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Abstract

This research aims to create a system that predicts agricultural

yields using an all-encompassing system that integrates Numerical

Weather Prediction (NWP) with machine learning. We want to

know if combining NWP and ML models improves crop production

forecasts over either NWP or ML models alone.

We collect historical crop yield data, weather and soil parameters

data. Using the meteorological parameters and yield data, we will

train an ML model to predict crop production and find out which

model gives the best prediction. Finally, we will combine the ML

and NWP models to improve forecast accuracy and reliability.

The system is assessed using multiple metrics. The results will

show if the technology can predict crop yields for different crops

and regions. The method may identify the most important mete-

orological and soil parameters affecting crop yields for agricultural

decision-making. Farmers, policymakers, and agricultural stake-

holders may benefit from accurate crop output forecasts using the

proposed method.

Ultimately, the goal is to contribute to NWP and ML model agri-

cultural production prediction research. Combining these two

methods can improve crop production estimates, helping farmers

make better decisions and improve food security.
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Chapter 1

Introduction

Agriculture has been a seminal discovery for progress of humanity. It has what
has led humanity to go from inconsistent animal hunting to consistent form of
food gathering which enabled human beings to settle into civilisation, the basis of
which forms the modern world as we know today.

It is of the utmost importance that the eight billion people who presently call
Earth, home can continue to do so for an indefinite period of time.

The agricultural practises that humanity have perfected over the course of his-
tory are the cornerstone upon which our modern civilisation is built. Because there
are currently seven billion people who call Earth their home, it is of the utmost
importance that they are able to do so for an indefinite amount of time. Affluence,
access to natural resources, respect for cultural traditions, and the application of
sound farming practices are all factors that have contributed to the development
of many new areas of research and technological advancements. It has had a signif-
icant impact on our culture as well as our way of life, and it is engrained in a wide
variety of activities, ranging from religious observances to communal celebrations.

The agricultural business stands to gain much from this initiative on crop yield
prediction utilizing machine learning algorithms and meteorological data. By pre-
cisely estimating crop yields, farmers can make better judgments about planting
and harvesting dates, use of resources such as water and fertilizer, and market
demand. This will raise efficiency and productivity, cut expenses, and improve
profitability for farmers. Furthermore, reliable crop yield forecasts can assist gov-
ernments and policymakers in determining food security and agricultural policy
decisions. Overall, the effective implementation of this project has the potential
to have a large positive influence on the agricultural sector, resulting in greater
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food production and supply, increased sustainability, and economic growth.

1.1 Evolution of Crop Yield Prediction Techniques

The process of forecasting crop yields is an essential part of agriculture because it
assists farmers in making decisions regarding when to plant, harvest, and sell their
crops. The ability to make accurate predictions of yields may be of assistance to
farmers in maximizing yields, reducing waste, and increasing earnings. The ability
to accurately forecast crop yields has evolved over the course of history, progressing
from relatively straightforward empirical methods to more intricate models that
make use of recent advancements in data science and machine learning. In this
article, we will investigate how predictions of crop production have evolved over
the course of time.

In the past, crop yield forecasting relied on empirical methods, which took into
account a variety of factors such as historical yield data, the state of the soil,
prevailing weather patterns, and the assessment of industry professionals. Farmers
would use straightforward models to determine yield based on factors such as the
type of soil, temperature, and amount of rainfall. These models were frequently
inaccurate because they were unable to take into account the complex relationships
that exist between the many factors that influence crop yield. As a direct result of
this, farmers frequently relied on methods that were inefficient, time-consuming,
and trial-and-error based in order to increase their crop yields.

The prediction of crop production began to make significant strides forward in
the 1970s after the introduction of computer modeling. Researchers created simu-
lation models that used mathematical algorithms to forecast crop yields based on
variables including weather, soil properties, and plant physiology. These models
were used to create crop yield predictions. These models, which were more accu-
rate than empirical techniques, allowed farmers to select their crops with greater
knowledge, which resulted in increased productivity. To successfully apply these
models, however, required a significant amount of knowledge and complexity on
the part of the user.

The estimation of crop yield has made significant strides forward since the 1990s,
coinciding with the advent of remote sensing technologies such as satellite photog-
raphy. Scientists were able to collect a substantial amount of data on crop growth,
soil moisture, and weather patterns with the help of remote sensing technology.
After that, this information was put to use in the process of developing more ac-
curate models for yield prediction. Researchers were also able to monitor crops in
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real time thanks to remote sensing, which enabled farmers to respond quickly to
changes in the weather as well as other factors that impact crop productivity.

Early in the 21st century, advances in machine learning and data science began
to have a positive impact on the accuracy of crop yield predictions. Machine
learning algorithms were used to analyze massive amounts of data in order to create
predictive models, which were then used to identify trends that human experts
would not have spotted. These models might take into account a wide range of
information, like weather patterns, soil properties, plant genetics, and data from
remote sensing, which would enable them to make more accurate projections of
agricultural yields. In addition, farmers were able to modify their projections using
machine learning algorithms to account for the specific aspects of their farming
practices and the varieties of crops they grew.

Agricultural yield prediction is currently undergoing significant change as a re-
sult of the introduction of novel technologies such as blockchain and the internet of
things (IoT). These technologies make it possible for farmers to collect and share
data on crop growth, weather patterns, and other variables in real time, which en-
ables the creation of yield prediction models that are more accurate. Additionally,
thanks to blockchain technology, farmers can now exchange data in a way that is
both secure and open. This fosters an atmosphere of confidence between farmers
and the various other participants in the agricultural supply chain.

Finally, yield prediction in agriculture has seen significant progress over the
course of time, transitioning from relatively straightforward empirical methods to
more intricate models that make use of recent advancements in data science and
machine learning. The advancement of agricultural output prediction has been
fueled by technological advancements such as remote sensing, machine learning,
and blockchain. Researchers and farmers can now anticipate yields with greater
precision and individualization than ever before thanks to the real-time collection
and analysis of massive amounts of information that is made possible by these
technologies. It is possible that in the future, as technology improves, we will
be able to anticipate further advancements in agricultural production prediction.
These advancements will help farmers maximize their yields and earnings.

1.2 Numerical Weather Prediction(NWP)

Numerical Weather Prediction, also known as NWP, is a technique that is utilised
in the realm of science to forecast forthcoming weather conditions by making use
of mathematical models that are carried out on computers. In order to accurately
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simulate the chemistry, physics, and motions that occur in the atmosphere, NWP
models employ a wide variety of intricate procedures. These models are based on
a set of initial conditions, which may take into consideration observations of the
current weather or data from other sources. These conditions could also be taken
into account by these models. These models are able to produce reliable forecasts
of weather patterns for periods of time ranging from a few days out to many weeks
out. These patterns are influenced by a variety of factors, including temperature,
wind speed, barometric pressure, and rainfall.

The data that are used in NWP models come from a wide variety of sources,
such as observations made on the ground, data from satellites, and data collected
by a wide variety of meteorological equipment. Some of these sources include ob-
servations made on the ground, data from satellites, and data collected by various
types of meteorological equipment. Because of this, the image that these models
paint regarding the current status of the atmosphere is one that is not just accurate
but also comprehensive. This is because of the fact that these models take into
account all of the relevant factors. After that, these data are incorporated into in-
tricate mathematical models that make use of physics, thermodynamics, and fluid
dynamics in order to replicate the behaviour of the environment over the course
of time. These models are developed in order to predict how the environment will
behave in the future. The creation of these models is accomplished through an
activity that is known as data mining.

The United States National Weather Service (NWS) has become such an impor-
tant part of the field of meteorology that it is now considered an essential tool. It
is presently used as a primary source of information for forecasting weather, emer-
gency management, aviation, agriculture, and other industries that are influenced
in some way by the weather.

1.3 Creating an End-to-End Crop Yield Predic-
tion Model

In recent years, satellite data have been widely available in a variety of geograph-
ical, temporal, and spectral resolutions. As a result, it has become feasible to
estimate agricultural production on a wide range of scales and in a wide range
of locations. Because of how easily accessible Earth observation (EO) data is,
agricultural mapping on a large scale has become more efficient. With EO data,
which offers a unique method for recording crop information across large areas
with rapid updates, it is possible to generate maps of agricultural productivity
and yield. These maps may then be shared with others. In spite of the need for
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a high spatial resolution in order to make accurate yield predictions, the use of
unmanned aerial vehicles (UAV) has been actively promoted for the purpose of
data collection. It is not possible to correctly quantify the yield over large regions
without the assistance of a significant crew, despite the fact that unmanned aerial
vehicle platforms have demonstrated improved image-capturing capabilities. In
addition, technological improvements have led to an increase in both the accuracy
and accessibility of yield forecasts made with the use of machine learning and sta-
tistical techniques. Historically, methods such as random forests, linear regression,
and ensemble analysis have been utilised in the process of estimating agricultural
production. Deep learning methods, on the other hand, are now in the driver’s seat
when it comes to estimates of agricultural production. Recent studies have utilised
multi-layer perceptrons to anticipate yield in wheat, maize, and strawberry crops.
This was accomplished by combining data on observable phenotypic traits with
data on environmental traits. Also, there is a developing corpus of research that
integrates yield prediction from UAV photos with convolutional neural networks.
This research is still in its early stages. Recent research has revealed that the ac-
curacy of utilising deep neural networks to estimate agricultural yields has altered,
and this is true independent of the data collection technique that was utilised.

The implementation of numerical weather prediction (NWP), remote sensing
datasets such as satellites and radars, and powerful machine learning algorithms
have resulted in the creation of the ideal combination for sustainable agriculture.
This is the case because NWP allows for more accurate forecasting of weather
conditions. During the course of this study, a significant number of direct and
indirect agricultural datasets were analysed, the level of predictability that each of
these datasets possessed was assessed, and NWP and AI were combined in order
to generate agricultural forecasts. Artificial intelligence (AI) algorithms and data
from the NWP will be utilised as part of the process of developing an end-to-
end crop yield prediction model. These will be used to make predictions for a
wide range of crop production factors, such as parameters relating to the weather,
parameters relating to the soil, and other factors.

So, in short, the following steps are a rough outline of this work.

1. Collecting data: We first gather all available information, including past
weather records, crop yields, and details on soil types, farming methods, and
land usage. The ML model will be trained on this data, and its predictions
will be checked against this data.

2. Pre-Processing data: This step involves cleaning, aggregating, and trans-
lating the data into an analysis-ready format. Features like scaling and
normalization may be engineered in as part of this process.
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3. Feature selection: Feature selection is choosing the most important mete-
orological factors (such as temperature, precipitation, humidity, and wind)
that will have an impact on harvest success. Both statistical techniques and
ML algorithms may be used for feature selection.

4. Modeling: A machine learning model to forecast crop production is created,
using the information that we have collected. Any ML method that is deemed
enough for the job at hand may serve as the basis for the ML model.

5. Integration: Now, we combine the ML and NWP models together. High-
resolution weather predictions from the NWP model may be fed into the ML
model. The ML model may then use this data to provide more precise yield
projections.

6. Cross Validation: Cross-validation or hold-out validation should be used
to assess the efficacy of the integrated model. This will aid in figuring out
how well the model predicts reality.

7. Refinement: Finally, based on the evaluation’s findings, we iteratively
tweak the model’s parameters, feature selection, and data preparation meth-
ods to achieve optimal performance.

In conclusion, observe and coompare prediction results generated by different
Machine Learning models. The final goal is to enhance agricultural production
prediction by combining NWP and ML models and capitalizing on their respec-
tive capabilities. The complicated correlations between weather factors and crop
production may be learned by ML models, and NWP models can produce high-
resolution weather predictions.
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Chapter 2

An Overview of the Existing
Literature

2.1 Winter Wheat Yield Prediction using CNN
From Environmental and Phenological Data

In recent years, there has been a growing interest in making predictions about
agricultural yields by using models that utilize machine learning. It is critical
to have an accurate prediction of yield in order to maximize the effectiveness
of crop management practices, enhance food security, and reduce the negative
effects of climate change. In this paper[1], the authors have used convolutional
neural networks (CNNs) to predict winter wheat yield from environmental and
phenological data.

The previous research that has been done on the application of machine learning
models to the forecasting of crop yield is first discussed in this paper. The authors
highlight the limitations of traditional statistical models, which are unable to cap-
ture the complex non-linear interactions between the various environmental and
agronomic factors that affect crop growth and yield. These models assume linear
relationships between the predictor variables and the yield, and they highlight the
fact that these linear relationships are assumed to exist. Previous studies have
primarily concentrated on predicting crop yield based on remotely sensed data,
such as satellite images, while relatively little attention has been paid to using
on-site environmental and phenological data. For example, the authors note that
previous research has primarily focused on predicting crop yield based on remotely
sensed data.
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The authors suggest the use of convolutional neural networks (CNNs), a type of
deep learning model that is particularly well-suited for the analysis of spatial data
such as images, in order to circumvent these limitations. The authors contend
that CNNs are capable of learning complex characteristics from environmental
and phenological data that are predictive of crop growth and yield. Previous re-
search[2] has demonstrated that CNNs can perform better than traditional models
of machine learning when it comes to tasks such as object recognition and image
classification.

The dataset that was utilized in the research, which was comprised of three
years’ worth (2012-2014) of on-site environmental and phenological data collected
from winter wheat fields located in Germany. The information gathered consists of
a variety of variables, including temperature, precipitation, plant height, and soil
moisture, in addition to details regarding the development stage of the crop. The
dataset is not very large, consisting of only 63 samples, which makes it difficult to
train and evaluate the CNN model.

The structure of the CNN model that was utilized in the research. Following the
three convolutional layers are the three fully connected layers. The total number of
layers in the model is nine. The model is not particularly complicated, containing
a total of only 161,394 parameters; as a result, it is less likely to suffer from
the problem of overfitting to the limited dataset. The training and evaluation
procedures are also described. These procedures include dividing the dataset into
training and testing sets and utilizing mean absolute error (MAE) and coefficient
of determination (R squared) as performance metrics.

The CNN model achieved an MAE of 0.24 and an R-squared of 0.60 on the test-
ing set. This indicates that the model is able to accurately predict winter wheat
yield based on environmental and phenological data. In addition to this, a sensi-
tivity analysis is carried out in order to determine which variables are most crucial
for the yield prediction. According to the findings of the analysis, temperature,
precipitation, and plant height are the three most important variables, which is in
line with the findings of previous studies on the prediction of winter wheat yield.

CNNs have the potential to be a useful tool for predicting the yield of winter
wheat based on phenological and environmental data. The limited size of the
dataset presents a challenge for training and evaluating the model, and they sug-
gest that future research should concentrate on collecting larger datasets in order
to further improve the accuracy of the model. Using CNNs for crop yield pre-
diction opens up new opportunities for integrating data from different sources,
such as remote sensing and on-site data, in order to improve the accuracy of the
predictions. This is something that can be done to improve the accuracy of the
predictions.
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The research emphasizes the significance of gathering data of a high quality
and employing sophisticated machine learning algorithms in order to draw conclu-
sions from the data. According to the findings of the study, convolutional neural
networks (CNNs) have the potential to outperform conventional machine learning
models for the task of predicting crop yields, in particular when analyzing spatial
data such as images. The small size of the dataset, which was used in the study,
is a limitation, as it may not generalize well to other geographical locations or
types of crops. To evaluate the generalizability and scalability of the proposed
approach, therefore, the focus of future research should be on recreating the study
using datasets that are both larger and more diverse.

2.2 Predicting Corn and Soybean Yields Simul-
taneously using Deep Transfer Learning

A novel approach for predicting the yield of both corn and soybeans simultane-
ously using remote sensing data and deep transfer learning is put forth in the
paper[3] Accurate yield prediction may assist farmers and agricultural managers
in optimizing crop output, increasing resource efficiency, and increasing revenues,
making this a significant issue in the area of agriculture.

The first section of the report is a review of earlier studies that used remote
sensing data to estimate crop yields. Other techniques, including support vector
regression, neural networks, and linear regression, have been employed in earlier
research to forecast agricultural yields using remote sensing data. Yet, since they
do not adequately account for the intricate connections between environmental
variables and crop development, these techniques often suffer from low accuracy
and generalizability.

A novel approach is suggested based on deep transfer learning that starts with
a pre-trained convolutional neural network (CNN) and trains a fresh CNN for
yield prediction in order to overcome these drawbacks. This method is superior
to typical machine learning techniques in a number of ways, including improved
performance on small datasets, quicker training periods, and the capacity to use
previously trained networks’ knowledge.

The data utilized in the research, which included yield data gathered from corn
and soybean fields in Illinois, USA, and remote sensing data[4] (in the form of
NDVI, or Normalized Difference Vegetation Index), are then described. The infor-
mation was gathered from 2010 to 2017 throughout a number of growth seasons.
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The authors describe how they trained their CNN model for the growing simul-
taneous prediction of maize and soybean yields using a transfer learning method-
ology. In particular, they started their yield prediction CNN using a pre-trained
CNN that was first trained on the ImageNet dataset for image classification. They
then adjusted the model using yield information from the corn and soybean fields
as well as remote sensing data.

According to the scientists, their model was successful in correctly predicting
maize and soybean yields, with correlation values of 0.84 and 0.83, respectively.
Moreover, they compare their model to other machine learning methods, such
as support vector regression and random forests, and discover that in terms of
prediction accuracy, their deep transfer learning method beats these models.

The authors wrap off by going through some possible uses of their approach for
farmers and agricultural management. They contend that the capacity to forecast
agricultural yields using data from remote sensing may assist guide choices about
irrigation, fertilization, and pest control, thereby enhancing farmers’ productivity
and profitability.

2.3 Revisiting Deep Learning Models for Tabu-
lar Data

In-depth analysis of various deep learning models for tabular data analysis is pro-
vided in Gorishniy at el.[5] a comprehensive review paper. A critical evaluation of
several deep learning techniques, including feedforward neural networks, convolu-
tional neural networks, recurrent neural networks, and attention-based models, is
provided. The pros and cons of each model are discussed in detail and information
is given about how they work and how they are built. Additionally, the problems
that arise when training these models on tabular data, such as data preprocessing,
feature engineering, and tuning hyperparameters, are talked about.

A thorough literature review of recent research on deep learning models for tab-
ular data analysis is provided in the paper. A number of promising uses for these
models, such as credit risk prediction, medical diagnosis, and image recognition,
are discussed. Furthermore, the performance metrics like accuracy, precision, re-
call, and F1 score that are used to judge how accurate and useful these models
are, are talked about.

One of the strongest points of this paper is the thorough discussion of the diffi-
culties involved in training deep learning models on tabular data. The significance
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of data pre-processing and feature engineering is stressed by the authors in order
to get the best performance out of these models. Additionally, the difficulties of
tuning hyperparameters are discussed and advice is given on how to choose the
right hyperparameters for different deep learning models.

Overall, this is an informative paper that can help researchers and practition-
ers who want to use deep learning to analyze tabular data. The paper is a good
resource for understanding the current state of the art in this field because of
its thorough literature review and critical analysis of different deep learning tech-
niques.
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Chapter 3

Data Preparation

In this chapter, we discuss the data acquisition process and describe the datasets
we shall be working on.

3.1 Data Acquisition

In this project, we have the data of yield value, weather, and soil characteristics
from 1999 to 2019 across all 271 counties in Germany. The parameter sets are as
follows:

3.1.1 Weather Data[6]

For 21 years, the Deutscher Wetterdienst (DWD) supplied daily information on
wind speed, radiation, precipitation, and temperature (minimum and maximum)
(spanning 1999 to 2019). The approach by Zhao et al[2] was used to interpolate
this daily data to a 1 km grid scale, and weekly values at the level of NUTS3
(Nomenclature of Territorial Units for Statistics) were then aggregated for use as
input in ML models. For the purpose of aggregating to the NUTS3 level, the
agricultural land-use ratio for each grid cell was utilized to produce area-weighted
average values. The calculations were made using 250 m26-resolution land-use data
from CORINE Land Cover 2006[7]. We used meteorological parameters such as
wind speed, maximum and lowest temperatures, relative humidity, precipitation,
and solar radiation in our analysis.
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We averaged and aggregated weekly feature values to reduce the sample size of
the daily weather data. It is thought that the level of precision and granularity
included in everyday data would make it difficult to make discoveries. By focus-
ing on weekly data, we were able to considerably decrease the number of model
parameters (from 365 to 52). Daily meteorological data is often preprocessed and
downsampled to a weekly level for use in yield prediction studies.

• Precipitation-n: This number represents the total quantity of rain that
fell during the n-th week of the year. For instance, Precipitation-4 denotes
the total amount of precipitation during the fourth week of the year.

Sufficient precipitation is vital for plant growth since it provides the water
required for crop growth and development. Inadequate precipitation can
cause water stress, limiting plant development, yield, and quality.

• Temp-min-n: The n-th week’s lowest temperature for the given year is
represented by this value. The term Temp-min-4 refers to the year’s fourth
week’s lowest temperature.

• Temp-max-n: This is the highest temperature that was recorded during
the n-th week of the given year. The term Temp-max-4 refers to the year’s
fourth-week maximum temperature.

Temperature influences crop development by influencing the rate of pho-
tosynthesis, respiration, and other physiological activities. While excessive
temperature circumstances can cause heat or cold stress, decreasing crop de-
velopment and yield, optimal temperature conditions stimulate plant growth
and yield.

• Radiation-n: This stands for the radiation during the year’s n-th week.
Radiation-4 signifies radiation that occurred during the fourth week of the
year, for instance.

Solar radiation supplies the energy required for photosynthesis, making it
critical for crop growth and development. Inadequate or excessive radiation
levels can impact plant development, yield, and quality.

• RelHumCalc-n: Use this tool to determine the relative humidity for the
nth week of the given year. For instance, RelHumCalc-4 depicts the relative
humidity during the fourth week of the year.

The rate of transpiration, or the process by which plants lose water through
their leaves, is affected by relative humidity. High relative humidity can de-
crease transpiration rates, causing waterlogging and other problems, whereas
low relative humidity can increase transpiration rates, causing water stress.
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• Windspeed-n: This is the typical wind speed for the n-th week of the
specified year. As an example, windspeed-4 represents the wind speed during
the fourth week of the year.

Wind has the potential to influence crop development and yield through influ-
encing transpiration rates, modifying the microclimate, and causing physical
damage to the plants. High winds can cause water stress, whilst low wind
speeds can cause air stagnation around the plants, limiting their growth.

3.1.2 Soil Data[8]

Based on the main kinds of soil, soil data were generated and compiled at the
DWD grid level (soil categories corresponding to the agricultural land-use cate-
gories as per CORINE Land Cover 2006)[7]. The source of the soil data is a soil
reconnaissance map of Germany at a scale of 1,000,000 that distinguishes between
BÜK1000N (BGR) land usage[9] The parameters of the soil are:

• Wilting Point(LL): The wilting point is the lower limit of accessible soil
water, at which point plants can no longer draw water from the soil. When a
plant doesn’t have access to water, it reaches the point of permanent wilting.
The volumetric (%) crop available water at the permanent wilting Point is
represented by Predictor LL in the dataset.

Water stress, diminished plant development, and yield can result from soil
water that is at or below the wilting point.

• Field Capacity(DUL): The amount of soil moisture or water content that
remains in the soil after excess water has been drained and the rate of down-
ward movement has been greatly slowed down is known as field capacity.
The dataset’s predictor values represent the volumetric (%) crop available
water at the Field Capacity.

Soil water content at field capacity offers necessary moisture to plants with-
out causing waterlogging or soil saturation.

• Saturation Point(SAT): The saturation point (SAT) represents the soil’s
maximum water-holding capacity, which occurs when all pore spaces in the
soil are filled with water. Therefore, soil water is no longer available to plants
at saturation, and excess water can cause waterlogging, restricted oxygen
availability, and other problems. The dataset’s predictor values represent
the volumetric (%) crop available water at the saturation point.
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• Bulk Density(BD): Soil compaction is measured by bulk density (BD). It
is calculated by dividing the soil’s dry weight by volume. The dataset’s bulk
density estimates are available up to 1.3 meters of soil depth.

High bulk density can restrict root growth and water infiltration, resulting
in water stress and decreased plant growth and yield.

To summarize, these soil factors are important in determining the amount of
available soil water and nutrients for plant growth, as well as soil physical features
that affect plant root growth and nutrient uptake. Knowing and regulating these
characteristics can assist optimize soil water and nutrient availability, resulting in
increased crop growth and yield.

3.1.3 Crop Yield Data[10]

In Germany, winter wheat crop production data for 271 counties at the subna-
tional NUTS328 level were examined from 1999 to 2019. For the research, NUTS3
agricultural yield statistics were extracted from the regional database of Germany.

The crops, whose yield values are available are: Winter Wheat, Winter Barley,
Spring Barley, Oats, Sugerbeet, Winter Rape, Silaze Maize.

3.2 Data Analysis

We combined all of the yield, weather, and soil parameter data into a single data
file, which will serve as our primary data file for the activities that will come next.

The integration of weekly meteorological, and soil variables over 271 counties
in Germany from 1999 to 2019 resulted in a total of 5692 cases and 274 column
characteristics.
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Variable count mean std min 25% 50% 75% max
Precipitation
(mm)

5691 14.3 3.07 6.79 12.06 14.06 16.21 29.33

TempMin
(°C)

5691 4.44 1.1 1.46 3.62 4.41 5.18 8.29

TempMax
(°C)

5691 12.99 1.18 9.45 12.13 12.88 13.73 17.12

Radiation
(KJm-2)

5691 10630.14 684.02 9082.78 10118.25 10548.04 11096.27 13140.65

RelHum
(%)

5691 0.73 0.02 0.68 0.71 0.73 0.74 0.79

Windspeed
(ms-1)

5691 2.56 0.1 2.35 2.51 2.58 2.61 2.72

LL
(cm3cm-3)

5691 0.14 0.02 0.1 0.14 0.15 0.15 0.28

DUL
(cm3cm-3)

5691 0.27 0.03 0.16 0.26 0.28 0.28 0.42

SAT
(cm3cm-3)

5691 0.43 0.02 0.38 0.42 0.43 0.43 0.53

BD
(g.cm-3)

5691 2.18 0.64 0.49 1.73 2.16 2.5 4.39

Table 3.1: Summary statistics of the independent variables in the study

Crop
Name

Wwheat Wbarley Sbarley oats sugarbeet Wrape Smaize

Total Number
of locations

271 271 271 271 271 271 271

Year
Range

1999-2019 1999-2019 1999-2019 1999-2019 1999-2019 1999-2019 1999-2019

Count 5509 5371 4970 4734 4184 5210 5163
Mean
Yield

5.55 4.2 4.01 15.841 3.09 31.05 32.46

Standard
Deviation
of Yield

1.001 0.79 0.792 2.955 0.688 5.55 2.728

Minimum
Yield

0.53 0.91 0.66 3.78 0.92 2.34 28.19

Maximum
Yield

10.04 7.84 7.39 26.50 14.79 58.10 38.91

Table 3.2: Summary statistics of yield values of the crops. The unit of yield is tons.ha-1

The above table describes the various satatistics of the yield parameters and
yield values.

Next, the distributions plot are presented which consists of a histogram of the
distribution overlaid with a kernel density estimate (KDE) curve.
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3.2.1 Distribution of Weather Parameters

Figure 3.1: Distribution of annual Precipitation(mm) and Minimum Temperature(°C)

Figure 3.2: Distribution of Minimum Temperature(°C) and Radiation(KJ.mol-1)
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Figure 3.3: Distribution of relative humidity(%) and Windspeed(ms-1)

• Precipitation: The way the rainfall values are spread out shows that most
observations are between 12 and 16 mm, which could mean that this is the
best range for crop growth. If the amount of rain falls below this range, crops
may experience water stress, which will lower yield. On the other hand, if
precipitation levels are too high, crops may be damaged by waterlogging or
flooding, which can also lower yield.

• Minimum Temperature: Temperature is an important factor for crop
growth because it affects how quickly plants grow, make food, and take in
nutrients. Most of the observations for the lowest temperatures fall between
4.41 and 5.18 °C, which could mean that this is the best temperature range
for crop growth. If the minimum temperatures fall below this range, crops
could be damaged by frost, which would result in a lower yield. On the other
hand, if the minimum temperatures are too high, crops may experience heat
stress, which can also lower yield.

• maximum Temperature: Most of the observations for the highest tem-
peratures fall between 12.88 and 13.73°C, which could mean that this is the
best temperature range for crop growth. If the highest temperatures fall
below this range, crops may grow more slowly, have less photosynthesis, and
take in fewer nutrients, which can result in a lower yield. On the other hand,
if the maximum temperatures are too high, crops may experience heat stress,
which can also lower yield.

• Radiation: With a mean of 10630.14KJm−2, the radiation level is quite
high. This suggests that there is enough solar energy for crop photosynthesis
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and growth. However, it’s important to remember that too much radiation
can also cause heat stress and damage to crops.

• Relative Humidity: The relative humidity (expressed by RelHum) in this
dataset has a mean of 0.73, indicating that the air is typically moist. While
some humidity is required for crop growth, excessive humidity increases the
danger of fungal diseases and pest infestations. It is crucial to note, however,
that the effect of relative humidity on agricultural yield varies depending on
the crop and stage of growth. Some crops, for example, may require higher
humidity levels during specific stages of development, whilst others may be
more susceptible to disease in high humidity circumstances.

• Windspeed: With a mean of 2.56ms−1, the wind speed is relatively low.
While some wind is necessary for crop pollination and disease prevention,
too much wind can hurt crops physically. So, the relatively low wind speed
seen in this dataset may help crops grow.

3.2.2 Distribution of Soil Parameters

Figure 3.4: Distribution of Wilting Point(cm3cm-3) and Field Capacity(cm3cm-3)
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Figure 3.5: Distribution of Saturation Point(cm3cm-3) and Bulk Density(g3cm-3)

Observing the plots, we can comment that:

• LL: The distribution of LL values in this dataset has a mean of 0.14 and a
relatively narrow range from 0.1 to 0.28. This indicates that the soils tend to
have a relatively low water-holding capacity at the permanent wilting point.
Soils with low LL values can be more prone to drought stress and may require
more frequent irrigation or rainfall to support crop growth. This can impact
crop yield by reducing the amount of water available to plants and ultimately
limiting their growth and productivity.

• DUL: The distribution of DUL values in this dataset has a mean of 0.27
and a range from 0.16 to 0.42. Soils with higher DUL values have a greater
water-holding capacity at field capacity, which can be beneficial for crops.
However, if the soil has poor drainage, excess water can accumulate and
limit the amount of oxygen available to plant roots, which can also impact
crop yield. Additionally, soils with high DUL values may be more prone to
leaching of nutrients and can require more frequent fertilizer applications to
maintain optimal soil fertility.

• SAT: The distribution of SAT values in this dataset has a mean of 0.43
and a relatively narrow range from 0.38 to 0.53. Soils with high SAT values
have a high water-holding capacity at saturation, which can be beneficial for
crops during periods of drought. However, excessive saturation can also lead
to waterlogging and reduced oxygen availability to plant roots, which can
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negatively impact crop growth and yield. Additionally, soils with high SAT
values can be more prone to the leaching of nutrients and may require more
frequent fertilizer applications to maintain optimal soil fertility.

• BD: The distribution of BD values in this dataset has a mean of 2.18 and
a relatively wide range from 0.49 to 4.39. Soils with high BD values tend to
be more compacted, which can limit root growth and reduce the availability
of water and nutrients to plants. This can negatively impact crop yield
by reducing the overall productivity of the plants. Additionally, soils with
high BD values can be more prone to erosion and can require additional soil
management practices to maintain soil health and fertility.

3.2.3 Distribution of Crop Yield Values

1

Figure 3.6: Distribution of Yield Values of Winter Barley and Spring Barley

1All Yield units are in tons.ha-1
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Figure 3.7: Distribution of Yield Values of Winter Wheat and Oats

Figure 3.8: Distribution of Yield Values of Sugarbeet and Silaze Maize
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Figure 3.9: Distribution of Yield Values of Winter Rape

After looking at the distributions of the yield values, we can roughly interpret
that:

• Winter Wheat: The yield distribution for Winter Wheat appears to be
relatively normal with a narrow spread, which suggests that most of the
yields are concentrated around the mean. This could indicate that wheat
yields are relatively consistent across the locations and years in which they
were observed.

• Spring Barley: The yield distribution for winter barley is also relatively
normal, with a slightly wider spread than that of wheat. This suggests that
the yields for winter barley are slightly more variable than those of wheat.

• Spring Barley: The yield distribution for spring barley is similar to that of
winter barley, with a slightly wider spread than that of wheat. This suggests
that the yields for spring barley are also slightly more variable than those of
wheat.

• Oats: The yield distribution for oats is skewed to the right, which suggests
that there are a few locations or years in which the yields were much higher
than the mean. This could be due to favorable weather or soil conditions, or
improved agricultural practices.
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• Sugarbeet: The yield distribution for sugarbeet is also skewed to the right,
which suggests that there are a few locations or years in which the yields were
much higher than the mean. This could be due to factors such as improved
pest management practices or more favorable weather conditions.

• Winter Rape: The yield distribution for rape is also skewed to the right,
which suggests that there are a few locations or years in which the yields
were much higher than the mean. This could be due to factors such as more
favorable weather conditions, improved pest management practices, or the
use of higher-yielding varieties.

• Silaze Maize: The yield distribution for Silaze Maize is relatively normal,
with a narrow spread similar to that of wheat. This suggests that maize
yields are relatively consistent across the locations and years in which they
were observed.
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3.2.4 Correlation Between The Independent Parameters
and The Yield Values

Figure 3.10: Correlation between different parameters and Winter Wheat yield values
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Figure 3.11: Correlation between different parameters and Winter Barley yield values
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Figure 3.12: Correlation between different parameters and Spring Barley yield values
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Figure 3.13: Correlation between different parameters and Oats yield values
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Figure 3.14: Correlation between different parameters and Sugarbeet yield values
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Figure 3.15: Correlation between different parameters and Winter Rape yield values
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Figure 3.16: Correlation between different parameters and Silaze Maize yield values

3.3 Data Pre-processing

At first, we remove the categorial columns such as the name of the Kreises, etc.
Then we also remove the columns which are not needed for our analysis. These
unrequired columns are ’Years’, ’code kreise’ etc. (This was already done for the
heatmaps shown above, but it is part of data pre-processing so it’s being mentioned
here).

Then we divide the dataset into seven sub-datasets; one for each crop. So, each
of the sub-datasets consists of the yield values of that particular crop and all the
parameters of interest.

The next step is to remove the unavailable empty cells of the dataframe columns2

because if there are missing values, the correlation matrix may be incomplete

2Pandas dropna function of python has been used
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or biased, and may not provide an accurate representation of the relationships
between variables.

For training the Machine Learning models, We have split the dataset into a
training-testing ratio of 80:20, which means that 80% of the data is used for train-
ing the model and 20% of the data is used for testing the model.
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Chapter 4

Methodology

NWP models provide weather predictions by simulating the behavior of the atmo-
sphere using physics-based models. These models provide massive amounts of data
that may be utilized to forecast crop production. Unfortunately, this data may be
noisy and difficult to deal with, making precise crop output estimates problematic.

Machine learning may be used to preprocess and evaluate NWP data as well as
to create models that estimate crop production based on meteorological data. To
discover the complicated correlations between weather patterns and agricultural
yields, machine learning techniques such as decision trees, random forests, and
neural networks may be trained on historical crop yield data and matching NWP
data.

A crop yield prediction model that takes into consideration the intricate rela-
tionships between weather patterns and crop development may be constructed by
integrating NWP with machine learning.
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4.1 Model Overview

In this section, we provide an overview of the machine learning models that have
been used.

4.1.1 Linear Regression

Linear regression is a well-liked and extensively used statistical technique for sim-
ulating the connection between a dependent variable (often represented by y) and
one or more independent variables (usually denoted as x ). Finding the straight
line (or hyperplane, in the case of several independent variables) that best reflects
the connection between the variables is the aim of linear regression.

The Linear Regression model can be used to predict crop yield based on the
given weather and soil parameters in the context of your training dataset, where
x is the weather and soil parameters and y is the crop yield value.

The following is the general equation for a Linear Regression model with one
predictor variable:

y = β0 + β1x (4.1)

where β0 and β1 are the intercept and slope coefficients, respectively. These
coefficients are estimated using the training data to fit a line that best describes
the relationship between the predictor variable (x ) and the response variable (y).

The goal of Linear Regression is to reduce the sum of squared errors between
the predicted and actual values of y. This is accomplished by minimizing the cost
function:

J(β0, β1) =
1

2m

m∑
i=1

(hβ(x
(i))− y(i))2 (4.2)

where hβ(x) is the predicted value of y given x and the estimated coefficients β0

and β1, and m is the number of training examples.

Linear regression makes the assumption that the relationship between the de-
pendent variable and the independent variable(s) is linear. Linear regression may
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not be the optimal model for the data if this assumption is not true. Outliers
and multicollinearity may also be sensitive to linear regression (when two or more
independent variables are highly correlated).

For modeling the connection between variables and producing predictions, linear
regression is a simple yet effective technique. Finance, economics, social sciences,
and engineering are just a few of the numerous domains where it is commonly
employed.

4.1.2 Decission Tree Regressor

The Decision Tree Regressor model of scikit learn works by recursively partitioning
the input space into regions that are associated with different output labels. The
tree model makes a binary decision at each internal node by comparing the value
of a feature to a threshold. The leaves of the tree correspond to the output labels.

The training algorithm for the Decision Tree Regressor model can be summarized
as follows:

1. Finding the best feature j and best threshold tj to splitting the training data
into two subsets, Sleft and Sright, by minimizing the sum of squared errors
(SSE) of the target values in each subset:

SSEsplit =
∑

i∈Sleft

(yi − ȳleft)
2 +

∑
i ∈ Sright(yi − ȳright)

2, (4.3)

where yi is the target value of the i-th sample, and ȳleft and ȳright are the
mean target values in Sleft and Sright, respectively.

2. Recursively applying step 1 to the subsets Sleft and Sright until a stopping
criterion is met, such as reaching the maximum depth of the tree or having
a minimum number of samples in a leaf node.

3. The tree can be used to predict the target value of a new sample by traversing
the tree from the root node to a leaf node based on the feature values of the
sample. The predicted target value for the sample is the mean target value
of the training samples in the corresponding leaf node.

The Decision Tree Regressor model is a powerful and flexible algorithm that
can capture complex nonlinear relationships between the input features and the
target values. However, it can be prone to overfitting if the tree is too deep or the
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training data has noise or outliers. Regularization techniques, such as setting a
maximum depth or minimum number of samples in a leaf node, can help prevent
overfitting.

4.1.3 Random Forest Regression

The Random Forest Regressor is an ensemble learning method that constructs a
forest of decision trees and combines their predictions in order to produce more
accurate predictions. The algorithm’s major stages are as follows:

1. Random Sampling: Random Sampling: At each split in the tree, a random
subset of features is selected. This is known as random subspace method or
feature bagging. This can be represented as:

Let m be the total number of features and m′ be the number of features to
be used for a particular split. Then, the probability of selecting a particular
feature i for a split can be given by:

P (i) =
1

m′ (4.4)

2. Bootstrap Aggregating (Bagging): The random forest model is trained
on multiple bootstrap samples from the training set. This is known as bag-
ging. Each sample has the same size as the original training set but with
replacement. The resulting bootstrap samples are used to train individual
decision trees.

3. Decision Trees: The individual decision trees in the random forest are
grown using the CART algorithm. Each tree is grown as follows:

(a) Splotting: he feature with the best split is chosen from a random subset
of features.

(b) Gini Index: The Gini index is used to determine the best split. The
Gini index is a measure of impurity and is calculated as follows:

Gini(D) =
K∑
k=1

pk(1− pk) (4.5)

where D is the dataset, K is the number of classes, and pk is the pro-
portion of samples belonging to class k in dataset D.
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(c) Recursive Partitioning: The decision tree is recursively partitioned into
smaller subsets using the selected feature and threshold value until the
leaf node is reached.

4. Ensemble Learning: The final prediction is a weighted average of the
predictions of all decision trees in the random forest. The weights are pro-
portional to the accuracy of each decision tree. This can be represented
as:

ŷ =
1

T

T∑
t=1

ft(x) (4.6)

where ŷ is the predicted output, T is the total number of trees in the forest,
and ft(x) is the predicted output of the tth decision tree.

Overall, the Random Forest Regressor technique is a strong and adaptable ma-
chine learning model that is frequently utilized for regression issues across a broad
range of fields. It is a popular option for many applications because to its capacity
to handle complicated relationships and nonlinearities in the data, as well as its
resilience to noisy and missing data.

4.1.4 Gradient Boosting Regressor

The gradient boosting algorithm is a machine learning technique that combines
multiple weak models into a single strong model. It works by iteratively adding
weak models to the ensemble, where each model is fit to the negative gradient of
the loss function with respect to the ensemble’s predictions. The algorithm can be
described with the following equations:

Let y be the true output, f0 be the initial model, ft be the t-th model in the
ensemble, and rt be the negative gradient of the loss function with respect to the
ensemble’s predictions.

y = f0(x) +
T∑
t=1

ft(x) (4.7)

At each iteration, the algorithm fits a weak model ht to the negative gradient
rt of the loss function with respect to the ensemble’s predictions:
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ht = argminh

n∑
i=1

L(yi, ft−1(xi) + h(xi)) (4.8)

where L is the loss function, and n is the number of samples in the dataset.

The weak model ht is then added to the ensemble by computing its weight γt
using a line search:

γt = argminγ

n∑
i=1

L(yi, ft−1(xi) + γht(xi)) (4.9)

The final model is the sum of all weak models weighted by their respective
coefficients:

fT (x) =
T∑
t=1

γtht(x) (4.10)

where T is the total number of weak models.

The algorithm can be further modified to add regularization terms to prevent
overfittings, such as L1 and L2 regularization:

L1 =
n∑

i=1

L(yi, ft−1(xi) + h(xi)) + λ|γ| (4.11)

L2 =
n∑

i=1

L(yi, ft−1(xi) + h(xi)) +
λ

2
γ2 (4.12)

where λ is the regularization parameter, and |γ| and γ2 are the L1 and L2 norms
of the weight γ, respectively.

By gradually adding weak learners that enhance the predictions, the gradient
boosting algorithm iteratively attempts to reduce the loss function. Each weak
learner attempts to forecast the residuals of the previous iteration, and the step size
(learning rate) determines how much the predictions are updated at each iteration.
The final prediction is a weighted average of all weak learners’ predictions, with
the weights corresponding to the step sizes (learning rates) of each weak learner.
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Overall, the Gradient Boosting Regressor technique is a potent and adaptable
machine learning model that is often employed to address regression issues. It is a
well-liked option for several applications due to its capacity to manage complicated
relationships and nonlinearities in the data as well as its tolerance to noisy and
missing data.

4.1.5 Extreme Gradient Boosting(XGBoost)

XGBoost is an abbreviation that stands for ”extreme gradient boosting,” which
is a faster and more performant variant of gradient boosted decision trees. Its
origins may be traced back to a research conducted in 201640 by Tianqi Chen.
The XGBoost method is a decision tree ensemble; it is constructed sequentially
from a number of decision trees, with each tree attempting to enhance the perfor-
mance of the tree before it. With XGBoost, the process of training each tree is
parallelized, which significantly enhances the rate at which the training is finished.
The XGBoost method has found broad use in agricultural output forecasting. The
algorithm can be described with the following equations:

1. Initialization: Let xi and yi be the i
th input feature vector and target value,

respectively. Let f0 be the initial prediction that is set to the mean value of
the target values. The objective function of XGBoost can be defined as:

Obj(ft) =
n∑

i=1

l(yi, ft−1(xi) + ht(xi)) + Ω(ht) (4.13)

where ft is the predicted output at iteration t, l(yi, ft−1(xi) + ht(xi)) is the
loss function that measures the difference between the predicted output and
the actual target value, and Ω(ht) is the regularization term that penalizes
complex models.

2. Gradient Descent: The gradient of the objective function with respect to
the predicted output ft is calculated as:

gi,t =
∂l(yi, ft−1(xi))

∂ft−1(xi)
(4.14)

The gradient of the objective function with respect to the base learner func-
tion ht is calculated as:

hi,t =
∂2l(yi, ft−1(xi))

∂ft−1(xi)2
(4.15)
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3. Tree Boosting: XGBoost uses decision trees as base learners. Each decision
tree is grown using the gradient information as follows:

(a) Split Finding: The decision tree is recursively partitioned into smaller
subsets using the best split that minimizes the loss function.

(b) Weighted Quantile Sketch: To find the best split efficiently, XGBoost
uses a weighted quantile sketch algorithm that approximates the distri-
bution of feature values.

(c) Regularization: XGBoost applies L1 and L2 regularization on the weights
of the decision tree to prevent overfitting.

4. Ensemble Learning: The final prediction is the weighted sum of the pre-
dictions of all decision trees in the XGBoost model. The weights are pro-
portional to the accuracy of each decision tree. This can be represented
as:

ŷ =
T∑
t=1

αtft(x) (4.16)

where ŷ is the predicted output, T is the total number of decision trees in
the XGBoost model, αt is the weight of the t

th decision tree, and ft(x) is the
predicted output of the tth decision tree.

Overall, XGBoost is a powerful algorithm that can be used to create highly
accurate models for predicting crop yields. By updating the predictions using the
residuals and fitting new models to the residuals, XGBoost is able to create a highly
accurate model that can be used by farmers and agricultural companies to make
decisions about planting and harvesting crops. The feature importance metric can
also be used to identify which weather variables have the greatest impact on crop
yield, providing valuable insights into the relationship between weather and crop
growth.

4.2 Model Evaluation: Assessing Prediction Ac-
curacy

we applied Machine Learning models one-by-one on each of the crops, and the
following has been observed:
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• Root Mean Square Error (RMSE): We have calculated the RMSE of
the errors in the predicted yield values.√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.17)

As the scale of the RMSE will be different for the different crops according to
their yield range, we normalize the RMSE by dividing it with the maximum
value of the actual yield and taking the percentage, i. e.

RMSE

Maximum V alue of the actual yield value
× 100% (4.18)

where, yi, ŷi and n denote actual yield value, predicted yield value, and the
number of total data points, respectively.

• Percentage Error: The percentage error between actual and predicted
value has been calculated by:

|actual yield− predicted yield|
actual yield

× 100% (4.19)

The coefficient of determination, or r-squared (R2), is a statistical measure that
represents the proportion of the variance in the dependent variable that is ex-
plained by the independent variables.

The formula for r-squared is:

R2 = 1− SSres

SStot

(4.20)

where SSres=
∑n

i=1(yi− ŷi)
2 is the sum of squares of the residuals (i.e., the differ-

ences between the predicted values and the actual values) and SStot=
∑n

i=1(yi− ȳ)2

is the total sum of squares (i.e., the sum of squares of the differences between the
actual values and the mean of the dependent variable).1

A higher value of R2 represents higher accuracy in yield prediction with the
values ranging from 0 to 1.

1yi, ŷiand ȳ are the ith observed value of the dependent variable, predicted value of the
dependent variable, and mean of the dependent variable respectively

41



Chapter 5

Results

Now, in this section, we present the results of the Machine Learning models one-
by-one The plots and the error analysis for the different Models are attached next.

5.1 Results of Various Models

For each of the models, seven scatter plots are shown, which represent the results
for the seven crops. In each of the scatter plots (in all the following subsections),
the x and y axis represent the actual and predicted yield values respectively, for
a certain crop, resulting by the use of the algorithm mentioned in the plot title.
and the red line represents the y=x straight line, i. e. points upon the line imply
absolute perfection in the yield prediction.1

After the plots, there is a table added, which shows the RMSE Percentages, the
percentage errors and the correlation coefficients that we get from the predictions.
After that we analyze the results we get from different models.

1the ’polyfit’ function in python has been used to fit the y = x line
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5.1.1 Linear Regression

Figure 5.1: Actual vs Predicted yield values for Winter Wheat by Linear Regression
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Figure 5.2: Actual vs Predicted yield values for Winter Barley by Linear Regression

Figure 5.3: Actual vs Predicted yield values for Spring Barley by Linear Regression
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Figure 5.4: Actual vs Predicted yield values for Oats by Linear Regression

Figure 5.5: Actual vs Predicted yield values for Sugarbeet by Linear Regression
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Figure 5.6: Actual vs Predicted yield values for Winter Rape by Linear Regression

Figure 5.7: Actual vs Predicted yield values for Silaze Maize by Linear Regression
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Crop
Name

RMSE
Percentage

Error
R2 value

for y=x fit
Winter Wheat 9.54 12.23 0.16
Winter Barley 8.90 14.09 0.22
Spring Barley 9.76 15.82 0.09
Oats 10.11 16.56 0.19
Sugarbeet 9.59 12.83 0.19
Winter Rape 8.48 13.88 0.01
Spring Maize 7.89 12.87 0.28

Table 5.1: Accuracy of the Predictions by Linear Regression

5.1.2 Decision Tree Regressor

Figure 5.8: Actual vs Predicted yield values for Winter Wheat by Decision Tree Regressor
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Figure 5.9: Actual vs Predicted yield values for Winter Barley by Decision Tree Regressor

Figure 5.10: Actual vs Predicted yield values for Spring Barley by Decision Tree Regressor
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Figure 5.11: Actual vs Predicted yield values for Oats by Decision Tree Regressor

Figure 5.12: Actual vs Predicted yield values for Sugarbeet by Decision Tree Regressor
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Figure 5.13: Actual vs Predicted yield values for Winter Rape by Decision Tree Regressor

Figure 5.14: Actual vs Predicted yield values for Winter Rape by Decision Tree Regressor
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Crop
Name

RMSE
Percentage

Error
R2 value

for y=x fit
Winter Wheat 8.52 10.15 0.33
Winter Barley 8.44 12.75 0.30
Spring Barley 10.03 14.56 0.04
Oats 10.87 16.27 0.07
Sugarbeet 8.20 9.90 0.40
Winter Rape 6.43 10.07 0.42
Spring Maize 8.28 12.14 0.20

Table 5.2: Accuracy of the Predictions by Decision Tree Regressor Model

5.1.3 Random Forest Regressor

Figure 5.15: Actual vs Predicted yield values for Winter Wheat by Random Forest Regressor
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Figure 5.16: Actual vs Predicted yield values for Winter Barley by Random Forest Regressor

Figure 5.17: Actual vs Predicted yield values for Spring Barley by Random Forest Regressor
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Figure 5.18: Actual vs Predicted yield values for Oats by Random Forest Regressor

Figure 5.19: Actual vs Predicted yield values for Sugarbeet by Random Forest Regressor
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Figure 5.20: Actual vs Predicted yield values for Winter Rape by Random Forest Regressor

Figure 5.21: Actual vs Predicted yield values for Silaze Maize by Random Forest Regressor
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Crop
Name

RMSE
Percentage

Error
R2 value

for y=x fit
Winter Wheat 5.91 7.29 0.68
Winter Barley 5.76 8.92 0.67
Spring Barley 7.13 11.07 0.51
Oats 7.35 11.02 0.57
Sugarbeet 5.69 7.36 0.71
Winter Rape 4.94 8.03 0.66
Spring Maize 5.86 8.76 0.60

Table 5.3: Accuracy of the Predictions by Decision Tree Regressor Model

5.1.4 Gradient Boosting

Figure 5.22: Actual vs Predicted yield values for Winter Wheat by Gradient Boosting
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Figure 5.23: Actual vs Predicted yield values for Winter Barley by Gradient Boosting

Figure 5.24: Actual vs Predicted yield values for Spring Barley by Gradient Boosting
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Figure 5.25: Actual vs Predicted yield values for Oats by Gradient Boosting

Figure 5.26: Actual vs Predicted yield values forSugarbeet Gradient Boosting

57



Figure 5.27: Actual vs Predicted yield values for Winter Rape by Gradient Boosting

Figure 5.28: Actual vs Predicted yield values for Silaze Maize by Gradient Boosting
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Crop
Name

RMSE
Percentage

Error
R2 value

for y=x fit
Winter Wheat 6.56 8.09 0.60
Winter Barley 6.25 9.72 0.61
Spring Barley 7.49 11.78 0.47
Oats 7.75 12.03 0.52
Sugarbeet 6.22 8.06 0.66
Winter Rape 5.46 8.90 0.58
Spring Maize 5.92 9.07 0.59

Table 5.4: Accuracy of the Predictions by Decision Tree Regressor Model

5.1.5 Extreme Gradient Boosting(XGBoost)

The Extreme Gradient Boosting (XGBoost) algorithm is a type of gradient boost-
ing algorithm that uses a more regularized model and a more efficient system
implementation to improve performance.

Figure 5.29: Actual vs Predicted yield values for Winter Wheat by XGBoost model
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Figure 5.30: Actual vs Predicted yield values for Winter Barley by XGBoost model

Figure 5.31: Actual vs Predicted yield values for Spring Barley by XGBoost model
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Figure 5.32: Actual vs Predicted yield values for Oats by XGBoost model

Figure 5.33: Actual vs Predicted yield values for Sugarbeet by XGBoost model
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Figure 5.34: Actual vs Predicted yield values for Winter Rape by XGBoost model

Figure 5.35: Actual vs Predicted yield values for Silaze Maize by XGBoost model
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Crop
Name

RMSE
Percentage

Error
R2 value

for y=x fit
Winter Wheat 6.56 8.09 0.60
Winter Barley 6.25 9.72 0.61
Spring Barley 7.49 11.78 0.47
Oats 7.75 12.03 0.52
Sugarbeet 6.22 8.06 0.66
Winter Rape 5.46 8.90 0.58
Spring Maize 5.92 9.07 0.59

Table 5.5: Accuracy of the Predictions by XGBoost Model
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5.2 Discussions

When we compare the percentage errors and the R2 values for y=x fit side by side,
we observe the following:

Figure 5.36: Comparison between the RMSE Percentage between actual and predicted yields
by different models

The RMSE percentage barplot is used to evaluate the regression models’ ac-
curacy. The root-mean-square error (RMSE) percentage, which is reported as a
percentage of the actual value, is a measurement of the average difference between
the values that were anticipated and those that were actually achieved. A lower
RMSE percentage denotes more accurate model predictions.

The bar sho plot shows how the RMSE percentage varies significantly across
the different crops and models. For instance, the XGBoost regressor had the
lowest RMSE percentage for the majority of the crops, indicating that it was the
most accurate model for forecasting the yield of these crops. On the other hand,
the performance of theDdecision Tree Regressor was consistently poor across the
majority of the crops, as evidenced by the fact that it had the highest RMSE
percentage. This demonstrates that decision tree regressors might not be the best
choice for predicting agricultural output.

It is possible for the performance of the models to be affected by a variety of fac-
tors, such as the type of data and the amount of data used for training, the particu-
lar methods that were used, and the model hyperparameters. For the vast majority
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of the crops, for example, the random forest regressor and the XGBoost regressor
consistently outperformed the control group regressor, demonstrating that they
are reliable models that can accommodate a wide range of data and conditions.

The RMSE is a helpful indicator for determining the efficacy of regression mod-
els; however, it has significant drawbacks that need to be taken into consideration.
Because it does not specify the nature of the error, the root mean square error
(RMSE percentage), for instance, treats positive and negative errors equally. The
presence of outliers in the data may also have an effect on the RMSE percentage,
which may cause the results to be skewed. Therefore, when evaluating the effi-
cacy of different regression models, it is essential to take into account a variety of
measures as well as the specific context of the problem.

Figure 5.37: Comparison between the Percentage errors in the prediction of different models

The percentage error displays the difference between the actual crop production
and the anticipated crop yield.

Similar to the RMSE percentage, a smaller percentage error indicates that the
model is more accurate in predicting crop output, whereas a larger percentage
error indicates that the model is less reliable.

When we examine the bar plot, we can see that the Decision Tree Regressor
and Linear Regression models frequently have higher percentage errors than the
Random Forest Regressor and XGBoost Regressor models.

However, the Random Forest Regressor and XGBoost Regressor models do not
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perform as well as the Gradient Boosting Regressor.

Overall, the percentage error column gives us a good idea of how accurately
each model forecasts crop production. However, as it was also for the RMSE
error, the accuracy of a model may be significantly influenced by a number of
other variables, such as the quality of the data, the features that are selected, and
the hyperparameters that are used in the model.

Now let’s look at the plot where a higher value indicates more accuracy.

Figure 5.38: Comparison between the R2 values for y=x fit between actual and predicted yields
by different models

The correlation coefficient is represented by the R-squared value obtained from
the plots of the actual versus predicted crop values and the line y=x. When the R-
squared number is close to 1, it indicates that the model can explain the majority
of the variance in crop production. This suggests that the predicted values are
more accurate. When the R-squared value is closer to 0, on the other hand,
this indicates that the regression model performs poorly and does not explain a
significant amount of the variance in crop yield.

Therefore, in our plots, an R-squared value that is greater than zero for a par-
ticular crop indicates that the matching regression model fits the data well and
can forecast crop yield with greater accuracy, whereas an R-squared value that is
less than zero indicates that the model’s performance is below average.

When we look at the R-squared values in the table, we can see that the Gradient
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Boosting Regressor and Random Forest Regressor models perform better than the
other models in general, with R-squared values ranging from 0.51 to 0.74. Other
models have R-squared values that fall somewhere in the middle of these two
extremes. This demonstrates that these models have the potential to explain a
sizeable percentage of the variability that is observed in crop yield statistics.

The Decision Tree Regressor and Linear Regression models, on the other hand,
frequently perform poorly, with R-squared values ranging from 0.01 to 0.40. This
demonstrates that these models are not as capable as the other models when it
comes to recognizing the fundamental patterns that can be found in the data.

Due to the fact that the R-squared number only provides insight into the linear
relationship that exists between the variables, it is not appropriate to rely solely
on this statistic when evaluating the efficacy of the model. In addition to the
R-squared value, it is important to take into account other performance metrics
for the model, such as the Root Mean Squared Error (RMSE) and the percentage
error. However, the values of R-squared that are presented in the table can be
used to perform a preliminary analysis of how well the models match the crop
yield data.

According on the RMSE percentage and Percentage Error columns, the Random
Forest Regressor and XGBoostRegressor models seem to perform better than the
other models. For the majority of crops, these models consistently provide lower
values in both of these columns.

The higher performance of Random Forest Regressor and XGBoostRegressor
may be ascribed to the fact that both models are ensemble approaches, which
means they are generated utilizing numerous decision trees. This enables them
to capture complicated non-linear correlations between input characteristics and
output variables, as well as manage outliers and noise in the data.

Yet, because to their inability to successfully handle non-linear connections and
outliers, the Decision Tree Regressor and Linear Regression models may have done
worse. Linear Regression, in instance, presupposes a linear connection between the
input characteristics and the output variable, which may not necessarily be the
case in real-world circumstances. Gradient Boosting Regressor works well, but not
as consistently as Random Forest and XGBoostRegressor, potentially because to
overfitting on the training data.

It is crucial to remember, however, that the performance of these models will
vary based on the dataset and task at hand. When choosing on the optimal model
to utilize for a specific job, it is usually suggested to test numerous models and
assess their performance on a holdout validation set.
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Chapter 6

Further Work

As mentioned in the introduction, the further work plan is to incorporate NWP
models.

As were the steps mentioned in the introduction, we have progressed till the
modeling step, i. e. applying machine learning models to forecast crop production.
The next step is to integrate the NWP and ML models together to get more
accurate prediction of the crop yield.

We also haven’t used the crop Phenology data yet, as it was available for only one
crop (Winter Wheat). We hope to get access to the phenology data of thee other
crops too. The phenology parameters are expected to increases the prediction
results significantly as we will have the knowledge of the quickly the crop grows
and quickly it gets ready for harvesting according to different weather and soil
conditions.
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