. Beyond this, however, the atom-type

Figure 3.2: Atom-type definitions require certain rules to hold
In this example, the atom marked “CC” is a carbonyl carbon. It must necessarily be

connected (by a double bond) to an oxygen atom.

choice is completely arbitrary. There are very generic atom types (like CT ), which just

require that the carbon atom have near-tetrahedral geometry. So all possible single-bonded

neighbours are valid. In this case, one atom type is randomly picked due to the lack of

information.

This selection is where reinforcement learning comes into play. The program is developed

to use an external model to determine which atom type to pick when multiple options are

available. This model can be trained to achieve any necessary goal that is only molecule-

dependent. These could be common drug-likeness properties such as the ADMET proper-

ties [25] or a metric of synthesizability.

As a proof-of-concept, this project shows the results obtained by training the model to gen-

erate synthesizable molecules. Generated molecules are predicted to be synthesizable or not

based on a previously developed, publicly available classifier known as SYBA [26].
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Atom placement and inspiration from CBMC

Further atom placement proceeds similarly to the CBMC criteria. During generations, there

are three possible situations we can find ourselves in. Following the CBMC criteria, a test

Figure 3.3: Position generation for positions in 3D space
(a) When only a single atom exists in the molecule. The intersection points of the
longitudinal lines and latitudinal lines represent the allowed points. (b) When two

connected atoms are present. The rim of the cone drawn is the set of allowed positions. (c)
The most common - after adding at-least three atoms. We determine the set of allowed
dihedral angles. There is one plane corresponding to each. The points where the cone (as

from case b) intersects the plane determine the allowed positions.

atom is placed at all the positions (shown in figure 3.3). The potential energy is calculated.

Because the potential from most classical forcefields is additive [16], the �E value is computed

by adding up the interaction energy (with the protein) of this single atom. Then, using the

same biasing method (see equation 2.3), we place the atoms with probabilities that ensure

that a more stable position is more likely to be picked.

The reweighting part:

DeNovo molecule construction borrows heavily from CBMC to ensure that the generated

molecules are biased to be stable at the active site.

There is one key di↵erence, however. The goal of DeNovo is not to straight-up produce a

distribution of molecules from chemical space whose combined conformational and interac-

tion energies form a Boltzmann distribution. We only want to focus on strong binders, not

a distribution. Hence, the reweighting part is omitted in favour of directly using the scoring

function (forcefield interaction energy)-based criterion for acceptance, similar to the classic

Metropolis Monte-Carlo as explained in a later section.
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Cyclization

Every time we add an atom, we attach it with a bond connecting it to a predetermined

atom from the parent molecule. To make cycles, we need to attach an atom with two bonds.

Because the generation is in 3D, we complete all possible cycles based on the 3D position of

the atom. If the newly added atom is within bonding distance of another atom in the parent

molecule, a cycle is formed unless that atom has no free valency to spare. In that case, the

position is rejected as a “clash”.

Cyclization can also be part of an atom type’s rules. For instance, all aromatic carbon atoms

must be part of a cycle. Similarly, atoms specifically defined to be cyclic atom types (such

as carbon from cyclopentane) are also forced to be part of a cycle.

It would seem that randomly placing atoms would make it very unlikely to let them form

a cycle. But this is mitigated by choice of angles and dihedrals from the forcefield data,

making it far more likely, especially for small cycles (up to sizes 5-6). Larger cycles are more

commonly made as fusions of multiple such small rings.

Interaction energy

The main reason for performing a search directly in 3D space rather than generating molecules

first and then docking them is to optimize the molecule in the generation phase to have strong

interactions with the protein. The interaction energy to the protein is computed from two

di↵erent parameters that are part of the forcefield atom types. DeNovo uses the CHARMM-

27 [27] atom types as its foundation. These atom types are slightly modified into specialized

categories to allow for the diversification of atom types. For example, the CA atom-type

stands for aromatic carbon like in benzene, but the charge on this carbon atom depends

on what its substituent is. So DeNovo uses CA for normal aromatic carbon and CAS for

positively polarized aromatic carbon.

The exact force constants for all the di↵erent bonds, angles, and dihedrals are present in

the forcefield data but are unnecessary as we usually only consider the local minima of the

structure (i.e. the equilibrium values) and not allowing large deviations. However, they are

still used where available.

It is to be noted that this interaction energy is only a rough estimation of the actual value,

which will be expected to change once the entire molecule is completed and parameterized

as a whole.
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Dead-ends and recoil

Sometimes when generating a molecule, it is possible to run into a dead-end before reaching

the target size. This usually happens if there is no place to add another atom without

clashing with the existing molecule or the protein. This problem also occurs in classical

CBMC, and the growth is scrapped in favour of a retry. DeNovo does something similar,

but instead of restarting the generation from scratch, it recoils the last “unsatisfied portion”,

i.e. the set of atom-types whose forcefield rules are not satisfied yet. DeNovo adds atoms if

Figure 3.4: An example of recoil due to poor atom-placement
In this figure, we see recoil after many poorly placed atom positions - aromatic atoms must

be placed circularly, but they were placed in an extended configuration.

either of the two criteria is met: (a) The target size has not been reached or (b) Some atoms

need to be added to ensure that atom-type rules are satisfied (recall the case of carbonyl

carbon and oxygen from figure 3.2).

The program first tries to ensure that all instances of unsatisfied atom types are resolved.

If so, it marks that point to be the last checkpoint. Then it adds atoms only if the target

size has not been reached. If the program runs into a dead-end at any point, it goes back

to the last checkpoint instead of redoing the whole generation. The number of times every

checkpoint can be returned to is limited, ensuring that the program can avoid being trapped

by a poorly oriented checkpoint. If it fails despite the multiple tries, the entire molecule is

discarded.

A special situation may occur when the molecule is out of free valencies before reaching the

target size. In this case, the entire generation is scrapped. Figure 3.5 shows the stages in
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which a sample molecule generated by this protocol.

Figure 3.5: An example of DeNovo generating a molecule atom-by-atom
The atoms are placed directly in 3D space, with their positions determined similar to the

3D implementation of foldable polymers by CBMC

3.1.2 Extending the Forcefield

DeNovo uses atom types based on the CHARMM27 [27] forcefield. Most of the generic atom

types have been preserved. However, many atom types specific to certain residues (such

as nitrogen atoms belonging to nucleic acids) were removed as they are too specific for a

de-novo drug generation program.

Connectivity rules

As discussed, atom types have rules that need to be followed in order for them to preserve

their identity. For example, a benzene atom must be part of an aromatic cycle. These

rules are phrased to the program using a simple sequence of instructions. By default, the

bond-length information tells the program which atom type pairs can be connected. If atom

types A and B have no bond-length information, A�B bonds are not valid/parameterized,

so they are never made.

Of all the bond information present, most bonds are completely optional. Two atoms con-

nected to a benzene carbon atom must necessarily be aromatic themselves, but the third
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atom (the benzene substituent) is completely random. Even having a substituent is com-

pletely optional.

This information is presented to the program via “rule entries”. Every rule has four compo-

nents:

1. The focal atom: The central atom for which the rule is defined.

2. The target group: A subset of the allowed atom types that can bond to the focal atom.

The rule will impose constraints on this group.

3. A minimum number: At-least these many bonds from the focal atom must end in an

atom-type from the target group

4. A maximum number: At-most these many neighbours of the focal atom can belong to

the target group

Sample rules would look like this:

CA [aromatic] 2 3

(CA, an aromatic carbon atom must connect to at-least two aromatic atoms (which are

expected to cyclize. It can have all aromatic neighbours, too, like in the case of fused rings).

Charge recalculation

The CHARMM27 forcefield comes with charges already defined for its atom types. However,

generalizing its atom types to di↵erent molecules without explicit reparameterization would

mean these charges lose their accuracy.

The partial charge on a carbon atom connected to three fluorine atoms will obviously di↵er

from that of a CH3 group. In order to deal with this problem, extremely small representative

fragments were made with each of the newly introduced atom types wherever there was a

need to recalculate charges. Then, Gaussian 09 [28] was used to perform quantum calculations

to obtain ESP charges. These charges were then scaled to align with the CHARMM27 atom

types. The scaling ratio was determined by the ratio of gaussian ESP charges and the

CHARMM atom-type charges for known atom types (we used benzene as the benchmark to

find this ratio by looking at the charge on carbon atoms).
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Anyhow, we realize that the charges from static forcefield parameters may not always be very

accurate due to the on-the-fly molecule generation. Our program allows users to use charges

from an external source to recalculate the interaction energy with the protein once the entire

molecule is made using modified charges. Any external program capable of taking SMILES [21]

as input and producing charges as output (in a specific JSON format that is predecided)

can be used. This may involve using established methods like Gasteiger Charges [29]. We are

experimenting with di↵erent techniques to do the same.

3.1.3 Traversing Chemical Space

Metropolis Monte-Carlo allows us to sample points in accordance with any probability dis-

tribution - in our case - the Boltzmann distribution. A vague justification for enforcing such

a distribution is this:

If we have two molecules (say A and B) with di↵erent interaction energies (say �EA and

�EB) competing for binding to the same target location, the probability of finding molecule

A is proportional to exp(��EA). The ratio of probabilities is given by:

pA

pB
= exp (��(�EA ��EB)) =: exp (���(�E)) (3.1)

Taking our default scoring function to be an estimate for the binding energy, we accept a

newly generated molecule by comparing its binding energy estimate (according to DeNovo)

to that of the previous molecule. Then:

Pacc = min (1, exp (��(Enew � Eold))) with � :=
1

kBT
(Using T=300K) (3.2)

Temperature as a variable parameter

In some cases [30], optimization algorithms using Metropolis Monte-Carlo treat temperature

as a tuning parameter to balance variety with optimization. Such an interpretation is pos-

sible with DeNovo as well. Increasing the temperature corresponds to quicker oscillations,

resulting in less optimal but more varied molecules (useful when other key properties not

captured by interaction strength are also necessary). Lowering the temperature reduces the

variety and makes the algorithm slower (and may also lead to non-convergence) but will lead

to better optimization.
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A temperature of 300 K has still been found to be quite reasonable and successful in previous

use-cases [31]. However, temperatures up to 1200 K have also been shown to produce potent

molecules in preliminary trial generations.

3.2 Our Reinforcement Learning (RL) Model

Putting atoms together to make molecules has many advantages, such as allowing greater

exploration of chemical space (the ideal space of all stable molecules) and a lower chance of

introducing human bias. However, it does have disadvantages. The molecules made by this

method are guaranteed to have the right valency on each atom and geometry, but this alone

is not enough to make a molecule a drug. It must be synthesizable (otherwise, it cannot be

a commercially available molecule) and possess certain “druglike” properties.

While methods to estimate drug-likeness do exist (e.g. QED [32]), they are likely not very

accurate at di↵erentiating the di↵erent requirements of drugs based on their targets. Owing

to this ambiguity, we also believe that for a generic program, an estimate of synthesizability

is more useful as ensuring that the molecules are easily synthesizable makes it more likely

that they make it into the experimental (usually in-vitro) trial phases early.

3.2.1 The reinforcement setup

Our RL setup is inspired by very similar work on molecular graphs and is called a Graph

Convolution Policy Network (GCPN) [33]. A policy is the set of rules the computer will follow

during its task (in our case, molecule generation). A good policy will make the program

pick atom types to make the final molecule synthesizable. This policy is learnt through

reinforcement. In this case, the input is a graph representing a half-made molecule.

There are a few di↵erences from the original GCPN implementation that are worth noting

that divide the job of generation between the “program” (the previously described rule-

based algorithm) and the “policy” (the machine learnable model that tries to make molecules

synthesizable):

1. The program determines the focal atom - the atom to which the newly added atom

will be connected. In the original program, this was also selected by the policy.

2. The program provides a list of valid atom types to choose from. The model must
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assign weights to each choice, and one atom type will be sampled with those weights.

This pre-decided set of choices means that the number of allowed actions can change

depending on the state, which is rare in standard RL implementations.

3. All bonds (including cycles) are determined by the program. The original GCPN

implementation makes cycles and adds additional bonds optionally. It also handles the

formation of double or triple bonds) Here we use atom types instead of simple elements

for atoms, so handling this is unnecessary.

Given the simplicity of our requirement compared to the original GCPN model, we de-

cided it would be useful to have a relatively simple model. Note that this model is subject

to change depending on the goal. In this project, we present a proof-of-concept to show

that the program can generate molecules such that the fraction of synthesizable molecules

significantly increases while using it.

3.2.2 Using GCPN in DeNovo

We can now understand the construction of molecules as a sequential decision-making prob-

lem, where at each step, the program is presented with a focal atom and a set of allowed

atom types from which it must pick one to attach. How the set is provided or how the focal

atom is decided is beyond the scope of reinforcement. To the model, these are predeter-

mined. We, however, know that these are decided based on atom-type definitions as given

by the forcefield using look-up tables for each atom type.

The molecule graph

The program is supplied with a graph as input. The graph contains node feature vectors and

an adjacency matrix as discussed in section 2.5. From this information, graph convolution is

used to incorporate the information from the neighbours into each node. Only information

from the focal atom is used in deciding the next atom. The focal atom gives the model

context, telling it where the new atom is being added in this molecule.
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Figure 3.6: Our modified implementation of a graph convolution policy network
The focal atom is highlighted with the caption “Attach here”. These steps are repeated

multiple times - once for each newly added atom.

The implementation

The model is built in two parts: the “encoder” and the “decoder”. The encoder encodes

necessary information into an intermediate vector, first achieved through graph convolu-

tion (see subsection 2.6.1 of Machine Learning) over the input graph. The final convolved

representation of the focal atom (say v0) is taken. The focal atom is determined entirely

independently of the model and is usually the last added atom.

The program can already determine a list of atom types which can bond to the focal atom.

This list is a subset of the atom types in the data file and depends purely on the rules to

satisfy the requirements of each atom type. Each of these individual atom types in the data

file also has a feature vector. We used one-hot encoding [34] (described briefly below) here,

but we acknowledge the scope of a more potent representation that maps similar atom types

to more similar feature vectors.

v0 is concatenated to every atom type’s feature vector from this list. So we now have a list

of combined feature vectors capturing the information of the focal atom and one potential

connection partner. This list is passed to a decoder which outputs one number for each input
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vector. We use a simple 2-layer fully-connected layer [35] as the decoder.

Quick note on one-hot encoding:

One-hot encoding is a way of encoding di↵erent objects with bit vectors. Every object is

given an ID based on some arbitrary ordering. The IDs will never change. The feature

vector for each object is just a vector full of 0s, except at one index where it is a 1. This

index is the ID of that object. So every object has a unique vector representing it, and all

the vectors are equidistant from each other. This method of encoding makes sure that no

bias enters the system.

Feature and model sizes:

The intermediate layer size for the decoder is 128 neurons. We have 166 atom types, so that

is the feature vector size for each node. During graph convolution, we preserve the size (the

transformation is done by a learnable 166⇥ 166 matrix). This size makes the input size for

the decoder 2⇥ 166 = 332 because it uses two concatenated vectors.

Discount Factor and Reward Scheme:

A classic +1,�1 reward scheme is used. At the end of the molecule’s generation, it receives

a reward of +1 if the molecule is synthesizable and �1 if not. There is a special penalty of

�6.25 if the molecule does not reach the target size but cannot grow further (all valencies

are complete).

Initially, no rewards were given in the middle, but we later changed this. We notice that some

atom types have complex satisfaction conditions, which causes the model to take many more

steps near these atom types, thus causing the rather unfair damping of any reward obtained

from these atom types as the reward is received after far too many steps. We introduced a

small negative intermediate reward of �0.01. This penalty ensures that the model tries to

reach its goal as fast as possible and limits the benefits it receives from delaying an inevitably

negative reward.

The program also has rollback options. When a molecule ends up in a position where no

atoms can satisfactorily complete it, or if it cannot complete it after many tries, the program

returns to the oldest state where all atom-type requirements are met. To get the program

not to add and remove too many atoms redundantly, a negative reward of �0.05 is given for

every rollback that it performs.

A discount factor (�) value of 0.995 is used.
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Optimizer:

We used the Adam [36] as the optimizer as implemented in PyTorch [37]. We use a learning rate

of 9.5x10�4 and default parameters. The training was done in multiple cycles of optimizing

the same model while tuning the learning rate to slowly reduce. This tuning hopes to get an

early quick optimization phase, followed by small local optimization for convergence. The

complete procedure used for training is explained as part of the results. Some of this tuning

had to do with the feedback from our results.

3.2.3 The SYBA model

For deciding the reward for reinforcement, we take SYBA’s prediction of the synthesizability

of a molecule as the ground truth. SYBA is an established pre-trained model with the ability

to predict if any given molecule is synthesizable or not.

The model is based on a näıve Bayes classifier that scores individual fragments of the input

molecule as “ES” (easy-to-synthesize) or “HS” (hard-to-synthesize).

As the training data, SYBA used molecules from the ZINC15 database as ES molecules. HS

molecules were artificially created using other algorithms. It has been shown to be a simple,

consistent and interpretable model for predicting synthesizability.
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Chapter 4

Results

4.1 Vacuum (Receptor-free) Results

This program can make a sample of molecules even in the absence of any target (proteins

or other biomolecules). In this case, the molecules are made in a vacuum, with the only

energy terms coming from self-energy (intramolecular interactions). The usual Metropolis

Monte-Carlo (as described above) is not used for traversing chemical space. Instead, we

accept every successfully generated molecule.

This process allows us to study the construction of the molecules directly without any bias

creeping in from a protein target. It is crucial to train the reinforcement model unbiasedly

so that it does not optimize molecules for only some particular protein targets.

4.1.1 Baseline (Synthesizability before reinforcement)

Before explaining how reinforcement improves anything, we need to establish how the pro-

gram performed initially. We use a set of metrics to convey its quality. Self-similarity has

always been a good measure of the diversity of molecules within a set. We want our program

to generate a diverse array of molecules without pigeonholing itself into a very narrow region

of chemical space. As we proceed with the discussion, the importance of this point will be

further evident. We also require that as many of the molecules as possible be synthesizable.

At this point, about 16% of the molecules are synthesizable - a significantly small portion.

If we filtered only synthesizable molecules, we would lose over 80% of our molecules to the
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Figure 4.1: The self-similarity distribution for 300 molecules.
The mean value is 0.38 ± 0.01, with no significant peaks above 0.9, indicating that the

molecules are fairly diverse. Around 16% of the molecules are synthesizable.

screening, making the generation process ine�cient.

Computing the self-similarity distribution:

We define the distribution of self-similarity (SS) of the set of size N by defining SS as follows:

SS := {maxj 6=i{sim(mi,mj); 0  j  N }; 0  i  N } (4.1)

Here, sim(mi,mj) denotes the similarity between the i
th and j

th molecules. Any metric

can be used here. We use Tanimoto similarity, which has shown to be a good measure for

molecules [38]. The standard fingerprints from RDKIT 2019 [39] were used for this step. As

this metric depends on the set size, standardizing the plot with a set size is important. For

a larger set, just by the sheer size of the set, we expect there to be a molecule that is more

similar to a given molecule. For each set used in computing the self-similarity throughout

this thesis, we use a set size of 300 molecules unless specified otherwise.

This distribution does not capture the entire story, however. We find that there is a strong

dependence of synthesizability on the size of the molecule. We generated a large distribution

of over 1 million molecules in a vacuum to study such molecule-level properties for those gen-

erated using this algorithm. The size distribution closely followed the CheMBL [40] database,

against which we make some comparisons. Figure 4.2 shows how the size a↵ects the syn-
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thesizable fraction. This strong dependence on target size is important to remember while

analyzing reinforcement results. It is interesting to see a deviation from the trend around

(a) (b)

Figure 4.2: Generating molecules in vacuum following the CheMBL size distribution.
(a) Reproducing a size distribution similar to CheMBL. This size distribution was manually

targeted. (b) The e↵ect of size on the synthesizable fraction

sizes 20-24. This is likely due to the large number of known synthesizable molecules that

naturally fall within this size range. However, noticeably, this fraction declines incredibly

quickly with increasing target size. As we will show later, our model achieves great success

even at these larger sizes.

4.1.2 Results after training - Mode collapse

While training the program, we noticed something peculiar after 1500 cycles (1500 molecules

generated). The program had technically solved the problem, but it was not the solution

we wanted. The program had figured out an e�cient way to get synthesizable molecules. It

realized that stringing benzene fragments together was a sure-shot way to get synthesizable

molecules. However, this is a great detriment to our goal of exploring chemical space. We

have ourselves a mode collapse! Mode collapse is a problem seen with generative models

where they learn a solution that technically does minimize the loss, but miss “modes”,

resulting in the generation of a very narrow band of results from the complete space available

to them [41].
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Figure 4.3: Molecules after initial training.
Notice the extremely similar sca↵olds and repeated chains of benzene rings. 91% of these

molecules are synthesizable, but there is little diversity.

Figure 4.4: Change in the self-similarity after training.

The sharp shift to the right indicates loss of variance, and the peak at 1.0 indicates mode

collapse.

The peak at 1.0 indicates that there is actually a duplicate molecule present in the same
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set for a significant fraction of the molecules generated. Given the actual size of drug-like

chemical space even with just 16-20 atoms [42], we do not expect any such degree of duplication

in just 300 molecules. In fact, the original distribution has no significant presence after 0.9,

thus backing this point.

4.1.3 Results - Preventing Mode collapse

To avoid mode collapse, we introduce a regularization parameter. Here, “regularization”

is used as a parallel to regularization commonly used in simple regression problems. A

regularization term is an addition to the loss function to prevent the model from overfitting.

In our case, to prevent mode collapse, we modify our reward scheme. Instead of allowing

the agent the complete +1 reward for making a synthesizable molecule, we penalize it for

making similar molecules. The reward is now:

R
synth
new = 1� �

vuut 1

K

n�1X

i=n�K

(cosim(mnew,mi))2

Here, we used another proxy for similarity (denoted cosim). Instead of the standard Tan-

imoto similarity criterion, we took cosine similarities of a vector representation for each

molecule. Each molecule was represented by a 166-dimensional feature vector (for example,

mnew represents the newly constructed molecule), with each vector element corresponding to

one atom type. The value at each index is the fraction of the molecule’s atoms that have that

atom type. For example, benzene would have values of 0.5 and 0.5 for “aromatic carbon”

and “aromatic-attached hydrogen” atom classes and 0 elsewhere.

This form of regularization looks at the similarity to each of the previous K molecules and

uses the mean of squares of those similarities to calculate the final penalty. The squaring

emphasizes avoiding higher values of similarity.

� and K are tunable hyperparameters that measure the strength of the regularization, and

the number of molecules to regularize with respect to. Higher values of � promote more

variance but reduce the synthesizable fraction.

We set K = 50 for our training. We observed that starting with a very high value of �

caused no learning. Even after 7500 molecules, the synthesizable fraction did not go above

18%. Instead, we started with � = 1.6, which still results in mode collapse. We trained for

around 7500 molecules and saved the model after every 50 molecules. We found the model

with the best synthesizable fraction without a significant di↵erence in the self-similarity dis-
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tribution. This model was the one saved after 3500 molecules. We continued training with

around 4200-4500 molecules each for � = 2.00, then � = 2.35 and finally � = 2.60, starting

with this half-trained model. For this follow-up training, we reduced the learning rate to

2.5x10�4. The initial training phase brought the average reward from -0.8 to -0.45, which

Figure 4.5: The reward function during training.
The jumps indicate the changes in regularization (�) reflected as a drop in the net reward,

even when making synthesizable molecules with the same frequency.

indicates how the model learnt to make synthesizable molecules. A slight improvement is

again seen with the increase in reward at � = 2.00. Beyond this, the reward function shows

drops corresponding only to stronger regularization. We guess that this gradual increase of

regularization weight ensured the model could quickly learn to make synthesizable molecules

and then learn the changes necessary to make a diverse set of them.

Similarity Distribution

This penalization actually does the trick pretty well. Figure 4.6 shows an almost identical

self-similarity distribution, with only a slight increase in mean similarity to the nearest

neighbour. We can attribute this to the intrinsic bias of any model that picks a subset of an

existing large set.
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Figure 4.6: The self-similarity after training with regularization.
The mean similarity only shifts slightly from 0.38 ± 0.01 to 0.44 ± 0.01. Again, there are
no significant peaks above 0.9, indicating the model’s capability to make varied molecules.

Synthesizability boost

The main goal of the training was to get the program to make synthesizable molecules.

The boost to synthesizability we observed is phenomenal. The trained model is capable of

making over half the molecules synthesizable. Figure 4.7 compares the synthesizable fraction

at di↵erent target sizes. The far lower drop in the synthesizable fraction on increasing size

indicates that the model has actually learnt something about the “synthesizability” property

that is globally applicable beyond its training purview (size ranges of 21 ± 5). The model

can be deemed successful in most size ranges of relevance (size < 51). The net synthesizable

fraction in the training size-range (16-26 heavy atoms) was 66.5%.

Atom type distribution analysis

The program now generates a diverse set of synthesizable molecules. Figure 4.8 shows the

di↵erent kinds of molecules made by the program. A bias for aromatic rings is evident, but

the variety in molecules is maintained through di↵erent kinds of linkages and substituents,

slight modifications on the rings, and di↵erent ways of connecting the rings.

We have a few more questions to ask of the model. Does the distribution of atom types

change? Does the program identify some atom types that are “more synthesizable” than oth-

ers? Comparing the distribution of atom types between the trained and untrained molecules

does provide some insights. Figure 4.9 shows the most changed atom type frequencies. The
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Figure 4.7: The synthesizability as a function of size.
Random search over chemical space yields abysmal results at large sizes. However, after
training, the drop in synthesizability with the increasing size is far lower. Also, more than

half the molecules are synthesizable for all sizes in this range.

most significant change is in the CA (aromatic carbon) atom type, with a 4x increase in

benzene-like rings after training. Notably, other aromatic atom types such as NX (aromatic

pyridine-like nitrogen) as CAS (benzene carbon atom with polar substituent) have reduced,

indicating a bias of pure benzene-like aromatics over heterocycles and highly substituted

benzene rings, which the model seems to have learnt to be “hard to synthesize”.

CT3 and CT3x represent the terminal methyl group. The steep drop in this atom type

might have to do with the high penalty levied on molecules which fail to reach the target

size. Terminal groups will likely leave less free valencies from which the molecule can grow.

In compensation, CT2 (aliphatic carbon connected to two hydrogen atoms) is the default

aliphatic side-chain now.

CE1A and CE1B represented conjugated double bonds. These groups are di�cult to syn-

thesize unless placed very carefully, as are NHZ (hydrazine-like N-N linkage), CC and O

(randomly placed carbonyl groups).

Finally, an increase in NH3 atom type indicates that N-substituted amines are easy to syn-
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Figure 4.8: The molecules generated after training with regularization.
66.5% of these are synthesizable and the have more elaborate di↵erences in the substituents,

and not just the arrangement of benzene rings.

thesize. Taken together with the large increase in the CA frequency, it can also imply that

aniline and its derivatives are easy to synthesize.

Of course, not all these implications can directly be interpretive of actual synthetic di�culty.

There is likely some intrinsic bias in SYBA for some kinds of groups. Using a di↵erent model

for synthesizability can yield di↵erent results. While it is beyond the scope of the current

project, given the modular structure of our program, if any synthesizability scoring function

is developed in the future, a new model can be trained to improve the quality of these results.

4.2 Real systems

All this e↵ort still leaves us with our original problem - generating ligands inside a protein

cavity. As a first test system, we chose streptavidin. It is an extremely well-studied system,

with a perfectly designed binding domain, which is extremely specific for biotin. There

is some study about artificial ligands for streptavidin, but their goal (and ours) is not to

find stronger binders than biotin, but rather to find a set of relatively strong alternative

binders [43].
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Figure 4.9: The contribution of specific atom types to the final molecules.
The ones with the most changed contributions after training are shown here.

4.2.1 System preperation

The structure of streptavidin was obtained from the PDB entry 1SWE. All extra residues

such as biotin and water were removed from the PDB file, and only the protein was saved.

The protein was converted to GRO format, using GROMACS’ [44] pdb2gmx conversion tool.

The charmm27 forcefield was used to name atom types according to the CHARMM forcefield.

Hydrogen atoms in the PDB (if any) were ignored and manually added by GROMACS.

4.2.2 DeNovo Input

• Target sizes were between 16 and 26

• Ligand was restrained to being constructed with all atoms within 6Å of the active site.

• Optimal molecules were collected after every 8 oscillations (after the interaction energy

increased by Monte-Carlo chance 8 times, the last batch of molecules had their energy

averaged and only molecules with interaction energy below this average were chosen)
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4.2.3 Reinforcement in a protein cavity

The reason for choosing streptavidin was the well studied binding domain, and the extremely

specific binding site, which could pose a challenge to the generation model. We firstly

validated how well the model performs when applied to a protein system. All generations

were in the 16-26 heavy atom range.

We started by validating the consistency by verifying self-similarity. There is no significant

Figure 4.10: Self-similarity for molecules generated in the streptavidin binding pocket
The deviation from model-free generation (no training, random selection) is small. Mean

similarity changes from 0.441 to 0.444.

change in the similarity between the trained model in vacuum and streptavidin, with the

mean self-similarity deviating only from 0.441 to 0.444

50% of the molecules are synthesizable. This is significant drop from the original 66% for the

same size-range. This drop might be due to certain geometries being incapable of binding

to the active site, and hence being rejected despite their synthesizability. As the algorithm

by default biases for strong interactions, this can be interpreted as a drop in synthesizable

fraction to achieve good binding to the domain. However, compared to the original 16%, this
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is still a great improvement, and this shows how reinforcement learning makes a di↵erence.

4.2.4 Molecules without reinforcement

Most of the original molecules have chemical groups that are hard to synthesize:

Figure 4.11: Sample molecules generated for streptavidin without any learning

4.2.5 Molecules with reinforcement

After reinforcement, the model makes synthesizable molecules: The key di↵erences that we

observe are in the number and types of aromatic rings. The trained model avoids long

non-cyclic chains and conjugated alkenes in favour of aromatic rings. Figures 4.11 and 4.12

highlight these di↵erences.

The molecules generated fit nicely in streptavidin’s binding pocket. A 3D structure of one

of the generated ligands bound to the pocket is shown in figure 4.13.
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Figure 4.12: Sample molecules generated for streptavidin after reinforcement

4.2.6 Comparison to existing molecules

Streptavidin has very few artificially known binders, and even those that exist usually have

weaker interactions than biotin [43]. In order to compare our protocol to a system with known

binders, we targetted the ATP binding site of HSP90 (heat-shock protein 90). HSP90 (Heat-

shock protein 90) ensures proper folding of other proteins in a cell [45]. HSP90, with its

extremely well-conserved ATP-binding domain is an important therapeutic target, and has

been targetted for cancer treatment [46].

It is important to note that the mean size of the known binders was 27, with one ligand

going upto 42 heavy atoms.
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Figure 4.13: Ligands made by our algorithm sit tightly in the binding site

4.2.7 Modifying known molecules - A fragmentation approach

This algorithm also has the ability to modify a given lead molecule through small structural

changes. This is achieved by randomly erasing part of the ligand and regrowing till the same

size is reached. The user decides how much variation in the original molecule is allowed by

specifying a retention fraction (between 0 and 1). This fraction of heavy atoms are retained

in every molecule generated. For example, in a ligand with 20 heavy atoms, a retention

fraction of 0.5 would enforce all generated ligands to have a substructure of size at-least 10

that matches the original ligand. Figure 4.14 shows how similarity to the original molecule

is retained by this method by showing the Tanimoto similarity to the starting template.

We picked drug 30, which had the highest docking score of -10.1 kcal (structure shown in

figure 4.15a). The sections b-d of figure 4.15 show the most similar molecules after regrowing.

We can notice that in most case, it is able to preserve the core moieties of the molecule as part

of the generation. The regrowing process is useful to get predictions for good modifications

to an existing lead molecule. Also, it can be used to further fine-tune the DeNovo generation

results, by picking molecules with many preferred properties.
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Figure 4.14: Comparing the Tanimoto similarity to the original template as a function of the
retention fraction.
We find a steady increase in similarity as expected. This use of the program allows users to

tune the amount of deviation from the template.

Figure 4.15: Molecules are reconstructed by breaking the molecule and regrowing it.
The closeness to the original molecule can be tuned using the retention fraction.
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Chapter 5

Conclusion and Future Directions

We have developed an algorithm capable of de-novo drug design given only the protein struc-

ture and a target region. It uses forcefield parameters from the CHARMM27 [27] forcefield,

which have been extended to suit the specific requirements of a generation algorithm. There

is still some scope to extend the parameters further to explore more regions of chemical

space.

Given the vast regions of chemical space available to the system, it cannot consistently re-

produce known binders for a given protein target. However, due to many constraints not

captured in synthesizability alone, the currently available ligands are likely preferred over

stronger but potentially harmful/biologically unsatisfactory alternatives that the program

might be predicting.

The modular nature of the program encourages such tuning as well. Reinforcement with

such filters also pretrained can allow for more drug-like molecules in general, and this is a

potential extension of this program that would be reasonable to pursue.

Additionally, the generation algorithm does not consider the dynamics of the protein during

the generation. It also does not consider potential interactions of the ligand with water.

One way to approach this would be by estimating the solvation energy based on the ligand’s

atom type composition and accounting for it as part of the energy calculation.

Finally, the long-term goal is to generalize the algorithm to consider multiple protein confor-

mations during generation by integrating molecular dynamics into the generation algorithm.
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