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Abstract
The high luminosity phase of the LHC (HL-LHC) poses significant challenges of radiation damage
to the components of the CMS detector expected from the increased integrated luminosity and high
event pileup. In view of HL-LHC phase, the CMS collaboration has opted for the High Granular-
ity Calorimeter (HGCAL) to replace the current electromagnetic and hadronic calorimeters. The
HGCAL features high radiation tolerance, unprecedented transverse and longitudinal segmenta-
tion for both electromagnetic and hadronic compartments, and high-precision timing capabilities,
facilitating efficient particle flow reconstruction, energy rejection from the pileup, and particle
identification. To validate the proposed design of the HGCAL, a series of beam tests have been
carried out using silicon and scintillator based sampling calorimeter prototype. The prototype was
exposed to beams of high-energy e+ and p� of momentum ranging from 20 to 300 GeV/c, and
µ� of momentum 200 GeV/c. This thesis focuses on the energy regression of charged pions in the
HGCAL test beam prototype using semiparametric graph neural networks. Given the complexity
of the pion showers, advanced machine learning models like graph neural networks can fully uti-
lize the reconstructed hit information, i.e., the spatial coordinates and the energy information from
the fine lateral and longitudinal granularity of the HGCAL, to reconstruct pion energy efficiently.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) [10] at CERN resumed proton-proton (pp) collisions at center-
of-mass energy

p
s=13.6 TeV in July 2022 after the long shutdown (LS2) of three years. At the

end of the ongoing operations in 2025, called Run-3, the CMS [11] and ATLAS [12] experiments
are expected to accumulate pp collision data corresponding to a total integrated luminosity of
approximately 300 fb�1 (including data collected during Run-2 at

p
s = 13 TeV). The LHC is

presently operating at the instantaneous luminosity of 2.1⇥1034 cm�2 s�1.

Following the next long shutdown (LS3), the LHC will commence its high luminosity phase,
called HL-LHC, with pp collisions at much higher instantaneous luminosity (5⇥1034 cm�2 s�1)
[4]. It is expected to start in 2029 and aims to collect data corresponding to an integrated luminosity
of 3000 fb�1 during a span of ten years of operations. Such a large dataset will open opportunities
for precision measurements of the standard model (SM) predictions and searches for new physics
beyond the SM (BSM).

The HL-LHC phase poses significant challenges of radiation damage to the components of
the CMS detector coming from the increased integrated luminosity and a large number of pp col-
lisions overlapping with the collision of interest (pileup) owing to the substantial increase in the
instantaneous luminosity. The current CMS is not designed to operate under such harsh conditions,
and various detector components must be upgraded to maintain optimal efficiency, resolution and
signal-to-noise ratio of the detector during the HL-LHC phase. As a part of the HL-LHC upgrade,
the CMS collaboration plans to replace the current endcap calorimeters with the High Granular-
ity Calorimeter (HGCAL) [4], which is a sampling calorimeter with silicon and scintillator as the
active materials.
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The high amount of radiation in the scintillators creates absorber bands in the materials, which
significantly affects light propagation and thus, makes them less transparent. The current endcap
calorimeters, which are based on scintillators, the PbWO4-based electromagnetic calorimeter and
the plastic scintillator-based hadronic calorimeter, are designed to handle an integrated luminosity
of 500 fb�1 [4]. The detector replacing the current endcap calorimeters in the HL-LHC should
tolerate integrated radiation that will be ten times larger than the LHC. Radiation hard silicon
sensors are chosen as the active material for the region of the HGCAL calorimeter, where the
cumulative radiation doses are expected to be high. Whereas in the other regions of the HGCAL,
plastic scintillators directly read out by silicon photomultipliers (SiPMs) are chosen as the active
material [4].

The thesis begins with an introduction to the interactions of particles with matter, electromag-
netic and hadronic showers, calorimeters and detector simulation using the GEANT4 toolkit in
chapter 2. Chapter 3 describes the details of the proposed CMS HGCAL detector and the test
beam setup of HGCAL. The detector calibration techniques and the studies related to particles
produced in the hadronic shower are also described in chapter 3.

This thesis focuses on the energy reconstruction of charged pions in the HGCAL test beam
setup using semiparametric graph neural networks. Chapter 4 discusses the details of the graph
neural network-based dynamic reduction network (DRN) model and its performance on energy
reconstruction of pions in the HGCAL test beam setup. The performance of the DRN is also
studied as a function of the energy carried by p0 in the first hadronic interaction. At the end of
the chapter, we study the performance of the DRN when providing reduced information as inputs.
Chapter 5 summarizes the main results and outcome of the thesis.
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Chapter 2

Particle interactions with matter

The particles produced in the collider-based experiments carry high energy. Heavy unstable par-
ticles decay into lighter particles that interact with the materials of the detector via different pro-
cesses. The particles produced in the collisions, such as hadrons and electrons, deposit their energy
in the detector by developing a cascade of shower particles. The various processes by which the
energetic particles interact and lose their energy in matter are described in the following sections.

2.1 Energy loss by charged particles

2.1.1 Energy loss by ionization processes

A charged particle passing through a medium interacts with the atomic electrons through Coulom-
bic interaction [3]. This causes the electrons of the atom to either excite (excitation) or to be ejected
from the parent atom (ionization) and thus, results in the energy loss of the incident charged parti-
cle. The energy loss through the ionization process by the charged particle per unit path length (x)
is given by the Bethe-Bloch equation:

�dE
dx

|ion = r NA
Z
A

4pa2h̄2

me

q2

b 2


ln
✓

2mec2b 2g2

I

◆
�b 2 � d

2

�
(2.1)

where E is the kinetic energy of the incident particle of charge q traveling with velocity v, b
is v/c, g is the Lorentz factor, NA is the Avogadro’s number, r is the density of the medium, Z/A
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Figure 2.1: Mean energy loss by charged particles in different materials [1].

is the atomic number/mass of the medium, I (⇡ 10⇥Z eV ) is the mean ionization potential of the
medium, me is the mass of the electron, a is the fine-structure constant and d is the correction for
dielectric screening effect for a highly relativistic particle.

There are a few notable features that can be observed from the formula:

• The energy loss is inversely proportional to b 2 as the slower particle has more time to spend
in the vicinity of the Coulombic field of atoms and loses more energy.

• The more charge the particle carries, the more will be the energy loss (µ q2).

• Higher the density of the medium, the higher the energy loss (µ r).

• At relativistic speeds (b ⇡ 1), the logarithmic term of the equation dominates and increases
the energy loss by the charged particle. This is due to the increase in the transverse electric
field of the relativistic charged particle and is called the relativistic rise of energy loss.

The energy loss is usually expressed in units of MeV g�1 cm2 by dividing the equation 2.1 by
r , which is roughly the same in a wide range of materials. Figure 2.1 shows the energy loss of
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charged particles as a function of particle momentum. The figure shows that the energy loss rapidly
decreases with increasing b and reaches a minimum value at around bg =3–4. The particle at this
point is considered minimum ionizing particle or MIP since it loses minimum energy through
ionization. On the further increase of the particle momentum, the energy loss increases due to the
relativistic rise.

2.1.2 Energy loss by radiation

A charged particle passing through a medium undergoes acceleration or deceleration due to force
from the electric fields of the nucleus of an atom. The change in momentum of the incident
charged particle results in radiation in the form of photons called bremsstrahlung. The emitted
photon carries a fraction of the energy of the incident charged particle. The probability of this
process for a charged particle of mass m and atomic mass (Z) of the material in which the particle
is passing through is given by:

sbrem µ Z2a3

m2c4 (2.2)

The probability of bremsstrahlung is inversely proportional to the mass of the charged particle
(µ 1

m2 ). If we compare the muon (mµ = 105.6 MeV) and electron (me = 0.5 MeV), an electron is
approximately 40000 times more probable to radiate bremsstrahlung photon than a muon. Muon
loses very less energy through radiation and rarely initiates particle showers. Muon loses its energy
mainly through the ionization process and it behaves as a minimum ionizing particle for a wide
range of particle momentum. Usually, the energy loss of electrons at various depths it traverses in
different materials is specified in terms of radiation length (X0), which is the mean distance over
which the electron loses 63.2% (1�1/e) of its energy.

The electron loses energy mainly through the ionization processes at lower energies and radi-
ation processes at higher energies. The critical energy (e) of a medium with the atomic number
Z is the energy at which the energy loss due to ionization and radiation are equal [3], and has an
approximate value of 560

Z MeV. The higher the atomic number (Z) of the material lower will be the
critical energy. This follows from Equation 2.2, as the probability of bremsstrahlung is directly
proportional to Z2.
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2.2 Energy loss by photons

As a photon traverses a material, it loses its energy mainly through the photoelectric effect, comp-
ton scattering and pair production. The photoelectric effect dominates at lower energies, the comp-
ton scattering dominates in the intermediate regime and the pair production dominates at higher
photon energies.

• Photoelectric effect: It is a process in which an atom emits an electron after absorbing a
photon. The photoelectric cross-section is given by :

s photelectric µ Z5a4
✓

mec2

Eg

◆n

(2.3)

where n = 7
2 at Eg << mec2 and n ! 1 at Eg >> mec2 [3]. The cross-section of the pho-

toelectric effect is highly dependent on the number of electrons available in the medium [2]
and thus, strongly depends on the Z value of the medium (µ Z5). For high Z materials such
as lead (Pb) and uranium (U), the energy loss for low-energy photons is mainly through the
photoelectric effect.

• Compton scattering: It is a process in which an electron scatters a photon and a fraction
of the energy of the photon is lost to the struck electron [2]. The compton scattering cross-
section is given by:

scompton µ
lnEg
Eg

(2.4)

• Pair production: In the presence of the electric field of the nucleus of an atom, if the
energy carried by a photon is larger than two times the rest mass of the electron, it creates
an electron-positron pair. This process is called pair production. The electron-positron pairs
can lose energy by ionization or through bremsstrahlung radiation. The cross-section of the
pair production is given by:

spair µ 7
9

A
NA

1
X0

(2.5)

The energy loss of photons through pair production starts to dominate at much lower energy
for material with high atomic mass (µ A).
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2.3 Energy loss by hadrons

A highly energetic hadron (charged or neutral) deposits its energy in a material by interacting with
its nuclei via strong nuclear interactions. A charged hadron continues to lose its energy through
ionization until it undergoes such a hadronic interaction. In dealing with hadrons, it is convenient
to specify the depth of different materials in terms of interaction length (lint), which is defined
as the mean distance traveled by a hadron before it undergoes a strong hadronic interaction. The
inelastic strong interaction of the incoming hadron with the atomic nucleus leads to spallation. The
spallation process can be described in two steps, a fast intranuclear cascade followed by evapora-
tion of the excited nucleus. Figure 2.2 shows the interaction of a 30 GeV proton with the nucleus
in a photographic emulsion.

Figure 2.2: A strong nuclear interaction of proton with the nucleus in a photographic emulsion [2].

In the fast intranuclear cascade, the incoming hadron has a quasi-free collision [2] with the
nucleons of the atomic nucleus. When some fraction of the energy of incident hadron is transferred
to the nucleons, they start traveling within the nucleus and collide with other nucleons, which leads
to the development of a cascade of fast nucleons. If the energy transferred by the incoming hadron
is sufficiently high, pions and other unstable hadrons can be created [2]. The particles having
enough kinetic energy to overcome the nuclear binding energy will escape the nuclear boundary
and other particles with lower kinetic energy distribute their energy in the nucleus to form an
excited nucleus.

The process following the fast intranuclear cascade is relatively slow, where the excited nucleus
returns to the ground state by emitting certain particles (evaporation). The emitted particles are
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predominantly the free nucleons, i.e., protons and neutrons. Even a particles and photons are
emitted in the process. The heavier nucleus, such as uranium, can also undergo nuclear fission
reaction. The particles are emitted more or less isotropically in this process [2].

In Figure 2.2, the tracks appearing in the direction of the incident proton are mostly the charged
pions and protons coming from the fast intranuclear cascade. We also see that a few charged
particles travel in the positive x direction. These particles are emitted during the evaporation stage.

2.4 Shower development

2.4.1 Electromagnetic shower

A cascade of photons and electrons develops when a highly energetic photon or electron is incident
on an absorber material. Figure 2.3 shows a schematic of an electromagnetic shower produced
by a photon. The photon pair produce electron-positron and these, in turn, produce photons via
bremsstrahlung. With an increasing depth of the absorber material, the number of particles in the
electromagnetic shower increases till some depth (called the shower maximum) while the mean
energy carried by the particles decreases.

Figure 2.3: A schematic of an electromagnetic shower induced by a photon [3].

Figure 2.4 shows the longitudinal development of the electron shower in different materials.
The multiplication of the shower particles continues until the energy carried by the particles is
below the critical energy (e) of the material and the energy deposition increases accordingly. After
the shower maximum has been reached, the energy deposition falls off exponentially. At this point,
the photons lose energy mainly through the compton scattering or the photoelectric effect and the
e�, e+ lose energy through ionization of the absorber material. The shower maximum is deeper for
the high Z material (low critical energy) as the multiplication of shower particles continues down
to lower energies.
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Figure 2.4: Simulation of the longitudinal development of 10 GeV electron showers in aluminum
(AL), iron (Fe) and lead (Pb) [3].

The electromagnetic shower spreads in the lateral direction due to multiple scattering of the
secondary e�, e+ and emission of photons away from the shower axis. The lateral extent of the
electromagnetic shower for different materials can be specified in terms of Moliére radius (RM),
which is the radius of the cylinder of infinite length, which contains 90% of the shower energy.

2.4.2 Hadronic shower

As mentioned in the section 2.3, the strong nuclear interactions produce multiple secondary hadrons.
These secondary hadrons can further interact with the absorber nuclei leading to an increase in the
number of particles in the cascade. The particle multiplication continues until the energy carried
by the secondary hadron goes below the threshold for producing other hadrons. The cascade con-
tains two distinct components (Figure 2.5), namely the electromagnetic one (h/p0 ! gg) and the
hadronic one (p�, p+, n, p, etc.) [3].

Figure 2.5: A schematic of development of a hadronic shower [3].

The particles emitted during the nuclear spallation process have to overcome the nuclear bind-
ing energy to escape the nuclear boundary. The energy needed for this process does not contribute
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to the detector signal and is termed invisible energy. Hence, in general, the energy deposited,
which is available to convert to a signal, from a pion shower is less than an electron shower of the
same energy.

Figure 2.6: The simulation of energy deposition of two different 270 GeV pion in a block of copper
[3].

For hadronic showers, there is also high shower-to-shower fluctuation in energy carried by the
electromagnetic component (mainly coming from p0) for a given pion energy. Also, the depth at
which the p0 is produced varies from shower-to-shower. Figure 2.6 shows the simulation of energy
deposition of two different 270 GeV pion in a block of copper [3]. The peaks in the distribution
represent p0 production, which leads to higher energy deposition through electromagnetic inter-
action. I will elaborate more on the p0 produced in the hadronic showers in section 3.4.2. The
high-energy hadronic showers have a dense electromagnetic core that is surrounded by an expo-
nentially decreasing non-electromagnetic halo [3]. The longitudinal spread of hadronic showers is
more than an electromagnetic shower of the same energy. For example, ⇠9 lint (⇠151 cm) of iron
is needed to contain 99% of 100 GeV p� shower [2]. In comparison, ⇠25 X0 (⇠44 cm) of iron is
needed to contain 99% of 100 GeV e� shower [7].

2.5 Calorimeters

Calorimeters measure the energy and position of the particles that pass through them and are de-
signed to fully contain the showers that develop from e�, e+, photons and hadrons. The absorber
medium is where the particle shower develops and deposits most of its energy and the active
medium is where the deposited energy is actually measured. Based on the active and absorber
material construction, calorimeters can be of two types: homogenous and sampling calorimeters.
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• In homogeneous calorimeters, a single medium serves both the purpose of shower develop-
ment (absorber) and energy measurements (active). For example, the current CMS electro-
magnetic calorimeter (ECAL) is a homogenous calorimeter made up of PbWO4 scintillating
crystals.

• In sampling calorimeters, dense absorber layers are sandwiched between light active layers.
Most of the energy deposition occurs in the absorber layers and the active layers take a
snapshot of energy deposition at intermediate depths. These calorimeters are mainly used
to measure the energy from hadronic showers, which need a larger depth for containment.
For example, the current CMS hadronic calorimeter (HCAL) is a sampling calorimeter with
brass as the absorber material and plastic scintillators as the active material.

2.5.1 Semiconductors as the active material

A semiconductor is a material that has an electrical conductivity value between a conductor and
an insulator. When a charged particle passes through a semiconductor crystal, the electrons of the
semiconductor atoms excite from the valence band to the conduction band, forming an electron-
hole pair. The pure crystal of semiconductor material (intrinsic semiconductor) is not suitable
for particle detection due to the low signal-to-noise. The conductivity of the pure semiconductor
material can be increased by adding impurities. Introducing donor atoms (phosphorous) forms
the n-type semiconductors and adding acceptor atoms (aluminum) forms the p-type semiconduc-
tors. The majority charge carriers in n-type and p-type semiconductors are electrons and holes,
respectively.

The p-type and n-type semiconductors can be joined to form a p-n junction diode, as shown
in Figure 2.7. The majority charge carriers diffuse and recombine, creating a net electric field
and potential difference across the junction, forming a depletion zone. Forward biasing the p-n
junction diode can increase the noise in the detector due to the thermal generation of electron-hole
pairs in the p-n junction. In reverse bias mode, the depletion region is free of charge carriers, which
reduces the noise in the detector. Reverse biasing the p-n junction diode increases the electric field
and the width of the depletion zone across the junction. Figure 2.8 depicts a charged particle
passing through a silicon sensor. When an ionizing particle passes through the depletion zone of
the silicon sensor, electron-hole pairs are created along its path. The electric field drifts the electron
and holes to opposite electrodes and a current is generated proportional to the energy deposited by
the ionizing particle. The more particles pass through the semiconductor sensor, the more will the
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Figure 2.7: A schematic of p-n junction diode.

Figure 2.8: A depiction of a charged particle passing through a silicon sensor.
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generation of electron-hole pairs. Thus, the current generated in the semiconductor cell is also
indicative of the number of particles passing through it.

2.5.2 Scintillators as the active material

When a charged particle passes through scintillating material, it excites the molecules in the mate-
rial. The excited molecules emit photons when returning to the ground state. The photons emitted
are called scintillating photons. Usually, the scintillators are optically coupled with the photo-
detector, which produces an electrical pulse proportional to the number of scintillating photons,
and hence, the energy deposited in the scintillating material. The scintillating photons are trans-
mitted to the photo-detector directly or by a light guide [13]. The photo-detector used in the
HGCAL detector is the silicon photomultiplier (SiPM). A SiPM is made up of an array of small,
electrically and optically isolated avalanche photodiodes, each of which can detect a single photon
of light. The signals obtained from the SiPM are a sum of the signals obtained from each avalanche
photodiode. The SiPM outputs an electrical signal proportional to the number of scintillating pho-
tons striking it. The scintillators are used to measure the particle energy and because of their fast
response time, they are also used as trigger generators.

2.5.3 Energy response and resolution of calorimeters

The performance of the calorimeter can be measured in terms of response and resolution. The
response is the average energy measured by the calorimeter for particles of a given energy, whereas
the resolution is the measure of fluctuation in the calorimetric response.

Energy response

The response for the electrons and photons is linear with energy because the electromagnetic
shower deposits all of its energy in the calorimeter and the energy deposited is completely con-
verted to a detectable signal. However, non-linearity might arise due to the saturation of the device
that produces the signal or the leakage of shower energy outside the calorimeter.

As discussed earlier, the hadronic shower has two components, the electromagnetic and the
hadronic components. The energy of the electromagnetic component is completely converted to a
detectable signal. In the hadronic component, a part of the energy is utilized for breaking up the
nuclei and does not contribute to a detectable signal (invisible energy). Hence, the response of the
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calorimeter is different for the hadronic and electromagnetic shower of the same energy. Also, the
energy carried by electromagnetic component increases with an increase in the energy of incident
hadron. This leads to non-linearity in the calorimetric response for hadrons.

Energy resolution

The resolution of the calorimeter is affected by different types of fluctuations, each with its own
energy dependence. The energy resolution of the calorimeters can be parametrized by [3]:

s
E

=
ap
E
� b

E
� c (2.6)

Here, a is a stochastic term that accounts for fluctuation in the shower particle multiplicity that
produces the detectable signal. The particle multiplicity follows Poissonian statistics resulting in
a E�1/2 dependence on the relative error. The b is a noise term that accounts for the fluctuations
coming from the electronic noise in the detector system and the fluctuation in energy carried by
particles coming from the pileup. The c is a constant term that accounts for the fluctuation coming
from energy leakage and imperfect cell-to-cell inter-calibration error. The effects mentioned in the
three terms are uncorrelated and therefore added in quadrature. Because of the different energy
dependencies of the resolution, the noise term is the dominant contributor at lower energies (below
a few GeV), the stochastic term is the dominant contributor at the intermediate regime (⇠10–100
GeV) and the constant term is the dominant contributor at very high energies (above ⇠100 GeV)
[2].

2.6 Detector simulation using GEANT4 toolkit

The GEANT4 is a toolkit that uses Monte Carlo methods to simulate the propagation and interac-
tion of particles through matter [14]. It was originally built for high-energy physics experiments
but also finds its application in space physics and medical sciences. In high energy physics, the
GEANT4 simulation can be used for designing the detectors during the developmental stage and
to study the detector response for physics studies [15]. The user can implement the detector ge-
ometry, define the physics processes and save information like various secondary particles created,
energy deposited in the material, etc.

The detector simulation in the GEANT4 starts with the detector description. The GEANT4 has
various handles through which the geometric shape, size, position and material attributes of the
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detector components can be defined. It is also possible to define specific volumes of the detector as
the sensitive material through which the simulated hit information of the detector can be obtained.
For example, the energy deposited in the sensitive material can be used to compute the simulated
hit (simHit) energy and as the position of the sensitive material is defined by the user, the spatial
information of the hit can also be obtained.

Based on the knowledge of all possible particle interactions with matter, the GEANT4 offers
a variety of physics processes that can be divided into electromagnetic and hadronic interactions,
decays, etc. [16]. The user can choose the desired physics process for different particles involved in
the shower. The physics processes decide how particles interact and traverse the detector material.
The GEANT4 also has the physics lists with predefined particle interaction settings, especially
when a particular setting is not optimal for a wide range of energy of particles to be simulated.
For example, FTFP BERT physics list includes all standard electromagnetic physics, uses Bertini
(BER) style cascade for hadrons < 5 GeV and Fritiof (FTF) model for high energy hadrons (>
4 GeV). QGSP BERT physics list includes all standard electromagnetic physics, uses Bertini
style cascaed for hadrons < 9.9 GeV and Quark gluon string model (QGS) model for high energy
hadrons (> 18 GeV) and Fritiof in between.

The event simulation can start after specifying the detector geometry and physics processes.
In the context of GEANT4, a run consists of a collection of events. The user cannot change the
specified detector setup and physics list within a run. The event starts with the generation of one or
more primary particles. The user has to define the attributes of the primary particle generator, such
as the particle type, kinetic energy, etc. At the beginning of the event simulation, the primary tracks
are generated, which are pushed into a stack. Each track present in the stack is traced through the
detector and any secondary track generated will also be added to the same stack. The tracking
is stopped when no track is left in the stack [15]. The track is a snapshot of the particle and it
is deleted from the stack when it goes out of the outer volume, if the particle decays or has an
inelastic collision, the kinetic energy of the particle goes to zero, for which no rest interaction is
defined or if the user decides to terminate it. A step is the delta information of the track from
which the user can access information such as the energy deposited by the particles, the secondary
particles created while tracking the current track, the position and energy of the particles to name
a few [17]. The processing of the event is stopped when the stack of tracks becomes empty.
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Chapter 3

The CMS High Granularity Calorimeter

The proposed CMS HGCAL is a sampling calorimeter consisting of an electromagnetic calorime-
ter (CE-E) followed by a hadronic calorimeter (CE-H). The longitudinal cross-section of the HG-
CAL is shown in Figure 3.1. The CE-E section comprises 28 sampling layers with silicon as
the active material. The silicon wafers are placed between Cu, CuW and Pb absorber material.
The total thickness of the CE-E section is 34 cm covering a depth of approximately 26 X0 and
1.7 lint . The CE-H section comprises 12 sampling layers with 35mm thick stainless steel plates
(CE-H-fine) followed by 12 sampling layers with 68mm thick stainless steel plates (CE-H-coarse)
[4]. The active material in the CE-H section are chosen according to the expected radiation level,
i.e., the silicon sensors in the high radiation region (CE-H-Si) and scintillators directly read out
by silicon photomultipliers (SiPM) in the low radiation region (CE-H-Sci). The total thickness of
the CE-H section is approximately 157 cm covering a depth of approximately 9.5 lint . To lower
the dark currents in the silicon sensors and the SiPMs, the HGCAL calorimeter will be placed in a
cold volume maintained at -30°C [5].

3.1 HGCAL test beam setup October-2018

The HGCAL-TB (test beam) setup consists of Si-based electromagnetic (CE-E) and hadronic (CE-
H) sections, followed by a scintillator-based CALICE AHCAL prototype section. Figure 3.2 shows
the experimental setup of the beam test experiment. The prototype was exposed to high-energy
beams of e+, p� with momenta ranging from 20 to 300 GeV/c and µ� with momentum 200
GeV/c. The studies presented in this thesis are mostly based on the p� data.
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Figure 3.1: The longitudinal cross-section of the CMS HGCAL [4].

Figure 3.2: HGCAL-TB setup, October-2018 [5].

3.1.1 CE-E prototype

The CE-E section consists of 14 mini-cassettes, each with two silicon sensor modules. One such
mini-cassette is shown in Figure 3.3 (left). This totals about 28 sampling layers, each with one
silicon module. In the CE-E section, each sampling layer will have either Cu+CuW or Pb absorber
in an alternative fashion and the physical lengths of Cu+CuW and Pb are such that there is a
depth of 1X0 between each active layer. The CE-E section covers a lateral depth of ⇠ 27.8 X0

and ⇠ 1.4 lint . The area of each silicon sensor module is 12⇥14 cm2 and is divided into 128
independently readout channels.
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Figure 3.3: An image of mini-cassette of CE-E section (left), a CE-H layer with seven modules
arranged in a daisy-like structure (middle), AHCAL layer showing scintillator mounted on the
SiPM [6].

3.1.2 CE-H prototype

The CE-H follows the CE-E prototype and is comprised of 12 sampling layers with 4 cm thick
steel absorbers in between each sensitive layer. The first 9 sampling layers consist of 7 silicon
sensor modules per layer (896 channels per layer) arranged in a daisy-like structure, as shown in
Figure 3.3 (middle), which increases the transverse coverage. The last three layers of CE-H have
only one silicon sensor module per layer (128 channels per layer). The transverse coverage of the
first 9 layers is about 37⇥35 cm2 and for the last 3 layers is 12⇥14 cm2. The depth of the CE-H
section is ⇠ 37.6 X0 and ⇠ 3.8 lint .

3.1.3 AHCAL prototype

The AHCAL prototype is placed downstream of CE-H. There are 39 sampling layers with 17.7
mm thick steel absorbers in between each sensitive layer. The active material for this section is the
plastic scintillator directly read out by the silicon photomultiplier (SiPM). Each layer has 576 3⇥3
cm2 scintillator tile mounted on the SiPM as shown in Figure 3.3 (right). The AHCAL section has
a transverse coverage of 72⇥72 cm2 and longitudinal depth of ⇠ 41.3 X0 and ⇠ 4.3 lint .

The Tabel 3.1 shows the depth of each section of the HGCAL in terms of X0 and lint . The CE-E
and CE-H combined have approximately 12k channels and the AHCAL section has approximately
22k channels.
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Section Total X0 Total lint
CE-E ⇠27.8 ⇠1.4
CE-H ⇠37.6 ⇠3.8

AHCAL ⇠41.3 ⇠4.3

Table 3.1: Depth of different sections of the HGCAL prototype in terms of X0 and lint .

3.1.4 Source of particle beams

The single particle beams provided at the CERN test beam site are obtained by making the high
energy proton beam of momentum 400 GeV/c from Super Proton Synchrotron (SPS) interact with
a 500 mm thick beryllium target. The secondary muons, electrons and pions generated in the
interaction are separated according to the required momentum and are used as a particle beam
source for the experiment [6]. Several particle detectors, such as delay wire chambers (DWC) and
plastic scintillators, were also placed upstream of the HGCAL prototype to study the purity, timing
and direction of the incoming beam of particles.

3.1.5 MIP calibration

The signals obtained from different sensitive cells of the detector may vary for the same ionizing
particle traversing through it [7]. The response from the different sensitive cells is equalized using
the minimum ionizing particles (MIPs). For this purpose muon beam of momentum, 200 GeV/c is
used and this method is referred to as MIP calibration. The signals obtained from the sensitive cells
are digitized using an analog-to-digital (ADC) converter. The ADC spectrum of a muon is obtained
for each cell and is fitted with a Landau distribution convoluted with a Gaussian distribution (refer
to Figure 3.4) [6]. The most probable value (MPV) of the fitted distribution is extracted and the
ADC spectrum is normalized such that the MPV of the distribution is at 1 MIP for each cell. The
energy measured in each of the sensitive cells in units of MIPs is referred to as the reconstructed
hits or the rechits. Since the physical location of the sensitive cells is known, rechits also have the
spatial information of the shower particle passing through it.

3.2 Test beam simulation setup

The HGCAL test beam setup is simulated using the GEANT4 software in the CMSSW framework.
The pions (p�) are shot from 33m upstream of the HGCAL prototype and the particle interaction
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Figure 3.4: The ADC spectrum of the muon in a 200µm thick silicon cell fitted with a Landau
distribution convoluted with a Gaussian distribution [7].

with the matter is simulated using the GEANT4 physics list FTFP BERT EMN. The simulation
of the active layers and absorber materials of different sections of the HGCAL prototype is shown
in Figure 3.5. In the simulation, the energy spectrum of the 200 GeV/c muons in each cell is also
fitted with a Landau distribution convoluted with a Gaussian distribution. The MPV of the fitted
distribution is used to convert the energy measured to the number of MIPs. To account for the
electronic noise, the MIP spectra is smeared with a gaussian distribution in simulation [6].

Figure 3.5: A simulation of the HGCAL prototype showing the active layers and the absorber
material [6].
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3.3 Full HGCAL simulation setup

The full HGCAL setup is simulated using a standalone GEANT4 simulation framework [18]. Un-
like the proposed design of the full HGCAL detector, this simulation framework uses 26, 11 and 10
sampling layers in the CE-E, CE-H-fine and CE-H-coarse sections, respectively. But the detector
depth in terms of X0 and lint in each of the sections is maintained. More details can be found here
[19]. The pion (p�) gun is fixed at h=2.0 and f ranges from 0-2p . The particle interaction with
the matter is simulated using the GEANT4 physics list QGSP BERT.

3.4 Particles created in pion showers

Given the complexity and diverse nature of hadronic showers, we wanted to study the various
particles and their kinematics to understand their behavior as a function of incident energy. p0

is particularly interesting as the difference in response of the detector to the electromagnetic and
hadronic component of the hadronic shower is a key component driving the resolution. We tried to
study some of these details to understand the results we obtained using advanced machine learning
techniques like graph neural networks.

As mentioned in the section 2.6, GEANT4 allows the user to save information regarding the
secondary particles created while tracking a specific step. Starting with the simulation setup pro-
vided to me by more experienced collaborators, I learned the GEANT4 simulation machinery and
its key concepts in the context of interaction processes, and added my contributions to the existing
standalone full HGCAL simulation setup to extract and save the information regarding the sec-
ondary particles created in the pion showers. I would like to thank Dr. Pedro Ferreira da Silva
for discussing the necessary addition to the simulation code. The information on the secondary
particles can be accessed through the secondary list of the GEANT4 track vector. The details on
extracting the secondary particle information can be found on GitHub [20]. Approximate 10k pion
events with the additional secondary information are saved for the energy points [20, 50, 80, 100,
150, 200, 250, 300] GeV.

3.4.1 Particles produced in the first hadronic interaction of pion

The particles produced in the first hadronic interaction are separated by specifying the parent ID
of the secondary particles to be less than or equal to zero and the creator process to be a hadronic
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interaction, i.e., HadInelastic, HadAtRest, HadFission or HadCapture. If this condition is
satisfied, the interaction z value of the first hadronic interaction, the particle ID and the kinetic
energy of the secondary particles are saved. It should be noted that the information on secondary
particles created in the first hadronic interaction is specific to the physics list (QGSP BERT) used
for the simulation.
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Figure 3.6: Distribution of the number (left) and the fraction of energy carried by the neu-
trons (right) created in the first hadronic interaction occurring in CE-E section as predicted by
QGSP BERT hadronic physics list.

Figure 3.6 shows the distribution of the number (left) and the fraction of energy carried by the
neutrons (right) created in the first hadronic interaction occurring in the CE-E section. A sample
mean is used to study the multiplicity and the kinematics of various particles created in the first
hadronic interaction. Figure 3.7 shows the average particle multiplicity and average fractional
energy carried by the secondary particles created in the first hadronic interaction occurring in CE-
E and CE-H section. The pion events starting shower in the CE-E and CE-H are separated using
the true information of interaction z value of first hadronic interaction. The number of p�,p+,p0

produced increases with energy and they carry the most fraction of the energy of the incident pion.
When there is a soft interaction of the pion, there is a very less number of secondaries produced
and the momentum transfer to the secondaries is also less. These soft interactions are recorded
as the first hadronic interaction and the incident p� cannot be differentiated from other secondary
particles in the GEANT4 simulation. Since the soft interacted p� is also present in the secondary
list, the average energy carried by the p� is relatively higher than the p+ and p0. The number
of protons and neutrons produced in the first hadronic interaction is high, but they carry very less
energy. The average number of neutrons and protons created in the first hadronic interaction in the
CE-E section differs largely. This is mainly because of the lead absorber in the CE-E section, for

27



which the probability of emitting a proton from an excited nucleus is significantly less due to the
high coulomb barrier. For the steel absorber in the CE-H section, the coulomb barrier is lower and
hence, the probability of emitting protons and neutrons from the excited nucleus is similar [2]. The
average fractional energy carried by all particles is not equal to one as some of the energy of the
incoming pion is utilized by the particles emitted during the nuclear spallation process to overcome
the nuclear binding energy (invisible energy).

(a) CE-E (b) CE-H

(c) CE-E (d) CE-H

Figure 3.7: Average particle multiplicity (top row) and the average energy carried by the secondary
particles (bottom row) created in the first hadronic interaction occurring in CE-E section (left
column) and CE-H section (right column) as predicted by QGSP BERT hadronic physics list.
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3.4.2 p0 produced in pion showers

The position and the kinetic energy of the p0 are saved irrespective of where it was created in the
pion shower and the creator process of the p0 is restricted to be hadronic interactions or Decay.
Figure 3.8 shows the fraction of energy carried by p0 in first hadronic interaction (p0

f ), in the later
part of the shower (p0

l ) and all p0 (p0
all) for different incident pion energy. The subscript f and l

stand for ’first’ and ’late’, respectively. The distribution of p0
f is similar, having a mean (sample

mean) value of 20% (Figure 3.9) for all pion energy. With the increase in incident pion energy, the
mean p0

l increases as the later shower particles carry more energy. Hence, we see an overall p0
all

increase with an increase in incident pion energy as contributions of p0
l increase. In Figure 3.10

we see that for a given pion energy, as the value of p0
f increases, the value of p0

l decreases. When
p0

f is higher, less energy is available to the rest of the shower particles. Hence, the probability of
producing p0 and the energy they carry will be less.

The p0 ! gg leads to an electromagnetic shower and the energy it carries is completely con-
verted into a detectable signal. Figure 3.8c shows that the fraction of energy carried by p0 highly
fluctuates shower-to-shower for the same incident pion energy. Also, Figure 3.9 shows that the
fraction of energy carried by p0 increases on average, with an increase in incident pion energy.
Along with these fluctuations, fluctuations also come from the particle multiplicity of the pion
shower and the invisible energy. These fluctuations directly affect the signals obtained from the
detector and hence, the energy resolution of the pion showers is always worse than the pure elec-
tromagnetic shower of the same energy.
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Figure 3.8: The fraction of energy carried by p0 in first hadronic interaction (p0
f ), in the later part

of the shower (p0
l ) and all p0 (p0

all) as predicted by QGSP BERT hadronic physics list.

Figure 3.9: Mean (sample mean) of p0
f , p0

l and p0
all as a function of incident pion energy as

predicted by QGSP BERT hadronic physics list.
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Figure 3.10: The fraction of energy carried by p0 in first hadronic interaction (p0
f ) versus the

fraction of energy carried by p0 in the later part of the shower (p0
l ) as predicted by QGSP BERT

hadronic physics list.
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3.5 Measurement of energy of charged pions

Due to the difference in absorber material and sampling fraction in different sections of the detec-
tor, the energy measured in units of MIPs does not correspond to the same energy deposited by the
particle. Figure 3.11 shows the energy measured (MIP units) in CE-E versus the CE-H + AHCAL
section for pion showers in the HGCAL prototype. If we look at the plot for 50 GeV pion, when the
CE-E energy is close to zero (pion is MIP like in CE-E) the CE-H + AHCAL energy peaks around
700 MIPs. But when the CE-H + AHCAL energy is close to zero the CE-E energy peaks around
3500 MIPs. In order to calibrate the different sections of the prototype, the energy measured in
units of MIPs is converted to GeV. This method is referred to as detector level calibration and the
MIP-to-GeV conversion scales obtained for each section are referred to as fixed weights in the rest
of the thesis. The details explained below are from previous studies on pion beams in the HGCAL
prototype and are referred from the pion paper [6]. The results are used as a published reference
for the results using ML techniques presented in this thesis.
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Figure 3.11: Sum of energy measured (MIP units) in CE-E versus CE-H+AHCAL.

Let ECE�E
MIPs , ECE�H

MIPs and EAHCAL
MIPs be the energy measure in units of MIPs in CE-E, CE-H and

AHCAL section, respectively. Then the energy of the pion in units of GeV can be given by:

E f ix(GeV ) = a f ix ⇥ECE�E
MIPs +b f ix ⇥ (ECE�H

MIPs +d f ix ⇥EAHCAL
MIPs ) (3.1)

where a f ix and b f ix are the MIP-to-GeV conversion factors for electromagnetic and hadronic
compartments, respectively and d f ix is the relative weight factor between CE-H and AHCAL sec-
tion. These coefficients are obtained by minimizing the relative resolution calculated as s/µ of the
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gaussian fit. The 50 GeV positron beam test data is used to find the a f ix and has an approximate
value of 10.5 MeV per MIP. The 50 GeV pions, which are MIP-like in the CE-E section, are used
to obtain the values of b f ix and d f ix. The value of d f ix is 0.4 and b f ix is approximately 80 MeV
per MIP.

The MIP-to-GeV conversion scales are further optimized as a function of incident pion energy
and separately for pions starting shower in the CE-E and the CE-H sections [6] [7]. The recon-
structed energy for pions starting shower in the CE-E and the CE-H sections are given by Equation
3.2 and 3.3, respectively. In Equation 3.2 and 3.3, a1, b1,2 and g1,2 are the optimized parameters
obtained by minimizing the c2 (Equation 3.4) for each beam energy (Ebeam). The ECE�E

f ix , ECE�H
f ix

and EAHCAL
f ix refer to the energy calculated using the fixed weights for different sections. This

method is referred to as the c2 method in the rest of the thesis.

Ec2(GeV ) = a1(Ebeam)⇥ECE�E
f ix + b1(Ebeam)⇥ECE�H

f ix + g1(Ebeam)⇥EAHCAL
f ix (3.2)

Ec2(GeV ) = ECE�E
f ix + b2(Ebeam)⇥ECE�H

f ix + g2(Ebeam)⇥EAHCAL
f ix (3.3)

c2 = Â
i

(Ebeam �Ei
c2)

2

s2(Ei
f ix)

(3.4)

The methods mentioned above to reconstruct the energy of the pion do not utilize the high
granular nature of the HGCAL detector and do not account for shower-to-shower fluctuations in
pion showers discussed in the previous section. Further improvements in energy resolution would
require much fine-tuning according to incident energies.
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Chapter 4

Energy regression of charged pions using
semiparametric graph neural networks

As discussed earlier, the high event-to-event fluctuations in the particle multiplicity, the energy
carried by electromagnetic component and invisible energy worsen the energy resolution of the
pion showers. To improve the resolution, it is necessary to account for the event-to-event fluctu-
ations in the pion shower. There are many advantages of using Graph Neural Networks (GNNs)
for reconstructing the energy of the pion in the HGCAL detector. Unlike the method discussed
in section 3.5, where the sum of rechit energy in each section of the detector is taken as input,
the GNNs can take individual rechit information as input from the detector. In this way, the GNN
has access to full rechit information, i.e., the spatial coordinates and the energy, from which it can
account for the event-to-event fluctuations in pion showers. Also, graphs are felicitous for repre-
senting highly sparse, unstructured, and high-dimensional data. These allow a variable number of
inputs and work with a detector of arbitrary geometry. The GNNs also solve problems that arise
in traditional techniques like CNNs, i.e., the need for zero-padding or truncation of input data. We
will use a GNN-based model called Dynamic Reduction Network (DRN) [21] to reconstruct the
energy of pion showers. Before getting into the details of the DRN model, a brief introduction to
the basic building blocks of the machine learning algorithms is discussed in the following section.
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4.1 Basic building blocks of machine learning algorithm

4.1.1 Fully connected neural network

A fully connected neural network (FCNN), also known as a multilayer perceptron (MLP), com-
prises a series of fully connected layers, where every node (neuron) in one layer is connected to
every node in the next layer. A fully connected layer is a function from Rn to Rm, where n is the
number of nodes in the current layer and m is the number of nodes in the next layer. The function
mapping features from the current layer to the next layer is defined as:

Xi+1
m⇥1 = s(wi

m⇥n ·Xi
n⇥1 +bi

n⇥1) (4.1)

Here, Xi
n⇥1 is the column of input features and Xi+1

n⇥1 is the column of output features. The
matrices wi

m⇥n and bi
n⇥1 are generally called weight and bias respectively. The elements of the

matrices wi
m⇥n and bi

n⇥1 are the trainable parameters that are learned during model training. s is a
non-linear activation function that is applied at the end of each layer of FCNN.

-

Figure 4.1: A fully connected neural network with 1 hidden layer [8].

Figure 4.1 shows a schematic of a FCNN consisting of one hidden layer, three input features
and two output features. The dimension of the hidden layer is 4. The sequence of operations that
map the input features to the output features (forward propagation) is as follows:
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X1
4⇥1 = s(w1

4⇥3 ·X
input
3⇥1 +b1

3⇥1) (4.2)

y0 = Xout put
2⇥1 = s(w2

2⇥4 ·X1
4⇥1 +b2

2⇥1) (4.3)

4.1.2 Optimization algorithm

Gradient descent

Gradient Descent is an iterative optimization algorithm that is commonly used for training ma-
chine learning models and neural networks. The general idea of gradient descent is to correct the
trainable parameters iteratively to minimize the cost (loss) function. Here, the cost function is a
function of the trainable parameters (q ) and the input features (Xinput). It measures the difference
or error between the true value (y) and the predicted (y0) value. The choice of cost function de-
pends on the type of task, for example, c2, mean squared error, mean absolute error, etc., for the
regression tasks and binary cross-entropy, categorical cross-entropy, etc., for classification tasks.

In the gradient descent algorithm, the parameters of the model are iteratively updated according
to the equation:

qi+1 = qi �a ·—qC(q ,Xinput) (4.4)

Here, qi and qi+1 are the values of parameters at ith and (i+1)th iteration respectively and the
gradient of the cost function (C) is taken with respect to the parameters. a is the learning rate
determining the step size for each iteration while moving towards the minimum cost function. If
the learning rate is too small (Figure 4.2a), the algorithm must go through many iterations to reach
the minimum cost function (longer time for convergence). On the other hand, a larger learning rate
may cause drastic updates, which leads to divergent behaviors (Figure 4.2b).

Historically, weights of the neural network layers were initialized using small random numbers,
but over the years, more specific initialization has been used based on the type of activation function
and the number of nodes in the layer for faster convergence. One such method for ReLU activation
function is to initialize the weights using a zero-centered gaussian probability distribution with
standard deviation

p
2/n. Here, n is the number of nodes in the previous layer. Gradient descent
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(a) a is too small (b) a is too large (c) a has an optimum value

Figure 4.2: A depiction of the gradient descent algorithm for different values of learning rate (a)
[9].

is a simple algorithm and there exist many other optimizers that help the machine learning model
to converge faster. The optimizer used for training the DRN models in this thesis is the AdamW
optimizer. In this algorithm, the weight updation at each step is adapted by calculating the first
moment (mean) and the second moment (variance) of the gradients. It also uses a learning rate
multiplier with a cosine policy, which decreases the weight updation step size after each iteration.
Refer [22] for more details on the AdamW optimizer.

4.1.3 Activation functions

The activation function is an essential feature in a neural network, which introduces non-linearity to
the neuron’s output. The non-linearity helps the model learn complex representations and patterns
from the input data that would not be possible using a simple linear network. Some commonly
used activation functions are sigmoid, tanh, ReLU and ELU . Figure 4.3 shows these activation
functions and their derivatives.

Figure 4.3: Activation functions (left) and their derivatives (right).
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• The sigmoid (s ) function: The sigmoid activation function takes a real value and outputs
a value between 0 and 1. As the output is between 0 and 1, it is specifically used for the
models where we want to predict the probability of some quantity as output (e.g., binary
classification). When x is very far from zero, the derivative (gradient) is very close to zero.
Under these conditions, the model refuses to learn further or is drastically slow. This is
known as the vanishing gradient problem.

s(x) =
1

1+ e�x (4.5)

• The hyperbolic tangent (tanh) function: The hyperbolic tangent function is very similar
to the sigmoid function, except that the output values range from -1 to 1. The derivative
of the tanh function is greater than the sigmoid function and helps the model to learn faster
[9] (faster convergence). However, the problem of vanishing gradient still exists in the tanh
function.

tanh(x) =
ex � e�x

ex + e�x (4.6)

• The Rectified Linear Unit (ReLU) function: ReLU is one of the most used activation
functions in machine learning models. It is less computationally expensive [9] than the
tanh and sigmoid, which requires computing exponents. This has a huge impact on reducing
training time for big and more complex networks. ReLU also solves the problem of vanishing
gradients for positive values of x, as the gradient is always greater than zero in this region.
But for negative values of x, the gradient is zero and the neurons may stop learning.

ReLU(x) = max(0,x) (4.7)

• The Exponential Linear Unit (ELU) function: ELU is very similiar to RELU except for
negative inputs. For negative inputs, ELU becomes smooth slowly until its output is equal to
�a , whereas ReLU sharply goes to zero. Unlike ReLU , ELU can produce negative outputs.
The hyperparameter a controls the value to which ELU saturates for negative inputs and it
has a default value of one in both TensorFlow and PyTorch libraries.

ELU(x,a) =

8
<

:
x, x > 0

a · (ex �1), x <= 0
(4.8)
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4.2 Dynamic Reduction Network

The DRN architecture was derived in the context of the energy regression of hadrons in high
energy physics [21] and a similar model has been used for the energy regression of electrons and
photons in the current CMS electromagnetic calorimeter (ECAL) [23]. Pions are complex objects
and such tools are expected to improve energy resolution as indicated in [24]. As mentioned in the
section 3.1.5, the signals obtained from the HGCAL detector are in the form of rechits. Rechits
have the information of where a shower particle passed through (position information) and the
corresponding energy deposited by the particle in units of MIPs. Figure 4.4 shows a schematic of
the DRN. The information flow from rechits to the required target [21] is as follows:

Figure 4.4: A schematic of dynamic reduction network.

1. The n number of rechits ([E,x,y,z]n) are normalized by fixed values such that the input fea-
tures are in the range [0,1].

2. The normalized 4-dimensional input nodes (rechits) are mapped to 64-dimensional latent
space using a fully connected neural network. This fully connected neural network has three
layers with ELU activation function, each with 64 output features.

3. A graph is created by connecting the 16 nearest neighboring nodes in the 64-dimensional
latent space. A self-loop is present during the graph creation, meaning every node is con-
nected to itself and 15 other nearest neighbors. The constructed graph can be represented as
G = (V,E), where V = {1,...,n} is the set of vertices and E ✓ V⇥V is the set of edges.

4. An edge convolution step [25] processes the graph where the messages from the neighboring
nodes are calculated according to Equation 4.9 and aggregated according to Equation 4.10.
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In the Equation 4.9, Q=(q1, ...,M ,f1, ...,fM) are the weights for M different filters (outputs).
Here, each qm, fm has the same dimension as x (node features), and · represents the Euclidean
inner product. There are two such edge convolution layers, with the first and the second
layer having M = 128 and M = 64 outputs, respectively. In this way, the information from
neighboring nodes is aggregated and the features of each node are updated.

e0i jm = ELU(qm · (x j �xi)+fm ·xi) (4.9)

x
0
im = add

j:(i, j)2E
e0i jm (4.10)

5. The nodes with updated features are weighted by distance and clustered using a greedy
clustering algorithm [26]. Then the node features are pooled by taking the maximum of the
clustered node.

6. The resulting set of nodes is passed again to the graph generation, edge convolution, cluster-
ing and pooling step.

7. The reduced set of nodes is globally max pooled and passed through a fully connected neural
network with ELU activation function. The output network has two layers, the first layer has
64 output features and the number of output features of the second layer corresponds to the
dimension of the required target (one if the target is the pion energy).

Using the dynamic graph convolution, graph clustering and the pooling step, the amount of
information passed onto the next step is reduced in an optimal way to maintain essential relations
between the data. Hence, the network is called a dynamic reduction network (DRN).

4.3 Training

4.3.1 Simulation samples used for training

As mentioned in the section 3.3, the HGCAL test beam setup is simulated using the GEANT4
software in the CMSSW framework. The simulated information of the detector signal was saved
for approximately 5M pion events with energy ranging from 10–350 GeV following a uniform dis-
tribution. Before using the simulation samples for training, pion events are selected using various
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selection criteria to maintain the purity of the pion samples. These studies were previously done by
Dr. Shubham Pandey and can be referred to the pion paper [6] for more details. While the samples
used for studies presented in the previous chapter were generated by me, the cleaned pion samples
for data and respective simulation were provided to me by Alpana Sirohi. The selection criteria
include removing the rechit signals from faulty channels, rejecting muon-like events, rejecting pre-
showering pions, rejecting pion events that are impinging far away from the HGCAL prototype,
etc. After applying these selection criteria, we are left with 4.1M pion samples to train the DRN
model. These cleaning cuts are applied to both data and simulation samples to make consistent
comparisons.

4.3.2 Input features

The position information of the rechits (x,y,z) and energy are the inputs to the model. Figure 4.5
shows the distributions of the input features and the number of rechits. For the AHCAL section,
the rechit information from only 10 out of 39 layers is considered for input rechits. The layers are
selected in such a way as to match the full HGCAL detector configuration, i.e., every fourth layer
of the AHCAL section, starting from the third layer. The rechit energy is weighted using the fixed
weights obtained from detector level calibration as mentioned in section 3.5 (the fixed weights are
recalculated after considering only ten layers of AHCAL section).

4.3.3 Target

In the semiparametric approach, instead of the model predicting a single value of the required
target, the model predicts the distribution shapes of the target. This is done by predicting the 6-
dimensional parameters of the DSCB function for the target. The DSCB function helps to better
model the response of the pion showers in the detector. The semiparametric DRN model is trained
for two different types of targets, i.e., the true beam energy (Etrue) and the ratio of true beam energy
to the energy calibrated using the detector level calibration (Etrue

Eraw
). Here, Eraw is the same as the

E f ix as mentioned in the section 3.5. Figure 4.6 shows the distribution of two different targets.
The Etrue target has sharp edges at the extreme ends of the distribution, whereas the edges are
smoothened out in the Etrue

Eraw
target distribution. A non-semiparametric version of the DRN model

for pion energy regression has been studied earlier and the results can be found in [24].
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Figure 4.5: Distributions of input features and the number of rechits.
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The DSCB function is as follows:

DSCB(x; µ,s ,aL,nL,aR,nR,) =

8
>>>><

>>>>:

Ne�
a2

L
2 aL

nL
( nL

aL
�aL � x�µ

s )�nL x�µ
s �aL

Ne�
(x�µ)2

2s2 �aL  x�µ
s  aR

Ne�
a2

R
2 aR

nR
( nR

aR
�aR +

x�µ
s )�nR aR  x�µ

s

(4.11)

where N is the normalizing factor. The parameters aL and aR decides the width from the mean
(µ) up to which the function should behave gaussian like. The parameters nL and nR decide how
quickly the tails should reduce. The higher the value of the nL and nR, the more quickly the tails
will reduce. Figure 4.7 (left) shows the DSCB distribution for different values of parameters.

Figure 4.7: The DSCB probability distribution (left) and the negative logarithm of DSCB distribu-
tion (right) for different values of parameters.

The loss function for the model is the negative log-likelihood of the DSCB function. Figure
4.7 (right) shows the negative logarithm of DSCB distribution for different values of parameters.
The loss for a given target (x0) and the predicted DSCB parameters is calculated as
�log[DSCB(x0; µ,s ,aL,nL,aR,nR)]. The farther the predicted µ is from the target, the more will
be the loss value. The loss value also depends on other parameters of the DSCB function.

The model is trained on NVIDIA V100 GPU with cyclic learning rate schedule with cosine
policy (starting value of a = 6 · 10�4) using AdamW optimizer [22]. The above mentioned loss
function, GPU configuration, learning rate schedule and optimizer are common to all the DRN
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(a) DRN-TrueE (b) DRN-Ratio

Figure 4.8: Loss versus epoch plot for model trained using Etrue target (left) and Etrue
Eraw

target (right).

models mentioned in the thesis. Out of 4.1M events 80% of the events were used for training
and the rest of the events were used for validation. The approximate time taken for training one
epoch is 48 minutes. The number of epochs trained for the model with Etrue [DRN-TrueE] and
Etrue
Eraw

[DRN-Ratio] target is 120 and 124, respectively. The best epoch of the models is chosen to
be the epoch with minimum validation loss, i.e., epochs 117 and 119 for the models DRN-TrueE
and DRN-Ratio, respectively. Figure 4.8 shows the loss versus epoch plot for two models. In both
the plots, the training and the validation loss overlap each other and decrease till the end. This
suggested that there was no overtraining of any of the models.

4.4 DRN performance on Simulation

For the DRN-TrueE model, the mean value (µ) out of 6 predicted parameters of the DCSB function
will be the predicted pion energy. For the DRN-Ratio model, the µ value multiplied by the Eraw

will be the predicted pion energy. The performance of the models is measured in terms of the
resolution and the response. The flat energy pion samples of 10–350 GeV are divided into 4
GeV energy bins, totaling 85 bins. For each bin, we plot the predicted energy distribution and
fit a gaussian function around the core of the distribution. After extracting the fitted gaussian
distribution’s µ and s , the relative resolution and energy response are defined as µ/s and µ/Ebin

respectively. Here Ebin is the central energy point of the corresponding energy bin. Figure 4.9
and 4.11 show the predicted energy distributions (20 GeV and 200 GeV) for the validation dataset
and the fitted gaussian function for the models DRN-TrueE and DRN-Ratio, respectively. The
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predicted energy distribution with the fitted gaussian function for a few more energy points is in
the appendix.
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Figure 4.9: The predicted energy distributions and the fitted gaussian function is shown for the
prediction made by the DRN-TrueE model on the validation dataset.
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Figure 4.10: The comparison of resolution (a) and response (b) for the validation and training
dataset for the model DRN-TrueE.

Figure 4.10 and 4.12 show the performance in terms of the resolution and the response for the
models DRN-TrueE and DRN-Ratio, respectively. For both models, the resolution and response of
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Figure 4.11: The predicted energy distributions and the fitted gaussian function is shown for the
prediction made by the DRN-Ratio model on the validation dataset.
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Figure 4.12: The comparison of resolution (a) and response (b) for the validation and training
dataset for the model DRN-Ratio.
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the training and validation dataset closely match (except for a few energy points below 20 GeV),
indicating there is no overtraining.

To check the efficacy of the DRN model, we compare the performance of the model DRN-
TrueE and DRN-Ratio with the c2 method. Figure 4.13 shows the predicted energy distribution
comparison of the validation set for the three models. Compared to the c2 method, the DRN
models have narrower peaks and significantly reduced tails. Figure 4.14 shows the performance
comparison for the three models in terms of resolution and response. The error bars mentioned in
the response and resolution plots are only statistical errors and do not include the systematic errors
which might come from the pion beam impurity, uncertainty in the pion beam energy, low-level
MIP calibration, etc. The bottom panel of Figure 4.14a plots the ratio of resolution values of the
c2 method (black curve) and DRN-TrueE (magenta curve) with the DRN-Ratio model. There is
a large improvement in pion energy resolution using DRN compared to the c2 method (resolution
is improved by a factor 2). The resolution of the DRN-TrueE and DRN-Ratio are comparable in
the energy range of 20–320 GeV. For the DRN models, the resolution seems to deviate from the
standard resolution curve after 300 GeV, which is not physical. The response of the DRN-TrueE is
linear in the range 100–320 GeV, beyond which it starts to deviate. The response of the DRN-Ratio
is linear in the range 100–320 GeV, has a lower response (within 1%) in the range 20–100 GeV
and starts to decrease up to 2% for energy greater than 320 GeV.

4.5 DRN performance on HGCAL-TB data

For getting the predictions for data, the rechit energy of the CE-E section is upscaled by 3.5%,
and the CE-H/AHCAL section is upscaled by 9.5% to match the energy scale of data and simu-
lation [27][6]. Figure 4.15 and 4.17 shows the predicted energy distribution comparison for the
simulation (validation dataset) and test beam data for the DRN-TrueE and DRN-Ratio models,
respectively. The resolution and response are calculated similarly as explained in the section 4.4
for eight energy points. There is good agreement between the resolution of data and simulation
(within 1.5%) for both the models (refer to Figure 4.16 and 4.18). The difference in response of
data and simulation is about 0–5% for the DRN-TrueE model and 0–3% for the DRN-Ratio model.
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Figure 4.13: Predicted energy distribution comparison of the validation dataset for three different
models: DRN-Ratio (blue curve), DRN-TrueE (magenta curve) and c2 Method (black curve).
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Figure 4.14: The comparison of resolution (a) and response (b) of the validation dataset for three
different models: DRN-Ratio (blue curve), DRN-TrueE (magenta curve) and c2 Method (black
curve).
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(f) 300 GeV

Figure 4.15: Predicted energy distribution comparison of the validation dataset (red curve) and test
beam data (black curve) for the DRN-TrueE model.
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Figure 4.16: Comparison of resolution (a) and response (b) of the validation dataset (red) and test
beam data (black) for the DRN-TrueE model.
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(f) 300 GeV

Figure 4.17: Predicted energy distribution comparison of the validation dataset (red curve) and test
beam data (black curve) for the DRN-Ratio model.
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Figure 4.18: Comparison of resolution (a) and response (b) of the validation dataset (red) and test
beam data (black) for the DRN-Ratio model.
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4.6 Resolving Edge Effects

Figure 4.19 shows peaks at the extreme ends of the predicted energy distribution (beyond 20–300
GeV). The higher energy peak has significantly reduced for the DRN-Ratio model compared to
the DRN-TrueE model. In Figure 4.14, we see that the resolution and response of the DRN-TrueE
model deviate more compared to the DRN-Ratio model for energy greater than 320 GeV. Changing
the target from Etrue to Etrue

Eraw
has significantly reduced the edge effects for energy greater than 320

GeV. As mentioned earlier, the sharp edges are smoothened out in the Etrue
Eraw

target distribution and
thus, help in reducing the edge effects. Also, the DRN-Ratio model has a better overall response for
both simulation and test beam data than the DRN-TrueE model. For these reasons, the DRN-Ratio
model is chosen for any further analysis in the rest of the thesis.
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Figure 4.19: Pion energy distribution: true energy (black curve), predicted energy for the DRN-
TrueE model (magenta curve) and predicted energy for the DRN-Ratio model.

Since we train the model with pion energies ranging from 10–350 GeV, it is always safer for
the model not to predict energy beyond 10–350 GeV. This is also concluded by training the DRN-
Ratio model with pion energies ranging from 60–300 GeV [DRN-Flat60to300], which gives a
similar predicted energy distribution as shown in Figure 4.20a.

To resolve the edge effect, we train a DRN model with a gaussian edge in pion energy dis-
tribution [DRN-GaussEdge]. The pion events with energy between 60–300 GeV are untouched.
Beyond 60 and 300 GeV, we select pion events for training according to a gaussian distribution
(s=20 GeV). There is no transformations of distributions involved, we limit the number of events
for training according to a gaussian distribution.
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(a) DRN-Flat60to300
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(b) DRN-GaussEdge

Figure 4.20: True (black curve) and predicted (red curve) energy distribution (training set) for a
model trained with a guassian edge in pion energy distribution.

Using a gaussian edge for training has significantly reduced the edge effects. The predicted
energy distribution follows the true energy distribution as shown in Figure 4.20b. Compared to
the model DRN-Flat60to300, the response of the model DRN-GaussEdge is linear (Figure 4.21b),
and the resolution curve is smooth (Figure 4.21a) for the pion energy ranging from 60–300 GeV.
This concludes that the edge effects can be reduced by extending the energy range of pion samples
according to a gaussian distribution. The time and the computational power required to simulate a
pion shower increases with an increase in pion energy. So extending the energy range according to
a gaussian distribution is better than a flat distribution at higher energies.
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Figure 4.21: Comparison of resolution (a) and response (b) of the models DRN-GaussEdge (green
curve) and DRN-Flat60to300 (brown curve).
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4.7 DRN performance as a function of p0
f

To study the effect of p0 component on the energy reconstruction of hadron showers, we see
how the predicted energy changes with the p0

f . Here, p0
f is the fraction of energy carried by

p0 created in the first hadronic interaction of pion and the subscript f stands for ’first’. This
information is obtained by saving the information of the secondary particles created in the first
hadronic interaction using the GEANT4 simulation. Refer to section 3.4.1 for more details.

Figure 4.22 shows the predicted energy of c2 method and the DRN model (DRN-Ratio) as a
function of p0

f . The predicted energy by the c2 method increases with an increase in the p0
f . This

is expected as the c2 weights are obtained as an average over many events falling into a specific
energy bin and do not account for shower-to-shower fluctuation in p0

f . In comparison, the predicted
energy of the DRN model is not correlated with the p0

f .

To further study how the predcited energy varies with p0
f , we divide p0

f into different bins as
shown in Figure 4.23. The peak of the predicted energy distribution of c2 method in different bins
of p0

f , shifts to the right with an increase in p0
f as shown in Figure 4.24 (left plots) and this worsens

the overall resolution for a particular beam energy. In comparison, the peak of the predicted energy
distribution of the DRN model in different bins of p0

f remains at a constant value as shown in Figure
4.24 (right plot), which concludes that the DRN model is effectively learning the shower-to-shower
fluctuation in p0

f .
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Figure 4.22: Predicted energy as a function of p0
f : c2 prediction (left) and DRN prediction (right).
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Figure 4.23: Distribution of p0
f for 100 GeV pion and the different bins used for analysis.
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Figure 4.24: Predicted energy distribution for different bins of p0
f for c2 (left) and DRN (right).
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4.8 Performance of the DRN when providing reduced informa-
tion as inputs

The following studies were additionally done to check the performance of the DRN model when
we provide reduced information as inputs. The following sections describe how the information is
reduced and the performance of the DRN model in terms of resolution and response.

4.8.1 Performance of DRN when the rechit level information is combined
along the transverse direction

We combine the adjacent cells in each sensitive layer of the HGCAL test beam setup to reduce the
rechit level information along the transverse direction. This is done artificially by defining new
x-y coordinates of the cells as the average of the x-y position of the combined adjacent cells in
the original configuration. The rechit energy in the reduced configuration is defined as the sum
of the rechit energy of the combined cells, because of which the total rechit energy sum in each
layer for a pion event will be the same as the original configuration. There is no simulation of
new pion events involved. After the new cell x-y positions are defined, we calculate the rechits for
the same pion events in different reduced configurations of the HGCAL prototype. Specifically,
we use two different configurations, i.e., combining the rechit level information from 4 (HGCAL-
ReducedBy4) and 16 (HGCAL-ReducedBy16) adjacent cells for each sensitive layer. Figure 4.25
shows the number of hits recorded for different pion events in the reduced configuration versus the
original configuration of the HGCAL prototype. The number of hits in the reduced configuration
is not exactly reduced by a factor of 4 or 16 as not all the cells of the detector record a signal in a
single pion event.

The DRN was trained for three different configurations (HGCAL-Original, HGCAL-ReducedBy4
and HGCAL-ReducedBy16) using 850k flat energy pion simulation samples (80% for training).
The inputs for the models are the rechit energy and rechit x, y and z coordinates. All three mod-
els were trained for 200 epochs and the epoch with minimum validation loss was used for energy
prediction. Figure 4.26 compares the predicted energy distribution of the DRN model trained on
three different configurations for the training dataset (plots for the validation dataset are in the
appendix). The predicted energy distribution closely overlaps for all three models. Figure 4.27
shows the performance in terms of resolution and response for the training dataset. The resolution
and response of the validation dataset fluctuate because of the low statistics in each energy bin and
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Figure 4.25: The number of hits recorded for different pion events in the reduced configuration
versus the original configuration of the HGCAL prototype

the plots can be found in the appendix. The bottom panel of Figure 4.27a plots the ratio of res-
olution values of the HGCAL-ReducedBy4 (red curve) and HGCAL-ReducedBy16 (green curve)
with the HGCAL-Original model. The performance of the HGCAL-ReducedBy4 is similar to the
HGCAL-Original, but there is a slight degradation in the resolution of the HGCAL-ReducedBy16
(within 10%).

To check further how reducing the rechit level information in the transverse direction affects
the DRN performance, we provide the layerwise rechit energy sum and z value of the layer as input
to the DRN model (HGCAL-Layerwise Ez). So there are only two input features to the model,
i.e., the layerwise rechit energy sum and the corresponding z value of the sensitive layer. The
HGCAL-Layerwise Ez model was also trained using 850k flat energy pion simulation samples
(80% for training) for 200 epochs. Figure 4.28 compares the predicted energy distribution of the
HGCAL-Original and HGCAL-Layerwise Ez for the training dataset. We see that the peak of
the predicted energy distribution of the model HGCAL-Layerwise Ez is broader compared to the
HGCAL-Original model. Figure 4.29 shows the performance in terms of resolution and response
for the training dataset. The bottom panel of Figure 4.29a plots the ratio of resolution values of the
HGCAL-Layerwise Ez with the HGCAL-Original model. There is degradation in the resolution
of the HGCAL-Layerwise Ez by about 30–60%. This is expected as the transverse features (rechit
x and rechit y) are not available for the DRN model to learn the details of the transverse profile of
the pion showers at each depth, which also gives information about p0 content in the shower.
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Figure 4.26: Predicted energy distribution comparison of the training dataset for three different
configurations: HGCAL-Original (blue curve), HGCAL-ReducedBy4 (red curve) and HGCAL-
ReducedBy16 (green curve).
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Figure 4.27: The comparison of resolution (a) and response (b) of the training dataset for three
different configurations: HGCAL-Original (blue curve), HGCAL-ReducedBy4 (red curve) and
HGCAL-ReducedBy16 (green curve).
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Figure 4.28: Predicted energy distribution comparison of the training dataset for three different
configurations: HGCAL-Original (blue curve), HGCAL-Layerwise Ez (magenta curve).

0 50 100 150 200 250 300 350
Energy [GeV]

1

1.5

2

Ra
tio 0 50 100 150 200 250 300 350
Energy [GeV]

0.05

0.1

0.15

0.2

0.25

Re
la

tiv
e 

re
so

lu
tio

n

-πTraining :  

HGCAL-Original

HGCAL-Layerwise_Ez

Simulation

(a) Resolution

0 50 100 150 200 250 300 350
Energy [GeV]

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

En
er

gy
 re

sp
on

se

-πTraining :  

HGCAL-Original

HGCAL-Layerwise_Ez

Simulation

(b) Response

Figure 4.29: The comparison of resolution (a) and response (b) of the training dataset for three
different configurations: HGCAL-Original (blue curve), HGCAL-Layerwise Ez (magenta curve).
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4.8.2 Performance of DRN when the rechit level information is combined
along the longitudinal direction

To reduce the rechit level information along the longitudinal direction in different sections, we
integrate the energy deposited in each sensitive layer along the z-axis. There will be one sensitive
layer per section and the rechit energy of the sensitive cells with the same (x,y) position is added
for each section separately. The z value of the single sensitive layer is chosen as the z value of the
first sensitive layer of each section. We train the DRN model with three different configurations,
i.e., the energy deposited in each sensitive layer is integrated along the z-axis for only the CE-E
section (HGCAL-RedLong CEE), for only the CE-H section (HGCAL-RedLong CEH) and for all
three sections (HGCAL-RedLong All). The inputs for the models are the rechit energy and rechit
x, y and z coordinates. All the models were trained using 850k flat energy pion simulation samples
(80% for training) for 200 epochs and the epoch with minimum validation loss was used for energy
prediction.

Figure 4.30 compares the predicted energy distribution of the DRN model trained on different
configurations for the training dataset (plots for the validation dataset are in the appendix). Figure
4.31 shows the performance in terms of resolution and response for the training dataset (plots for
the validation dataset are in the appendix). The bottom panel of Figure 4.31a plots the ratio of res-
olution values of the HGCAL-RedLong CEE (red curve), HGCAL-RedLong CEH (green curve)
and HGCAL-RedLong All (magenta curve) with the HGCAL-Original model. The response of
the DRN trained on all configuration closely match. The resolution of the HGCAL-RedLong CEE
model closely matches with the HGCAL-Original, but the resolution of the HGCAL-RedLong CEH
model is degraded (within 10%). Integrating the energy deposited in each sensitive layer along the
z-axis in the CE-H section degrades the resolution more than in the CE-E section. This is mainly
because the CE-H section covers a total depth of about 3.8 lint , whereas the CE-E section covers
a total depth of about 1.4 lint . In the HGCAL-RedLong CEH configuration, there is only one
sensitive layer for 3.8 lint in the CE-H section and the performance of the DRN degrades due to
less information available on the longitudinal development of the pion shower. The resolution is
degraded even further (within 20%) for the HGCAL-RedLong All model.
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Figure 4.30: Predicted energy distribution comparison of the training dataset for four different
configurations: HGCAL-Original (blue curve), HGCAL-RedLong CEE (red curve), HGCAL-
RedLong CEH (green curve) and HGCAL-RedLong All (magenta curve).

The above studies on providing reduced information for the DRN model show that the distribu-
tion of rechit energy in both longitudinal and transverse directions is essential for the DRN model
to learn about the p0 component of the pion shower (which has a different shape than the hadronic
component) and get the best performance in terms of energy resolution. The degradation in pion
energy resolution is the maximum in the HGCAL-Layerwise Ez model (about 30–60%), where we
have completely reduced the rechit energy distribution in the transverse direction and only provide
one energy value per layer as input to the DRN model. In the HGCAL-ReducedBy16 model, the
amount of information provided to the model is reduced, but seems to be sufficient for the model to
learn the event-by-event variations with degradation in resolution by 10%. Similar is the case in the
HGCAL-RedLong All model, where the distribution of rechit energy in the transverse direction is
still preserved and degradation in energy resolution is within 20%.
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Figure 4.31: The comparison of resolution (a) and response (b) of the training dataset for four
different configurations: HGCAL-Original (blue curve), HGCAL-RedLong CEE (red curve),
HGCAL-RedLong CEH (green curve) and HGCAL-RedLong All (magenta curve).
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Chapter 5

Summary

In this thesis, we started by studying the interactions of particles with matter, electromagnetic and
hadronic showers, calorimetry and detector simulation using the GEANT4 toolkit. In Chapter
3, we discussed the details of the proposed CMS HGCAL detector and the HGCAL test beam
setup, along with detector calibration techniques. Using the GEANT4 simulation, we also studied
the kinematics of various particles produced in the first hadronic interaction of the pion and the
variation in the fraction of energy carried by the p0 produced in the pion showers.

In chapter 4 we discussed the details of the semiparametric dynamic reduction network (DRN),
which is a graph neural network-based model and checked its performance on energy regression
of charged pions. The semiparametric DRN model efficiently uses the rechit information of the
HGCAL-TB setup and reconstructs the pion energy better than the c2 method. Compared to the c2

method, the pion energy resolution of the semiparametric DRN model is improved by a factor of
2. Unlike c2 method, the semiparametric DRN model is able to learn the shower-to-shower fluc-
tuation p0

f . We also saw that the edge effects could be reduced by extending the energy range of
the pion samples according to a gaussian distribution for training the model. When the reduced in-
formation was provided to the semiparametric DRN model by combining 16 adjacent cells of each
layer, we saw degradation (within 10%) in the pion energy resolution. The pion energy resolution
is degraded by about 30–60% when we provide layerwise rechit energy sum and corresponding
z value of layer as input. Also, we saw degradation in the pion energy resolution when reduced
information was provided by integrating the energy deposited along the longitudinal direction. The
resolution degradation was about 10% (20%) when the energy deposited was integrated along the
longitudinal direction only for the CE-H section (for all sections).
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Appendix A

Plots and graph
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Figure A.1: The predicted energy distributions and the fitted gaussian function is shown for the
prediction made by the DRN-TrueE model on the validation dataset.
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Figure A.2: The predicted energy distributions and the fitted gaussian function is shown for the
prediction made by the DRN-Ratio model on the validation dataset.

68



0 10 20 30 40 50 60 70 80
Energy [GeV]

3−10

2−10

1−10

No
rm

al
ize

d 
to

 u
ni

t a
re

a

-π20 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(a) 20 GeV

0 20 40 60 80 100 120 140 160 180 200
Energy [GeV]

3−10

2−10

1−10

No
rm

al
ize

d 
to

 u
ni

t a
re

a

-π50 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(b) 50 GeV

0 50 100 150 200 250 300
Energy [GeV]

3−10

2−10

1−10

No
rm

al
ize

d 
to

 u
ni

t a
re

a

-π100 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(c) 100 GeV

0 50 100 150 200 250 300 350
Energy [GeV]

3−10

2−10

1−10

No
rm

al
ize

d 
to

 u
ni

t a
re

a

-π120 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(d) 120 GeV

0 100 200 300 400 500 600
Energy [GeV]

3−10

2−10

1−10
No

rm
al

ize
d 

to
 u

ni
t a

re
a

-π200 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(e) 200 GeV

0 100 200 300 400 500 600 700 800 900
Energy [GeV]

3−10

2−10

1−10

No
rm

al
ize

d 
to

 u
ni

t a
re

a

-π300 GeV Validation :  
HGCAL-Original
HGCAL-ReducedBy4
HGCAL-ReducedBy16

Simulation

(f) 300 GeV

Figure A.3: Predicted energy distribution comparison of the validation dataset for three different
configurations: original (blue curve), reduced by a factor of 4 (red curve) and 16 (green curve).
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Figure A.4: The comparison of resolution (a) and response (b) of the validation dataset for three
different configurations: original (blue curve), reduced by a factor of 4 (red curve) and 16 (green
curve).
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Figure A.5: Predicted energy distribution comparison of the validation dataset for three different
configurations: HGCAL-Original (blue curve), HGCAL-Layerwise Ez (magenta curve).
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Figure A.6: The comparison of resolution (a) and response (b) of the validation dataset for three
different configurations: HGCAL-Original (blue curve), HGCAL-Layerwise Ez (magenta curve).
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Figure A.7: Predicted energy distribution comparison of the validation dataset for four differ-
ent configurations: HGCAL-Original (blue curve), HGCAL-RedLong CEE (red curve), HGCAL-
RedLong CEH (green curve) and HGCAL-RedLong All (magenta curve).
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Figure A.8: The comparison of resolution (a) and response (b) of the validation dataset for
four different configurations: HGCAL-Original (blue curve), HGCAL-RedLong CEE (red curve),
HGCAL-RedLong CEH (green curve) and HGCAL-RedLong All (magenta curve).
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