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Abstract

The skeletal growth of children is often assessed by calculating bone age. Often develop-

mental age differs from chronological age; hence bone aging is one of the essential steps in

the clinical procedure of estimating the biological maturity of children. Assessment of bone

age can be done in a traditional, manual way or using automated methods. Manual meth-

ods like Greulich-Pyle (GP) and Tanner-Whitehouse (TW) are time-consuming and involve

intra- and inter-rater variability. Automated software are probably more reliable, and sev-

eral are trained on a caucasian dataset given by the Radiological Society of North America

(RSNA), consisting of 12,611 X-rays of boys and girls between the ages of 0 and 18 years.

The GP method compares the patient’s full-hand radiograph to reference images in the GP

atlas.

However, in different ethnic groups, the maturation of different bone segments varies com-

pared to Caucasian children having the same chronological age. To address these difficulties,

our collaborators have recently developed a method called the ”Segmental GP rating” (Oza

et al. 2023 submitted) which explicitly accounts for inter-segmental variability in the bones

of the hand. We aim to develop an AI-based model that reproduces this novel method.

Our bone age model was developed using the RSNA dataset. A UNet architecture was

employed to segment four regions of interest (ROIs) from the X-rays. The image crops

generated from segmented ROIs were subsequently used to train a DenseNet regression

model for predicting bone age for the full-hand and three individual ROIs (short bones,

carpals, and wrist).

The final age of full-hand radiograph was taken as weighted sum of the predicted ages

for the three ROIs. The weight values for each ROI were estimated using multivariate linear

regression on a validation set. The obtained weight values for short bones, wrists, and carpals

in boys were 0.57, 0.26, and 0.18, respectively. For girls, the weight values for the same ROIs

were 0.69, 0.16, and 0.17, respectively. By combining the model’s age predictions for the

three segments using these weights, we obtained a Mean Absolute Distance (MAD) of 6.7

months for boys and 7.4 months for girls on the validation set.
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Chapter 1

Introduction

Bone age assessment (BAA) is vital tool in pediatrics that helps clinicians evaluate the skele-

tal development of a child. It involves estimating the physiological growth of an individual

from bone age, which can be determined through careful evaluation of hand radiographs by

experts, usually from the non-dominant hand. Skeletal abnormalities can be detected from

the discrepancy between bone age (BA) and chronological age (CA), which is the age calcu-

lated from the birth date. A difference between the two can indicate delayed or accelerated

ossification in bones caused by illness.

One of the primary reasons why clinicians need to calculate bone age is to make in-

formed decisions about a child’s healthcare needs. For example, knowing a child’s bone

age can help clinicians determine the appropriate treatment for conditions such as growth

hormone deficiency or delayed puberty.[1] It can also help identify skeletal abnormalities or

growth disorders that may require further evaluation or monitoring. Additionally, bone age

assessment can track an individual’s growth and development over time, which is important

for children with chronic illnesses or conditions that affect their growth.

1.1 Motivation

While bone age assessment is crucial for identifying potential health concerns, it is impor-

tant to note that it is a subjective process and depends on the expertise of the the person
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evaluating the radiographs. Additionally, epiphyseal plate closes between ages of 14 to 18,[2]

which means that bone age can only be calculated from hand radiographs in children up to

the age of 18 years.

The two most widely used methods for BAA are based on hand radiographs [3]. First,

Greulich-Pyle(GP), which contains standard reference hand radiograph images from upper-

middle class Caucasian children in Ohio, United States. Bone age is measured by comparing

the patient’s X-ray with standard reference X-rays in the GP atlas [4]. Second, Tanner-

Whitehouse(TW) is based on the scoring method, and each bone is assigned a score based

on the maturation and sex of the patient [5]. Both these methods are time-consuming

and prone to intra or inter-rater variability. The study emphasizes the GP standards for

estimating bone age.

Automating BAA can reduce the estimation time, inter and intra-rater variability and

relieve doctors from the cumbersome BAA procedure [6]. The automated methods include

automatic detection of the region of interest(ROI), followed by BAA through an algorithm.

Most of these methods are based on hand and wrist radiographs.

The radiograph provides valuable information about the shape and configuration of bones,

which plays a important role in predicting bone maturity. The shape and configuration of

bones change as an individual grows, which can be indicative of their overall stage of physical

development. The radiograph captures this characteristic information and can help clinicians

and researchers make more accurate predictions about bone maturity.

1.2 Related Work

The bone age assessment process has undergone several attempts at automation since the

mid-19th century. Beginning in the late 1980s, researchers developed semiautomated and

fully automated systems that used image-processing techniques to reduce observer variability

and improve accuracy.

• The first automated system, HANDX, was introduced in 1989 and uses image process-

ing techniques to segment bone features in X-ray images of the hand and wrist and

reduce observer variability. The system carries three steps: preprocessing, segmenta-
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tion, and estimation. It has yet to be evaluated on larger and different data and may

not be accurate when the full-hand image is used. Also, it requires human intervention

[7].

• Pietka and colleagues, in 1991, developed a method for bone age estimation based on

analysis of PROI region. PROI consists of epiphysis and phalanges. The system first

scans a horizontal line to detect the lower and upper boundaries of the PROI, and a

gradient image is used to segment the bones. The boundary between the proximal,

middle, and third distal phalanges is measured. The system was evaluated on 50

computer radiographs and showed a mean difference of 0.02 mm with a measurement

error of 0.08 mm compared to a radiologist’s measurements. Though it has a low error

rate, it is evaluated on a very small scale [8].

• In 1994, Tanner and Gibbons introduced a semi-automated system called CASAS

that was tested and assessed using X-ray images from children in stable and normal

pathologic positions. The system was more accurate and repeatable than the manual

TWmethod for children in normal situations. Still, it did not work for assessing clinical

problems due to bone deformation and required human interventions [9].

• Gross built a system in 1995 that utilized a neural network to estimate BA based on

measurements from hand and wrist radiographs. However, the model did not use the

morphological features of other methods and had no major advantage over manual

methods [10].

• In 2012, Mansourvar et al. created a computerized method for assessing bone age that

relied on histogram-based compression techniques. This automated system employed

content-based image retrieval (CBIR) methods to analyze images and had a database

of 1,100 hand X-ray radiographs, categorized by ethnicity and gender. The system’s

assessment demonstrated an error rate of 0.170625 years, suggesting it is a reliable tool

for BAA. However, the system may not be dependable for low-quality images or X-rays

that exhibit abnormal bone structures [11].

• BoneXpert is the first AI-based BAA software introduced in 2008 and most widely

used in Europe. It leverages image-processing techniques to automatically reconstruct

the borders of 15 bones. It then computes ”intrinsic” bone ages for each of the 13

bones (phalanges, metacarpals, and radius ulna) based on their shape, texture, and

intensity and subsequently transforms them into GP and TW bone age using statistical

9



models. It covers boys and girls till the GP age range of 17 and 15, respectively, while

its new version extended the age limit to 19 years for boys and 18 years for girls [12].

It rejects the bad quality image and images with abnormal bone morphology [13]. It

is developed on approximately 1500 images and validated on GP atlas and TW-rated

images, yielding a standard deviation(SD) of 0.42 years (5.04 months) and 0.8 (9.6

months) years respectively [14].

• Kim et al. conducted an internal validation of BoneXpert in 2017 which gave RMSE(Root

Mean Squared Error) of 7.2 months with reference bone age [15].

• External Validation study shows that MAE and RMSE(Root Mean Squared Error)

values are greater for CA and reviewer bone age than for CA and software estimated

bone age[16].

• RSNA Bone Age Challenge winner 16 Bit Inc achieved MAD-Mean Absolue Distance

of 5.99 months on the validation set using single Inception V3 architecture[13].

• BoneXpert has been utilized for bone age assessment in healthy children of diverse

ethnicities. The accuracy of BoneXpert was found to be 0.56 years in a Chinese pop-

ulation [17], and a Dutch study reported a deviation of 0.71 years for both genders

combined [18]. Another study on automated BAA in American children for four eth-

nicities estimated an accuracy of 0.52 years [19]. The Tubingen study from Germany

reported an RMSE of 0.72 years for BoneXpert [20].

• Oza et al.[21] conducted a study to determine the accuracy of BoneXpert in determin-

ing bone age in healthy children of Asian Indian ethnicity, as compared to traditional

manual methods such as GP and TW. The researchers found that the RMSE values of

BoneXpert were 0.36, 0.41, and 0.39 years for TW3, TW2, and GP methods, respec-

tively, compared to true bone age. The study also indicated that the RMSE values

were significantly lower in girls than boys. The authors discovered that the best agree-

ment between BoneXpert and the standard manual rating was achieved by using a 50

percent weighting on carpals (GP50), due to the fact that carpal bones were compara-

tively delayed relative to the GP (tubular) bone age, especially in boys. Additionally,

the study observed that BoneXpert tended to overestimate bone age in girls and un-

derestimate it in boys in the pubertal age group, indicating varying advancements of

bone age concerning chronological age in both genders.
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1.3 Our Contribution

The previous literature review has highlighted the variability in the maturation of bone

segments among various ethnic groups, which differs from Caucasian children of the same

chronological age. Consequently, developing more advanced and comprehensive software for

assessing bone age is necessary. Therefore, our study aims to establish a more generalized

approach to assessing bone age in diverse ethnic populations, which will provide a more ac-

curate bone age estimation and improve the clinical management of children. By developing

a more comprehensive method for assessing bone age, our study intends to fill the gap in

the current BAA methods, primarily designed on Caucasian children’s data. To address

these difficulties, our collaborators have recently developed a method called the ”Segmental

GP rating”(Oza et al. 2023 submitted, Standardization of weightage assigned to different

segments of the hand X-ray for assessment of bone age by the Greulich Pyle method ) which

explicitly accounts for inter-segmental variability in the bones of the hand. Our study in-

volved estimating weights for each bone segment using multivariate linear regression. The

weights reported by Oza et al. differ from those estimated in our study. Subsequently, we

calculated the final age by taking the weighted average of each segment.
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Chapter 2

Preliminaries

2.1 Neural Networks

Neural networks (NNs) are complex computational systems used for various applications,

including image recognition, speech recognition, machine learning, and many more. NNs

are inspired by the way that the human brain processes information. NNs are also known

as stimulated neural networks(SNN) or artificial neural networks (ANN). They consist of

several layers of neurons which are inter-connected with each other. Each neuron in the

network has an associated weight and bias. Neuron processes data and output information

to other neurons.

Figure 2.1: Neural Network
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h1 = g(w11x1 + w13x2 + b)

h2 = g(w12x1 + w14x2 + b)
(2.1)

Where g is an activation function.

O = w21h1 + w22h2 + b (2.2)

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of deep neural network that are generally

used in computer vision tasks, such as video and image video recognition, segmentation, and

object detection. They learn patterns and features from the image and video data, which

makes them effective for image and video processing.

CNNs process images as a tensor. Convolution measures how much two functions overlap

when one passes over the other. It use convolutional layers to extract local features from

the input images [22]. These layers apply a set of learnable filters, also known as kernels, to

the image or video. In figure 1.2 you can see that kernel slide over the image, performing

the multiplication operation between kernel weights and image values to extract the fea-

tures from the image. The output of these multiplication operations is feature maps that

represent different aspects of the image. The kernel weights are then updated after each

iteration. The network can learn increasingly complex features and patterns by stacking

multiple convolutional layers.

2.3 Activation Function

The activation function is applied to the output of each neuron. It introduces non-linearity

in the network and allows the neural network to learn complex patterns and make more

accurate predictions. Without an activation function, the neural network would be just a

linear regression model. The activation function determines the neuron’s output based on its

input, which can be either a single value or a vector of values. The most common activation

14



Figure 2.2: Convolution Neural Network sliding window diagram

functions used in CNNs are sigmoid and ReLU (rectified linear unit) functions. The choice

of activation function depends on the type of problem solved and the structure of the neural

network.

2.3.1 Sigmoid Function

It maps input values between 0 and 1. It is defined as follows:

f(x) = 1/(1 + e−x) (2.3)

Where x is the input to the function. The sigmoid function is used in the output layer of

binary classification models, where the goal is to predict a binary outcome.

Properties of the sigmoid function

• Smoothness: The sigmoid function is differentiable, making it suitable for gradient-

based optimization.

• Range limitation: The output of the sigmoid function is always limited to the range

between 0 and 1, but it can also lead to the vanishing gradient problem.
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Figure 2.3: Sigmoid Function

• The vanishing gradient problem arises when we train large neural networks. The

gradient of the loss function with respect to weights in the previous layer becomes very

small, which leads to slow or stalled learning of the network. The sigmoid activation

function has a very small derivative between 0 and 0.25. When the network is trained,

the derivative becomes exponentially small as they are backpropagated through layers,

leading to a vanishing gradient problem.

• Computationally expensive: The sigmoid function involves exponential calculations,

making it computationally expensive compared to other activation functions such as

the ReLU.

2.3.2 ReLu

The ReLU activation function is a non-linear function that maps input to a value between

0 and infinity [23]. It is defined as follows:

f(x) = max(0, x) (2.4)
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where x is the input to the function. The ReLU function is often used in hidden layers of deep

neural networks because of its computational efficiency and ability to avoid the vanishing

gradient problem that can occur with sigmoid and tanh activation functions.

Figure 2.4: ReLU function

Properties of the ReLU function

• Non-linearity: The ReLU function introduces non-linearity to the output of each neu-

ron, which is necessary for deep neural networks to learn complex patterns and make

accurate predictions.

• Sparsity: The ReLU function can produce sparse outputs, meaning only a few neurons

are activated for a given input. This can reduce the computational complexity of the

neural network.

• Avoids vanishing gradient problem: The ReLU function helps to avoid the vanishing

gradient problem that can occur with sigmoid and tanh activation functions. This is

because the derivative of the ReLU function is either 1 or 0, which means that the

gradients will not become too small during backpropagation.
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2.4 Batch Normalization

Batch Normalization (BN) is a widely employed method in (CNNs) that enhances their per-

formance and training. It addresses the internal covariate shift problem in CNNs [24], which

refers to the variations in the distribution of intermediate feature representations that occur

as a result of changes in the input data or parameters during the training process of a neural

network. This phenomenon can lead to slower convergence rates and poor generalization

performance of the neural network.

BN normalizes the inputs to each convolutional layer across a mini-batch of samples. The

normalization is performed independently for each feature map of the convolutional layer.

Throughout the training, the mean and standard deviation of each feature map’s activations

is calculated for each mini-batch. These statistics are then used to normalize the activations

by subtracting the mean and dividing by the standard deviation. Finally, the transformed

activations are passed to the next layer in the network.

By normalizing the inputs to each layer, Batch Normalization helps to stabilize the train-

ing process and reduce the dependence of the network on the initialization of the parameters.

It has been shown to improve the accuracy and speed of training of CNNs, reduce overfit-

ting, and enhance the performance of the network. As a result, it has become a standard

technique in the development of state-of-the-art CNNs.

2.5 Loss Function

The loss function sometimes called a cost function, assesses how well the model predicts the

desired outcome from a given input. The loss function takes ground truth and predicted

output as the input to measure how well the model did the prediction. While training, our

goal is to minimize the loss function. Different types of loss function can be used depending

on the problem being solved. Choosing an appropriate loss function is important.
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2.5.1 Binary Cross Entropy Loss

Binary cross-entropy loss is a commonly used loss function for pixel level classification [25]

and in machine learning, it measures the difference between predicted probabilities and true

labels for binary classification problems [26]. It is defined as the negative the logarithm of

the likelihood function, which assumes that each observation in the dataset is independent

and follows a Bernoulli distribution.

L(y, ŷ) = −[y · log(ŷ) + (1− y) · log(1− ŷ)] (2.5)

For a batch of training examples, the BCE Loss is the average of the loss for each example.

2.5.2 Mean Squared Error Loss (MSE)

The MSE loss is given by:

L(y, ŷ) = (y − ŷ)2 (2.6)

Commonly used in regression problem. For a batch of training examples, the MSE loss

is the average of the losses for each example. It is a quadratic loss function, meaning that

it penalizes the model more heavily for making large errors than small errors. It is sensitive

to outliers. Other types of loss such as mean absolute error (MAE) loss may be more

appropriate in certain cases.

2.5.3 Mean Absolute Error (MAE)

MAE loss is used in a regression problem. It measures the difference between the predicted

output of the model and the true output in terms of their absolute difference. MAE is

calculated as follows:

L(y, ŷ) = |y − ŷ| (2.7)

For a batch of training examples, the MAE loss is the average of the losses for each example.

It is a linear loss function, meaning that it penalizes the model equally for making small and
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large errors. MAE is less sensitive to outliers.

2.6 Peformance Evaluation Matrices

2.6.1 Mean Absolute Distance (MAD)

MAD calculates absolute difference between true label and predicted label.

MAD = |y − ŷ| (2.8)

2.6.2 Dice Score

In medical image segmentation, the Dice score is a common metric used to evaluate the

similarity between the predicted and ground truth segmentations. It measures the overlap

between the predicted and true segments of an image. The dice score measures the perfor-

mance of a model, ranging from 0 to 1. One corresponds to a pixel-perfect match between

the model’s output and annotated ground truth.

DiceScore =
2× | X ∩ Y |
| X | + | Y |

(2.9)

i.e., simply two times the area of overlap between output and ground truth divided by the

sum of the total number of pixels in both images.

2.7 Optimizer

Optimizer modifies the model’s parameters to reduce the loss function during training. It

determines the neural network’s weights and biases for best fitting the training set of data.

To do this, the parameters are iteratively updated using the gradient of the loss function. It

updated the weights using the following formula:

Wnew = Wold − η × gradient (2.10)
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where η is the learning rate.

The optimizer uses the direction of the steepest gradient descent to update the parameters

to reduce the loss. There are different types of optimizers:

2.7.1 Batch Gradient Descent

Batch gradient descent computes the gradient over the complete training set at once in batch

gradient descent [27]. This can be computationally expensive for large datasets, but it has

the advantage of guaranteeing convergence to a global minimum if the learning rate is chosen

appropriately.

One disadvantage of batch gradient descent is that it can get stuck in local minima or

saddle points. Other optimization algorithms like stochastic gradient descent and mini-batch

gradient descent can be used to overcome this.

2.7.2 Stochastic Gradient Descent (SGD)

SGD updates parameters for each training example. Thus, over conventional gradient de-

scent, SGD has faster convergence [27]. As we only take into account one example at a time,

the cost will vary over the training examples and won’t definitely go down. Yet, over time,

you’ll see that costs are fluctuating downward.

2.7.3 Mini-Batch Gradient Descent

It divides training data into mini-batch using random sampling, computes the gradient of the

loss function with respect to model weights using data only in minibatch, then updates the

parameters based on the gradient. This process is carried out repeatedly until convergence

[27].
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2.7.4 Adagrad- Adaptive Gradient Algorithm

Gradient descent uses the same learning rate for each input variable. It is challenging to set

the learning rate. If it is too small, learning will be very slow and will take a long time to train,

or if it is too large, the loss function will oscillate and may not reach the global minimum

[27]. In addition, the high-dimensional nature of neural network optimization leads to varying

sensitivity in different dimensions. To tackle this problem, we could choose different learning

for different network dimensions. Adagrad automatically adapts the learning rate based on

the calculated gradient over the search.

2.7.5 Adam optimizer - Adaptive moment estimate

It is a combination of Adagrad and RMSProp (Root Mean Square Propagation) [27]. RM-

SProp maintains per-parameter learning rates that are adjusted in accordance with the recent

magnitudes of weight gradients’ average.

Adam calculates the second moment of the gradients instead of the first moment, as in

RMSProp. It specifically calculates squared error and exponential moving average of the

gradient.

2.8 Backpropogation

Backpropagation is the backward propagation of error. It calculates the gradient of the loss

function with respect to the weight of each neuron in a layer. These gradients are calculated

from the last layer to the first layer in a backward direction [28].
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Chapter 3

Methodology

3.1 Resources and Tools

The project was developed using Python version 3.8.1 and employed the PyTorch library

(1.13.1+cu117) for creating deep neural network models. Image processing tasks were heavily

reliant on the OpenCV library, while CVAT was used for data labeling. Visualization was

done using Matplotlib and torchshow. Jupyter notebooks were utilized for prototyping and

data exploration on an HPC Linux machine named Param-Brahma. The project relied

heavily on the numpy and pandas Python modules for scientific computing functions and

data structures.

3.2 Dataset details

The study uses a public database provided by the Radiological Society of North America

(RSNA) for the Pediatric Bone Age Challenge 2017 [13]. It consists of a train and validation

data.You can find train and validation data here. The training set consists of 12,611 hand

radiograph images and their corresponding age in months from male and female subjects

ranging from 0 to 19 years of age. Figure 3.1 (a) and 3.3 (a) shows that both training and

validation datasets have skewed normal distribution. Number of training images belonging
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to male and female subjects:

Male : 6833

Female : 5778

(a) Training data distribution across 0-19 years of
age.

(b) Training data distribution across gender.

Figure 3.1: The figure represents the distribution of 12,611 training images by age and
gender.

(a) Distribution of male hand radiographs across 0-19
years of age.

(b) Distribution of female hand radiographs across
0-19 years of age.

Figure 3.2: Distribution of training images belonging to males and females across 0-19 years
of age
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The validation set consists of 1,425 hand radiograph images.

Male : 773

Female : 652

(a) Validation data distribution across 0-19 years of
age.

(b) Validation data distribution across gender.

Figure 3.3: The figure represents the distribution of 1425 validation images by age and
gender.

(a) Distribution of male hand radiographs across 0-19
years of age.

(b) Distribution of female hand radiographs across
0-19 years of age.

Figure 3.4: The figure represents the distribution of validation images belonging to males
and females across 0-19 years of age
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3.3 Thesis Structure

Thesis is divided into two main parts. First, is automating data labeling i.e, segmentation

of radiographs and second, bone age prediction. The details of this are discussed in chapter

4 and chapter 5 respectively.
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Chapter 4

Segmentation of Hand Radiographs

According to G-P based BAA methods, multiple ROIs are required to assess bone maturity.

These ROIs in hand radiographs serve as the foundation for Deep Learning (DL)-based BAA.

Annotation of these ROIs is an essential step in data preprocessing. ROIs must be detected

before the prediction of bone age in automated BAA systems. This work utilizes commonly

used UNET architecture for ROI extraction. We have considered four ROI or segments.

These four segments are phalanges, metacarpals, carpals, and radius ulna.

We first extracted the desired bone segments from the radiograph for predicting bone

age. Manual segmentation of radiographs in large datasets is not possible. So, we have

automated the segmentation process so that if a new hand radiograph is given to the model,

it will give you the desired bone segment.

4.1 Data Preparation

A set of 200 radiographs were randomly chosen from RSNA training set to train CNN models

for image segmentation. The original images in the dataset were not all of the same sizes.

In order to address this, black borders were added to each image. The size of the borders

was determined by calculating the difference between the height and width of each image. If

the height of the image was greater than its width, then an equal border, which was half the

difference between the height and width, was added to both sides of the width. Alternatively,
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if the width was greater than the height, then a border of equal size was added to the top

and bottom of the image. After this images were resized to 2000 by 2000. This ensured that

all images in the dataset had the same dimensions and could be used for training without

causing issues due to variations in size. These radiograph data were then split into two sets:

a training set of 160 images and a validation set of 40 images. In order to ensure that the

training set was representative of the overall population, we included images of both genders

across all age ranges. The training and validation data distribution across different ages can

be seen in Figures 4.1 and 4.2.

(a) Training data distribution across 0-19 years of
age.

(b) Training data distribution across gender.

Figure 4.1: The figure represents the distribution of 160 randomly chosen training images
by age and gender.

(a) Validation data distribution across 0-19 years of
age.

(b) Validation data distribution across gender. Both
the gender category contains same number of images.

Figure 4.2: The figure represents the distribution of 40 validation images by age and gender.
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4.2 Image Annotation

Image annotation refers to adding additional information or labels to an image. This informa-

tion could include objects, regions, or specific features within the image. Image annotation

is commonly used in computer vision and machine learning applications to train algorithms

to identify and recognize objects within images. The annotations could be in the form of

bounding boxes, polygonal shapes, or semantic labels. The process of image annotation is

usually performed by humans, who manually add the relevant information to the image,

although there are also some automated methods for image annotation. In order to train

a model that can accurately segment desired bone segments as output, we labeled the four

bone segments individually on an X-ray. The labeling was done using CVAT, which is a

free online tool designed for annotating images and videos for computer vision purposes.

The labeling process was performed on both training and validation sets. Following the

annotation, we constructed four sets of labels, each consisting of 200 labeled X-rays. These

labeled datasets can now be used to train and validate the model to ensure precise bone

segmentation. Figure 4.3 shows four labels or ROI of an X-ray.

4.3 Data Augmentation

Data augmentation is a widely used technique that involves the creation of new data points

from the existing dataset. It achieves this by applying a range of methods to generate

additional samples, which ultimately enhance the performance of the model and improve

the generalization of learned features to new and unseen data. These small modifications

can create new data points similar to the original data but with slight variations that allow

for a more robust training process and better generalization to new data. By increasing the

size and diversity of the dataset, data augmentation can help to prevent the overfitting of

the model. We have applied the following transformation to the training set.

4.3.1 Contrast Adjustment

The adjust contrast transform function in PyTorch is used to adjust the contrast of an image.

It takes a PIL-Python Imaging Library image as input and returns the adjusted image. The
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Figure 4.3: Hand Radiograph labels. These labels were painted on the original image using
CVAT software. The labels were drawn for 160 training images and 40 validation sets.
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function works by multiplying the pixel values of the image by a contrast factor alpha.

g(x) = αf(x) + β (4.1)

The contrast factor is a scalar value that is greater than 1.0 to increase the contrast of the

image or less than 1.0 to decrease the contrast of the image. If the contrast factor is 1.0, the

function returns the original image with no changes.

The alpha values-0.1, 0.2, 0.4 for the image processing operations were chosen by con-

sidering different types of image quality in the training dataset. The aim was to ensure that

the image features such as edges, textures, and contours were not destroyed while applying

the processing operations. The use of appropriate alpha values ensures that the image pro-

cessing operations do not result in a significant loss of image details, which may affect the

performance of the model.

4.3.2 Gaussian Blur

The GaussianBlur function in PyTorch performs a convolution operation on an input image

with a 2D Gaussian kernel. The Gaussian kernel is a 2D array of numbers that represent the

values of a Gaussian function, which is a bell-shaped curve that describes the distribution

of values around a central point. The operation of the Gaussian blur function can be broken

down into the following steps:

• The Gaussian kernel is generated based on the standard deviation and size specified

by the user. The size and standard deviation determine the extent of blurring that

will be applied to the image.

• The kernel is convolved with the input image by sliding it over the image and computing

the weighted sum of pixel values within the kernel window at each position.

• The resulting convolved image is returned as the output of the function.

We chose kernels of size 1, 3, 5, 7, and 9, and sigma value was chosen randomly between 0.1

and 2, which is the default range set in the GaussianBlur function of PyTorch.

31



4.3.3 Rotation

The rotation transforms function in PyTorch applies a rotation to an image by a specified

angle. Specifically, it rotates the image counter-clockwise around its center. When you apply

the rotation, transform function to an image in PyTorch, the pixels of the image are rotated

by the specified angle. This means that each pixel in the original image is moved to a new

location in the rotated image. The result of the rotation transform depends on the angle of

rotation, as well as the size and shape of the image. If the image is square, the center of

the image will be the midpoint of the image’s width and height. If the image is rectangular,

the center of rotation will be located at the midpoint of the shorter dimension. In either

case, the size and shape of the image will affect how the image appears after it has been

rotated. The angle of rotation used for augmentation are 30, 60, and 90 degrees. Random

rotations during image augmentation can help to simulate real-world scenarios where the

orientation of the object in the image may not be consistent. This can help to make the

model more robust to variations in the orientation of objects in the image and improve its

overall accuracy.

4.3.4 Horizontal Flip

Horizontal flip transform flips the image along its vertical axis. Pytorch horizontal flip

transform function takes a probability value as input, which determines the probability

that the image will be flipped horizontally. We have applied horizontal transform with a

probability of 0.5.

4.3.5 Vertical Flip

Vertical flip transform flips the image along its horizontal axis. Pytorch vertical flip transform

function takes a probability value as input, which determines the probability that the image

will be flipped vertically. We have applied vertical transform with a probability of 0.5.

The image augmentations mentioned above were first manually applied to the images

before training, with the parameters’ values selected through multiple trials and error at-

tempts. In total, 13 augmentations were applied to the training images. As a result of the
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augmentation process, the size of the training dataset increased from 160 to 2240 images.

Figure 4.4 shows the augmented images.

4.4 Model Architecture

We have used state-of-art UNET architecture for automating the image segmentation pro-

cess. The UNET architecture is a widely used deep learning model particularly useful for

image segmentation tasks. It consists of two main parts - an encoder and a decoder network

which are linked by a bottleneck layer. The encoder network comprises multiple convolu-

tional and pooling layers that downsample the input image. This downsampling is useful in

extracting low-level features of the image. On the other hand, the decoder network contains

up-convolutional and concatenation layers that upsample the image to its original size. This

process helps the model capture high-level features of the image.

One of the key advantages of the UNET architecture is the use of skip connections

that connect corresponding layers between the encoder and decoder networks. These skip

connections help the model preserve spatial information during the upsampling process,

improving its accuracy in segmenting objects in images.

The number of convolutional layers in the UNET architecture is determined by the com-

plexity of the input image, the level of detail required in the output segmentation, and the

computational resources available for training and inference. It is important to strike a

balance between the number of convolutional layers and the model’s overall performance in

terms of accuracy, speed, and generalization ability.

The UNet used for training has few modifications from the original Unet. First, the

convolution layer in both the encoder and decoder have a padding of one. The padding

ensures that the output after applying the convolution operation will have the same size as

the input. Second, every convolution is followed by the Batch Normalization Layer. We have

trained four separate UNet models for the segmentation of phalanges, carpals, metacarpals,

and radius ulna.
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(a) Original image (b) contrast adjusted

(c) Gaussian Blurred (d) Rotated by 30 degree

(e) Horizotal Flip (f) Vertical Flip

Figure 4.4: Figure represents the different augmentations applied to training images. These
augmentations were applied to each image and augmented images were saved in a directory.
These augmented images were then used for the model training.
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Figure 4.5: The figure depicts the architecture of the UNet model, where a blue block
represents an output feature map of a convolution layer. The model includes several different
types of layers, with the blue arrow indicating a (3×3) convolution layer, the green arrow
indicating a (2×2) convolution transpose layer, and the red arrow indicating a (2×2) Maxpool
layer which reduces the spatial resolution of feature maps. Additionally, the figure includes
gray arrows representing skip connections that concatenate feature maps from the encoder
with corresponding feature maps from the decoder.
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4.5 Hyperparameters

In machine learning, hyperparameters are parameters that are set prior to training a model,

and are not learned during the training process. In the context of CNNs, hyperparameters

include the number of layers in the network, the size of the filters used in each layer, the

learning rate used during training, the batch size, and the number of epochs. Hyperparam-

eters can significantly impact the performance of the CNN, so it is important to choose the

right values for each one to achieve the best results. This process of choosing the right hy-

perparameters is done through trial and error, by testing different values and observing the

impact on the model’s performance. Following multiple trials and adjustments, we settled

on an input image size of 512 × 512, variable batch size for different segments, and trained

our model for 300 epochs. For weight updation, we utilized the ADAM optimizer with a

learning rate of 1e-5, while Binary Cross Entropy Loss was employed as the loss function

during training.

4.6 Results and Discussion

To segment four hand bone segments, we trained four separate models using different con-

figurations of UNet architecture. We experimented with reducing the convolution layers,

using batch normalization, padding the image for segmentation, and evaluated the model’s

performance using dice score and loss on validation data. We selected the best-performing

model based on the combination of reduced validation loss and high dice score and used it

to segment all four segments. The chosen model and hyperparameters were optimized to

achieve the best results. Table 4.1 displays the performance of the various trained UNet

models, with the best-performing models highlighted. The ”SHORT UNET” architecture

refers to a version of UNet with three layers in the encoder and decoder. Each layer in the

encoder has two convolution layers followed by one downsampling layer, while each layer

in the decoder has two convolution layers followed by one upsampling layer. The ”Original

UNet” architecture contains four layers, while the ”SHORT UNET” architecture only has

three layers.

Figure 4.7 shows the training and validation dice score and per epoch loss plots for models

trained for the segmentation of all four segments.
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Architecture Epochs
Training
Dice Score

Validation
Dice Score

Training
Loss

Validation
Loss

UNET, BN, p=1 300 0.99 0.87 0.035 0.069
SHORT UNET, BN 120 0.97 0.86 0.023 0.056
UNET, p=1, no BN 120 0.94 0.86 0.006 0.021
UNET, p=0, no BN 120 0.86 0.80 0.015 0.016

Table 4.1: Training and validation loss and dice score results on different UNet architec-
ture. UNET, with batch normalization and padding of one, gave the highest dice score on
validation images. BN-Batch Normalization, p-padding

When we examine the per-epoch loss for all four hand bone segments, we can observed

that the training and validation loss values remain constant after 100 epochs, except for

the metacarpal bone in Figure 4.7-b, which saturates after 180 epochs. However, we still

trained the models for a greater number of epochs because the visualization of predictions on

different validation images showed improvement with increasing training epochs. Therefore,

we continued training the model for 300 epochs. We got validation dice scores of 0.90, 0.91,

0.93, and 0.94 for phalanges, carpals, metacarpals, and radius ulna, respectively.

Using the trained segmentation models, we labeled all the training and validation images

for four segments. The models successfully segmented almost all 12611 training and 1425

validation images, but there were some instances of low image quality, like low contrast,

and a white patch in between the image, that caused difficulties in accurate segmentation.

Examples of such images can be seen in Figure 4.6. Despite these challenges, the majority

of the images were successfully segmented using the trained models. We overlaid predicted

masks onto the corresponding input images to visualize the accuracy of the predicted masks

generated by segmentation models. An example of this visualization can be seen in Figure

4.8. The predicted masks are highlighted in pink for easy identification. The results of the

segmentation model on training and validation are further utilized for bone aging.
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(a) (b)

(c) (d)

Figure 4.6: Examples of the low-quality images from the RSNA training dataset. Image (a)
contains a white patch of some element captured during imaging. Image (b), (c), and (d) has
very low contrast between bones and the background. These types of images cause difficulty
in accurate segmentation.
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(a) Training and validation per epoch loss and dice
score of a model trained for phalange segment.

(b) Training and validation per epoch loss and dice
score of a model trained for the metacarpal segment.

(c) Training and validation per epoch loss and dice
score of a model trained for the carpal segment.

(d) Training and validation per epoch loss and dice
score of a model trained for radius ulna segment.

Figure 4.7: Epoch loss and dice score plot of training and validation of the best-performing
model. We have achieved a validation dice score of more than 0.90 for all four segments.
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Figure 4.8: Predicted output masks (in pink) of four segmentation models overlayed on the
input image to visualize the accuracy of predicted masks.

40



Chapter 5

Bone Aging

In the GP method of bone aging, X-rays of the left hand and wrist are considered for

assessment, and the radiographs are compared to a standard atlas of bone development.

The atlas contains a series of X-ray images of the left hand and wrist bones of children of

known ages, with each image corresponding to a specific age.

The radiologist or physician compares the X-ray of the child’s hand and wrist bones to

the reference x-ray in the atlas and selects the image that best matches the appearance of the

child’s bones. Based on this comparison, the radiologist or physician estimates the child’s

bone age.

The Greulich-Pyle method is widely used to estimate bone age because it is noninvasive

and inexpensive. However, it should be noted that the method is not foolproof and can be

affected by factors such as ethnicity, nutrition, and hormonal disorders. In different ethnic

populations, there may be differences in the maturation of hand bones. For instance, some

hand bones may mature earlier in one population, while the same bones may mature later in

another population. As a result, the features of the hand bones on X-ray can differ between

populations.

To address this issue, we calculate the bone age of each hand bone segment independently

and then calculate the final age of full-hand by two methods, first by the weighted sum of the

three segments and second by the average prediction of the three segments. This process is

carried out separately for males and females. This approach takes into account the differences
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in bone maturation between different ethnic populations, which can lead to a more accurate

estimation of bone age. By segmenting the hand bones, we can also identify any specific

bones that may be maturing faster or slower than others, which can provide additional

insight into a child’s growth and development.

5.1 Data Preparation

Segmenting hand bone images for age detection is a critical process that involves cropping the

required bone segments from a full-hand radiograph. While this process can be done manu-

ally, it is challenging and time-consuming, particularly when dealing with a large dataset of

images.

To obtain three bone segments (short bones, carpals, and wrist) from a full-hand radio-

graph, we followed the steps outlined below:

• First, masks for each segment were obtained using the trained segmentation models.

• Second, calculated the coordinates of each bone segment that needed to be cropped

from the full-hand radiograph using the OpenCV findContour()function by giving

the corresponding segmented mask as input.

• Finally, we cropped the full-hand radiograph into the three bone segments (short bones,

carpals, and wrist) using the coordinates obtained from the previous step.

• To obtain the short bones segment, we subtracted the carpal segment from the phalange

segment.

This automated approach of cropping full-hand images enabled us to save time and improve

accuracy in the age detection process. It reduced the need for manual intervention and

minimized the potential for errors associated with manual cropping. Figure 5.1 shows the

crops of an image obtained using the automated process.
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(a) Original image (b) carpals

(c) short bones: phalanges and
metacarpals

(d) Wrist/ Radius Ulna

Figure 5.1: figure (a) depicts a full-hand radiograph, from which we have extracted three
cropped segments represented by (b), (c), and (d). We obtained these segments by first
utilizing segmented masks of the original image to calculate the bounding box coordinates
and then using these coordinates to crop out the desired segments.

We used these crops to train regression models for age detection. Crops of the image are

given the same age as the original image. We trained four regression models separately for

boys and girls to detect the age of full-hand, short bones, carpals, and wrist.
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5.2 Model Architecture

Bone age is a continuous variable that varies across a range of values. As such, linear re-

gression is an appropriate statistical technique for predicting bone age from hand radiograph

images. In our study, we trained a linear regression model to predict bone age from hand

radiograph images and their crops.

In order to learn the relationship between skeletal features derived from hand radiographs

and bone age, we utilized PyTorch’s DenseNet161 architecture with pre-trained weights

(IMAGENET1K V1). We followed the recommended image preprocessing techniques for

DenseNet161 [29]. This deep learning model is specifically designed to process and analyze

images and is capable of learning complex representations of image features.

By training DenseNet 161 on a dataset of hand radiograph images and corresponding bone

age labels, we aimed to create a powerful predictive model that could accurately estimate

bone age from new radiograph images. During training, the model learns to adjust its weights

and biases in order to minimize the difference between its predicted bone age values and the

true bone age labels in the training dataset. We utilized the pre-trained DenseNet-161 model

in PyTorch for training a regression model. We modified the output of the final Linear layer

to be a single value, as our goal is to predict age, which is a numerical value. Figure 5.2 shows

the summary of the DenseNet-161 architecture. Here are the details of the DenseNet-161

architecture:

• Input layer: The network takes a 256 × 256 × 3 RGB image as input.

• Convolutional layers: The first layer of the network is a convolutional layer with 96

filters and a 7×7 kernel. This is followed by a batch normalization layer, a ReLU

activation layer, and a max pooling layer with a 3×3 kernel and a stride of 2.

• Dense blocks: The network consists of four dense blocks. Each dense block consists

of multiple convolutional layers with a 1x1 kernel followed by a 3x3 kernel. Each

convolutional layer within a dense block is followed by batch normalization and ReLU

activation.

• Transition layers: Between each pair of dense blocks, there is a transition layer that

consists of a 1x1 convolutional layer, a batch normalization layer, and a 2x2 average

44



Figure 5.2: DenseNet-161 Model Summary
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pooling layer with a stride of 2. The 1x1 convolutional layer reduces the number of

channels in the feature maps.

• Classification layer: The last dense block is followed by a global average pooling layer,

which reduces the dimensions of the feature maps to 1x1. This is followed by a fully

connected layer with 1 output feature which gives the age of the image.

Overall, DenseNet-161 has 49 million parameters and achieves state-of-the-art performance

on several benchmark image classification tasks, such as ImageNet.

5.3 Hyperparameters

We trained the regression models for each segment for boys and girls separately. Therefore,

for each gender, we trained four regression models. After conducting multiple trials and

making adjustments, we determined that the input image size would be 256 x 256, and a

batch size of 32 should be used during training. Each segment was trained for a specific

number of epochs. During training, we employed the ADAM optimizer with a learning rate

of 1e-5 to update the weights and used MSE as the training loss function, while MAD was

used for calculating validation loss.

Models were trained on multiple GPUs. For this, we used PyTorch Distributed Data

Parallelism (DDP)[30]. DDP is a technique used in distributed computing to train deep

learning models. It works by replicating the model on multiple devices and dividing data

into smaller parts, and distributing them across multiple devices or computers, such as GPUs

or nodes in a cluster. Each device or computer trains the model on its portion of the data

and the resulting gradients are combined to update the model parameters.

The basic workflow of DDP can be summarized in the following steps:

• Data parallelism: The data is divided into smaller batches, which are distributed across

multiple devices or computers.

• Model parallelism: The model is replicated on multiple devices.
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• Forward pass: Each device or computer performs a forward pass through the model,

using its portion of the data.

• Backward pass: The gradients for each model are computed separately on each device.

• Gradient aggregation: The gradients from each device are combined, either by averag-

ing them or using a more complex algorithm like the ring all-reduce algorithm.

• Parameter update: The combined gradients are used to update the model parameters

and the process repeats for the next batch of data.

By using DDP, we were able to take advantage of parallel processing to train a CNN model,

DenseNet161, on a large dataset of 12,611 images. This approach allowed us to effectively

handle the significant computational burden of a model with 49 million parameters, resulting

in a notable reduction in training time.

5.4 Results

Segment weights
Boys Girls

Short bones 0.57 0.69
Wrist 0.26 0.16
Carpal 0.18 0.17

Table 5.1: Table shows the estimated weights for each segment in girls and boys. These
weights were estimated by multivariate linear regression of ground truth against individual
segment prediction.

5.4.1 Independent Segment Rating

We validated the bone age model on RSNA validation data in the bone age range up to

19 years in boys and 18 years in girls. Figures 5.3 and 5.4 shows the comparison between

the ground truth and the predictions made using the full-hand and three-bone segments in

boys and girls, respectively. The mean value of the differences is close to zero in all plots,

indicating good agreement between the predictions and ground truth, giving the lowest MAD
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of 7.2 using the full-hand in boys and MAD of 7.7 using short bones in girls. The MAD of

all the segments is reported in Table 5.2.

(a) (b)

(c) (d)

Figure 5.3: A Bland-Altman plot visualizes the agreement between the ground truth and
(a)full-hand radiograph, as well as the ground truth and three bone segments: (b) short
bones, (c)wrist, and (d) carpals in boys. The x-axis represents the average of the two
methods being compared, while the y-axis shows the difference between the two methods.
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(a) (b)

(c) (d)

Figure 5.4: A Bland-Altman plot visualizes the agreement between the ground truth and
(a)full-hand radiograph, as well as the ground truth and three bone segments: (b) short
bones, (c)wrist, and (d) carpals in girls.

5.4.2 Ensemble of Carpals, Wrist, and Short Bones Rating

Figure 5.5 compares the ground truth and the average prediction of individual bone segments

in boys and girls. The results show that the mean difference between the two methods is

smaller when compared to the independent segment rating for both genders. By combining

the segments and taking the average, the MAD is reduced to 6.9 in boys and 7.4 in girls,

as compared to the MAD of the individual segments. The MAD values for the individual

segments are reported in Table 5.2.
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(a) (b)

Figure 5.5: A Bland-Altman plot visualizes the agreement between ground truth and the
average predicted age for short bones, carpals, and wrist segments in boys (a) and girls (b).
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5.4.3 Weighted Ensemble of Carpals, Wrist, and Short Bones Rat-

ing

Figure 5.6 (a), (b) compares the ground truth and the weighted average of individual bone

segments in boys and girls, respectively. Weights were calculated using multivariate linear re-

gression of ground truth against the prediction of each segment. Table 5.1 lists the estimated

weights for each segment in girls and boys. The weighted average of individual segments has

resulted in a further reduction of the MAD to 6.7 in boys and 7.4 in girls, compared to the

MAD obtained by simply averaging the predictions of the individual segments.

(a) (b)

Figure 5.6: A Bland-Altman plot visualizes the agreement between ground truth and the
weighted average of predicted age for short bones, carpals, and wrist segments in boys (a)
and girls(b).

Segment MAD (months)
Boys Girls

Full-Hand 7.2 8.4
Short Bones 7.4 7.7
Wrist 8.8 9.7
Carpals 8.6 9.3
Mean (short bones + carpals + wrist) 6.9 7.6
Weighted sum (short bones + carpals + wrist) 6.7 7.4

Table 5.2: Mean Absolute Distance in months between ground truth and bone segment age
prediction.
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5.5 Discussion

After evaluating our bone age model on RSNA validation data, we found that a weighted

ensemble approach resulted in a reduced MAD compared to other methods, such as full-hand,

individual segments, and an average of individual segments. Table 5.1 lists the weights for

each segment in girls and boys.

The weights provide insights into the relative contribution of each segment to bone age

prediction. For both genders, short bones are the most important segment, but the wrist

plays a more significant role in bone maturation in boys compared to girls. This suggests

differences in bone growth patterns between boys and girls. These findings highlight the

importance of considering the contributions of different segments when predicting bone age

and the need to account for gender differences in bone growth patterns.

5.6 Conclusion

Our results demonstrate that using segmented hand bone images and combining the predic-

tions from different segments can improve the accuracy of bone age predictions in both girls

and boys. We also found that weighing the predictions from each segment can provide in-

sights into the relative contribution of each segment to bone age prediction. These findings

have implications for clinical practice, where accurate bone age prediction is essential for

assessing growth and development in children and adolescents. Our approach can streamline

the process of bone age prediction and help clinicians make more informed decisions about

patient care.
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