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Abstract

Both Conformal and Boostless Bootstrap techniques have been applied by many in the literature to
compute pure scalar and graviton inflationary correlators. In this thesis, our focus will primarily be
on mixed graviton and scalar correlators. We start by reviewing single-field inflation and then move
ahead to developing an EFT of Inflation (EFToI) with some general assumptions, clarifying various
subtleties related to power counting. We verify explicitly the soft limits for mixed correlators,
showing how they are satisfied for higher derivative operators beyond the Maldacena action. We
clarify some confusion in the literature related to the soft limits for operators that modify the power
spectra of gravitons or scalars. We then proceed to apply the boostless bootstrap rules to operators
that do not modify the power spectra. Towards the end, we give a prescription that gives correlators
for a vacua directly once we have the correlator for the Bunch-Davies vacuum. This enables us to
bypass complicated in-in calculations for a vacua
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Chapter 1

Introduction

It is believed that the structure in our universe was seeded by quantum mechanical fluctuations gen-
erated during an epoch of exponential expansion known as inflation [1, 2, 3]. During this period,
these quantum fluctuations were stretched to super-horizon distances with amplitudes freezing post
horizon exit [4, 5]. Inflation generates correlations between these fluctuations, which seed the late-
time cosmological observables such as temperature correlations on the CMB. Although current
observational reach is limited to deducing the scalar power spectrum and its tilt [6, 7, 8], one can
expect that in the future, higher point scalar correlators, as well as correlators involving spinning
fields such as the graviton, will also be measured.

There are a wide variety of models for Inflation [9, 10] and one can compute observables for
each of them. However, one can adopt a more general (model-independent) approach by construct-
ing an Effective Field Theory of Inflation (EFToI) [11, 12, 13] consistent with symmetries. This
allows us to go beyond the minimally coupled canonical single field slow-roll inflation [14]. In this
thesis, we consider higher derivative operators which contribute to the mixed three-point correla-
tion functions (i.e. hz z gi, hggz i, which we compute using the in-in formalism). It is important
that the EFT respects soft limits [14, 15, 16] provided that we do not violate any of the assumptions
implicit in their derivations. We clearly state under what assumptions these theorems are expected
to hold and explicitly check (for mixed correlators) that they are satisfied for operators that modify
both scalar as well as tensor power spectra. This provides important consistency checks for our
calculations.

It is also interesting to bootstrap these correlators from a pure boundary perspective without
referring to the bulk evolution. This approach has a lot of advantages, for instance, it was shown
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in [17, 18] that using certain field redefinitions (that vanish at the boundary) some operators can
be removed from the EFT without affecting the late-time correlators. This redundancy, by con-
struction, is not present once we have a purely boundary perspective and therefore can potentially
lead to a lot of simplifications. There is a large amount of literature on both the conformal/pure
de-sitter bootstrap [19, 20, 21, 22] as well as the “boostless bootstrap” approach, the latter being
more recent [23, 24, 25]. The boostless bootstrap program focuses on properties such as the ana-
lytical structure of the correlators, soft limits etc. The analytical structure of correlators on its own
gives a lot of information such as the initial state [26, 27, 28] and the flat space amplitude [16, 21]
corresponding to the interaction. This technique has had considerable success for pure graviton
correlators (sometimes in conjunction with tools like spinor helicity formalism and results related
to parity and the cosmological optical theorem [29, 30, 24]). In this thesis, we follow the rules
entailed in [23] to bootstrap three-point mixed correlators arising from operators in our EFToI that
do not modify power spectra, and check to what extent the Boostless Bootstrap works. In doing
so, we separately consider local and non-local interactions.

Finally, we give a prescription for obtaining the correlators for a- vacua (which is the most
general family of vacuum states consistent with de Sitter isometries [31]) once we have the an-
swers for the Bunch Davies (BD) vacuum. This offers significant computational benefit since one
does not have to repeat the cumbersome in-in calculation for a- vacua.

Imporant Note: The Introduction and Conclusion, as well as the results in Sections 5.2, and
6.4 to ??, are mostly taken from my pre-print [32] written in collaboration with Prof. Diptimoy
Ghosh and Farman Ullah.
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Chapter 2

de-Sitter and Conformal Bootstrap

The de-Sitter metric is the metric given by:

�dt2 + e2Ht(dx2 +dy2 +dz2) (2.1)

where we denote the scale factor by a(t) = eHt , H being Hubble’s constant . One can also replace
t by h , the conformal time coordinate defined by dh = dt/a(t). A scalar field of mass m in dS
would have the quadratic lagrangian:

S2 =
Z

d4x a4 1
2

 
(∂µf)2

a2 �m2f 2

!
(2.2)

with the mode functions given by [33]:

uk(h) =
H
2

en+ 1
2 p�h3/2H (2)

n (�kh) n =

r
9
4
� m2

H2 (2.3)

H (2)
n being the Hankel function of the 2nd kind. For each field, there’s generally a “scaling

dimension” associated to it in the literature denoted by D = 3
2 +n . So, we have D = 3 for massless

fields for whom,
uk(h) =

Hp
2k3

(1� ikh)eikh (2.4)

Note that the choice of mode functions is such that they resemble the Minkowski mode functions,
eikh in the far past (h ! �• ). The choice of vacuum corresponding to this choice of mode
function is the Bunch Davies (BD) vacuum. However, this is not a compulsion and one can in
general have any Bogolyubov transformation of BD as the vacuum. There’s a single parameter
family of vacua, called a vacua which respects the dS isometries, with BD being the a = 0 case.
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Their mode functions are defined as:

uk(a,h) = cosha uk,BD(h)� isinha uk,BD(h)⇤ (2.5)

2.1 de-Sitter symmetry group

The de-Sitter symmetry group can easily be guessed to have 10 elements: 3 spatial translations, 3
rotations, 1 scaling and 3 Special Conformal Transformations (SCTs, also called boosts colloqui-
ally). The generators for these can be found by solving the killing vectors of the metric:

ds2 =� 1
H2h2

⇣
�dh2 +dx2 +dy2 +dz2

⌘
(2.6)

Ti =�i∂i 3 Translations

Jk =� i
2

ei jk(xi∂ j � x j∂i) 3 Rotations

S =�ixµ∂µ Scaling

Uj =�i(h2 �~x2)∂ j � i(2x jxi)∂i � i(2hx j)∂0 3 SCT

We have the following important commutation relations:

[Ti,S] =�iTi

[Ji,S] =�iJi

[Ui,S] = iUi [Ui,Uj] = 0

[Ti,Uj] = 2iei jkJk �2di jS [Ji,Uj] = iei jkUk

If we take the linear combinations Ai =
Ti+Ui

2 and Bi =
Ti�Ui

2 , we get from the resulting algebra that
the Ai s act like rotations along with Ji s and Bi s and S together are like 4 Lorentz boosts, hence
the group is locally isomorphic to SO(1,4). Another important thing to notice is that in the limit
h ! 0, the generators look exactly like the generators of the 3-dimensional Euclidean CFT group.
Hence, correlators at the boundary of de-Sitter can be bootstrapped using the machinery of CFT.

2.2 The OPE

The operator product expansion gives us asymptotic expressions for the product of 2 or more CFT
operators. OPEs are generally algebraically derivable in 2-d CFTs where one of the operators
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is the energy-momentum tensor. However, more generally,in a CFT we have the state-operator
correspondence i.e. every state which is an eigenstate of the dilatation operator with eigenvalue D
can be represented by an operator OD acting on the vacuum |Wi (see radial quantization in [34]).
For our purposes, we need the following result:

O1(x)O2(0) |Wi= Â
k

Õk(0)
xk

where we have k = D1 +D2 �Dk

(2.7)

2.3 Ward identities and the 2-point function

Momentum space scaling and SCT identities for scalars with scaling dimensions {Da} are :( here
Dt = Âa Da)
 

2d �Dt +Â
a

pa
∂
∂a

!
h0|f(p1)f(p2)..f(pa) |0i= 0 (2.8)

 

Â
a

2(Dt �d)
∂

∂ paµ
�2pan

∂
∂ pan

∂
∂ paµ

+ paµ
∂

∂ pan

∂
∂ pan

!
h0|f(p1)f(p2)...f(pa) |0i= 0 (2.9)

For the 2-point correlator, the scaling identity by itself is sufficient to fix the correlator:

hfD(~k1)fD(~k2)i ⇠ k2D�3
1 d (3)(~k1 +~k2) (2.10)

For the 3-point correlator, we can expand the operator Oµ , the differential operator of the SCT
idenitity as Oµ = pµ

1 O1 + pµ
2 O2 and we define operators Ki j = Ki �Kj where

Ki =
∂ 2

∂ p2
i
� 2Di �d �1

pi

∂
∂ pi

The triple K integral :

F(p1, p2, p3) =
Z •

0
dxxa ’

i
pbiKbi(pix) a =

d
2
�1 bi = Di �

d
2

satisfies Ki jF = 0 and hence it satisfies both the SCT and scaling ward identities. This solution
to the ward identities is unique after demanding OPE consistency (i.e. only BD vacuum-type
poles). The integral converges when |a|> Âi |bi|�1. The other cases need some regulation to the
solutions, details of which can be found in [35].
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2.4 Bootstrap of a Mixed 3-pt correlator in dS

This section reviews the results in [19]. We consider an example of bootstrapping < OOTi j >

using full de-sitter isometries. O and Ti j can be considered as the dual CFT operators for f and gi j

which have dimensions equal to DO = Df = 3 and the same for Ti j. This notation is borrowed from
the Wavefunction Formalism [36]. We can bootstrap without using these operators, but using this
formalism makes it easier to use the CFT language. Now the operators transform under an SCT
transformation as:

O(k)! O(k)+(b · k)∂ 2
k O(k)�2Kib j∂i∂ jO(k)

Ti j(k)! Ti j +(b · k)∂ 2
k Ti j(k)�2kib j∂i∂ jTi j(k)+2(b j∂a �ba∂ j)Tai +2(bi∂a �ba∂i)Ta j

and have the 2-point and 3-point correlations:

hz (k1)z (�k1)i=
1

hO(k1)O(�k1)i
hz (k1)z (k2)z (k3)i=

O(k1)O(k2)O(k3)

hO(k1)O(�k1)ihO(k2)O(�k2)ihO(k3)O(�k3)i
(2.11)

We assume a schematic form based on permutation symmetry of k1,k2:

hO(k1)O(k2)Ti j(k3)i= k1ik1 jFA(k1,k2,k3)+ k2ik2 jFA(k2,k1,k3)+ k1ik2 jFB(k1,k2,k3)

+ k2ik1 jFB(k1,k2,k3)+di jFC(k1,k2,k3)

=) hO(k1)O(k2)Ti j(k3)iei j
3 =�2S

where S = 1
2(FA(k1,k2,k3)+FA(k2,k1,k3)�2FB(k1,k2,k3)).

Using the ward identity of the transformations above, we get the following equations after a lot
of simplifications:

 
∂ 2

∂k2
1
� 2∂

k∂k1

!
S =

 
∂ 2

∂k2
2
� 2∂

k∂k2

!
S =

 
∂ 2

∂k2
3
� 2∂

k∂k3

!
S (2.12)

(~k2 ·~k3)k1∂k1S� (~k1 ·~k3)k2∂k2S+(k2
1 � k2

2)S�
3
2
(k3

1 � k3
2) = 0 (2.13)

We can guess the solutions of these equations to be of the form

S =
Z •

0
dz

mabc

z2 (1�ak1h)eiak1h(1�bk2h)eibk2h(1� ck3h)eick3h
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where a, b,c can be ±1. If we fix c=1, Equation 2.13 gives constraints on mabc :

Â
a,b

ma,bca3 = Â
a,b

ma,bca3 = 1 (2.14)

The z dependence comes from the scale invariance identity. Hence we have 8 different so-
lutions. We can eliminate 7 of them by considering the OPE limit and Maldacena consistency
conditions:

• Maldacena soft limit: We can convert the < OOTi j > correlator to the < z z gi j > correlator
and then apply the condition (discussed in detail in Section 5.1)

lim
k1!0

hg(k1)z (k2)z (k3)i=�k2ik2 j
d

dk2
2
hz (k2)z (�k2)i

.

• OPE: We consider two limits here. First we consider k1 << k2,k3 . Using

O(0)Ti j(x)⇡
xix j

x5 O(0)+
(xi∂ j + x j∂i)O(0)

x3 +
∂i∂ jO(0)

x
+ ...

We get that

lim
k1!0

hO(k1)O(k2)Ti j(k3)i ⇡
k1ik1 jk3

1
k2

3

. Secondly, we consider k3 << k1,k2 . Using

O(0)O(x)⇡
xix j

x5 Ti j(0)+ ...

we get that

lim
k3!0

hO(k1)O(k2)Ti j(k3)i ⇡
k3ik3 jk3

3
k2

2
.

Note that to compare our solutions to these OPE limits, we only consider the terms non-analytic
in the large momenta as they will give the dominant terms in the position space. This procedure
finally fixes our correlator to give hgz z i calculated in Section 3. The calculations can also be done
using spinor helicity variables, as shown in [19]
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2.5 4 point functions in dS

We follow the analysis of [21] in this section. To bootstrap four-point correlators, we again invoke
the ward identities given in equation 2.9. Using the notation C(u,v,s) for the 4-point correlator,
with s =

���~k1 +~k2

���, u = s
k1+k2

and v = s
k3+k4

, the quantity G(u,v) = sC(u,v,s) would satisfy the
following equation:

(Du �Dv)G(u,v) = 0 Du = u2(1�u2)∂ 2
u �2u3∂u (2.15)

To get the simplest possible contact diagram, i.e with the vertex having no derivatives, we take the
solution with the simplest possible total energy pole structure (i.e. the u+ v pole structure). Then
we have

G0(u,v) =
uv

u+ v
Higher derivative answers can be obtained from this answer by the ansatz:

GHOD(u,v) = Â
n

cn(Du)
nG0(u,v) (2.16)

which for example is c0 = 1,c1 = 1,c2 = 1/4 and rest all 0 , for (—f)4. Now for exchange dia-
grams, we start again with the simplest possible vertex, f 3. Denote the correlator by E(u,v) and
H(u,v) = sE(u,v). Then, for a massive particle of mass M being exchanged, we have:

 
Du +

M2

H2 �2

!
H(u,v) = G0(u,v) (2.17)

This relation is derived basically from the structure of the in-in integral which is given by:

E(u,v)⇠ Re
✓ZZ

dhdh 0ei(k1+k2)hei(k3+k4)h 0
GF(s,h ,h 0)

◆
(2.18)

where GF(s,h ,h 0) is the propagator for the exchanged particle. Noting that the propagator satisfies
the EOM we’re led to the relation:

‘

 
s2∂ 2

s + s∂s � s2∂ 2
k1+k2

+
M2

H2 � 9
4

!
E(u,v) = 0 (2.19)

which leads us to Equation 2.17. Hence, we note that this relation is not derived from a complete
CFT/ boundary perspective. To solve the equation, we keep in mind the following:

• we expect the amplitude to be the residue of the total energy pole/discontinuity. One can
already see this by taking the limit before solving the equation which gives us:
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lim
u+v!0

v2

1� v2
∂ 2H(u,v)

∂u2 =
uv

u+ v
(2.20)

=) E(u,v)! �kT logkT

s f lat
(2.21)

hence giving 1/s f lat i.e. the flat space amplitude in the high energy limit.

• The answer should be symmetric in u,v and should match at u=v.

• The answer should not contain any poles in the limit u,v = 1 as these pertain to excited states
[26, 28] and we are considering BD vacuum.

The solution to equation 2.17 respecting the conditions above, can be written using the power
series method as:

H(u,v) =

8
<

:
Ân,m cmnu2m+1(u

v )
n +g(u,v) if u  v

Ân,m cmnv2m+1( v
u)

n +g(v,u) if v  u

cmn =
(n+1)(n+2)...(n+2m)

((n+ 1
2)

2 +µ2)((n+ 3
2)

2 +µ2)....((n+2m+ 1
2)

2 +µ2)

(2.22)

where µ2 = M2

H2 � 1
4 . The form of g(u,v) is quite complicated and can be found in [21]. Similarly,

one can have spinning particles being exchanged for which we can find the correlator by applying
projection tensors and raising lowering operators, details of which can be found in [31]. One must
now convert the D = 2 answers to D = 3 ones. For this, we have weight-shifting operators, which
depend on the spin of the particles being exchanged.

Denoting the massless external field by f0, For scalar exchange of a massive field, say X , the
interaction Xf 2 can be mapped to X(—f0)2 i.e to an interaction with 2 more derivatives through:

(—µf0(k1)—nf0(k2)) = s2U12f(k1)f(k2) (2.23)

U12(y) =
1
2

✓
1� k1k2

k1 + k2
∂k1+k2

◆ 
1�u2

u2 ∂u(uy)

!
(2.24)

which, after some tedious calculations, gives us a relation between the correlators:

E(u,v,f0) = s3U12U34E(u,v,f) (2.25)

For spinning exchange fields, we have to have separate weight-shifting operators for each helicity

11



component, shown in [21] in great detail.
The approach is generalizable to interactions with an arbitrary number of derivatives which a big
advantage. The main limitation of this analysis is that it is not a pure boundary calculation as it
has multiple references to in-in formalism and Bunch-Davies initial conditions (while fixing the
pole structures). Hence, it is difficult to solve equations like Equation 2.17 for a vacua since the
ansatz would depend on additional variables like k1�k2 and k3�k4. However, as we’ll see in later
sections, a direct bootstrap for a vacua is not necessary.

12



Chapter 3

Single Field Inflation

3.1 Slow roll Inflation

In single-field inflation, we have a single scalar field sourcing the metric fluctuations about a pure
de-sitter background. The most famous single-field inflation is slow roll inflation. The inflaton
field, denoted by f(t) “rolls” on a potential V (f) in a pure de-sitter background. The EOM for the
field is given by:

f̈(t)+3Hḟ(t)+ ∂V
∂f

= 0 (3.1)

For slow roll inflation, we require that the kinetic energy term of the inflaton is very small compared
to the “Hubble friction” generated by the second term in the equation above. We have the following
two small parameters characterizing slow roll inflation(all defined in Mpl = 1 units) [14]:

e =
�Ḣ
H2 =

ḟ 2

2H2 ⇠
 

V 0

V

!2

h =� f̈
Hḟ

+ e =
V 00

V
(3.2)

We now consider perturbations of the field about the solution to Equation 3.1. Note that we chose
that to be our zeroth order solution since the background metric is isotropic and homogeneous,
which motivates the need to take a solution which depends only on t. Before doing any calcula-
tions, we need to fix a gauge. In unitary gauge, which is a gauge where df = 0, we can take a
general metric of the form:

ds2 =�N2dt2 +hi j(dxi +Nidt)(dx j +N jdt)

hi j = a2e2z egi j ∂igi j = gii = 0 (3.3)
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Note that the variables z and gi j are gauge invariant fields (see Appendix A.1). We also have the
flat gauge, which is defined by df 6= 0 and

ds2 =�N2dt2 +hi j(dxi +Nidt)(dx j +N jdt)

hi j =a2egi j ∂igi j = gii = 0 (3.4)

so that one degree of freedom of the scalar part of the metric is replaced by the scalar field now.
The exact relation between these two scalar degrees of freedom is given by:

z =�y +H
df

˙̄f
(3.5)

3.2 The ADM formulation

The ADM formalism aims to develop a Hamiltonian or initial value formulation of general relativ-
ity. For that, we imagine the 3+1 dimensional spacetime being foliated by spatial 3-dimensional
surfaces with the spatial metric gi j. Taking nµ to be the normal vector, i.e. the vector perpendicu-
lar to the hypersurfaces which are foliated the spacetime, we can define an induced metric on the
hypersurface through:

gµn =�nµnn +hµn (3.6)

which is basically like a completeness relation. We define a time vector tµ = (1,0,0,0) and this
enables us to define the shift and lapse functions:

a =�gµntµnµ b µ = hµntn

=) hµn = gµn +
1

a2

�
tn �bµ

��
tµ �bn

� (3.7)

Now, for our case, we have the hypersurfaces as the 3d spatial slices, so nµ = tµ/
p
�g00. This

gives us hi j = gi j. We can decompose some of the operators living in 3+1 dimensional spacetime
in terms of purely spatial tensors. We define (3)Ri jkl as the Riemann tensor coming only from the
spatial part of the metric. We also define extrinsic curvature tensor as :

Ki j = —in j =
1
2

⇣
ḣi j �—iNj �— jNi

⌘
(3.8)
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This enables us to write

R = (3)R+
1
2

Ki jKi j � 1
2

K2 +Boundary term (3.9)

The action for a canonical single field model is then written as:

S =
Z

d4x
✓
(3)R+

1
2

Ki jKi j � 1
2

K2 +
1
N
(ḟ �Ni∂ if)2 � 1

N
(∂if)2

◆
(3.10)

Solving the constraint equations i.e. EOM for N and Ni to first order in z ,gi j gives us:

N = 1+
ż
H

Ni =∂i(�a�2 z
H

+ e∂�2ż )
(3.11)

Putting it back into the action gives us the actions for g,z till cubic order in these fields. We do not
need to solve for N,Ni beyond the first order in z ,g . This is because, for example, for the 3rd order
action, the 2nd order expressions of z ,g would multiply the first order equation of motion for N,Ni

which vanishes. Similarly, the 3rd order expressions would multiply the zeroth order EOM which
vanishes. Hence the first order solutions to N,Ni are enough. This is unsurprisingly, not the case
for the fourth-order action and beyond. We get the quadratic actions:

Sz z =
1
2

Z
d4x e

⇣
a3ż 2 �a(∂z )2

⌘
(3.12)

Sgg =
1
8

Z
d4x

⇣
a3ġi j

2 �a(∂gi j)
2
⌘

(3.13)

The action for z is like that of a massless field in de-Sitter, while the graviton action is almost the
same as the flat space one. However, there are small spectral tilts for the power spectra of these
fields due to the time dependence of the mode functions. Since all quantities are evaluated at the
time of horizon exit t0 defined by k ⇠ 1/a(t0)H(t0) we have (after restoring the Mpl factors):

hz (kkk111)z (kkk222)i= (2p)3d 3(kkk111 + kkk222)
H2

4ek3

✓
k

aH

◆ns�1
hgh1(kkk111)gh2(kkk222)i= (2p)3d 3(kkk111 + kkk222)

H2

M2
plk3

✓
k

aH

◆nt

(3.14)

ns �1 =
d ln
⇣

k3hz�~kz~ki
⌘

d lnk
=

1
H

dloghz z i
dt0

= 2h �6e nt =
d ln
⇣

k3hg�~kg~ki
⌘

d lnk
=

1
H

dloghggi
dt0

=�2e

(3.15)
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3.3 Cubic Maldacena action

Similar to the quadratic action calculation above, one can calculate the cubic actions for calculating
3-point functions for g,z . Note that since R is a gauge invariant quantity, we can calculate the
action in the flat gauge in terms of df and then convert the answer to one involving z . This has the
benefit of giving the lagrangian ordered in powers of e[14]. For example, calculating the action in
unitary gauge directly gives:

Sgz z =
Z

d4x aegi j∂iz ∂ jz +
1
2

a3e2∂ 2gi j∂i∂�2ż ∂ j∂�2ż +
1
2

a3e2ġi j∂i∂�2ż ∂ jz +EOM terms
(3.16)

where the EOM terms are the terms arising from the field redefinition, i.e. the conversion between
f and z . These terms can always be pushed to a higher order in perturbations according to the field
redefinition theorem. The in-in calculation for the 3-pt correlator for the vertex which is leading
order in e above yields:

hgh(kkk111)z (kkk222)z (kkk333)i=
H4

4M4
ple

1
(’3

a=1 k3
a)

eh
i j(k1)k2ik3 j

"
�kT +

Âkik j

kT
+

k1k2k3

k2
T

#
(3.17)

A comment on Non-Local terms: One should note that the source of these non-localities is
rooted in the fact that not all metric components are dynamic variables. Since, we have constraint
equations for these non-dynamical variables, one plugs in their formal solution in the action which
can potentially involve inverse differential operators since the constraint equations are differential
equations. Though it may appear that the non-locality is always e suppressed, this is not true. That
would mean that without a source scalar field, we have no non-localities. However, even with only
the graviton present, we have non-localities for example, in the fourth order action coming from
the constraint solutions:

N = ...+
1

2H
∂ j∂�2 �∂ jgikġik

�
+ .... (3.18)

which is not e suppressed.

The cubic action for various combinations of the fields, for the sake of completeness. at leading
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order in e , are as follows:

Sz z z =
Z

e2
⇣

a3z ż 2 +az (∂z )2 �2a3ż ∂i∂�2z ∂iz
⌘

(3.19)

Sz z g =
Z

e agi j∂iz ∂ jz (3.20)

Sz gg =
Z e

8

⇣
a3z ġi jġi j +az (∂gi j)

2 �2a3∂i∂�2ż ˙gab∂igab
⌘

(3.21)
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Chapter 4

Effective Field Theory of Inflation

The Effective field theory of Inflation is an attempt to unify all models of inflation by constructing
the most general low energy action consistent with symmetries.

As mentioned above, we are finally interested in a theory of fluctuations about this time-
dependent background and therefore time diffeomorphism while still being a symmetry is now non-
linearly realised on the fluctuations i.e they are spontaneously broken. One can then choose a gauge
to write the EFT in the so-called unitary gauge which has no inflaton fluctuations df(~x, t) = 0.
In this gauge, all fluctuations go into the metric. The transformation rule for df(~x, t) under
xµ ! xµ + eµ ,

d f̃(x̃) = df(x)� e0 ˙̄f(t) (4.1)

indicates that unitary gauge just fixes the time diffs, and therefore, the EFT will only involve terms
which are invariant under spatial diffeomorphisms. We are allowed to write full diff invariant
terms, e.g.,(4)R(4)

µnRµn , terms with free upper time indices, e.g., dg00 (terms with lower free time
indices are not invariant under spatial diffs) and terms describing the slicing. Hence we have:

SEFT =
Z

d4x
p
�gL ((4)Rµnsr ,

(3)Ri jkl,—µ ,dKi j,g00,∂t , ...) (4.2)

So far, we have identified the correct degrees of freedom for the action. Now, like for any sensible
EFT, one must identify the correct expansion parameter(s) to organise the terms. The EFToI is
an expansion in the number of metric perturbations and the number of derivatives on the metric
perturbations which (before any canonical normalization) have dimension 0. We start by splitting
the action into three parts,

SEFT = S0 +S2 +S�3 (4.3)
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where,

S0 =
Z

d4x
p
�gM2

pl

 
(4)R
2

�M2
pll (t)� c(t)dg00 +DdK

!

S2 =
Z

d4x
p
�gM2

pl

✓
m1

⇣
dKi

jdK j
i

⌘
+m2(dK)2 +m3

⇣
(3)Rdg00

⌘
+M2

2(dg00)2 +M3

⇣
dg00

⌘
dK

+
1

M4

(3)Ri jdKi j +
1

M5

(3)RdK +
1

M2
6

(3)R
2
+

1
M2

7

(3)R
2
i j +

1
M2

8

(3)R
2
i jkl

!
+ ....

(4.4)

where, Sn has terms which start from nth order in perturbations. Here, S0 is Einstein-Hilbert action
coupled with a scalar field with l (t) = �3H2 + Ḣ and c(t) = �Ḣ so that the background/zeroth-
order equations of motion are satisfied. The dots in the above equations indicate the same terms
but with more derivatives. {mi} have mass dimension zero whereas {Mi} have mass dimension
one. We have not made any assumption about how the EFT operators are generated from the UV,
therefore, every operator comes with a different Mass scale, Mi. It is important to keep in mind
that finally, we want a theory in terms of the scalar fluctuations z and the tensor fluctuation gi j.
The EFT derivative power counting is clear only in terms of these variables and to illustrate this
consider the operator ∂idg00∂ idg00. This naively looks like a leading two-derivative term and
therefore, is not suppressed or enhanced by any mass scale. However, in terms of z , depending on
the constraint solution, it can actually generate higher derivative terms. Therefore, some terms in
the relevant part of Lagrangian might actually turn out to be irrelevant. Since we are ignorant about
the short distance physics i.e. k � H and are interested in the modes which have exited the horizon
and have left an imprint on the CMB, the typical length/energy scale is H. Hence an expansion
in H/M is obtained for our EFToI. Assuming for concreteness that all dimensional coefficients
are order unity and H ⌧ M4,5,6,7, one can easily arrange the action as a perturbative series. For
instance, the quadratic action, S2, is

S2 ⇠
 

m1 +m2 +m3 +
M2

2
H2 +

M3

H
+

H
M4

+
H2

M2
5
+

H2

M2
6
+

H2

M2
7

!
+ .... (4.5)

For some explicit calculations, we take the action S0 +S2 and write only the operators which have
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at most 2 derivatives on the metric :

S0+S2 =
Z

d4x
p
�gM2

pl

 
(4)R
2

+m1dKi
jdK j

i +m2(dK)2 +m(3)
3 Rdg00 +DdK �M2

pll (t)� c(t)g00

+M1gi j∂idg00∂ jdg00 +M2
2(dg00)2 +M3dg00dK

⌘
(4.6)

The leading (two derivatives) quadratic (scalar and tensor) actions are given by [14] :

Sz z =
1
2

Z
d4x e

⇣
a3ż 2 �a(∂z )2

⌘
(4.7)

Sgg =
1
8

Z
d4x

⇣
a3ġi j

2 �a(∂gi j)
2
⌘

(4.8)

i.e the action derived for a canonical scalar field minimally coupled to gravity. This is an element
of the class of actions defined by equation (4.6) where the action only contains the first three terms
of S0. In passing we point out that from (4.7) and (4.8) one can easily see that the existence of
z is tied to the fact that inflation is quasi de Sitter (e 6= 0), and such a variable does not exist in
pure de Sitter (e = 0). On the other hand, the tensor perturbation gi j is also well defined in de
Sitter. Coming back to (4.6), there is a large number of unknown parameters but as usual, the EFT
parameters have to be determined/constrained experimentally. Unfortunately in cosmology, the
number of observables is very small. This is due to the fact that unlike in flat space EFTs, we do
not have experimental control. Therefore, as we will show below, one can constrain or fix only a
handful of parameters in the EFToI:

• If a mass term is generated for the scalar perturbations in the EFT (c1ż 2 � c2(∂z )2 � c3z 2,
where m2 = c3/c1 ) then from the observed tilt of the scalar spectrum one can show that m

H ⌧
1, where m is the mass of the fluctuations. This can be easily inferred from the expression
for power spectrum for a massive scalar in de-Sitter.

Pz (k) =
H2

2k3

✓
k

aH

◆3�2n
(4.9)

where, n =
q

9
4 �

m2

H2 . Now, since we know (through observations) that the spectral tilt is

very close to unity, therefore n ⇠ 3
2 =) m2

H2 ⌧ 1. This allows us to strongly constrain the
coefficients of operators which generate a mass term for z .

• For operators which contribute both to the sound speed and non-gaussianities, we can use
experimental bounds to deduce the bounds on cs or the operator coefficients. Further con-
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straints on cs or the coefficients can be found by applying the partial wave unitarity bound
by going to the flat gauge [11, 37].

To illustrate the points mentioned above, we take two examples of quadratic actions of the type
mentioned in Equation (4.6). We first solve for the ADM constraint variables up to 1st order in z
(See Appendix A.1). To simplify calculations, we take m2 =�m1. We then consider the cases:

• MMM333 === 000,,,mmm111,,,mmm222 6 6 6=== 000. The canonical 2 derivative terms in the action are given by:

S0 +S2 =
Z

M2
pl

0

@a3

 
e +4

✓
M2

H

◆2
!

ż 2 �ae(∂z )2

1

A (4.10)

i.e. the usual canonical action with a different sound speed. The partial wave unitarity bound
in the flat space limit is satisfied in the limit cs ! 1 [11] , which gives M2 ⌧

p
eH. For this

theory, which has no mass term, we have the spectral tilt:

ns �1 =
1
H

d
dt⇤

hz (kkk)z (���kkk)i= 1
H

d
dt⇤

H2(t⇤)
4e(t⇤)M2

plcs(t⇤)k3 = 2h �6e +4c2
s

✓
M2

H

◆2
(
h
e
�1)

(4.11)
where the asterisk denotes the time of horizon crossing. Because of the cs constraint, the
spectral tilt is already small. As was shown in [11], a small speed of sound (cs ⌧ 1) also
implies large interactions (non-gaussianities). These are derivative interactions (e.g., ṗ3) and
they naturally produce equilateral non-gaussianity since, due to derivatives their contribution
to the squeezed limit is negligible. There are experimental constraints on cs from bounds on
equilateral non-gaussianity, f equil

NL ,
cs � 0.028 (4.12)

• MMM333 6 6 6=== 000,,,mmm111 === mmm222 === 000,,,MMM222 === 000. Since calculating the action for arbitrarily large values of
M3 is difficult, we take the case where g = M3/H ⌧ 1. For this we get upto 1st order in e
and g,

S0 +S2 =
Z

M2
pl

⇣
a3eż 2 �a(e �2g)(∂z )2

⌘
(4.13)

Again, taking into account that mass terms only start appearing at O(g2), the spectral tilt is
small and we won’t explicitly calculate it here. Going to the Stueckelberg gauge [11], we
can write the lagrangian in the flat space limit, in terms of the Stueckelberg boson p as :
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Lp =M2
pleH2

 
ṗ2 � (∂p)2

✓
1� M3

He

◆!
�2

M3M2
plc

3
s

✓q
M2

plḢ
◆3 ∂ 2p(ṗ2+(∂p)2)+ (e -suppressed)

(4.14)
This lagrangian tells us that we must have M3 > 0 for cs < 1 and the partial wave unitarity
bound for the tree level pp amplitude gives:

M2
3

e3M2
plc2

s

⇣
c4

s +4(1+ c2
s )

2
⌘
< p (4.15)

where, in the line above, the p is the numerical constant.

While all this is for the scalar action, the graviton case is simpler to deal with since the only two
operators contributing to the two derivative quadratic EFT are (3)R and dKi jdKi j which can be
removed by suitable field re-definitions of gµn [17, 15]. We also note that one can write the EFT
in some other gauge, for instance, the flat gauge where df 6= 0 [14]. As discussed before, doing
calculations in flat gauge can sometimes lead to simplifications as it can sometimes directly give us
an EFT ordered in e [14]. However, this simplification is only present for gauge invariant operators
(like (4)R, (4)Rµn

(4)Rµn , etc). One has to be careful while doing the calculations in this gauge and
converting them to the unitary gauge answers. This is pointed out using an example in Appendix
A.5.
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Chapter 5

Soft Limits

5.1 Overview

Soft limits provide us a connection between n-point and (n�1)-point correlators. Unlike the soft
theorems in flat space-time, the soft theorems for inflationary correlators are basically rooted in
the evolution of modes once they cross a length(or energy) scale which is intrinsic to the given
space-time i.e H. Soft theorems rely primarily on three assumptions:

• There being only a single degree of freedom i.e. a single field inflation model.

• The solution to the background equations of motion must be an attractor solution. This is
true for slow roll models but can be violated in models such as ultra slow roll inflation.

• Bunch-Davies initial conditions

The argument goes as follows. We take a 3-point correlator for the purposes of this proof. Suppose
one of the modes, k1, is soft i.e. k1 ⌧ k2,k3. Then k1 exits the horizon long before the other two
modes and acts as a classical background for them. This can be explicilty seen in the spatial part
of the metric which is proportional to e2z . Hence, the soft mode acts like ( to a leading order in
k1/k2 or k1/k3 ) a re-scaling of coordinates given by :

xi ! xiez ⇡ xi(1+zq) =) ki ! ki(1�zq) (5.1)

23



This leads to the infinitesimal change in the correlators:

hz (k1)z (k2)z (k3)i= hz (k1)z (�k1)i
✓

3� k2
∂

∂k2
� k3

∂
∂k3

◆
hz (k2)z (k3)i (5.2)

!�(ns �1)hz (k1)z (�k1)ihz (k2)z (�k2)i (5.3)

Similarly, for soft tensor modes, we have

xi ⇡ xi +
gi j

2
x j =) ki ! ki �

gi j

2
k j =) k2 ! k2 � gi jkik j (5.4)

which leads to the change in correlators:

hgh(k1)z (k2)z (k3)i ! �eh
i jk2ik2 jhgh(k1)gh(�k1)i

∂
∂ (k2

2)
hz (k2)z (�k2)i (5.5)

Analogously we also have :

hgh1(k1)gh2(k2)z (k3)i ! �nthgh1(k1)gh2(k2)ihz (k3)z (�k3)i (5.6)

hgh(k1)gh2(k2)gh3(k3)i ! �eh
i jk2ik2 jhgh1(k1)gh1(�k1)i

∂
∂ (k2

2)
hgh2(k2)gh3(�k2)i (5.7)

For first order corrections in q, where q is the soft mode, consider the quadratic maldacena action
calculated above. if we perform a coordinate transformation [17]:

xi ! xi �bix2 +2(b · x)xi +dx(t)

˙dx(t) =� 2bi

a2H
+O(e)

The infinitesimal change in the action, upto first orfer in epsilon, is then given by:

dS2 =
Z

d4x

 
6a3e(b · x)ż 2 �2ae(b · x)(∂z )2 +4ae ż

H
b� i∂iz

!
(5.8)

We now take S3 i.e. the cubic Maldacena action and decompose z = zL+zS where L,S indicate
long and short modes. This is just like writing a fourier transform but here its more rudimentary,
we are just separating the short modes from the long modes. Ignoring any time derivatives and
double spatial derivatives for zL we get the action for 1 long and 2 short modes to be:

S3 =
Z

d4x

 
3a3ezLżS

2 �aezL(∂zS)
2 +2ae ż

H
∂izL∂izS

!
(5.9)
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We equate the two expressions above and find that a scaling of coordinates and an SCT with
bi =�1

2∂izL is equivalent to introducing a long mode in the background. We thus have [17]:

lim
q!0

hz (q)z (k1)z (k2)....z (kn)i=�P(q)
✓

3(n�1)+ kn
∂

∂kn
+

1
2

qiDi

◆
hz (k1)z (k2)....z (kn)i

Di ·qi =
n

Â
a=1

⇣
6~q · ~∂a �~q ·~ka∂ 2

a +2~ka ·∂a(~q ·∂a)
⌘

(5.10)

Note that from these expressions, we find that in order to get a non-trivial soft limit, we must break
scale invariance as well as invariance under de-sitter boosts. This is because the right-hand sides
of the soft limits are proportional to the ward identities of scaling and de-sitter boosts. The spectral
tilts of the power spectra of g,z give us the non-trivial contributions for 3-point functions while
for O(q) corrections for 3-point functions, we get 0. We also note that for tensor correlators, these
results might not be extendable as the polarization tensors are functions of the momenta which can
make things tricky while taking derivatives w.r.t the momenta.

These relations rely on the fact that there is a negligible contribution to the three-point function
when all the modes are within the horizon. In fact, these theorems assume that the contribution
to the correlators only starts becoming sizable when the long mode has left the horizon and has
already frozen acting as a classical background. This is always the case when the initial state is
the BD vacuum. The BD three-point correlators only have a total energy pole which comes from
integrals of the form

hz~k1
z~k2

z~k3
i ⇠

Z 0

�•
tmeiKtdt (5.11)

where, K = k1 + k2 + k3. To compute such an integral, a regularisation scheme is required. This
integral can be regularized by taking t ! t(1� ie), and therefore, damping the contribution in the
far past. It only starts giving appreciable contribution once Kt ⇠�1 which in the equilateral case
(k1 = k2 = k3) corresponds to the epoch of horizon crossing for all the modes and in the squeezed
case (k1 ⌧ k2 ⇡ k3, relevant for soft theorems) corresponds to epoch of horizon crossing for the
short modes since K ⇠ ks. Therefore, in the squeezed limit the in-in contribution remains negligible
till the epoch of the horizon crossing for the short modes. By this time the long mode has already
frozen and therefore, the soft theorems must hold. There exist cases where the soft theorems are
violated even in single field models [38, 39, 40, 28], for instance, if one starts in an excited initial
state, for e.g., a-vacuum [31] then apart from total energy pole, one also has a (k1 + k2 � k3) kind
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of pole structure arising from mode-mixing. Therefore the integral contains terms,

hz~k1
z~k2

z~k3
i ⇠

Z 0

�•
tmei(k1+k2�k3)tdt (5.12)

which, in the squeezed limit (k1 ⌧ k2 ⇡ k3) starts giving appreciable contribution when k1t ⇠�1
i.e when the long mode is near horizon exit. Therefore, the soft theorem proof does not hold in this
case.

5.1.1 Soft theorem for the Inflaton field?

In the limit e ! 0, the action in terms of df reduces to that of a spectator massless field in dS.
Only one term in the maldacena action survives which is given by:

S2 =
1
2

⇣
ḟ 2 � (∂f)2 �V 00(f)f 2

⌘

S3 =
1
3!

V 000(f)f 3
(5.13)

i.e. the canonical scalar field action. Note that we have the expressions V 00(f) = 3hH2 and
V 000(f) = �3

2
H2ḣp
2eMpl

, and hence this field has a small mass (compared to Hubble). This gives
us a small spectral tilt [23, 41, 42]:

ns �1 ⇡ 2
✓

h +
ḣ
H
(log2�2+ gE)

◆
(5.14)

The three-point function of a field with the cubic vertex given above can be calculated to be:

hz z z i=� H3ḣ
16M4

ple2
1

’3
a=1 k3

a

2

4Âk3
a(log(k1 + k2 + k3)�1+ gE)+ k1k2k3 � Â

a6=b
k2

akb

3

5� Â
a<b

2hP(ka)P(kb)

(5.15)

where the last term comes from the relation between f and z i.e. a field redefinition term. It is
easy to check that the soft limit of 5.15 satisfies the soft limit for three scalar fields with ns given
by 5.14. Note that this analysis only makes sense in the e ! 0 limit since the cubic vertex is of the
same order in slow roll as the leading order cubic vertex for z . The soft limit is of course still for
z only since it is z that enters the metric and modifies the background spacetime.

We notice that the limit under consideration gives us an interaction that is Lorentz invariant in the
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flat space limit (i.e. a ! 1). Now from that we can guess that the interaction with 1 graviton + 2
scalars would be gi j∂if∂if which is the leading order cubic term (O(e)) in Sgz z . The soft limit for
this correlator is the same as before.

5.2 Explicit Checks

In this section, we explicitly calculate and verify the soft limits mentioned above. We start with
the scalar three-point function calculated for the action in 4.6 with only M2 6= 0 as a check for
calculations with cs 6= 1 while for the mixed correlators, we take the canonical minimally coupled
quadratic action for simplicity of calculation. Although the scalar soft theorems have been explic-
itly checked [43] the mixed correlator ones have not been explicitly checked for higher derivative
EFToI operators and therefore, according to our knowledge, this is the first such an attempt.

Soft limit for hz z z i

The terms which contribute to the soft 3-point correlator hz (k1)z (k2)z (k3)i|k1 ! 0 are given by:

S0 +S2 =
Z

M2
pl

"✓
e2zcżc

2
a3 + e2zc(∂zc)

2a
◆
+4(3e �2h)

✓
M2

H

◆2
zcżc

2
a3

#
(5.16)

where the first two terms are from the Maldacena cubic action. It is important to note that the final
Maldacena cubic action is derived after performing a field redefinition [14]

z = zc +
1
2
(2e �h)z 2

c +
żczc

H
+ ....

which removes terms proportional to the equation of motion. Since M2 also gives quadratic cor-
rections to z action, the above field redefinition generates additional cubic terms. Therefore, the
last term in 5.16 is a combination of the cubic part generated by M2 and the terms generated by the
redefinition. The soft correlator is given by (where ns is given by 4.11),

hz (kkk111)z (kkk222)z (kkk333)ikkk111!0 =

 
H2

4ecsM2
pl

!2 
11
2

e �2h +
e
2

c2
s +4

M2
2

H2 c2
s

✓
3
2
� h

e

◆!
1
k3

1

1
k3

2

=� (ns �1)hz (kkk111)z (���kkk111)ihz (kkk222)z (���kkk222)i

(5.17)
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5.2.1 Soft limits for mixed correlators

We classify the operators in the EFT into two classes, Cubic and Purely Cubic operators. Cubic
operators are those which contribute to hz z i or hggi, as well as the mixed bispectra, while purely
cubic operators contribute only to the latter. We take two cubic operators from 4.4 as examples:

(((111)))
RRR

ddd444x
p
�g

M2
pl

M5
(3)RdddKKK :

Since dK contains both dN and Ni, i.e. the ADM constraint variables, they get modified and are
now given by:

dN =
ż
H

+
2∂ 2z a�2

M5H
(5.18)

Ni =∂i

 
� z

H
a�2 + e∂�2ż +

2ez a�2

M5

!
(5.19)

Note that the two equations above are valid only when H
M5

⌧ 1 i.e. they’re 1st order expressions
in 1/M5. Using this, the corrections to the quadratic and cubic actions for ggz are given up to first
order in 1/M5 by:

Oz z =
Z

4
M2

pl

M5
a∂ 2z

 
eż � ∂ 2z

H
a�2

!
(5.20)

Oggz =
Z M2

pl

4M5

 
a

ġi jġi j

H
∂ 2z �2a�1 ∂lgi j∂lgi j∂ 2z

H
+ ea∂lgi j∂lgi jż �2e ˙gi j∂lgi j∂lz

!
(5.21)

(5.22)

The correction to the scalar power spectrum is given by,

dPz =�
M2

pl

M5

H3

4e2M4
plk3 (5�3e) (5.23)

For perturbation theory to work here, the quadratic correction dPz must be small compared to
Pz (k) = H2

4eM2
plk

3 . We henceforth assume that H
M5e ⌧ 1 so that the enhancement to the power

spectrum remains small. This also ensures that we can expand the action (as well as the ADM
constraints) in powers of M and the analysis above holds. In the soft limit, Oggzk!0

= 0 i.e its con-
tribution to the mixed correlator in the soft limit vanishes at leading order. However, the following
“exchange diagram” diagram gives a non-zero contribution:
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Figure 5.1: The MT (Maldacena term) vertex is the usual cubic ggz vertex of the Maldacena action

where the Maldacena term refers to the mixed cubic vertex (z gg) computed in [14]. This
3-point correlator is a sum of two terms,

hg(kkk111)g(kkk222)z (kkk333)ikkk333!0 = 2
⇣
hg(kkk111)g(kkk222)z (kkk333)iLR,kkk333!0 �hg(kkk111)g(kkk222)z (kkk333)iRR,kkk333!0

⌘
(5.24)

where R and L indicate the time and anti-time orderings of the interaction Hamiltonian respectively.
For instance, RR means both vertices are time ordered (See [44] for more details on these notations
and conventions). The RR contribution is given by 1

hg(kkk111)g(kkk222)z (kkk333)iRR,kkk333!0=
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(5.25)

1The results given from here on do not include the divergent terms of the type: limh!0
cos(kh)

h . These are ignored
while calculating contact diagrams since they contribute only to the imaginary part of the L and R vertices and so, they
get cancelled. Here, however, these terms come from both the vertices of the “exchange” diagram and get multiplied,
because of which they contribute to the real part. However, one can easily check that the contributions from RR,RL,LR
and LL add up to 0.
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where I = gE + log(�kT h0) , h0 ! 0 and kT = Â3
a=1 ka. It is easy to show that the LR contribution

is simply given by,

hg(kkk111)g(kkk222)z (kkk333)iLR =
BMT dPz (k3)

4Pz (k3)
(5.26)

Therefore, the final 3-point function is given by:

hg(kkk111)g(kkk222)z (kkk333)iRR =
BMT dPz (k3)

2Pz (k3)
�2hg(kkk111)g(kkk222)z (kkk333)iRR (5.27)

where BMT is the mixed Bispectrum of the Maldacena cubic action. One can easily check that:

hg(kkk111)g(kkk222)z (kkk333)ikkk333!0 =�
ntPg(k1)Pz (k3)

2Pz (k3)
� 1

2
ntPg(k1)dPz (k3) =�ntPg(k1)dPz (k3) (5.28)

i.e the soft limit 5.6 is satisfied.

(((222)))
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ddd4xxx
p
�g

M2
pl
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7

(3)Ri j
(3)Ri j:

This operator gives the corrections:
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4
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(5.29)

Oz z =
Z

6
M2

pl

M2
7

a�1(∂ 2z )2 Ogg =
Z M2

pl

4M2
7

a�1∂ 2gi j∂ 2gi j (5.30)

The corresponding corrections to the power spectra are,

dPz = 15
M2

pl

M2
7

H4

8M4
ple2 dPg = 5

M2
pl

M2
7

H4

2M4
plk3 dh1h2 (5.31)

Again, as also noted in [24] one should be worried about the Dhz z i
hz z i0

⇠ M2
pl

M2
7

H2/eM2
pl enhancement

of the power spectrum and thus we can remove the correction by taking an extra ((3)R)2 term or
(for the purposes of this thesis )assume that this ratio is small, which places a lower bound on M7.
As pointed out in [24], after the field redefinition gi j ! gi j � ġi jz/H + ... which removes the terms
proportional to the equation of motion in the Maldacena mixed cubic action, and after integration
by parts, we get:

O =
Zp
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pl
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7
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∂ 2gi j∂ 2gi ja�1 + .... (5.32)
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After taking the soft limit zkkk333!0, the terms represented by dots go to 0 at leading order as mentioned
in [24]. The term proportional to e however, does contribute and we have:

DAhz (kkk333)gh1(kkk111)gh2(kkk222)ikkk333!0 =�5
8

M2
pl

M2
7

 
H

Mpl

!6
1
k3

1

1
k3

3
dh1h2 (5.33)

This term 5.32 is not mentioned in [24] and there, the 3-point function in the soft limit is shown
to vanish at O((k1/k3)0). The difference lies in the order of calculations, i.e. whether you compute
and simplify the operator first and then do the in-in computation or just do the in-in computation
for all the terms and add the answers as done in [24]. The difference in the answers arises because
H is not a constant when we simplify the operators but is taken to be time-independent while doing
the in-in integrals. The reason for this is that the in-in integral pick up most of the contribution near
horizon crossing and therefore, it is a good approximation to take H(t) = H⇤ i.e Hubble at horizon
crossing.2 To get the correct soft limit, we should thus always try to eliminate H dependence in the
action and get everything ordered in powers of e,h , as in 5.32, as much as possible before calcu-
lating the correlator. This prescription is also followed in standard Maldacena action calculations
[14]. Proceeding with the calculations, we again have the “exchange diagrams” as before as shown
below. The left one gives a contribution:

DBhz (kkk111)gh2(kkk222)gh3(kkk333)ikkk111!0 =2
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where the first term in the last line just follows from the Maldacena soft limit and the second term
is calculated in Appendix A.2. Calculating the modified spectral tilt of hggi yields:

ent =
1
H

∂t loghggi=�2e �5e
M2

pl

M2
7

H2

M2
pl

(5.36)

2for instance if the operator is O =
R

a3Mpl(M2/H)2ż 3 and we want to compute hz z z i we’ll compute it as follows

hz z z i ⇠
✓

M2

H⇤

◆2 Z 0

�•
dhk2

1k2
2k2

3h4eikT h

i.e. we keep H⇤ outside the integral. There are also multiple factors of H⇤ (and Mpl), which come from a = �1/Hh
and the mode functions that are also taken outside.

31



Adding both the contributions DA and DB gives:

hz (kkk111)gh2(kkk222)gh3(kkk333)iA+B, kkk111!0 =�ent(Pg(k1)+dPg(k1))Pz (k3) (5.37)

The second diagram is just like the one we considered for (3)RdK, and hence adding it to the
previous answer gives:

hz (kkk111)gh2(kkk222)gh3(kkk333)ikkk111!0 =�ent(Pg(k1)+dPg(k1))(Pz (k3)+dPz (k3)) (5.38)

where the equality holds at O((H/Mpl)
6). These calculations for the soft limits of hggz i also hold

for hgz z i and one can verify it for (3)RdK (see Appendix A.3).

Figure 5.2: The MT (Maldacena term) vertex is the usual cubic vertex of the Maldacena action and
Ogg ,Oz z the respective quadratic correction operators from (3)R(3)

i j Ri j

Purely Cubic Operators: We have shown how the soft limits change at the leading order in
soft momenta for cubic operators. However, when we take purely cubic operators, we see from
the derivative structure of dK,dKi j,(3)Ri j,(3)R (which are the building blocks for purely cubic
operators) that we just have 3:

e3
3hzqggi|qqq!0 =e3

3hzqz gi|qqq!0 = 0 (5.39)

B(gqgz )|qqq!0 =B(gqz z )|qqq!0 = e0 (5.40)

where e0 represents the fact that the correlator is 0 as a function without taking kkk111 + kkk222 + kkk333 = 0.
Hence these operators only give O(q2) corrections on the RHS of the soft limits 5.6 and 5.3.

3Note that 5.40 doesn’t work for operators involving terms with 4 indices like (3)Ri jkl . In that case, the
RHS of 5.40 is the same as 5.39. However, in this thesis, we’re only dealing with operators constructed from
(3)Ri j, (3)R,dKi j,dK,dg00 and eNi for which there’s always a ∂ 2 or ∂t acting on gi j, due to which the given limit holds.
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We have thus shown explicitly how the soft limits are obeyed for various higher derivative op-
erators and models (i.e. cs = 1 or otherwise). These provide a consistency check for models
beyond the Maldacena action and as we’ll see next, these have an important role in the boostless
bootstrap of correlators.
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Chapter 6

Boostless Bootstrap

As mentioned in the previous section, one can have EFTs of Inflation where de-sitter boosts are
broken . Even in slow roll inflation, de-sitter boosts are broken where the breaking is proportional
to the slow roll parameters. For such theories, we have to move on from the Conformal bootstrap
program. Naturally, just like the S-matrix bootstrap doesn’t give us the full answer when Lorentz
boosts are broken , we don’t expect that we would be able to completely boootstrap the correlators
using a purely-boundary perspective. As we shall see, we do indeed retain some of the constraints
such as soft limits and the BD initial conditions. For this chapter, we mainly follow the analysis
presented in [23].

6.1 Flat space amplitude limit

Under the assumption that the modes we’re working with are de-sitter mode functions, we get the
following for any operator [25]:

lim
kT!0

hz1z2z3..zni=
(�1)nH p+n�1(p�1)!

2n�1
Re(in+p+1An)

kp
T ’n

a=1 k2
a

(6.1)

where kT = Âa ka and p = Âvertices(degree + no. of derivatives)� 3. For n = 3, i.e. cubic
correlators, we have p equal to the total no. of derivatives in the Hamiltonian. A brief proof is
given below for contact diagrams with n vertices. The proof can be easily extended to exchange
diagrams by viewing them as contact diagrams connected to each other.
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Proof: Let us consider a generic operator given by

O =
Z

a4�s
n

’
a=1

z sad3x dh = (�Hh)4�s
n

’
a=1

z sad3x dh (6.2)

where si is the total no. of derivatives on the ith vertex of the operator and s=Âa sa. Now, we have
the expression for the correlator:
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kp
T ’n

a=1 k2
a

(6.5)

where p = n+ s�3, the terms represented by dots in the second line are subleading in powers of
h and so they’ll not give the leading pole in kT . For n = 3 we have p = s. QED

For p = 0 we will have a logarithm instead of a pole. For such an interaction, we will have

Disc[hzk1z (k2)z (k3)iRe axis] = 2pi[Principle Value] ⇠ A3/e2
3 (6.6)

6.2 Pole Structure of Correlators

In this section, we further review the pole structure of correlators coming from different initial
states. For BD vacuum, the only possible pole structure for contact diagrams is the total energy
pole kT coming from the integrals of the type

R
eikT h . However, as we have shown in previous

sections, we are free to choose any initial state. One obvious choice will be a vacua. For the cubic
scalar inflationary vertex, we have the following correlator [20]:
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(6.7)
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Here, the “physical” poles of the type k1 + k2 � k3 cannot be obviously tied to a physical pro-
cess like scattering. This is because our momentum-conserving delta function is like for 3 particles
all with incoming momenta. Hence, following the same convention, the notion of “energy conser-
vation” here would correspond to the total energy being 0 (with the one energies of the particles
actually being negative of the given energies )and not the other 3 combinations. Note that revers-
ing the momentum directions would not change the magnitude, and so, we can’t associate a set of
momenta (~k1,~k2,�~k3) to the set of “energies” (�k1,�k2,�k3). Moving to 4-point functions, we
take the following exchange correlator for the ż 3/h interaction as an example [28]:

hz (k1)z (k2)z (k3)z (k4)i ⇠
s

’4
a=1 ka
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k3
T (k1 + k2 + s)3 +

6
k4
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12

k5
T (k1 + k2 + s)

+

1
(k1 + k2 + s)3(k3 + k4 + s)3 + cyclic

◆
(6.8)

where s = |~k1 +~k2| as defined before. For a vacua, we will again have extra poles like k1 + k2 � s.
We can also take excited states as initial states. In a way, even a vacua are excited states w.r.t the
BD vacuum. However, we can even take states like a†

p |0iBD. There might be subtleties involved
in projecting the vacuum of the interacting theory onto this state instead of the vacuum of the free
theory (i.e. BD vacuum)in the far past. These are discussed in [28]. Ignoring them, calculating the
3-point correlator for ż 3/h for this state gives:

hz (k1)z (k2)z (k3)z (k4)i ⇠
1

’a ka

 
d 3(~k1 +~p)d 3(~k1 +~k2 +~k3)

(p2 + p3 � p)3 +
d 3(0)

k3
T

+ cyclic+ ....

!
(6.9)

where we have omitted some combinatorial factors for brevity. Hence, we get disconnected struc-
tures in this case. Note that we can’t single out an initial state uniquely based on the pole structures.
A very obvious example of this is the family of a vacua. Another more non-trivial example is tak-
ing the Coherent State, defined by [26, 28](with appropriate normalisation):

a~p |Ci=C(~p) |Ci , C(~p)+C⇤(�~p) = 0 8~p

as the initial state. We see that :

hC|z (k1)z (k2) |Ci=BD h0|z (k1)z (k2) |0iBD =
H2

4ek3
1

d 3(~k1 +~k2)

hC|z (k1)z (k2)z (k3) |Ci=BD h0|z (k1)z (k2)z (k3) |0iBD

(6.10)

where the second line is valid for all interaction hamiltonians.
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6.3 Boostless Bootstrap rules

We use the following rules entailed in [23] to boostrap 3-point functions:

• Symmetry between identical bosons. For instance, hz (kkk111)g(kkk222)g(kkk333)i should be symmetric
under k2 $ k3.

• The amplitude limit mentioned previously.

• Manifest Locality Test(MLT)

∂B

∂k1

�����
k1=0

=
∂B

∂k2

�����
k2=0

=
∂B

∂k3

�����
k3=0

= 0 (6.11)

where B(k1,k2,k3) ⇠ hz1z2z3itrk3
1k3

2k3
3, “tr” signifying that the tensor contractions have

been trimmed. This equation is valid only for local operators. This can be seen easily
by taking the most general local operator O ⇠ z · z (m) · z (n) where n,m denote the no. of
derivatives on z . Suppose qqq is the soft mode. Note that if all three z ’s had derivatives then
the MLT would be trivially satisfied due to powers of q coming from the derivatives. Hence
the non-trivial contribution comes when we have qqq associated with the z with no derivatives.
In this case, the main term to focus on is:

hzqqq!0z z itr ⇠
∂

∂q

Z 0

�•
dh(1� iqh)eikT h |qqq!0 +

∂
∂q

Z 0

�•
dh(1+ iqh)e�ikT h |qqq!0 = 0

where we have omitted the mode functions involving the other 2 momenta. The analysis is
easily extended to correlators with g .

• We’re taking BD vacuum as the initial state. So there are no poles except the kT and 1/k3
a

type poles coming from the mode functions.

• The soft limits discussed in Chapter 5. We are primarily focused on operators present in
the Maldacena action and Purely Cubic operators. This is because for cubic operators not
present in the Maldacena action that modify the power spectra, we have strange exchange
diagrams contributing to the power spectrum and it is more economical to directly do the
in-in calculation there.

Boostraping Maldacena action hgz z i: In the e ! 0 limit, we have the “lorentz invariant” inter-
actions remaining as discussed before. Hence, the amplitude can be directly bootstrapped for this
interaction to give :
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A[1,2,3h]⇠ [21]2[31]2

[23]2
or

h23i2

h31i2h12i2 = eh
i jk2ik3 j (6.12)

where the middle expression is the expression from spinor helicity [45] and h represents the helicity
of the graviton. From the amplitude and bose symmetry rule, we can write an ansatz (where
e1 = k2 + k3, e2 = k2k3 and e3 = k1k2k3) :

hgh(k1)z (k2)z (k3)i=
A0eh

i jk2ik3 j

k2
T e3

3

⇣
e3 + kT (A1e2 +A2e2

1)+A3k2
T e1 +A4k3

T

⌘
(6.13)

The MLT relations give:

MLT for k1 : A1 = 1 A2 = A4

MLT for k2 : A3 +A4 = 0 1+A1 +2A2 = 0
(6.14)

while the soft limit for k1 gives:

A0 =
1

4e
(6.15)

which fixes our correlator completely to be:
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=
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4eM4
pl
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i jk2ik3 j
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T e3
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e3 + k2

T Â
a<b

kakb � k3
T

!
(6.17)

This method can similarly be extended to the pure graviton and pure scalar correlators. As
explained in [23], we still require the SCT ward identities to completely fix the scalar correlator.
For hggz i the interaction is non-local and boost breaking. We shall deal with such interaction next
section.

6.4 Relevant terms for hggz i

Term No. of Derivatives O(e) O(L) or O(Mpl)

(3)R 2 1 M2
pl
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(3)Rdg00 2 1 L2

dKi jdKi j 3 1,e M2
pl

dKi jdKi jdg00 3 1 L2

dKi jdKjkdKki 3 1,e L

dKi jdKjidK 3 1,e L

(3)Ri jdKi j 3 1,e L

(3)RdK 3 1,e L

(3)Ri jdKi jdg00 3 1 L

(3)R(3)
i j Ri j 4 1 1

(3)R(3)
i j Ri jdg00 4 1 1

(3)Ri jdKjkdKki 4 1,e 1

(3)R(3)
i j R jkdKki 5 1,e 1/L

(3)R(3)
i j Ri jdK 5 1,e 1/L

(3)R(3)
i j RdKi j 5 1,e 1/L

(3)R(3)
i j R(3)

jk Rki 6 1 1/L2

(3)R(3)
i j R(3)

i j R 6 1 1/L2

Table 6.1: Quadratic and cubic operators and their contributions to hggz i . The 3rd column
shows what powers of e can be present in the terms generated by the operators, while the last
column shows the coefficients of the operators in terms of some energy scale L. The term in red is
redundant as it can be removed using

R
A(t)(3)Ri jKi j =

R
A(t)(3)RK+ ˙A(t)(3)R/2N+ total derivative,

while the term in blue is present in the Maldacena action. Here dg00 = g00 +1.
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As mentioned before, While writing the operators in Table 6.1, we use covariant objects (i.e.
which are covariant, at least w.r.t. the 3d metric). We also take the operators defined in [18] :

V =
˙dN �Ni∂iN

N
(6.18)

Aµ =
hn

µ—nN
N

(6.19)

where hµn is the 3d spatial metric. Note that using A0 and V we can obtain ˙dN and eNi∂iN, so we’ll
use them instead. Also, using Ñi and ∂iN we can obtain Ai’s contribution to various operators. and
so, we will not use Ai explicitly. For hggz i, only ˙dN is relevant, which is just a higher derivative
operator derived from dN and hence it has not been included in Table 6.1. All the higher derivative
operators will of course be suppressed by an energy or mass scale L. Some of the operators give
non-local terms which we shall discuss below.

6.5 Purely Cubic Local Terms

We take the purely cubic vertex

R(3)
i j dKi jdg00 =

Z
a

L
H

∂ 2gi jġi jż (6.20)

Direct in-in calculation gives:

hz (kkk111)gh2(kkk222)gh3(kkk333)i=
L
H

eh2
i j (kkk222)e

h3
i j (kkk333)k2

1k2
2k2

3
H6

eM6
plk

3
1k3

2k3
3


2

(k1 + k2 + k3)3 +3
k2 + k3

(k1 + k2 + k3)4

�

(6.21)
we have p = 4 for this vertex and 1

A[10,2h2 ,3h3 ]⇠ eh2
i j (kkk222)e

h3
i j (kkk333)k1k2k3(k2 + k3) (6.22)

where we have kept the normalization arbitrary (which contains information about things like L
and e dependence). From this we write an ansatz using the first rule(where kT = k1 + k2 + k3 ,

1note that there’s no way to bootstrap the amplitude since any function of the form [23]4 f (k1,k2,k3), where f is a
degree 4 polynomial, is a valid p = 4 amplitude. Here [ ] is the relevant helicity bracket.
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e1 = k2 + k3, e2 = k2k3 and e3 = k1k2k3):

hz (kkk111)g(kkk222)g(kkk333)i ⇠
eh2

i j (kkk222)e
h3
i j (kkk333)

k4
T e3

3

h
e3k1k2k3(k2 + k3)+ kT (A1e3

2 +A2e2
2e2

1 +A3e2e4
1 +A4e6

1)+

k2
T (A5e2

2e1 +A6e2e3
1 +A7e5

1)+ k3
T (A8e2

2 +A9e2e2
1 +A10e4

1)+ k4
T (A11e2e1 +A12e3

1)

+k5
T (A13e2 +A14e2

1)+A15k6
T e1 +A16k7

T

i

(6.23)

We get the following set of equations after applying MLT and soft limits for various momenta:

Soft limit for k2,k3: A4 = A7 = A10 = A12 = A14 = A15 = A16 = 0 (6.24)

MLT for k2,k3: A3 = A6 = A9 = A11 = A13 = 0 (6.25)

Soft limit for k1: A2 +A5 +A8 = 0 (6.26)

MLT for k1: A1 = 0 3A2 +2A5 +A8 = 0 (6.27)

which fixes our correlator to be:

hz (kkk111)g(kkk222)g(kkk333)i ⇠
eh2

i j (kkk222)e
h3
i j (kkk333)

k4
T e3

3
e2

3 [A2kT + e1] (6.28)

which means we’re able to fix the bispectra up to an overall factor and another arbitrary constant.
This expression agrees with the explicit calculation 6.21 with A2 = 2/3.

6.6 Non-local terms

We have the following non-local terms (see Appendix A.4) at various orders in e and energy scales:

Operator O(e) O(H/Mpl) or O(H/L)
dKi jdKi j e H/Mpl

dKi jdKjkdKki e (H/Mpl)
2(L/Mpl)

dKi jdKjk
(3)Rki e (H/Mpl)

3

dKi j
(3)R jk

(3)Rki e (H/Mpl)
3(H/L)

(For the sake of brevity we have not included the odd parity terms but their contributions are of
the same order as the last 3 terms). The second term in the table gives:

Zp
�g LdKi jdKjkdKki =

Z
�3

4
a3Leġi j ˙g jk∂i∂k∂�2ż (6.29)
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for which the explicit in-in calculation yields:

hz (kkk111)gh2(kkk222)gh3(kkk333)i=�3
2

H6

M6
pl

✓
L
H

◆
eh2

i j (kkk222)e
h3
jm(kkk333)k1ik1m

k2
2k2

3
k3

T e3
3

(6.30)

The non-local term in 6.29 naively doesn’t seem to have a proper flat space counterpart, but as
pointed out in [23], it can be considered to come from a toy model:

S f lat =
Z

d4x e(∂µz )2 � 1
2
(∂iX)2 +

M2
pl

8
(∂µgi j)

2 � 3Leż0

8
X +

3Le
8ż0

X ż 2 +Lġi j ˙g jk∂i∂kX (6.31)

Here z0(t) = �
p

2ef̄(t) is the background value of the scalar field. Integrating out the field
X above gives us an EFT with the desired non-local term, which gives an amplitude (with no of
derivatives, p = 3):

A[10,2h2 ,3h3 ] = eh2
i j (kkk222)e

h3
jm(kkk333)k1ik1m

k2k3

k1
(6.32)

Taking the ansatz as before(the soft limit for k2,k3 has already been taken):

hz (kkk111)g(kkk222)g(kkk333)i ⇠
eh2

i j (kkk222)e
h3
jm(kkk333)k1ik1m

k3
T e3

3


k2k3

k1
e3 +AkT e1e2 +Bk2

T e2

�
(6.33)

applying MLT with respect to k2 and k3 fixes A = B = 0 and hence, the correlator up to an overall
factor, matching with 6.30. Note that as the value of p increases, we’ll get more and more un-
known parameters. Specifically for the non-local terms, we cannot use the MLT w.r.t the non-local
momenta, which removes one condition and increases the no. of arbitrary constants. From the
conditions we have used, one can simply find that:

• For local terms and odd p with p � 3, one has either (p+ 1)(p� 3)/4+ 1 or (p� 3)2/4
parameters (which correspond to either the polarization tensors contracted with each other
or with external momenta) that can’t be fixed (excluding the overall factor). For even p, this
number is either (p2 �2p�4)/4 or (p�4)(p�2)/4.

• For non-local terms and odd p with p � 3, one has either (p2 � 5)/4 or (p� 3)(p� 1)/4
parameters that can’t be fixed (excluding the overall factor). For even p, this number is either
(p2 �4)/4 or (p�2)2/4.
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We want to point out that the source of these non-localities is rooted in the fact that not all metric
components are dynamical variables. Since, we have constraint equations for these non-dynamical
variables, one plugs in their formal solution in the action which can potentially involve inverse
differential operators since the constraint equations are differential equations.

6.7 Extending results to hgz z i

All operators in this case have enough derivatives on g and z so that the soft limits 5.39, 5.40 are
still valid. A similar bootstrap analysis can be carried out for non-local and local terms separately.
One again finds that the non-local terms start appearing at O(e). The operators are summarized in
Table 6.2 below

Term No. of Derivatives O(e) O(L) or O(Mpl)

c(t)dg00 0 e M2
pl

dKi jdKi j 2 1,e M2
pl

dKi j eNi∂ jdg00 2 1,e L2

(3)Ri jdKi j 3 1,e L

dKi jdKjkdKki 3 1,e,e2 L

dKi jdKjidK 3 1,e,e2 L

(3)Ri jdKi jdg00 3 1,e L

dKi j∂idg00∂ jdg00 3 1 L

(3)Ri j eNi∂ jdg00 3 1,e L
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(3)Ri jdKi jdK 4 1,e,e2 1

(3)Ri jdKjkdKki 4 1,e,e2 1

(3)Ri j∂idg00∂ jg00 4 1 1

(3)R(3)
i j Ri jdg00 4 1 1/L

(3)R(3)
i j R jkdKki 5 1,e 1/L

(3)R(3)
i j Ri jdK 5 1,e 1/L

(3)R(3)
i j R(3)

jk Rki 6 1 1/L2

(3)R(3)
i j R(3)

i j R 6 1 1/L2

Table 6.2: Quadratic and cubic operators and their contributions to hgz z i. Again, the blue terms
are Maldacena terms, and the red term is removable by the identity mentioned below Table 6.1.

We take the term (which is the operator O3 in Appendix A.4) :

O = dKi j∂idg00∂ jdg00 ⇠
Z

a
1
L

ġi j∂iż ∂ jż (6.34)

The explicit in-in calculation gives:

hgh(kkk111)z (kkk222)z (kkk333)i= 6
H7

e2M6
plL

eh
i j(kkk111)k2ik3 j

e3k5
T

(6.35)

We have the corresponding flat space amplitude:

A[1h,20,30]⇠ e3eh
i j(kkk111)k2ik3 j (6.36)

which gives us the ansatz for the correlator to be:
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hgh(kkk111)z (kkk222)z (kkk333)i ⇠
eh

i j(kkk111)k2ik3 j

k5
T e3

3

h
e2

3 + kT (A1e2
2e1 +A2e2e3

1 +A3e5
1)+ k2

T (A4e2
2 +A5e2e2

1 +A6e4
1)

k3
T (A7e2e1 +A8e3

1)+ k4
T (A9e2 +A10e2

1)+A11k5
T e1 +A12k6

T

i

(6.37)

Soft limits and MLTs give the following equations:

Soft limit kkk111 ! 0

8
>>><

>>>:

A1 +A4 = 0

A2 +A5 +A7 +A9 = 0

A3 +A6 +A8 +A10 +A11 +A12 = 0

(6.38)

MLT for k1

8
>>><

>>>:

4A1 +3A4 = 0

4A2 +3A5 +2A7 +A9 = 0

4A3 +3A6 +2A8 +A10 �A12 = 0

(6.39)

Soft limit kkk222 ! 0 Already satisfied due to the tensor structure (6.40)

MLT for k2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

5A3 +A2 +2A6 = 0

A3 = 0

A5 +4A6 +3A8 = 0

A7 +3A8 +4A10 = 0

A9 +2A10 +5A11 = 0

A11 +6A12 = 0

(6.41)

which leads to the following correlator with just one arbitrary parameter:

hgh(kkk111)z (kkk222)z (kkk333)i ⇠
eh

i j(kkk111)k2ik3 j

k5
T e3

3


e2

3 +A10

⇣
�2kT e2e3

1 + k2
T (2e2e2

1 + e4
1)+ k3

T (e2e1 �2e3
1)

+k4
T (�2e2 + e2

1)
⌘�

(6.42)

which matches the explicit result 6.35 for A10 = 0.
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6.8 Going to a vacua

In our calculations, we are not compelled to fix the initial condition (and the subsequent evolution)
by taking the Bunch-Davies (BD) vacuum. One can take the well-known family of a vacua [31, 36]
as well since they respect the symmetries of the quasi dS background. Bootstrapping a-vacua
answers directly using the BB is difficult since we don’t have the soft limit conditions such as 5.40,
because of the pole structures mentioned in Section 6.2. However, once we have bootstrapped
B(k1,k2,k3)(as defined above) for BD, we can extend the result to a vacua easily. For a (k-
independent) Bogolyubov transformation (BT), just by noting the form of the mode functions,
which are given by :

uk(h) = a(1� ikh)eikh +b (1+ ikh)e�ikh

|a|2 �|b |2 = 1
(6.43)

we can give an ansatz for the BT bispectra as follows:

BBT (k1,k2,k3,{kkk}) = Re

2

64(a +b )3

0

@y 0
3(k1,k2,k3,{kkk})a⇤3 + Â

cyclic
y 0

3(�k1,k2,k3,{kkk})a⇤2b ⇤

+ Â
cyclic

y 0
3(�k1,�k2,k3,{kkk})a⇤b ⇤2 +y 0

3(�k1,�k2,�k3,{kkk})b ⇤3

1

A

3

75

(6.44)

where y 0
3 is the trimmed cubic wavefunction coefficient in BD vacuum [25, 24]. From the

cosmological optical theorem, if we have odd parity interactions i.e. odd number of momenta
contracted with the polarization tensors, the correlator for BD is 0 and we need the wavefunction
coefficients to get the final answer for BT states. However, for even parity interactions, we have
BBD = y 0

3 and in this case we can get the answers for BT states directly from the BD answers.
Putting a = cosha and b = i sinha , we get the a vacua result. Using this equation to bootstrap
hgggi in a vacua for the Maldacena action, we take the well-known result for BD which was
bootstrapped in [23] (also explicitly calculated in [14]), and get :
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hgh1(kkk111)gh2(kkk222)gh3(kkk333)ia =�2H4

M4
pl

1
(’3

a=1 k3
a)

eh1
ii0 e

h2
j j0e

h3
kk0ti jkti0 j0k0

2

4
 
�kT +

Âkik j

kT
+

k1k2k3

k2
T

!
+

sinh22a
✓
�(�k1 + k2 + k3)+

k2k3 � k1k2 � k1k3

(�k1 + k2 + k3)
� k1k2k3

(�k1 + k2 + k3)2

◆
+ cyclic

#

ti jk = k2id jl + k3 jdli + k1kdi j

(6.45)

which agrees with the explicit in-in result in [46]. We also get the following expression for the
pure scalar correlator:

hz (kkk111)z (kkk222)z (kkk333)ia =
H4

32M4
ple2

1
(’3

a=1 k3
a)

2

642(e �h)Â
a

k3
a + e

0

@Â
a

k3
a + Â

a6=b
k2

akb +8 Â
a>b

k2
ak2

b
kT

1

A+

sinh22a

0

B@2(e �h)Â
a

k3
a + e

0

@Â
a

k3
a + Â

a 6=b
k2

akb + Â
a>b

8
k2

ak2
b

k2 + k3 � k1
+8

k2
ak2

b
k3 + k1 � k2

+

8
k2

ak2
b

k1 + k2 � k3

!1

A

3

75

(6.46)

which agrees with the calculation done in [36]. This demonstrates that the precription given
above indeed works.

Similarly, using the BD results, we get the following for mixed correlators for Maldacena action
in a vacua:

hgh(kkk111)z (kkk222)z (kkk333)ia =
H4

4M4
ple

1
(’3

a=1 k3
a)

eh
i j(k1)k2ik3 j

2

4
 
�kT +

Âkik j

kT
+

k1k2k3

k2
T

!
+

sinh22a
✓
�(�k1 + k2 + k3)+

k2k3 � k1k2 � k1k3

(�k1 + k2 + k3)
� k1k2k3

(�k1 + k2 + k3)2

◆
+ cyclic

# (6.47)
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hz (kkk111)gh2(kkk222)gh3(kkk333)ia =
H4

8M4
pl

1
(’3

a=1 k3
a)

eh2
i j (k2)e

h3
i j (k3)

2

4
 
�1

4
k3

1 +
1
2

k1(k2
2 + k2

3)+4
k2

2k2
3

kT

!

+sinh22a

 
�1

4
k3

1 +
1
2

k1(k2
2 + k2

3)+4
k2

2k2
3

(k2 + k3 � k1)
+4

k2
2k2

3
(k3 + k1 � k2)

+4
k2

2k2
3

(k1 + k2 � k3)

!3

5

(6.48)

To take an example of an odd parity interaction we can take the Weyl action and calculate the
un-trimmed wavefunction coefficient y3 (up to some numerical factors):

S3 =
Z

dhd3xa�5
⇣

∂hP+
i j∂hP+

jk∂hP+
ki �∂hP�

i j∂hP�
jk∂hP�

ki

⌘
(6.49)

where ∂hP±
i j =

1
2
�
∂h(a∂hgi j)⌥ ie jab∂b∂hgia

�
(6.50)

y3 ⇠
k2

1k2
2k2

3
k6

T

0

@eiabe jcdek f geh1
jbeh2

kdeh3
ig k1ak2ck3 f � Â

cyclic
k2k3e jabk1beh1

ia eh2
ki eh3

k j

1

A (6.51)

We can simplify the last equation using the relation: eiabkbeh
ja = �ikhei j. However, we must

keep in mind that while using the ansatz 6.44 we have to take the trimmed part as the one before we
use the relation above to simplify 6.51, i.e we consider the unsimiplified levi-cevita contractions
to be the tensor contractions. Hence we don’t flip the signs of k’s generated from this contraction
while using the ansatz. We also note that 6.51 has multiple tensor contractions and for each con-
traction, the trimmed part obeys 6.44, so we can just add up the answers. This finally gives the
following correlators for arbitrary helicities hi =±1:

hgh1(kkk111)gh2(kkk222)gh3(kkk333)ia ⇠ sinh4aeh1
i j eh2

jkeh3
ki

"
3
k6

T
(h1 +h2 +h3 +h1h2h3)

� Â
cyclic

1
(�k1 + k2 + k3)6 (h1 �h2 �h3 +h1h2h3)

3

5 (6.52)

=) hg�(kkk111)g+(kkk222)g+(kkk333)ia ⇠ sinh4aeh1
i j eh2

jkeh3
ki

1
(k2 + k3 � k1)6 =�hg+(kkk111)g�(kkk222)g�(kkk333)ia

(6.53)

Again, these results match with the explicit calculations done in [47].
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We see that the prescription saves us the effort of doing the cumbersome in-in calculation which
involves simplifying a lot of integrals.
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Chapter 7

Conclusion

In this work, we aimed to understand the mixed graviton and scalar bispectra in the EFT of infla-
tion. A summary of the main results of the thesis is as follows:

• Following the methods prescribed in [11], we wrote a general EFToI and attempted to orga-
nize terms in the order of the number of derivatives on them w.r.t the metric perturbations.
We also clarified the energy scale counting in terms of H/Mi where Mi’s are the UV cut-
offs/high mass scales appearing in our EFTs.

• We gave some general constraints on the EFT parameters, namely the bounds due to small
spectral tilt, unitarity bound in flat space limit and experimental bounds of non-gaussianities
[11]. We gave 2 simple examples where these bounds constrained some of the arbitrary EFT
coefficients.

• We explicitly checked the soft limits 5.5, 5.6 and 5.3 for EFT operators, which change both
the quadratic and cubic action for z or g . These limits as we checked, are obeyed for cubic
operators at leading order in soft momenta and leading order in the “couplings” (i.e. e,h
etc.) and H/Mpl . We clarified some confusion in the literature related to what diagrams to
take and how to organise terms in order to get the correct soft limits. Hence, as expected
from the general derivation of the soft limits [17, 15] (see Section 5.1), they can be extended
to models beyond the standard Maldacena action [14].

• We discussed/reviewed some conformal bootstrap methods and we can readily see that the
approach is definitely less interaction dependent than the boostless bootstrap. However, the
calculations become complicated for arbitrary interactions and hence, these methods might
not be very economical.
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• We attempted to bootstrap the three-point correlators from purely cubic operators, i.e. op-
erators that do not change the quadratic action, by noticing that they don’t contribute to the
soft limit at leading order in soft momenta (see Equations 5.39, 5.40). Using the bootstrap
prescription in [23], we found (as expected) that the number of undetermined parameters
increases with the number of derivatives. Furthermore, this bootstrap method heavily relies
on knowing the interaction hamiltonian since we use the amplitude of the interaction to de-
termine the residue of the total energy pole [25]. Hence, the bootstrap method is more of an
alternative to doing the in-in integrals than an ideal “boundary perspective” bootstrap.

• Since the background symmetry allows us to take a vacua, we have shown that the results of
BD can be readily extended to give the a vacua 3-point correlators if the interaction/action
is parity even. This helps us in bypassing a lot of in-in integrals.

It will be interesting to explore mixed quartic operators for and beyond the Maldacena action and
check the soft limits for these since some exchange diagrams also come into the picture here as
they’re of a similar order in “couplings” and H/Mpl as contact diagrams. The right-hand side of
the soft limits might be tricky to evaluate due to the momentum dependence of the polarization
tensors. We would also like to extend our a vacua results to four-point correlators and explore
the implications of the new kinds of pole structures we get. The approach of calculating 4-point
de-sitter correlators and then taking a leg soft to give 3-point inflationary correlators can also
be discussed in the context of a vacua. Furthermore, we refer to non-attractor models and the
fact that the consistency relations are violated for such models. While the usual Maldacena soft
theorems are indeed violated, for the most common non-attractor models, where there is also a
shift symmetry (since the potential is a constant), there are other soft theorems that hold. They
were derived in [48] using very general tools (Ward identities and OPEs) and rephrased in the EFT
language in [49]. These "shift-symmetric" soft theorem now also involve derivatives of the power
spectrum with respect to time (on top of the derivative with respect to k in Maldacena’s relation).
It can be interesting to explore how these new soft theorems can be used for a “non-attractor
bootstrap”.
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Appendix A

A.1 Calculating the action in Unitary Gauge

From the definitions of the ADM metric variables, we have eNi =�g00Ni = N2Ni. We further write
N = 1+dN and then consider the following quadratic action:

L2 =
p
�gM2

pl

✓
1
2

R(4) +m1dKi
jdK j

i +m2(dK)2 +DdK �M2
pll (t)� c(t)g00

+M1gi j∂i(g00 +1)∂ j(g00 +1)+M2
2(g

00 +1)2 +M3(g00 +1)dK +m(3)
3 R(g00 +1)

⌘
(A.1)

where c(t),l (t) are as defined before. Taking eNi = ∂ic , the equations of motion for N and eNi gives

dN
�
(m1 +3m2 �1)H �M3

�
+(m1 +m2)∂ 2c = ż (m1 +3m2 �1) (A.2)

∂ 2c =
�1

(m1 +3m2 �1)H �M3

⇣
�∂ 2z a�2 + c(t)dN +4M2

2dN �4a�2M1∂ 2dN
⌘
�3ż (A.3)

+
3ż H(m1 +3m2 �1)

(m1 +3m2 �1)H �M3
� 3ż H(m1 +3m2 �1)M3

((m1 +3m2 �1)H �M3)2 (A.4)

To solve these equations, one will have to take m1 +m2 = 0 so that the equations separate.
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A.2 Calculating the RR vertex for
(3)R(3)

i j Ri j

The expression for the diagram where both the vertices are time ordered, i.e. RR vertices [44] after
taking the soft limit is given by:

hgh1(kkk111)gh2(kkk222)z (kkk333)|kkk333!0i|RR =
H6

M6
plk

9
14ek3

3

 
M2

ple
M2

7(4 ·8)
2 ·2 ·2 ·2 eh1

i j (kkk111)e
h2
i j (kkk222)

!

2

4
Z 0

�•

✓
k2

1k2
2e2ik1h � (k1 · k2)

(1� ik1h)(1� ik2h)

h2 e2ik1h
◆ Z 0

h
(1+ ik2h 0)k4

2(1� ik2h 0)

!
dhdh 0+

Z 0

�•

✓
k2

1k2
2 � (k1 · k2)

(1� ik1h)(1+ ik2h)

h2

◆✓Z h

�•
(1� ik2h 0)2k4

2e2ik2h
◆

dhdh 0

#
(A.5)

where we have taken kkk333 ! 0 but have not yet put kkk111 = ���kkk222 for clarity. All the combinatorial
and numerical/coupling factors are in the bracket in the first line. Note that for the Maldacena
vertex, we have not taken the non-local term [14], as that term is 0 (or rather subleading) in the
soft limit. After putting kkk111 =���kkk222 and simplifying we get:

hgh1(kkk111)gh2(kkk222)z (kkk333)|k3!0i|RR =� 15c1H6

16M6
plk

3
1k3

3
(A.6)

A.3 Soft limit of hgz z i for
(3)RdK

The “exchange diagram” is the same as the right diagram in Figure 2 and we have, to the 1st order
in c1:

O2z =
Z

4a
M2

pl

M5
∂ 2z

 
eż � ∂ 2z

H
a�2

!
(A.7)

Ogz z = Maldacena terms +4
M2

pl

M5

 
2

gi ja�1

H
∂i∂ jz ∂ 2z �agi j∂i∂ jz ż

!
(A.8)

This gives a correction to the 3-point function, in the limit kkk111 ! 0

hgh(kkk111)z (kkk222)z (kkk333)i= BLL +BRR �BRL �BLR +Bcontact (A.9)

where the contact vertex is the one from Ogz z . One finds that BRR +BLL = Bcontact and we can
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easily see that

BLR(k1 ! 0) = BRL(k1 ! 0) =
1
2

BMT (k1 ! 0,k2 = k3)dPz (k3)

Pz (k3)
=

3
4

eh
i j(kkk111)

1
k2

2
k2ik2 jPg(k1)dPz (k2)

(A.10)

and hence the soft limit (Equation 5.3) is satisfied.

A.4 Purely Cubic Operators

Here, we give explicit expressions for operators that contribute to the mixed correlators. Note that
for these calculations, we have taken 4.7, 4.8 as the quadratic actions, i.e. the Maldacena quadratic
action. Li’s are the UV cutoffs for each term while c0is are dimensionless quantities.

Purely Cubic Operators for hggz i

O1 =
Z p

�gL2
1dKi jdKi jdg00 =

Z
L2

1a3 1
2H

ġi jġi jż (A.11)

O2 =
Z p

�gL(3)
2 Ri jdKi jdg00 =

Z
L2a

1
2H

∂ 2gi jġi jż (A.12)

O3 =
Zp

�gc(3)3 R(3)
i j Ri jdg00 =

Z
c3a�1 1

2H
∂ 2gi j∂ 2gi jż (A.13)

O4 =
Z p

�gc(3)4 Ri jdKjkdKki =
Z

c4a
✓

1
2

∂ 2gi jġi jż � 1
2H

a�2∂ 2gi j ˙g jk∂i∂kz (A.14)

+
1
2

e∂ 2gi j ˙g jk∂i∂k∂�2ż � 1
4
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4
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(A.15)
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1
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Z 1
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O7 =
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�g
1
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(3)Ri jdKi j
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Z 1
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a�1∂ 2gi jġi j∂ 2z (A.19)

O8 =
Zp

�g
1

L2
8

(3)Ri j
(3)R jk
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Z 1
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✓
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(A.20)
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Purely Cubic operators for hgz z i
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ż ∂i∂ jz � e2a

∂ 2gi j

2
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A.5 Issue with Gauge

The EFT of inflation is written after fixing the time diffs, so naturally, the operators in the EFT do
not respect time diffs. Therefore, they are NOT gauge-invariant. Consider the following operator

p
�g
⇣

dg00(t)
⌘2

(3)R(t) (A.40)

Naively if we just calculate the cubic z interactions coming from this operator, one can easily
see that we get a non-zero answer in the unitary gauge, but zero in the flat gauge. Now, one can
make this operator completely gauge-invariant by introducing the Stueckelberg field, p . The gauge
invariant operator reads

p
�g
✓

∂ (t +p)
∂xµ

∂ (t +p)
∂xn gµn +1

◆2
(3)R(t +p) =

p
�g
h
(1+ ṗ)2g00 +∂ip∂ jpgi j (A.41)

+2g0i∂ip(1+ ṗ)+1
i2

(3)R(t +p) (A.42)

Since we are interested in the cubic vertex, we need the expression for (3)R only up to first order.

(3)R = ∂kGk
ii �∂iGk

ik (A.43)

=�a�2∂ 2gii (A.44)
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The operator becomes

=�
h
(1+ ṗ)2g00 +∂ip∂ jpgi j +2g0i∂ip(1+ ṗ)+1

i2
e�2r∂ 2gii(t +p) (A.45)

Let us evaluate this operator in the two gauges [14]
Flat gauge: df 6= 0

=�6(dN|y=0 � ṗ)2H∂ 2p (A.46)

=�6

 
ż
H

!2

∂ 2z (A.47)

Co-moving gauge: df = 0

=�6
ż 2

H2 ∂ 2z (A.48)

The vertex for z matches in the two gauges as expected. Since, this operator just contains deriva-
tives, at leading order, this gives a vanishing contribution to the local bispectrum.
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