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Abstract

How did biological organisms become so complex? The ‘major transitions in evolution’

o↵er a conceptual framework to understand the emergence of di↵erent scales of organisation

in biology. In this view, the evolution of complex life has taken place via a sequence of

evolutionary transitions – in each transition, cooperation between di↵erent individuals leads

to the emergence of a more complex, integrated entity – a higher level of organisation. A

particularly important transition is the evolution of obligate endosymbiosis. Highly evolved

endosymbioses made possible the evolution of eukaryotes, as well as many other astonishing

associations in, for example, the insect world. In this thesis I use evolutionary game theory,

more specifically the theory of adaptive dynamics, to study the evolution of such long-term

interspecific associations. I derive explicit analytical criteria, and show how the incorporation

of more biological realism a↵ects these insights and generates novel evolutionary phenomena.

The main result is a robust demonstration that mutual dependence between the host and

symbiont evolves faster than their reproductive cohesion i.e. their investment in synchronised

reproduction. This implies that symbioses in nature are more likely to be at a higher level

of mutual dependence than reproductive cohesion. These predictions have implications for

our understanding of symbioses, evolutionary transitions in general, and are experimentally

verifiable. In summary, I show the utility of theoretical methods in studying symbiosis, and

suggest ways forward to fill gaps that this work uncovers.
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Chapter 1

Endosymbiosis and the major evolution-

ary transitions

Nature is diverse, and so are the

problems it o↵ers to the inquiring

mind.

Hanna Kokko (Kokko, 2005)

1.1 A guide to reading this thesis

Welcome, dear reader, and thank you for allowing me to take you through my thesis.

Thank you for making it this far! This thesis is the culmination of almost a year’s work,

and I would like to make it as convenient as possible for you to find what you are looking

for, even if – especially if – you are here to explore and think about something new. While

I would of course like you to read the next 100 or so pages in their entirety, and I am ever

grateful if you do, this is likely not optimal. For this reason, I present to you a choice: I

suggest three di↵erent courses of action, all of which are of the form of a sub-selection of

chapters. I will lay them out below, in increasing order of detail. Each is a subset of the

next, and they are all proper subsets of my strongest recommendation - to read it all!
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Lastly, I will give an overview of the document in full and describe the content of each

of the chapters. Please feel free to skip it if you are so inclined.

• The morning commute. Chapters 1 and 5. The question I am asking, the scientific

context, the modelling philosophy, and the main conclusions.

• The TAC member. Chapters 1, 4, and 5. Also includes a description of the specifics

of the results and their interpretation.

• The one that needs an espresso. Chapters 1, 3, 4, 5. If you are one of the 3 people

that wants to know what the model looks like.

• Bonus! If you read the abstract and want just a bit more detail, please head to Chapter

5.

This work was motivated by a desire to understand a perhaps ill-defined question that

I am nonetheless certain we have all wondered about: “how are biological organisms so

complex?”. There are many directions one might go from here because there are many

di↵erent ways in which they are complex, and all are worth investigating. I took the route

“how did this complexity evolve?”. This leads one quite naturally to the broad question

that my work attempts to answer. In particular, I try to understand what a symbiotic

group of organisms “looks like” as it goes from being composed of organisms that live and

reproduce independently, to behaving as a single unit. This process of cooperation and

cohesion has taken place across the tree of life and across scales of organisation, making it

worthwhile to understand it in broad, general terms. My gadget of choice is mathematics,

for the generality and explanatory precision it a↵ords, and also because I think math is

fun. Evolutionary biology is a highly mathematized field, with a long tradition of precise,

quantitative thought. We shall continue and hopefully contribute to this tradition.

Chapter 1 is an introduction to the notion of an evolutionary transition, an illustration of

the astonishing diversity of endosymbioses, and a view of endosymbiosis as an evolutionary

transition.

Chapter 2 is a subjective historical account of mathematical thought in evolutionary

biology, and is meant to convince you as well that ‘adaptive dynamics’ is the right tool for

the question we now find ourselves confronting. While we do indeed stand on the shoulders

of giants, this chapter does not have an immediate e↵ect on the scientific content of this

2



thesis and thus does not find itself in the suggestions above.

Chapter 3 is a description of the model constructed to answer this question, specifically

also including a discussion of its nuances and biological systems where it is directly applicable.

Chapter 4 is devoted to the careful documentation of the results of this work. This is the

chapter in which I most frequently make appeals to the appendices, since I have been forced

– for the sake of the all-important narrative – to there bury many details.

Chapter 5 is perhaps the most important chapter in this thesis. In it you will find my

(current) answers to important questions such as “why are all symbioses not evolutionary

transitions?”, “what should we, as evolutionary theorists studying symbiosis, spend our days

worrying about?” and “what should we, as experimental evolutionary biologists studying

symbiosis, do to help Gaurav?”.

I have decided that Appendix A deserves special mention. It is a practical guide to

applying the framework of adaptive dynamics in a manner I have not come across, and I

hope that it, like the rest of this thesis, stands the test of time.

I have decided also that I would like to place on record that I have come to view this

thesis, first and foremost, as a time capsule that I intend to open again and again in the

decades to come. I do not plan on sacrificing the slightest amount of scientific rigour, but

please excuse any instances of informality. And enjoy the easter eggs!
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1.2 A perspective on the evolution of biological com-

plexity

Organisms as we know them today are, in many ways, complex. Instances of this com-

plexity present themselves across di↵erent scales of organisation - animal societies have well-

defined hierarchies and methods of communication, multicellular organisms have intricate

developmental and regulatory processes, and there is a marvellous synergy even between the

organelles of a single cell. How does one explain this complexity? Why are there di↵erent

scales of organisation to begin with?

A fundamental insight into this question was put forth by Eörs Szathmàry and John May-

nard Smith in their 1995 book titled The Major Transitions in Evolution (Maynard Smith

and Szathmáry, 1995; Buss, 1987). Here, they emphasize that a similar process took place

at di↵erent pivotal moments during the evolution of modern life. In each instance of this

process, multiple individuals – closely related or otherwise – came together over evolutionary

time to form a higher-level, more complex entity.

This notion is best understood via illustration. Consider a eusocial insect colony. The

colony consists of a queen and her workers – they cannot live independently, and the queen

is necessary to sire new o↵spring. Such colonies can thus be seen as a “superorganism”,

a higher level of organisation (Hölldobler and Wilson, 2008). But most insects are not

eusocial, and the most parsimonious explanation is that the ancestor of all insects was not

eusocial. The evolution of eusociality thus requires an explanation – why did several solitary

individuals come together to form such a colony? A similar question may be asked of a

single insect as well. An insect is a multicellular organism, and any multicellular organism

is made up of several individual cells. Again, the evolution over long periods of time of a

multicellular individual from free-living single cells, must be explained. At a lower level, there

is a similar process underlying the origins of unicellular eukaryotes as well. In particular, the

mitochondria and plastids, both important organelles in eukaryotes, are known to be derived

from free-living prokaryotes (Sagan, 1967). They integrated with an Archaebacterial host

long ago, and over time both host and symbiont lost their ability to reproduce independently,

reproducing only as a collective. One can go even further and see certain mobile stretches

of DNA in genomes as being derived from simpler replicators that integrated with other

genomic elements (Bertels and Rainey, 2022).
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transition diversification transition ….
+

diversification

degree of mutual dependence

reproductive cohesion

strict horizontal transmission/
strict unicellular development

strict vertical transmission/
strict multicellular development

facultative collective 
formation

obligate collective 
formation

transition

(a)

(b)

(c)

Figure 1.1: An illustration of the major evolutionary transitions. (a) A selection
of the evolutionary transitions as narrated in the main text. Figures in this panel are
reproduced from other work, cited when appropriate. From left to right: mobile genetic
elements as endosymbionts (Bertels and Rainey, 2022); host-microbe symbioses (Kiers and
West, 2015); primitive multicellularity in S. cerevisiae (Ratcli↵ et al., 2012); A queen ant
with her workers (Nowak et al., 2010). (b) A schematic representation of the perspective
we adopt as a consequence of the major transitions framework. The evolution of life can be
viewed as a series of diversifications punctuated by transitions at certain pivotal moments.
(c) We view a major evolutionary transition, inspired by Estrela et al. (2016), as a path
in the plane spanned by two emergent properties of the collective - the degree of mutual
dependence between the lower-level individuals, and the degree of reproductive cohesion.
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There is thus a nested, hierarchical structure to biological systems. At each step in

this hierarchy, certain lower-level individuals came together, cooperated, and then over time

integrated into a higher-level individual in which the constituents cannot reproduce inde-

pendently (see Figure (1.1)). This process is called a major evolutionary transition. The

major transitions are thus a collection of evolutionary events that led to jumps in biological

complexity, and the evolutionary history of life on Earth may be viewed as a sequence of

diversifications punctuated by these transitions.

Evolutionary transitions pose a problem to the canonical “survival of the fittest” dogma

of evolutionary biology. This problem is identical in spirit to the problem of understand-

ing why cooperation is stable in the face of the evolution of “cheater” mutants. Cheaters

are mutants that benefit from the cooperative behaviour of others in the population, but

do not themselves cooperate and thus do not incur a cost of cooperation. Such cheaters

would take over the population because of their higher growth rate, thereby destroying the

cooperation that would otherwise exist. This divergence between the interests of the co-

operating individuals and the interests of the population as a whole is sometimes called

“evolutionary conflict”. In the context of transitions, we shall say that there is a “conflict of

interest” between the lower-level individuals whenever there is a tradeo↵ between investing

more resources in cooperation at the cost of investing resource in independent reproduction.

Broadly speaking, there are two steps in an evolutionary transition (West et al., 2015).

These steps are not easy to delineate in practice, but they are conceptually clear. First, in

any transition there must be the formation of a ‘symbiotic collective’ – a group of individ-

uals that associate with each other for some reason. We note that West et al. (2015) use

‘cooperative’ instead of ‘symbiotic’ but this is misleading; it is clear that interactions that

one would not normally associate with cooperation e.g. parasitism, can lead in principle to

an evolutionary transition (Keeling and McCutcheon, 2017; Sørensen et al., 2019). 1 We use

‘symbiosis’, following Keeling and McCutcheon (2017), to refer to any sustained interaction

between organisms. There are many examples of symbiotic collectives. Many species form

multicellular aggregates in response to certain stresses – Chlamydomonas reinhardtii form

adhesive collectives in response to their natural predator Peranema trichophorum (Sathe

and Durand, 2015). There are also many instances of bacterial symbioses with eukaryotes

1They also use ‘group’ instead of ’collective’, but we make this change to be consistent with current
literature, and to distance ourselves as much as possible from the messy debate around kin and group
selection (Kramer and Meunier, 2016) . Also useful to note here is that a central reference in the narration
of Kramer and Meunier (2016) has since been retracted (Pruitt and Goodnight, 2023).
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that are driven by metabolic exchange, parasitism, etc. (Sachs et al., 2011). Not all symbi-

otic collectives go on, however, to undergo an evolutionary transition. It is not hard at all

to find examples: humans can live without our gut microbiome (when under the influence

of antibiotics), and microbes in our gut can live outside of their human hosts (see Kiers

and West (2015) for more examples). Crudely, these collectives do not undergo a transi-

tion because they do not go through the second step: transformation via the mediation of

evolutionary conflicts. This second step consists of all the adaptations that make up the

transformation from a collective composed of di↵erent individuals to one, higher-level unit.

It usually consists of some stereotyped emergent e↵ects, such as the division of labour in

multicellular aggregates or the evolution of specialisation/communication systems between

di↵erent parts of the collective. It is useful to note that such conflict-mediation mechanisms

improve collective fitness at the cost of individual fitness. This is where the di�culty lies:

conflict mediation takes place at a cost, but if conflicts between the lower-level individuals

cease to exist, the collective is a new kind of individual. If conflicts are not mediated and

there is still a large incentive to cheat, then cheaters are evolutionarily welcomed. However

if the composition of the collective as a whole matters strongly, cheaters are not welcome

since they do not cooperate and therefore decrease collective fitness. This style of argument

is classical to group selection models – conflict mediation has the e↵ect of strengthening

between-group selection in comparison to within-group selection (see Simon et al. (2012) for

a formalisation of this idea). Another intuitive way to conceptualise the process of an evolu-

tionary transition at a high-level is the notion of “fitness decoupling” between the collective

and its constituent individuals (Michod, 2003). This concept posits that in the early stages

of a transition, the collective’s fitness is proportional to the fitness of its constituents, but

as the transition progresses, collective fitness ‘decouples’ from that of its constituents - this

decoupling exactly corresponds to the step of conflict mediation. It has been suggested that

this might not be an accurate way of thinking about transitions (Bourrat et al., 2022), but

we nevertheless state it here with this caveat due to its usefulness in building intuition.

Now that we have established ways of broadly visualising an evolutionary transition, let

us be more concrete. Evolutionary transitions can be classified into one of two categories

depending on the genetic relatedness between the lower-level individuals. If all the lower-level

individuals come from the same species, such a transition is called fraternal. The evolution

of multicellularity and eusociality are, for example, fraternal transitions. Alternatively, the

lower-level individuals may come from very di↵erent species, and transitions of this type are

called egalitarian. This nomenclature is due to Queller (2000), and is an important distinction
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due to the importance of kin selection – an evolutionary explanation for the evolution of

cooperation in closely related groups of individuals. This argument can be traced back to

the simple, but nonetheless elegant formulation of Hamilton’s rule (Hamilton, 1964a,b). This

rule represents the recognition that a gene causing a cooperative behaviour can increase in

frequency if the behaviour increases the “inclusive fitness” of the individual that performed

it. Inclusive fitness takes into account both the fitness of the focal individual, but also that

of other related (i.e. having the same genes) individuals. Hence, a helping behaviour that

superficially decreases the fitness of an ant, for example, might still evolve if this behaviour

ensures that more of its genes are passed on by those that the ant is helping. Note that the

helping ant need not ‘know’ a priori that the ants that it is helping also carry identical genes,

but this is also possible and such kin recognition e↵ects are instances of the more general

green-beard e↵ects (Gardner and West, 2010). This is a strong evolutionary force in fraternal

transitions, but by definition has much less explanatory power in egalitarian evolutionary

transitions. There has also been much more work on fraternal transitions, as evidenced by

the writing of several books (see, among others, Hölldobler and Wilson (2008); Herron et al.

(2022)). Egalitarian transitions have in comparison not received much theoretical attention,

although this has been changing in the recent past (Zachar et al., 2018; Nguyen and Baalen,

2020; Patel and West, 2022). It is therefore interesting, and no doubt important, to explore

the causes and consequences of group transformation in groups of unrelated individuals.

Endosymbiosis is the prototypical example of an egalitarian transition, and has itself

received a lot of attention in other contexts. Most importantly, biochemists have long been

interested in the particulars of mitochondrial origins and its importance in eukaryogenesis

(Martin et al., 2015; Blackstone, 2016; Cosmides and Tooby, 1981). The existence of this

rich, fine-grained body of knowledge makes it perfect to begin a general study of egalitarian

evolutionary transitions. In the next section we will describe endosymbiosis in more detail

and understand how it fits into the major transitions framework.

1.3 Endosymbiosis as an egalitarian evolutionary tran-

sition

Endosymbiosis is of course important to understand as an instance of the egalitarian

transitions, but it is also extremely widespread across di↵erent length scales. Here we shall

illustrate the astonishing diversity of endosymbioses and make the case that it is, on its own,

8



a biological phenomenon worth investigation.

Endosymbionts are present in most forms of life, even in unicellular prokaryotes (Cor-

saro et al., 1999; Wujek, 1979). Mitochondria, among other organelles, have been famously

shown to be endosymbionts arising from an ancient union between Archaeabacteria and a

alphaproteobacteria prokaryote (Sagan, 1967; Koonin and Yutin, 2014; Martijn et al., 2018;

Fan et al., 2020). Many insects, such as the sap-sucking aphids, have been shown to be

co-diversifying with their Buchneria, Wigglesworthia, and Wolbachia endosymbionts for mil-

lions of years (Hansen and Moran, 2011; Shigenobu et al., 2000; Zientz et al., 2004; Wu

et al., 2004). There are many more examples - methanogenic endosymbionts in anaerobic

ciliates (Embley and Finlay, 1994), nitrogen-fixing endosymbionts in the diatom Rhopalodia

(Prechtl et al., 2004), consortia of chemosynthetic bacteria in gutless tubeworms (Woyke

et al., 2006), cyanobacterial endosymbionts in sponges (Thacker, 2005). New, interesting

kinds of endosymbiotic associations are being continuously discovered in new species, such

as denitrifying endosymbionts in anaerobic ciliates (Graf et al., 2021). However, many fun-

damental conceptual questions remain unanswered. In the above cases and more generally,

it is unclear how likely or easy it is for endosymbiosis to evolve. In insects, it seems to have

independently evolved many times even with symbiont replacement and multiple symbionts

(Chong and Moran, 2018; Koga et al., 2013; Sudakaran et al., 2017; Bennett and Moran,

2013). However, eukaryotes are monophyletic (Baldauf et al., 2000; Katz et al., 2012), and

the reasons for this monophyly have been the subject of several years of research (see Lane

(2017); Blackstone (2013) and references therein). There are several di↵erent hypotheses

that seek to explain eukaryogenesis, and they di↵er in many ways. Importantly, there is

currently no theoretical basis to compare them (Zachar and Szathmáry, 2017; Zachar and

Boza, 2022). More generally, it is unclear under what conditions the ancestral host and

ancestral mitochondrion could integrate and become a single, integrated entity. Relatedly,

it is unclear what we must expect of the relationship between the host and symbiont as they

are undergoing this process of integrating with each other. For example, how does the de-

pendence between the host and symbiont change over time? A first answer to this question

was given by Law and Dieckmann (1998) and Nguyen and Baalen (2020), but many things

remain unaccounted for. In particular, these studies either do not model population growth

in a realistic way, or they do at the cost of artificially keeping constant the evolution of the

host. This is precisely the gap which we wish to fill: we shall, over the course of this thesis,

generalise these models and understand the host-symbiont co-evolution of certain important

traits.
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To formulate the question, we must first precisely define endosymbiosis. There have been

many definitions given previously, involving vague notions of enclosure within bodies and

di↵erent levels of strengths of association (Douglas and Smith, 1989; Martin et al., 2015;

Fukui et al., 2007; Buchner, 1965). See Chapter 5 for a slightly more extended discussion

of definitions. For the purposes of this work, we say that a given host-symbiont collective is

the result of endosymbiosis if it exhibits three properties: it involves intracellular union, at

least one of the host or symbiont is obligate, and the collective can reproduce as a unit. This

endowes the collective with a life cycle, which has been previously proposed as the defining

characteristic of an entity that can undergo an evolutionary transition (van Gestel and Tar-

nita, 2017). For example, according to this definition, a microbiome is not an endosymbiont

because there is no intracellular union or synchronised reproduction. Following Keeling and

McCutcheon (Keeling and McCutcheon, 2017), we use “symbiosis” to mean any sustained

organismal interaction somewhere on the pathogenic-beneficial continuum.

Recall the first of the two steps of an evolutionary transition: the formation of a ‘symbiotic

collective’. The symbiotic collective brings, with itself, emergent collective-level properties

into existence. For example, in multicellular aggregates, one might be interested in the

aggregate size in terms of number of cells, or perhaps the fragmentation modes of these

aggregates. In the case of egalitarian transitions as well, there are very natural properties to

be interested in. Many of these properties can be cast in the form of relationships between the

lower-level individuals, because that is after all what a transition does: modulates and sculpts

the relationship between, here, the host and symbiont. The review of Estrela et al. (2016)

concerns itself with egalitarian transitions and centres two such collective-level properties:

the degree of mutual dependence between the host and symbiont, and the degree of vertical

transmission. A transition is then defined as a path in the plane spanned by these quantities:

from no mutual dependence and strict horizontal transmission to full mutual dependence and

strict vertical transmission. We shall modify this slightly: instead of the degree of vertical

transmission, we shall consider the degree of “reproductive cohesion”, which relates to the

proportion of synchronised versus asynchronised reproduction. This is because strict vertical

transmission is not su�cient for a transition: there must be synchronised reproduction of

the collective as a unit. So far, however, this picture has only been a verbal model, useful

in making our trains of thought precise. However, it is worth formalising: these two axes

constitute arguably the two most important ways in which the lower-level individuals in a

collective need each other: during their life (mutual dependence) and during reproduction

(reproductive cohesion). This is therefore a very natural characterisation of a symbiosis.
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Given this definition, the questions we can ask as theorists are of the following form: what

is the structure of evolutionary trajectories in this dependence-cohesion plane? (see bottom

panel of Figure 1.1) Transitions are at one corner of this plane, but under what conditions

can trajectories get there? Are there internal stable states at which evolution can ‘get stuck’,

and not reach the transition stage? These are all extremely relevant questions to be asking

of an egalitarian transition, and in this thesis we therefore endeavour to model evolution of

endosymbiosis with the goal of quantifying evolutionary trajectories in this plane.

Moreover, notice that there is a qualitatively new class of questions that presents itself

when considering egalitarian transitions. In fraternal transitions, all lower-level individu-

als are identical, but this is not true anymore. The new questions lie here: how do these

di↵erences between these lower-level individuals a↵ect the dynamics of a transition? Host

and symbiont (e.g. insect and bacteria; big microbe and small microbe) can in principle

di↵er in many life-history traits. However, in this work we will understand the e↵ect of one

major di↵erence between the host and symbiont: that of generation times. This question

is important for the following reason: the symbiont usually has much smaller generation

times than the host. While one would naively expect that the faster-reproducing symbiont

can evolve to selfishly invest very little in the reproduction of the collective, this argument

and the intuition it stems from has been shown to not always be accurate. Given that their

reproductive interests are aligned, the slower-reproducing type i.e., the one with larger gen-

eration times, can invest lesser and “control” the investment of the other (Bergstrom and

Lachmann, 2003). In other words, if being selfish is costly and investing more is beneficial,

then the faster-evolving species invests more in the cooperative behaviour i.e. is more altru-

istic than the slower-evolving species. This has been called the Red King e↵ect, to contrast

with the well-known Red Queen e↵ect in antagonistic coevolution, where the faster evolving

species does better because it can respond faster. In seemingly another instantiation of the

same basic idea, Frean et al. (Frean and Abraham, 2004) show that the slower-reproducing

individual maintains a level of cooperation just high enough to incentivize cooperation of the

other individual, whose payo↵ is much lower than the maximum possible. Biologically, this

can be understood as a risk-avoidance process: the evolutionary “risk” of a breakdown of

cooperation due to di↵erently timed reproduction keeps the faster-evolving species in check.

In light of these observations, one would expect that the symbiont invests a lot more than

the host in the reproduction of the collective. It is therefore interesting to delineate the exact

e↵ect of generation times on the dynamics of evolutionary transitions.
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To answer these questions, we use methods from evolutionary game theory, more specif-

ically the theoretical framework of adaptive dynamics. The ecological dynamics is modelled

by a system of ordinary di↵erential equations, and evolution is modelled using a separation

of ecological and evolutionary timescales which allows the application of “invasion analysis”

(Otto and Day, 2007). We will ask our questions with the goal of gaining a mechanistic

understanding of egalitarian evolutionary transitions in general, with a framework based in

the classical models of ecology and evolution.
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Chapter 2

A meander through evolutionary the-

ory: from fitness landscapes to adap-

tive dynamics

Frequency-dependent selection

maximizes—well it does not seem to

maximize much of anything!

Joel Brown (Brown, 2016)

In this section, we give a brief historical account of theoretical frameworks that have been

influential in evolutionary biology. The goal is to make a case for why adaptive dynamics

is the right tool to answer the questions that we posed in Chapter 1. For this reason, our

account is subjective, and we make no claim of being exhaustive. We shall also refrain from

describing the mathematics behind these ideas, and restrict ourselves only to a conceptual

description and the connections between them. Textbook-length treatments and reviews

that accomplish this in a much better manner will be cited when necessary.
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2.1 Maynard Smith’s protein space and fitness land-

scapes

We start with the unification of the naturalist-inspired insights of Darwin with the exper-

imentally tested genetics insights of Mendel. This took place with the advent of the modern

synthesis of evolutionary biology, roughly in the first half of the 20th century. This is largely

credited to the work of three men: Ronald Aylmer Fisher, Sewall Green Wright and John

Burdon Sanderson Haldane. Note that the name “modern synthesis” for this research pro-

gramme is not due to any of these people, but to Julian Huxley’s later book Evolution, the

modern synthesis.

One of the most influential ideas from the modern synthesis is that of a fitness landscape.

There is much disagreement in the specifics of what fitness as a concept means, but we shall

not concern ourselves with this debate. For our purposes of presentation here, the fitness

of an individual may be roughly understood to be the number of viable o↵spring that it

produces. When measuring a population of individuals, the fitness is alternatively given

by the population growth rate. The notion of a fitness landscape was treated in slightly

di↵erent ways by di↵erent authors, but they are all at their core hinting at the same style

of visualising the evolutionary process. It was first addressed by R.A. Fisher in what is now

called Fisher’s Geometric Model (Fisher, 1930), where the fitness maximum lies at a single

trait combination, and there is a continuous decrease of fitness as one goes away from this

optimum in phenotype space. Sewall Wright then spoke of an ‘adaptive landscape’, in which

the fitness instead stemmed directly from the genotype, and not the phenotype (Wright,

1931). While these are both foundational treatments, we shall focus instead on another due

to its pedagogical clarity: Maynard Smith’s concept of a “protein space” (Maynard Smith,

1970).

Consider, as a toy example, a protein with some function, e.g. catalysing a reaction.

Now suppose that the individuals in a population di↵er only in their genotype concerning

this protein. We can then consider that the ‘fitness’ of an organism is given by the catalytic

e�ciency of this protein. Proteins are complicated, intricate structures made of several amino

acids (AAs) chained together and interacting with each other. The catalytic e�ciency is a

function of the AA sequence of this protein, which changes over evolutionary time. If the

protein is of length L AAs, there are a total of 20L possible AA sequences, such that two

proteins di↵ering in one AA can always be traversed by a unit mutational step. We shall
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call this, as Maynard Smith did, the “protein space”. One can envision the evolution of

a protein in this high-dimensional space – successive mutations change the AA sequence,

which changes their catalytic e�ciency, in turn determining how many viable o↵spring an

individual with this protein can give rise to. Mutations in the genotype give rise to di↵erent

AA sequences, and over time the individuals give birth and die according to their fitnesses.

This causes the population to move around on this fitness landscape. This conceptualisation

allows us to concretely study various aspects of molecular evolution in a theoretical model

that is closely connected to the real world. For example, Maynard Smith remarked that

natural selection can function only if there is a ‘functional network’ of AA sequences which

percolates this protein space - starting from one protein, adaptation to another protein can

take place only if there is path between these two AA sequences in the protein space such

that at each point the protein is at least slightly good at doing its job.

More generally, the idea is as follows: each individual in a population is characterised

by a collection of trait values that it expresses or its genotype, and this identity lead to a

‘fitness’. The protein space is replaced here by either the space of genotypes or the space

of phenotypes – generally, we shall call it the ‘type space’. Fitness is usually meant to

be some kind of scalar function on the type space; this is where the ‘landscape’ picture

comes from. A population of individuals – a cloud of points in the type space – can then

be visualised as moving around on its fitness landscape. Natural selection along, with the

force of mutation, selects for fitter individuals, and thus pushes this cloud of points ‘up’

the fitness landscape. Long-term evolution can thus be formulated as a process where a

population starts somewhere on this landscape, and over time moves upward.

This framework can be used, and indeed it has, to ask and answer many questions. For

example, the endpoints of evolutionary trajectories are determined heavily by the structure

of the fitness landscape. If it has only one peak – fitness is maximal at one point in the type

space – then the population over time will reach this peak. However, this is not necessarily

the case: the landscape may be rugged i.e. having many local maxima, each of which can

attract evolving populations. Further, it can be used to study the properties of ‘adaptive

walks’ on landscapes - random walks where the randomness is driven by mutations, but it

is directed since only certain mutants are selected (Orr, 1998).

The theory of fitness landscapes has been useful both theoretically and empirically. It

has been used to delineate various concepts related to e.g. epistasis, antibiotic resistance
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evolution, and gene age (Betancourt and Bollback, 2006; de Visser and Krug, 2014; Bank,

2022; Moutinho et al., 2022). It is close in spirit to experiments, and therefore allows explicit

modelling of the genetic architectures undergoing evolutionary change. In this sense, it is

a very tractable model of evolution, and it is indeed now a classical, still-evolving field

of evolutionary biology. But its tractability comes with simplifications that do not take

certain other factors into account, some of which are especially important for our study of

symbiosis. The limitations and how they have been dealt with by other foundational thinkers

in evolutionary biology are the subject of the next section.

2.2 Evolutionary game theory and the frequency-dependent

dimension of fitness

We shall update the term ‘fitness landscape’ from the previous section with a prefix:

hereafter we shall refer to it as a constant fitness landscape, since the fitness of an individual

as conceived here depends only on its trait value, which we assumed does not change. There

are a few ways in which this notion is a simplification. For example, some of the traits that

determine fitness may be plastic, in that they change, over the same individual’s lifetime,

in response to di↵erent environments despite the underlying genotype remaining identical.

Another possibility more important for our purposes is that the ‘fitness’ of a type is not

a quantity determined exogenously by abiotic interactions. If fitness depends not only on

one’s own trait, but also on the frequency of other traits in the population, we shall say that

it is frequency-dependent. This is particularly the case when individuals with di↵erent traits

interact with each other, and adaptation is a↵ected by these interactions. This regime of

frequency-dependent selection is exactly the focus of evolutionary game theory.

Game theory was first developed to understand and predict the behaviour of rational

agents in economic contexts. However, it was quickly noticed that game-theoretic thinking

is widely applicable in all cases where the ultimate outcome of making a certain decision

or adopting a certain strategy depends on the decisions/strategies of all the others in the

population. In such cases, it is not always straightforward to understand what the optimal

strategy is, and game theory answers this question. It answers a similarly structured ques-

tion in its biological applications: the strategies are now the phenotypes exhibited by the

individuals of a population, and the number of children they have depends on what everyone

else’s phenotype is. The question now becomes: what is the optimal phenotype, where op-
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timality is measured by number of children? All the concepts apply also to this case, where

the organisms exhibiting a phenotype are not necessarily capable of rational thought. The

origin of game-theoretical thought in mainstream evolutionary biology is due to the work

of Maynard Smith and Price (1973), where they were interested in why animals like stags

that look very dangerous do not kill each other more often. This approach, where fitness

depends not only on an individual’s own trait but also that of others in the population, is

the connection to constant fitness landscapes: the fitness landscapes of evolutionary game

theory are frequency-dependent – they move and distort based on an individual’s surround-

ing individuals. There are several textbook-length introductions to this framework, and all

of them are worthy recommendations (Nowak, 2006; Broom and Rychtář, 2013; McNamara

and Leimar, 2020).

As an illustration of the use-cases of this formalism, consider a population in which two

phenotypes are possible: an individual can be either a Hawk or Dove. These names are

historical (they lend their name to the Hawk-Dove game), and their significance will become

clear shortly. The individuals can interact irrespective of their phenotype, and suppose the

rules of interaction are as follows:

• if two Hawks meet, they always fight each other; both are equally likely to win the

fight

• if two Doves meet, they do not fight

• if a Hawk meets a Dove, the Hawk is aggressive and the Dove flees

The act of fighting (not merely being aggressive) is costly with cost c, but there is a resource

v up for grabs. The above rules can then be summarised in terms of a ‘payo↵’ matrix as

follows

A =

0

@
v�c

2 v

0 v

2

1

A (2.1)

where aij denotes the outcome (henceforth called the ‘payo↵’) for an individual playing

strategy i upon interacting with an individual playing strategy j. In particular, the payo↵s

are for the row player i.e., the numbers in the matrix do not denote the payo↵ for a j

individual upon interacting with an i individual; these are not the same. We shall assume
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that the cost of conflict is more than the potential resource prize - c > v to ensure that

picking every fight you can as a Hawk is not advisable. In this example, what is the “best”

strategy?

Before answering this, we need to agree on a solution concept: a set of conditions that

allows us to choose the ‘best’ strategy in a general way. Stated in terms more familiar to an

evolutionary biologist, if there is a population consisting of Hawks and Doves, where does

natural selection – where deaths and births purely stem from the interactions above and their

costs and benefits – take this population? Maynard Smith and Price (1973) introduced, for

this purpose, the notion of an evolutionarily stable strategy (ESS). This is analogous to but

slightly stronger than the Nash equilibrium of classical game theory: an ESS is defined as a

strategy that, when adopted by the whole population, cannot be invaded by any individuals

playing any other strategies. Such exemplary points in the type space are “endpoints” of

evolution, and therefore worthy solution concepts.

In the above example, now we think in terms of a population of Hawks and Doves. If the

population is composed mostly of Doves, Hawks can increase in frequency because Doves

will always flee from fights that the Hawks are eager to have. If the population is composed

mostly of Hawks, Doves can increase in frequency because they get no payo↵ from fleeing,

but the Hawks get negative payo↵s constantly from fighting with each other. Therefore,

there must be an intermediate level at which Hawks and Doves can dynamically coexist in

a population. Indeed, this is what the machinery of evolutionary game theory says: there is

a “mixed” ESS, where the exact proportion of Hawks and Doves depends on the numbers c

and v.

Evolutionary game theory has been used to great e↵ect in many fields, notably evo-

lutionary biology, human behaviour, oncology, and cultural evolution. It has been used

successfully to uncover mechanisms that allow for the evolution of cooperation, the predic-

tion of sex ratios in nature, and more. See the recent special issue by Richter and Lehtonen

(2023) covering the history and development of modern evolutionary game theory for more.

While the di↵erent strategies and payo↵ structures that can be considered are immense,

the above presentation of the basic form of evolutionary game theory is not enough for our

purposes for three reasons. First, the above class of models considers a fixed number of

strategies (e.g. Hawk and Dove), sets up their interactions, and thus encodes the dynamics

of natural selection. However, this is not the whole picture – one must also explicitly consider
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the process of mutation. Second, evolutionary game theory was developed to understand

the case where fitness is frequency-dependent. It does not, however, address the case where

reproduction is density-dependent e.g. limited by competition for shared resources. This re-

quires the ‘fitness’ of a trait to be born explicitly out of a model of its growth in a population.

Third, as we consider more and more biological traits, one wishes to model the evolution of

quantitative traits - traits that lie on a continuous scale, with each part of this scale attain-

able via mutation. The rise of quantative genetics and models like the infinitesimal model

show that many, if not most, traits are quantitative (Barton et al., 2017). In particular

relevant to our case, Nguyen and Baalen (2020) showed that the degree of dependence of a

symbiont on a host is not discrete: they find that facultative symbioses are possible, and in

fact, expected.

Therefore, evolutionary game theory is the right tool for our purposes, but it is – at least

in this form – a blunt one. In the next section we describe the adaptive dynamics approach:

an extension of evolutionary game theory that takes care of all the problems we stated above.

2.3 Adaptive dynamics

Adaptive dynamics is the name given to a framework developed primarily by Hans Metz

and co-authors at the turn of the millennium (Metz et al., 1992; Dieckmann and Law, 1996;

Geritz et al., 1997, 1998). In this framework, long-term adaptive evolution is modelled as

the successive invasion or extinction of rare mutants in a resident population at ecological

equilibrium. The goal is again to understand the evolutionary dynamics of populations -

where does evolution “stop”? How does diversity arise? Both these questions have been

given precise answers. This framework has successively been developed by many authors in

the years since (Durinx et al. (2007); Dieckmann et al. (2006); Leimar (2009); Débarre et al.

(2014); Lehmann et al. (2016), to name a few). There are again book-length treatments of its

development and consequences (Doebeli, 2011; Dercole and Rinaldi, 2008). Here we present

a sketch of the method in practice and the assumptions made, a detailed presentation of the

application is relegated to Appendix A for those so inclined.

We assume that populations reproduce asexually, and their traits are quantitative and

take values in a connected, closed, usually bounded subset T ⇢ Rn. We assume that muta-
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tions are small, random with respect to how they alter fitness, and that changes in fitness

are not infinitesimal, but discrete. To quote Geritz et al. (1998), “Evolution thus proceeds

by small but discrete steps.” We assume that the ecological and evolutionary timescales are

separable: fitness-altering mutations arise very rarely, and either reach fixation or extinc-

tion before the next fitness-altering mutation appears. This allows us to treat every mutant

individually, without having to consider interactions between mutants. This is, however, a

drawback of the theory since mutants are known to interact when evolution takes place on

fast timescales (sometimes called clonal interference). Under these assumptions, the evolu-

tionary history of a population can be represented as a series of demographic attractors i.e.,

points at which the population is at ecological equilibrium. This has been called the trait

substitution sequence, and has been studied mathematically (Champagnat et al., 2006). The

long-term behaviour of traits can be studied as well, by means of the “canonical equation” of

adaptive dynamics (Dieckmann and Law, 1996; Champagnat et al., 2006). Specifically, this

is an ODE describing the mean behaviour of a space- and time-continuous Markov process

encoding the evolutionary change in a trait due to the births and deaths of the individuals

that express this trait.

The main object of study is an invasion fitness, which is the fitness of a rare mutant

in the environment generated by a resident population with a di↵erent trait value. This

number decides if a mutant invades a population, or if it goes to extinction. That a mutant

which has sucessfully invaded can always fix is not immediate, but such ‘invasion-implies-

substitution’ results have been proved (Dercole and Rinaldi, 2008). The invasion fitness can

be constructed in many ways, but most relevant for us is when the invasion fitness emerges

from a model of population dynamics. By population dynamics, we mean the dynamics that

takes place on short timescales between individuals having a fixed trait value: birth, death,

competition, predation, etc. The invasion fitness is given, in particular, by the geometric

growth rate of a small number of mutants that arise when the resident is at its population

dynamical equilibrium. We shall not give any examples to clarify these statements since this

thesis is itself one such example.

The adaptive dynamics approach connects cleanly to evolutionary game theory: it is ef-

fectively accomplishing the application of evolutionary game theory on a continuous strategy

space in the limit of small mutations. This relationship is more precise: it can be shown that

there is an equivalence between the canonical equation of adaptive dynamics, the replicator

equation, and the Price equation (Page and Nowak, 2002). It also connects to other mod-
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elling approaches in evolution such as quantative genetics, kin selection theory, etc (Lion,

2018; Avila and Mullon, 2023).

In summary, we wish to understand the density-dependent e↵ects of ecological processes

on the evolutionary dynamics of a quantative trait. The framework of adaptive dynamics

is ideal for this purpose. To this end we first develop a model of population dynamics, and

then study the invasion fitness of mutants in this population, and then comment on the final

endpoint of the traits we are going to analyse.
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Chapter 3

A co-evolutionary model of endosym-

biosis

I agree it is a bit hand-waving, but

it is the best we can do.

John Maynard Smith (Maynard

Smith to Bengtsson, 27 October

1985, JMSP, Add. MS 86604)

The development of evolutionary game theory, and adaptive dynamics in particular,

allows one to integrate ecological models describing natural selection with mutational pro-

cesses. We shall use this framework to conceptualise and study the evolution of endosymbio-

sis. Recall that we are interested in studying host-symbiont collectives that are the result of

highly-evolved endosymbioses. In particular, they must possess three properties: the sym-

bionts must be located inside a cell of the host, at least one of the host and symbiont must be

obligately dependent on the other, lastly the host and symbiont must reproduce collectively.

This excludes, for example, gut microbiomes since they are present only inside a body cavity

and not necessarily inside a cell of the host.

A preliminary assumption that will be made in what follows is that each collective con-

sists of exactly one host individual and one symbiont individual. This is of course a gross
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simplification, since it neglects the fact that there is usually a dynamic, evolving population

of symbionts inside each host. It is nonetheless made for its conceptual clarity and the analyt-

ical convenience it a↵ords, since - as will become clear - the simplest case is already di�cult

to understand mathematically. Building o↵ this assumption, our mathematical description

begins with the consideration of three types of individuals - independent hosts (H), indepen-

dent symbionts (S), and host-symbiont collectives (C). The main process of interest is the

evolution of the growth rates of these types. Initially, the independent host and symbiont

have appreciable growth rates, and the collective has a growth rate of zero. Over the course

of evolution, the collective growth rate increases and the independent growth rates decrease

until, at the end, the host and symbiont cannot live independently i.e. they are obligate,

and can only live within the collective. We shall call this situation obligate endosymbiosis,

and it is characterised by a growth rate of zero for the independent types. This is what we

wish to formalise - how do two independent, perhaps facultatively interacting species come

together to form an integrated, obligately-dependent entity? When necessary henceforth, we

shall refer to the independent host and symbiont types as “participants” of this interaction.

The host and symbiont can reproduce independently, and this does not present any

conceptual di�culties. However, one must establish what goes on inside a given collective.

The first possibility is that the collective undergoes synchronised, collective reproduction

- this is the required result of an evolutionary transition, and gives rise to more collective

individuals. There are other possibilities - the host and symbiont, while part of the collective,

may reproduce asynchronously and give rise to more independently living hosts/symbionts.

Alternatively, the death of a host (respectively symbiont) while in collective gives rise to a

free symbiont (respectively host). The reproduction of the collective and its constituents -

synchronous and otherwise - can thus give rise to either more collective individuals or more

free-living individuals.

As introduced earlier, we visualise the evolutionary trajectory of an evolving symbiosis

as a path in the plane of two properties of the collective - the degree of reproductive cohe-

sion between the host and symbiont, and the degree of host-symbiont interdependence (see

Figure 3.1). The degree of host-symbiont interdependence is defined using independent and

collective growth rates, and reproductive cohesion is defined as the fidelity of collective, syn-

chronised reproduction. A transition is said to have taken place when a collective goes from

being facultatively formed and loosely cohesive to obligately formed and tightly cohesive. In

this work, we will formalise this verbal picture, with the goal of studying evolutionary trajec-
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tories in this dependence-cohesion plane. The above notions will be given precise meanings

in terms of the model defined below.

We will model the evolutionary dynamics along these two axes by introducing two pairs

of traits that a↵ect the ecological processes at play (see Figure 3.1). First, we consider two

traits ⌦H ,⌦S, henceforth referred to as the “obligacy” of the host and symbiont respectively.

These are dimensionless numbers in [0, 1], and denote the degree of dependence of the host

and symbiont on the formation of the collectives and the benefits they so gain. We will also

refer to this trait as the investment in the collective since being unable to live independently

implies an investment in specialising to life as part of the host-symbiont collective. A higher

⌦i hence denotes a higher investment in the collective, and at ⌦i = 1 the growth rate of

the independent type i population is zero. ⌦H and ⌦S can in general be di↵erent since the

two participants may have asymmetric dependencies on each other. These traits formalise a

tradeo↵ between individual and collective reproduction - since an organism has only a finite

amount of resources, any investment in collective reproduction comes at a cost to its own

reproduction (and vice versa). In other words, the more dependent the host is on formation of

the collective, the less its growth rate in isolation. Further, to make explicit the co-localised

nature of an endosymbiotic interaction, we assume that the benefits of endosymbiosis are

only present when the organisms are part of the collective, implying that the growth rates

of the host in isolation does not depend on the symbiont’s investment.

Second, we consider a pair of traits �H , �S, henceforth referred to as the “stickiness” of

the host and symbiont respectively. These traits are also dimensionless in [0, 1], and a↵ect

the probability of synchronised vs. asynchronised birth of the host and endosymbiont while

in symbiosis. A higher stickiness denotes a higher propensity of synchronised birth, and

conversely a lower propensity of asynchronised birth. These traits induce a tradeo↵ between

processes on the collective level that give rise to more collectives, and processes that give

rise to more free-living individuals.

To di↵erentiate between the e↵ects of these two pairs of traits, it is useful to focus on an

example such as a fig-wasp mutualism (Herre et al., 2008). This association is an intricate

mesh of the two life cycles – the fig tree depends on the wasp since it acts as a pollinator,

and the wasp is dependent on the fig tree (the fruit, to be specific) to complete a part of its

development. The two species here are therefore high in their dependence on each other, but

they do not in any way physically reproduce as a unit. Hence in this case the obligacies ⌦i
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Figure 3.1: Ecological factors a↵ecting the transition from facultative to obli-

gate.(a) Previous work (Estrela et al., 2016) has conceptualised the trajectory of an evolu-
tionary transition in the plane of two quantities - the reproductive cohesion of the lower-level
individuals, and the degree of mutual dependence between them. In the case of an egalitarian
transition, we can make this more precise: we introduce two pairs of traits (one each for the
host and symbiont) that control their propensities to/investments in reproductive cohesion
and mutual dependence. We shall, over the course of this work, understand the evolution of
these traits and formalise this picture. (b) On a microscopic, physiological scale, it is useful
to picture that there is resource exchange between the host and symbiont exclusively when
they are both part of the collective. In this setting, the traits ⌦i control how much resource
sharing the host/symbiont individuals are prone to. (c) A schematic representation of the
flows in the population dynamical model. The host and symbiont have a logistic growth rate,
corresponding, for example, to an intrinsic birth rate fi, and a density-dependent death rate
fixi/Ci for i 2 {H,S}. The collective has a density-independent (i.e. exponential) growth
rate fC . The host and symbiont associate with each other at rate a to form a collective,
which dissociates into independent host and symbiont at rate d.
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are high whereas their stickinesses �i are not. Notice also that this cannot be an example of

an evolutionary transition since it is necessary, and not satisfied here, that the constituent

lower-level individuals cannot reproduce independently.

The system at a given point in time is characterised by its trait vector (⌦H ,⌦S, �H , �S).

To model long-term trait evolution, one needs to model two things at least: the process of

mutation, and the ecological processes that lead to natural selection on this mutant in the

background of the individuals currently present in the population. In accordance with the

theory of adaptive dynamics, there will be both a conceptual and mathematical stratification

of the model. First we define the interactions taking place on the level of population dynamics

- the timescale on which there are no mutations in our phenotypes of interest. Formally, this

will take the form of a system of ordinary di↵erential equations (ODEs) for the population

abundances where the rate parameters of di↵erent ecological processes depend on the current

value of the traits. This ecological model is then built upon to understand the fate of natural

selection on mutants that arise in said populations. This will allow us to describe the

dynamics of the trait values on the longer timescale on which mutations arise in the traits.

In particular, we will derive an invasion fitness function from which it becomes possible

to determine if a given mutant will be successful in invading a population consisting of a

resident, or if it goes to extinction. This stratification will continue also to the results, where

we will then ask how the processes at one stratum interact with those at another. Finally,

we discuss explicit examples of systems of interest that are described by our model.

3.1 Ecological dynamics

We model the population dynamics by a system of ordinary di↵erential equations for the

densities of the three types - independent host, symbiont, and the collective. We will focus on

two interconnected models of the population dynamics that di↵er in their conceptualisation

of how quickly the collective can grow. In the first, the collective grows without bounds - we

will refer to this as the “exponential” model since if, according to this model, the collective

was allowed to reproduce in isolation, it would show exponential growth. The second model,

referred to hereafter as the “logistic model” for a similar reason, is an extension of the

exponential model since exponential growth is but an approximation of the early stages of

logistic growth. The exponential model will allow us to make precise statements backed by

analytical results, but - as we will see - it has the unfortunate property that it does not

always realistically describe biological populations. This necessitates the incorporation of
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more realism - the logistic model - for which we present numerical results due to analytical

intractability.

Now consider the exponential model. The flows between the populations as conceptu-

alised here are shown graphically in Figure 3.1(c), but the processes taking place are as

follows. Each type gives rise to o↵spring with an intrinsic growth rate fi, i 2 {H,S, C}.
Further, the host and symbiont associate with and dissociate from each other at rates a and

d respectively, flowing into and out of the collective population. The parameters a and d

can be thought of as relating, informally, to the independent types’ propensities to ‘come

together’ and ‘stay together’ respectively. We will refer hereafter to the set of these two

parameters along with fC colloquially as the “cohesion rates”. The equations now become

ẋH = fHxH

✓
1� xH

KH

◆
� axHxS + dxC , (3.1a)

ẋS = fSxS

✓
1� xS

KS

◆
� axHxS + dxC , (3.1b)

ẋC = fCxC + axHxS � dxC . (3.1c)

In particular, this is called the exponential model because the ODE ẋC = fCxC with initial

condition xC(0) = 1 has the solution xC(t) = efCt. When we speak of the logistic model of

population dynamics, we shall refer to the following similar system of ODEs:

ẋH = fHxH

✓
1� xH

KH

◆
� axHxS + dxC , (3.2a)

ẋS = fSxS

✓
1� xS

KS

◆
� axHxS + dxC , (3.2b)

ẋC = fCxC

✓
1� xC

KC

◆
+ axHxS � dxC . (3.2c)

where KC , the carrying capacity of the collective, is an additional parameter of this model.

Notice that the exponential model accurately describes the initial dynamics of the logistic

model. This is because fCxC , the intrinsic growth of the collective in the exponential model,

is an approximation of the corresponding term in the logistic model fCxC(1 � xC/KC) -

when xC is low and intraspecific competition is negligible, the negative term quadratic in xC

may be ignored.

Some notes are in order. First, the host and symbiont may also interact in the form of
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parasitism, mutualism, or anywhere in between, which may be modelled by Lotka-Volterra

type coe�cients kH , kS, where kH is the e↵ect of the host on the symbiont and vice versa.

We do not consider this in our model, but this is a natural next step.

Second, the parameter d is not as biologically explicit as can be. As in previous work

(Law and Dieckmann, 1998; Nguyen and Baalen, 2020) and as described before, there are two

separate contributions of the collective to free-living types - death of one participant of the

collective, and asynchronous birth. The trade-o↵ between synchronised and asynchronised

reproduction manifests itself as unequal flows from the collective compartment unto itself

(via fC) compared to the independent compartments (via death/asynchronised birth when in

the collective). Since we are only interested in this trade-o↵, and for analytical tractability,

we describe this flow from C to H,S by only a single dissociation reaction of rate d. This

amounts to a particular parameter choice for the rates of the processes that we are choosing

to suppress. More complex models are of course possible, but are detrimental - due to their

intractability - to our ability to answer the questions we wish to ask. For a more detailed

description, see Appendix (B.1).

Third, our assumption of growth functions is di↵erent for independent types and the

collective. We consider that the intrinsic growth of the host and symbiont is logistic, whereas

that of the collective is exponential. This of course makes the analysis simpler, but has

a biological motivation: symbionts often allow hosts to explore novel niches and at least

initially, the growth in the novel niche can be approximated by an exponential growth model

(Kleiner et al., 2012; Moran et al., 2003). Further, we are interested in the invasion of host-

symbiont complexes and we assume that during this phase, host-symbiont collectives are so

rare that they do not limit their own growth rate. The biologically unrealistic case of all

three types having exponential growth is treated in Law and Dieckmann (1998), and the

case of frequency-dependent death of the symbiont with constant host dynamics is treated

in Nguyen and Baalen (2020). In a later section, we will also consider the case of all three

types having logistic growth with di↵erent carrying capacities. This regime of a uniform

growth benefit for the collective is also arguably unrealistic, when considered in contrast

with a benefit that appears only in some – and not all – environments that the collective

might experience over the course of its lifetime.

Lastly, the parameters are of course functions of the obligacy and stickiness, but this nota-

tion was not made explicit for a lack of relevance. The trait-dependence of these parameters
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and their evolution is treated in the next section.

3.2 Evolutionary dynamics: deriving the invasion fit-

ness

Broadly, we are interested in the long-term co-evolution of the traits ⌦i and �i. To

model this evolution, we make use of the adaptive dynamics framework (Metz et al., 1992;

Dieckmann and Law, 1996; Geritz et al., 1998). We give a historical account in Chapter

(2) and a practical guide to applying this framework to a problem of interest in Appendix

(A). The main object of interest in this framework is the invasion fitness of a mutant in

an environment generated by a resident population. The evolutionary process is envisioned

as a succession of mutants that di↵er in their trait values, with the invasion fitness of each

mutant determining its ultimate fate - extinction vs. fixation (Dercole and Rinaldi, 2008).

To facilitate this analysis, it is assumed that the ecological and evolutionary timescales

can be separated i.e., the (ecological) realisation of a mutant’s fate takes place much faster

compared to the (evolutionary) timescale on which the next mutant arises. This makes

it possible to treat each mutant at a time, without worrying about competition between

mutants, etc. Importantly, this implies that a population is composed of at most two types

at any given time - the resident, and when one arises, the mutant. The invasion fitness is, in

general, trait- and frequency-dependent, and this dependence gives rise to many non-trivial

possibilities. Let us now turn to our model. To compute the invasion fitness of an arbitrary

mutant, we envision the following: Suppose there is a resident population with host and

symbiont traits (⌦H , �H) and (⌦S, �S) respectively. We restrict ourselves to a parameter

regime where all three types can stably coexist, and so the population dynamics converge

to this equilibrium. Now, after a su�ciently long time, a mutant arises when the resident

is at equilibrium. Due to the assumption of separation between ecological and evolutionary

timescales, there can only be one mutant at a time. Suppose, for the sake of illustration, that

a host mutant arises. This mutant has trait value slightly di↵erent from the resident, giving

rise to di↵erent values of the parameters fH , fC , a, d for the mutant host. We have not yet

specified the exact functional form for the map taking trait values to ecological parameters,

but one can specify some constraints that these maps must satisfy to correspond to biological
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intuition. In particular, the growth rates must satisfy

@fi
@⌦i

 0
@fC
@⌦i

� 0
@fi
@⌦j

= 0 i 6= j 2 {H,S} (3.3)

for reasons we discussed immediately after introducing these traits and their meaning. Specif-

ically, a higher obligacy ⌦i, i 2 {H,S} means a higher growth rate for the collective and

conversely lower growth rate for the species i. The cross-derivative @fi

@⌦j

is assumed to be

zero since we wish to study the case where the benefits of symbiosis are only felt when the

host and symbiont are part of a collective i.e. in close spatial proximity. This is an im-

portant assumption since it is what makes our model one of endosymbiosis as opposed to

any symbiosis – the benefits of endosymbiosis are likely not present when the symbiont is

not physically inside the host. This is in line with intuition since endosymbioses are just an

important subclass of all symbioses where the symbiont is inside the host – the condition on

the cross-derivative above is the manifestation of this requirement in our model. Similarly,

the cohesion rates must satisfy

@fC
@�i

� 0
@d

@�i

 0
@a

@�i

� 0 i 2 {H,S} (3.4)

since higher �i implies a higher rate of synchronised reproduction and a lower rate of asyn-

chronised reproduction i.e. dissociation. By a similar argument, one expects that the asso-

ciation rate a cannot decrease as the stickinesses increase.

The mutant type with di↵erent growth and cohesion rates now competes with the resident

for resources, and association-dissociation. We are in search of a condition for when the

mutant host can outcompete the resident host. Below, we work through the procedure for

the exponential model; that of the logistic model is identical. This is formalised as follows:

we augment the model (3.1) with additional equations tracking each type that arises due to

the introduction of a mutant. In our case, this always amounts to two additional equations:

when a mutant host arises, there must be additional equations for the mutant host itself and

also the collective formed by the mutant host with the resident symbiont. Suppose that the

parameter values for the mutant are given by quantities with a tilde, and the population

densities for the mutant host and collective are given by yH and yC respectively. Then the
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augmented model takes the form

ẋH = fHxH(1�
xH + yH

KH

)� axHxS + dxC (3.5a)

ẋS = fSxS(1�
xS

KS

)� a(xH + yH)xS + d(xC + yC) (3.5b)

ẋC = fCxC + axHxS � dxC (3.5c)

ẏH = f̃HxH(1�
xH + yH

KH

)� ãyHxS + d̃yC (3.5d)

ẏC = f̃CyC + ãyHxS � d̃yC (3.5e)

The invasion fitness is interpreted to be the growth rate of a rare mutant in a resident

population that is at stable equilibrium (Metz et al., 1992). Suppose the resident equilibrium

is at (x⇤
H
, x⇤

S
, x⇤

C
). Mathematically, the invasion fitness is interpreted to be the dominant

eigenvalue of the “sub-Jacobian” corresponding to the mutant equations, evaluated at this

resident equilibrium:

2

4f̃Hx
⇤
H
(1� x

⇤
H

KH

)� ãx⇤
S

d̃

ãx⇤
S

f̃HS � d̃

3

5 (3.6)

If it is positive, the equilibrium is destabilised in the presence of the mutant and the mu-

tant can invade; if it is negative, the mutant goes to extinction (Dieckmann and Law, 1996;

Dercole and Rinaldi, 2008). This quantity is, however, unwieldy and not amenable to math-

ematical analysis in our case. We therefore turn to other methods to quantify (in)stability

of the resident population in response to mutants. In particular, we use the next-generation

theorem, which has roots in mathematical epidemiology, but is more generally applicable

(Hurford et al., 2010). This result gives, under some conditions, an alternate characteri-

sation of the standard stability condition of all eigenvalues having negative real parts. We

will then make use of the canonical equation (Dieckmann and Law, 1996) to study the

macroscopic behaviour of long-term evolutionary trajectories.

The procedure for the logistic model is in principle identical, with the only di↵erence

being that some calculations are done numerically instead of in Mathematica or by hand.

In particular, we numerically solve the ODEs to compute the abundances at equilibrium,

then introduce a mutant with trait value drawn from a normal distribution centred at the

resident trait value, and finally compute the eigenvalues of the corresponding Jacobian of
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type (3.6). As with the entirety of this thesis, scripts used are available upon request.

3.3 Biological burdens: one size of model does not fit

all

In any theoretical exercise, it is imperative to first critically examine where (and where

not) the constructed model is applicable. This is the purpose of this section. There are many

reasons why a model might lose applicability, and most of these are related to biological

processes that we do not include to maintain analytical tractability. These more complex

instances are exciting and unexplored, so it is somewhat sacrilegious to call them burdens -

they are burdens only in that they cannot be easily studied.

The model that we have constructed assumes populations of infinite size and asexually

reproducing species. It is therefore most applicable to cases that conform to these assump-

tions, and we shall first closely examine some symbioses in which this is the case. We shall

then give illustrative counterexamples. The author advocates, and himself practices, cau-

tious extrapolation to these cases as well while keeping the caveats in mind. The objective

is to describe biological systems, and in particular the processes taking place on the smallest

scale - what are the cellular, physiological changes within a single host-symbiont collective?

This will ground the visualisation of the model and interpretations, leading more clearly to

the correct inferences.

Consider the engineered yeast-E. coli system of Mehta et al. (2018), in which the engi-

neered E. coli are auxotrophic for thiamin, and the yeast are deficient in their ATP synthesis

pathway. The yeast produces thiamin that can be taken up, and the E. coli are engineered to

exude ATP molecules. An endosymbiosis is “simulated” in this system by injecting thiamin-

auxotrophic, ATP producing bacteria into thiamin-producing, ATP-deficient yeasts. In this

system, it is clear that the host (yeast) and symbiont (E. coli) depend on each other for

important molecules. The evolving quantities of interest are therefore the degree of ATP

produced by the bacterium that is taken up by the yeast, and vice versa. These exactly

correspond to the traits ⌦H and ⌦S - production of a metabolite that is not directly ben-

eficial for itself, but is taken up by the other participant in this interaction. Since these

are microbes, it is feasible to assume that populations of very high numbers of individuals

are possible. But there is a caveat - bacteria are usually asexual, but this is not necessar-
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ily true of yeast (Haber, 2012). More examples are given by the endosymbiosis between

heterotrophic ciliate P. bursaria and a Chlorella species (Karakashian, 1963), and by the

denitrifying endosymbionts of some anaerobic ciliates (Graf et al., 2021). These symbioses

are also driven by metabolite exchange, and it is easy to conceptualise exact analogues of or

proxies for the obligacies ⌦i. In all of these cases, it is slightly more subtle to understand the

traits that are described by our phenomenological notion of “stickiness” �i. Here, it is easiest

to think of host “control” on the reproduction of symbiont, in ways similar to those possible

in mitochondria. This control might be a consequence of gene transfer between the host and

symbiont. These traits might not be straightforward in terms of their genetic architecture,

but are relatively easy to measure.

A more macro-scale set of examples is given by the many arthropod hosts with endosym-

bionts. The aphids and their Buchneria sp. (Hansen and Moran, 2011), and Wolbachia

symbionts that are present across many taxa (Zug and Hammerstein, 2014) are not com-

pletely understood and even today being studied. Here as well, many associations are driven

by nutrient exchange. Insects are no doubt also sexually reproducing organisms, and we

have stated that this is a complication that is not accounted for in our model. However,

a bigger pitfall in this case is that it is less reasonable to consider that there are enough

insects in the population of interest for it to be well-described by an infinite-population-size

model. However, while there will be no doubt changes both qualitative and quantitative due

to the finiteness of insect populations, our results constitute a first step in understanding

the relevant biology of these symbioses as well.

For ease of understanding, Table 3.1 contains a description and typical values of all the

variables and parameters of our model.
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Parameter/variable Interpretation Range in our computations

xH , xS, xC Population densities of in-
dependent host, indepen-
dent symbiont, and host-
symbiont collective respec-
tively

[0,1)

⌦H ,⌦S Evolving traits, “obligacy” [0,1]

�H , �S Evolving traits, “stickiness” [0,1]

fH , fS, fC Intrinsic growth rate of the
three types

[0,1), with fC ⇠ fS > fH

KH , KS, KC Carrying capacities [0,1), with KC ⇠ KS >
KH

a Association rate Small positive number, typ-
ically O(10�1)

d Dissociation rate [0,1), typically O(10)

Table 3.1: Meanings and typical range of all the parameters and variables in our model.
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Chapter 4

Results and Discussion

I use not only all the brains that I

have, but all I can borrow.

Woodrow Wilson

4.1 Exponential growth of the collective: An instruc-

tive, analytically tractable model

First, we shall establish the ecological context of our model. In particular, it is useful to

understand exactly how the presence of a collective a↵ects the independent types. One can

do this by taking some limits of our model and comparing to other well-understood models

in the following way. In all of our analyses, we are only interested in long-term symbioses like

the nutrient-exchange symbioses in anaerobic ciliates (Graf et al., 2021), and not symbioses

where the interaction is short-lived, like the parasite-cleaning mutualisms (Losey et al., 1999).

If the interaction between the participants is ephemeral, the collective does not have as much

of an independent existence. In the limiting case of instantaneous interaction, we can set
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ẋC = 0. This has the e↵ect of reducing the system of equations (3.1) to

ẋH = fHxH(1�
xH

KH

) +

✓
ad

d� fC
� a

◆
xHxS (4.1a)

ẋS = fSxS(1�
xS

KS

) +

✓
ad

d� fC
� a

◆
xHxS (4.1b)

It is easily read o↵ from this set of equations that there is now a constant k preceding the

cross-term xHxS in both equations, with

k = a

✓
d

d� fC
� 1

◆

Since fC > 0 always by assumption, d > d � fC and therefore k > 0 as long as d > fC .

This last condition implies that the interaction is beneficial as long as d > fC and becomes

detrimental to both species when the collective growth rate fC is “too high” - larger than

d. Reinterpreting this cross-term kxHxS as arising from a Lotka-Volterra-type interaction,

one arrives at the conclusion that the formation of a collective, in this “limit”, is equivalent

to a symmetric mutualism. That it is symmetric reflects the fact that with every collective

reproduction event, there is exactly one new host and one new symbiont. This shows that

collective reproduction can indeed be thought of as aligning reproductive interests of the

host and symbiont. In other words, forming the collective benefits the host and symbiont.

This is because when the collective reproduces, there is necessarily a new copy of both the

host and symbiont. Like in a mutualism, the investment of one of the types (H or S) in

collective reproduction therefore helps the other.

4.1.1 Feasibility, stability, and invasion criteria

In this section we shall analyse the exponential model of population dynamics (3.1) in as

much detail as possible. This system has four fixed points, three of which are trivial -

(0, 0, 0), (CH , 0, 0) and (0, CS, 0). These fixed points are never stable, and are uninteresting

also because they do not exhibit coexistence. More specifically, when the internal fixed point

is stable, all of the others are unstable; when the internal fixed point becomes unstable as in

Section 4.1.2, again all the other fixed points are unstable and the trajectory always escapes

to infinity (see Appendix C.1). Coexistence is realistic - we see both hosts and symbionts

in natural populations - and it makes possible the nontrivial outcomes that we are trying to
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understand. If, for example, only host individuals existed at equilibrium, then it is easy to

predict the outcome of evolution - there can be only changes in the host traits since mutant

symbionts require resident symbionts, and the host will monotonically decrease investment in

the collective because the collective population does not exist at equilibrium – it physically

cannot if there are no symbionts. The fourth fixed point of the system of ODEs (3.1) is

internal i.e. with all population densities nonzero, and is given by

x⇤
H
=

CHfS(fHS � d)(aCSfHS + (d� fHS)fH)

a2CHCSf 2
HS

� fHfS(d� fHS)2
(4.2a)

x⇤
S
=

CSfH(fHS � d)(aCHfHS + (d� fHS)fS)

a2CHCSf 2
HS

� fHfS(d� fHS)2
(4.2b)

x⇤
HS

=
afSfHCSCH(d� fHS)(aCSfHS + (d� fHS)fH)(aCHfHS + (d� fHS)fS)

[a2CHCSf 2
HS

� fHfS(d� fHS)2]2
(4.2c)

It is feasible i.e., all densities are non-negative, precisely when

d > fC

 
1 + a

s
KHKS

fHfS

!
(4.3)

We shall henceforth refer to this lower bound on d as the “feasibility bound”. This check

is necessary because negative population density does not make biological sense, and must

therefore be excluded. Notice that the cohesion rates a and d relate to the levels of horizontal

transmission, since they control the rate with which symbionts and hosts separate with each

other and are then free to associate with a di↵erent host/symbiont. The feasibility bound

hence shows that a high enough level of horizontal transmission or asynchronous reproduction

is necessary to sustain the independent type populations. Further, note that it also implies

d > fC , which has the consequence that the coe�cient of xC in Equation (3.1), and therefore

the “e↵ective growth rate” of the collective, is negative. This is important to remember

since it will become relevant in the interpretation of results that follow. This is, however, an

artefact of the exponential growth model and will change in the sections that follow where

we study the logistic growth model.

It can be shown via the Routh-Hurwitz criteria (Edelstein-Keshet, 2005) that the feasi-

bility bound is also necessary for linear stability of the fixed point. To determine the exact

conditions for linear stability, one must study the eigenvalues of the Jacobian of the flow.
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This Jacobian is given by

J =

0

BB@

fH(1� 2xH

CH

)� axS �axH d

�axS fS(1� 2xS

CS

)� axH d

axS axH fHS � d

1

CCA (4.4)

We do not go further analytically since it is methodologically cumbersome to do so, but such

exact results are not always necessary. One can computationally determine that the feasibil-

ity bound guarantees linear stability for a large range of biologically reasonable parameters

(see Appendix C.1).

Suppose now we are in a parameter regime that guarantees stability of the fixed point,

so that the population dynamics converge there. This is the precise definition of a resident

population - a population where all individuals are of the same trait, and with population

abundances at a stable dynamical equilibrium of the above system of ODEs. After a suf-

ficiently long duration of time, a mutant (without loss of generality, a host mutant) arises

having a di↵erent trait value. Suppose, for concreteness, that the mutant has obligacy e⌦H

and stickiness e�H . The dynamics is then described by Equation (3.5), where the tilde-d

quantities are all functions of the tilde-d traits when appropriate. This mutant can invade

if and only if

efH
ea

 
1�

ed
efC

!
>

fH
a

✓
1� d

fC

◆
(4.5)

This is the invasion criterion that determines the co-evolutionary dynamics of the host traits,

and is obtained using the next-generation theorem from theoretical epidemiology (details

in Appendix C.2). This result is an alternate, often easier to handle, characterisation of

the stability of a fixed point of a linear (or linearised) system of ODEs. Since the host

and symbiont are identical in everything but the labels we impose on them, an analogous

criterion exists for the fate of a symbiont mutant. The main result of this section can be

stated more formally in the form of a theorem as follows:

Theorem 4.1.1 (General invasion criterion). Let the resident population have host traits

(⌦H , �H) and symbiont traits (⌦S, �S). These traits map to growth and cohesion rates

(fH , fS, fC , a, d) for the host, symbiont, and host-symbiont collective respectively. Then
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1. A host mutant with traits (⌦̃H , �̃H) and associated growth and cohesion rates (f̃H , f̃C , ã, d̃)

invades if and only if

f̃H
ã

 
1� d̃

f̃C

!
>

fH
a

✓
1� d

fC

◆
(4.6)

2. A symbiont mutant with traits (⌦̃S, �̃S) and associated growth and cohesion rates

(f̃S, f̃C , ã, d̃) invades if and only if

f̃S
ã

 
1� d̃

f̃C

!
>

fS
a

✓
1� d

fC

◆
(4.7)

In particular, a mutant (⌦̃H , �̃H) invades precisely if it leads to an increased value of
fH

a

⇣
1� d

fC

⌘
as compared to the resident. In this sense, the criterion is “separable” into

two terms of the same functional form, with each depending only on the mutant (LHS)

and only the resident (RHS). This implies that over the course of successive mutations (the

“trait substitution sequence” (Champagnat et al., 2006)), this quantity is maximised by

evolutionary trajectories. There is no reason a priori for the existence of such a quantity,

and it makes many observations possible.

First, it implies that evolutionary branching is impossible. This is because for a singular

strategy to be a branch point, it must by definition be convergence stable but invadable by

similar mutants (Geritz et al., 1998). This is possible in general because the conditions to

reach a point where directional selection is zero (convergence stability) and to stay there

(invadability) are not the same. However, if one can identify a quantity that uniformly

increases along all permissible evolutionary trajectories, these notions cannot be di↵erent.

The reason why is simple and goes as follows. When such a quantity exists, uninvadable

points are all convergence stable since they can be reached by trajectories that maximise this

quantity. Conversely, convergence stable singular strategies are always uninvadable since any

trajectory that converges there must maximise this quantity. A mathematical translation of

this argument is worked out in Appendix (C.3).

Second, this criterion clearly demonstrates the conflict between the levels of selection at

play in this problem. To illustrate this and build intuition, let us restrict ourselves to the

simple case where stickiness does not evolve, and we assume that the parameters controlling

41



association and dissociation (a, d) do not depend on the obligacies ⌦H ,⌦S. The invasion

criterion (4.5) reduces to

f̃H

✓
1� d

f̃C

◆
> fH

✓
1� d

fC

◆
(4.8)

A mutant with trait ⌦̃H invades when it increases either fH or fC . The conflict becomes clear

when one realises that due to the tradeo↵ between individual and collective reproduction

(3.3), fH and fC change at the cost of one another - they cannot both increase. Given

that the new mutant can only have a higher or lower obligacy, does this criterion select for

a lower ⌦H (that increases the independent host’s growth rate fH) or a higher ⌦H (that

increases the collective growth rate fHS)? We answer this question exactly by means of the

canonical equation of adaptive dynamics. Recall that this is an ordinary di↵erential equation

describing the macroevolutionary change, and the obligacy of species i varies as

d⌦i

dt
=

1

2
µi⌫i x

⇤
i
(⌦H ,⌦S) ·

@si( e⌦i,⌦i)

@e⌦i

(4.9)

where µi, ⌫i are positive parameters describing the process of mutation, x⇤
i
is the equilibrium

population size, and partial derivative is the fitness gradient. Here, si( e⌦i,⌦i) = f̃i
⇣
1� d

f̃C

⌘
�

fi
⇣
1� d

fC

⌘
. Note that this is just a rearranged form of the invasion criterion - it is positive

when the mutant invades, and negative when the mutant goes to extinction. The fitness

gradient is therefore is given by

@si( e⌦i,⌦i)

@e⌦i

=

✓
1� d

fC

◆
@fi

@e⌦i

+
fi
f 2
C

@fC

@e⌦i

By the constrains (3.3) and the fact that d > fC , one sees that the fitness gradient is

uniformly positive. Therefore, the time-derivative of ⌦i - over evolutionary timescales now - is

uniformly positive, implying that it increases monotonically. In other words, the dependence

of the host and symbiont on collective formation (and hence each other) monotonically

increases. Note here that to say that the ⌦i monotonically increase, both parts of this

tradeo↵ are necessary - an increased ⌦i must make the collective better and simultaneously

also make the independent species i worse. If this is not true, then it is possible that the ⌦i

settle, over evolutionary time, to an intermediate value between 0 and 1.

A similar analysis can be performed when evolution is restricted to only the stickiness.
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Here, independent evolution along the cohesion axis proceeds according to a similar criterion;

(4.5) reduces to

f̃C

d̃
>

fC
d

(4.10)

This analysis similarly shows that successful mutants must improve the ratio fC/d i.e. a

larger collective growth rate as compared to d, the rate of outflow from the collective back

to the independent types. Deriving the canonical equation for the traits �i similarly shows

that they increase monotonically. This is not surprising because the traits ⌦i and �i are

both traits that align reproductive interests. In particular, they are both traits, when they

increase, the collective becomes more e�cient as a “unit”. When ⌦i increases, the collective

growth rate increases and the independent growth rates decrease. When �i increases, the

collective growth rate increases as well and the dissociation i.e., flow back to the independent

types, decreases. It is beneficial to improve the growth of the collective because every time

the collective reproduces, there must necessarily be one new copy of the host and one new

copy of the symbiont respectively.

We have derived an invasion criterion that says that the ⌦i must monotonically increase.

However, this presents a problem - the stability of the internal fixed point is decided by the

values of the parameters in the ODEs (3.1). The parameters depend on the current trait

value, which is - as we have established - evolving. If this fixed point is not stable, then

there cannot exist a resident population that can evolve further since this is the only internal

equilibrium. It is thus nontrivial to understand if the resident population exists as the traits

evolve. This is one of the objectives of the next section.

4.1.2 Evolution is inhibited by a feasibility bound

The generic analysis of the invasion criterion (4.8) has so far yielded many insights, but it

is useful to computationally study a concrete example. Again, for ease of visualisation and

interpretation, we will restrict evolution to only a↵ecting the obligacies - of which there are
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two. Let us fix the mapping

fH(⌦H ,⌦S) = rH(1� ⌦H) (4.11a)

fS(⌦H ,⌦S) = rS(1� ⌦S) (4.11b)

fC(⌦H ,⌦S) = rC⌦H⌦S (4.11c)

for constants rH , rS, rHS which set the growth rates of the types at extreme trait values.

This is probably the most simple set of functions satisfying the constraints we placed earlier

(3.3). Note that they are all in principle experimentally measurable - the first two are the

independent growth rates when they cannot reproduce as a collective, and the latter is the

bound growth rate when they both cannot reproduce individually. Under this mapping, the

invasion criterion (4.8) becomes trivial: a mutant with obligacy ⌦̃i invades in a population

that currently has trait value ⌦i when ⌦̃i > ⌦i. Notice that this is consistent with the more

general fact that the obligacy increases monotonically.

Recall that in the adaptive dynamics framework, the population dynamical equilibrium

must be feasible and stable for us to speak of successive mutants. The conditions for these

to hold depend on the fi, which in turn depend on the ⌦i, which change over evolutionary

timescales. We therefore track the evolution of ⌦i in a particular system with realistic

parameters, while numerically checking if feasibility and stability hold over the course of

evolution. The results of this exercise are shown in Figure (4.1).

Starting from the natural initial condition of (⌦H ,⌦S) = (0, 0) i.e., no dependence and

the collective does not have the machinery to reproduce together, one observes first that both

obligacies increase, as expected. However, a surprising observation from these numerics is

that the trajectory does not reach (⌦H ,⌦S) = (1, 1). The obligacies increase upto a certain

point, after which the ecological equilibrium becomes infeasible (and also unstable). That

is, the feasibility bound (4.3) is violated, leading to the collective growth rate becoming too

high to sustain independent host/symbiont populations. The resident population ceases to

exist. The collective’s abundance then grows to infinity, also maintaining a relatively small

population of independent hosts and symbionts via association and dissociation.

This result is suprising, in that it implies that a su�ciently high d is necessary for the

sustained evolution of obligacy. This is not consistent with intuition for the following reason.

Recall that the boundary is the manifestation of the inequality (4.3). One would expect that
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Figure 4.1: Evolutionary trajectories are biased towards higher symbiont obligacy.

(a) For the mapping in (4.11), we simulated 100 independent evolutionary trajectories. The
trajectories monotonically increase with ⌦S increasing faster, and then stop when the fixed
point is no longer stable (it also becomes infeasible). In the unstable region, the collective
population density increases to infinity and, due to dissociation, maintains a vanishingly
minute population of independent hosts and symbionts. Stability is lost precisely at the
feasibility bound (4.3), which is a lower bound on the here constant parameter d. (b) Using
the mapping (4.11), we can also visualise the dynamics of the growth rates. We observe
that the independent growth rates decrease, and the collective growth rate increases until
it becomes high enough that the feasibility bound is violated. (c,d) The feasibility bound
controls the maximal investment of the host and symbiont in collective reproduction before
stability is lost. Here we visualise the shape of the boundary for di↵erent values of a (in
panel c) and di↵erent values of d (in panel d).
Parameter values. Common for all: rH = 8, rS = 30, rC = 10, KH = 100, KS = 200; for
(a) and (b): a = 0.1, d = 50; for (c): d = 50, a 2 [0.01, 5.0]; for (d): a = 2.1, d 2 [25, 750].
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over the course of an evolutionary transition, the dissociation rate d would decrease (or at

least not increase), and the association rate a would increase (not decrease). Both of these

e↵ects - lower d and higher a - push the boundary farther from the final position (1,1)

that defines a transition (see Figure 4.1). This does not make sense, and we show in a

following section (4.2) that this result - that obligacy evolution stops entirely before (1,1)

- is an artefact of our modelling choices. The relaxation of the problematic assumption is

also explored in the same section. A similar analysis of the independent evolution of the

stickiness �i is detailed in Appendix C.4. It establishes that the behaviour of the stickinesses

are further qualitatively identical to that of the obligacies.

4.1.3 Exploitation of the endosymbiont: A shadow on a cave wall?

Another observation from Figure 4.1 is that the symbiont obligacy ⌦S is almost always

larger than the host obligacy ⌦H . This, of course, stems from the parameter choices we have

made. In particular, the growth rate scaling factors for the symbiont i.e. rS is chosen to be

larger than rH to reflect the symbiont’s smaller generation time, and the carrying capacity

of the symbiont is chosen to be twice that of the host. These parameters induce a bias in

investment since they determine the equilibrium population size of the host and symbiont,

which measures how quickly mutants arise. The evolutionary rate is formally given by the

coe�cient term of the fitness gradient in the canonical equation (4.9). This is exactly what

leads to this bias in investment - switching these parameters flips the plot and the bias. More

generally, a bias in the investment is introduced whenever the evolutionary rates of the two

participants is di↵erent. It can therefore be impacted by the mutation rate, the variance of

the distribution that dictates the phenotype of a mutant, the equilibrium population size -

anything that a↵ects the rate at which new mutants arise.

This result has a clear explanation. It is always beneficial for both the host and symbiont

to invest more in collective reproduction. The symbiont just invests more since it gets more

opportunities (generations) to do so. This may, in hindsight, be interpreted as exploitation

of the symbiont, but this is a mischaracterisation. This process has parallels in the Red King

e↵ect, which deals with the following question: given that a mutualism persists, how are the

benefits of the mutualistic interaction partitioned? (Bergstrom and Lachmann, 2003; Hilbe

et al., 2013; Veller et al., 2017). Or alternatively, given that more investment of two partic-

ipants in an interaction is beneficial, how much should each of them invest to ensure that
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the other does not defect? (Doebeli and Knowlton, 1998; Frean and Abraham, 2004) This

body of literature shows that the slower-evolving participant need not invest as much as the

faster-evolving participant. This result is paradoxical if one starts from the (naive) intuition

that a faster-evolving type can get away with being selfish just because it can evolve very

quickly. But this intuition is not correct when the payo↵s of the two populations are coupled

- selfish behaviour on the part of the defector is here punished with less investment of the

non-defector, feeding back to less payo↵ for the defector. This kind of process that incen-

tivises cooperation by punishing defection has been discussed more generally as a unifying

perspective on the evolution of cooperation, and hence the evolutionary transitions (Ågren

et al., 2019). At least in this setting of a mutualistic symbiosis, it therefore pays to evolve

slower. To summarise, it is not contradictory that two species engaged in a mutualistic

interaction can both have beneficial, but vastly di↵erent payo↵s from the interaction - this

di↵erences is what is attributed to the purported exploitation.

In the Red King e↵ect, the interest-aligning mechanism is an ecological interaction. Our

analysis shows that there is another, more basic, interest-aligning mechanism at play in

any evolutionary transition - the formation (and shared fate) of the collective itself. It is

important to realise here that our model does not consider “complicated” strategies such as

punishment, partner choice, or an explicit ecological interaction. We show that merely the

formation and shared fate of the collective, when coupled with di↵erent generation times

for the two independent types, leads to biased evolution of the traits. This distinguishes

our results from the Red King e↵ect. In a more general sense however, it is just another

manifestation of the same idea - for any trait that contributes to a mechanism that further

aligns reproductive interests, one must expect a bias where the slower-evolving participant

invests less than its faster-evolving counterpart. 1

In this section we have argued for two things. First, an addendum to the Red King e↵ect

in the case of evolutionary transitions - in the cases studied so far (Frean and Abraham,

2004; Bergstrom and Lachmann, 2003), a bias in trait evolution is introduced by interactions

where cooperation is “incentivised” where the degree of cooperation of one species explicitly

depends on and increases with that of the other. We show that there is another, additional

mechanism - the formation of a host-symbiont collective - in which reproductive interests

are aligned in a di↵erent manner. In particular, higher cooperation of one species (here, in

1If one re-defines punishment to include that lower ⌦i leads to lower collective growth, leading then to
lower total reproductive output of species i in the future, this result is analogous. But this re-definition
would be incorrect since “punishment” in the present cannot be predicated on bad future outcomes.
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collective reproduction) is not predicated on that of the other. This gives rise, when coupled

with a di↵erence in evolutionary rates, to an intrinsic bias in the coevolution of interest-

aligning traits that is at play only in evolutionary transitions - not in the wider class of

mutualistic symbioses.

Secondly, we re-iterate that it is an exaggeration to call this process “exploitation”. While

the result - higher investment of the slower-evolving species - may be a posteriori compatible

with strategies of the host that exploit the symbiont, this more complex hypothesis is not

necessary. In the processes studied here and elsewhere as part of the Red King e↵ect, this

outcome is of course adaptive, but moreover there is no asymmetry in the strategy sets of the

host and symbiont. In particular, the host does not adopt certain exploitative strategies that

the symbiont doesn’t have access to. Therefore, while it may look like exploitation when one

is looking to extrapolate into the past, such constructive, forward-time models show that

it must not necessarily be interpreted as exploitation. The symbiont invests more merely

because, over evolutionary time, more generous symbiont mutants arise than host mutants -

and they invade because more investment is beneficial. When the payo↵s (i.e. fitnesses) are

coupled such that defection from interest-aligning interactions leads to lower payo↵, such a

bias must be expected.

4.2 Logistic growth of the collective

We have shown thus far that the obligacies ⌦i when evolving independendently are going

to monotonically increase such that ⌦S > ⌦H is typically true. Moreover, they do not in-

crease to their maximum possible quantities due to the existence of a parameter-dependent

feasibility boundary in the ⌦H�⌦S plane. The structure of the boundary is such that all tra-

jectories will eventually encounter it. Once an evolutionary trajectory passes this boundary,

the collective increases to infinite population density exponentially fast, with a vanishingly

small proportion of the independent types. The existence of the feasibility boundary can

be interpreted in two ways. First is that it is representative of a biological “fact” and in

some sense generically true - this is reasonable because most symbioses are not extreme, and

evolutionary transitions are just one end of the wonderfully diverse spectrum of host-microbe

interactions. This feasibility boundary, then, may be what prevents most symbioses from

becoming an evolutionary transition. The second, more pessimistic view is that the bound-

ary is just a consequence of certain well-intentioned, but expendable model assumptions. It

turns out that our pessimism is well-placed. The condition that gives rise to this boundary
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can be traced back to, among other things, the assumption of exponential growth of the col-

lective. In this section we shall see that relaxing this assumption in favour of more biological

realism destroys the feasibility boundary and gives rise to richer, more realistic evolutionary

dynamics. A full characterisation of the logistic model is not attempted; we only relax the

assumption of exponential growth for a given set of parameter combinations to see its e↵ect.

Our goal therefore is not to exhaustively explore and make wide-ranging remarks about this

model, but merely to make ‘existence’ statements regarding novel phenomena that become

possible within the logistic model.

4.2.1 Logistic growth of the collective induces full dependence

The first qualitatively novel phenomenon that arises is the evolution of full dependence.

Concretely, we numerically solve the system of ODEs 3.2 and implement the invasion/fixation

of mutants in accordance with the adaptive dynamics method. Here again for convenience

and visualisation, we study only the evolution of ⌦i. We keep all common parameters and

initial conditions identical to the previous case to make the comparison precise. The logistic

model has an extra parameter, the carrying capacity of the collective KC , and this is set in

accordance with intuition to be five times larger than the host carrying capacity. The results

of this analysis can be seen in Figure (4.2). The evolutionary trajectory (⌦H(t),⌦S(t))

reaches the maximum value (1,1), while it did not do so in the exponential case due to

feasibility boundary.

The proximate reason for why the boundary disappears in the logistic model is as follows.

The crux of the matter is the intrinsic growth term of the collective’s abundance - fCxC in the

exponential model, and fCxC(1�xC/KC) in the logistic model. When this term becomes “too

high”, the equilibrium disappears. The di↵erence then is that fCxC increases much faster

than fCxC(1 � xC/KC). Even at intermediate values of the ⌦i, the intrinsic growth of the

collective can become too high. In the logistic model however, the growth of the collective

is self-limiting and therefore increases slower. Further, the population cannot increase to

infinity because of the carrying capacity that is now present. Both of these factors, which

are biologically expected to be true, induce the evolution of full dependence.
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Figure 4.2: Qualitatively new phenomena are induced by logistic growth of the

collective. In the evolutionary trajectories where the ecology is described by the exponential
model (3.1), evolution of both obligacies ⌦i and stickinesses �i is inhibited by a feasibility
boundary. The existence of this boundary can be traced directly to the assumption that
the collective grows exponentially fast. The relaxation of this assumption gives rise to the
following phenomena. All panels contain the results of 200 independent stochastic numerical
simulations. (a) The obligacies, which were inhibited by the feasibility boundary, now evolve
to (1,1) - full mutual dependence between the host and symbiont. (b) Stickiness evolution
was, in the exponential model, also inhibited by a boundary. Under the logistic model, we
observe that the stickinesses evolve to high values, but the traits (�H , �S settle to a value
di↵erent from (1,1). After su�ciently long, �S = 1 whereas �H < 1 i.e. the host invests
lesser than the symbiont. (c) This panel shows that the long-run value of �H is indeed an
evolutionary stable strategy - one observes that the trajectories approach this equilibrium
value (so it is convergence stable) and the trajectories are not repelled once they get there
(it is uninvadable).
Parameter values. Common for all: KH = 100, KS = 200, KC = 500, a = 0.1; for (a):
rH = 8, rS = 20, rC = 10, d = 50.0; for (b) and (c): fH = 8, fS = 20, rC = 10, d0 = 50.
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4.2.2 Full stickiness evolution is not guaranteed

The second departure from the exponential model is exhibited by the independent evolu-

tion of the stickinesses �i. In the exponential model, stickiness evolution (while keeping

obligacies fixed) is qualitatively identical to independent ⌦i evolution - they increase mono-

tonically with �S > �H typically, and they are “stopped” before (1,1) by the feasibility

boundary. However, this similarity does not extend perfectly to the corresponding evolu-

tionary trajectories in the logistic case. These results can be seen in Figure (4.2). The �i

evolve to higher values than in the exponential case and there is indeed no feasibility bound.

Instead, one observes that, given su�cient time, the final state is �H = 1, and �S settles

at some high value smaller than one. More concretely, further examination reveals that the

trajectory settles at an evolutionarily stable strategy (ESS). Recall that an ESS has a formal

definition in the theory of adaptive dynamics - it is a trait combination that is convergence

stable i.e. it attracts evolutionary trajectories from far away, and it is uninvadable i.e. once

a population has “adopted” this trait combination, it cannot be invaded by mutants that

are close to it in phenotype space. This is a qualitatively new result that is provably im-

possible in the exponential model. Notice here that it is �S = 1 whereas �H < 1 i.e., the

stickiness that settles at equilibrium to a value less than 1 is the host’s - the species with the

smaller generation time and carrying capacity. The slower-reproducing species invests lesser

in synchronised reproduction. This situation may be likened to the evolution of vertical

transmission.

4.3 Which came first, mutual dependence or sychro-

nised reproduction?

Now we are equipped to finally attack directly the main question of this thesis. We wish

to understand the co-evolution of the traits (⌦H , �H) and (⌦S, �S). We adopt and refine the

perspective of Estrela et al. (2016). An evolutionary transition is a path in the plane of two

quantities - the degree of dependence between the lower-level individuals, and the degree of

their reproductive cohesion. Within the framework that we have been developing, one can

formalise this - we wish to understand evolution from low obligacies (mutual dependence) and

stickiness (reproductive cohesion) to high obligacies and stickiness. We have thus far studied

the evolution along each of these axes separately, and in two related models - exponential and
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logistic. Of course, in nature, there is likely no case where these traits evolve independently.

Artificially studying these simplified cases enables us to build intuition and better interpret

their co-evolution in this plane. The remainder of this section will contain results pertinent

to this question from both models of population dynamics.

First, the exponential model, with results in Figure (4.3). The first sanity check is to

project the present evolutionary trajectory (⌦H , �H ,⌦S, �S) onto the plane (⌦H ,⌦S) and

compare it to the earlier results on independent obligacy evolution. This confirms that

the qualitative nature of the evolution of the obligacies (and the stickinesses) on their own

remains identical. In fact, one can show analytically that all four traits must increase over

evolutionary time. This is also accomplished by means of the canonical equation (see (4.9)),

but now for a multi (here, two)-dimensional trait. Recall that this equation describes how the

trait(s) of one species change over time (e.g. only (⌦H , �H)), and does not directly describe

all the traits in the system (⌦H , �H ,⌦S, �S). This more general equation is similar in spirit

to the earlier equation (4.9)), with intuitive changes to account for the now arbitrary (in

Z�0) dimension of the trait. In particular, the variance of the mutation distribution ⌫2
i
is

replaced by the variance-covariance matrixMi of the mutation distribution, which is a square

matrix of order as high as the number of traits. The mean of the mutation distribution µi

is also of course now a multi-dimensional quantity. The fitness gradient, which was just a

simple partial derivative when the evolving trait was one-dimensional, is now replaced by

the gradient (i.e. nabla) of the invasion fitness. The canonical equation takes the form

d(⌦i, �i)

dt
=

1

2
µi ·Mi · x⇤

i
(⌦H , �H ,⌦S, �S) ·risi((e⌦i, �̃i), (⌦i, �i)) (4.12)

where si(·, ·) is the invasion fitness. To show that the traits increase, it is su�cient to show

that all the terms of ris((e⌦i, �̃i), (⌦i, �i)) are all positive. Under the constraints on the

partial derivatives that we set up initially, and some additional similar constraints on the

mapping from traits to ecological parameters, it is straightforward to show that this is true.

This is left as an exercise for the reader. It is useful to recall here that the invasion fitness

does not change just because there are now more traits - all the traits are still a↵ecting the

same 5 parameters in the model for population dynamics. In particular,

s((e⌦i, �̃i), (⌦i, �i)) =
f̃i
ã
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where tilde-d quantities are functions of tilde-d traits and vice versa. Stepping away from

the mathematical machinery, this result is intuitively obvious - the collective has a uniform

growth benefit, and so investment in its growth is not unexpected. For the same reason as

before, it remains true that most trajectories obey ⌦S > ⌦H and �S > �H .

Given this baseline, we now wish to study the trajectories in more detail: How does each

species explore its own trait space? How do dependence and cohesion change with each

other? Consider the exponential model - representative results are shown in Figure (4.3) for

a specific mapping of traits to parameters. This mapping is similar to Equations (4.11), and

is given by

fH(⌦H , �H ,⌦S, �S) = rH(1� ⌦H) (4.13a)

fS(⌦H , �H ,⌦S, �S) = rS(1� ⌦S) (4.13b)

fC(⌦H , �H ,⌦S, �S) = rC⌦H⌦S�H�S (4.13c)

d(⌦H , �H ,⌦S, �S) = d0(1� �H�S) (4.13d)

a(⌦H , �H ,⌦S, �S) = a 2 R�0 (4.13e)

We represent the degree of dependence between the host and symbiont by the product

⌦H⌦S of their individual obligacies. The degree of reproductive cohesion is represented

by �H�S. Note that this choice of combining the e↵ects of the traits is connected to how

they map to ecological parameters above - a multiplicative e↵ect of the ⌦i on collective

reproduction fC motivates the interpretation of ⌦H⌦S as the degree of mutual dependence

as opposed to other potential measures such as ⌦H +⌦S. These results show two important,

related facts. First is that for both the host and symbiont, it is adaptive to evolve such that

⌦i > �i i.e. being more obligate than cohesive is a result, in this model, of natural selection.

Second, if one studies the evolution of the quantities ⌦H⌦S and �H�S, it is easily concluded

that evolutionary trajectories are biased in the direction of more mutual dependence than

reproductive cohesion. This is a central result. It shows that, over time, one expects that

a host-symbiont collective evolves such that the lower-level individuals are more dependent

on each other than they are reproducing synchronously.

One can try to “break” this result by changing various choices that we have made. For

example, one might want to change the value of the parameter d (or other parameters) and

check if that a↵ects the bias. Alternatively, one might think that the bias is caused by the

fact that there is an asymmetry between the two species - perhaps if the host and symbiont
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Figure 4.3: Mutual dependence evolves before collective reproduction. Here we
consider the co-evolution of the 4 traits ⌦H , �H and ⌦S, �S under the exponential model.
Recall that this implies the existence of the feasibility boundary that we saw in Equation
(4.3), then in Figure 4.1. (a, b) Both host and symbiont traits evolve such that ⌦i > �i

typically. Notice that symbiont evolution (panel (b)) shows that symbiont traits evolve to
much higher values than host traits. This is consistent with the Red King-type argument –
both these traits align reproductive traits of the host and symbiont, and since the symbiont
has a higher evolutionary rate, it invests more. (c) Given the individual evolutionary trajec-
tories of the host and symbiont, one can collate information to obtain measures that describe
the collective as a whole - we represent here the degree of mutual dependence by the prod-
uct ⌦H⌦S and the degree of reproductive cohesion by �H�S. We observe that evolution of
mutual dependence is faster than that of reproductive cohesion. The trajectories stop when
they hit the feasibility bound; we do not show it here because it is nontrivial to visualise in
this context. (d) We reproduce this panel from Figure (3.1) to reiterate the objective of this
work and the progress we have made in answering the question posed in Chapter 1.
Parameter values. KH = 100, KS = 200, KC = 500, a = 0.1, rH = 8, rS = 20, rC = 10, d =
50.0
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had identical generation times and carrying capacities, this bias towards dependence would

disappear. There is yet another, stronger objection. One might notice that the e↵ects of

the obligacies and stickinesses are di↵erent because of the choices we have made for the map

taking the traits to the ecological parameters. The stickinesses show up only as a product

of each other, whereas the obligacies also appear on their own in the independent growth

rates. Since �i 2 [0, 1] and their product is thus smaller than them both, perhaps the e↵ect

of the �i on collective reproduction is smaller than that of the ⌦i. It is thus reasonable that

this makes it more beneficial to increase obligacy faster than stickiness. In particular, one

might want to try the following functions:

fH(⌦H , �H ,⌦S, �S) = rH(1� ⌦H)

fS(⌦H , �H ,⌦S, �S) = rS(1� ⌦S)

fC(⌦H , �H ,⌦S, �S) = rC

✓
⌦H + ⌦S

2

◆✓
�H + �S

2

◆

d(⌦H , �H ,⌦S, �S) = d0

✓
1� �H + �S

2

◆

a(⌦H , �H ,⌦S, �S) = a 2 R�0

Notice that the e↵ects of each pair (⌦i, �i) of traits on the collective is now additive - this

remedies the above problem.

It can be shown that none of the above changes matters. See Appendix Figure (C.3) for

results from trying the above scenarios. In particular, the latter objection is unsuccessful

since our analytical results show that the qualitative nature of evolutionary dynamics is un-

changed for any functional form of the maps that satisfy our constraints (3.3) and (3.4). The

bias persists, and mutual dependence is always faster to evolve than reproductive cohesion.

To crudely answer the question posed in the title of this section, we have shown that mutual

dependence does indeed come before reproductive cohesion. The relevance of this result is

clear, but is non-intuitive and this author currently has no idea how to explain it.

We can perform the same analysis also for the logistic model, and we observe results that

are consistent with the exponential model, but with additional complications. Note that the

exponential model is an approximation of the logistic model, and so it describes well the

dynamics roughly before the feasibility boundary. In the logistic model, we again observe

the same bias towards mutual dependence, but with a richer structure. Results are shown in
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Supplementary Figure C.4. These are very preliminary results, and more analysis is required

to interpret them with a nontrivial amount of confidence.

A lack of understanding does not, however, entirely limit discussions of these results’

implications. The fact that mutual dependence evolves faster suggests that symbioses in

nature are more likely to be more mutually dependent than cohesive. This is a testable

prediction, and can be validated by understanding the distribution of empirically observable

symbioses on the plane in the bottom panels of Figure 4.3.
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Chapter 5

Conclusions and conjectures

When all are one, and one is all

Led Zeppelin on major evolutionary

transitions, in Stairway to Heaven

Endosymbiosis and the advances in complexity it made possible are astonishing. An

endosymbiotic association gave rise to eukaryotes, and many other fantastical associations

between unrelated species. This discovery is due to Lynn Margulis (then Sagan) (Sagan,

1967) who proved it with a coherent, wide-ranging argument, but the general idea itself is

due to Constantin Mereschowsky, a Russian biologist from the turn of the 20th Century

(Martin and Kowallik, 1999). In this work we endeavour to give a precise definition of en-

dosymbiosis as an egalitarian evolutionary transition in individuality, and study the e↵ect

of some important ecological factors on its origins. We focus in particular on the evolution-

ary dynamics of the shift from facultative endosymbiosis to obligate, and on the evolution

of collective, synchronised reproduction. This question is fundamental to understanding

eukaryogenesis, and is the basic question that one must ask of any evolutionary transition.

We are interested in sustained interactions that have the potential to lead to egalitarian

evolutionary transitions. It is important to discuss previous definitions since they have not

always been very explicit. Douglas and Smith (1989) define endosymbioses as non-parasitic

interactions where the entire body of one organism is located within the larger organism.
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Like the definition of Fukui et al. (2007) (“an endosymbiont inhabits inside its host cell or

digestive organs”), this statement is not specific enough since it includes symbioses where the

symbiont is present in a body cavity like a digestive organ. It is also too specific in that only

non-parasitic interactions are included, whereas it is clear now that endosymbioses can both

arise from initially parasitic associations (Keeling and McCutcheon, 2017; Sørensen et al.,

2019), and also that evolved endosymbioses need not be non-parasitic (Lowe et al., 2016).

Lastly, even though this is implicitly assumed in many places, Martin et al. (2015) make

explicit the intracellular nature of endosymbiosis, which excludes cases like gut microbiomes.

Therefore, by “endosymbiosis”, we henceforth mean an at least one-way obligate interaction

where there is intracellular location of the symbiont inside a cell of the host and synchronised

reproduction of the collective as a unit.

Drawing on ideas developed in previous work (Estrela et al., 2016; West et al., 2015), we

contextualise our work by studying two major characteristics of an (endo)symbiotic collective

that is undergoing an evolutionary transition. These characteristics are reproductive cohesion

of the host and symbiont, and the level of mutual dependence between them. The order

in which these occur is not clear, and answering the question of how they co-evolve in

di↵erent symbioses is central to understanding the factors that lead to a transition. After all,

transitions are the exception – most symbioses are facultative, or somehow lacking in another

of these properties. This top-down approach – identifying emergent properties and then

studying their evolutionary origins – is the natural first step, but one must more generally

construct questions using a bottom-up approach instead (van Gestel and Tarnita, 2017).

We are, however, of the opinion that this top-down approach is nevertheless useful to ask

pointed questions about observable quantities.

We construct a simple model that takes the form of a system of coupled ODEs. Assuming

a separation of ecological and evolutionary timescales, we derive explicit invasion criteria

in terms of the mutant and resident trait values. This analysis shows that obligacies are

expected to increase with time, with that of the symbiont increasing faster. This latter

observation is another instantiation of the Red King e↵ect (Bergstrom and Lachmann, 2003),

and shows clearly the causal link between evolutionary rates and investment in the collective.

However, obligacies increase only upto a finite quantity less than the maximum due to the

existence of a feasibility boundary. Relaxing the assumption of exponential growth of the

collective shows that this boundary is an artefact, and other qualitatively new phenomena

exist when it disappears. In particular, we observe evolution of full dependence and the
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existence of internal (< 1) evolutionarily stable strategies for the evolutionary dynamics

of stickiness. We then show that the density of permitted evolutionary trajectories in the

dependence-cohesion plane is not uniform. When obligacies and stickinesses are allowed to

co-evolve, both species, irrespective of their evolutionary rate, evolve such that they are

in general more obligate than sticky. This author is of the opinion that the central result

of this thesis - that the participants of a symbiosis are likely more obligate than sticky -

is experimentally testable. At the very least, it can be confronted with data from living,

breathing animals, which are the real subject of this work.

More broadly, it is perhaps naive to think that these traits increase monotonically forever.

Recall that we have characterised a (endo)symbiosis by two properties of the host-symbiont

collective, and we are studying the evolution of these properties. One then hopes to under-

stand why evolutionary transitions are the extreme case of symbioses, and why, in the first

place, most symbioses do not become transitions. A precise manifestation of this hope is

to explain the existence of internal ESSs - evolutionarily stable strategies where the partici-

pants of the symbiosis are not completely obligate or not completely sticky. Such strategies

are putative end-points of evolution that attract evolving symbioses and prevent them - for

some reason - from undergoing an evolutionary transition. The presented analysis, with a

focused reading of the literature, identifies three distinct mechanisms that can generate an

internal ESS.

First, we show that it is possible in the logistic model to have parameter-dependent

internal ESSs. Second, Nguyen and Baalen (2020) consider a model of symbiont evolution

with host traits fixed, and discover that there exist internal ESSs where the symbiont is

not fully obligately dependent on the host. The only respect in which our exponential

model di↵ers from theirs is in the modelling of dissociation - they model the underlying

processes described in Appendix B.1. Our exponential model (provably) cannot have such

ESSs. Simplicity in one direction (no host dynamics) allows complexity in another, and

although they do not necessarily discuss it in this context, they thus identify another source

of internal equilibria for the evolutionary dynamics. The consideration of both these sources

is likely the most general in the class of models possible to feasibly analyse when one adopts

this approach of adaptive dynamics. We do not go this far since it is not within the scope

of our work. The work contained in this thesis is su�cient to make the important, and

heretofore unrecognised, statement that logistic growth of the collective, which has not yet

been considered in models of symbiosis and evolutionary transitions, gives rise to internal
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ESSs. In light of our findings, an even more basic study is worth doing to make the causal

relations as explicit as possible - it would be interesting to consider logistic growth as we

have in the model of Nguyen and van Baalen and comparing those results to ours. We

conjecture that this model will also show internal ESSs, but will be more well-behaved

than ours due to its simpler nature. Third is an observation we have already made in the

aftermath of Equation (4.9). The monotonic increase of the ⌦i and �i is predicated on perfect

tradeo↵s - an increased obligacy must always simultaneously increase collective growth and

decrease independent growth, and the rate of synchronised reproduction is always negatively

correlated with that of unsynchronised reproduction. Strong enough imperfections in these

tradeo↵s - perhaps independent and collective growth are not always anti-correlated - can give

rise to internal ESSs. This is not unreasonable given the mind-boggling diversity of biological

life and interactions - perfect tradeo↵s are just the most interesting case since it is hardest

here to undergo an evolutionary transition. It is a necessary and important extension of this

work to understand, in a general sense, the causes of internal ESSs in models of symbiosis.

The above paragraph is merely the easy first step of explanatory documentation.

More generally, there are many caveats that come with the model and must be emphasized

along with the results. Perhaps most importantly, we consider that the collective consists of

exactly one symbiont. Of course, one can re-interpret the collective to always be made of not

one, but a fixed population of k symbionts and appropriately scale the density xS. However,

this still does not circumvent the fundamental issue - we assume that all of the symbionts in

the collective act together as a block. Our current picture also does not allow for successive

symbiont acquisition events - we know this is possible since it is implicit in the argument

that shows that mitochondria and plastids are both derived from independently acquired

endosymbionts (Sagan, 1967). Each host has an associated dynamically changing symbiont

population, so this is obviously a space in our analysis where more biological realism is

possible.

Further, considering the dynamic nature of within-host endosymbiont populations has a

tangible e↵ect - it is inherent to some explanations of “exploitation” of endosymbionts. As

argued earlier, the “exploitation” in the Red King e↵ect arises purely because of di↵erential

payo↵s from a mutualism. However, there is another reason why endosymbionts appear to

be prone to give more than they receive. It has been shown that the clicks of Muller’s ratchet

are widespread in vertically transmitted endosymbiotic bacteria (Moran, 1996). It has also

been shown that vertical transmission is associated to a negative correlation of host-symbiont
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dependence with genome size (Fisher et al., 2017), whereas horizontal transmission has no

such correlation. This is easy to explain: the within-host symbiont population is small,

selection on symbiont genome is weaker because of the stable environment a↵orded by the

host cell, and genetic drift is strong because of the bottleneck at host cell reproduction. En-

dosymbiont genomes hence gradually accumulate slightly deleterious mutations, eventually

leading to gene loss. This gene loss is made up for by the host’s genes and their products

if the benefits of doing so are high enough. This is how host “control” may arise. Specifi-

cally, this is also why reduced genomes are observed mostly in endosymbionts and not their

hosts. Notice, however, that this explanation explicitly required us to consider the size and

evolutionary dynamics of within-host populations as a collection of individuals of potentially

di↵erent phenotypes. Therefore, the asymmetry in phenotypes between host and symbiont

here is caused not by any strategies adopted by the host or symbiont themselves, but because

of their size asymmetry. Since symbionts are smaller than hosts, symbionts occur inside their

hosts and not the other way around, and the host-contains-symbiont nested structure is re-

sponsible for the fact that reductive genome evolution is observed in endosymbionts and not

hosts. In the case of the Red King e↵ect, the asymmetry between the host and symbiont

is induced precisely because of the di↵erence in evolutionary rates. If the symbiont instead

had a slower evolutionary rate, it would be the symbiont that invests less than the host,

at least when considering only processes under the ambit of the Red King e↵ect. This is

another level at which external constraints (here, the di↵erent evolutionary rates) dictate

co-evolutionary trajectories. Our perspective therefore suggests that these constraints have

a significant e↵ect on the evolutionary fate of (endo)symbioses. It is imperative to recognise

this, and understand their e↵ect first before considering complicated strategies of the host

and symbiont such as partner choice, punishment, etc. which is done easily - at least in

principle - by the machinery of evolutionary game theory. It is of course true that what

we call constraints - body size and evolutionary rate - are themselves evolving traits, and

are under selection. However, these constraint traits are at least intuitively under weaker

selection and evolve on slower timescales. If this was not the case, intuition dictates that the

generation times of endosymbionts would evolve to become slower and slower until they do

not invest as much as they can in collective reproduction. But this is not what we observe

in the case of transitions - many symbionts have given all they have.

More broadly, we contend that there are at least three levels at which an endosymbiont is

asymmetrically caused to invest more than the host. First, there is the Red King e↵ect that

can take e↵ect in any mutualistic symbiosis, and is caused by a di↵erence in evolutionary
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rate. Second, there is reductive genome evolution in vertically transmitted endosymbionts,

which is caused by the nested structure of this interaction, which is in turn caused by the size

di↵erence between the participants. Thirdly, when collective reproduction becomes possible

(this must necessarily happen at some point in a transition), we show that the shared fate of

a collective also causes a Red King-type e↵ect. In each of these cases, the exploitation is not

a product of explicit strategies of the host against the symbiont, but of somewhat extrinsic

constraints determined by the physical properties of the system. Given this context, we

conjecture that it is the combination of these three mechanisms - which can only be present

in endosymbiosis - that leads to such strong dependence and egalitarian transitions in host-

endosymbiont interactions. Moreover, these 3 mechanisms are not always in concert over

the course of an evolutionary transition. The mode of transmission is not always strictly

vertical, the endosymbiont is not always a mutualist, and the collective does not always

reproduce in a synchronised manner. It is therefore an interesting extension of our work to

understand the tug-of-war between these processes and contrast it with analogous evolution

in a symbiosis without the physical structure of endosymbiosis and collective reproduction.

Lastly, the ecological considerations of this model are but a caricature of reality. We do

not consider any benefits of interaction outside of the collective. This is because we were

interested in an extreme case - understanding the scenario where it becomes beneficial to be

physically near the other participant only when one is in close proximity. Further, we do not

consider that there might be competition between the independent types and the collective

due to niche overlap, or that there might be competition for resources between the mutant

and resident collective. Relaxing each of these assumptions are worthy directions for future

work.

In this thesis we have studied the origins and evolutionary dynamics of endosymbiotic

associations. We establish some basic facts relating to evolutionary transitions in general,

and some more involved insights regarding endosymbiosis are gained by the detailed study of

a theoretical model. The style of analysis and interpretation is classic to this kind of work,

but can go a long way in building intuition about the qualitative nature of phenomena of

interest. This author does not recommend, for example, using adaptive dynamics methods

to predict the exact path taken by evolution in a test tube filled with sporulating B. subtilis.

This work therefore further stresses the utility of theoretical methods in studying symbiosis,

showing the fundamental e↵ects of simple ecological factors and providing a clear way forward

for further theoretical investigations.

62



Bibliography
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Zachar, I. and Szathmáry, E. (2017). Breath-giving cooperation: critical review of origin of

mitochondria hypotheses. Biology Direct 12.
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Appendix A

Adaptive dynamics for the uninitiated

In Chapter 2 the main text, we saw an introduction to the framework of adaptive dynamics.

This appendix is devoted to giving a detailed, practical introduction to someone who is

unfamiliar with the framework and wishes to apply it to a problem they are interested

in. There have been previous reviews and guides (Waxman and Gavrilets, 2005; Brännström

et al., 2013; Avila and Mullon, 2023) which go further in detail regarding the background and

more intricate applications (stage-structured or group-structured populations). However,

there is no guide that the author is aware of that accomplishes a simple task: given a

predefined set of evolving traits in a homogeneous, well-mixed population, how can I apply

the adaptive dynamics framework? This appendix answers this question.

In an unstructed population (no life-stages, no spatial structure, etc.) the use-cases of

this framework may be built up in complexity as follows

• one type with one evolving trait

• one type with several evolving traits

• several interacting types each with one evolving trait each

• several interacting types with several evolving traits each

In each case, two things must be clear to the reader by the end of this document: how

to actually compute invasion fitness, and then how to analyse the evolutionary dynamics

induced by an invasion fitness function.
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A.1 Adaptive dynamics for a one-dimensional trait

Consider a trait taking values in T ⇢ R and an asexual population monomorphic for

this trait. Following Metz et al. (1992), we define the fitness of a strategy as its long-term

exponential growth rate in a given environment. In particular, suppose r(x,Ex) denotes the

fitness of a phenotype x in an environment Ex consisting of constant abiotic factors and

other x individuals. When x is a demographic attractor (e.g. a fixed point), r(x,Ex) = 0

since the population abundances do not change and hence the growth rate is zero. Now

consider a rare mutant phenotype y that arises in a background resident population having

equilibrium phenotype x. As long as the mutant is rare, it does not have an appreciable

e↵ect on the environment and its fitness is hence r(y, Ex). For convenience we shall denote

this quantity by f(x, y), and call it the invasion fitness of mutant y in a resident population

of x. We assume that this function is su�ciently smooth in both coordinates.

A.1.1 Analytic classification of singular points

If f(x, y) > 0, the mutant can spread but might go to extinction due to small-size stochastic

extinction. If f(x, y) < 0, it will die out. If f(x, y) > 0 and f(y, x) < 0, then the mutant can

spread but the resident cannot recover when rare itself. In fact, it has been shown that it

is usually enough that f(x, y) > 0 for the mutant y to invade and fix (Dercole and Rinaldi,

2008) – sometimes called “invasion implies substitution”. Therefore, it is su�cient to just

check when f(x, y) > 0. For complicated functional forms, the evolutionary dynamics is

determined by the derivative of f(x, y), also known as the fitness gradient. This is because

to first order, the fitness can be expressed as

f(x, y) =
@f

@y

����
y=x

(y � x) (A.1)

where f(x, x) = 0 by assumption. So the population evolves i.e., trait changes until it reaches

a point where the fitness gradient is zero. Recall that the trait value of the population is

changing by invasion of mutants which have positive invasion fitness. Such points are called

evolutionarily singular points. We will now consider what happens when the population gets

to (if it can) a singular point. One of the major virtues of the adaptive dynamics framework is

that it di↵erentiates explicitly between two di↵erent kinds of stability: evolutionary stability
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and convergence stability. As we will see, these are mutually exclusive and can occur in any

combination.

Definition. A singular point x⇤ is said to be locally evolutionarily stable if it cannot be

invaded by any nearby strategy i.e., f(x, y) < 0 for all y in some neighbourhood around x.

Local evolutionarily stable points are traps in the sense that a population cannot escape

from such a point via small mutations. It is easy to see that this is equivalent to the

condition that the trait value x⇤ is a (local) maximum for the function f(x, y) in the mutant,

y direction. Evolutionary stable singular points are therefore characterized by

@2f

@y2

����
y=x⇤

< 0 (A.2)

Now for notational convenience, let us define

D(x) =
@f

@y

����
y=x

Definition. A singular point x⇤ is said to be convergence stable if a population can reach

the neighbourhood of x⇤ i.e., (monomorphic) populations closer to the singular point can

replace those farther away. More formally, for any point x < x⇤ in a neighbourhood around

x⇤, f(x, y) > 0 8y 2 (x, x⇤) and similarly, for any x > x⇤ in a neighbourhood around

x⇤, f(x, y) > 0 8y 2 (x⇤, x).

In other words, the fitness gradient points toward the singular point. Since the fitness

gradient must change sign from positive to negative, D(x) must be a decreasing function

and so at a convergence stable singular point, we must have

d

dx
D(x)

����
x=x⇤

< 0 (A.3)

Note that there is a relation between the conditions for convergence and evolutionary stability

dD(x)

dx
=

@2f

@x@y
+

@2f

@y2
(A.4)

where one can see that convergence stability requires the evaluation of the additional term on

the left. Note here the important role of the assumption that mutations are not infinitesimal
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- if one were to assume that, a population would never actually reach a convergence stable

point.

The immediately important points in the trait space are those that are both convergence

stable, and uninvadable. Such points are called evolutionary stable strategies (ESSs), and

constitute endpoints for evolutionary trajectories since they can both be reached by a pop-

ulation starting far away in the trait space, and the population cannot be invaded once this

trait has fixed.

An interesting case is to consider singular points which are convergence stable, but not

evolutionarily stable. What happens at such points? The population can reach the point,

but then it is susceptible to invasion by nearby mutants.

Definition. A protected polymorphism is a polymorphic population in which none of the

phenotypes can go extinct i.e., all have positive fitnesses when rare and therefore cannot be

lost, and therefore none of them can fix.

After a small perturbation of a population of this type that is inevitable over the course

of evolutionary time, we will have a resident that is slightly o↵ the singular point, and

a mutant that arises that is also o↵ the singular strategy and has positive growth rate

when rare. This necessarily gives rise to a protected dimorphism since both populations

can recover when rare. We can show (see appendix 1 in Geritz et al. (1998)) that such a

population can be invaded only by mutants that are farther away from the singular strategy

than the current population. This gives rise to a diverging population with two “branches”

that progressively become more separated from each other with time. Such points i.e.,

those that are not evolutionarily stable but convergence stable, are known as branching

points, and this phenomenon is termed evolutionary branching. Trait divergence takes place

until another singular point is reached, or until the local approximations used in the above

characterizations no longer hold.

A.1.2 Pairwise Invasibility Plots (PIPs) and graphical character-

izations of singular points

The evolution of a population can be studied also by means of a pairwise invasibility plot,

which is a two-dimensional plot of the sign of f(x, y) as a function of x and y. In particular,
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the character of a singular point can be determined by the structure of ‘-’ and ‘+’ regions

around it. The graphical characterization of the above properties is as follows:

1. A singular point can be identified on the PIP since it will be in the intersection

between the zero-set of f(x, y) and the line y = x (since f(x, x) = 0 8 x).

2. A singular point is evolutionarily stable if no mutant can invade it. Hence, the

vertical line through it must be locally entirely within a ‘-’ region.

3. For characterizing convergence stable points, we will make use of the diagonal y = x.

A singular point x⇤ is convergence stable if

• to the left of x⇤, the area above y = x is locally inside a ‘+’ region

• to the right of x⇤, the area below y = x is locally inside a ‘+’ region

4. Continuously stable: convergence stable and ESS, so (1), (2), (3)

5. Branching point: convergence stable and not ESS, so conditions (1), (3) and negation

(2)

The di↵erence between these two notions of stability is now clear: convergence stability

describes whether an evolving population can actually reach the singular point, whereas

evolutionary stability describes the invadability of a population already at the point. From

both the algebraic and the graphical characterizations, one can see that neither condition

implies the other - a singular point can be any combination of convergence stable (or not)

and evolutionarily stable (or not).

A.2 Microscopic descriptions and a stochastic deriva-

tion of the canonical equation of adaptive dynam-

ics

The canonical equation of adaptive dynamics (CE) is a dynamical system that describes

the evolution of phenotypic traits in terms of the fitness gradient and the mutational processes

that give rise to variation. Dieckmann and Law (1996) showed that this (until then often

heuristically invoked) equation has a solid foundation based in the microscopic interactions
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between individuals in the population. Specifically, the CE describes the mean trajectory

of a directed random walk in the trait space, with birth and death rates determined by the

ecological processes operating in the population. In this section, we describe the underlying

stochastic process, and derive the CE using the master equation for this stochastic process

along with certain smoothness assumptions.

Evolutionary dynamics takes place over long timescales, where we make all the simplify-

ing assumptions stated above. Over shorter timescales, population dynamics is decided by

ecological processes. The fate of a mutant is thus determined by the ecology of its interaction

with the resident. This is the link between the fitness of the previous section and mechanistic

models of population dynamics - it is given by the growth rate of the mutant over ecological

timescales.

Consider a population consisting of N types of individuals, with their abundances given

by n = (n1, ..., nN). Now consider a collection of traits s = (s1, ..., sN) such that si determines

the birth and death rates of type i. These traits may be, for example, related to beak

morphology in a population of interacting finches. Due to the assumption that the ecological

and evolutionary timescales are separated, this trait can be assumed to be constant for the

ecological dynamics. Then a general model of the population dynamics is given by

dni

dt
= (bi(n)� di(n))ni i = 1, ..., N (A.5)

where n is the vector of type abundances and bi and di are the birth and death rates of each

type. We say the combined quantity bi � di is the growth rate. Note that we have explicitly

allowed the birth and death rates to be frequency dependent.

There is a corresponding stochastic process for the evolution of the traits s that can be

constructed given any model for short-timescale population dynamics of the above form.

This is a continuous-time random walk on the state space S given by the Cartesian product

of the state space of each si. Stochasticity in the trait value is due to mutation of the trait,

and demographic stochasticity - small mutant populations may die out purely due to size.

We assume that selection pressures only depend on this trait; it is always true that they

depend only on the present value of a trait. Mutation also depends only on the present

value. The process can therefore be assumed to be Markovian, simplifying the analysis.
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The time-evolution of the probability distribution is described by the master equation

d

dt
P (s, t) =

Z

S
[P (s0, t)w(s|s0)� P (s, t)w(s0|s)]ds0 (A.6)

which basically measures flux into and out of the trait value s. The transition function

w(s1|s2) is determined by the composition and ecology of the population. Now, we give an

expression for the transition function in terms of the transitions in each trait: we assume

that no two species can simultaneously undergo a trait substitution in the infinitesimal time

dt. Therefore, we can write

w(s0|s) =
NX

i=1

wi(s
0
i
|s)
Y

j 6=i

�(s0
j
� sj) (A.7)

In other words, add - for each i - the probability of si transitioning to s0
i
when all the other

traits stay unchanged i.e., s0
j
(j 6= i) are still equal to sj. Next, we must derive an expression

for the single trait transition functions wi(s0|s). For this, we assume that mutation and

selection are independent, so the probability per unit time wi for a specific trait substitution

is given by the probability per unit time Mi that the mutant is generated by an individual

of the population times the probability Si that it successfully escapes size-related stochastic

extinction.

w(s0
i
|s) = Si(s

0
i
, s)Mi(s

0
i
, s) (A.8)

We can then write expressions for the probabilities above in terms of previously defined quan-

tities like the birth and death rates, equilibrium population size, and mutation distribution.

See Dieckmann and Law (1996).

Now define the average path

hsi (t) =
Z

S
sP (s, t)ds (A.9)

Using the master equation, the Fubini-Tonelli theorem, and the Leibniz rule, we can write

d

dt
hsi =

Z Z
(s0 � s)w(s0|s)P (s, t)ds0ds (A.10)
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We now introduce the kth jump moment ak = (ak1, ..., akN) with

aki =

Z
(s0

i
� si)

kw(s0
i
|si)ds0i (A.11)

Then we can write

d

dt
hsi = ha1(s)i (t) (A.12)

We linearize the first jump moment i.e., assuming it is twice di↵erentiable, take only the

linear term in the Taylor series and ignore the higher order terms. WLOG calling the linear

part by the same name, we can say

d

dt
hsi = a1(hsi)(t) (A.13)

Now we call the mean path variable by a di↵erent name x for convenience. Substituting the

exact expressions for Si and Mi and Taylor-expanding the fitness term to first degree, we

get

dxi

dt
=

1

2
µi(xi)�

2
i
(xi)n̂i(x)

@f̄i
@x0

i

i = 1, ...., N (A.14)

where µi(xi) is the fraction of births in the population that give rise to mutations in type i,

�2
i
(xi) is the variance of the mutation distribution, n̂i(x) is the equilibrium population at the

trait value x, f̄i is the time-averaged growth rate, which is equal to f(s, n̂(s)). This is the

canonical equation of adaptive dynamics. This shows that the right notion of fitness for the

mutant is its average growth rate f̄i = bi(n)� di(n)|n=n⇤ when rare in a resident population

at equilibrium. If the traits under considering for each type number more than one each,

some changes need to be made to the above equation. Let the fitness of type i now be

determined by vi traits. Firstly, �2
i
(xi) now becomes the variance-covariance matrix of the

mutation distribution. Secondly, the fitness gradient @f̄i

@x
0
i

now becomes the multidimensional

gradient r0
i
f(x0

i
, x). Therefore, the multi-dimensional CE is given by

dxi

dt
=

1

2
µi(xi)�

2
i
(xi)n̂i(x)r0

i
f(x0

i
, x) i = 1, ...., N (A.15)

where the right hand side is a column vector of length vi - each element describing the CE

for one of the vi traits - since �2 is vi ⇥ vi and r0
i
f(x0

i
, x) being vi ⇥ 1.

80



A.3 General procedure for evolutionary invasion anal-

ysis

One of the most important properties of adaptive dynamics is the relative ease with

which ecological dynamics can be incorporated into the evolutionary process. In the past

two sections, we understood how to study the evolutionary dynamics described by an invasion

fitness function. We did not, however, state how this function may be derived in the most

general sense. The only special case we saw is equations of the form (A.5). There is a

method to derive an invasion fitness when the ecology, or population dynamics, is given

by an arbitrary set of ODEs, and describing this method is the goal of this section. The

presentation here follows that of Otto and Day (2007).

Consider a coevolutionary community of N types, each with trait vector xi of possibly

di↵erent lengths. Let the population abundance of type i be ni and let n be the vector of

abundances of all types. Let the short-timescale population dynamics of this community be

described by a system of di↵erential equations

dni

dt
= gi(xi, n) (A.16)

The dependence on n is generic frequency-dependence and the dependence on xi arises via

the e↵ect of the traits on growth rates, interaction coe�cients, etc.

The first step is to determine equilibria of the resident population and conditions under

which the equilibria are stable. We restrict ourselves here to the case of a single attracting

equilibrium. Furthermore, we work only in the parameter regime where this equilibrium is

stable so as to ensure that the resident equilibrium is reached before the mutant arises, and

to ensure that mutants that die out don’t drive the resident to extinction as well.

First we introduce the mutant into the resident population at equilibrium - mathemati-

cally, this is performed by augmenting the above system with additional variables and dy-

namical equations. Note that it is not necessary that the addition of one mutant type must

lead to exactly one additional equation - it might be the case that multiple, independent

variables need to be tracked even when one mutant type is present. In general, exactly how

this augmentation is done depends on the specifics of the model. One sanity check is that

the augmented model must have an equilibrium where the mutant is absent and the resident
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is at the abundances in the equilibrium found above. Now we compute the Jacobian for this

augmented model to understand the local stability. If we index the resident types before the

mutant types, this matrix must have the following form

2

4Jr U

0 Jm

3

5

where Jr is the Jacobian of the initial model and Jm is the submatrix corresponding to

the rows and columns of the Jacobian for the mutant type. The invasion fitness of this

mutant is defined as the leading real part of the eigenvalues of this whole matrix, evaluated

at the mutant-free resident equilibrium. If it is positive, the mutant invades; if it is negative,

the mutant goes to extinction. Since the matrix is block-upper-triangular, it is su�cient

to compute the eigenvalues only of Jr and Jm. Further, since we started with a resident

population that is at a stable equilibrium, the real parts of all eigenvalues of Jr must be

negative. It is hence su�cient to narrow even more and compute only the real parts of the

eigenvalues of Jm and find the largest one.

Once we have obtained the expression for the invasion fitness, the procedure is clear:

we find the singular points, ask when they are locally uninvadable and when they are con-

vergence stable. In this way, we may identify evolutionary endpoints, points that lead to

polymorphisms, etc.

A.4 Multi-dimensional adaptive dynamics

The method for analysing the invasion fitness function when there is just one trait is

clear from section A.1. However, how is convergence stability and invadability decided when

there are an arbitrary number of species each having an arbitrary number of traits? In this

section, we shall present some answers to this question and their caveats. This section will

follow the presentation in Leimar (2009).

Consider a community of N co-evolving species or types. Let xk be the vector of traits of

type k. Let Sk be the trait space of type k which is a Cartesian product of the trait spaces

of each of its individual traits. The traits of the full community then live in the product

of all the Sk, which we shall call S. Note that the di↵erent xk do not necessarily have the
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same length. We will henceforth use primed variables to denote mutants - for example, x0
k

will denote the trait vector of a mutant of type k. Let Fk(x0
k
, x) be the invasion fitness

functions of a mutant of type k in the environment generated by a community with species

having traits x = (x1, ..., xN)T . The primary object of study in this section is the collection

of invasion fitness functions (Fk)k that arise from the scenarios of a mutant of each species

k in the community being generated.

Before the biological considerations, some mathematical preliminaries: We shall hence-

forth call a matrix M positive (resp. semi)definite if the matrix (M + MT )/2 is positive

(resp. semi)definite i.e. has all eigenvalues greater than (resp. or equal to) zero. The same

shall be true for the term “negative (semi)definite”.

First let us start with the condition for invasion. Again, we assume that the resident

population is at equilibrium. A mutant of type k invades if Fk(x0
k
, x) > 0. Ideally, we

would like to consider general conditions when this ineqaulity holds, but for mathematical

tractability we consider only small mutational deviations i.e., x0
k
close to xk. This allows the

truncation of a Taylor expansion to first order in x0
k
:

Fk(x
0
k
, x) = Fk(xk, x) + (x0

k
� xk)

T r0
k
Fk(xk, x)|x0

k
=xk

+ o(||x0
k
� xk||2) (A.17)

where the gradient is taken with respect to the mutant trait variables of type k. Locally,

a mutant has positive invasion fitness if the scalar product (x0
k
� xk)T r0

k
Fk(xk, x)|x0

k
=xk

is

positive since the first term is zero because xk is a resident trait at equilibrium and the

growth rate at equilibrium is zero. This gradient is the multi-dimensional analogue to the

selection gradient of previous sections and we will continue to use developed terminology as

appropriate.

Singular points are now points x where the fitness gradients of all types are zero. Similarly

generalizing, a singular point is uninvadable if it is a local maximum of the invasion fitness

function in the direction of the mutant variables. Around a singular point, the invasion

fitness of species k has the Taylor expansion

Fk(x
0
k
, xk) =

1

2
(x0

k
� xk)

T
Hkk(x

0
k
� xk) + o(||x0

k
� xk||3) (A.18)

where the matrix Hkk is the Hessian of the invasion fitness function, sometimes called the
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selection Hessian, and is given by

(Hkk)ij =
@2Fk(x0

k
, x)

@x0
ki
@x0

kj

�����
x
0
k
=xk,x=x⇤

(A.19)

where xki is the ith trait of species k. For a point x⇤ to be a local maximum in the mutant

direction and hence uninvadable, it is su�cient that all the selection Hessians are negative

definite and necessary that they are negative semidefinite.

For questions of convergence stability, we must ask when mutations closer to the singular

point than the resident are always more fit. We will need to recall the canonical equation

for multiple species from section (A.2). It takes the form:

dxk

dt
= B(x)r0

k
Fk(x

0
k
, x) (A.20)

where B(x) comes from the statistical properties of the processes giving rise to mutations

and r0
k
Fk(x0

k
, xk) is the selection gradient. Note that xk, the evolving phenotype of type k,

may itself be a vector of traits. We will further simplify this equation by linearising it for

small values of the mutational increment x0
k
� xk. The selection gradient has, in the vicinity

of a singular point, Taylor expansion of the form

r0F (x, x⇤) = J(x� x⇤) + higher order terms (A.21)

where J is the Jacobian of the selection gradient taken with respect to all trait variables and

evaluated at the singular point. The Jacobian is of the form

J = H+Q (A.22)

where H is a block diagonal matrix of order |S|, with the diagonal blocks being the species

k selection Hessians Hkk, which are of order |Sk|. The matrix Q is a matrix of order |S| but
has blocks Qkl with elements given by

(Qkl)ij =
@2Fk(x0

k
, x)

@x0
ki
@xlj

����
x
0
k
=xk,x=x⇤

(A.23)

This is a matrix of mixed partial derivatives - mixed between derivates with respect to mutant

and resident variables, and the most recent equation is the multi-dimensional analogue of
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A.4. Now if we set A = B(x⇤), the linearized canonical equation is

dx

dt
= AJ(x� x⇤) (A.24)

Note that it makes sense to linearise the canonical equation only if the mutational increments

are considerably smaller than the range around a singular point where the linearisation is

an acceptable approximation of the non-approximated equation.

We can define convergence stability to varying degrees of strength. Here, inspired by an

observation in the one-dimensional case, we shall consider strong convergence stability. A

singular point is strong convergence stable if it is an asymptotically stable fixed point of

the canonical equation for any mutational process given by a smoothly varying, symmetric,

positive definite A = B(x⇤). If there are multiple species, we can broaden the class of

mutational matrices since there cannot be any interspecific genetic correlations in mutation.

Now more concretely, a singular point is stable if all eigenvalues of AJ have negative

real parts and unstable if at least one eigenvalue has positive real part. Therefore, if we

restrict A to be in the above “nice” class of matrices, we can derive conditions dependent

only on the matrix J. We shall state a simple result here for illustration, more complications

can be found in Leimar (2009). In particular, for a single species with multiple traits, it is

su�cient that J(x⇤) is negative definite, whereas if it is not negative semidefinite, there is

some mutational matrix A for which the point is an unstable equilibrium of the canonical

equation.

For multiple co-evolving species, it is slightly di↵erent. We must only consider mutational

matrices which are smoothly varying, symmetric, positive definite, but also block matrices,

since there cannot be genetic correlations between traits of di↵erent species. See the original

paper (Leimar, 2009) for more details.

A.5 Summary

We now compile all the information outlined in the above paragraphs and give an outline.

To apply the adaptive dynamics framework to a problem, it is necessary to first compute

the invasion fitness of all possible mutants, and then analyse these invasion fitnesses for

uninvadability, convergence stability, branching, etc. The invasion fitnesses for any problem

can be computed using the general method for invasion analysis given in Section A.3.
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The analysis of the invasion fitnesses di↵ers greatly in di�culty across the di↵erent classes

of problems: for one evolving species with any number of traits, the analysis is fairly simple

- if there is only one trait involved, Section A.1 is all one needs. However, if more than one

trait is involved, the criteria for convergence stability become more involved. Uninvadability

is relatively straightforward in all cases. If there are multiple co-evolving species, as before,

singular points and uninvadability are conceptually easy to calculate. However, there does

not exist a clean condition for convergence stability - see Section A.4.

Lastly, the evolutionary trajectory taken by a trait can be computed via the canonical

equation of adaptive dynamics, which is described and derived in Section A.2. Some condi-

tions have straightforward interpretations in terms of basic concepts in dynamical systems

theory - for example, singular points are fixed points of the canonical equation, convergence

stable points are asymptotic attractors of the canonical equation. This gives a full picture

of the dynamics of the trait under consideration.

A.6 Limitations of adaptive dynamics

Most limitations of adaptive dynamics can be traced to its main assumptions - the as-

sumption of small mutations, asexual reproduction, or of rare mutations. These assumptions

allow us to study evolutionary dynamics in some detail, but it is important to understand

where adaptive dynamics fails and cannot be applied.

Consider first the assumption of small mutations - more precisely, mutations of small

phenotypic e↵ect. Estimated distributions of mutational e↵ect show that there are mutations

of both small and large e↵ect – this empirical finding complicates the picture portrayed by

the predictions of adaptive dynamics. It can also be shown that if all evolution proceeds

only by mutations of small e↵ect, then evolution is very slow. The main argument for the

central role of small e↵ect mutations is that given by Fisher (Fisher, 1930) - the probability

that a mutation is deleterious increases with the number of evolving traits being considered

(Barton and Polechová, 2005). Real biological systems have many evolving traits and thus

most mutations of large e↵ect are deleterious. Since we are assuming that the population

is large, any deleterious mutation is driven to extinction, and thus does not a↵ect the trait

substitution sequence of adaptive dynamics. The separation of timescales between ecological

and evolutionary processes induced by the assumption of rare mutations is also not generally

applicable. In microbial communities for example, ecological and evolutionary processes
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overlap since ecological interactions are mediated by secreted chemicals that can persist for

several generations. One of the other main limitations of adaptive dynamics is that it cannot

model sexual populations and thus cannot comment on the origin of biological species, which

needs reproductive isolation. Adaptive dynamics can however can identify when disruptive

selection evolves via branching points. So while branching points aren’t necessarily the

origin of new species, they are causes for the origin of polymorphism which may then lead

to speciation via sex-related processes.

More generally, there have also been calls for adaptive dynamics to make testable predic-

tions so that they can be compared against empirical data (Waxman and Gavrilets, 2005;

Barton and Polechová, 2005). In conclusion, these caveats make it clear that adaptive dy-

namics is not meant to provide quantitatively precise predictions of evolution. It is however

useful to obtain a preliminary, intuitive understanding of evolutionary processes, and this is

how it must be made use of (Kokko, 2005).
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Appendix B

Supplementary material for the model

B.1 Dissociation is a coarse-graining of underlying bi-

ological processes

Here, we detail how our model is simpler in its description of the processes that generate

free-living individuals H and S from host-symbiont collectives C. Consider the exponential

model of population dynamics (3.1).

ẋH = fHxH

✓
1� xH

KH

◆
� axHxS + dxC , (B.1a)

ẋS = fSxS

✓
1� xS

KS

◆
� axHxS + dxC , (B.1b)

ẋC = fCxC + axHxS � dxC . (B.1c)

Here, the parameter d is the rate constant of the reaction C ! H+S. We will describe in this

section how this reaction is a coarse-graining of two processes: asynchronous death of either

host or symbiont while in a collective, and death of the host/symbiont in a collective. Note

that both of these processes give rise, given a collective individual, to one new free-living

individual.

More explicitly, let bH be the rate at which a host that is part of collective gives birth

aysnchronously to a free-living host, and similarly bS. Then let dH be the rate at which
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hosts that are part of a collective die. Note that the latter process gives rise to a free-living

symbiont and not a host. Let dS be the rate of the analogous process giving rise to free-living

hosts. Incorporating these rates instead of dissociation gives rise to the system of equations

ẋH = fHxH

✓
1� xH

KH

◆
� axHxS + (dS + bH)xC , (B.2a)

ẋS = fSxS

✓
1� xS

KS

◆
� axHxS + (dH + bS)xC , (B.2b)

ẋC = fCxC + axHxS � (dH + dS)xC . (B.2c)

Note that we are not changing anything related to the process described by the rate of

successful collective-forming encounter rate a. We recover the above model if we assume

that dS = bH = dH = bS and they are equal to a constant d/2. Biologically, this implies

that the rate of dying while part of the collective is identical for the host and symbiont, and

that it is equal also to the asynchronous birth rate. In the most general model, one would

consider dH and dS as decreasing functions of the obligacy ⌦H and ⌦S respectively. In other

words, the higher the dependence of the host on the collective, one would expect that it dies

less frequently when it is part of the collective. Secondly, the higher the stickiness, the lower

the rate of asynchronous birth. Abstracting all these processes into one reaction gives us

analytical power, admittedly at the cost of detail. There will be no discussion here of the

consequences of this assumption - this is treated in Chapter (5).
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Appendix C

Supporting information for the results

C.1 Stability of the fixed points of the exponential

model

The Jacobian of the flow (3.1) is given by

J =

0

BB@

fH(1� 2xH

CH

)� axS �axH d

�axS fS(1� 2xS

CS

)� axH d

axS axH fHS � d

1

CCA (C.1)

This system of ODEs has four fixed points. A fixed point is a point (x⇤
H
, x⇤

S
, x⇤

C
) such that

the rates of change ˙xH = ẋS = ẋC = 0. We shall interchangeably call them equilibria

since a population that is at a fixed point cannot change in abundance. Three of these are

inconsequential - (0, 0, 0), (CH , 0, 0) and (0, CS, 0). The fourth is internal, and we shall study

its properties.

Linear stability is defined, loosely, as the behaviour of a fixed point upon a small per-

turbation. Does the perturbation increase and the tracked quantities are repelled further

from the fixed point? Or does the perturbation decay and the quantities relax back onto

the equilibrium that they were perturbed from? This is decided using the Jacobian above,

evaluated at the focal fixed point. In particular, one must compute the eigenvalues of J . The
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real part of these eigenvalues (which in general live in C) controls whether or not the pertur-
bation comes closer or goes further away, and the imaginary parts control how the trajectory

moves in whatever direction that it goes - spiral, monotonically, etc. If all real parts of the

eigenvalues are negative, then perturbations in all directions of phase space will relax back

onto the fixed point. Stability is therefore determined by finding the sign of the maximum

real part of all the eigenvalues. The maximum real part is negative is negative i↵ they are

all negative. With multiplicity, there are as many eigenvalues are there are equations in the

system of ODEs (here, 3).

Recall that the eigenvalues are defined as roots of the characteristic equation

det(J � �I) = 0

In the case of the trivial fixed point (0, 0, 0), the Jacobian above becomes a diagonal matrix.

The eigenvalues of a diagonal matrix are exactly the elements on its diagonal, and two

of these elements are fH and fS. We assume that these quantities are always positive in

the entirety of this work. Therefore, we see that this fixed point is never stable since two

of the eigenvalues are always positive. It is not so easy for the other fixed points. The

roots computed directly from the general characteristic equation are required and di�cult

to analyse, and we therefore to resort to another method called the Routh-Hurwitz criteria

(Edelstein-Keshet, 2005). This is a set of criteria on the coe�cients in the characteristic

equation of J . Specifically, let the characteristic equation be given by

�3 + a1�
2 + a2�+ a3 = 0

These numbers are computable directly from J , and some of them are commonly known.

For example, a1 above is the negative of the trace of J and a3 is the negative of its determi-

nant. The Routh-Hurwitz criteria state that all eigenvalues of J i.e., all roots of the above

polynomial, have negative real part if and only if

a1 >0 (C.2)

a3 >0 (C.3)

a1a2 >a3 (C.4)

(C.5)
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This method is, in a less applicable sense, true for square matrices of arbitrary order. Most

generally, one computes a sequence of matrices called Routh-Hurwitz matrices of length

equal to the order of J , and then negative real parts are guaranteed precisely when all these

matrices have negative determinant. In the case of small matrices like ours, this condition

is directly applicable and tractable, and can be stated simply like above. We shall not give

the expressions for these coe�cients ai here, they can be derived easily and alternatively, are

available upon request.

For the two one-species equilibria (KH , 0, 0) and (0, KS, 0), it is easy to show: as long

as the “interesting” fixed point is feasible, these equilibria are unstable - one of the criteria

above (C.5) fails since d > fC . In particular, the feasibility bound being satisfied implies

that a3 < 0 in these two cases. Further, there is a parameter range where none of the fixed

points are stable: this is exactly when

fC < d < fC

 
1 + a

s
KHKS

fHfS

!

This is when the feasibility bound is violated (which is the right side of the above chain

of inequalities), but not as strongly as to make fC > d (left side of chain). Therefore, the

internal fixed point is rendered unstable, as well as the trivial fixed points.

For the internal equilibrium, the picture is much more involved. We cannot say much

from the coe�cients ai themselves, but it can be shown that the subcriterion a3 > 0 exactly

corresponds, upon some rearrangement, to the inequality that we have termed the feasibility

bound (4.3). This proves that feasibility is necessary (maybe not) su�cient for stability.

Further analytics is di�cult, and we therefore resort to numerically computing the max-

imum real part of the eigenvalues of J across a biologically reasonable range of parameter

space. The results of this exercise is shown in Figure C.1 This shows that the internal fixed

point of the exponential model is, in fact, stable in the region of parameter space that we

are interested in, and therefore we proceed with further analysis.
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Figure C.1: The fixed point is stable. Here we perform a numerical evaluation of the
stability condition of the fixed point (4.2) of the exponential model. In particular, we find
and plot, in two cases the maximum real part of the eigenvalues of J , the Jacobian of the flow
(3.1). Common parameter values for both panels. KH = 100, KS = 200, fH = 8, fS = 20.
(a) Red if unstable, blue if stable. Since we can show already that the feasibility bound is
necessary for stability (see main text of Appendix C.1), we wish to only check stability when
the feasibility bound is already satisfied. This panel is therefore a little unorthodox –the x-
axis is the usual, but the y-axis is in multiples above the feasibility bound for the respective x
value. Let df (a) = fC(1+ aKHKS

fHfS
) be the equalising value of d at the feasibility bound when

all other parameters are kept fixed. Then in the heatmap, for a given value of the horizontal
variable a, the vertical strip at this horizontal position ranges from [df (a), 5 ⇤ df (a)]. This
panel therefore shows that the fixed point is stable for a large range of d values once the
feasibility bound is crossed. Parameter values. fC = 10, a 2 [0, 40], d 2 [df (a), 5 ⇤ df (a)]
(b) This shows that the fixed point is stable across a range of fC values. Parameter values.

a = 0.1, fC 2 [0, 5fS = 100], d = a+ fC,max(1 + a
q

CHCS

fHfS
) to maintain feasibility.
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C.2 The next-generation theorem and its applications

in deriving the invasion fitness

In this section, we detail the derivation of the invasion criterion (4.5). The intuitive

picture is as follows: the resident population is at an attractor of the population dynamics,

and then a mutant arises. We want to understand how the fate of a mutant depends on

its trait value. It can be shown (Dercole and Rinaldi, 2008) that if the presence a small

number of mutant individuals destabilises the resident equilibrium, the mutant will fix in

the population and hence replace the resident. Therefore, we must study the dominant

eigenvalue of the Jacobian coming from the set of equations (3.5). For a mutant host, this

Jacobian (when the mutant is rare i.e., yH = 0) takes the form

J =

0

BBBBBBBB@

fH(1� 2xH

KH

)� axS �axH d �fHxH

KH

0

�axS fS(1� 2xS

KS

)� axH d �ãxS d̃

axS axH fHS � d 0 0

0 0 0 f̃H
⇣
1� xH

KH

⌘
d̃

0 0 0 ãxS f̃C � d̃

1

CCCCCCCCA

(C.6)

Due to the block-upper-triangular form of J , its eigenvalues are given entirely by the eigen-

values of only its diagonal blocks. Note that the block-triangular form is generic for Jacobians

derived from such an invasion analysis. The core assumption that makes this true is that

the mutant being considered arose just once - the resident does not continuously make such

mutants. This in turn arises from the separation of ecological and evolutionary timescales.

We know the top-left 3x3 block has all eigenvalues with negative real part since we

began with a stable population dynamical equilibrium. Therefore, we need only check the

dominant eigenvalue of the submatrix corresponding to the mutant i.e., the bottom right

2x2 block. We want to search for the condition for instability of the equilibrium, when the

dominant eigenvalue has real part larger than 1. The eigenvalues of a 2x2 matrix can be

easily computed as the roots of det(J � �I) = 0. However, this quantity is not analytically

tractable in our case. We therefore turn to other methods to quantify (in)stability of the

mutant. In particular, we use the next-generation theorem, which has roots in mathematical

epidemiology, but is generally applicable (Hurford et al., 2010). This result gives, under some

conditions, an alternate characterisation of the standard stability condition of all eigenvalues
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having negative real parts. This substitute is obtained by calculating the eigenvalues of a

matrix arising from a particular kind of decomposition of the Jacobian of our system -

more generally, a decomposition of the matrix corresponding to a system of first-order linear

di↵erential equations. Concretely, suppose we have a linear system of ODEs given by

ẋ = Ax

and the matrix A can be decomposed as A = F � V , with some conditions on F and V .

Now define s(M) to be the maximum real part of all the eigenvalues of a matrix M , and

⇢(M) to be the maximum modulus of all the eigenvalues. The next-generation theorem

states that s(A) = s(F � V ) has the same sign as ⇢(F.V �1) � 1. The quantity ⇢(F.V �1) is

exactly the R0 value usually associated to the spread of virulent pathogens, and describes

the average number of o↵psring one mutant individual sires. Therefore, if we can find a

satisfactory decomposition J = F � V of J in (C.6), the fixed point in question is stable

if and only if ⇢(F.V �1) � 1 > 0. In many cases, there is a recipe for finding the matrices

F and V stemming loosely from the intuition that F is the matrix of rates of appearance

of j individuals per individual of type i, and V the matrix of disappearance rates, where

appearance and disappearance include both birth-death and migration between di↵erent

compartments. Recall here that we are studying the Jacobian because it controls the first-

order i.e., linearized behaviour of the dynamical system around a fixed point. This alternative

method is useful because the latter quantity is sometimes more analytically tractable and

interpretable than s(J), which is traditionally defined as the invasion fitness. But it is

identical to use them interchangeably since we only care about positivity and the next-

generation theorem shows that the traditional invasion fitness and ⇢(F.V �1) have the same

sign.

For our purposes, we use the decomposition

F =

2

4f̃H d̃

0 0

3

5 V =

2

4ãxS + f̃H(xH+2yH)
KH

0

�ãxS d̃� f̃C

3

5

which satisfies all the requirements – all entries of F are positive, all eigenvalues of �V

are negative, and all elements of V �1 are negative. We also require that f̃C < d̃ in the

mutant host case just as has been shown to be necessary for existence of a feasible resident

equilibrium. We now restrict ourselves to finding the condition under which ⇢(F.V �1)�1 > 0.
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This directly leads to the invasion criterion (4.5).

C.3 Branching is impossible with a separable invasion

fitness

Definition (Separable invasion fitness). Let s(y, x) be the invasion fitness of a mutant with

trait y in the background of a resident population of trait value x, with traits taking value

in some set T . We say that s(·, ·) is separable if there exists a function F : T ! R�0 such

that one can write s(y, x) = F(y)� F(x).

Recall that a mutant invades when its invasion fitness is positive (see Appendix A).

Therefore, if the invasion fitness is separable, a mutant with trait y invades exactly when

F(y) > F(x). We notice, then, that an invasion fitness is separable when there is some

function F(·) that acts e↵ectively like a fitness - if y has a higher value of F , then it invades,

and if it has a lower value of F it goes to extinction. Evolutionary trajectories hence

maximise this quantity, and therefore in this sense the fitness landscape does not change. If

the invasion fitness is separable, one can construct a fitness landscape F on the trait space

such that all permitted trajectories climb up this landscape. Now we prove the observation

that we made in the main text regarding Theorem (4.1.1). This proof relies on basic notions

developed in Appendix A.

Theorem C.3.1. Suppose s(y, x) is the invasion fitness describing the evolutionary dynam-

ics of a given system, and that it is separable. Then a given strategy x⇤
is uninvadable if and

only if it is convergence stable.

Proof. First we define the function

G(x) =
@s(y, x)

@y

����
y=x

which is the fitness gradient for an invading mutant of trait value y against a resident with

trait x. We shall use the fact that for any (C2) function,

dG(x)

dx
=

@2s

@x@y
+

@2s

@y2
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But since s is separable, there is a function F such that s(y, x) = F(y)�F(x). This implies

that @s

@y
= @F(y)

@y
since F(x) does not depend on y, and then @

2
s

@x@y
= @

@x
F(y) which is obviously

zero. So we have shown that
dG(x)

dx
=

@2s

@y2

The LHS determines convergence stability and the RHS determines (un)invadability, and

since they are equal, these notions cannot diverge!

Recall that a singular strategy is called a branch point i.e., a point at which evolutionary

branching occurs, if it is convergence stable but not uninvadable. A corollary of the above

result, then, is that separable invasion fitnesses do not admit branch points - evolutionary

branching is impossible. This is already a strong consequence since evolutionary branching is

a central notion in adaptive dynamics, but what else does this result teach us? It is perhaps

useful to think in terms of the contrapositive: if evolutionary branching is possible, then the

invasion fitness is NOT separable. This shows that this central notion of branching becomes

relevant exactly when there is no function that evolutionary trajectories are maximising over

time - exactly when the structure of the fitness landscape changes depending on the mutant

and resident trait values. Relatedly, it shows that convergence stability as a concept arises

purely when the invasion fitness is not separable, which is precisely the class of important

use-cases of adaptive dynamics.

In this sense, this result also sheds light on the connection between adaptive dynamics

and the classical theory of constant fitness landscapes. A constant fitness landscape is a

landscape where the fate of a mutant is decided purely by its own trait value. In adaptive

dynamics, the fate of a mutant is decided by its own trait value and also the trait of the

resident population. There is thus a jump in the “dimension” of the fitness landscape - more

numbers are now necessary to decide fitness. The result we proved in this section shows that

when the fitness landscape s(y, x) is x-invariant i.e. @s

@y
only depends on y so it “looks” the

same when looking from the x direction, we recover the regime of constant fitness landscapes.
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C.4 Independent evolution of the stickiness

As stated in the main text, there is a similar invasion criterion for stickiness evolution.

A mutant with trait value �̃i invades in a resident population of trait �i if

f̃C

d̃
>

fC
d

(C.7)

Relatedly, the invasion fitness of the mutant is given by

s(�̃i, �i) =
f̃C

d̃
� fC

d
(C.8)

The canonical equation for stickiness evolution thus reads

d�i

dt
=

1

2
µi⌫i x

⇤
i
(�H , �S) ·

"
1

d̃

@f̃C
@�̃i

� f̃C

d̃2
@d̃

@�̃i

#�����
�̃i=�i

(C.9)

Since fC increases with stickiness and d decreases, the fitness gradient is uniformly positive.

All the coe�cients before it are positive as well, and so we have shown that the stickinesses

must also monotonically increase.

Like the obligacies, stickiness evolution is also under the iron fist of the feasibility bound.

This is shown in Figure C.2, for the mapping from traits to ecological parameters given by

fC(�H , �S) = rC�H�S (C.10a)

d(�H , �S) = d0(1� �H�S) (C.10b)

Notice that the qualitative behaviour of the stickinesses is identical to that of the obligacies,

as we have remarked and explained in the main text, Chapter 4.
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Figure C.2: Independent evolutionary trajectories of stickiness. (a) For the map-
ping in (C.10), we simulated 100 independent evolutionary trajectories. The trajectories
monotonically increase with �S increasing faster, and then stop when the fixed point is no
longer stable. This behaviour is consistent with the analytical predictions made associated
with Equation (C.9). In the unstable region, the collective population density increases to
infinity and, due to dissociation, maintains a vanishingly minute population of independent
hosts and symbionts. (b) Using the mapping (C.10), we can also visualise the dynamics of
the growth rates. We observe that the independent growth rates decrease, and the collective
growth rate increases until it becomes high enough that the feasibility bound is violated.
Parameter values. fH = 8, fS = 30, rC = 10, KH = 100, KS = 200, a = 0.1, d0 = 50.
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C.5 Trajectories in the dependence-cohesion plane

For ease of reference, we present again the alternate trait map relevant for panel (a) of

Figure C.3

fH(⌦H , �H ,⌦S, �S) = rH(1� ⌦H) (C.11a)

fS(⌦H , �H ,⌦S, �S) = rS(1� ⌦S) (C.11b)

fC(⌦H , �H ,⌦S, �S) = rC

✓
⌦H + ⌦S

2

◆✓
�H + �S

2

◆
(C.11c)

d(⌦H , �H ,⌦S, �S) = d0

✓
1� �H + �S

2

◆
(C.11d)

a(⌦H , �H ,⌦S, �S) = a 2 R�0 (C.11e)
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Figure C.3: The bias towards mutual dependence is remarkably robust to model

choices. We change important model choices to test the robustness of this result. None
of the changes we have made a↵ect its validity. Base parameter values. fH = 8, fS =
30, rC = 10, KH = 100, KS = 200, a = 0.1, d0 = 50. Changes are made to these values in
the text that follows only when explicitly mentioned. (a) First, we change the map taking
traits to ecological parameters into one where the traits have additive e↵ects: the growth
rate of the collective is proportion to the arithmetic mean of ⌦H and ⌦S, etc. The full map
is presented in Equation (C.11). (b) Here, we set rH = rS and CH = CS while keeping
all other parameters fixed. (c) Now we set rS = 10rH and CS = 10CH to understand if
a much higher asymmetry in the growth rates and carrying capacities a↵ects evolutionary
trajectories. (c) Lastly we set d0 = 150 to understand if a much higher initial dissociation
rate does something. It does not, really.
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Figure C.4: Dependence-cohesion trajectories in the logistic model - the wild,

wild west. One can repeat the full exercise of finding co-evolutionary trajectories in the
dependence-cohesion plane for the logistic model. This gives the above preliminary results,
which are consistent - in the initial stages of evolution, at least - with the picture drawn by
the exponential model. The author presents them here only to place them on record, but
more analysis is required for a deeper understanding of this data.
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Seas have their source, and so have shallow springs,

And love is love, in beggars and in kings.

- Edward Dyer, in “The lowest trees have tops, the ant her gall”
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