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Abstract

Quadruply lensed quasars, where a lens galaxy produces four images of a background quasar,

are powerful tools that can be used to study the expansion of the universe, galaxy evolution,

and the nature of dark matter. These are a relatively rare occurrence, with fewer than a

hundred quadruply-imaged systems of quasars known today. The next generation of ground

and space-based telescopes like the Vera C. Rubin observatory and Euclid space telescope

are expected to detect thousands of such strongly lensed quasars, which will allow us to do

more precise science with these systems. In the first part of this thesis project, we explored

the use of quadruply lensed quasars to identify groups of galaxies at intermediate redshifts.

Quadruply lensed quasar images which are highly asymmetric point to the presence of a

group/cluster of galaxies in the vicinity of the lens which contributes to the lensing. We

studied the occurrence of such systems amongst the known quadruply lensed quasars and

whether a group or cluster has been identified. In the second half of the project, we developed

a prototype of a program to identify quadruply lensed quasar candidates in data from large

surveys. The program utilizes the algorithm discovered by Schechter and Wynne (2019) to

model quadruply lensed quasars. Initial tests of the program on mock lensed quasars and

non-lenses showed promising results. We obtained a true positive detection rate of lensed

quasars of over 90% and a false positive rate of ∼ 7%.
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Chapter 1

Introduction

Gravitational lensing is a phenomenon in which light from a distant bright source (e.g. a

quasar) is bent by the gravitational field of nearby objects (stars or galaxies). When this

bending of light from a background source can lead to multiple images of the same source

being seen, the phenomenon is called strong gravitational lensing [21, 14, 22]. Strongly

lensed quasars are amongst the simplest gravitational lens systems consisting of a point-like

source lensed by a galaxy-scale lens.

Quadruple-image systems of quasars are powerful tools to study galaxy evolution and

cosmology. If variability is measurable in the lensed quasars, then the time delay in arrival

of light from the different images can be used to measure the expansion rate of the universe

[4, 6, 37]. Image positions and fluxes of the multiple images can be used to model the mass

distribution of galaxies [40]. In fact, strong lensing provides much more information about

galaxy mass distribution than dynamical observables for galaxies beyond the local universe

[38]. Since lensing is sensitive to all mass, these images can be used to map the distribution

of dark matter in a galactic halo and find its density profile [36]. Strong gravitational lenses

have been used to detect substructures in dark matter halos of galaxies and place constraints

on the nature of dark matter [19, 13].

One interesting application of quadruply lensed quasars is to use quads with highly

elliptical configurations to find groups or clusters of galaxies in the vicinity of the lens that

is causing this sheared configuration. Usually, images of the four quasars are distributed on

a circle known as the Einstein Ring. There are exceptions, as in the lensed QSO B1422+231

1



2 CHAPTER 1. INTRODUCTION

[25] which is interesting because the configuration of the four images is not symmetrical,

indicating a large external perturbation to the lensing [11] by a group or cluster of galaxies.

This group was then directly observed using X-ray observations, and it was found that

the lens galaxy belongs to this group. Since then, there have been several observations of

quadruply lensed quasars with large external shear. If there is a large enough sample of lenses

with high external shear, they can be used to derive a catalogue of groups at intermediate

redshifts (where these lenses are usually found) which can aid in galaxy evolution studies.

The aim of the first part of this project was to survey the literature on lenses with large

external shear, to find how many lenses with large external shear have been found, and to

see if galaxy groups responsible for the shear have been identified.

While quadruply lensed quasars are very useful, they are also a rare phenomenon. There

have only been around 60 quadruply lensed quasars discovered till date (a compilation of

all lensed quasars discovered can be found here). Future surveys like the LSST, Euclid,

and WFIRST are expected to detect hundreds of lensed quasars. But we need an efficient

way to scour through terabytes of telescope data and identify potential lens candidates. For

the remaining part of the project, we worked on building a program that can conduct an

automated search for quadruply lensed quasars in large data sets.

There have been many searches for strong lenses, through imaging and spectroscopic

surveys, but most of them were aimed at detecting lensed galaxies rather than just quasars

[5]. Among the early large survey lensed quasar searches, the Cosmic Lens All-Sky Survey

[20] found the largest sample of lensed radio quasars by identifying images with multiple

quasars. The SDSS Quasar Lens Search used morphological and colour based selection

on spectroscopically confirmed SDSS quasars [24]. In more recent years, there have been

searches for lensed quasars using various methods which include magnitude and/or colour

cuts [26], machine learning techniques [1], using the superior Gaia resolution to resolve

blended sources and looking for multiple detections in candidates selected from other surveys

[17], and using the time variability information of quasars [8].

In this thesis project, we focussed on a novel method to detect quadruply lensed quasars

based on modelling the quasar image configurations (first demonstrated in [18]). The idea

is that if a set of point sources are multiple images of the same quasar, then they must fit a

lens model better than most random sources. The gravitational lens search robot CHITAH

https://research.ast.cam.ac.uk/lensedquasars/quads.html
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[7] is an attempt to search for lensed double and quadruple quasars using a similar method-

ology. Our program uses a new algorithm to model quadruply lensed quasars discovered by

Schechter and Wynne (2019) [29]. This is a simple method that exploits the geometry of

lensed image configurations to fit a Singular Isothermal Ellipsoid model. The goodness of

fit can be used to discriminate between lenses and random points of light. The advantage of

this modelling technique is that it is much simpler and faster than conventional modelling

of lenses, allowing us to run it on large data sets. Our program is specialised in searching

only for quadruply lensed quasars. We have focussed on ensuring the program is fast and

efficient so that we can run it on entire catalogs produced by surveys. We have tested the

performance of the program on mock lensed quasar images based on the Hyper Suprime-Cam

(HSC) survey. In the near future, we plan to run the program on actual data from the HSC

survey.

This thesis is divided into four major chapters. In chapter 2 we discuss in brief the

theory of gravitational lensing. we introduce the formalism of Fermat potential and discuss

characteristics of multiply imaged quasar systems qualitatively, using the ideas of critical

curves and caustics. In chapter 3, we discuss the work done in the first half of the thesis

project on studying systems with large external shear. Chapters 4 and 5 are devoted to the

second half of the thesis project. In chapter 4, we describe the algorithms being used in the

program and the sample of mocks that were used to test the program. The results of these

tests with mock lenses and non-lenses are discussed in chapter 5. Finally, we give a glimpse

of the future directions of work.

https://hsc.mtk.nao.ac.jp/ssp/survey/
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Chapter 2

A Background on Gravitational

Lensing Theory

The theory of gravitational lensing is based on the premise that light travels along null

geodesics of a spacetime, as predicted by General Relativity. Thus, a theoretical model for

gravitational lensing requires us to solve the geodesic equations to find the trajectory of a

ray of light. This task is simplified by the assumptions made in GL theory.

The first assumption is that the gravitational field involved in lensing is weak. This is

true if the Newtonian potential of the lens Φ ≪ c2, and the velocity of the lens v ≪ c. For a

spherically symmetric mass distribution, this implies that the impact parameter of the light

ray ξ, is much greater than the Schwarzschild radius R, ξ ≫ 2GM/c2. This is true for most

astrophysical situations except, say, lensing by black holes or neutron stars.

Since the peculiar velocities of lensing galaxies are usually small compared to the speed

of light, we will assume a stationary metric. The linearised metric for an isolated, stationary,

perfect fluid source is given by

ds2 = (1 +
2U

c2
)c2dt2 − (1− 2U

c2
)dx2 (2.1)

where U(x) is the Newtonian potential of the mass distribution. For a point source at

the origin, U(x) = GM
|x| .

5



6 CHAPTER 2. A BACKGROUND ON GRAVITATIONAL LENSING THEORY

The second assumption, which is also very justified in most physical scenarios, is that

the distances between the lens and source and lens and observer is much larger than any

dimension of the lens. This means that the ray of light travels mostly undeflected between

the source and lens and from lens to observer and is only deflected in a small region very

close to the lens.

The above two assumptions also imply that the angles subtended by the source and

lens as well as the deflection angle (defined as the angle between the initial and final ray

directions) are all small.[21][31]

2.1 Fermat Potential and Time Delay

The path of a light ray under the assumptions of gravitational lensing can be found with the

help of the following theorem,

Theorem 2.1.1. (Fermat’s principle) Let S be an event (”source”) and l a time-like

world line (”observer”) in a spacetime. Then a smooth null curve γ, from S to l is a light

ray (null geodesic) if, and only if, its arrival time τ on l is stationary under first-order

variations of γ, within the set of smooth null curves from S to l [33],

δτ = 0

The proof of this theorem can be found in Schneider et al.1992 ([33]).

2.1.1 Geometry of lensing and lens equation

Consider the geometry of the source, lens, and observer as shown in Fig(2.1). By the second

assumption of lensing, we can project the lens and source mass distributions onto planes

at the mean source and lens distances, Ds and Dd. The positions of the source, lens, and

observer are given by pairs of angles β, θ, and α̂. Since all angles are small, the distance in

the lens plane can be approximated as ξ = Ddθ, and that in the source plane, η = Dsβ.
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Figure 2.1: The geometry of lensing (Source: [31])

For a ray of light originating from a given point on the source plane, we can find a

relationship between the point of intersection in the lens plane (”image position”) and the

deflection angle using the simple geometry defined above.

Dsβ = Dsθ −Ddsα̂ (ξ) =⇒ β = θ −α(Ddθ) (2.2)

where, α = Dds

Ds
α̂, is the scaled deflection angle. This angle depends on the mass distri-

bution of the lens for a given source position and lensing geometry.

2.1.2 Fermat potential

In the thin lens and small deflection approximations, we assume that the actual ray path

can be approximated as a combination of the incoming ray from S that will intersect the

lens plane at I (Fig 2.1) and the outgoing ray from I to the observer O.

Let the ray originate from the source at t = 0, then the arrival time of the ray at the
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observer O according to the metric in (2.1) is

t =
1

c

∫ (
1− 2U

c2

)
dl =

l

c
− 2

c3

∫
Udl (2.3)

where l is the Euclidean path length and the second term is the contribution to the travel

time due to the gravitational potential of the lens (Shapiro delay).

We can find the difference between the Euclidean path length of the ray in the presence of

the lens and the path length between S and O without the lens. This is called the geometric

time delay and is given by:

c∆tgeom =
DdDs

2Dds

(θ − β)2

Similarly, we can evaluate the gravitational time delay. Define a two dimensional deflec-

tion potential ψ(θ) as

ψ (θ) =
2Dds

c2DdDs

∫
U (θ) dl =

4GDdsDd

c2Ds

∫
d2θ′Σ (θ′) ln (|θ − θ′|) + const (2.4)

Adding the two contributions, the total time delay of a ray relative to an undeflected ray

is given by

c∆t = ϕ(β,θ) + const where ϕ(β,θ) =
DdDs

Dds

(
1

2
(θ − β)2 − ψ(θ)) (2.5)

ϕ(θ,β) is called the Fermat potential.

Theorem 2.1.1 says that the path of the light ray is given by the stationary points of the

Fermat potential. Setting ∇θϕ = 0, we get back the lens equation Eq(2.2):

β = θ −α(θ)
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The deflection angle is given by, α = ∇θψ. The scaled deflection angle can be written

in terms of θ and a dimensionless surface mass density κ(θ) as:

α(θ) =
1

π

∫
d2θ′κ (θ′)

θ − θ′

|θ − θ′|2
(2.6)

where κ(θ) is called the convergence and is given by :

κ(θ) =
Σ (Ddθ)

Σcr

where Σcr =
c2

4πG

Ds

DdDds

(2.7)

Notice from Eq (2.6) and (2.7) that and ∇2
θψ(θ) = 2κ(θ).

The constant in Eq (2.5) is the same for all rays from the source plane to the observer.

Hence if we have multiple images, and we know image positions and redshifts of the source

and lens, we can calculate the difference in arrival times of light from any two images,

c(t1 − t2) = ϕ(β,θ1)− ϕ(β,θ2)

2.1.3 Cosmological corrections to the lens mapping equations

Till now we have investigated lensing in asymptotically flat and static spacetimes. This

need not be true in our universe on the large scale. But the equations derived till now are

mostly correct even in the realistic cosmological models we assume, albeit with a few small

corrections.

Firstly all Euclidean distances Dd, Ds, and Dds get promoted to angular diameter dis-

tances. The fermat potential (2.5) picks up a factor of (1 + zd) where zd is the redshift of

the lens [32].

ϕ(β,θ) =
Dang
d Dang

s

Dang
ds

(1 + zd)(
1

2
(θ − β)2 − ψ(θ)) (2.8)
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The lens equation 2.2 remains the same except all distances are now angular diameter

distances. Angular diameter distances depend inversely on the Hubble constant Ho. If

we have a variable source, we can measure the time delay between two images using the

variation. Then, given all redshifts and image positions, for a given model of the mass

distribution Σ(θ) and an estimate for other cosmological parameters, we can calculate Ho

from 2.1.2. In the past couple of decades, this technique has been used to provide independent

precise measurements of the Hubble’s constant, in an attempt to resolve the Hubble tension.

2.2 Magnification

Gravitational lensing preserves surface brightness of the source. Recall, surface brightness is

defined as the flux density per unit angular area of an extended object.

I(image)(θ) = I(source)[β(θ)] (2.9)

The proof of the above statement can be found in Schneider’s book ([34]). For a small solid

angle dΩ, Flux = Surface Brightness × dΩ. Therefore the ratio of flux densities of the

unlensed image to the lensed image is given by,

µ =
Fluximage
Fluxsource

=
dΩimage

dΩsource

=
d2θ

d2β

This is exactly true for infinitesimal sources. The relation between area elements at θ

and β is given by the determinant of the jacobian matrix of the transformation between the

two. Therefore, we can write the magnification as

µ =
1

|det(A)|
where Aij =

∂βi
∂θj

(2.10)

2.2.1 Magnification matrix and distortion of images

Form of the magnification matrix: Consider the curvature tensor of fermat’s potential,
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ϕij :=
∂2ϕ

∂θi∂θj
= δij −

∂2ψ

∂θi∂θj
(2.11)

Since ∂ψ
∂θi

= αi, the curvature tensor is equal to the jacobian matrix of the transformation

between β and θ, i.e., from 2.10 and 2.2,

ϕij = Aij

. We know that,

κ =
1

2
(ψ11 + ψ22) (2.12)

Define,

γ1 =
1

2
(ψ11 − ψ22) and γ2 = ψ12 = ψ21 (2.13)

Then the Jacobian matrix can be written as,

A = (1− κ)

(
1 0

0 1

)
− γ

(
cos(χ) sin(χ)

sin(χ) − cos(χ)

)
(2.14)

where γ =
√
γ21 + γ22 is called the shear and, tan(χ) = γ2/γ1. From (2.10), µ = 1

(1−κ)2−γ2 . A

has eigenvalues λ± = 1− κ± γ.

Shape of images: Suppose a source centered at βo produces two images cenetered at θA

and θB. If the angular size of the images are much smaller than the extent of the lensing

potential, then we can assume a linear relation between image and source shapes. For a

point on the image δθ away from θA,

δθA = (
∂θ

∂β
)Aδβ = MAδβ (2.15)

Similarly, δθB = MBδβ. Here, M(θ) = A(θ)−1, is the Magnification matrix. If in

(2.14) the shear γ = 0, then MA will be a diagonal matrix and each dimension of the image

will get magnified by a factor of 1/(1−κ) relative to the source. Thus the convergence term

magnifies or de-magnifies the source without changing its shape. Whereas if we have only
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the shear term γ, then we get a general shear transformation.

We cannot measure directly the matrices MA or MB since we do not observe the source.

What we can measure is the transformation matrix between the two images,

δθB = (MBMA
−1)δθA = MBAδθA (2.16)

The determinant of this matrix is the ratio of the fluxes of the two images.

2.3 Classification of Images and the Odd Number The-

orem

First a few definitions.

Definitions 2.3.1. Critical Curves: The set of lines in the image plane where det(A) = 0

i.e., the magnification diverges.

Caustics: The curves in the source plane that the critical curves map to according to the

lens mapping equation (2.2).

Ordinary Images: Images for which det(A) ̸= 0 i.e., images that do not form on critical

curves.

Ordinary images thus form where the Fermat potential attains an extremum, ∇ϕ = 0

and the Jacobi matrix ϕij does not have any zero eigenvalues. Extrema of ϕ can be of three

types,

Type I: Minimum of ϕ. The minimum is characterized by positive definiteness of A.

This means that both eigenvalues of A are positive. det(A) > 0 and Tr(A) > 0.

1 ≥ (1− κ) > γ > 0, µ ≥ 1

Type II: Saddle point of ϕ. The saddle point is characterized by eigenvalues of opposite

sign. det(A) < 0
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(1− κ)2 < γ2

Type III: Maximum of ϕ. The maximum is characterized by negative definiteness of A.

This means that both eigenvalues of A are negative. det(A) > 0 and Tr(A) < 0.

(1− κ)2 > γ2, (1− κ) < γ, κ > 1

The sign of the determinant of A is called the parity of the image. Images of type I and

III have positive parity and images of type II have negative parity. Positive parity images

preserve the handedness of images whereas negative parity images reverse it. Let two vectors

X and Y in the source plane map to two vectors W and Z in the image plane. Handedness

is then defined as the sign of X × Y or W ×Z.

Odd Number Theorem: Consider a geometrically thin GL with a smooth surface mass

density κ(θ) which decreases faster than |θ|−1 as |θ| → ∞. Let nI , nII and, nIII be the

number of images of each of the three types and let n be the total number of images. Then,

Theorem 2.3.1. Under the above assumptions, provided the source does not lie on a caustic,

(a) nI ≥ 0 and n = nI = 1 for large β (i.e., source position tending to infinity).

(b) n <∞ and images are isolated, i.e., they cannot accumulate.

(c) nI + nIII = 1+ nII . Therefore, total number of images n = 1+ 2nII is odd and n > 1 iff

nII ≥ 1.

The proof for the above theorem can be found in [35]. The odd number theorem says

that all gravitational lens systems produce an odd number of images. They will have at least

one image that corresponds to a minima of the potential and hence be magnified relative to

the source.

The most common configurations produced by galaxy scale lenses are 1, 3, and 5 image

geometries. When the source is far from the center of the lens, one image is produced. In

other cases, we see 2 or 4 images. This is because one image is always produced on top of

the lens galaxy and is usually demagnified.
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2.4 Critical Curves and Caustics

Qualitative properties of lensed systems like the number and type of images and their rough

positions can be deduced by observing the position of the source with respect to the caustic

curves.

Consider a point source. If the source is far away from the lens center, the Fermat

potential has only one minimum. For all real lenses, the deflection angle tends to zero as |θ|
tends to infinity. Therefore for large enough |β|, θ ≈ β.

At a caustic, the determinant of the Jacobian, det(A) = 0. Therefore, the magnification

of the point source formally diverges (though in reality, we don’t have perfect point sources,

and the geometric optics approximation breaks down here). A source close to a caustic

produces a highly magnified image close to the corresponding critical curve. When the

source crosses this caustic (in the direction towards the lens center), two images are created

on either side of the critical curve. If the source moves past this caustic in the opposite

direction, these two images will merge and disappear.

The eigenvalues of A must vary continuously as the source moves around in the source

plane. At a critical curve, one of the eigenvalues of A goes to zero. Hence, this eigenvalue

has opposite signs on either side of the critical curve. Therefore, critical curves divide the

lens plane into regions of positive and negative parity.

From Eq (2.15) we can see that if one of the eigenvalues of A goes to zero, then the image

will be highly stretched in the direction of that eigenvector. Extended sources near caustics

have images that are stretched into arcs.

2.5 A Simple Model: The Circularly Symmetric Lens

We will wrap up this lightning review of the theory of gravitational lensing by considering

a simple model of an axially symmetric lens. While in reality, perfectly circular/spherical

lenses do not exist, some of the general features we encounter in this case carry forward to

more complicated models.
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Lens Equation: For circularly symmetric lenses, the surface mass density is a function of

only the magnitude of the image position vector, Σ(θ) = Σ(|θ|). We will discuss a general

circularly symmetric lens without alluding to a specific form of Σ(θ) for now. The deflection

angle points inwards radially and is given by:

α(θ) =
2

θ

∫ θ

0

θdθκ(θ) (2.17)

The lens equation can be written as,

β = θ[1− α(θ)/θ] = θ[1− ⟨κ(θ)⟩], (2.18)

where

⟨κ(θ)⟩ = 2

θ2

∫ θ

0

θdθκ(θ) = α(θ)/θ (2.19)

is the average convergence inside a radius of θ.

Critical curves and the Einstein Radius: We can use the lens equation to calculate

the Jacobian matrix A. It turns out that we can write the magnitude of the shear as

γ = (⟨κ(θ)⟩ − κ(θ)). The angle of the shear χ is the same as the polar angle, i.e., θ =

θ(cos(χ), sin(χ)). The eigenvalues of A are 1−⟨κ(θ)⟩ and 1+ ⟨κ(θ)⟩− 2κ(θ). As we can see,

circularly symmetric lenses have two circular critical curves at θ defined by setting each of

the eigenvalues to zero. The critical curve obtained by setting the first eigenvalue to zero is

called the tangential critical curve. This is because images formed on this critical curve are

elongated in the tangential direction (along the boundary of the circle). The other critical

curve is called the radial critical curve, since images are elongated in the radial direction.

The tangential critical curve is defined by the condition ⟨κ(θ)⟩ = 1 which means that

the mean surface mass density inside this radius is always equal to the critical density. The

radius of this critical curve is called the Einstein radius. From Eq (2.18) we can see that,

every point on this critical curve is mapped to the point β = 0 in the source plane, i.e., the

tangential caustic degenerates to a point because of the high symmetry.

The radial caustic is usually a circle in the source plane. If a source is exactly aligned

with the center of the lens, then its image is stretched out into a ring at the Einstein radius
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(a) Source outside the radial caustic produces a
single image outside both critical lines

(b) 2 Image geometry: Source crossing the first
caustic produces two additional images on either
side of the corresponding critical line. The cen-
tral image is demagnified.

(c) Source at the center produces an ”Einstein ring”.

Figure 2.2: Circularly symmetric lens model: A circularly symmetric lens model. The left panel of
each image shows the lens mass profile (green), caustics (yellow), and source position (blue dot). The right
panel shows the deflection potential (green), critical curves (yellow) and image positions (red dots). These
images were generated from the SimpLens [28] app found on Prasenjit Saha’s webpage.

along with an image at the center of the lens (θ = 0). If we can identify arcs or images that

trace the Einstein radius, we can use this to calculate the mass enclosed within this radius.

The Einstein radius is also the best determined parameter of the lens since all models find

almost the same value for it (ref?).

The tangential caustic point is sensitive to small perturbations that break the circular

symmetry. In the presence of any ellipticity in the mass model of the lens or external

perturbation, this caustic unfolds into a curve of finite extent (usually with an astroid-like

shape). If the source crosses this curve, two additional images are produced at the tangential

critical curve.

https://www.physik.uzh.ch/~psaha/lens/simplens.php
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Figure 2.3: Non-circular lens model: Circularly symmetric lens with external perturbation. The
tangential caustic is now an astroid. A source inside this caustic produces five images of which four are
usually detectable.
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Chapter 3

External Shear - Galaxy Group

Connection

3.1 External Shear

External shear refers to the perturbation to the potential of the lens by an external source

of mass. Most galaxies are today believed to exist in complex environments consisting of

other galaxies in groups or clusters. The potential of this group or cluster is expected to

contribute to the lensing by the lens galaxy. Even if we assume a perfectly spherically

symmetrical galaxy, this symmetry will be broken by the external perturbation.

Since the scale of groups and clusters of galaxies is much larger than the scale of lensing

by an individual galaxy, we can safely assume that the potential due to this group changes

slowly over the extent of the Einstein ring of the lens galaxy (∼ 1”). In order to find

the contribution of the group/cluster to the lensing, we can Taylor expand the deflection

potential (Eq 2.4) about the center of the lens galaxy. Assuming the lens galaxy is at the

center of the cluster/group, the first term with observable consequences is,

Ψp(θ) ≃
1

2
θ · ∇∇Ψp · θ =

1

2
κp|θ|2 −

1

2
γp,1(θ

2
1 − θ22)− γp,2θ1θ2 (3.1)

The external convergence term, κp, only makes a difference when measuring time delays.

19
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This is because, in the lens equation derived from this potential, we can re-scale all angles

by the convergence. This will only lead to a change in the source position and deflection

potential. If we do not have an independent estimate of the lens mass, then neither of the

quantities are observable. The rescaling of the deflection potential is equivalent to adding

a sheet of constant surface density to the lens mass model. This is known as ”mass sheet

degeneracy” [10]. The external shear terms γp leads to a change in the image configuration.

In a perfectly circularly symmetric lens, the inner caustic collapses to a point aligned

with the center of the lens. If a source is placed exactly behind the lens, it is stretched onto

a ring around the lens (Fig 3.1a). A tiny perturbation causes this ring of images to break

up into four images arranged on a circle (Fig 3.1b). This perturbation could either be a

deviation from circular symmetry of the mass distribution or an external perturbation from

another galaxy or a group of galaxies in the immediate environment of the lens.

(a) γ = 0 (b) γ = 0.01 (c) γ = 0.2

Figure 3.1: Effect of external shear: A circularly symmetric lens with external shear γ and with the
source placed at the center of the lens potential. The green contours show the lens mass density profile, the
yellow contours are critical curves, and the red dots are image positions. These images were generated from
the SimpLens [28] app found on Prasenjit Saha’s webpage.

As the strength of this perturbation increases, the configuration of the four images be-

comes more and more elliptical (Fig 3.1c). Therefore, a large eccentricity of the ellipse that

passes through the four images indicates a large perturbation. Although the perturbations

due to the ellipticity of the mass distribution and external mass behave similarly, we do not

expect lens galaxies to usually have very large ellipticities. Hence, such systems are usually

indicative of a large external shear.

https://www.physik.uzh.ch/~psaha/lens/simplens.php
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3.1.1 External Shear - Galaxy Group Connection

As explained above, external shear is the quantification of the perturbation due to an external

galaxy or group of galaxies. Therefore, it is reasonable to assume that quadruply lensed

systems that require a large external shear in the modelling of the lens potential could be

part of a group of galaxies. An example to support this hypothesis can be found in the

paper by Raychaudhury et al [25], where they study the lens B1422+231 - a system that

is dominated by external shear. The authors were able to detect X-ray emission from the

group that the lens belongs to and this group is able to account for all the external shear.

In line with this, during the initial part of the project, we sought to use quadruple lenses

with large external shear to find galaxy groups associated with them. If we have a large

enough sample of lenses with significant external shear, we can use that to derive a sample

of galaxy groups at intermediate redshifts, which are often hard to detect directly.

As a first step towards this, we decided to do a survey of all the quadruple lenses discov-

ered till now in order to find the fraction of lenses with large external shear.

3.2 Apparent Shear Ellipse

If we were to fit ellipses to the four image positions in quadruple lenses, we know that lenses

with higher external shear should have ellipses with larger eccentricities.

Saha and Williams [27] describe a way to do this in something they call the apparent

shear ellipse. They consider ellipses of the form,

1

2
(θ − β′)

2
+

1

2
γ′1
(
θ2x − θ2y

)
+ γ′2θxθy = c (3.2)

This looks like the fermat potential (Eq 2.5) for a lens with external shear (Eq 3.1)

without the contribution from the convergence term or deflection potential of the galaxy.

Equation (3.2) has five unknown parameters: βx, βy, γ
′
1, γ

′
2, and c. These can be determined

by demanding the four images lie on the ellipse and that the total shear γ
′
=
√
γ

′2
1 + γ

′2
2 is

minimized.
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γ
′
is called the apparent shear and is indicative of the actual shear. Apparent shear is

related to the eccentricity of the ellipse in a simple way,

e2 =
2γ

′

1 + γ′

As seen above, eccentricity increases monotonically with apparent shear.

3.3 Results

We ran the code to fit apparent shear ellipses on a sample of 38 quadruple lens systems out

of the ∼ 60 quadruple lenses that have been discovered.

The histogram of the fit can be found below. The sample had an average apparent shear of

0.228 and a standard deviation of 0.175. We then selected 6 quads with large apparent shear

and searched the literature to see if the environments of these quads have been investigated,

the results of which have been summarized below.

Figure 3.2: Histogram of apparent shear distribution

3.3.1 Notes on quads with large apparent shear

J2211-0350: Apparent Shear = 0.72. Modelled in Daniela Bettoni et al 2019 [3]. They

find an SIE+XS fits the images well with q = 0.66 and external shear, gamma= 0.31. This
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lens is found on the edge of the cluster RXC J2211.7-0350 to which they attribute the large

external shear.

J0029-3814: Apparent Shear = 0.62. Modelled by STRIDES 2022 [30] and TD-

COSMO XI [9]. Both find an external shear of ∼ 0.2. TDCOSMO say it is ”possibly due to

the overdense environment to the North of the lensing system”.

2M1134-2103: Apparent shear = 0.60. Modelled by Rusu et al, 2019 [26]. They

fit an SIE+XS model and find external shear of 0.39 and axis ratio of 0.80. The shear is

attributed to a nearby galaxy and a possible group of ∼ 50 or more galaxies, though only a

few galaxies of the proposed group are visible.

DES J0053-2012: Apparent shear = 0.48. Modelled by Lemon et al, 2020 [16].

They find that this system is not adequately modelled by a single SIE+XS but requires

one to explicitly fit an SIE to a companion galaxy (redshift undetermined). This gives an

external shear of 0.13.

J0818-2613: Apparent shear = 0.45. Modelled by Lemon et al, 2022 [15] and Stern

et al 2021 [39]. Lemon et al find that it requires an SIE + XS with mass ellipticity = 0.6

and external shear = 0.38 perpendicular to mass ellipticity and a large Einstein radius (∼
3”). No group or cluster found. Stern et al suggest that a group or cluster may lie along the

line of sight.

PSJ0147+4630: Apparent shear = 0.32. Modelled by Berghea et al, 2017 [2]. SIE

+ XS model requires external shear of 0.14 and an ellipticity of 0.17. No mention of groups

or clusters.

As we can see, in most cases, a search for groups has already been done for the small

number of lenses with large external shear. We realised that further work in this direction

was limited by the number of quadruply lensed quasars that have been discovered. This

motivated us to shift our focus toward searching for quadruply lensed quasars which we

worked on during the second half of this project.
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Chapter 4

Lens Search: The Algorithm

In the second half of this master’s thesis, we worked on building a program for the automated

detection of quadruply lensed quasars in data from imaging surveys. The code we built will

work on image cutouts from telescope surveys and will classify images with four point-like

sources as being potential lens candidates or random sources of light. We have focused

on developing this software to search for quads in data from the HSC survey. The code is

divided into three parts. The first part will use quasar and lens color information to subtract

lens light from the image. The second part will use this lens-subtracted image to identify

the positions of the four point sources. Finally, the third part will use these positions to fit

the Schechter-Wynne [29] model and determine if the point sources are lensed quasars or

four-point sources aligned by chance.

At the time of writing this thesis, we built and tested the last two steps of the program

- finding the positions of the quasars and fitting the Schechter-Wynne model. In the rest of

this chapter, we will describe in detail the two parts of the code we have written.

4.1 Position Finder

The Position Finder code finds accurate astrometry of the quasar images by identifying local

peaks in pixel brightness. If all four positions have not been found in the first run, the

algorithm improves its performance by subtracting the positions found in the first run from

25
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the image and attempting to find the remaining positions from the subtracted image.

4.1.1 The algorithm

1. Find all the local peaks in the lens-subtracted image.

We are using the find peaks() function from the photutils module for local peak

detection. find peaks() finds peaks in an image as the maxima above a given

threshold in a specified local region. The local region is defined by a square

box of a particular box size around each pixel. Two maxima are separated by

at least box size pixels. Since quasars can be considered as point sources whose

flux is smeared by a psf, we can expect quasar images to have clear peaks at the

position of the image. The box size is set as 5 pixels for this first run. Threshold

is defined as mean background level + 5 × (standard deviation of bg). This is

the minimum value a pixel must have to be considered as a local peak. The

threshold is chosen keeping in mind the threshold for considering a pixel to be

part of a source in the HSC survey. Background mean and standard deviation are

calculated using sigma clipped stats() function from photutils. This estimates

background statistics by sigma-clipping any sources. The image cutout without

the central region (where the lens lies) is used to estimate the background. Once

a peak is found, find peaks() finds the centroid within the local region centered

on the peak pixel. It does this by fitting a 2D gaussian to the pixels. This gives

us the position of the image up to sub-pixel precision.

2. Identify contaminants that do not belong to the lens system.

The image cutout, which is centered on the lens, might have other background/

foreground galaxies and stars. Since the angular scale of the lens system is ∼ 1”,

any peak found outside this radius from the center is not expected to belong to

the lens system. In this step, we identify all peaks outside a radius of 2” as being

contaminants.

3. If less than 4 quasar images have been found, create a model image that replicates the

fluxes and positions of the quasars and contaminants

This is done by creating a model image with positions found in the previous step,

starting with random magnitudes for the images. This model image is convolved

https://photutils.readthedocs.io/en/stable/
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with the appropriate psf produced by the HSC survey. In order to obtain the

correct magnitudes of the different images, the code minimizes the sum of the

squared difference between the two image arrays, normalized by the variance of the

background. We use a global optimization algorithm differential evolution()

from the Scipy library for this.

4. Subtract the model image from the actual image and find the remaining peaks

On subtracting the two images, the code uses find peaks() to find the remaining

quasars. This time, we use a box size of 3. Suppose we found x quasars in the

first run and need to find n = 4−x more quasars. If more than n peaks are found

by the peak finder in this run, then it selects only the brightest n peaks to return.

This is done because the magnitude modeling will have some errors. These errors

lead to an imperfect subtraction with residual light left behind by the subtracted

quasars. This residual light will be dimmer than the remaining quasars to be

found in most cases. Hence choosing the brightest n peaks will ensure that we do

not pick up such residuals.

5. If extra quasar(s) were found in the previous step and all 4 quasars have not been found

yet, repeat steps 3,4,5.

The flux modeling, subtraction, and peak finding steps are repeated until (a)

Four quasar positions are recovered, or (b) The number of peaks found does not

increase from the previous run of the three steps.

(a) Mock lensed quasar image
(b) Model image replicating two
quasar positions and fluxes

(c) Model image subtracted
from actual image.

Figure 4.1: Position Finder Demonstration: An sample mock lensed quasar image run through the
Position Finder. Fig (a) is the actual mock lensed quasar image. In the first run Position Finder identified
two of the four quasar images. It then created a model image replicating the flux and positions of the
two quasars (Fig (b)). On subtracting the actual image from the model image, we are left with the two
unidentified quasars in Fig (c). Position Finder ran the peak finding algorithm again on this image and
successfully found the remaining two positions.
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4.2 Schechter-Wynne Algorithm

Schechter and Wynne in 2019 [29] found a simple way to model quadruply lensed quasars

using an SIEP model. Drawing from the work of Witt [41], they showed that the lensed

quasar positions due to a lens with a Singular Isothermal Ellipsoid (SIE) potential lie at

the points of intersection of an “amplitude” ellipse and a rectangular hyperbola (“Witt

hyperbola”). Therefore, given four points of light, we can try to fit the prescribed ellipse

and hyperbola passing through the points. The goodness of fit can be used as a figure of

merit to distinguish between lenses and random points of light.

4.2.1 The amplitude ellipse and Witt hyperbola

SIE is a mass model for galaxies with elliptical isodensity contours. It is widely used to

model lens galaxies and is quite successful in approximating actual lens potentials [12]. Let

us refer to the frame in which the axis of the deflection potential is aligned with the x and y

axes as the “aligned frame”. The deflection potential for the SIEP in this frame is given by:

ψ(x, y) = a2

√
(x− xg)2

a2
+

(y − yg)2

q2a2
(4.1)

where (xg, yg) is the position of the lens galaxy, a is the x semiaxis, and q is the axis

ratio. Given this potential, there exists an ellipse centred on the source position, with axes

aligned with the potential, and which passes through all four image positions [42] called the

amplitude ellipse,

(x− xs)
2

a2
+

(y − ys)
2

a2/q2
= 1 (4.2)

The axis ratio of the amplitude ellipse, 1/q, is the inverse of that of the potential. The

images also lie on a rectangular hyperbola whose asymptotes are aligned with the potential

and amplitude ellipse [41].
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(x− xg)(y − ys) =
1

q2
(y − yg)(x− xs) (4.3)

The hyperbola passes through both the source and lens positions.

4.2.2 The algorithm

Schechter and Wynne [29] in their 2019 paper have detailed a recipe for modeling the quasar

positions using the amplitude ellipse and Witt hyperbola. The algorithm is as follows:

1. Find the rectangular hyperbola passing through the four image positions in the observed

frame.

We can write the general equation of a rectangular hyperbola as A(x2−y2)+xy+
Cx + Dy + E = 0. The four quasar positions will give us four linear equations

with which we can determine the unknown coefficients A, C, D, and E.

2. Find the image coordinates in an “aligned” frame with axes parallel to the asymptotes

of the hyperbola.

In general, the observed frame need not be the same as the aligned frame. The

hyperbola that we fit in the first step will give us the angle which the aligned

frame makes with the observed frame,

θ = −1

2
arctan(2A) (4.4)

We can then find the image coordinates in this frame.

3. Find the amplitude ellipse passing through the four image positions and aligned with

these axes.

The equation of the amplitude ellipse in the aligned frame is given by Eq 4.2. We

can use this equation to fit the image coordinates found in step 2 (which are in

the aligned frame). The equation of the amplitude ellipse in the aligned frame is

given by x2+Cey
2+Dex+Eey+Fe = 0, where Ce = q2, De = −2xs, Ee = −2ysq

2,

and Fe = x2s+q
2y2s−a2. From the above relations, we can find the source position

(xs, ys), axis ratio q, and the semi-axis a.
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4. Find the two images subtending the smallest angle from the center of the amplitude

ellipse.

5. Evaluate Witt’s equation 4.3 at the positions of these two images to solve for the un-

known coordinates of the lensing galaxy, (xg, yg).

The equation of the Witt hyperbola in the aligned frame can be written as

Bhxy+Dhx+Ehy+Fh = 0, where Bh = q2−1, Dh = yg−ysq2, Eh = xs−xgq2, and
Fh = xgysq

2 − ygxs. We know q, xs, and, ys from step 3. Therefore we need only

two of the quasar positions to find the remaining unknown coefficients (xg and yg)

in the equation above. If our lens is exactly modeled by an SIE potential, then

the hyperbola will pass through the remaining two quasar positions as well. But

in reality, there will be an offset between the predicted positions (at the inter-

section of the hyperbola and ellipse) and the actual positions for the remaining

two quasars. The amount of offset can be used as a figure of merit to determine

whether the four images are due to a lensed quasar or if they are random points

of light. We choose to fit the hyperbola to the pair of closest quasars since this

guarantees a four-image model [29]. This model will also reproduce the separation

of the closest pair which can be used to predict their fluxes.

In the above process, there are several exceptional cases that could occur. If Ce = q2 < 0,

then the curve fit in the third step will be a hyperbola and not an ellipse. For such systems

we cannot fit an SIEP model and hence are not likely to be lensed quasars. Similarly, if in

step 3 we are not able to fit an ellipse because the matrix of the linear equations is singular,

or if the axis ratio q is too large or zero, then the system is unlikely to be a quadruply lensed

quasar. The program automatically classifies all such cases where the algorithm has failed

in some step as a non-lens.

In order to find the predicted positions of the two quasars not fit by the hyperbola, we

need to find the two remaining points of intersection of the ellipse and hyperbola. We are

using a python package (github) for numerically finding the points of intersection of the

ellipse and hyperbola. We are then cross-matching the observed and predicted sets of points

to identify which of the intersections correspond to the quasars not fit by the hyperbola. The

root-mean-square offset of these quasar positions from their predicted positions is calculated

and is normalized with the semi-axis a. This normalized rms offset is used as the figure of

merit.

https://github.com/sukhbinder/intersection
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Figure 4.2: Schechter-Wynne Algorithm Demonstration: A sample mock lensed quasar image
run through the SW algorithm. The four black crosses are the original quasar image positions. The blue
rectangular hyperbola is the first hyperbola fit to all four points. The green crosses represent quasar image
positions in the frame aligned with the asymptotes of the blue hyperbola. The green ellipse (SW ellipse)
fits all four quasar positions in the aligned frame. The red hyperbola (Witt hyperbola) passes through two
closest image positions. The remaining two quasars are slightly offset from the Witt hyperbola.

4.3 Mock Lenses and Non-Lenses

In order to test the algorithms described above, we created a set of 617 mock quadruply

lensed quasars and 500 mock non-lenses.

4.3.1 Mock Lensed Quasars

Mock lenses were created using the strong lensing analysis software glafic [23]. Glafic takes

as input a lens mass model, light profile, redshift and point source redshift, position, and flux

to find the lensed image of the point source. Quasar redshifts and fluxes in different bands

were taken from an HSC quasar catalog. Similarly, lens redshifts and cmodel magnitudes

were picked randomly from the list of extended objects in the HSC pdr3 wide forced catalog.

Quasars that are around a redshift of 2 and lens galaxies around a redshift of 0.5 were chosen.

This combination of source-lens redshifts is most commonly found in lensed quasars. For

the mass model of the lens, we chose an SIEP model. Velocity dispersions of the lens galaxy

were chosen to be in a small interval around 220 km/s. This corresponds to an Einstein

radius ∼ 1 arcsec. Ellipticity and position angle of the galaxies were chosen randomly in
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a typical range. For the light profile of lenses, we used a de Vaucouleurs model. We used

the luminosity-effective radius relation from Eq 15 of [24]. Positions of the sources were

randomly chosen while ensuring that they lie within the tangential caustic so that we get

four images. These lensed sources were then added to cutouts of empty regions from HSC

images to simulate realistic backgrounds.

4.3.2 Mock Non-Lenses

Mock non-lenses were created by randomly placing four point sources within a 4.5 × 4.5

arcsec square. The positions were chosen such that in each image at least one pair of quasars

had a separation of less than 1 arcsec. This would allow us to test the performance of the

position finder. The point sources were chosen to have a magnitude between 21 and 25 and

were convolved with the HSC g-band PSF. Background sky and noise were chosen based on

typical values found in HSC g-band cutouts.



Chapter 5

Lens Search: Results

Both the mock lenses and non-lenses were used for testing the position finder and Schechter-

Wynne algorithms. The results of those tests are described in this chapter.

5.1 Position Finder Tests

5.1.1 Non-Lenses

Of the 500 non-lenses that were run on the position finder, the algorithm could identify all

four positions correctly in 378 of them, which gives it a success rate of ∼ 75.6%. A successful

identification corresponds to identifying the quasar positions within 1.5 pixels of their true

position (where the dimension of a pixel is 0.168”). We can understand this better if we look

at its rate of success with respect to the quasar magnitudes and separations in the images.

From Fig (5.1a) we can see that the algorithm is able to detect quasar pairs well up to a

separation of 0.5”. Below this, the rate of detection falls below 50%. The algorithm is also

able to detect quasars of all magnitudes fairly well. Its performance reduces to around 80%

for magnitudes close to 25.

The cases where the algorithm has failed clearly seem to be where the separation between

two quasars is small. In order to see whether the relative magnitudes of the pair of quasars
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(a) Distribution of minimum separation (b) Distribution of magnitudes

Figure 5.1: Non lenses - separation and magnitude: Fig (a) shows the distribution of the separation
(in arcsec) for the closest pair of quasars in each image in blue. Overlaid in orange is the number of systems
in which both the quasars were detected. Fig (b) shows the distribution of magnitudes of every individual
quasar from all the images in blue and the distribution in orange counts all the individual quasars that have
been detected.

had any effect on detection, we created a 2D histogram of minimum image separation and

the difference in magnitude between the two quasars.

From Fig (5.2a) we can see that most images have a separation between 0.6 and 1.2

arcsec, and a difference in magnitude less than 1. We can see from Fig (5.2b) as well that

the performance of the algorithm deteriorates below 0.5”. The fraction of quads detected

is also smaller for both higher(> 2.9) and lower (< 1) delta mag. If two quasars are close

together in both position and magnitude space, then it becomes hard to say where one quasar

ends and the other begins. If one of the quasars is much brighter than the other, then it will

drown out the flux from the dimmer quasar making it hard to distinguish between the two

of them again.

5.1.2 Mock Lenses

The position finder was run on 617 mock lensed quasars. In 419 images, all four quasars

were successfully detected (within an error margin of 1.5 pixels), giving a success rate of

∼ 68% In 4 of the systems, the program detected more than 4 peaks (i.e., 4 of the quasar

peaks plus some extra peaks).
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(a) 2D distribution plot of all images created
(b) 2D plot of ratio of images detected

Figure 5.2: Non-lenses-2D plots of separation and delta mag: Fig (a) shows the 2D histogram
between minimum image separation and difference in magnitudes of the two quasars in the pair with the
smallest separation. The bins in this 2D histogram is populated with all the non-lens images created. Fig
(b) shows for each bin of (a), the fraction of all the images where both the quasars of the pair have been
detected.

The distribution of image separations in Fig (5.3a) shows nearly 100% success rate in

detecting the closest pair of images until a separation of 0.6”. There is a sharp drop in the

rate of successful detection of both quasars in the closest pair below 0.5”. We saw a similar

trend with non-lenses as well. Fig (5.3b) shows the ratio of images where all four quasars

were detected as a function of the closest image separation. This plot is nearly identical to

Fig (5.3a) which indicates that the closest pairs are the ones not being detected in most of

the cases where the algorithm has failed.

Fig 5.3c shows no clear trend in the fraction of total lenses detected for a given Einstein

radius bin. There seems to be a small decrease in the fraction of lenses detected for smaller

Einstein radii, which is expected. Our sample has a fairly narrow range of Einstein radii. The

distribution of magnitudes (Fig 5.4) does not show any strong trends. Fig 5.4a shows a slight

decrease in the fraction of lenses detected for higher magnitudes (fainter quasars). Overall,

it seems like the performance of the position finder is not very affected by the magnitude of

the quasar.

In lensed quasars, the closest pair of quasars usually have similar magnifications (and

hence magnitudes). This can be seen in Fig 5.5a. There are no quasars in bins with larger

delta mag. The fraction of detections again drops for separations less than 0.6”. We also see
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(a) Distribution of minimum separation
- both detected

(b) Distribution of minimum separation
- all detected

(c) Distribution of Einstein radius

Figure 5.3: Mock lenses-image separation and Einstein radius: Fig (a) shows the distribution of
the separation (in arcsec) for the closest pair of quasars in each image in blue. Overlaid in orange is the
number of systems in which both the quasars of the pair were detected. Fig (b) shows the same distribution
as (a) in blue. For each separation bin, the orange histogram counts the total number of lenses where all
four quasars were detected. Fig (c) plots the distribution of the Einstein radius of lenses in blue and the
number of lenses where all four quasars were detected in orange.

that the bins with delta mag = 0.3 have, in general, a lower fraction of quads detected than

bins above. The two bins with very large delta mag (2.6 and 3.2) that have been populated

also have no detections. This is in line with the trend seen with non-lenses wherein very

high and very low delta mag showed fewer detections.

The 2D histogram of minimum separation and magnitude of the fainter quasar in the

closest pair (Fig 5.5b ) shows that most quasars are concentrated between separation of

0.6”− 1.0” and magnitude of 19− 21. The fraction of detections for all separations (in Fig

5.5c) decreases as the quasars in the pair get fainter.

5.2 Schechter-Wynne Algorithm Tests

The Schechter-Wynne (SW) algorithm was first tested independent of the position finder

to see if it is capable of differentiating between lenses and non-lenses. We used the actual

positions used to create the mock lens and non-lens images and fed it into the SW algorithm.

We used the results of these tests to decide the criteria based on which we will designate a

system as a quadruply lensed quasar.

Out of the 500 non-lenses, 193 of them could not be modeled as an SIE potential. These

can be immediately classified as non-lenses. Thus, we eliminated 39% of the non-lenses in
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(a) Distribution of magnitudes-dimmest quasar (b) Distribution of magnitudes-all quasars

Figure 5.4: Mock lenses-distribution of magnitudes: Fig (a) shows the distribution of magnitudes
of the least bright quasar in each image, and the number of images that have been detected (i.e., where all
quasars have been detected) for a particular magnitude bin. Fig (b) shows the distribution of magnitudes
of all individual quasars and whether the quasar has been detected.

(a) 2D plot of separation and delta
mag (fraction detected)

(b) 2D histogram of separation and magnitude
(c) 2D plot of separation and magni-
tude (fraction detected)

Figure 5.5: Mock lenses-2D plots Fig (a) shows the fraction of quads in which the closest pair
has been detected as a function of separation between the two quasars and the difference between their
magnitudes. The values of 2.0 (yellow) indicate that those bins were not populated. Fig (b) shows the
number of quads created as a function of the minimum separation between two quasars in the quad and the
magnitude of the fainter quasar in the pair with the smallest separation. Fig (c) shows the fraction of the
quads detected in each of the bins of the previous histogram.
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(a) Figure of merit - lenses and non-lenses (b) Figure of merit - real lenses and non lenses

Figure 5.6: Figure of merit - mock lenses, non lenses, and real lenses: Fig (a) shows the normalised
histogram of the log of figure of merit for 617 mock lenses and 307 non-lenses. The remaining 193 non-lenses
could not be modeled as an SIE potential. Fig (b) shows the same for a sample of 38 real quadruply lensed
quasars.

this step. The figure of merit for the remaining non-lenses is plotted in Fig 5.6.

The distribution of figure of merit(FoM) in Fig 5.6a shows good separation for lenses and

non-lenses. But this is to be expected since the mock lenses are made using an SIE potential

itself and we have used completely accurate positions of the quasars. To get a more realistic

picture, I used the astrometry of 38 real lens systems that I had collected for Sec 3.3, and

found the distribution of figure of merit (Fig 5.6b). If we accept all systems with log(FoM)

less than -0.56, we can recover all the real lenses. Though we will then also accept around

16% of the remaining non-lenses plotted, which is 10% of all the non-lenses.

To understand how the distribution of the FoM for mock lenses will change when there is

some error in the measurement of positions, we perturbed the true positions of the quasars

in the mock lenses and used these perturbed positions to calculate the FoM histogram.

In the case when the position of one quasar in the image was perturbed by one pixel in

either the x or y directions (Fig 5.7a), the limit of -0.56 on the log(FoM) will again give us

a false positive rate of 10% and a false negative rate of less than 2%. Half of these false

negatives consist of perturbed lenses that could not be modelled as an SIE potential. When

three positions are perturbed (Fig 5.7b), a similar cutoff on log(FoM) will cause us to lose

around 18.5% of lenses. Half of which, again, could not be modelled as SIEP. Increasing the

value of log(FoM) to recover more lenses will drive up the false positive rate. Moving the
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(a) Figure of merit - one position perturbed (b) Figure of merit - three positions perturbed

Figure 5.7: Figure of merit - perturbed lenses: Fig (a) shows the normalised histogram of the
log(FoM) for mock lenses where the position of one of the quasars has been perturbed by one pixel (in x or
y). log(FoM) for unperturbed lenses and non-lenses has also been plotted. Fig (b) shows the log(FoM) for
mock lenses where positions of 3 quasars have been perturbed in either the x or y directions. Around 1% of
the perturbed lenses are excluded from the plot in Fig(a) and around 9% from Fig(b) since they could not
be modeled as an SIEP.

cutoff to -0.25 will improve the false negative rate to 10%, but the false positive rate will

shoot up to over 20%.

To try and improve the rate of correct detection, we added the axis ratio of the amplitude

ellipse as an additional variable that can be used to further differentiate between lenses and

non-lenses. If we restrict the axis ratio 0.5 < q < 2 with the same cutoff on log(FoM) of

-0.56, then the false positive rate drops to 6.8% (Fig 5.8). In the case where one position

of the quadruple system is perturbed, we lose 2 lenses. In the case where 3 positions are

perturbed, we lose 16 lenses.

5.3 Combined Test

For the final test, we will see how well the two algorithms perform when working together. We

used the positions of the quasars recovered using the Position-Finder to run the Schechter-

Wynne algorithm and determined how well we are able to identify lensed quasars as opposed

to random quadruple sources of light.

A cutoff of -0.56 on log(FoM) would allow us to recover around 91% of the mock lenses,
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(a) FoM vs Axis Ratio - Mock Lenses (b) FoM vs Axis Ratio - one position perturbed

(c) FoM vs Axis Ratio - three positions perturbed

Figure 5.8: Scatter plot - figure of merit and axis ratio: Scatter plot of Log(FoM) vs axis ratio
for lenses, non-lenses, and perturbed lenses. The axis ratio can be used as an additional parameter to
differentiate between lenses and non-lenses, along with figure of merit.
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with a 10% false positive rate (Fig 5.9a). Among the lenses that could not be identified,

around 44 (7% of the total) of them could not be modelled by an SIE potential. If we further

constrain the axis ratio, 0.5 < q < 2, then we can reduce the false positive rate to 6.8% as

shown before and we lose only 3 lenses (Fig 5.9b).

(a) Figure of merit - mock lenses and non-lenses
(b) Figure of merit vs axis ratio - lenses and non-
lenses

Figure 5.9: Figure of merit-mock lenses combined test: Figure of merit distribution for combined
test of position finder and Schechter-Wynne algorithm using mock lenses. Fig (a) shows the normalised
histogram of the log of figure of merit for mock lenses and non-lenses. Fig (b) also shows the axis ratio
plotted on the y axis. The rectangular box contains all the mocks that fall within log(FoM) < −0.56 and
0.5 < q < 2, and that are identified as lensed quasars by the program. The false positive rate of detection
after restricting the axis ratio is 6.8%.

Given that the position finder was successful to very varying degrees based on the mini-

mum separation of the quasars, it would be informative to study the rate of correct detection

of lensed quasars by dividing them into two samples - small separation systems which consist

of systems that have a minimum image separation less than 0.6”. Large separation systems

that consist of quasars with a minimum image separation greater than 0.6”. Around 35% of

the 617 mock lenses were small separation systems and the remaining 65% were large sep-

aration. In small separation systems, all four positions were correctly identified by position

finder (upto an error of 1.5 pixels) with a success rate of 23%. And for large separation

systems this number is ∼ 92%.
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(a) Figure of merit - mock lenses and non-lenses
(b) Figure of merit vs axis ratio - lenses and non-
lenses

Figure 5.10: Figure of merit: mock lenses with large separation combined test: Figure of merit
distribution for combined test of position finder and Schechter-Wynne algorithm using mock lenses with
minimum image separation greater than 0.6”. Fig (a) shows the normalised histogram of the log of figure
of merit for mock lenses and non-lenses. We lose only 4.5% of the lenses and detect the rest. Fig (b) also
shows the axis ratio plotted on the y axis. The rectangular box contains all the mocks that fall within
log(FoM) < −0.56 and 0.5 < q < 2, and that are identified as lensed quasars by the program.

5.3.1 Large separation quads

The program is able to identify lensed quasars with large image separations with a true

positive rate of 95.5%. This is slightly higher than the accurate detection rate of position

finder (92%). We can constrain the axis ratio (Fig 5.10) without losing any more quads.

This gives a false positive rate of 6.8%.

5.3.2 Small separation quads

With small separation quads, we can see from Fig(5.11a) that the separation between lenses

and non-lenses is worse than that for large separation quads. The true positive rate is

around 83%. Three-quarters of the lenses not detected were unable to be modeled as an

SIE potential (and hence not included in the histogram). After constraining the axis ratio

(5.11b), we got a false positive rate of 6.8%, though we lost three more lenses in this process.

A true positive rate of 83% is also very high given that the position finder was able to
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(a) Figure of merit - mock lenses and non-lenses
(b) Figure of merit vs axis ratio - lenses and non-
lenses

Figure 5.11: Figure of merit-mock lenses with small separation combined test: Figure of merit
distribution for combined test of position finder and Schechter-Wynne algorithm using mock lenses with
minimum image separation less than 0.6”. Fig (a) shows the normalised histogram of the log of figure
of merit for mock lenses and non-lenses. We lose ∼ 17% of the lenses and detect the rest. Fig (b) also
shows the axis ratio plotted on the y axis. The rectangular box contains all the mocks that fall within
log(FoM) < −0.56 and 0.5 < q < 2, and that are identified as lensed quasars by the program.

extract accurate positions with a success rate of only 23%. So it seems like for a significant

population of lensed systems, even though the positions of the quasars were not entirely

accurate, the systems still happen to fit an SIE potential quite well.
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Chapter 6

Conclusion and Outlook

In this thesis project, we explored the fascinating world of gravitationally lensed quasars.

In the first part of the project, we studied how quadruply-imaged quasar systems that have

a highly asymmetric configuration of images point to the presence of a cluster or group of

galaxies in the vicinity of the lens. The amount of “external shear” required to model these

lenses could tell us if there is a cluster or group whose gravitational potential is contributing

to the lensing. We calculated the distribution of external shear in a sample of quadruply

lensed quasars that have been discovered and searched the literature on these lenses to see if

groups had been identified in the immediate environment of lenses with large external shear.

We found that in many cases, groups of galaxies had been found and in most cases, a search

for a group/cluster that could be the reason for the large external shear was conducted. We

were limited in our analysis by the small number of quadruply lensed quasars that have been

discovered to date.

But this is expected to change in the near future. Upcoming telescopes like the Vera

Rubin Observatory, Nancy Grace Roman, and Euclid space telescopes are going to discover

thousands of strongly lensed quasars. An analysis such as the one described above could

help us discover many more galaxy groups at intermediate redshifts which would aid galaxy

evolution studies.

Our efforts in the second half of the thesis were focused on building an efficient automated

lens hunter, which would be capable of sifting through terabytes of telescope image data and

identifying quadruply lensed quasar candidates. We created a prototype of the program

45
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during the thesis project and tested it on a set of mock lenses and non-lenses. The program

consists of three major steps: Disentangling quasar and galaxy light from images, identifying

quasar positions accurately, and fitting the Schechter-Wynne (SW) model to the positions

of the quasars to determine if they belong to a lensed quasar system. The latter two steps

were developed and tested on mocks based on the HSC-Wide survey images.

We divided the sample of mock lenses into two based on the minimum separation between

two quasars in the images. Large separation systems had a minimum separation greater than

0.6” and small separation systems less than 0.6”. The position finder had a success rate of

92% on large separation mocks and only 23% on small separation mocks, with a successful

detection being defined as the detection of quasar position accurately up to an error of 1.5

pixels. Hence, the position finder seems to be effective only in detecting quasars with a

minimum image separation larger than 0.6”. But the SW algorithm was able to make up

for the poor performance of the position finder, and we were able to recover around 83% of

the lensed quasars with small separation. It was able to detect large separation mock lenses

with a success rate of 95.5%. The overall true positive rate was around 91%. We tested

the program on a sample of non-lens mocks as well, and it was able to differentiate between

lenses and non-lenses fairly well. The false positive rate we obtained was close to 7%. We

also tested the SW algorithm on a sample of 38 real quadruply lensed quasars. We were able

to recover all 38 lenses and we accepted around 10% of the non-lenses.

Our test of the prototype program for detecting quadruply lensed quasar candidates

shows promising results. But there is still a lot of work left to be done. Primarily, we need

to develop and test the disentangling algorithm which is a necessary image-processing step

that has to take place before any of the other algorithms can run. We will also have to test

the program on a larger sample of mocks so that we can state the true and false positive rates

with more certainty. Since our aim is to create a program that is fast as well as accurate,

we need to quantify the speed of classifying images as lenses or non-lenses. Finally, we

hope to be able to run this program on data from the HSC-Wide survey to search for new

quadruply-lensed quasar candidates.

Given the large amounts of data that current and future telescopes are going to produce,

it is important that we have efficient automated methods of identifying lensed quasar can-

didates. Our program, once completed, can be a valuable addition to the host of strong

lensing detection methods that exist today.
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