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Abstract

This thesis explores the benchmarking of graph auto-encoders for inferring gene regulatory

networks (GRNs) using prior knowledge of known GRNs. Gene regulatory networks are cru-

cial for understanding gene expression and their regulation in various biological processes.

However, obtaining experimentally validated GRNs can be expensive and time-consuming.

In this thesis, we propose using graph auto-encoders, a type of neural network, to learn

the underlying structure of GRNs from gene expression data. We evaluate di↵erent types

of graph auto-encoders, including the standard Graph Auto-Encoder (GAE), Variational

Graph Auto-Encoder (VGAE), Adversarially Regularized Graph Auto-Encoder (ARGA),

and Adversarially Regularized Variational Graph Auto-Encoder (ARGVA) to infer GRNs

from prior knowledge. Implementation of a trainable decoder shows better results in com-

parison to the standard. We compare the performance of each autoencoder with respect to

the performance and stability of inferred GRNs. This study demonstrates the potential of

di↵erent architectures of graph auto-encoders for inferring gene regulatory networks using

prior knowledge to compare performance and stability in gene network inference.
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Chapter 1

Introduction

In recent years, single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool

for studying gene expression patterns in individual cells. scRNA-seq data can capture the

heterogeneity of gene expression across cells, enabling the identification of di↵erent cell types

and states [1, 2]. However, analyzing scRNA-seq data can be challenging due to the high

dimensionality and noise associated with the data. One of the significant goals of scRNA-seq

data analysis is to infer the gene regulatory networks (GRNs) that control cellular processes.

It provides valuable insights into the complex molecular interactions that regulate cellular

processes. Accurate and reliable inference of GRNs can help identify potential therapeutic

targets and improve our understanding of cellular processes, leading to novel treatments for

various diseases [3].

Inferring GRNs from scRNA-seq data is a challenging problem due to several reasons:

1. scRNA-seq data is noisy and high-dimensional, making identifying true regulatory

interactions between genes complex.

2. Gene regulation is complex and can involve direct and indirect interactions between

genes, making it di�cult to distinguish between them.

3. The regulatory landscape can vary between cell types and states, making it essential

to analyze scRNA-seq data at the single-cell level.

Several computational methods have been proposed for inferring GRNs from scRNA-
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seq data to address these challenges. One of them is Graph autoencoder (GAE) [4], a

deep learning-based approach that has shown promising results in inferring GRNs from gene

expression data [5]. The GAE algorithm uses graph-based neural networks to encode gene

expression data into a low-dimensional representation and then decodes it back to reconstruct

the original data. The GAE algorithm can capture complex gene relationships and identify

potential regulatory interactions in the data.

In the context of gene expression data, a GRN can be represented as a graph, where

nodes represent genes and edges represent regulatory interactions between them. Each edge

is weighted based on the strength of the regulatory interaction. The challenge in inferring

GRNs from gene expression data is accurately identifying these regulatory interactions.

McCalla et al [6] showed that trying to infer GRNs from expression data alone has been a tall

order for researchers to achieve. To combat this shortcoming, we employ the help of prior

known GRNs. Incorporating prior knowledge into the inference process can help to reduce

false positives and improve the accuracy of the inferred networks [7]. Several methods have

been proposed to incorporate prior knowledge into the inference process, including network

regularization and graph-based constraints. In this thesis, we investigate the use of GAE for

inferring GRNs using prior knowledge of known GRNs as a guide. We focus on the Yeast

dataset from Gasch et al [8], which contains single-cell RNA-seq data from yeast cells under

di↵erent environmental conditions. The Yeast dataset provides a comprehensive view of

the yeast transcriptome under di↵erent conditions, making it an ideal resource for network

inference studies.

The thesis derives from the work done in the lab (unpublished) [5] establishing the use

of basic GAE architecture outperforms majority of the existing algorithms. We explore the

performance of di↵erent GAE architectures on the Yeast dataset. We evaluate the perfor-

mance of the inferred networks using metrics such as average precision and area under the

precision-recall curve and compare the results using the Wilcoxon test. One of the major

contributions of our thesis is the development of a trainable decoder algorithm that outper-

forms the conventionally used inner product graph decoder, which is a linear decoder, in

this setting. Our results demonstrate that GAE can accurately infer GRNs from single-cell

RNA-seq data when prior knowledge of known GRNs is incorporated into the inference pro-

cess. Our study highlights the potential of GAE as a powerful tool for inferring GRNs from

single-cell RNA-seq data and provides insights into the factors that influence performance.

Using prior knowledge of known GRNs can improve the accuracy of the inferred networks
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and reduce false positives, which is essential for downstream applications such as identifying

therapeutic targets. Hence, our findings can have important implications for advancing our

understanding of cellular processes and developing novel disease treatments.

In this thesis, we comprehensively explore and analyze the various architectures used in

our research and discuss the unique properties and benefits that each one brings to the table.

Additionally, we delve into a couple of di↵erent layer types and their respective advantages.

We also present a new decoder architecture and explain the thought process and reasoning

behind its design.

All of our models are benchmarked and we detail the process used to identify the best-

performing model. Furthermore, we employ a robust method to validate our findings in a

generalized environment and provide in-depth insights on the results to better understand

our conclusions.

3



4



Chapter 2

Constructing graph autoencoder

models

In this chapter, we provide an in-depth overview of the basic components of our model.

These components, when combined in various configurations, form the basis of the di↵erent

models that we will be examining throughout this thesis.

The GAE algorithm, Figure 2.1, consists of two main parts: an encoder and a decoder. The

encoder takes as input the gene expression data and produces a low-dimensional embedding

of the data. This embedding captures the most important features and relationships present

in the data and serves as a compact representation of the original information. The decoder,

on the other hand, takes the embedding produced by the encoder as input and uses it to

generate a reconstructed version of the prior knowledge in the form of an adjacency matrix.

One of the key components of the GAE algorithm is the use of graph neural networks

(GNNs) to implement the encoder. GNNs are a type of neural network that is specifically

designed to operate on graph-structured data. They learn representations of nodes and edges

in a graph by aggregating information from their neighbors and combining it with their own

features. In the case of GAE, the GNNs operate on the gene expression data graph, with

nodes representing genes and edges representing regulatory interactions between them.

Another important aspect of GAE is the loss function used to train the model. The

loss function is typically composed of two parts: a reconstruction loss and a regularization

term. The reconstruction loss measures the di↵erence between the original data and the
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reconstructed data produced by the model, while the regularization term penalizes large

weights in the model to prevent overfitting and improve generalization.

Figure 2.1: The schematic shows the algorithm which takes partial known Gene Regulatory
Network (GRN) and single cell RNA sequencing (scRNA-Seq) as inputs and predicts a GRN
using a Graph Autoencoder structure.

2.1 Encoder

The Encoder module, Figure 2.2, consists of 2 graph layers. The encoder network takes

the gene expression data X and a graph representation G of the gene regulatory network as

input. The graph convolution operation is defined as:

H[l + 1] = f(G,H[l],W [l])

where H[l] is the output of the l-th graph convolutional layer, f is a non-linear activation

function (here, ReLU), W[l] is a weight matrix for the l-th layer, and G is a sparse adjacency

matrix that encodes the regulatory relationships between genes. The weight matrix W[l] is

learned during training by minimizing a reconstruction loss between the input data X and

the decoded data ,here, the adjacency matrix A’, produced by the decoder network. The

encoder network learns to encode the input data into a lower-dimensional representation Z,

by identifying the most informative features in the gene expression data that capture the

underlying structure of the data.
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Figure 2.2: The Encoder representing the two Graph Layers that encodes the Gene Regula-
tory Network (GRN) and single cell RNA sequencing (scRNA-Seq) to a latent space [5]

2.2 Decoders

The decoder, Figure 2.3, takes the encoded representation Z, as input and generates a recon-

struction of the input adjacency matrix A’. The decoder is trained to minimize the di↵erence

between the input data X and its reconstructed adjacency matrix A’. The sections below

describe the structutre of the decoders used where the MLP and MLP(r) decoders are train-

able.

Figure 2.3: The Decoder module decoding the latent space to Gene Regulatory Network [5]
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2.2.1 Inner Product Decoder

The Inner Product decoder is a simple and commonly used decoder for GAE models. The

reconstructed adjacency matrix A’ represents the predicted gene regulatory network, where

each element A’[i,j] represents the predicted regulatory interaction between genes i and j. A

value close to 1 indicates a strong regulatory interaction, while a value close to 0 indicates

no regulatory interaction. The Inner Product decoder computes the reconstructed adjacency

matrix A’ as follows:

A
0 = ZZ

T

where, Z is the encoded gene expression data of dimension N x d, where N is the number of

genes and d is the dimensions of the encoded representation. The matrix multiplication ZZ
T

produces a symmetric N x N matrix, which represents the reconstructed adjacency matrix

A’.

2.2.2 MLP decoder (MLP)

The MLP decoder, which stands for Multi-Layer Perceptron decoder, is a key component

of GAE models. It is used to decode the encoded graph data and reconstruct the original

graph structure. The MLP decoder typically consists of multiple layers of perceptrons, which

are simple computational units that take input values and apply a non-linear function to

them. In our implementation, we use an MLP decoder with 3 layers containing 40, 20, and

1 perceptrons respectively. The first two layers use a ReLU activation function, while the

last layer uses a sigmoid activation function.

In the context of GAE models, the MLP decoder takes the encoded graph data as input.

Specifically, the latent encoding of two nodes is concatenated and fed into the decoder as

input. The decoder’s task is to predict the probability of there being an edge between the

two nodes based on their latent encoding. The output of the decoder is bound between 0

and 1 by a sigmoid activation function at the last layer. A value close to 1 indicates a strong

regulatory interaction between the two nodes, while a value close to 0 indicates no regulatory

interaction.

During training of the model, these outputs are learned by minimizing the reconstruction

loss. This loss measures the di↵erence between the original graph structure and the recon-
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structed graph structure produced by the model. By minimizing this loss, the model learns

to accurately decode the encoded graph data and reconstruct the original graph structure.

2.2.3 MLP decoder with multiple update (MLP(r))

In this implementation, we make use of the same architecture as described above, with one

key di↵erence: the frequency of update of the decoder during training. In order to speed

up the learning of the decoder and improve its performance, we modify the training cycle

such that the decoder is updated multiple times for each forward pass of the algorithm. The

frequency of update is set as a hyperparameter to be optimized, with values ranging from 1

to 3.

By updating the decoder more frequently during training, we aim to accelerate its learning

and enable it to more quickly adapt to changes in the encoded graph data. This can result in

faster convergence and improved performance of the model overall. The optimal frequency

of update for the decoder is determined through hyperparameter optimization, which allows

us to find the best balance between speed and accuracy.

2.3 Layers

Convolutional layers and attention layers are two of the most important building blocks

of graph neural networks (GNNs). These layers play a crucial role in enabling GNNs to

e↵ectively learn representations of nodes and edges in a graph by aggregating information

from their neighbors and combining it with their own features.

Both convolutional and attention layers are powerful tools for learning representations of

graph-structured data and play a crucial role in the success of GNNs.

2.3.1 Convolution (Conv)

A convolutional layer in a graph neural network (GNN) operates in a manner similar to a

convolutional layer in a traditional convolutional neural network (CNN). However, instead
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of applying a convolution operation to an image, it applies the operation to a graph. This

involves aggregating information from the neighborhood of each node in the graph and using

it to update the node’s representation.

The aggregation operation used by a convolutional layer in a GNN can take many di↵erent

forms. For example, it can be a simple sum or mean of the features of neighboring nodes,

or it can be a more complex operation such as a weighted sum or a message passing scheme.

The weights of the convolutional filters are learned during training using backpropagation,

allowing the model to adapt to the specific characteristics of the data.

By convolving over the graph and aggregating information from neighboring nodes, con-

volutional layers in GNNs enable the model to learn local patterns and relationships within

the graph. This allows the model to e↵ectively capture the underlying structure of the data

and make accurate predictions [9].

2.3.2 Attention (GAT)

An attention layer in a graph neural network (GNN) is a powerful mechanism that allows the

model to selectively focus on certain parts of the graph when updating the representations

of its nodes. This is achieved through the use of an attention mechanism, which assigns

weights to the nodes based on their importance in the current context.

The attention mechanism computes weights for each node by evaluating its similarity to

its neighbors. Nodes that are more relevant to the task at hand are assigned higher weights,

while nodes that are less relevant are assigned lower weights. These weights are then used

to compute a weighted sum of the representations of the neighboring nodes.

The resulting weighted sum is used to update the representation of the current node.

This allows the model to selectively incorporate information from the most relevant parts of

the graph and e↵ectively capture the underlying structure of the data. By using an attention

mechanism, GNNs can learn to focus on the most informative parts of the graph and make

more accurate predictions. [10]
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2.4 Models

2.4.1 Graph Auto-Encoder (GAE)

GAE learns a low-dimensional graph representation by training an encoder-decoder neural

network to reconstruct the adjacency matrix of the input graph. The encoder maps the input

graph into a low-dimensional latent space, and the decoder maps the latent representation

back to the adjacency matrix. The loss function is the binary cross entropy between the

reconstructed and original adjacency matrices. [4]

2.4.2 Variational Graph Auto-Encoder (VGAE)

Variational Graph Autoencoder (VGAE) is an extension of Graph Autoencoder (GAE) that

incorporates a probabilistic model to capture the uncertainty in the latent space. Specifically,

VGAE learns a Gaussian distribution over the latent space and introduces a Kullback-Leibler

(KL) divergence term in the loss function to encourage the learned distribution to be close

to a unit Gaussian. This enables VGAE to model the distribution of the latent space and

to generate new graphs that have similar properties to the input graph. [4]

2.4.3 Adversarially Regularized Graph Auto-Encoder (ARGA)

Adversarially Regularized Graph Autoencoder (ARGA) [11] is a deep learning-based ap-

proach for graph generation that combines a Graph Autoencoder (GAE) with an adversarial

network. The objective of ARGA is to learn a latent space representation that captures

the structural properties of the input graphs while generating realistic new graphs. ARGA

consists of two main components:

1. The Graph Auto-Encoder, which encodes the graph structure into a lower-dimensional

latent space representation and then decodes the latent representation to reconstruct

the original graph.

2. The Adversarial Network, which discriminates between the reconstructed graphs and

real graphs to ensure that the generated graphs are indistinguishable from real graphs.
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2.4.4 Adversarially Regularized Variational Graph Auto-Encoder

(ARGVA)

The Adversarially Regularized Variational Graph Auto-Encoder (ARGVA) model is similar

to the Adversarially Regularized Graph Autoencoder (ARGA) model in that it consists of

the same two components. The di↵erence between the two models lies in the Auto-Encoder

part. In ARGVA, a Variational Graph Auto-Encoder (VGAE) is used instead of a regular

Graph Auto-Encoder. [11]

All model configurations

Figure 2.4: All components to create the models. Model Architecture:Graph Auto-
Encoder (GAE), Variational Graph Auto-Encoder (VGAE), Adversarially Regularized
Graph Auto-Encoder (ARGA), and Adversarially Regularized Variational Graph Auto-
Encoder (ARGVA). Layers:Convolution and Attention. Decoders:Inner Product, MLP and
MLP(r).
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The entries in the Figure 2.4 are organized in a specific manner. The first part provides

information about the model architecture. The second part indicates the type of layer that

is employed in the model. Finally, the last part defines the type of decoder that is utilized.

All the models used comprise of selecting one element from each of the three parts.
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Chapter 3

Benchmarking graph autoencoder

models

Benchmarking is a crucial step in the process of evaluating the performance of di↵erent

models and methods. It provides a systematic and rigorous way to compare the e↵ectiveness

of di↵erent approaches and identify their respective strengths and weaknesses. By conducting

a benchmarking analysis, we can gain valuable insights into the suitability of each method

for di↵erent scenarios and make informed decisions about which approach to use.

In this section, we will describe in detail the benchmarking process that we used to

evaluate the performance of di↵erent auto-encoder models. This includes a description of

the dataset used for benchmarking, the evaluation metrics that we employed, and the specific

models that we chose to compare. The models selected for benchmarking cover a wide range

of possibilities currently used in the field, as well as new implementations of the decoder

architecture.

By conducting a benchmarking analysis, we can gain a deep understanding of the rel-

ative performance of di↵erent auto-encoder models. This allows us to identify the most

e↵ective methods for di↵erent scenarios and provides valuable insights into the strengths

and weaknesses of each approach.
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3.1 Dataset

In order to conduct a benchmarking analysis of di↵erent graph auto-encoder models for

inferring gene regulatory networks (GRNs), we used dataset sourced from McCalla et al [6].

This dataset, which was originally produced by Gasch et al [8]., contains gene expression

data for the yeast Saccharomyces cerevisiae.

The dataset covers a total of 163 cells and includes information on the expression levels

of 3,847 genes. This provides a rich and detailed view of the gene expression patterns in

yeast and allows us to accurately evaluate the performance of di↵erent graph auto-encoder

models. The dataset covers cells in two conditions, stressed and unstressed. The Figure 3.1

shows the gene expression values of Environmental Stress Response (ESR) genes under the

two conditions. The rows represent transcripts and each column is an individual cell, with

expression values according to the key.

Figure 3.1: Mean-centered log2(read counts) for Environmental Stress Response (ESR) gene
groups before and after induced stress. [8]

In addition to the gene expression data, the McCalla et al yeast dataset also includes a

ground-truth GRN obtained by collating the results of TF perturbation experiments. This

GRN contains a total of 34,282 edges and provides a reliable reference against which we can

compare the inferred GRNs produced by di↵erent models. The edges in the ground-truth

GRN are taken to be undirected. By using this high-quality dataset for benchmarking, we can

ensure that our analysis is rigorous and reliable, and that our conclusions are well-founded.

16



3.1.1 Preprocessing

In order to ensure the quality and reliability of our gene expression data, we applied several

preprocessing steps to the dataset. These steps were designed to filter out low-quality data

and ensure that the remaining data was suitable for use in our analysis.

One of the key preprocessing steps we applied was filtering the expression data using the

scanpy package [12]. This allowed us to remove cells that contained fewer than 10% of the

total genes (384) and genes that were present in fewer than 10% of the cells (16). By applying

this filtering step, we were able to ensure that our dataset only contained high-quality data

that was suitable for use in our analysis.

In addition to filtering the data, we also scaled the expression matrix using a min-max scalar.

This step ensured that all of the values in the expression matrix were on a common scale,

making it easier to compare and analyze the data.

By applying these preprocessing steps to our dataset, we were able to ensure that our analysis

was based on high-quality and reliable data.

3.2 Evaluation

3.2.1 Evaluation Metric

In this study, the prior known gene regulatory network is split into three parts: 50% is used

for training the models, 25% is used for validation, and the remaining 25% is used for testing.

The split is performed such that the training split does not include edges in validation and

test splits; and the validation split does not include edges in the test split. During the

hyperparameter optimization process, the performance of the models is measured using the

Average Precision value of the validation split.

Average Precision is a commonly used metric for evaluating the performance of binary

classification models. It calculates the average precision value for all possible recall values.

In other words, it measures how well a model can accurately predict positive instances while

minimizing false positives. This metric is particularly useful when dealing with imbalanced

datasets where one class is significantly more prevalent than the other.
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3.2.2 Hyperparameter optimisation

In order to find the best set of hyperparameters for our models, we utilized the Weights and

Biases [13] webserver as a platform for hyperparameter optimization. We set the seed to zero

and searched through a range of hyperparameters with the goal of maximizing the Average

Precision (AP) as our target metric.

The hyperparameters we considered included weight decay, lambda L1, dropout rate,

learning rate, latent dimension, and layer ratio. For each hyperparameter, we specified a

range of values to search within. The table 3.1 contains all the ranges for the hyperparameters

used.

By searching through these ranges of hyperparameters and evaluating the performance

of our models using the AP metric, we were able to identify the optimal set of hyperparam-

eters for our case. This allowed us to maximize the performance of our models and obtain

more accurate and reliable results. The Weights and Biases framework has a feature called

Bayesian hyperparameter search which uses a Gaussian Process to model the relationship

between the parameters and the model metric and chooses parameters to optimize the prob-

ability of improvement. This method was used to perform our search across the ranges given

for 500 runs.

Hyperparameter Search Range
weight decay 0.0 to 0.25
lambda l1 0.75 to 1.0
dropout rate 0.0 to 0.25
learning rate [0.1, 0.01, 0.001, 0.0001, 0.00001]
latent dimension [4, 8, 12, 16, 20]
layer ratio 1.0 to 4.0

Table 3.1: Hyperparameter search ranges

3.2.3 10 fold validation

In order to ensure the robustness and validity of our models’ performance, we subjected

each model to rigorous testing for generalization and performance. This was achieved by

calculating a key metric, the average precision value. The metrics provide a comprehensive
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measure of how well each model is able to accurately predict gene regulatory networks.

To account for variability in results and ensure that our findings were not influenced by

chance, we repeated the model training process for 10 di↵erent randomly chosen seed values,

excluding 0. These seeds values are 14, 25, 73, 89, 42, 7, 69, 56, 98 and 33. This allowed us

to obtain a more accurate and reliable estimate of each model’s performance. The models

were trained and evaluated using the optimized hyperparameter set for seed 0.

Wilcoxon test

The Wilcoxon test [14] is a non-parametric statistical hypothesis test used to compare two

related samples, matched samples, or repeated measurements on a single sample to assess

whether their population mean ranks di↵er. It is often described as the non-parametric

version of the two-sample t-test. The null hypothesis of the Wilcoxon test is usually taken

as equal medians. We use the wilcoxon test to compare all the di↵erent models after all ten

seeds are trained.

Pearson Correlation Coe�cient

The Pearson correlation coe�cient [15] is a widely used statistical measure that quantifies

the strength and direction of the linear relationship between two variables. It ranges from

-1 to 1, with values close to -1 indicating a strong negative correlation, values close to 1

indicating a strong positive correlation, and values close to 0 indicating no correlation.

r = cov(X,Y )
�X�Y

where:

cov(X, Y ) is the covariance between the two variables X and Y

�X is the standard deviation of variable X

�Y is the standard deviation of variable Y

To evaluate the performance of our models, we this simple linear measure as a baseline for

comparison. Specifically, we calculate the Pearson correlation coe�cient for the gene pairs

in the test split. This provides us with a measure of the strength of the linear relationship

between the expression levels of each gene pair.

We then calculate the Average Precision values for these gene pairs and repeat this process
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for all ten seeds. By taking an average of these values, we obtain a single performance metric

that reflects the ability of a simple linear measure to capture the relationship between gene

pairs.

This value serves as a benchmark against which we can compare the performance of our more

sophisticated models and assess their ability to accurately model the complex relationships

between gene expression levels.

3.3 Benchmarking Results

This chapter presents the results of our benchmarking analysis on the Gasch et al. dataset.

We evaluated 24 models from 4 architectures: GAE, VGAE, ARGA, and ARGVA. Each

architecture o↵ers a unique approach to modeling data and has its own set of advantages and

disadvantages. The models use convolutional and attention layers to extract local features

from data and focus on specific parts of the input. The decoders used are Inner Product,

MLP and MLP(r) decoders, responsible for reconstructing the output from the model’s latent

representation.

We selected Average Precision as our metric and conducted tests using seed zero. For

seed zero, hyperparameters were optimized on the validation set and Average Precision was

calculated on the test set to evaluate model performance. We validated the results using

10 other seeds with the hyperparameters optimized for seed zero. This will probide us with

inforamation on the generalisation capabalities of the models. Our analysis provides valuable

insights into each system’s strengths and weaknesses to guide future improvements.

3.3.1 Hyperparameter optimisation for single seed

In order to evaluate the performance of our model, we conducted hyperparameter optimiza-

tion for seed zero on the validation split. This process allowed us to fine-tune the model

and ensure that it was performing at its best. Once the optimization was complete, we pro-

ceeded to evaluate the model’s performance on the test split. The results of this evaluation

are presented in Figure 3.2, which displays the average precision value calculated on the test

split for all models in the form of a heatmap. This visualization provides a clear and concise
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representation of the performance of each model and allows for easy comparison between

them.

Figure 3.2: Heatmap of Average Precision values obtained after evaluating the models on
the test set for seed 0

One of our key observations was that the choice of architecture for the convolution layers

did not have a significant impact on the overall performance of the model. In fact, we found

that the convolution layers consistently outperformed or performed at least as well as their

attention layer counterparts, regardless of the decoder used.

The attention layers perform especially poorly for the MLP and MLP(r) decoder in compar-

ison to the Inner Product decoder.

When comparing the performance of di↵erent decoders, we found that the MLP and
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MLP(r) decoders outperformed the conventional Inner Product decoder. Among these two

decoders, MLP(r) emerged as the best-performing decoder overall.

Except the Inner Product decoder, VGAE does marginally outperform the other models. The

VGAE architecture, which utilized a convolution layer and an MLP(r) decoder, achieved the

best performance out of all the models tested.

In order to further verify our findings and ensure their robustness, we conducted a 10-

fold validation performance verification using 10 di↵erent seeds. This analysis allowed us to

confirm our initial observations and provided additional evidence to support our conclusions.

By taking into account multiple seeds and conducting a rigorous validation analysis, we were

able to demonstrate that our findings were not simply due to chance or random variation.

3.3.2 10 fold validation of optimised models

All the models are trained for all 10 seeds using the hyperparameters optimised for seed zero

and the set of average precision values for all the seeds are used to calculate the statistical

significance using the Wilcoxon test. This is done to check for the generalisation capabilities

of the models used. All the models are compared to GAE-Conv-IP called the base model

henceforth.

We also report the average of the Pearson correlation coe�cient on the test set for all

the seeds comes out to be 0.55. We use this value as a baseline value to keep in mind while

commenting on the performance of our models.

Similar to seed zero, Figure 3.3 contains the average of average precision values of all

seeds in a heatmap. The major trends observed for results for seed zero follow through even

after the rigorous criteria for testing. The p values are demarcated as asterisks (*). A single

asterisk (*) if p  0.05 and two asterisks (**) if p  0.01.

In order to draw stronger and more robust conclusions about the generalisation and

performance of di↵erent models, we conducted a test to provide us with statistical significance

for comparing their results, called the Wilcoxon test. This allowed us to go beyond the

limitations of relying solely on the results obtained using seed zero and to gain a deeper

understanding of the relative strengths and weaknesses of each model.
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Figure 3.3: Heatmap of Average of Average Precision values obtained from evaluation the
models on ten seeds apart from 0.

Following our results for seed zero, our analysis revealed that for the Inner Product

decoder, changing the model from GAE resulted in worse performance for convolution layers

and similar or worse performance for attention layers. This suggests that the choice of

model architecture can have a significant impact on performance when using this particular

decoder. Furthermore, we observed that attention layers consistently performed worse than

convolution layers for both the MLP and MLP(r) decoders, regardless of the architecture

used. This indicates that the choice of decoder can also play a crucial role in determining

the overall performance of the model.

In contrast to the seed zero results, the worse performance of attention layers for MLP and

MLP(r) decoder does not translate after the 10 fold validation. Similarly, our results for
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VGAE for seed 0 do not translate, moreover VGAE architecture using attention layer with

the Inner Product Decoder performs the worst.

All of the models utilizing the MLP and MLP(r) decoders in convolution layer configu-

rations outperformed the base model with a high degree of statistical significance to support

this claim. This provides strong evidence to suggest that these decoders, when used in con-

junction with convolution layers, are highly e↵ective at improving model performance for

our use case of infering GRNs.

The GAE architecture, which utilized a convolution layer and an MLP(r) decoder, achieved

the best performance out of all the models tested.
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Chapter 4

Discussion

In conclusion, our results demonstrate that the trainable MLP(r) decoder proposed in this

study performs better in the task of inferring Gene Regulatory Networks (GRNs) when

incorporating prior knowledge. Furthermore, our study provides an extensive understanding

of the best model architecture for this task. Our results also demonstrate that using a more

complex architecture or incorporating an attention layer may not always yield better results.

Instead, it is important to carefully consider the specific characteristics of the task at hand

and select an appropriate approach accordingly. By carefully selecting and optimizing the

components of our model, we are able to achieve improved performance on this challenging

problem.

As observed in the results section, the MLP decoder performs better than the base model

and all of the Inner Product decoders. We theorize that this improved performance is due

to the fact that the MLP decoder learns patterns in the pairwise node embeddings in a non-

linear way. This allows the decoder to more accurately classify whether an edge is present

between two nodes.

Further, the MLP(r) decoder performs better than the base model and slightly better

than MLP decoders. We theorize that this improved performance is due to the fact that

the decoder is updated up to 3 times during each training epoch as found by the best set of

hyperparameters for all the models. This frequent updating allows the decoder to learn the

pattern of the latent representations of input gene pairs more quickly. By rapidly adapting

to the changing representations of the input data, the MLP(r) decoder is able to more
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accurately infer the underlying Gene Regulatory Networks (GRNs).

Interestingly, our results show that using a more complex architecture or incorporating

an attention layer, which are traditionally known to perform well on other tasks, do not

yield better results on our task. This counter-intuitive finding suggests that the specific

characteristics of our task may require a di↵erent approach. It is possible that the additional

complexity introduced by these techniques may actually hinder performance by making it

more di�cult for the model to learn the relevant patterns in the data.

This di↵erence in performance is particularly notable when examining the results of 10-fold

validation. In this analysis, we found that attention layers performed significantly worse than

their convolutional counterparts for MLP and MLP(r) decoders. One possible explanation

for this result is that the attention layers may be unable to e↵ectively generalize and conform

to a pattern for the latent embeddings. This could hinder the decoding procedure and result

in lower performance.

The best performing model in our benchmarking analysis of 10 fold validation achieved

a average average precision score of 0.72, in comparison to 0.55 for Pearson correlation

coe�cient, indicating good performance for GRN predictions. Looking at the low value in

case of Pearson correlation coe�cient demonstrates the complexity of the system and the

high score of our models demonstrates the e↵ectiveness of the model in accurately predicting

relationships within the GRN and provides confidence in its ability to be applied in real-

world scenarios. The success of this model highlights the potential for further development

and optimization to improve performance even further.

After evaluating a variety of Graph Autoencoder structures, we have established the most

e↵ective model for inferring Gene Regulatory Networks (GRNs) using prior knowledge. The

next steps will involve testing these models on di↵erent datasets to assess their robustness

and ability to accurately infer GRNs. Additionally, comparison of the performance of these

models to existing methods in the field is imperative. By increasing the complexity of the

problem and incorporating directionality into our models, we hope to gain deeper insights

and further develop our approach. This will open up new avenues for research and help us

continue advancing our understanding of GRNs.
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