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Abstract

The main focus of this thesis is the ‘Lonely Runner Conjecture’, an open problem that

has remained unsolved for over half a century. The problem comes in di↵erent flavours.

As a result, solving the Conjecture provides us with new information in various fields of

Mathematics.

First, we take a tour of Polyhedral theory and Discrete Geometry. On this tour, we will

have a peek into concepts like ‘Polyhedra’, ‘Ehrhart theory’ and ‘Lattices’, and the field of

‘Geometry of Numbers’. Then, we go over the well-known results about the Conjecture.

While doing so, we shall see a detailed description of the ‘Lonely Runner polyhedron’, and

the results obtained using it. Finally, we make use of the various concepts that we learnt

and obtain a few new results.
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Introduction

Like with a multitude of problems in the world of Mathematics, the ‘Lonely Runner Con-

jecture’ is easy to state but very challenging to solve. The Conjecture states the following:

“Consider n runners on a unit circular track, starting o↵ from a common position. If they

run with constant and pairwise-distinct speeds, then there exists a time t when the ith run-

ner is lonely”.

The Conjecture is important to us due to its relevance to various areas of Mathematics. If

one is able to prove the Conjecture, then it would help us to have a better understanding of

concepts like the chromatic number of special classes of graphs and the covering radius of

polytopes among others.

The origin of the Conjecture, in 1967, was as a problem in Diophantine approximation.

Later, equivalent reformulations as analytic and geometric problems respectively. It wasn’t

until 1996 that the Conjecture was formulated or named as we know it today.

The Conjecture has been approached from a multitude of directions. The one that is

of interest to us is the Polyhedral theory approach. In [5], Beck, Hoşten and Schymura

constructed the ‘Lonely Runner polyhedron’, the protagonist of this thesis. The polyhedron

is defined as follows:

P (n) :=

⇢
x 2 Rk :

ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, 1  i < j  k

�

where n 2 (Z+)k and represents the speeds of the runners. The goal of this thesis is to study

this polyhedron and show that it contains an integer point.

The initial stages of the thesis were all about reading and understanding the work done

in [5]. In order to understand the content of the manuscript, the basics of Convex Geometry,
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Polyhedral theory in particular, had to be clear. This was ensured by going through the first

few chapters of [40]. This is the content of Chapters 1 and 2.

It was hard to improvise on the existing ideas, due to the di�culty in visualising polyhedra

in higher dimensions. As a result, we had to look for other approaches.

As mentioned earlier, the aim is to show that the ‘Lonely Runner polyhedron’ contains

an integer point. This problem can be thought of as an enumeration of integer points in

polyhedra. It turns out that these are the kind of problems that are studied in the field

of ‘Ehrhart theory’. We studied this topic, from [3], hoping to get some ideas. This is the

content of Chapter 3.

This new content wasn’t of much help because the generating functions that we had to work

with were hard to deal with in the case of the ‘Lonely runner polyhedron’. We were back to

square one, looking for new approaches.

Sophisticated techniques weren’t of much help to us. We were back to the basics. We

asked ourselves, ‘What is the simplest non-trivial polyhedron that has a simple-enough

characterization, and can be guaranteed to contain integer points’. It is easy to see that

‘lines’ is the answer to this question. We started looking for conditions on lines that contain

an integer point. During our literature review, no result could be found, other than for lines

in R2. So we sat down to characterize these lines ourselves. We were successful in doing this,

for the class of lines whose direction ratios are rational vectors (check Theorem 3.1.3).

The result introduced us to a new tool, namely ‘Point-lattices’. On studying lattices,

from [12] and [37], we came to know about the field of ‘Geometry of Numbers’ and problems

such as the ‘Shortest Vector’ and ‘Closest Vector’ problems. All of this is the content of

Chapter 4, irrespective of whether they have been employed in our work or are being used

in our ongoing work.

While looking through the work that had been done thus far, we observed that there

was no single source that contained the history of the Conjecture, as well as the di↵erent

approaches that had been taken. Chapter 5 is a brief review of the history and results of

the Conjecture. Due to the relevance of the results in [5] with our work, we provide detailed

descriptions of those results.

We end with Chapter 6 which includes the new results that we obtained during the course

of the past year. Finally, we conclude with other approaches that can be considered, and

2



with a Conjecture of our own, which if proven to be true, would imply the correctness of the

‘Lonely Runner Conjecture’.

Original Contributions

All the results in Chapter 6, Theorem 3.1.3 and Conjecture 7.0.1 are original contributions.

Moreover, Chapter 5 is a complete and brief literature review of the ‘Lonely Runner Con-

jecture’.
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Chapter 1

Preliminaries

1.1 Notation

We first familiarise ourselves with the notation that will be used throughout the thesis.

R : The set of real numbers

Rn : n-dimensional analogue of R
R+ : The set of positive real numbers

(R+ [ {0})n : The positive orthant in Rn

Z : The set of integers

Zn : n-dimensional analogue of Z
Z+ : The set of positive integers

(Z+)n : n-dimensional analogue of Z+

N : The set of natural numbers (Z+ [ {0})
(Rn)⇤ : The dual vector space corresponding to Rn

ei : The ith standard unit vector

e : Sum of standard unit vectors in Rn

B(c, r) : The ball of radius r with centre at c
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#(S) : Cardinality of S

[n] : The index set {1, . . . , n}
GCD(a, b) : The greatest common divisor of a and b

Throughout this thesis, we shall work with the vector space Rn.

1.2 Basic concepts from Convex Geometry

From our course on Linear Algebra, we have a good understanding of Linear combinations

and Linear subspaces. Now, we learn a few relevant definitions.

Definition 1.2.1. An a�ne combination of the points x1, . . . ,xm 2 Rn
is a linear combi-

nation

mP
i=1

aixi such that

mP
i=1

ai = 1.

Definition 1.2.2. A convex combination of the points x1, . . . ,xm 2 Rn
is a linear combi-

nation

mP
i=1

aixi such that ai � 0 and

mP
i=1

ai = 1.

Definition 1.2.3. A conical combination of the points x1, . . . ,xm 2 Rn
is a linear combi-

nation

mP
i=1

aixi such that ai � 0.

Remark 1.2.1. Convex combinations are those linear combinations that are both a�ne

combinations and conical combinations.

Definition 1.2.4. A set S ✓ Rn
is an a�ne subspace (or flat) of Rn

if it contains every

a�ne combination of its points.

Remark 1.2.2. Every non-empty a�ne subspace S ✓ Rn
is the translate of a linear subspace

L ✓ Rn
(i.e, S = v + L, for some v 2 Rn

).

Definition 1.2.5. The a�ne hull of a set S ✓ Rn
, written as aff(S), is the intersection of

all a�ne subspaces that contain S.

Definition 1.2.6. The dimension of an a�ne subspace is the dimension of the corresponding

linear subspace.
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Remark 1.2.3. A point is an a�ne subspace of dimension 0. Similarly, lines and planes in

Rn
are a�ne subspaces of dimension 1 and 2 respectively.

Definition 1.2.7. A set S ✓ Rn
is a convex subset of Rn

if it contains every convex

combination of its points.

Definition 1.2.8. The convex hull of a set S ✓ Rn
, written as conv(S), is the intersection

of all convex sets that contain S.

Definition 1.2.9. The dimension of a convex set is the dimension of its a�ne hull.

Definition 1.2.10. A set S ✓ Rn
is a polyhedral cone (or cone) if it contains every conical

combination of its points.

Definition 1.2.11. A set S ✓ Rn
is a cone if 8 x 2 S, 8 c � 0, cx 2 S.

Definition 1.2.12. The conical hull (or positive hull) of a set S ✓ Rn
, written as cone(S),

is the intersection of all cones that contain S.

Example 1. Consider two points x,y 2 R2
. Then, aff({x,y}) is the line through x and

y. Moreover, conv({x,y}) = [x,y], the line segment joining x and y. If y = cx for some

c � 0, then cone({x,y}) is the ray emanating from 0 and passing through x. If not, then

cone({x,y}) is the region between the rays emanating from 0 and passing through x and y

respectively.

It becomes slightly harder to determine the hulls of three or more points, as there are

many cases to consider.

In the above example, we had written aff({x,y}) etc, and this is the right notation.

However, for simplicity, we shall write aff(x,y).

Definition 1.2.13. n (� 1) points are said to be a�nely independent if their a�ne hull has

dimension (n� 1).

Definition 1.2.14. A hyperplane in Rn
is a set of the form H =

⇢
x 2 Rn :

nP
i=1

aixi = b

�
.

Remark 1.2.4. Hyperplanes in Rn
are a�ne subspaces of dimension (n� 1).

Definition 1.2.15. The sets H+ =

⇢
x 2 Rn :

nP
i=1

aixi � b

�
and H� =

⇢
x 2 Rn :

nP
i=1

aixi  b

�

are called positive and negative closed halfspaces respectively.
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Definition 1.2.16. The minkowski sum of sets P,Q ✓ Rn
is defined to be:

P +Q := {x+ y : x 2 P,y 2 Q}

An easy way to visualise the Minkowski sum of sets P and Q is to place the set P on

every point of Q, and then take the union of the sets.

Example 2. Let P = conv{(0, 0), (1, 0), (0, 1)} and Q = conv{(4, 0), (4, 1), (5, 1), (5, 0)}.
Then, P +Q is given by:

Figure 1.1: Minkowski sum of a triangle and a square

1.3 Basic concepts from Linear algebra and Number

theory

Definition 1.3.1. Gram-Schmidt orthogonalization is the process of determining an orthog-

onal basis
�
b1, . . . ,bn

�
from a set of linearly independent vectors {b1, . . . ,bn} ✓ Rn

such

that span(b1, . . . ,bi) = span
�
b1, . . . ,bi

�
for all i 2 [n].

The process/algorithm for Gram-Schmidt orthogonalization is as follows:

• b1 := b1, and,

• bj := bj �
P
i<j

cijbi, where cij :=
bj · bi����bi

����2
for all j = 2, . . . , n.

Definition 1.3.2. A diophantine equation is a polynomial equation in two/more variables,

with integer coe�cients, such that the solutions are restricted to be integers.

A linear Diophantine equation is a Diophantine equation in which the polynomial equation

is a linear equation.
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We now provide a theorem about linear Diophantine equations. Check [11] for the details

of the proof.

Theorem 1.3.1. The linear Diophantine equation ax+ by = c has a solution if and only if

GCD(a, b)|c. Furthermore, if the system is feasible, then it has infinitely many solutions.

1.4 Basic concepts from Combinatorics

Definition 1.4.1. An ordinary generating function f(t) is a formal power series

f(t) :=
1X

n=0

ant
n

where the coe�cients are given by the sequence a0, a1, . . ..

9
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Chapter 2

Polyhedral theory

Recently, the study of the ‘Lonely Runner Conjecture’ was given a new direction. It is now

being studied from a Polyhedral theory perspective. My work in this thesis is about studying,

what is called the ‘Lonely Runner polyhedron’. In order to work with this polyhedron, we

first must have a hold on basic Polyhedral theory. That is the aim of this chapter.

The content of the chapter is a literature review from [40].

2.1 Basic definitions

Definition 2.1.1. An H-polyhedron is the intersection of finitely many closed halfspaces.

Let A 2 Rm⇥n and b 2 Rm. Then P := {x 2 Rn : Ax  b} is an H-polyhedron.

Example 3. P =

8
><

>:
x 2 R2 :

2

64
2 3

�1 0

0 �1

3

75

 
x1

x2

!


0

B@
5

1

2

1

CA

9
>=

>;
and

Q =

8
><

>:
x 2 R3 :

"
1 �2 0

�1 1 3

#0

B@
x1

x2

x3

1

CA �
 
0

5

!9>=

>;
represent H-polyhedra.
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Definition 2.1.2. A V-polyhedron is a finitely generated convex-conical combination.

Let V 2 Rn⇥m and C 2 Rn⇥l. Then P := conv(V) + cone(C) is a V-polyhedron.

Example 4. P = conv(0, e1, e2, e1 + e2) + cone(e1) represents a strip, that is unbounded in

the positive x1 direction.

Definition 2.1.3. A set P ✓ Rn
is bounded if it contains no rays.

Definition 2.1.4. An H-polytope is a bounded H-polyhedron.

Example 5. P =

8
>>>><

>>>>:

x 2 R2 :

2

66664

1 �4

�5 1

1 7

�1 2

3

77775

 
x1

x2

!
�

0

BBBB@

�7

6

�10

1

1

CCCCA

9
>>>>=

>>>>;

represents an H-polytope.

Definition 2.1.5. A V-polytope is a bounded V-polyhedron.

Let V 2 Rn⇥m. Then P := conv(V) is a V-polytope.

Example 6. P = conv

  
1

�2

!
,

 
�5

0

!
,

 
4

7

!
,

 
�3

3

!!
represents a V -polytope.

2.2 Projection of H-polyhedra and Fourier-Motzkin elim-

ination

Informally speaking, ‘Fourier-Motzkin elimination’ is the analogue of Gaussian elimination,

for a system of inequalities. It can be thought of as an orderly elimination of the variables

of the system of inequalities such that the solutions are unaltered.

Fourier-Motzkin elimination

Consider the system of inequalities Ax  b, where A 2 Rm⇥n and b 2 Rm. To eliminate

xk (k 2 [n]) from the system, first, create the following sets. Define:

V 0 := {i 2 [m] : aik = 0};V + := {i 2 [m] : aik > 0};V � := {i 2 [m] : aik < 0}

12



Create a new system of inequalities as follows:

• For i 2 V 0, include the ith inequality of the original system to the new system, and,

• For (i, l) 2 V + ⇥ V �, include in the new system the inequality

aik

 
nX

j=1

aljxj

!
� alk

 
nX

j=1

aijxj

!
 aikbl � alkbi

The new system of inequalities has a solution if and only if the original system of inequalities

had a solution.

Definition 2.2.1. Let P = {x 2 Rn : Ax  b} be an H-polyhedron. For k 2 [n], the

projection of P along the kth direction is Pk := {(x1, . . . , xk�1, xk+1, . . . , xn) : (x1, . . . , xn) 2
P}.

Theorem 2.2.1. If P ✓ Rn
is an H-polyhedron, then the projection Pk is an H-polyhedron.

Proof. Let P = {x 2 Rn : Ax  b}, where A 2 Rm⇥n and b 2 Rm. Apply Fourier-Motzkin

elimination on the system of inequalities defining P . Let the new system of inequalities

obtained be A0x0  b0. Then, define P 0 := {x0 2 Rn�1 : A0x0  b0}. It su�ces to prove that

P 0 = Pk.

Consider y 2 Pk. By the definition of Pk, there exists x 2 P such that Ax  b and the

projection of x along the kth direction is y. The inequalities defining P 0 are obtained from

the inequalities that define P , and they are independent of xk. As a result, these inequalities

are satisfied by y. Thus, y 2 P 0, and hence, Pk ✓ P 0.

WLOG assume that k = 1 and let V 0, V + and V � be as in Fourier-Motzkin elimination.

Consider x0 = (x2, . . . , xn) 2 P 0. We must show that there exists x1 2 R such that Ax  b,

where x = (x1, . . . , xn) 2 Rn. Define ci := bi �
nP

j=2
aijxj for i 2 [m]. Note that Ax  b can

equivalently be written as:

ai1x1  ci, i 2 [m]

The system of inequalities defining Pk contains the inequalities defining P that are obtained

from V0. Thus, it su�ces to show that:

9 x1 s.t ai1x1  ci, i 2 V + [ V �

13



This is equivalent to:

max
l2V �

cl
ali

 x1  min
i2V �

ci
ai1

() cl
al1

 ci
ai1

, (i, l) 2 V + ⇥ V �

() 0  ai1cl � al1ci, (i, l) 2 V + ⇥ V �

() A0x0  b0

And this holds since x0 2 P 0. Thus, P 0 ✓ Pk, thereby completing the proof.

2.3 Simple polytope families

There are a few simple and well-known families of polytopes. These can be generalized to

any dimension.

1. Standard n-hypercube

We all know of squares and cubes. Their generalization in higher dimensions is the n-

hypercube (Cn). Within the set of all n-hypercubes, the most important is the standard

n-hypercube (⇤n). It can be represented as:

⇤n := {x 2 Rn : 0  xi  1 8 1  i  n}

as well as,

⇤n := conv{{0, 1}n}

2. Standard n-simplex

The n-simplex is a generalization of triangles and tetrahedra. If v1, . . . , vn+1 2 Rn are

(n+ 1) a�nely independent vectors, then the n-simplex generated by these vectors is

conv{v1, . . . , vn+1}. Among n-simplices, the most studied are the standard n-simplices

(4n). They can be represented as:

4n := {x 2 Rn : e · x = 1, xi � 0 8 1  i  n}

14



as well as,

4n := conv{0, e1, . . . , en}

3. n-dimensional pyramid

One might have guessed that these are a generalization of the pyramid. However, these

do not exactly resemble the pyramids with a square bottom face that we know.

In order to construct this new polytope, first consider ⇤n�1 in Rn. Next, add a new

vertex at en and join it to all vertices of ⇤n�1. Thus, these can be represented as:

Pyrn := conv{⇤n�1, en}

The other, slightly more complicated representation is as:

Pyrn := {x 2 Rn : 0  x1, . . . , xn�1  1� xn  1}

4. n-dimensional crosspolytope

This is a generalization of the octahedron. It can be represented as:

⇧n :=

(
x 2 Rn :

nX

i=1

|xi|  1

)

:= conv{±e1, . . . ,±en}

2.4 Representation of polyhedra and cones

From the previous Section, one might wonder why each of those polytopes had two repre-

sentations. A question that comes up automatically is whether the property is true for every

polytope. A more general question would be to ask whether the property holds for every

polyhedron. We shall get answers to these questions in this Section.

We now state results about the representation of polytopes, polyhedra and cones. Check

[40] for further details.

Theorem 2.4.1. P ✓ Rn
is a V-polytope if and only if it is an H-polytope.

15



• •

•

Figure 2.1: V and H representations of a triangle

Theorem 2.4.2. P ✓ Rn
is a V-polyhedron if and only if it is an H-polyhedron.

Theorem 2.4.3. P ✓ Rn
is a cone if and only if it is a finite intersection of closed halfspaces.

We have seen that alternate representations for polyhedra and cones exist. But do we

really need to study both? To answer this, consider Integer programming. When given a

problem, the constraints represent an H-polyhedron. To be able to solve the problem with

ease, the aim, indirectly, is to obtain the V -polyhedron to make our work of determining the

optimal solution simpler.

2.5 Faces of polyhedra

Definition 2.5.1. Let P ✓ Rn
be a polyhedron. A linear inequality

nP
i=1

aixi  b is a valid

inequality for P if it is satisfied by every point x 2 P .

Definition 2.5.2. A face of P is a set of the form F = P \
⇢
x 2 Rn :

nP
i=1

aixi = b

�
, where

nP
i=1

aixi  b is a valid inequality for P .

Note that P and ; are both faces of P . They are obtained from the valid inequalities
nP

i=1
0xi  0 and

nP
i=1

0xi  1 respectively.

Definition 2.5.3. The dimension of a face F is the dimension of its a�ne hull.

Remark 2.5.1. Vertices, edges, ridges and facets are facets of dimension 0, 1, (dim(P )�2)

and (dim(P )� 1) respectively.

Definition 2.5.4. A face F is a proper face if it satisfies F ⇢ P .

16



Theorem 2.5.1. Let P ✓ Rn
be a polyhedron and F be a face of P . Then:

(i) F is a polyhedron, and,

(ii) Every intersection of faces of P is a face of P .

Proof. Let F be defined by the valid inequality
nP

i=1
aixi  b. By the definition of a face:

F = P \
(
x 2 Rn :

nX

i=1

aixi = b

)

Since P and the hyperplane are both polyhedra, they are intersections of finitely many closed

halfspaces. Their intersection is a finite intersection of closed halfspaces, and thus, F is a

polyhedron. Assume that
nP

i=1
cixi  d is a valid inequality of P . Then:

G = P \
(
x 2 Rn :

nX

i=1

cixi = d

)

Since both
nP

i=1
aixi  b and

nP
i=1

cixi  d are valid inequalities for P , we have that their sum,

given by
nP

i=1
(ai + ci)xi  (b+ d), is a valid inequality of P . Furthermore,

F \G =

 
P \

(
x 2 Rn :

nX

i=1

aixi = b

)!
\
 
P \

(
x 2 Rn :

nX

i=1

cixi = d

)!

= P \
(
x 2 Rn :

nX

i=1

(ai + ci)xi = b+ d

)

Thus, F \G is a face of P .
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Chapter 3

Enumeration of integer points in

polyhedra

We had mentioned in the previous chapter that the ‘Lonely Runner Conjecture’ is now being

studied using Polyhedral theory. In particular, the idea is to show that the ‘Lonely Runner

polyhedron’ contains an integer point. Alternatively, this check can be done by explicitly

counting the number of integer points in the polyhedron and showing that it is non-zero. In

we chapter, we learn di↵erent techniques that can be used to count the number of integer

points in di↵erent polyhedra.

Most of the content in this chapter is a literature review from [3]. Theorem 3.1.3 is my

own contribution.

3.1 Integer points on lines

Lines, in Rn, are the simplest non-trivial polyhedra that could contain integer point(s). So

we ask, given a line, to determine the number of points that it passes through. We first

consider the simplified version of the problem and consider lines in R2.

Theorem 3.1.1. Let y =
a

b
x+

c

d
, a, c 2 Z, b, d 2 Z+

, where GCD(a, b) = 1 and GCD(c, d) =

1. If d|b, then the line passes through infinitely many integer points and none otherwise.
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Proof. First, assume that d|b. As a result, b = dk where k 2 Z+. Substitute this in the

equation of the line. That gives:

y =
a

dk
x+

c

d
=

a

dk
x+

ck

dk

Equivalently, the equation can also be written as:

(dk)y � ax = ck (3.1)

Note that (3.1) is a linear Diophantine equation. Moreover, GCD(dk,�a) = GCD(b,�a) =

1. Thus, due to Theorem 1.3.1, the equation has infinitely many solutions. Therefore, the

line passes through infinitely many integer points.

Now, assume that b = dk + l, where 0 < l < d. Substituting this in the equation of the line

gives:

y =
a

dk + l
+

c

d

d(dk + l)y = (ad)x+ c(dk + l)

d(dk + l)y � (ad)x = c(dk + l) (3.2)

Note that GCD(d(dk + l),�ad) = d · GCD(dk + l,�a) = d · GCD(b,�a) = d. Since

GCD(c, d) = 1, we have d - c(dk+l). Again, (3.2) is a linear Diophantine equation. However,

in this case, the equation has no solutions. Therefore, the line does not pass through any

integer point.

We provide the following theorem about the classification of lines in R2, without proof.

Check [30] for more details.

Theorem 3.1.2. Every line in R2
belongs to one of the following classes: (a) has a rational

slope and does not pass through any integer point, (b) has a rational slope and passes through

infinitely many integer points, (c) has an irrational slope and does not pass through any

integer point, (d) has an irrational slope and passes through exactly one integer point, and,

(e) parallel to the y-axis and passes through infinitely many integer points or no integer point.

Now, we go back to studying lines in Rn (n � 2). We looked at the literature for results

similar to Theorem 3.1.1 for lines in Rn. However, we weren’t able to find anything. So we

made it a priority to determine such a characterization.
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Our first thought was to try and generalize the result and proof of Theorem 3.1.1. How-

ever, lines in R3 or higher do not have an equation as simple as the slope-intercept form

of lines in R2. Instead, their equation is given by the parametric equation of a line or the

symmetric equation of a line. This meant that we had to look for other options.

Definition 3.1.1. The equation of a line in symmetric form is given by

x1 � a1
r1

=
x2 � a2

r2
= . . .

xn � an
rn

= t

where a = (a1, . . . , an) is a point on the line and r = (r1, . . . , rn) represents the direction

ratios of the line.

Remark 3.1.1. Due to the parameter t in the equation of a line, r can be multiplied by a

real number without a↵ecting/changing the line. Due to this, m 2 Qn
can be converted to

m 2 Zn
.

Looking at the symmetric form of a line, we asked, “What if we equate the terms corre-

sponding to coordinates i and j, convert to equations similar to that in slope-intercept form

and use the method from Theorem 3.1.1?” In order to do this, we would have to solve a

system of linear Diophantine equations, and this is not easy. So we were back looking for

other options.

Theorem 3.1.3. Let a =
p

q
r + s, p 2 Z, q 2 Z+, r, s 2 Zn

. Then the line passing through a

and having direction ratios r passes through infinitely many integer points.

Proof. The equation of the line is given by:

x1 �
✓
pr1
q

+ s1

◆

r1
= . . . =

xn �
✓
prn
q

+ sn

◆

rn
(3.3)

Equate the terms corresponding to the ith and nth coordinates. That gives:

xi �
✓
pri
q

+ si

◆

ri
=

xn �
✓
prn
q

+ sn

◆

rn

21



The equation can be rewritten as follows:

xi =
ri
rn

xn +
rnsi � risn

rn
(3.4)

Note that sn + crn 2 Z 8 c 2 Z. On substituting this in (3.4), we get that xi 2 Z for all

i 2 [n]. Thus, the line passes through infinitely many integer points.

One can verify that a characterization similar to that in Theorem 3.1.2 holds for lines in

Rn. In the general case, the classes will depend on both a and r.

3.2 Pick’s Theorem

In Section 3.1, we looked at lines (one-dimensional polyhedra). We were able to characterize

lines based on the number of integer points that they pass through. What about two-

dimensional polyhedra, simply called polygons? We simplify our question and consider

polygons all of whose vertices are rational and are in R2. First, we shall solve this for a

special class of polygons.

Definition 3.2.1. An integral polytope is a polytope all of whose vertices have integral

coordinates.

Definition 3.2.2. A simple polygon is a polygon that does not intersect itself and does not

have holes.

Theorem 3.2.1 (Pick’s Theorem). Let P be a simple, integral polygon. If A, I and B denote

the area of P , the number of integer points in int(P ) and the number of integer points on

@P respectively, then A = I +
B

2
� 1.

Proof. We give an outline of the proof. Check [29] for complete proof.

First, show that the theorem holds for primitive triangles (i.e, triangles whose integer points

are their three vertices). An important point in this step is showing that primitive triangles

have area
1

2
. This is based on showing that any partition of a coordinate rectangle (i.e,

rectangle whose edges are all parallel to the coordinate axes) into primitive triangles requires

the same number of primitive triangles. Finally, show that any simple, integral polygon can
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be partitioned into primitive triangles. Again, these partitions are invariant of the number

of primitive triangles that are required. Thus, the statement is true.

Remark 3.2.1. Using Pick’s Theorem, we can compute the total number of integer points

contained in an integral polygon using the formula I +B = A+
B

2
+ 1.

Pick’s Theorem doesn’t extrapolate to polygons with rational vertices. Enumeration in

the general case requires more sophisticated techniques and we study that next.

3.3 Integer-point enumerator and Ehrhart series

We are now back in Rn. Let P ✓ Rn be any polytope.

Definition 3.3.1. For t 2 R+
, the tth-dilate of a polytope P is given by

tP := {tx : x 2 P}

Definition 3.3.2. The integer-point enumerator of the tth dilate of a polytope P is :

LP (t) := #(tP \ Zn) = #

✓
P \ 1

t
Zn

◆

Definition 3.3.3. The Ehrhart series of P is the ordinary generating function

EhrP (x) = 1 +
X

t�1

LP (t)x
t

where Lp(t) is the integer point enumerator.

3.3.1 Standard n-hypercube

Let P = ⇤n and t 2 Z. Note that tP \ Zn = {x 2 Zn : 0  xi  t 8 1  i  n}. Thus, we

have L⇤n(t) = (t+ 1)n. Furthermore, we have:

EhrP (x) = 1 +
X

t�1

(t+ 1)nxt =
X

t�0

(t+ 1)nxt =
1

x

X

t�1

tnxt
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The generating function isn’t simplified. That can be done using what are called ‘Eulerian

numbers’. Check [3] for more details.

The n-hypercube was a simple example. Next, consider a slightly more complicated case.

3.3.2 Hyperplane restricted to positive orthant

Let P =

⇢
y 2 (R+ [ {0})n :

nP
i=1

miyi = t2,mi 2 Z+, i 2 [n]

�
, where t 2 N. Then, we have

tP \ Zn =

⇢
x 2 Zn :

nP
i=1

mixi = t,mi 2 Z+, i 2 [n]

�
. Assume that GCD(m1, . . . ,mn) = 1,

because otherwise, a solution might not exist to the Diophantine equation for some values

of t. This would make our work harder. Now, using properties of geometric series, we have:

✓
1

1� zm1

◆
. . .

✓
1

1� zmn

◆
=

 
X

x1�0

zm1x1

!
. . .

 
X

xn�0

zmnxn

!
=
X

x1�0

. . .
X

xn�0

zm1x1 . . . zmnxn

Note that the coe�cient of zt in the above power series gives the number of ways of writing

t as a non-negative integer combination of x1, . . . , xn�1 and xn. For simpler calculations, the

equation can be divided throughout by zt, and then, the constant would give us the required

quantity. Thus, we have:

LP (t) = const

  
X

x1�0

zm1x1

!
. . .

 
X

xn�0

zmnxn

!
z�t

!

It is hard to determine LP (t) in the general case. Work has been done on solving the problem,

and it is now known for a few cases. Check [3] for more information.

3.3.3 Standard n-simplex

Let P = 4n and t 2 Z. In order to use what we obtained in Subsection 3.3.2, we must

transform the defining inequality of t4n to an equation. So, we consider:

x1 + . . .+ xn + xn+1 = t
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where xn+1 2 N. Using the earlier result, we have:

L4n(t) = const

0

@
 
X

x1�0

zx1

!
. . .

0

@
X

xn+1�0

zxn+1

1

A z�t

1

A

= const

✓
1

(1� z)n+1zt

◆

= const

 
1

zt

X

i�0

✓
n+ i

n

◆
zi
!

=

✓
n+ t

n

◆

Furthermore,

Ehr4n(x) = 1 +
X

t�1

✓
n+ t

n

◆
xt =

X

t�0

✓
n+ t

n

◆
xt =

1

(1� x)n+1

It is possible to evaluate LP (t) and EhrP (z) for the remaining families of polytopes in a

previous Section. Check [3] for more details.

3.3.4 Rational polytopes

Lemma 3.3.1. If S ✓ Rn
is a set and v 2 Zn

, then #(S \ Zn) = #((S + v) \ Zn).

Proof. Consider u 2 Rn. Observe that u 2 S () (u + v) 2 (S + v). Thus, there is a

bijection between the points of S and (S+v). As a consequence, there is a bijection between

the integer points of S and (S + v). The result follows.

Due to Lemma 3.3.1, we consider a rational polytope in the non-negative orthant. Such

a polytope can be defined by:

P = {x 2 Rn

�0 : Ax = b}

where A 2 Zm⇥n and b 2 Zm. Moreover, we have:

tP = {x 2 Rn

�0 : Ax = tb}

25



Up until now, all polytopes in this Section were defined by one equation. However, in this

case, we have m � 1 distinct equations. Thus, we require z = (z1, . . . , zm) to be a vector.

Let A = [c1, . . . , cn]. Then, using similar arguments as earlier, we have:

1

(1� zc1) . . . (1� zcn)ztb
=

 
X

l1�0

zl1c1

!
. . .

 
X

ln�0

zlncn

!
1

ztb

Let zc := zc11 . . . zcm
m
. On multiplication, every term would have the form l1c1+. . .+lncn�tb =

Al� tb. Using this, we have:

LP (t) = const

✓
1

(1� zc1) . . . (1� zcn)ztb

◆

Finally, we have:

EhrP (x) =
X

t�0

✓
1

(1� zc1) . . . (1� zcn)ztb

◆
xt

Note that the terms (1 � zci) are all independent of t, the summation variable. Using this

fact, we have:

EhrP (x) = const

 
1

(1� zc1) . . . (1� zcn)

X

t�0

xt

ztb

!
= const

✓
1

(1� zc1) . . . (1� zcn)

1

1� x

zb

◆
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Chapter 4

Lattices and the Geometry of

Numbers

We saw in the previous chapter that the ‘Lonely Runner Conjecture’ can be proven by

showing that the ‘Lonely Runner polyhedron’ contains an integer point. The set of integer

points is a special type of set, called a lattice. Moreover, every lattice is inherently related

to the set of integer points. This gives us a reason to study lattices.

The study of lattices leads to the emergence of a new field in Mathematics, known today

as the ‘Geometry of Numbers’. We learn the two main theorems of this field. Finally, we

study two well-known problems on lattices. We learn a few bounds related to these problems.

This chapter is a literature review. The content is obtained from [37] and [12].

4.1 Lattice

Definition 4.1.1. Let V = [v1, . . . ,vm] 2 Rn⇥m
be linearly independent vectors in Rn

. The

point lattice generated by V is

⇤(V) = {Vx : x 2 Zm} =

(
mX

i=1

xivi : xi 2 Z
)
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Definition 4.1.2. A point-lattice is a discrete additive subgroup of Rn
.

Theorem 4.1.1. The two definitions are equivalent.

Proof. Let the point-lattice ⇤ be generated by the linearly independent vectors v1, . . . ,vm.

Let x =
mP
i=1

aivi and y =
mP
i=1

bivi be elements of ⇤. Then (x � y) =
mP
i=1

(ai � bi)vi 2 ⇤.

Thus, ⇤ is an additive subgroup. Next, complete the basis for Rn. Let the new basis vectors

be wm+1, . . . ,wn. Note that, f(a1, . . . , an) : Rn ! Rn defined by f(a1, . . . , an) =
mP
i=1

aivi +

nP
i=m+1

aiwi is a continuous bijection. Moreover, f maps Zm⇥{0}n�m to ⇤. Since Zm⇥{0}n�m

is isomorphic to Zn, ⇤ is discrete i↵ Zn is. Note that B(0, r)\Zn = {0} 8 0 < r < 1. Hence,

Zn is discrete.

We do not prove the other direction, only a heuristic. First, determine a lattice point v1

such that there is no lattice point in the line segment (0,v1). Alongside following the same

procedure, to determine vi, we must ensure that vi /2 span{v1, . . . ,vi�1}, where 2  i  n.

In some cases, it is could happen that there exists no vm+1 (m + 1  n) that satisfies the

requirements.

Example 7. ⇤([e1, . . . , en]) = Zn
is the simplest and most well-known point lattice. The set

of even integers is another point-lattice.

From here on, ‘lattices’ will always represent ‘point lattices’. A lattice can informally be

thought of as a uniform arrangement of points in space. These sets have a variety of real-

world applications, mainly in Cryptography, Crystallography and Error-correcting codes.

The definition of lattice seems very similar to that of a vector space. Since vector spaces

are generated by a basis, can we expect something similar for lattices? Yes, lattices are

generated by a basis, as the following definition shows.

Definition 4.1.3. The matrix V in Definition 4.1.1 is called a basis of the lattice ⇤(V).

Definition 4.1.4. The rank of a lattice ⇤(V) is the cardinality of its basis V.

Definition 4.1.5. The dimension of a lattice ⇤(V) is the length of every basis vector.

The rank and dimension of the lattice in Definition 4.1.1 are m and n respectively.

Definition 4.1.6. A lattice is full-dimensional if its rank equals its dimension.
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Definition 4.1.7. An n⇥n matrix is unimodular if it has integer entries and its determinant

is ±1.

Remark 4.1.1. The determinant of the inverse of a unimodular matrix is ±1.

Along with having determinant ±1, the inverse of a unimodular matrix has all entries in

Z. This is immediate using the relation between the inverse of a matrix and the minors of

the matrix. Thus, the inverse of a unimodular matrix is unimodular.

Lemma 4.1.2. If U is a unimodular matrix and f : Zn ! Zn
if given by f(x) = Ux, then

f is a bijection.

Proof. Let x,y 2 Zn. Assume that f(x) = f(y). Due to Remark 4.1.1, U�1 exists. Multi-

plying by U�1 gives U�1(Ux) = U�1(Uy). Thus, x = y and hence, f is injective.

Now, assume that z 2 Zn. Then, z = U(U�1z) = f(U�1z). Hence, f is surjective.

We know that vector spaces do not have a unique basis. Moreover, the bases are related

to each other by invertible matrix multiplication. Do similar properties hold for lattices?

We see that they do, as the following theorem shows.

Theorem 4.1.3. Let V,W 2 Rn⇥n
be the basis of lattices ⇤(V) and ⇤(W) respectively.

Then, ⇤(V) = ⇤(W) if and only if W = VU, where U 2 Zn⇥n
is a unimodular matrix.

Proof. First, assume that W = VU, with U being a unimodular matrix. Due to Lemma

4.1.2, we get:

⇤(W) = {Wx : x 2 Zn} = {V(Ux) : x 2 Zn} = {Vy : y 2 Zn} = ⇤(V)

Now, assume that ⇤(V) = ⇤(W). Then, any column of V is an integral combination of the

columns of W, and vice versa. These integral coe�cients generate matrices A and B such

that W = VA and V = WB. Then, we have:

det(V) = det(WB) = det(VAB) = det(V) · det(A) · det(B) (4.1)

Moreover, we have det(A), det(B) 2 Z. Combining this fact with (4.1) gives det(A) =

det(B) = ±1.
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Theorem 4.1.3 shows that the rank of a lattice is basis-independent.

Definition 4.1.8. Let ⇤1,⇤2 ✓ Rn
be lattices. ⇤1 is a sub-lattice of ⇤2 if ⇤1 ✓ ⇤2.

Example 8. The set of even integers and the set of multiples of four are lattices. Moreover,

the latter is a sub-lattice of the former.

We now have the first concept related to lattices that does not have an analogue for

vector spaces.

Definition 4.1.9. The fundamental parallelepiped of the lattice ⇤(V) is the polytope P (V) =

{Vx : x 2 [0, 1)n}.

Definition 4.1.10. Let ⇤ = ⇤(V) ✓ Rn
for some basis V 2 Rn⇥m

. The determinant of the

lattice is defined by det(⇤) =
p

det(VTV).

Remark 4.1.2. If ⇤ = ⇤(V) is a full-dimensional lattice, then V is a square matrix. Thus,

det(⇤) =
p
det(VT ) · det(V) =

p
det(V) · det(V) = | det(V)|.

We learnt earlier that lattices do not have a unique basis. Since the determinant of a

lattice is defined in terms of a basis, is this quantity basis-independent? It is easy to see that

this is the case using the relation between the bases of a lattice.

Lemma 4.1.4. If P (V) ✓ Rn
is a fundamental parallelepiped of the full-dimensional lattice

⇤ = ⇤(V) ✓ Rn
, then vol(P (V)) = det(⇤).

Proof. By the definition of a fundamental parallelepiped, we have:

P (V) = {Vx : x 2 [0, 1)n}

Note that x ! Vx is a linear transformation. Using properties of linear transformations,

we have vol(P (V)) = vol([0, 1)n) · | det(V)| = | det(V)| = det(⇤).

We shall now learn the concept of the dual of a lattice. Based on the trend in the chapter,

one might feel that this concept is the analogue of the dual of a vector space. Unfortunately,

that isn’t the case.
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Definition 4.1.11. The dual of a lattice ⇤ is ⇤⇤ := {x 2 span(⇤) : x · y 2 Z 8 y 2 ⇤} ✓
(Rn)⇤.

Remark 4.1.3. ⇤⇤
is a lattice. Moreover, (⇤⇤)⇤ = ⇤.

Definition 4.1.12. Let V 2 Rm⇥n
be a basis of ⇤(V). The dual basis, W, is the basis that

satisfies:

(i) span(W) = span(V), and, (ii) VTW = I.

Theorem 4.1.5. If V 2 Rn⇥m
is a basis of ⇤ ✓ Rn

, then W = V(VTV)�1
is a basis of ⇤⇤

.

Proof. ConsiderWy 2 span(W). Then,Wy = V((VTV)�1y) 2 span(V). Thus, span(W) ✓
span(V). Next, consider Vx 2 span(V). Then, Vx = V(VTV)�1VTVx = W(VTVx) 2
span(W). Hence, span(V) ✓ span(W).

Finally, note that VTW = VTV(VTV)�1 = I.

Using the definition of the dual of a lattice and Theorem 4.1.5, it is easy to see that

det(⇤) · det(⇤⇤) = 1 for any lattice ⇤.

4.2 Geometry of Numbers

‘Geometry of Numbers’ is a unique and slightly new field of Mathematics. It was founded

by a single high-impact result, namely Minkowski’s Convex Body Theorem. Today, the field

involves using geometric arguments to study problems from Number theory.

4.2.1 Minkowski’s Convex Body Theorem

It is natural to expect the existence of an integer point (or lattice point) in a convex set of

large volume. However, it wasn’t until 1899 that a rigorous statement was made regarding

this question. The result we are discussing is Minkowski’s Convex Body Theorem.

It turns out that the ‘Lonely Runner polyhedron’ is large enough and has interesting

properties. So, we are studying this theorem in the hope that it could be of some help.
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Lemma 4.2.1. If n 2 Z+
, V > 1 and d > 0, then 9 t0 s.t (t+ 1)nV > (t+ 2d)n 8 t � t0.

Proof.

lim
t!1

(t+ 1)nV

(t+ 2d)n
= lim

t!1

V tn +
nP

i=1

�
n

i

�
tiV

tn +
nP

i=1

�
n

i

�
ti(2d)n�i

= V > 1

Since the limit of the ratio is more than one, 9 t0 s.t (t+ 1)nV > (t+ 2d)n 8 t � t0

Definition 4.2.1. A set S ✓ Rn
is said to be centrally symmetric about p 2 S if p + x 2

S () p� x 2 S.

Theorem 4.2.2 (Minkowski’s Theorem). Let S ✓ Rn
be a bounded, convex set and ⇤ be a

full-dimensional lattice in Rn
. If S is centrally symmetric about 0 and vol(S) > 2n · det(⇤),

then S \ (⇤ \ {0}) 6= ;.

Proof. We prove it for ⇤ = Zn. The same proof can be generalized for any ⇤.

Consider S 0 =
1

2
S. Note that V = vol(S 0) =

✓
1

2

◆n

· vol(S) > det(Zn) = 1. Define

S 0
u := S 0 + u where u 2 ⇤.

Note that ⇤n, the standard n-cube, is a fundamental parallelepiped of ⇤. Now, consider t⇤n

with t = dt0e and t0 is as Lemma 4.2.1. Then, #(t⇤n \⇤) = (t+ 1)n. Moreover, the sum of

volumes of the (t+ 1)n translates of S 0 centred at these lattice points is (t+ 1)nV .

Let d be the maximum distance of any point of S 0 from 0. Then the (t + 1)n translates of

S 0 are contained in a cube of side length (t + 2d), and thus of volume (t + 2d)n. By the

definition of t, we have (t + 1)nV > (t + 2d)n. Hence, the translates of S 0 overlap in the

n-cube. Moreover, every translate of S 0 overlaps with some other translate.

Assume that S 0
0 \ S 0

v = p, where v 2 ⇤. Then, (p � v) 2 S 0
0. Furthermore, (v � p) 2 S 0

0

since S 0
0 is centrally symmetric about 0. Moreover, S 0

0 is convex. Thus, S 0 = S 0
0 contains

1

2
v, the midpoint of p and (v � p). Therefore, v 2 S, thereby proving the result.

Remark 4.2.1. Consider S = (�1, 1)n and ⇤ = Zn
. Note that V ol(S) = 2n · det(⇤), and S

does not contain any non-zero integer points. Thus, the strict inequality in the statement.

Remark 4.2.2. If S is closed in addition to being bounded, due to its compactness, it su�ces

if the volume of S satisfies the weakened condition vol(S) � 2n · det(⇤).
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Remark 4.2.3. Minkowski’s Theorem has applications in Number theory. It can be used

to prove Fermat’s Theorem on the sum of two squares, Lagrange’s four-square Theorem and

Dirichlet’s Theorem on simultaneous rational approximation among others.

4.2.2 Blichfeldt’s Theorem

The field of ’Geometry of Numbers’ had been founded and the community was excited due

to the wide variety of applications of the field. However, it took almost two decades before

the next breakthrough. In 1914, Blichfeldt proved what can be thought of as the geometric

analogue of the Pigeonhole principle. The result was so powerful that it led to proofs of

results that couldn’t be proved using Minkowski’s Theorem.

Lemma 4.2.3. Let A,B ✓ Rn
and x 2 Rn

. Then A \ (B + x) = ((A� x) \B) + x.

Proof. Note that

z 2 A \ (B + x) (4.2)

() (z 2 A) ^ (z 2 (B + x))

() ((z� x) 2 (A� x)) ^ ((z� x) 2 B)

() (z� x) 2 (A� x) \ B

() z 2 ((A� x) \B) + x (4.3)

Combining (4.2) and (4.3) proves the result.

Definition 4.2.2. Let S be a set and ⌃ be a �-algebra on S. A function m : ⌃ ! (R [
{�1,1}) is a measure if it satisfies:

(a) m(E) � 0 8 E 2 �,

(b) m(;) = 0, and,

(c) {Ei}1i=1 is a countable collection of pairwise-disjoint sets in ⌃ =) m

✓ 1̀

i=1
Ei

◆
=

1P
i=1

m(Ei).
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Theorem 4.2.4 (Blichfeldt’s Theorem). Let S ✓ Rn
be a bounded set and ⇤ be a full-

dimensional lattice in Rn
. If vol(S) > m · det(⇤), then there exist at least (m + 1) distinct

points in S, namely x0, . . . ,xm, such that (xi � xj) 2 ⇤ for 0  i, j  m.

Proof. Let P be a fundamental parallelepiped of ⇤ and µ be a translation invariant measure

on Rn. Suppose that vol(S) = µ(S) > m · det(⇤). Note that:

Rn =
a

u2⇤

(P + u)

S \ Rn = S \
 
a

u2⇤

(P + u)

!

S =
a

u2⇤

(S \ (P + u))

=
a

u2⇤

(((S � u) \ P ) + u) (4.4)

where the third equality follows from the distributive property of union and intersection of

sets while the last equality follows from the property in Lemma 4.2.3. Applying µ to (4.4)

gives:

µ(S) = µ

 
a

u2⇤

(((S � u) \ P ) + u)

!

=
X

u2⇤

µ(((S � u) \ P ) + u)

=
X

u2⇤

µ((S � u) \ P ) (4.5)

where the second equality follows from the additive property of measures while the last

equality follows from the translation invariance property of µ.

We noted earlier that µ(S) > m · det(⇤). Combining this with (4.5) gives:

X

u2⇤

µ((S � u) \ P ) > m · det(⇤) (4.6)

Combining (4.6) with Lemma 4.1.4, we have:

X

u2⇤

µ((S � u) \ P ) > m · µ(P ) (4.7)
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Note that Su := ((S � u) \ P ) ✓ P for u 2 ⇤. From (4.7), we have that the sum of

volumes of subsets of P is more than m times the volume of P . Thus, we can conclude

that at least (m+ 1) of the subsets must intersect. Let these subsets be Sz0 , . . . , Szm , where

z0, . . . , zm 2 ⇤. Assume that y 2 (Sz0 \ . . . \ Szm). By definition, there exists xi 2 S such

that y = (xi � zi) for 0  i  m. Then, (xi � xj) = (zi � zj) 2 ⇤ for 0  i, j  m, thereby

proving the result.

Remark 4.2.4. As with Minkowski’s Theorem, the volume condition can be weakened if S

is a closed set.

4.2.3 Alternate proof of Minkowski’s convex body Theorem

Proof. Consider the set S 0 :=
1

2
S. Then, vol(S 0) > det(⇤). By Theorem 4.2.4, there exist

distinct points
1

2
x,

1

2
y 2 S 0 such that

✓
1

2
x� 1

2
y

◆
2 (⇤ \ {0}).

Note that x,y 2 S. Furthermore, �y 2 S since S is centrally symmetric about 0. Finally,

using the convexity of S, we have

✓
1

2
x+

1

2
(�y)

◆
2 S, thereby proving the result.

4.3 Lattice problems and relevant bounds

Lattice problems are a set of very hard-to-solve Optimization problems. Their hardness led

to the development of new Cryptography schemes called ‘Lattice-based Cryptosystems’. We

shall study two such problems, namely the ‘Shortest Vector problem’ and the ‘Closest Vector

problem’.

Definition 4.3.1. Given a lattice ⇤, the length of the shortest vector is defined to be

�1(⇤) := inf{||x|| : x 2 {⇤ \ {0}}}.

It is not necessary that we restrict ourselves to the length of the shortest vector. Instead,

we could consider the ith shortest vector.

Definition 4.3.2. Let ⇤ ✓ Rn
be a full-dimensional lattice. For 1  i  n, the ith successive

minimum, �i(⇤), is defined to be the smallest r > 0 such that ⇤ contains at least i linearly

independent vectors of length at most r.
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Mathematically, the above can be written as:

�i(⇤) := inf{r � 0 : dim(span(⇤ \ B(0, r))) � i}

Remark 4.3.1. By definition of �i(⇤), we have 0 < �1(⇤)  �2(⇤)  . . .  �n(⇤).

Note that, by the definition of successive minima, we have that 8 i 2 [n] there exists

vi 2 ⇤ such that ||vi|| = �i(⇤). Thus, the successive minima of a lattice are achieved.

4.3.1 Shortest vector problem (SVP)

Consider a lattice ⇤ and fix a norm. The shortest vector problem asks for the shortest non-

zero vector of ⇤. A modification of SVP asks for the length of the shortest vector, and this

is more relevant to Mathematicians.

It is known that both these versions of the problem are hard to solve. Moreover, what

matters to us, with regard to the ‘Lonely Runner Conjecture’, is whether the length of the

shortest vector is within a certain quantity. For this reason, we study bounds on the shortest

vector.

Theorem 4.3.1. Let ⇤ ✓ Rn
be a full-dimensional lattice. If

�
b1, . . . ,bn

�
are the Gram-

Schmidt vectors corresponding to the basis (b1, . . . ,bn) of ⇤, then �1(⇤) � min
i=1,...,n

����bi

����.

Proof. Let x =
nP

i=1
aibi be a lattice point. Let k 2 [n] be the largest index such that

ak 6= 0. Define the subspace S := span{b1, . . . ,bk�1} = span
�
b1, . . . ,bk�1

 
. Then, since

ak+1, . . . , an = 0, we have x 2
�
S + akbk

�
. Hence, ||x|| � d(x, S) = |ak| ·

����bk

���� �
����bk

���� �
min
i2[n]

����bi

����. Combining this with �1(⇤) � ||x|| 8 x 2 (⇤ \ {0}) proves the result.

As mentioned earlier, we are interested in whether the length of the shortest vector is less

than some known distance. So it makes sense that we study upper bounds on the shortest

vector.

Lemma 4.3.2. If Bn(0, r) ✓ Rn
, then vol(Bn(0, r)) �

✓
2rp
n

◆n

.
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Proof. Note that


� rp

n
,

rp
n

�n
✓ Bn(0, r). Moreover, vol

✓
� rp

n
,

rp
n

�n◆
=

✓
2rp
n

◆n

.

Thus, vol(Bn(0, r)) �
✓

2rp
n

◆n

.

Theorem 4.3.3. If ⇤ ✓ Rn
is a full-dimensional lattice, then �1(⇤) 

p
n · (det(⇤)) 1

n .

Proof. Consider B := Bn(0,
p
n · (det(⇤)) 1

n ). Due to Lemma 4.3.2, vol(B) � 2n · det(⇤).
Since B is a closed set, by Remark 4.2.2, B contains a non-zero lattice point. The length of

this vector is bounded above by the radius of B. Thus, �1(⇤) 
p
n · (det(⇤)) 1

n .

Applying Theorem 4.3.3 to ⇤ and ⇤⇤ and then using the relation between the determi-

nants of ⇤ and ⇤⇤ gives �1(⇤) · �1(⇤⇤)  n.

Theorem 4.3.4. If ⇤ ✓ Rn
is a full-dimensional lattice, then

✓
nQ

i=1
�i(⇤)

◆ 1
n


p
n·(det(⇤)) 1

n

Proof. Let b1, . . . ,bn 2 ⇤ be the vectors that attain the successive minima. Let b1, . . . ,bn

be the corresponding Gram-Schmidt vectors. Consider the ellipsoid:

E :=

8
<

:x 2 Rn :
nX

i=1

 
x · bi

�i(⇤)
����bi

����

!2

 1

9
=

;

Let int(E) be the interior of E. Consider x 2 (⇤ \ {0}). Let k 2 [n] be the largest index

such that �k(⇤)  ||x||. Then, x 2 span{b1, . . . ,bk} = span
�
b1, . . . ,bk

 
(by Definition

1.3.1). This gives:

nX

i=1

 
x · bi

�i(⇤)
����bi

����

!2

=
kX

i=1

 
x · bi

�i(⇤)
����bi

����

!2

� 1

(�k(⇤))2

kX

i=1

 
x · bi����bi

����

!2

=
||x||2

(�k(⇤))2

� 1
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where the first inequality follows from �1(⇤)  . . .  �k(⇤), the following equality follows

from the fact that

(
b1����b1

���� , . . . ,
bk����bk

����

)
is a set of orthonormal spanning vectors for x and

the final inequality follows from the definition of k. Thus, we have x /2 int(E). Since

int(E) \ (⇤ \ {0}), by Theorem 4.2.2, we have:

2n · det(⇤) � vol(int(E))

= vol(E)

= vol(Bn(0, 1)) ·
nY

i=1

�i(⇤)

�
✓

2p
n

◆n

·
nY

i=1

�i(⇤)

where the second equality follows from the formula for the volume of an n-dimensional

ellipsoid and the last inequality follows from Lemma 4.3.2. Rearranging the terms proves

the result.

4.3.2 Closest vector problem (CVP)

Given a lattice ⇤ ✓ Rn and a target vector t 2 Rn, the closest vector problem asks for the

lattice point that is closest to t. As with the shortest vector problem, a modification of this

problem asks for the length of the closest vector.

We now provide a result about a bound on the distance of a target vector from a given

lattice. Check [27] for more details and the proof.

Theorem 4.3.5. Let ⇤ ✓ Rn
be a full-dimensional lattice, and t be the target vector. If

b1, . . . ,bn is a basis of ⇤ and b1, . . . ,bn are the corresponding Gram-Schmidt vectors, then

d(t,⇤)  1

2

✓
nP

i=1

����bi

����2
◆ 1

2

.
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Chapter 5

The Lonely Runner Conjecture:

History

This chapter shall be a literature review of the ‘Lonely Runner Conjecture’. We provide

proofs for the results mentioned in the latter part of the Chapter, while most of the Chapter

is an ensemble of past results with relevant references. We shall try to keep it as complete

as possible.

5.1 Introduction

In 1967, Jörg M. Wills[39] proposed the following:

Conjecture 5.1.1. Let n � 2 be an integer. Then there exist pairwise-distinct irrational

numbers a1, . . . , an and real number b1, . . . , bn such that the system of inequalities

|qai � pi � bi| 
n� 1

2(n+ 1)
, i 2 [n]

cannot be solved such that pi 2 Z for all i 2 [n] and q 2 Z.

This was a Number theoretic statement involving Diophantine approximation. Wills

showed that the statement holds for n = 2. Then, in 1971, Betke and Wills[6] proposed the

following:
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Conjecture 5.1.2. Let d(x,Z) represent the distance of a real number x to the nearest

integer. For each n 2 Z+
, define:

(n) = inf sup
q2Z

min
1in

d(q↵i,Z)

where the infimum is over all n-tuples (↵1, . . . ,↵n) 2 (R \Q)n. Then, (n) � 1

n+ 1
.

This new statement has more of an analytic flavour and doesn’t seem related to Con-

jecture 5.1.1. However, in [6], it was shown that Conjectures 5.1.1 and 5.1.2 are equivalent.

Then, T.W Cusick[17], in 1974 provided a completely new statement, which seems unrelated

to both the previous statements. It goes as follows:

Conjecture 5.1.3. Let C :=

✓
⇤n �

1

2
e

◆
✓ Rn

. Consider the set:

�C :=

⇢
1

n+ 1
C +

✓
m1 +

1

2
, . . . ,mn +

1

2

◆
: mi 2 N, i 2 [n]

�

Then any line through the origin and the positive orthant intersects �C.

In [17], the equivalence of Conjectures 5.1.2 and 5.1.1 was shown. Moreover, Conjecture

5.1.3 was shown to be true for n = 3. Alongside this proof, Cusick gave a new proof for

n = 2. Furthermore, a characterization of a simple family of critical lines (i.e, lines that do

not intersect the interior of any cube) is provided, besides the examples of critical lines.

Conjecture 5.1.3 and other similar statements by Cusick, are what were termed ‘View-

Obstruction problems’ and they were more of Geometry than Number theory.

It wasn’t until 1996[8] that the Conjecture attained its name. Before getting to the nomen-

clature, consider the following:

Conjecture 5.1.4. Consider (l+1) pairwise-distinct positive real numbers m0, . . . ,ml. For

any 0  i  l, there is a real number t such that the distance t(mj � mi) to the nearest

integer is at least
1

l + 1
, for all 0  j  l, j 6= i.

Imagine yourself, and l other friends, running on a circular track of unit circumference.

Moreover, each one of you starts from a common point on the track and runs with a constant
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speed of mi rounds per unit time. The Conjecture then states that you shall be lonely
⇣
i.e,

at least
1

l + 1
distance from every other runner

⌘
sometime in the future, and so will each of

your friends. This is how the Conjecture acquired its title, ‘The Lonely Runner Conjecture’.

Example 9. Consider m0 = e, m1 = ⇡ and m2 = '. First, with t = 3.3, we see that

the distance of t(⇡ � e) and t(' � e) to their nearest integers are at least
1

3
. Similarly, the

statement holds for t(e � ⇡) and t(' � pi) for t = 1, and for t(e � ') and t(⇡ � ') with

t =
p
5.

It is the (mj �mi)s that matter and not the mi’s themselves. Consequently, the speed of

a runner can be subtracted from all the speeds. This leaves a runner stationary and possibly,

some runners with negative speeds. However, running with a negative speed is equivalent

to running in the opposite direction, with the same magnitude of speed. Combining the

stationarity of a runner with the symmetry of the track, all resultant speeds can be assumed

to be positive. A similar argument can be made for the time t as well. Thus, an equivalent

version of the Conjecture is:

Conjecture 5.1.5. Given k positive real numbers n1, n2, . . . , nk, there is a non-negative real

number t such that the distance of each tni, 1  i  k to its nearest integer is at least
1

k + 1
.

From here on, n will always represent a vector of speeds of the k runners. Furthermore,

we shall assume that n1 � n2 � . . . � nk > 0.

Let d(x,Z) be the distance of a real number x to its nearest integer. It is easy to see that:

d(x,Z) = min{x� bxc, dxe � x}

Lemma 5.1.6. Let x 2 R and y 2

0,

1

2

�
. Then, d(x,Z) � y () {x} 2 [y, 1� y].

Proof. It follows easily from the definition of d(x,Z) and the definition of {x}.

Using Lemma 5.1.6 the Conjecture can be mathematically written as:

9 t 2 R+ [ {0} s.t {tni} 2


1

k + 1
,

k

k + 1

�
for all i 2 [k]
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The fractional part in this formulation is the main reason behind the Conjecture remaining

an open problem.

Now, we define a concept that will be used throughout.

Definition 5.1.1. t is a suitable time for n if at time t all runners are in the region
1

k + 1
,

k

k + 1

�
.

Next, we have a look at an example for this version of the Conjecture.

Example 10. Consider n = (9, 7, 6, 1). Each of the runners starts from a common position,

and they run in the clockwise direction. Up to t =
11

10
, the fastest runner runs a total distance

✓
9⇥ 11

10

◆
= 9.9 rounds. So the position of the fastest runner at t =

11

10
is

9

10
th of a round.

This isn’t a part of the interval


1

5
,
4

5

�
. Hence,

11

10
is not a suitable time for n.

t = 0 t = 11
10

9

7

6

1

t = 22
7

9

7

6

1

t = 651
200

9

7

6

1

Figure 5.1: Positions of runners with speeds (9, 7, 6, 1) at di↵erent times
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Similar calculations show that t =
22

7
is not a suitable time, while t =

651

200
is. These

conclusions can be verified from Figure 5.1.

It is easy to see that the latest formulation of the Conjecture holds for k = 1, 2. In case

of k = 1, let t =
1

2n1
and the statement holds. A similar argument, on a case-by-case basis,

proves the Conjecture for k = 2. For higher values of k, the number of cases is too high and

thus, this method isn’t very helpful.

Next, we go through a tour of the history of the Conjecture, seeing a variety of approaches

that have been used to tackle the problem. More importantly, it will be a brief literature

review of most of the known results.

5.2 Known results and approaches

The proofs for k = 1, 2 were such that they couldn’t be modified to prove the Conjecture

for k � 3. Cusick[19], in 1982, gave a new proof for k = 2. This was the first such proof

that was extendable to higher dimensions. In the same paper, the new procedure was used

to prove the Conjecture for k = 3.

Later, in 1983, Cusick and Pomerance[18], with some computer assistance, proved the Con-

jecture for k = 4. Then, Biennia et al[8], in their famous paper provided a simpler proof

using nowhere-zero flows.

Next, it was Bohman, Holzman and Kleitman[10], who in 2001 thought of the Conjecture as

a covering problem and proved the Conjecture for k = 5. In the same paper, they provided

the first reduction of the Conjecture. For a long time, the problem was always attempted

under the assumption that the speeds are real numbers. They showed that it su�ces to prove

the Conjecture for n 2 (Q+)k. However, their result had a drawback. The reduction to the

case of rational vectors in k dimensions was conditional on the correctness of the Conjecture

for rational vectors in (k � 1) dimensions. Soon, in 2004, Renault[35] gave a simpler proof

of the Conjecture for k = 5.

Finally, Barajas and Serra[1] studied the regular chromatic number of distance graphs and

proved the k = 6 case. Moreover, they provide a new proof for k = 4.

Recently, in 2017, Schymura and Malikiosis[28] provided equivalent versions of the Con-

43



jecture in terms of the motion of Billiards balls in k-hypercubes, lines in higher dimensional

tori and the covering radius of lattice zonotopes. Using these, they proved that the Conjec-

ture holds for all n if it holds for n 2 (Z+)k. Moreover, it is easy to see that the Conjecture

is true for an, where a 2 Z+ if it is true for n 2 (Z+)k satisfying GCD(n1, . . . , nk) = 1.

A large portion of the results that were proven earlier wrongly assumed that Wills had re-

duced the work to prove the Conjecture for n 2 (Z+)k. In fact, the reduction by Wills was

conditional on the Conjecture being true for all vectors in lower dimensions. However, with

this result in [28], the wrong assumption in those papers was taken care of.

Every monotonic sequence of positive real numbers has what is called its lacunarity. It

is defined as follows:

Lacunarity := inf
i�1

8
><

>:

ni

ni+1
if ni � ni+1, i � 1

ni+1

ni

if ni  ni+1, i � 1

We say a sequence is L-lacunary if the infimum is at least L. Every n can be thought of

as a finite sequence. Pandey[32], in 2009, proved that
2(k + 1)

k � 1
-lacunary integer sequences

are instances. The same year, Barajas and Serra[2] improved the result when they showed

that 2-lacunary integer sequences are instances. Then, in 2011, Dubickas[23] showed that✓
1 +

33 log(k)

k

◆
-lacunary integer sequences are instances if k is very large. Later, in 2016,

Czerwiński[21] showed that n is an instance if (n \ {n1}) is
k + 1

8e
-lacunary. Recently, Beck,

Hoşten and Schymura[5] showed that n is an instance if (n \ {n1, nk}) is
2k

k � 1
-lacunary

and GCD(nk�1, nk)  k � 1

k + 1
(nk�1 � nk). In order to prove the Conjecture using this line

of thought, one would either have to show that 1-lacunary integer sequences are instances.

Otherwise, it can be done by showing that the complement set of sequences from any of the

above results are instances.

Another relevant quantity is the gap of loneliness. It is the quantity (k) from Conjec-

ture 5.1.2. It is easy to see that (k) � 1

2k
. In 1994, Chen[13] improved the lower bound

to
1

2k � 1 + 1
2k�3

. Then, in 1999, Chen and Cusick[14] showed that the bound can be in-

creased to
1

2k � 3
when k � 4 and (2k � 3) is a prime number. In 2016, Perarnau and
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Serra[33] provided a new proof for the existing bound, alongside improving the bound to
1

2k � 2 + o(1)
, for su�ciently large k. Recently, Terence Tao[38] gave the best-known bound

of

✓
1

2k
+ o

✓
log k

k2(log log k)2

◆◆
, for su�ciently large k. If one wishes to prove the Conjecture

using this approach, they would have to get the bound up to
1

k + 1
.

Kravitz[31] considered a stronger version of the Conjecture. It was conjectured that (k)

belongs to T (k) :=

⇢
s

ks+ 1
: s 2 Z+

�
or (k) � 1

k + 1
(with the latter being the condition

in the statement of the ‘Lonely Runner Conjecture’). The statement was proven uncondi-

tionally for k  3. Moreover, it was shown to be true for k = 4, 6 under the assumption

that the fastest runner is very fast compared to the other runners. However, in a recent

International gathering, Fan and Sun[24] provided a counterexample of this stronger version

in the case of k = 4. Furthermore, the stronger version was amended and it now states that

(k) belongs to S(k) :=

⇢
s

ks+ 1
: s 2 Z+, l 2 [k]

�
or (k) � 1

k + 1
. Very recently, Giri and

Kravitz[25] studied S(k) and showed that the set of accumulation points of S(k) is S(k� 1).

Alongside the result mentioned earlier, Tao[38] also showed that it su�ces to prove the

Conjecture under the assumption that the speeds are all of the order nO(n2). Moreover, it was

shown that the Conjecture is true if all speeds are at most 1.2k. Furthermore, it was noted

that a desired goal is to increase the multiplier from 1.2 to 2, establishing it as a su�cient

condition to prove the Conjecture. Recently, Bohman and Peng[9] showed that it is possible

to get the multiplier arbitrarily close to 2 when the number of runners is su�ciently large.

Very recently, Pomerance[34] proved a slightly stronger result.

For a long time, there have been thoughts on whether the ‘Lonely Runner Conjecture’ has

been put forth in the most general way possible. As per [5], Wills recently Conjectured that

the runners need not start from a common point, and still there would be a time when all

of them are at least
1

k + 1
distance from a fixed origin. This statement, as with the ‘Lonely

Runner Conjecture’ is easy to prove for k = 1. Along with the new statement, a proof was

provided for k = 2 in [5]. In 2020, Cslovjecsek, Malikiosis, Naszódi and Schymura[16] studied

the covering radius of polytopes and proved that the new statement holds for k = 3. More

recently, in 2022, Ri↵ord[36] defined the view-obstruction version for the new statement and

provided new proofs for k = 2, 3.

It has been known for some time that (k, k � 1, . . . , 1) is a tight instance (the bound
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from the Conjecture is attained) for all k 2 Z+. However, it wasn’t known whether there

are any other instances. Goddyn and Wong[26] studied these special instances. Using com-

puter codes, they obtained an infinite family of new tight instances (with integer speeds)

and characterized most of them.

Czerwiński and Grytczuk[22] proved that every n is almost lonely (i.e, there exists a time t

such that there is at most one runner in the forbidden region of the track).

Czerwiński[20] considered random sets of speeds with a stronger version of the Conjecture.

Using Fourier Analysis, it was proven that random speed sets are very lonely (i.e, each of

the runners is very close to the point that is diametrically opposite to the starting position)

with probability tending to one.

Chow and Rimanić[15] formulated the analogous version of the Conjecture in terms of func-

tion fields, and proved it for certain cases.

Henceforth, in addition to n1 � n2 � . . . � nk > 0, we shall assume that n 2 (Z+)k.

The rest of the chapter is a detailed explanation of results that have been obtained using

Polyhedral theory, especially the ‘Lonely Runner polyhedron’.

5.3 Entry of Polyhedral theory

Consider an arbitrary k-dimensional cube whose form is as in Conjecture 5.1.3. It would be

defined as:

C(m) := m+


1

k + 1
,

k

k + 1

�k

=

⇢
x 2 Rk : mi +

1

k + 1
 xi  mi +

k

k + 1
8 i 2 [k]

�

where m 2 Nk.

Next, consider the line that has direction ratios n and passes through the origin, where

n 2 (Z+)k. This line would be defined by:

l :=
x1

n1
= . . . =

xk

nk
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The view-obstruction version of the Conjecture states that l \ C(m) 6= ; for some m 2 Nk.

Due to a previous result, we have n 2 S(m), where S(m) is the conic (or non-negative) span

of C(m).

What are the spanning vectors of S(m)? It is easy to see that each spanning vector passes

through a vertex of C(m). So we assume the spanning vectors to be all vectors of the form:

(k + 1)m+ {1, k}k

Using these, the generating hyperplanes of S(m) can be determined. Then:

S(m) =
�
x 2 Rk : ((k + 1)mi + 1)xj  ((k + 1)mj + k)xi, 1  i, j  k

 

=

⇢
x 2 Rk :

(k + 1)mj + 1

(k + 1)mi + k
 xj

xi

 (k + 1)mj + k

(k + 1)mi + 1
, 1  i < j  k

�
(5.1)

=

⇢
x 2 Rk :

1

(k + 1)xj

� k

(k + 1)xi

 mi

xi

� mj

xj

 k

(k + 1)xj

� 1

(k + 1)xi

, 1  i < j  k

�

(5.2)

where the inequalities in (5.1) are obtained by combining inequalities corresponding to the

ordered pairs (i, j) and (j, i), and removing the trivial inequalities obtained from i = j. Now,

consider the following polyhedron.

P (n) :=

⇢
x 2 Rk :

1

(k + 1)nj

� k

(k + 1)ni

 xi

ni

� xj

nj

 k

(k + 1)nj

� 1

(k + 1)ni

, 1  i < j  k

�

(5.3)

=

⇢
x 2 Rk :

ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, 1  i < j  k

�

The polyhedron P (n) is called the ‘Lonely Runner polyhedron’.

On comparing (5.2) and (5.3), we observe that:

m 2 P (n) () n 2 S(m) (5.4)

Combining (5.4) with Conjecture 5.1.3, we get the following:

Theorem 5.3.1. Let n 2 (Z+)k. Then, the following are equivalent:

(i) n is a Lonely Runner instance,
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(ii) 9 m 2 Nk
such that n 2 S(m), and,

(iii) P (n) \ Zk 6= ;.

Most of the results in the rest of this thesis shall be based on showing (iii). First, we

give an alternate proof of the Conjecture for k = 2.

Theorem 5.3.2. If n 2 (Z+)2, then it is an instance.

Proof. Let n = (n1, n2). Due to a result mentioned in Section 5.2, we can assume that

GCD(n1, n2) = 1. In this case, the ‘Lonely Runner polyhedron’ is given by:

P (n) =

⇢
x 2 R2 :

n1 � 2n2

3
 n2x1 � n1x2 

2n1 � n2

3

�
(5.5)

The length of the interval in (5.5) is:

l =
2n1 � n2

3
� n1 � 2n2

3
=

n1 + n2

3

Note that l � 1 when n1 � 2 and n2 � 1 and thus, the interval is at least a unit long. This

ensures the existence of an integer in the interval.

By Bezout’s Lemma, 9 y1, y2 2 Z such that 1 = n2y1 � n1y2. Furthermore, m = n2(my1)�
n1(my2) = n2x1 � n1x2 for any m 2 Z. Thus, the integer in the interval can be written as

n2x1 � n1x2 for x1, x2 2 Z and hence, P (n) \ Z2 6= ; for n 6= (1, 1).

The only case that remains is n1 = n2 = 1. Here, the polyhedron is given by:

P ((1, 1)) =

⇢
x 2 R2 : �1

3
 x1 � x2 

1

3

�

Observe that 0 is in the interval. Moreover, 0 satisfies the compound inequality. Thus,

0 2 P ((1, 1)). Therefore, P (n) \ Z2 6= ; 8 n 2 (Z+)2.

We now use the ‘Lonely Runner polyhedron’ to obtain new families of instances.

Theorem 5.3.3. If n satisfies n1  knk, then it is an instance.
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Proof. The polyhedron is given by:

P (n) =

⇢
x 2 Rk :

ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, 1  i < j  k

�

Since n1 � ni for i � 1 and nj � nk for j  k, we have
n1 � knk

k + 1
� ni � knj

k + 1
for 1  i <

j  k. Moreover, due to the hypothesis, we have 0 � n1 � knk

k + 1
. Combining the inequalities

results in:
ni � knj

k + 1
 0 8 1  i < j  k (5.6)

Now, consider the interval obtained from the ordered pair (i, j). The lower endpoint is a

negative quantity due to the above equation, whereas the right endpoint is always positive

since ni � nj for i < j. Thus, 0 lies in the interval. Moreover, 0 satisfies each of the

inequalities of P (n) and thus, we have 0 2 P (n). Therefore, n is an instance.

Theorem 5.3.4. If there exists a positive integer  k + 1 that does not divide any of

n1, . . . , nk, then n is an instance.

Proof. Assume that p is an integer satisfying the conditions in the theorem statement. Note

that

⇢
ni

p

�
2

1

p
,
p� 1

p

�
✓


1

k + 1
,

k

k + 1

�
8 i 2 [k]. Thus, n is an instance due to the

statement of Conjecture 5.1.5.

Corollary 5.3.5. If all components of n are odd integers, then it is an instance.

Proof. Since all components of n are odd, 2 does not divide any ni, i 2 [k]. The result holds

due to Theorem 5.3.4.

Theorem 5.3.6. Let E := {j 2 [k] : nj is even} and O := [k]\E. If n satisfies max{nj :

j 2 O}  k � 1

2
min{nj : j 2 E} and max{nj : j 2 E}  kmin{nj : j 2 E}, then it is an

instance.

Proof. Define

mj :=

8
<

:

nj

2
if nj 2 E,

nj � 1

2
if nj 2 O
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We show that n satisfies (5.1). First, consider i, j 2 O. In this case,

(k + 1)mj + 1

(k + 1)mi + k
=

(k + 1)
nj � 1

2
+ 1

(k + 1)
ni � 1

2
+ k

=
(k + 1)nj � (k � 1)

(k + 1)ni + (k � 1)
 nj

ni

is true unconditionally. Similarly, it can be shown that the other inequality is satisfied

unconditionally. Next, consider the case where i 2 O and j 2 E. It is easy to see that the

left inequality in (5.1) is true when max{nj : j 2 O}  k � 1

2
min{ni : i 2 E} while the

other inequality is true unconditionally. Next, we assume that i 2 E and j 2 O. The proof

is similar to the previous case. Finally, assume that i, j 2 E. The left inequality in this case

is true when max{ni : i 2 E}  kmin{nj : j 2 E} while the right inequality is satisfied

when max{nj : j 2 E}  kmin{ni : i 2 E}. Therefore, n is an instance.

Corollary 5.3.7. If n is such that each of n2, . . . , nk is odd, then it is an instance.

Proof. First, assume that n1 is odd. Then, n is an instance due to Corollary 5.3.5. Now,

assume that n1 is even. Then, due to Theorem 5.3.6, n is an instance. Thus, the result

holds.

5.3.1 Projection of P (n)

Theorem 5.3.3 required the strong condition that n1  knk. We see whether this condition

can be relaxed and whether new families of instances can be obtained.

First, consider the orthogonal projection of P (n) along the first l coordinates, where l  k.

This new polyhedron, say Ql(n) can be thought of as the set of all points in span(el+1, . . . , ek)

that satisfy the defining inequalities of P (n). With this, the polyhedron is defined by:

Ql(n) :=

⇢
(xl+1, . . . , xk) :

ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, l + 1  i < j  k

�

This polyhedron contains the origin if and only if nl+1  knk.

Now, project P (n) onto the first l coordinates, where l  k. Let this new polyhedron be

Pl(n). Note that p0 = (p1, . . . , pl, 0, . . . , 0) 2 Pl(n) if p = (p1, . . . , pk) 2 P (n).
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Consider a generating inequality of P (n). Assume that i, j  l. The corresponding gener-

ating inequality of Pl(n) remains unchanged in this case. Next, consider i  l and j > l.

In order to determine the corresponding generating inequality, we must substitute xj = 0.

This gives:
ni � knj

k + 1
 njxi 

kni � nj

k + 1

Finally, assume that i, j > l. The generating inequality then becomes:

ni � knj

k + 1
 0  kni � nj

k + 1

The right inequality above holds unconditionally, while the left inequality holds if and only

if nl+1  knk. So, assuming that nl+1  knk, the projected polyhedron is defined by:

Pl(n) :=
n
x 2 Rl :

ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, 1  i < j  l,

ni � knj

k + 1
 njxi 

kni � nj

k + 1
, 1  i  l < j  k

o

With this, if it is shown that Pl(n) contains an integer point, then it implies that P (n)

contains an integer point in the case where n satisfies nl+1  knk. Note that this is a weaker

assumption compared to n1  knk.

Theorem 5.3.8. If k � 3 and n satisfies n2  (k � 2)nk, then it is an instance.

Proof. Consider the projection onto the first coordinate. This polyhedron is P1(n). Next,

note that n2  (k � 2)nk < knk. Thus, it su�ces to show that P1(n) \ Z 6= ;. Observe that

P1(n) =


n1

(k + 1)nk

� k

k + 1
,

kn1

(k + 1)n2
� 1

k + 1

�
. The length, l, of the interval is:

l =

✓
kn1

(k + 1)n2
� 1

k + 1

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

=
n1

k + 1

✓
k

n2
� 1

nk

◆
+

k � 1

k + 1
(5.7)

� n1

k + 1

2

n2
+

k � 1

k + 1

� 2

k + 1
+

k � 1

k + 1

= 1
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where the first inequality follows from the hypothesis while the latter follows from n1 � n2.

Since the interval is more than a unit long, it will contain an integer point. Hence, n is an

instance.

Theorem 5.3.9. If k � 3 and n satisfies n3  (k � 2)nk and n2 � kn3, then it is an

instance.

Proof. Consider the projection onto the first two coordinates, given by P2(n). Since n3 
(k � 2)nk < knk, it su�ces to prove that P2(n) contains an integer point. The defining

inequalities of this polyhedron are given by:

n1

(k + 1)nk

� k

k + 1
 x1 

kn1

(k + 1)n3
� 1

k + 1
n2

(k + 1)nk

� k

k + 1
 x2 

kn2

(k + 1)n3
� 1

k + 1
n1 � kn2

k + 1
 n2x1 � n1x2 

kn1 � n2

k + 1

Let

✓
n2

(k + 1)nk

� k

k + 1

◆
= a and

✓
kn2

(k + 1)n3
� 1

k + 1

◆
= b.

•

•

•

•

•

•

l1l2

x2 = a

x2 = b

k�1
k+1

k�1
k+1

k�1
k+1

k�1
k+1

Figure 5.2: P2(n) under the assumption that n3  knk
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The width of the horizontal strip bounded by lines x2 = a and x2 = b is:

w =
k

k + 1

✓
n2

n3
� 1

◆
� 1

k + 1

✓
n2

nk

� 1

◆

=
n2

k + 1

✓
k

n3
� 1

nk

◆
� k � 1

k + 1

� n2

k + 1

2

n3
� k � 1

k + 1

� 2k

k + 1
� k � 1

k + 1

= 1

where the first inequality follows from n3  (k�2)nk while the latter follows from n2 � kn3.

Since the width is at least a unit, there exists a horizontal lattice line that passes through

the strip. Now, consider the width of the strip along this line. It is given by the horizontal

distance between the lines l1 and l2 and can be computed as:

l =

kn1 � n2

k + 1
� n1 � kn2

k + 1
n2

=
(k � 1)(n1 + n2)

(k + 1)n2

� 2(k � 1)n2

(k + 1)n2

=
2(k � 1)

k + 1

= 1 +
k � 3

k + 1

� 1

where the first inequality follows from n1 � n2 and the latter follows from k � 3. Since the

width along the lattice line is more than a unit, it ensures the existence of an integer point

on the lattice line. Therefore, n is an instance.

Recently, there has been a new manuscript by Beck and Schymura[4] that uses Polyhedral

theory, from a slightly di↵erent perspective. They reformulated and studied the Conjecture

using the concept of Zonotopes, the Minkowski sum of line segments.
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Chapter 6

The Lonely Runner Conjecture: New

Results

This chapter is about my work during the course of this year. A large portion of the content

is available in [7].

6.1 Basic results about suitable times

Theorem 6.1.1. t =
k

(k + 1)n1
is a suitable time for n if and only if n satisfies n1  knk.

Proof. Assume that n1  knk. Since nk  ni  n1 for all i 2 [k], we have:

n1  knk  kni  kn1

On dividing throughout by kn1, we get:

1

k
 ni

n1
 1 for all 2 [k]

1

k + 1
 k

(k + 1)n1
ni 

k

k + 1
for all i 2 [k] (6.1)

where the second line is obtained by multiplying the first line throughout by
k

k + 1
. Note
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that each of the quantities is a proper fraction, since ni  n1. Thus,

⇢
k

(k + 1)n1
ni

�
=

k

(k + 1)n1
ni. Combining this with (6.1), we have:

1

k + 1

⇢

k

(k + 1)n1
ni

�
 k

k + 1
for all i 2 [k]

Thus, by definition,
k

(k + 1)n1
is a suitable time. Now, assume that n1 > knk. On dividing

by (k + 1)n1, we have,

0 <
k

(k + 1)n1
nk <

1

k + 1

0 <

⇢
k

(k + 1)n1
nk

�
<

⇢
1

k + 1

�

It follows that

⇢
k

(k + 1)n1
nk

�
/2


1

k + 1
,

k

k + 1

�
and, consequently,

k

(k + 1)n1
is not a suit-

able time.

This theorem provides a suitable time for all n that satisfies n1  knk. Thus, we have

an alternate proof to Theorem 5.3.3.

It is easy to see that the positions of the runners would be the same at t 2 [0, 1) and

(n+ t), where n 2 Z+. This can be verified using the properties of the fractional part func-

tion. Intuitively, due to the periodic nature of circular motion, the runners would be back

at the starting position at time t = 1. As a result, the condition required in the Conjecture

would already have been attained before time t = 1, or it will never be attained. Thus, it

su�ces to consider t 2 [0, 1). However, can this interval be shortened?

Lemma 6.1.2. Given any n, t 2 [0, 1] is a suitable time if and only if 1� t is.

Proof. Let t be a suitable time. It follows that {nit} = bi for some bi 2


1

k + 1
,

k

k + 1

�
,

i 2 [k]. Observe that, since t  1, the ith runner will have completely covered at most

(ni � 1) rounds, where i 2 [k]. Thus, nit = ai + bi where ai 2 N and ai  ni � 1. Now,
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consider the position of the ith runner at time 1� t.

ni(1� t) = ni � nit = ni � (ai + bi) = (ni � ai � 1) + (1� bi)

{ni(1� t)} = {(ni � ai � 1) + (1� bi)} = {1� bi}.

Furthermore, for i 2 [k], bi 2


1

k + 1
,

k

k + 1

�
implies that (1 � bi) 2


1

k + 1
,

k

k + 1

�
. We

have, {ni(1� t)} 2


1

k + 1
,

k

k + 1

�
for all i 2 [k]. Thus (1� t) is a suitable time as well.

A similar argument can be made by assuming (1� t) to be a suitable time, which shows

1� (1� t) = t is a suitable time as well. The result follows.

Theorem 6.1.3. n is a Lonely Runner instance if and only if there is a suitable time t  1

2
.

Proof. Su�ciency follows from the definition of suitable time. To see the necessity, assume

that n is a Lonely Runner instance. Thus there is a suitable time s 2 [0, 1]. Consider the

function

t =

8
<

:
s if s  1

2
1� s otherwise

Lemma 6.1.2 yields that both s and 1� s are suitable times, implying that at least one of s

and (1� s) is at most
1

2
. The result follows.

6.2 New families of instances

We improvise on the work done using P1(n) and P2(n), and obtain two new families of

instances.

Theorem 6.2.1. If n satisfies n2  knk and n1 mod ((k + 1)nk) 2 [nk, knk], then n is a

Lonely Runner instance.

Proof. Since it has been assumed that n2  knk, it su�ces to show the existence of an

57



integral point in P1(n). From (5.7), we know that the length, l, of the interval P1(n) is:

l =
n1

k + 1

✓
k

n2
� 1

nk

◆
+

k � 1

k + 1

=
n1

k + 1

✓
knk � n2

n2nk

◆
+

k � 1

k + 1

� k � 1

k + 1
(6.2)

where the inequality follows n2  knk and the positivity of n1, n2 and nk.

Assume that n1 = a(k + 1)nk + b, where a 2 N and 0  b < (k + 1)nk. More specifically, we

have nk  b  knk since n1 mod ((k + 1)nk) 2 [nk, knk]. With this assumption, we have:

n1

(k + 1)nk

� k

k + 1
=

a(k + 1)nk + b

(k + 1)nk

� k

k + 1

= a+
b� knk

(k + 1)nk

= a� 1 +
b+ nk

(k + 1)nk

 a� 1 +
knk + nk

(k + 1)nk

= a (6.3)

Additionally, using (6.2) and the definition of the length of an interval, we have:

kn1

(k + 1)n2
� 1

k + 1
� n1

(k + 1)nk

� k

k + 1
+

k � 1

k + 1

=
a(k + 1)nk + b

(k + 1)nk

� k

k + 1
+

k � 1

k + 1

= a+
b� knk

(k + 1)nk

+
k � 1

k + 1

� a+
nk � knk

(k + 1)nk

+
k � 1

k + 1

= a (6.4)

From (6.3) and (6.4), we have
n1

(k + 1)nk

� k

k + 1
 a  kn1

(k + 1)n2
� 1

k + 1
. The result

follows.

Remark 6.2.1. A few examples of speed vectors that are Lonely Runner instances due to
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Theorem 6.2.1 and not due to previous known results are:

(17, 16, 7, 6, 5, 4, 2), (18, 16, 7, 6, 5, 4, 3, 2) and (20, 18, 8, 7, 6, 5, 4, 3, 2).

We shall now see a series of Lemmas that we require in order to determine the other

family of instances.

Lemma 6.2.2. Consider convex sets S1, S2 ✓ R2
and the strip {x 2 R2 : l  x2  u}. If

S1 \ S2 \ {x 2 R2 : x2 = a} 6= ; 8 a 2 [l, u]

then (S1 [ S2) \ {x 2 R2 : l  x2  u} is a convex set.

S2

x2 = u

x2 = l

x2 = a

S1

x

y

•

•

•• ••
(x̃, a)

(xS1 , a)

(x\, a)

(xS2 , a)

Figure 6.1: Depicting contradiction for Lemma 6.2.2 when either S1 or S2 is non-convex.

Proof. Let U = (S1 [ S2) \ {x 2 R2 : l  x2  u}. Assume that U is non-convex. Thus,

there exists points x,y 2 U such that a point in conv(x,y) (i.e, the line segment [x,y]), is

not contained in U . In particular, 9 x̃ = (x̃, a) 2 conv(x,y) and x̃ 62 U .

Since x,y 2 U and x̃ = (x̃, a) 2 conv(x,y), it follows that a 2 [l, u]. Furthermore,

consider three additional points (xS1 , a) 2 S1\S2, (xS2 , a) 2 S2\S1 and (x\, a) 2 S1\S2 such

that either xS1 < x̃ < x\ or x\ < x̃ < xS2 (these points will exist because of our assumptions).

If xS1 < x̃ < x\, then since both (xS1 , a), (x\, a) 2 S1, their convex combination (x̃, a) 2 S1
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(since S1 is convex), and consequently (x̃, a) 2 U , which poses a contradiction. Alternatively,

if x\ < x̃ < xS2 , then since both (x\, a), (xS2 , a) 2 S2, their convex combination (x̃, a) 2 S2

(since S2 is convex), and consequently (x̃, a) 2 U , which also poses a contradiction. The

result follows.

Definition 6.2.1. Consider S ✓ Rn
and a 2 Rn

. The width of S in the direction of a is

defined as wS(a) = max
x2S

(a · x)�min
x2S

(a · x).

The width notation shall be used constantly throughout the rest of this Section.

For notational brevity, we shall henceforth refer to P2(n) as Q. The generating inequali-

ties of Q are:

n1

(k + 1)nk

� k

k + 1
 x1 

kn1

(k + 1)n3
� 1

k + 1
n2

(k + 1)nk

� k

k + 1
 x2 

kn2

(k + 1)n3
� 1

k + 1
n1 � kn2

k + 1
 n2x1 � n1x2 

kn1 � n2

k + 1

In addition to the generating inequalities of Q, consider the following lines (Figures 6.2a and

6.2b).

l1 : n2x1 � n1x2 =
kn1 � n2

k + 1
l2 : n2x1 � n1x2 =

n1 � kn2

k + 1

L1 : x2 = ↵ =
n2

(k + 1)nk

+
1

k + 1
L2 : x2 = � =

n2

(k + 1)nk

+
2n2

(k + 1)n1
� k

k + 1

L3 : x2 = � =
kn2

(k + 1)n3
� 2n2

(k + 1)n1
� 1

k + 1
L4 : x2 = � =

1

k + 1

✓
n2

nk

� 1

◆

L5 : x2 = ⇣ =
k

k + 1

✓
n2

n3
� 1

◆
L6 : x1 =  =

n1

(k + 1)nk

+
1

k + 1

Lemma 6.2.3. If n satisfies n2

✓
k

n3
� 1

nk

◆
� k + 1, then wQ(e1) � 1 and wQ(e2) � 1.

Proof. The lines x2 = ⇣ +
k � 1

k + 1
and x2 = � � k � 1

k + 1
represent diametrically opposite facets

(top and bottom edges respectively) of Q. Then, wQ(e2) is the distance between these facets
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•

•

•

•

•

•

l1
l2

L3

L1

L2

L5

L4

x2 = �

x2 = �

x2 = �

x2 = ⇣

x2 = ↵

x1 = 

Q

L6

k�1
k+1

k�1
k+1

1

1

(a)

•

•

•

•

•

•

l2

l1

L1x2 = ↵

Q1

Q2

1

(b)

Figure 6.2: Polyhedron Q under the assumption n2

✓
k

n3
� 1

nk

◆
� k + 1
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of Q.

wQ(e2) =

✓
kn2

(k + 1)n3
� 1

k + 1

◆
�
✓

n2

(k + 1)nk

� k

k + 1

◆

=
n2

k + 1

✓
k

n3
� 1

nk

◆
+

k � 1

k + 1
(6.5)

� k + 1

k + 1
+

k � 1

k + 1

� 1

where the first inequality follows from our assumption and the latter follows from k � 1. The

lines x1 =
kn1

(k + 1)n3
� 1

k + 1
and x1 =

n1

(k + 1)nk

� k

k + 1
represent diametrically opposite

facets (right and left edges respectively) of Q. wQ(e1) is the distance between these facets

and it can be expressed as

wQ(e1) =

✓
kn1

(k + 1)n3
� 1

k + 1

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

=
n1

k + 1

✓
k

n3
� 1

nk

◆
+

k � 1

k + 1

� n2

k + 1

✓
k

n3
� 1

nk

◆
+

k � 1

k + 1

= wQ(e2)

� 1

where the first inequality follows from n1 � n2, the following equality from (6.5) and the

last inequality from wQ(e2) � 1. The result follows.

From Lemma 6.2.3, we obtain that Q1 := Q \ {x 2 R2 : x2  ↵} 6= ; and Q2 := Q \
{x 2 R2 : x2 � ↵} 6= ;. Consider Q3 := Q2 � e2 and Q4 := Q1 [ Q3. Observe that, by

definition, wQ1(e2) = 1 (Figure 6.2b).

Lemma 6.2.4. If n satisfies n2

✓
k

n3
� 1

nk

◆
� k + 1, then wQ3(e2) �

k � 1

k + 1
.
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Proof. Q3 is a translate of Q2. Thus, it su�ces to show that wQ2(e2) �
k � 1

k + 1
. We have,

wQ2(e2) =

✓
⇣ +

k � 1

k + 1

◆
� ↵

=

✓
kn2

(k + 1)n3
� 1

k + 1

◆
�
✓

n2

(k + 1)nk

+
1

k + 1

◆

=
n2

k + 1

✓
k

n3
� 1

nk

◆
� 2

k + 1

� k + 1

k + 1
� 2

k + 1

=
k � 1

k + 1

where the inequality follows from our assumption. The result follows.

Lemma 6.2.5. If n satisfies 2n1  (k � 1)n2 and n2

✓
k

n3
� 1

nk

◆
� k + 1, then

{x 2 R2 : x2 = a} \Q1 \Q3 6= ; 8 a 2 [↵� 1, �].

Proof. Consider a 2 [↵ � 1, �], and the line x2 = a. From Lemma 6.2.4 and the fact that

wQ1(e2) = 1, we have {x 2 R2 : x2 = a} \Q1 6= ; and {x 2 R2 : x2 = a} \Q3 6= ;.

Since ↵ � 1  a  � < ⇣, the lines x2 = a and l1 will intersect. Let A be the point of

intersection of these lines. Specifically,

A =

✓
kn1 � n2

(k + 1)n2
+

n1a

n2
, a

◆

By definition, A 2 Q1. Additionally, any point on the line x2 = a, such that  � 1  x1 
kn1 � n2

(k + 1)n2
+

n1a

n2
will be in Q1 as well.

Let B be the point of intersection of x2 = a + 1 with l2. Observe that B 2 Q2. In

particular,

B =

✓
n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2
, a+ 1

◆

Since Q3 = Q2 � e2, 9 B0 2 Q3 such that B0 = B � e2. In particular,

B0 =

✓
n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2
, a

◆
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As noted earlier, to prove B0 2 Q1 it su�ces to show that

� 1  n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2
 kn1 � n2

(k + 1)n2
+

n1a

n2
.

We have,

✓
n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2

◆
�
✓
kn1 � n2

(k + 1)n2
+

n1a

n2

◆
=

n1

n2

✓
2

k + 1

◆
� k � 1

k + 1

=
1

k + 1

✓
2n1

n2
� (k � 1)

◆

 0 (6.6)

where the last inequality follows from our assumption. Additionally, note that

✓
n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2

◆
� (� 1) =

✓
n1 � kn2

(k + 1)n2
+

n1(a+ 1)

n2

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

�
✓
n1 � kn2

(k + 1)n2
+

n1↵

n2

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

=

✓
n1

(k + 1)n2
+

n1

(k + 1)nk

+
n1

(k + 1)n2

◆
� n1

(k + 1)nk

=
2n1

(k + 1)n2

> 0 (6.7)

where the second inequality is immediate from ↵�1  a and the last inequality follows from

the positivity of n1, n2 and k. From (6.6) and (6.7) it follows that B0 2 Q1. Combining with

B0 2 {x 2 R2 : x2 = a} and B0 2 Q3 yields the result.

Lemma 6.2.6. If n satisfies k � 3, 2n1  (k � 1)n2 and n2

✓
k

n3
� 1

nk

◆
� k + 1, then

w{x2R2:x2=a}\Q4(e1) � 1 8 a 2 [↵� 1,↵].

Proof. First, consider a 2 [�,↵]. Then, w{x2R2:x2=a}\Q4(e1) is at least as much as the distance
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between l1 and l2 in the x1-direction.

w{x2R2:x2=a}\Q4(e1) =
1

n2

✓
kn1 � n2

k + 1
� n1 � kn2

k + 1

◆

=
k � 1

k + 1

n1 + n2

n2

� 2
k � 1

k + 1

� 1 (6.8)

where the first inequality follows from n1 � n2 while the latter follows from k � 3.

Now, consider a 2 [↵ � 1, �]. Since Q1 and Q3 are convex, as a result of Lemma 6.2.5

and Lemma 6.2.2, Q4 \ {x 2 R2 : ↵� 1  x2  �} is convex.

Since l1 is a facet of Q2 and Q3 = Q2 � e2, it follows that l01 := l1 � e2 is a facet of Q3.

In particular, we have l01 : n2x1 � n1(x2 + 1) =
kn1 � n2

k + 1
.

Let C be the point of intersection of l01 and x2 = ↵� 1. Then:

C =

✓
n1

n2
+

n1

(k + 1)nk

� 1

k + 1
,

n2

(k + 1)nk

� k

k + 1

◆

It follows that {x 2 R2 : x2 = ↵� 1} \Q4 = [(� 1,↵� 1), C]. We, thus, have

w{x2R2:x2=↵�1}\Q4(e1) =

✓
n1

n2
+

n1

(k + 1)nk

� 1

k + 1

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

=
n1

n2
+

k � 1

k + 1

> 1 (6.9)

where the inequality follows from n1 � n2 and
k � 1

k + 1
> 0.

In case ⇣ � ↵ � k � 1

k + 1
, l01 would intersect x2 = �. This point, say D, would be given by:

D =

✓
2kn1

(k + 1)n2
+

n1

(k + 1)nk

� 1

k + 1
,

1

k + 1

✓
n2

nk

� 1

◆◆
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Consequently, {x 2 R2 : x2 = �} \Q4 = [(� 1, �), D]. We, then, have:

w{x2R2:x2=�}\Q4(e1) =

✓
2kn1

(k + 1)n2
+

n1

(k + 1)nk

� 1

k + 1

◆
�
✓

n1

(k + 1)nk

� k

k + 1

◆

=
2kn1

(k + 1)n2
+

k � 1

k + 1

> 1 (6.10)

where the inequality follows from n1 � n2 and k � 3. If ⇣ < ↵ +
k � 1

k + 1
, then l01 would not

intersect x2 = �. Consequently, we have

{x 2 R2 : x2 = �} \Q4 =


(� 1, �),

✓
kn1

(k + 1)n3
� 1

k + 1
, �

◆�
.

Combining this with Lemma 6.2.3, we have:

w{x2R2:x2=�}\Q4(e1) = wQ4(e1) = wQ(e1) > 1 (6.11)

Since Q4 \ {x 2 R2 : ↵� 1  x2  �} is convex, it follows from (6.9), (6.10) and (6.11) that

w{x2R2:x2=a}\Q4(e1) > 1 8 a 2 [↵� 1, �] (6.12)

The result follows from (6.8) and (6.12).

Lemma 6.2.7. Define Q5 := Q\{x 2 R2 : �  x2  �}. If n satisfies k � 4, 2n1 > (k�1)n2

and n2

✓
k

n3
� 1

nk

◆
� k + 1, then wQ5(e2) > 1.

Proof. It is immediate from the definition of Q5 that wQ5(e2) = � � �.

wQ5(e2) =

✓
kn2

(k + 1)n3
� 2n2

(k + 1)n1
� 1

k + 1

◆
�
✓

n2

(k + 1)nk

+
2n2

(k + 1)n1
� k

k + 1

◆

=
kn2

(k + 1)n3
� n2

(k + 1)nk

� 4n2

(k + 1)n1
+

k � 1

k + 1

>
kn2

(k + 1)n3
� n2

(k + 1)nk

� 8

(k � 1)(k + 1)
+

k � 1

k + 1

=
kn2

(k + 1)n3
� n2

(k + 1)nk

� 8

(k � 1)(k + 1)
+ 1� 2

k + 1
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where the inequality follows from 2n1 > (k � 1)n2. After rearrangement, we get:

wQ5(e2) =
1

k + 1

✓
kn2

n3
� n2

nk

� 2

◆
+ 1� 8

(k � 1)(k + 1)

� k � 1

k + 1
+ 1� 8

(k � 1)(k + 1)

= 1 +
(k � 1)2 � 8

(k � 1)(k + 1)

> 1

where the second follows from n2

✓
k

n3
� 1

nk

◆
� k+ 1 and the final follows from k � 4. The

result follows.

Now, we are ready for the main theorem.

Theorem 6.2.8. n is a Lonely Runner instance if it satisfies k � 4 and n2

✓
k

n3
� 1

nk

◆
�

k + 1.

Proof. Combining n2

✓
k

n3
� 1

nk

◆
� k + 1 with the positivity of n2, nk and k immediately

yields that n3 < knk. Thus, it su�ces to show that Q = P2(n) is not integer lattice-free. In

particular, if there exists an integer point in Q then n is a Lonely Runner instance.

Assume that 2n1  (k � 1)n2. By definition of L1, we have wQ4(e2) = 1. Thus, 9 a 2 Z
such that {x 2 R2 : x2 = a} \ Q4 6= ;. Lemma 6.2.6 suggests w{x2R2:x2=a}\Q4(e1) � 1. It

follows that there exists an integer point in Q4 and consequently in Q.

Conversely, assume that 2n1 > (k�1)n2. Lemma 6.2.7 yields wQ5(e2) > 1. Thus, 9 a 2 Z
such that {x 2 R2 : x2 = a}\Q5 6= ;. Furthermore, by definition of L2, L3 and Q5, we have

w{x2R2:x2=a}\Q5(e1) � 1. It follows that Q5 and thus Q contains an integer point.

Remark 6.2.2. A few examples of vectors of speeds that are Lonely Runner instances due

to Theorem 6.2.8 and not due to previous known results (including Theorem 6.2.1) are:

(20, 14, 8, 6, 5, 4, 2), (24, 14, 10, 9, 8, 6, 5, 2) and (23, 18, 15, 10, 8, 7, 6, 4, 2).

It turns out that it is hard to visualise and work with polyhedra Pl(n) for l � 3. Thus,
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only P1(n) and P2(n) were used. The projection methodology can be made use of further

by considering integer points other than the origin in Ql(n) (defined in Subsection 5.3.1).

However, this modification makes the inequalities a little messy to work with. So, we pursue

other ideas.

6.3 Properties of the Lonely Runner polyhedron

Lemma 6.3.1. Any line in Rk
with direction ratios n is parallel to each of the facets of

P (n).

Proof. Consider any facet of P (n). The normal vector of this hyperplane is given by N =

njei � niej. Then, n ·N = ni(nj) + nj(�ni) = 0. Since the dot product is zero, the normal

vector of the hyperplane and the direction vector of the line are parallel to each other. The

result follows since the above holds for each of the facets of P (n).

Remark 6.3.1. Let l be a line in Rk
, with direction ratios n. Then, due to Theorem 6.3.1,

either l ✓ P (n) or l \ P (n) = ;.

Lemma 6.3.2. P (n) is centrally symmetric about �1

2
e.

Proof. Let v = (v1, ..., vk) be an arbitrary point. With this, we get:

� 1

2
e+ v 2 P (n)

() ni � knj

k + 1
 nj

✓
�1

2
+ vi

◆
� ni

✓
�1

2
+ vj

◆
 kni � nj

k + 1
8 1  i < j  k

() �(k � 1)(ni + nj)

2(k + 1)
 njvi � nivj 

(k � 1)(ni + nj)

2(k + 1)
8 1  i < j  k

() �(k � 1)(ni + nj)

2(k + 1)
 �njvi + nivj 

(k � 1)(ni + nj)

2(k + 1)
8 1  i < j  k

() ni � knj

k + 1
 nj

✓
�1

2
� vi

◆
� ni

✓
�1

2
� vj

◆
 kni � nj

k + 1
8 1  i < j  k

() �1

2
e� v 2 P (n)

The result follows from the definition of central symmetry.

68



Remark 6.3.2. The proof of Lemma 6.3.2 can be generalized to show that P (n) is centrally

symmetric about every point on the line L :=
x1 +

1

2
n1

= . . . =
xk +

1

2
nk

.

From Remark 6.3.2, we can conclude that there is a line that is contained in P (n) and

hence, P (n) is unbounded.

Lemma 6.3.3. P (n) contains a k-hypercube, whose facets are parallel to the coordinate

hyperplanes, and has size at least
k � 1

k + 1
.

Proof. First, consider the k-hypercube

C =


� k

k + 1
,� 1

k + 1

�k

By definition, we have:

� k

k + 1
 xi, xj  � 1

k + 1
, 1  i, j  k

Then:
ni � knj

k + 1
 njxi � nixj 

kni � nj

k + 1
, 1  i, j  k

It follows that C ✓ P (n). Thus, the result follows.

It can be verified that P (n) does not contain any translate of the standard k-hypercube.

Thus, it isn’t easy to determine an integer point in P (n). Hence, alternate approaches are

required.

One approach that comes to mind is the use of Ehrhart theory. We immediately stumble

into a hole. Due to the unboundedness of P (n), we cannot directly use Ehrhart theory to

estimate the number of integer points. We can get over this problem by bounding P (n)

between two parallel hyperplanes, say xk = 0 and xk = a for some large a 2 R. However,

the number of hyperplanes generating this polyhedron is very large. As a result, the number

of variables in the Ehrhart series is very large, thereby making it cumbersome and hard to

work with.
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6.4 Other new results

So far, we haven’t used any of the concepts that we had learnt in Chapter 4. We make use

of some of them now and see how the rest can be used in the hope of making some progress.

Lemma 6.4.1. Let p 2 Z+
and n 2 Zk

. Then, the set of points, ⇤n,p, defined by

⇤n,p :=

⇢
x 2 Rk : x =

a

p
n+ b, 0  a  p� 1, a 2 Z,b 2 Zk

�

is a lattice.

Proof. First, let a = 0 and b = 0. Then, x = 0 + 0 = 0 2 ⇤n,p. Next, consider two points

y =
a1
p
n + b1 and z =

a2
p
n + b2, where 0  a1, a2  p � 1, a1, a2 2 Z and b1, b2 2 Zk.

Their sum is given by y + z =

✓
a1
p
n+ b1

◆
+

✓
a2
p
n+ b2

◆
=

a1 + a2
p

n + (b1 + b2). Note

that (a1+a2) 2 Z and (b1+b2) 2 Zk. If 0  a1+a2  p�1, then y+z 2 ⇤n,p. If not, then

p  a1 + a2  2p� 2. Then, y + z =
a1 + a2 � p

p
n+ (b1 + b2 + n), and thus, y + z 2 ⇤n,p.

Finally, let u,v 2 ⇤n,p. If u 6= v, then 9 i 2 [k] s.t |ui�vi| �
1

p
. As a result, B

✓
v,

1

2p

◆
= v.

Therefore, ⇤n,p is a discrete additive subgroup or lattice.

Lemma 6.4.2. If p1, p2,m 2 Z+
such that p2 = mp1, then ⇤n,p1 ✓ ⇤n,p2.

Proof. Consider x =
a

p1
n+ b 2 ⇤n,p1 . Note that x =

am

mp1
n+ b =

am

p2
n+ b 2 ⇤n,p2 , where

0  am  m(p1 � 1)  mp1 � 1 = p2 � 1. Thus, we have x 2 ⇤n,p2 and the result holds.

As mentioned earlier, P (n) does not contain any translate of the standard k-hypercube

which happens to be a fundamental parallelepiped of ⇤n,1. Due to Lemma 6.4.2, we expect

that the translates of a fundamental parallelepiped of ⇤n,p are contained in the translates of

a fundamental parallelepiped of ⇤n,1. So we try to show that P (n) contains a translate of a

fundamental parallelepiped of ⇤n,p. This requires us to identify a basis of ⇤n,p.

We provide a reformulation of Theorem 3.1.3 in terms of lattices.

Theorem 6.4.3. Let l be a line in Rk
, with direction ratios n = (n1, . . . , nk) 2 Zk

. If there

exists p 2 Z+
such that l \ ⇤n,p 6= ;, then l \ ⇤n,1 6= ;.
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Now, we have a new su�ciency condition to prove the ‘Lonely Runner Conjecture’.

Corollary 6.4.4. If P (n) \
 
S
p�1

⇤n,p

!
6= ;, then P (n) \ ⇤n,1 6= ;.

Proof. Consider any line with direction ratios n. Assume that P (n) \
 
S
p�1

⇤n,p

!
6= ;. Due

to Theorem 6.4.3 and Remark 6.3.1, we have P (n) \ ⇤n,1 6= ;.

Does Corollary 6.4.4 make our work any easier? Is it actually easier to show the existence

of a lattice point of ⇤n,p in P (n)? The following Lemma provides a heuristic argument for

why this can be thought of as being true.

Lemma 6.4.5. Let p 2 Z+
. Then #([0, 1)k \ ⇤n,p) = p. Moreover, if GCD(ni, p) = 1 for

all i 2 [k], then #((0, 1)k \ ⇤n,p) = p� 1.

Proof. Consider a 2 {0, . . . , p � 1} and b =

 
�
$
an1

p

%
, . . . ,�

$
ank

p

%!
. Then, we have

a

p
n+b =

✓
an1

p
, . . . ,

ank

p

◆
+

 
�
$
an1

p

%
, . . . ,�

$
ank

p

%!
=

✓⇢
an1

p

�
, . . . ,

⇢
ank

p

�◆
2 [0, 1)k.

Thus, #([0, 1)k \ ⇤n,p) � p.

Now, consider b0 2 Zk such that b0 6= b. Then, b0 = b + c, where c 2 (Zk \ {0}). As

a result, we have
a

p
n + b0 =

✓
a

p
n+ b

◆
+ c. Note that ci is a non-zero integer for some

i 2 [k]. Combining this with
a

p
n + b 2 [0, 1)k, we get that

a

p
n + b0 /2 [0, 1)k. Therefore,

#([0, 1)k \ ⇤n,p) = p.

Let a 2 [p � 1]. Since 1  a < p, we have GCD(a, p) < p. Furthermore, we have

GCD(ni, p) = 1 8 i 2 [k]. As a result, we have GCD(ani, p) < p and thus, p - ani 8 i 2 [k].

Hence, 0 <

⇢
ani

p

�
< 1 8 i 2 [k]. The result follows.

From Lemma 6.4.5, we have that the fundamental parallelepiped of Zk contains p lattice

points. Moreover, its interior contains (p � 1) lattice points when p is co-prime to each of

the speeds. Since p is not a fixed quantity, we can choose a value as per our needs. So

by choosing p to be a prime number larger than n1, we can always ensure the existence of

(p � 1) lattice points in the interior of ⇤k. We must show that at least one of these lies in
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the k-hypercube that is centred at

✓
1

2
, . . . ,

1

2

◆
and has size

k � 1

k + 1
.

It might seem that we have a lot of freedom now and so, it should be easy to prove the

Conjecture. However, a large fraction of ⇤k is unavailable for use as k increases. Thus, we

need more in order to get anything meaningful.

Lemma 6.4.6. Let p, s 2 Z+
. Define

Dr,s :=


r1
s
+

1

s(k + 1)
,
r1
s
+

k

s(k + 1)

�
⇥ . . .⇥


rk
s
+

1

s(k + 1)
,
rk
s
+

k

s(k + 1)

�

where ri 2 N. If (⇤n,p \Dr,s) 6= ;, then (⇤n,p \D0,1) 6= ;.

Proof. Let v 2 (⇤n,p \Dr,s). Then sv 2 (⇤n,p \Dr,1) and (sv � r) 2 (⇤n,p \D0,1). The

result follows.

As a result of Lemma 6.3.3, our aim is to show that:

 
[

r2Zk

[

s2Z+

Dr,s

!
\
 
[

p�1

⇤n,p

!
6= ;

From visualizations that were made for k = 2, 3, we observed that a very large fraction of

⇤k is now used up. However, it is hard to quantify this fraction.

Showing the existence of a lattice point in the union of the k-hypercubes seems to be

dependent on being able to determine a basis for ⇤n,p. We first looked at the literature

for how to determine a basis of a lattice. It seems that lattice-based problems assume

the existence of a basis, and so there is no question of determining a basis from scratch.

As a result, we were on the hunt for a method/algorithm to determine a basis. Nothing

materialized despite a lot of e↵ort.
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Chapter 7

Conclusion

This thesis was a literature review of known results of the ‘Lonely Runner Conjecture’, a

description of our work and the theory needed to understand that work.

We started o↵ by looking at some basic Convex Geometry concepts, in Chapter 1. We

used them in Chapter 2 to study Polyhedra. Then, in Chapter 3, we tried to enumerate

the number of integer points in di↵erent polyhedra. Chapter 4 was about studying lattices.

Moreover, we came across a new field of Mathematics, namely ‘Geometry of Numbers’, and

we learnt two of the most important results of the field. We completed the Chapter by

looking at some bounds related to the ‘Shortest Vector’ and ‘Closest Vector’ problems.

In Chapter 5, we had a review of most of the known results about the Conjecture, with

the focus being on work from [5]. We finished o↵ by providing our new results.

There haven’t been many approaches that have used Probability to obtain new results.

An attempt could be made at showing that the lattice ⇤n,p, intersects the k-hypercube
1

k + 1
,

k

k + 1

�k
with probability 1. An important fact that could be of use is that each of

the coordinates has an identical distribution when GCD(p, ni) = 1 for all i 2 [k].

Another approach could be to write an Integer Linear Program with the objective function

being the distance (using 1-norm) of a line, with direction ratios n, from the centre of an

arbitrary integer translate of the standard k-hypercube. Show that the minimum possible

value of the objective function is at most
k � 1

k + 1
.
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One final approach would be to prove our Conjecture about suitable times. Proving this

Conjecture ensures that the ‘Lonely Runner Conjecture’ is true.

Conjecture 7.0.1. For any n with gcd(n) = 1, there is always a suitable time of the form

m

2dln2 (n1)+1e(k + 1)n1

for some natural number m, where d·e denotes the ceiling function.

There are two reasons for why we believe Conjecture 7.0.1 to be true: First, consider-

ing m = k2dln2 (n1)+1e yields a suitable time for the family of vectors satisfying n1  knk.

Additionally, we have computationally verified the existence of a suitable time given by Con-

jecture 7.0.1 for all possible (n, k) such that n1  32, and gcd(n) = 1. In particular, we have

232 � 1 = 4294967295 speed vectors, n, with n1  32. Of these, 4294900694 are co-prime

vectors (satisfying gcd(n) = 1). Further among these, 2646877074 (⇡ 61.62%) di↵erent n

are characterized lonely runner instances due to the known results, including Theorems 6.2.1

and 6.2.8. If true, conjecture 7.0.1 thus yields a characterization for the remaining 38.38%

of speed vectors.
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46(1):25–30, 2011.

76



[24] Ho Tin Fan. amending and continuing the lonely runner spectrum conjecture, Jan 2023.

URL https://meetings.ams.org/math/jmm2023/meetingapp.cgi/Paper/18374.

[25] Vikram Giri and Noah Kravitz. The structure of lonely runner spectra. arXiv preprint

arXiv:2304.01462, 2023.

[26] Luis Goddyn and Erick B Wong. Tight instances of the lonely runner. Integers, 6:A38,

2006.

[27] Johan H̊astad. Dual vectors and lower bounds for the nearest lattice point problem.

Combinatorica, 8(1):75–81, 1988.

[28] Matthias Henze and Romanos-Diogenes Malikiosis. On the covering radius of lattice

zonotopes and its relation to view-obstructions and the lonely runner conjecture. Ae-

quationes mathematicae, 91(2):331–352, 2017.

[29] Ross Honsberger. Ingenuity in mathematics, volume 23. Random House (NY), 1970.

[30] Aubrey J Kempner. A theorem on lattice-points. Annals of Mathematics, pages 127–136,

1917.

[31] Noah Kravitz. Barely lonely runners and very lonely runners: a refined approach to the

lonely runner problem. Combinatorial Theory, 1, 2021.

[32] Ram Krishna Pandey. A note on the lonely runner conjecture. J. Integer Seq, 12

(2511224):1233–11026, 2009.

[33] Guillem Perarnau and Oriol Serra. Correlation among runners and some results on the

lonely runner conjecture. The Electronic Journal of Combinatorics, pages P1–50, 2016.

[34] Carl Pomerance. Coprime matchings. arXiv preprint arXiv:2111.07157, 2021.
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