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Abstract

Numerous computational problems on graphs remain computationally intractable and are

termed NP-complete problems. In this thesis, we study one of the ways to tackle this

issue: we restrict the input graphs by specifying certain properties and exploit these to build

efficient algorithms on these classes. We focus on the vital class of chordal graphs, which

have rich structural properties with varied algorithmic applications.

A major class of graph problems are termed vertex deletion problems, which involve

eliminating a certain set of vertices so that the resultant graph satisfies some properties.

We study vertex deletion problems on the chordal graph class, as well as their subclasses.

We first review the relevant properties of these graph classes and study the status of vertex

deletion problems on these graphs. We then move to design efficient algorithms for some

unresolved problems.
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Chapter 1

Introduction

A graph G is a pair of sets (V,E) such that E ⊆ V × V , where V is the set of vertices and

E is the set of edges. Each element of E joins two elements of V , and is called an edge of G.

Graph theory is extensively studied from a structural and algorithmic point of view, with

the two approaches often proving helpful to each other.

Numerous computational problems have been proposed on graphs, which have vital prac-

tical implications. Graphs can be used to model relationships between objects, with the ver-

tices being the objects and the edges being the relationship between them. For instance, the

vertex cover problem, which asks for a subset S of vertices such that every edge has an end-

point in S, has various practical implications. As a toy example, consider a communication

network modelled using graphs. If the vertices of the graph are nodes of the communication

network, protecting the nodes in the vertex cover ensures that the communication network

does not break down.

Various diverse algorithmic problems have been proposed on graphs; many are still un-

resolved or have no known fast algorithms. For such computational problems on graphs,

numerous ways exist to work around the issue of intractability. Here, we shall study one

of the popular ways to tackle this problem: we restrict ourselves to specific graph classes,

such that we can exploit their properties and design more efficient algorithms for them. The

advantages of this technique are that there is a clear pathway to attacking this problem by

exploiting the properties of the restricted input. Many algorithms also provide structural

insight into these inputs. However, a drawback is that we only solve the problem for a subset
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of all inputs, and the algorithm does not give a solution for any arbitrary input. Neverthe-

less, this approach remains vital in understanding the tractability of various graph problems.

In particular, if we can prove that the problem remains hard on a class of inputs, we can

easily deduce that the problem is hard for any general input.

In this regard, one of the most popular graph classes under study is the class of chordal

graphs, which are graphs that contain no cycle of length greater than 3 as an induced

subgraph. Chordal graphs have rich structural properties, many of which have been used

to build algorithms ([1, Chapter 4]). Chordal graphs are also useful in understanding the

structural properties of other graph classes due to their close relationship with the concept

of treewidth ([2]). Owing to these important properties, chordal graphs generate a lot of

interest and are extensively studied.

Several subclasses of chordal graphs have also been well-studied, as they not only share

the properties of chordal graphs, but have additional structure imposed on them, making

them very well-behaved. One of the most important subclasses of chordal graphs are the

split graphs. Split graphs are chordal graphs with the additional requirement that the vertex

set be partitioned into a complete graph and an independent set. This property makes split

graphs extremely important from an algorithmic point of view, as various hard problems on

chordal graphs have efficient solutions on split graphs; for instance, see [3].

To close out the complexity gap between chordal and split graphs, a generalisation of

split graphs was introduced in [4], called well-partitioned chordal graphs. These graphs are

a subclass of chordal graphs and a superclass of split graphs, maintaining and extending the

properties of both these subclasses. They form an extremely important tool in narrowing

down the complexity gap of problems on chordal graphs and their subclasses (for instance,

see[4]).

We examine a subset of graph theory problems known as vertex deletion problems, which

have a wide range of applications in areas including computer science, operations research,

and social network analysis. These are problems where we must identify a subset of the vertex

set whose elimination guarantees that the remaining graph meets a particular requirement.

In this thesis, the vertex deletion problems studied are such that we demand the output be

a certain graph class (such as split graphs, for instance). Stated simply, we are transforming

an input graph into a graph that satisfies some criteria by eliminating the fewest amount

of vertices. Although vertex deletion problems are well-studied on chordal graphs and their
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subclasses ([5]), they have not been examined on the relatively new well-partitioned chordal

graph class.

We will start with a basic exposition on chordal graphs, as well as some of their sub-

classes. We will then introduce vertex deletion problems, and look at some examples of these

problems, as well as their algorithms. We then proceed to attack some algorithmic problems

in Chapter 5.

Original contributions

During the course of this thesis, we have answered three algorithmic problems, namely

the Split → Cluster problem, Well-Partitioned Chordal → Complete Split

problem, as well as the Well-Partitioned Chordal→ Cluster problem. These results

can be found in Chapter 5.
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Chapter 2

Preliminaries

Throughout this thesis, we use terminology in accordance with [6].

2.1 Graphs

A graph G is a pair of sets (V,E) such that E ⊆ V × V (that is, 2-element subsets of V ).

The elements of V are called vertices, and the set is referred to as V (G). The elements of E

are called edges, and the set is referred to as E(G); the sets may simply be referred to as V

and E, respectively, when it is clear which graph G is being studied. The number of vertices

of a graph G is called its size or order and is denoted by |G|. Graphs may be finite, infinite

or uncountable.

A vertex v is adjacent to another vertex u where u, v ∈ V (G) if and only if the element

(u, v) ∈ E(G). If e = (u, v) ∈ E(G), the vertices u and v are the endvertices or ends of the

edge e.

Figure 2.1: A simple graph G
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The neighborhood (more precisely, the open neighborhood) of a vertex v is the set of

vertices x such that (v, x) ∈ E, that is, the set of vertices adjacent to v. The closed neigh-

borhood of v is equal to v ∪N(v), and is denoted by N [v]. The degree of a vertex v is equal

to |N(v)|. Further, δ(G) = min
v∈V

d(v) is the minimum degree of G, and ∆(G) = max
v∈V

d(v) is

the maximum degree of G.

A graph G′ = (V ′, E ′) is called a subgraph of a graph G = (V,E), denoted as G′ ⊆ G, if

V ′ ⊆ V and E ′ ⊆ E. Furthermore, if G′ ⊆ G and E ′ = {(x, y) | x, y ∈ V ′}, the subgraph G′

is called an induced subgraph of G. In this regard, we say that G′ is the subgraph induced

by the vertex set V ′, and denote the same as G[V ′]. We say G′ is in G (or G contains G′) to

signify that G′ is a subgraph of G.

A graph is connected if, for every pair u, v of vertices, there exists a path joining u and

v. If a graph is not connected, it is disconnected. Every maximally connected subgraph of a

disconnected graph is called a connected component (when we use the words minimality or

maximality, we are referring to the subgraph relation). A minimal vertex separator of two

vertices u, v ∈ V is an inclusion-wise minimal set S ⊂ V such that, in the graph G[V − S],

u and v belong in different connected components of G[V − S] (when dealing with sets, we

sometimes denote the subtraction of sets operation “\” simply by the subtraction sign −).

The complement of the graph G = (V,E) is the graph G = (V,E ′) with E ′ = {(u, v) ∈
V × V | (u, v) /∈ E}, that is, the graph on the same vertex set, with the edge set being the

set of edges that are not in G.

A disjoint union of k graphs G1, G2, . . . Gk with vertex sets Vi, 1 ≤ i ≤ k and edge sets

Ei, 1 ≤ i ≤ k, k ≥ 2, is the graph G = (V1 ∪ V2 · · · ∪ Vk, E1 ∪ E2 · · · ∪ Ek). Here, each graph

is disjoint from every other graph.

Figure 2.2: A graph G and its complement G
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2.2 Characterising Graphs

A labelling of a graph is the assignment of labels to the vertices and edges of the graph. A

graph property is any property of graphs which depends only on the abstract structure of

the graph, and is not concerned with the particular labelling of the graph. If a graph G is

the same as a graph H (upto labellings) we simply write G = H, and state that G is equal

to or the same as H. In this thesis, we are only interested in such properties, and we refer

to such a graph property simply as property.

A property which is true for every induced subgraph of the graph is called a hereditary

property. A graph class is any property that characterises a set of graphs. For instance, the

set of empty graphs is a graph class with the common property of being edgeless. A graph

class C1 is said to be a subclass of another graph class C2 if, for every G ∈ C1, it holds that

G ∈ C2.

A graph G is self-complementary if G = G. We say that a graph class C is closed under

complements if G ∈ C ⇐⇒ G ∈ C. Note that, here, we do not require the complement to

be the same as the original graph, we only need it to be in the same graph class (that is,

satisfy the same property as G).

Some elementary graph classes are enumerated below, with their notation. The defini-

tions of walks, trails and paths are as found in [6].

• A complete graph is a graph in which every vertex is adjacent to every other vertex,

that is, E = V × V . It is denoted by Kn, where n is the order of the graph.

• A clique is any complete subgraph of a graph.

• An empty graph, denoted by In (n being the order of the graph), is a graph in which

no vertex is adjacent to any other vertex, or, in other words, E = ∅.

• A cluster graph is a disjoint union of cliques.

• A path graph Pk, (k is the order of the graph) is a graph having a singular path of

length k.

• A cycle is a non-empty trail in which only the first and last vertices are equal. A cycle
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graph Cn (n being the order of the graph) is a graph that contains a single cycle or

size n. If a graph includes no cycles, it is called acyclic

• A tree is any connected acyclic graph. A forest is a disjoint union of trees.

A forbidden subgraph F of G is any graph F such that F is not an induced subgraph of G.

A forbidden subgraph of a graph class C is any graph which is not an induced subgraph for

any G ∈ C. A forbidden subgraph characterisation of a graph class C is a (possibly infinite)

set F of forbidden subgraphs, and we denote the class C as F -free graphs. Hence, no graph

of G can contain any graph F ∈ F as an induced subgraph. For instance, cluster graphs are

also defined as P3-free graphs.

2.3 Parameters

We now introduce some basic concepts related to subsets and partitions of vertices. These

concepts not only play a crucial role in characterising various types of graphs, but have

various practical implications, and are, thus, extensively investigated from an algorithmic

perspective.

2.3.1 Subsets of Vertices

For a graph, G = (V,E), a subset S ⊆ V for which it holds that G[V −S] contains no edges

is called the vertex cover of a graph. In other words, ∀ e ∈ E, ∃ v ∈ S such that v is an

endvertex of e. The smallest such subset of V is called the minimum vertex cover of G and

the order of this set is denoted by τ(G).

Any set I ⊆ V such that G[I] contains no edges (i.e., no vertex of I is adjacent to any

other vertex of I) is called an independent set of the graph. The largest such independent

set in G is called the maximum independent set of G. The order of the largest independent

set is called the independence number of G, and is denoted by α(G). Notice that, if S is a

vertex cover, V − S will be an independent set (and vice-versa).

A clique of a graph is a maximal complete subgraph of G, and the clique (in G) of the
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largest order is called the maximum clique of G. The order of the largest clique is called the

clique number of G, and is denoted by ω(G). We note that the complement of a clique is an

independent set (and vice-versa).

2.3.2 Partitions of Vertices

A proper vertex coloring of the vertices of G is an assignment of labels l(v), v ∈ V to vertices

of G such that, if (u, v) ∈ E, then l(u) ̸= l(v). This implies that no two adjacent vertices

can be assigned the same label. The labels used are usually denoted by colors, and we shall

do the same. The chromatic number of G is the least number of colors required to properly

color the vertices of G, and is denoted by χ(G).

A proper vertex coloring can also be interpreted as a partition of vertices into sets

S1, S2, . . . Sk such that, for each 1 ≤ i ≤ k, G[Si] is edgeless. If, on the other hand, we

require each partition to induce a clique (that is, each G[Si], 1 ≤ i ≤ k is a clique), we arrive

at a clique cover of the graph. A clique cover that uses the fewest number of cliques possible

is called the minimum clique cover of G, and is denoted by k(G).

These parameters are not only important from a practical point of view, but also form

an important tool for characterising classes of graphs. In this regard, a perfect graph is

defined as any graph G for which χ(H) = ω(H) holds for all induced subgraphs H of G.

Perfect graphs are extensively studied, owing to their various structural properties, as well

as algorithmic implications.

2.3.3 Treewidth

To define the notion of treewidth, we require the concept of tree decompositions. A thorough

treatment of this concept can be found in [7, Chapter 7].

A tree decomposition of a graph G = (V,E) is a pair T = (T,ET ), where each element

T1, T2, . . . Tk ∈ T is a subset of vertices of G (called bags), and T is a tree such that:

1. ∀v ∈ V, ∃ Ti ∈ T such that v ∈ Ti.
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a b

c d

ef

g

h i

j

T1 =
{a, f, g}

T3 =
{a, h, i}

T3 =
{a, b, j}

T4 =
{b, e, c, d}

Figure 2.3: A graph G and its tree decomposition T

2. If (u, v) ∈ E, then ∃ Tj ∈ T such that both u and v are in Tj.

3. Let Xv = {Ti ∈ T | v ∈ Ti}. Then, the graph T [Xv] induced by the vertex set Xv is a

connected subtree of T . This is called the induced subtree property.

The tree T is then called the tree decomposition of G.

We now elucidate an equivalent formulation of tree decompositions, utilizing the running

intersection property, which states that, if Ti, Tj and Tk are bags, and Tj is on the path from

Ti to Tk, then Ti ∩ Tk ⊆ Tj. On swapping the induced subtree property with the running

intersection property (keeping the other conditions as is), we obtain an equivalent formulation

of tree decompositions. The proof of equivalence of the 2 formulations is elementary, and we

skip the proof for the same.

The width of the tree decomposition T is defined as w(T ) =
(

max
1≤i≤k

|Ti|
)
− 1. The

treewidth of the graph G is tw(G) = min
T

w(T ) i.e., the tree decomposition of G with the

least width.

Finding the treewidth of an arbitrary graph is computationally hard ([8]), and numer-

ous tools have been developed to get around this intractability. This concept is vital as

many problems on graphs have been attacked using the concept of tree decompositions and

treewidth, to build efficient algorithms.
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2.4 Algorithms

An algorithm is any finite sequence of instructions, used to solve a target problem. In

what follows, we will give a short introduction to efficiency and time complexity, as well as

computational intractability. The following is sourced from [9].

2.4.1 Running time analysis

We are interested in finding the “time” it takes to execute the algorithm, given an input

instance. The running time of an algorithm is the number of operations performed by the

algorithm in the worst-case scenario. The efficiency of an algorithm is defined based on the

size of the input. Let f, g be two real-valued functions that are positive for all values of n.

Then, f(n) = O(g(n)) as n → ∞ if |f(n)| ≤ M · |g(n)| ∀n ≥ n0 for some n0 ∈ N. Thus, if

an algorithm has running time T (n) = c · n3, where n is the size of the input and c ∈ R, we

write T (n) = O(n3), and say that the algorithm has order of n3 complexity. In general, if

T (n) = O(nc), c ∈ R, the algorithm is said to run in polynomial time.

2.4.2 Complexity classes

A decision problem is a computational problem that can be posed as a question with a yes

or no answer. A decision problem is said to be in the complexity class P if the problem has

a polynomial time algorithm.

If a decision problem is such that the solution is verifiable in polynomial time, the problem

is said to be in class NP . From here on in, we write that a problem X ∈ C to mean that X

is in the complexity class C.

For decision problems X and Y , a polynomial-time reduction from X to Y is an algorithm,

computable in polynomial time, with:

• Input: IX , an instance of problem X

• Output: IY , an instance of problem Y .
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with the requirement that IY is a YES instance of Y if and only if IX is a YES instance of

X.

A problem Y is an NP -complete problem if:

• Y ∈ NP

• ∀X ∈ NP , we have that X ≤P Y .

Thus, informally, we might say that the NP -complete problems are the “hardest” problems

of the NP class.

This concludes our exposition on some elementary properties required to the remainder

of the thesis.
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Chapter 3

Chordal Graphs and Their Subclasses

Chordal graphs are a highly studied graph class, owing to their rich structural as well as

algorithmic properties. One can think of chordal graphs as a relaxation of trees. Observe

that trees forbid any cycle, whereas chordal graphs are graphs that permit the cycle C3, and

forbid all cycles of greater length. We will cover some basic properties of chordal graphs,

before moving to some of their subclasses.

3.1 Chordal Graphs

Here, we introduce the chordal graph class, and mention some basic definitions useful for

characterising chordal graphs. The following is sourced from [1, Chapter 4].

Definition 3.1.1. An edge of a graph is a chord if it connects two non-adjacent vertices of

a cycle of the graph.

Definition 3.1.2. A graph G is called a chordal graph if every induced cycle of length

greater than 3 possesses a chord. If a graph is chordal, we say it satisfies the chordality

property.

Definition 3.1.3. A vertex v in G for which N [v] is a complete subgraph, is called a sim-

plicial vertex.

Definition 3.1.4. A perfect elimination ordering of the vertices is an ordering σ =

13
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Figure 3.1: A chordal graph G, with its perfect elimination ordering

(v1, v2, . . . vn) such that vi is a simplicial vertex of G[{vi, vi+1, . . . vn}]. If the vertices of G

have a perfect elimination ordering, we say that G has a perfect elimination ordering.

3.1.1 Basic Properties

We now go over some of the most important characteristics of chordal graphs and characterise

this class of graphs.

Theorem 3.1.1. The chordality property of graphs is hereditary.

Proof. Let G[V ′] = G′ be any induced subgraph of G (where V ′ ⊆ V ). Assume that G′

contains a chordless cycle C = [v1, v2, . . . vk]. Since G′ is an induced subgraph of G, C is also

a chordless cycle of G (as induced subgraphs preserve edges between all the vertices present

in V ′). We arrive at a contradiction. Hence, G[V ′] cannot have a chordless cycle, indicating

that a chordal graph’s induced subgraphs are chordal.

Theorem 3.1.2. [1, Chapter 4] Let G = (V,E) be a graph. Then, the following statements

are equivalent:

1. G satisfies chordality.

2. Every minimal vertex separator of G induces a complete subgraph of G.

Proof. ((2) =⇒ (1)) Let [x, v, y, v1, v2, . . . vk, x] be a simple cycle of G. Then, every minimal

vertex separator of x−y contains the vertices v, as well as vi, for some i ∈ [1, k]. This implies

14



(v, vi) ∈ E, as minimal vertex separators induce a complete subgraph of G. Observe that

(v, vi) is a chord of the cycle.

((1) =⇒ (2)) Let S be a minimal x − y separator of G, and let Gx, Gy be the connected

components of G[V −S] containing the vertices x and y, respectively. As S is minimal, each

vertex s ∈ S has a neighbor in both Gx as well as Gy. Hence, for any s, s′ ∈ S, there exist

smallest length paths [s, x1, x2, . . . xk, s
′] and [s′, y1, y2, . . . yj, s], where each xi ∈ Gx and each

yi ∈ Gy. Now, observe that [s, x1, x2, . . . xk, s
′, y1, y2, . . . yj, s] is a cycle of G of length atleast

4, and hence it has a chord. Since these paths are minimal, none of (xi, xi+2) ∈ E (where

i ∈ [1, k − 2]). Similarly, none of (yi, yi+2) ∈ E (where i ∈ [1, j − 2]). Therefore, the only

possible chords are (x, y) or (s, s′). However, if (x, y) ∈ E, it violates the definition of vertex

separator. Therefore, we have (s, s′) ∈ E.

We require the following lemma to demonstrate a characterisation of chordal graphs.

Lemma 3.1.3. [1, Chapter 4] If a chordal graph G is not a complete graph, then it has two

non-adjacent simplicial vertices.

Proof. We proceed by induction. Assume the statement is true for all graphs with fewer

vertices than G. Let S be the minimal vertex separator of x − y, and G[Vx] and G[Vy] be

the connected components of G[V − S] containing x and y, respectively. Since G[S ∪ Vx]

is chordal and has fewer vertices than G, it has 2 non-adjacent simplicial vertices, with at

least one of them (say v1) in G[Vx] (as G[S] is complete by Theorem 3.1.2). Moreover, since

N [Vx] ⊆ S∪Vx, v1 is simplicial in all of G. A similar argument works on the graph G[S∪Vy],

and we can find a simplicial vertex v2 of G. Hence, we have found 2 non-adjacent simplicial

vertices in the chordal graph G.

Theorem 3.1.4. [1, Chapter 4] Chordal graphs are characterised by the perfect elimination

ordering property of vertices. In fact, this ordering is not unique, and any simplicial vertex

can be the first vertex of the ordering.

Proof. Assume G is chordal, and the theorem holds true for all chordal graphs with fewer

vertices than G. By Lemma 3.1.3, we can find a simplicial vertex v1 of G. Now, observe

that G[V − v1] is chordal, and hence has a perfect elimination ordering σ′. Append v1 as a

prefix to σ′ to obtain a perfect elimination ordering σ of G.

15



Now, let G have a perfect elimination ordering σ, and C be a cycle in G. Additionally,

let v be the vertex in C such that v has the smallest index in σ. Since v at least 2 neighbors

in C, the subsequent simpliciality of v ensures that there is a chord in C, rendering the graph

G chordal.

Having covered some basic structural properties of chordal graphs, we now move to one

of the most important properties of chordal graphs, namely that chordal graphs are perfect.

Theorem 3.1.5. [1, Chapter 4] All chordal graphs are perfect.

To prove this theorem, we need the following lemma.

Lemma 3.1.6. [1, Chapter 4] Let S be any (not necessarily minimal) vertex separator of any

connected graph G = (V,E), and GC1 , GC2 . . . GCt be the connected components of G[V −S].

If S is a clique of G (which need not be maximal), then:

χ(G) = max
i

χ(G[S] ∪GCi
) and ω(G) = max

i
ω(G[S] ∪GCi

)

Proof. It is trivial to note that χ(G) ≥ χ(G[S]∪GCi
) ∀i. Thus, χ(G) ≥ max

i
χ(G[S]∪GCi

).

We claim that G can be colored with exactly k = max
i

χ(G[S] ∪GCi
) colors. We first assign

colors to each vertex of S (observe that each vertex will have a unique color as S is a clique).

Now, since each GCi
is separated from GCj

for i ̸= j, we can independently extend the

coloring of S to each G[S] ∪ GCi
. Following this procedure, we obtain a coloring of G with

exactly k colors, as ∃ i ∈ [1, t] such that χ(G[S] ∪GCi
) = k.

To prove our second assertion, we, once again, note that ω(G) ≥ ω(G[S] ∪ GCi
) ∀i. Thus,

ω(G) ≥ max
i

ω(G[S]∪GCi
). Let K be the maximum clique of G, implying ω(G) = |K|. As K

is a clique, no 2 vertices of K can lie in different components of G[V −S] (as every vertex of

K is adjacent to every other vertex of K). Thus, ∃j ∈ [1, t] such that ω(G) ≥ ω(G[S]∪GCj
).

Thus, we have

ω(G[S] ∪GCj
) ≥ |K| from above assertion (3.1)

|K| = ω(G) by definition of ω(G) (3.2)

∴ ω(G[S] ∪GCj
) ≥ ω(G) from 3.1 and 3.2 (3.3)
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We already know that ω(G) ≥ ω(G[S] ∪GCi
) ∀i. Therefore, we have ω(G) = max

i
ω(G[S] ∪

GCi
).

The corollary follows from the previous theorem.

Corollary 3.1.7. [1, Chapter 4] Let S be any (not necessarily minimal) vertex separator

of any connected graph G = (V,E), and GC1 , GC2 . . . GCt be the connected components of

G[V − S]. If S is a (not necessarily maximal) clique of G, and G[S] ∪ GCi
is perfect

∀ i ∈ [1, t], then G is perfect.

Proof. Since G[S] ∪ GCi
is perfect ∀ i ∈ [1, t], we have max

i
χ(G[S]∪GCi

) = max
i

ω(G[S] ∪
GCi

). Thus, by Lemma 3.1.6, we have

χ(G) = max
i

χ(G[S] ∪GCi
) = max

i
ω(G[S] ∪GCi

) = ω(G)

which proves that G is perfect.

We are now equipped to prove Theorem 3.1.5.

Proof of Theorem 3.1.5

Proof. We will proceed by induction on the order of the graph. Assume G is chordal, and

the theorem holds true for all graphs with fewer vertices than G. If G is complete, we

are done. Assume, then, that G is not complete (but is connected). Let S be any minimal

vertex separator of G. By Theorem 3.1.2, S is complete. Consider the connected components

G[S] ∪ GCi
, (1 ≤ i ≤ t) of G[V −S]. Observe that each G[S] ∪ GCi

(1 ≤ i ≤ t) is perfect (due

to Theorem 3.1.1 and induction hypothesis). Therefore, by Corollary 3.1.7, G is perfect.

3.1.2 Recognising Chordal Graphs

Now that we have defined and studied some basic properties of chordal graphs, we learn

how to recognise and verify whether a given graph G is chordal. We exploit the fact that

(non-complete) chordal graphs have at least 2 non-adjacent simplicial vertices, to build an
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easy and efficient recognition algorithm for chordal graphs. We first present a pseudocode

of the algorithm, and then argue for its correctness. The algorithm is named Lexicographic

Breadth-First Search, and it is a modification of the classical BFS algorithm ([1, Chapter

4]). We define the following notations required for the algorithm:

• Let σG be the resultant ordering on running Algorithm 1.

• We assign a set ‘label’, denoted by l(v), to each vertex v ∈ V . The largest value of

l(v) (for a given v) is m(l(v)).

• We call a vertex ‘un-numbered’ if it has not yet been assigned a number in the ordering

σG.

• The set of un-numbered vertices is U(G). The un-numbered vertex with the largest

m(l(v)) is f(U).

Algorithm 1 LexBFS algorithm

Input: G = (V,E)
Output: σG ▷ Finds a LexBFS ordering σG of G
1: procedure Ordering((G = (V,E))
2: for all i = n to 1, Step = -1 do
3: v ← f(U)
4: σG[i]← v ▷ This assigns to v the number i
5: for all v ∈ U(G) ∩N(v) do
6: l(v)← l(v) ∪ {i}
7: end for
8: end for
9: return σG

10: end procedure

Theorem 3.1.8. [1, Chapter 4] For any chordal graph G = (V,E), the Algorithm 1 produces

a perfect elimination ordering.

From Theorem 3.1.4, we know that, if a perfect elimination ordering exists, then the

graph is chordal. Hence, the above theorem characterises chordal graphs with respect to the

LexBFS algorithm.

To prove this theorem, we require the following inferences. Let li(v) be the label of v

when the ith vertex is numbered, and σ = σG
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P1. If j ≤ i,m(li(v)) ≤ m(lj(v)) i.e, the appended values in l(v) are successively decreasing.

P2. If j < i and m(li(u)) < m(li(v)) (where u, v ∈ V ), then m(lj(u)) < m(lj(v)).

P3. If σ−1(u) < σ−1(v) < σ−1(w) and w ∈ N(u) \N(v), then there exists x ∈ N(v) \N(u)

such that σ−1(w) < σ−1(x).

We are now in a position to prove Theorem 3.1.8.

Proof of Theorem 3.1.8

Proof. Let us proceed by induction on the size of V . The theorem is trivial for |V | = 1.

Assume that all graphs with fewer vertices than G satisfy the theorem, and let σ be the

output ordering of Algorithm 1 given a chordal graph G as input (G has order n). By

induction, it is enough to demonstrate that v = σ(1) is a simplicial vertex of G (for u, v ∈ V ,

we say u is larger than v if σ−1(v) < σ−1(u)).

Assume this is not the case, and choose v1, v2 ∈ N(v) with (v1, v2) /∈ E such that (v2) is as

large as possible. We construct the following sequence of vertices inductively, assuming that

we have been given vertices v1, v2, . . . vm such that the following holds: ∀i, j > 0

1. v0 = v, v−1 = v1

2. (v, vi) ∈ E ⇐⇒ i ≤ 2

3. (vi, vj) ∈ E ⇐⇒ |i− j| = 2

4. σ−1(v1) < σ−1(v2) < · · · < σ−1(vm)

5. vj is the vertex with the largest σ−1(vj) such that (vj−2, vj) ∈ E but (vj−3, vj) /∈ E

For m = 2, we have already constructed the vertices. We observe that vm−2, vm−1, vm satisfy

(P3) as u, v and w respectively. Choose vm+1 to be the largest vertex larger than vm which

is adjacent to vm−1 but not adjacent to vm−2. If vm+1 was adjacent to vm−3, then apply (P3)

to the vertices vm−3, vm−2, vm+1 to obtain a vertex v′ larger than vm+1 (and thus larger than

vm) adjacent to vm−2 but not to vm−3. This contradicts the maximality (w.r.t σ) of vm in 5.

Hence, (vm+1, vm−3) /∈ E. Thus, it follows from 2, 3 and chordality of G that (vi, vm+1) /∈ E
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for i = 0, 1, . . .m− 4,m.

We notice that this inductive procedure continues without end, however, the graph contains

only n vertices. We arrive at a contradiction, and thus infer that the vertex v is simplicial,

proving the theorem.

3.1.3 Basic Algorithms

Chordal graphs are extensively studied, especially from an algorithmic point of view, as

various classically NP-Complete problems (such as Max Clique, Max Independent Set and

Min Vertex Cover) are efficiently solvable on chordal graphs. In this section, we review

some algorithms for solving the above problems on chordal graphs. We can appreciate the

algorithmic utility of the perfect elimination ordering by observing that these algorithms are

built by exploiting this very characteristic of chordal graphs.

Maximum Clique

Lemma 3.1.9. [1, Chapter 4] For a chordal graph G = (V,E) with perfect elimination

ordering σ, every maximal clique is of the form {v} ∪Xv, where Xv = {u ∈ N(v)|σ−1(v) <

σ−1(u)}.

Proof. By definition, {v} ∪Xv is complete ∀v ∈ V . Now, let y be the earliest vertex in σ in

some maximal clique C of G. Then, C = {y} ∪Xy. If not, then either C ⊂ Xy or Xy ⊂ C.

If C ⊂ Xy, then C is not maximal. If Xy ⊂ C, then, since y is the earliest vertex of σ in C,

Xy can be extended to C. In both cases, we arrive at a contradiction. Hence, each maximal

clique is of the form {v} ∪Xv, v ∈ V .

We now illustrate a basic algorithm to list all maximal cliques of the chordal graph G,

thereby also finding the maximum clique of G.

Given a chordal graph G = (V,E) of order |V | = n and perfect elimination ordering σ,

we define the following:

• For each v ∈ V , Xv = {u ∈ N(v)|σ−1(v) < σ−1(u)}, and Yv = {v} ∪Xv.

20



• σ[i] denotes the ith element in the ordering σ.

• MCG is the set of all maximal cliques of G.

Algorithm 2 Maximal Cliques algorithm

Input: G = (v, E, σ) ▷ Given a chordal graph with simplicial ordering
Output: MCG, ω(G) ▷ Returns all maximal cliques, as well as ω(G)
1: procedure Clique((G = (V,E, σ))
2: for all i = 1 to n do
3: v ← σ[i]
4: if Yv is maximal then ▷ All maximal cliques are of this type
5: MCG ←MCG ∪ {Yv}
6: end if
7: end for
8: ω(G) =

∣∣max{MCG}
∣∣

9: return MCG, ω(G)
10: end procedure

Theorem 3.1.10. Algorithm 2 returns all maximal cliques of any chordal graph G (of order

n) in polynomial time.

Proof. Since all maximal cliques are of the type Yv, v ∈ V (owing to Lemma 3.1.9) there can

be at most n maximal cliques of any chordal graph G. Hence, it suffices to check each set of

this type for maximality. Checking a set for maximality takes at most O(n) time, and since

there exist at most n sets of the type Yv, our algorithm runs in time at most O(nO(1)).

Since chordal graphs are perfect, ω(G) = χ(G), and, hence, the above algorithm also

finds the chromatic number of the graph.

Maximum Independent Set, Minimum Clique Cover

Our algorithm for resolving the maximum independent set problem on chordal graphs is

built upon the ensuing theorems.

Theorem 3.1.11. [10] The perfect graph class is closed under complements.
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The above theorem is also known as the Weak Perfect Graph Theorem, and it was proved

by Lovasz in 1972. Since the proof is not relevant here, we omit it and refer the reader to

[10] for the same. This theorem has the following corollary as a result.

Corollary 3.1.12. If G = (V,E) is perfect, the size of the minimum clique cover and

maximum independent set is equal, i.e. k(G) = α(G).

Proof. Since G is perfect, we have χ(G) = ω(G). We make the following observations:

1. Since any clique of G is an independent set of G, we have that ω(G) = α(G).

2. A proper coloring of V partitions it into χ(G) parts V1, V2, . . . Vχ(G), each of which is

an independent set, by definition. Hence, in G, each part Vi is a clique. Thus, we have

that V1, V2, . . . Vχ(G) is a clique cover of G, and we obtain χ(G) = k(G).

From Theorem 3.1.11, G is perfect. Thus, we have

ω(G) = χ(G) from above assertion

ω(G) = α(G) from (1)

k(G) = χ(G) from (2)

∴ k(G) = α(G)

Hence, for any perfect graph, the size of the maximum independent set and minimum clique

cover are the same.

Now, to find the independent set of a chordal graph G = (V,E) with the perfect elimi-

nation ordering σ, we define the following sequence of vertices inductively:

1. y1 = σ(1)

2. yi is the first vertex in σ following yi−1 which is not in any Xy1 ∪Xy2 ∪ . . . Xyi−1
.

Here, σ(i) denotes the ith element in the ordering σ, and Xv = {u ∈ N(v)|σ−1(v) < σ−1(u)}.
Observe that V = {y1, y2, . . . yt} ∪Xy1 ∪Xy2 ∪ . . . Xyt .
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We are now equipped to prove our main theorem. We retain the same notation as

introduced above.

Theorem 3.1.13. [1, Chapter 4] The set {y1, y2, . . . yt} is a maximum independent set of

G, and the collection of sets Yi = {yi} ∪Xyi , 1 ≤ i ≤ t comprises a minimum clique cover of

the chordal graph G = (V,E).

Proof. Since no yi is adjacent to any yj for all 1 ≤ i, j ≤ t, {y1, y2, . . . yt} is an independent

set of G. Thus, α(G) ≥ t.

For all 1 ≤ i ≤ t, Yi is a clique (by definition of Xyi). Additionally,
⋃
i

Yi = V . To ensure

that this forms a partition, notice that if any 2 sets Yi, Yj (for 1 ≤ i, j ≤ t) have common

vertices, we can simply place the common vertices in any one of the sets as both of the sets

will induce cliques. Hence, k(G) ≤ t.

Combining the above 2 assertions with Corollary 3.1.12, we have that t ≤ α(G) = k(G) ≤
t =⇒ α(G) = k(G) = t.

Below, we elucidate a basic algorithm which finds the maximum independent set of a

chordal graph G, based on the theorem above.

Algorithm 3 Independent Set algorithm

Input: G = (v, E, σ) ▷ Given a chordal graph with simplicial ordering
Output: α(G) ▷ Returns independent set of chordal graph
1: procedure IndSet((G = (V,E, σ))
2: I ← ∅ ▷ I is the required maximum independent set
3: for all i = 1 to n do
4: v ← σ[i]
5: if v /∈

⋃
u∈I

Xu then ▷ Ensuring v is independent to all i ∈ I

6: I ← I ∪ {v}
7: end if
8: end for
9: α(G) = |I|
10: return α(G)
11: end procedure

Illustration 1. For the chordal graph G shown in Figure 3.2, we demonstrate the algorithms

to find the maximum clique and maximum independent set.
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Figure 3.2: A chordal graph G, with its perfect elimination ordering

Maximum Clique

v Yv

1 {1, 7, 8}
2 {2, 6, 7}
3 {3, 4, 5}
4 {4, 5, 6}
5 {5, 6, 7, 8}
6 {6, 7, 8}
7 {7, 8}
8 {8}

The cliques corresponding to the colored

rows are maximal. Thus, our set of

maximal cliques is

MCG = {Y1, Y2, Y3, Y4, Y5}

with |Y5| = 4 being the maximum.

Thus, ω(G) = 4.

Maximum Independent Set

v I

1 {1}
2 {1, 2}
3 {1, 2, 3}
4 {1, 2, 3}
5 {1, 2, 3}
6 {1, 2, 3}
7 {1, 2, 3}
8 {1, 2, 3}

We update I whenever some vi /∈
⋃
u∈I

Xu.

The iterations for which I are updated

are colored. We have

I = {1, 2, 3}

Thus, α(G) = 3.

3.1.4 Clique Trees

In this part of the chapter, we cover the concept of clique graphs and clique trees of chordal

graphs, which are an important construction having several structural and algorithmic conse-
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quences. This concept was studied in detail in [11], from which we have sourced the following

content.

Definition 3.1.5. For a chordal graph G = (V,E), the Weighted Clique-Intersection

Graph C(G) = (KG, EK , w) with w = EK → N is defined as follows:

1. KG is the set of maximal cliques of G.

2. For 2 maximal cliques K1, K2 ∈ KG, (K1, K2) ∈ EK ⇐⇒ K1 ∩K2 ̸= ∅.

3. For e = (K1, K2) ∈ EK , w(e) = |K1 ∩K2|.

We now introduce the “clique-intersection” property, and make the connection between

this property and tree decompositions. As a consequence of this result, we will also arrive

at an efficient algorithm to find the tree decomposition of a chordal graph.

Definition 3.1.6. For a graph G = (V,E), a tree TG = (KG, ET ) satisfies the Clique

Intersection property if every vertex common to K and K ′ is present in every clique on

the path from K to K ′, in the tree T . If a graph G has such a tree associated with it, we call

the tree T the clique-intersection tree of G.

The significance of the above property is appreciated by the fact that chordal graphs can

be completely characterised by this property. The following theorem makes this statement

precise and gives a proof of the claim.

Theorem 3.1.14. [12] Every connected chordal graph has an associated tree T = (KG, ET )

satisfying the clique intersection property. Furthermore, clique-intersection trees exist only

for chordal graphs.

To prove the above theorem, we need the following lemma.

Lemma 3.1.15. [12] For a chordal graph G = (V,E), a vertex v ∈ V is simplicial if and

only if it belongs to exactly 1 maximal clique.

Proof. If a vertex v ∈ V is simplicial, it belongs to the maximal clique N [v]. Let us say

it belongs to another maximal clique C in G, then every vertex of C has to be adjacent to

every vertex of N(v) (as the vertex v is simplicial). This is a contradiction, as we assumed
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that both N [v] and C are maximal cliques.

Now, if a vertex belongs to exactly 1 maximal clique, then every neighbor of v is adja-

cent to every other neighbor of v. Hence, N [v] is a clique, implying that v is simplicial in

G.

We move to the proof of Theorem 3.1.14.

Proof of Theorem 3.1.14

Proof. First, we prove that there exists such a tree for every chordal graph.

We will use induction on the number of vertices of G to prove the statement.

Let G be a chordal graph on n vertices, and the theorem holds true for all chordal graphs

with fewer vertices than n. Now, by Lemma 3.1.3, G has a simplicial vertex v. Since v

is simplicial, it belongs to exactly 1 maximal clique, say K (by Lemma 3.1.15). By the

induction hypothesis, for G′ = G \ {v}, there exists a clique-intersection tree. Call this tree

T ′ = (KG′ , ET ′). We have 2 cases. Either K ′ = K \ {v} is a maximal clique of G′, or

∃ K ′′ ∈ KG′ such that K ′ ⊂ K ′′.

If K ′ is a maximal clique of G′, then we can construct a tree T whose vertex set is obtained

by replacing K ′ in T ′ with K. Since v only belongs to K in G, every other maximal clique

remains the same in G′. In other words, KG′ = (KG ∪ {K ′}) \ {K}. Additionally, the

intersection of any 2 maximal cliques in G cannot contain v (due to Lemma 3.1.15). Since

the tree T ′ obeys the clique-intersection property, so does the tree T .

Now, say ∃ K ′′ ∈ KG′ such that K ′ ⊂ K ′′. Since n ≥ 2, we know that K ′ ̸= ∅. By

Lemma 3.1.15, v belongs to only one maximal clique K in G. Hence, in G′, no other clique

except K is affected. In other words, we have that KG′ = KG \ {K}. We construct the tree

T , whose vertex set is KG, by adding the vertex K and the edge (K,K ′′) to T ′. Observe that

K ∩K ′′ = K ′ ⊂ K ′′. For any S ∈ KG′ , the path from S to K passes through K ′′, and we

have that S ∩K = S ⊂ K ′′. Hence, every clique on this path contains K ∩S = K ′′ ∩S. For

any other pair of cliques S, S ′ ∈ KG′ , we know that the clique-intersection property already

holds.

Hence, we obtain a tree T which satisfies the clique-intersection property.
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Now, we prove that, if there is a tree associated with the maximal cliques of the graph

G satisfying the clique-intersection property, then the graph G is chordal.

Proceeding by induction, let G have n vertices and a clique-intersection tree T =

(KG, ET ).The claim holds trivially for n = 1. Assume that the claim holds true for all

graphs with fewer vertices than G.

Let C be a node of degree 1 in T and P the sole parent of C in T . Since C,P are maximal

by the definition of the tree T , ∃ v ∈ C \ P . Additionally, we claim that C is the unique

maximal clique to which v belongs. If this were not the case, and v belongs to some K ∈ KG,

then v exists in every clique on the path from K to C. Since P is the parent of C, we have

that v ∈ P , which violates our assumption. Therefore, C is the unique maximal clique to

which v belongs. Now, by Lemma 3.1.15, v is a simplicial vertex of G. Take the graph

G′ = G \ {v}, and let C ′ = C \ {v}. Furthermore, let T ′ the tree associated with G′. Then,

either C ′ ⊂ P , or C ′ ̸⊂ P . If C ′ ̸⊂ P , then the T ′ is obtained by simply replacing C with C ′.

If, on the other hand, C ′ ⊂ P , modify the tree T , to obtain T ′ as follows: remove the vertex

C, thereby removing the edge (C,P ) as well. In both of these cases, the clique-intersection

property is satisfied by the resultant tree T ′. Hence, the graph G′ is chordal, using the

induction assumption. By Theorem 3.1.4, G′ has a perfect elimination ordering σ′. Since

v ∈ G is a simplicial vertex of G, append v as a prefix to σ′ to obtain a perfect elimination

ordering σ of G, implying that G is chordal, completing the proof.

A spanning tree of an edge-weighted graph G = (V,E,w) is a subset of edges ET of

G such that the graph with the vertex set V and edge set ET is a connected tree of G.

Furthermore the weight of the tree is wt(T ) =
∑

e∈ET

w(e). The spanning tree with the largest

weight value is called the maximum spanning tree (or MST) of G.

Recall the definition of the Weighted clique-intersection graph from 3.1.5. We prove that,

given a chordal graph G, one can obtain a clique intersection tree by finding the MST of the

weighted clique-intersection graph WG. In this regard, let ΥG
mst be the set of all maximum

spanning trees (MST) of WG, and ΥG
ct be the set of all clique-intersection trees of G.

Given an edge e = (K,K ′) in a tree Tmst ∈ ΥG
mst, its removal from the tree results in the

partition of vertices of Tmst into 2 different sets. Call these sets V1 and V2 respectively. The

basic cutset of the edge e is the set of edges such that they have 1 endpoint each in V1 and V2

(in the graphWG). To demonstrate our theorem, we also require the following characteristic
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of maximum spanning trees.

Lemma 3.1.16. [12] Given a graph G = (V,E,w), where w is the weight function w : E →
R, a tree T = (V,ET , w) is the maximum spanning tree of G if and only if the weight of

every edge on the path from u to v in T is no less than w((u, v)), for every pair of vertices

u, v ∈ V such that (u, v) /∈ ET .

Proof. First, assume that T is a MST, and that there exists an edge (u, v) such that ∃ (a, b)

on the path from u to v such that w((u, v)) > w((a, b)). Consider the cycle C formed by

taking the edges (u, v), as well as the path P from u to v in T . Removing the edge (a, b) from

T and replacing it with (u, v) results in a new connected tree T ′ whose total edge weight is

higher than that of T , as w((u, v)) > w((a, b)). This contradicts the fact that T is a MST,

rendering our assumption incorrect.

Now, let us assume the existence of a spanning tree T such that for each (u, v) /∈ ET , w(u, v) ≤
w(e) for every edge e on the path from u to v in T . If T is not a MST, then there exists

some (u, v) /∈ ET such that replacing some (a, b) ∈ ET with (u, v) results in a spanning tree

T ′ having higher edge weight. Observe that [u, v, . . . a, b, . . . u] forms a cycle of G, as, if it

did not, then the connectivity of a and b in T ′ is violated. However, this means that there

is an edge (u, v) /∈ ET such that for some edge (a, b) on the path from u to v in T , we have

w((u, v)) > w((a, b)), which contradicts our initial assumption. Therefore, T is a maximum

spanning tree.

Theorem 3.1.17. [1, Chapter 4] Given a connected chordal graph G, it holds that ΥG
mst =

ΥG
ct.

Proof. First, let us show that ΥG
ct ⊆ ΥG

mst. Let T G
ct ∈ ΥG

ct. Take any 2 cliques K,K ′ ∈ KG,

such that (K,K ′) /∈ T G
ct . Consider the cycle formed by the edged (K,K ′) as well as all the

edges in the path P from K to K ′ in T G
ct . Every edge in P contains the intersection |K∩K ′|,

due to the clique-intersection property of T G
ct . Hence, every edge in P has weight at least

|K ∩K ′|, which is exactly the weight of the edge (K,K ′). Hence, by Lemma 3.1.16, we infer

that T G
ct ∈ ΥG

mst, proving the claim that ΥG
ct ⊆ ΥG

mst (3.4).

To prove ΥG
mst ⊆ ΥG

ct, start with some T G
mst ∈ ΥG

mst. Choose the tree Tct such that it has

the highest number of edges in common with T G
mst. Now, consider an edge (K1, K2) ∈ T G

mst

such that (K1, K2) /∈ T G
ct .Consider the basic cutset CS(K1,K2) of the edge (K1, K2) (in T G

mst).

Since T G
ct is a tree, we obtain a cycle on adding the edge (K1, K2) to it. Let this cycle be
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C. Observe that CS(K1,K2) contains atleast one edge from this cycle C (as CS(K1,K2) is a

cutset). Let this edge be (K,K ′) ̸= (K1, K2). Due to the definition of the clique-intersection

tree T G
ct , we have that K1 ∩K2 ⊆ K ∩K ′. If K1 ∩K2 ⊂ K ∩K ′, then replacing (K1, K2)

with (K,K ′) gives us a spanning tree of higher weight than Tmst, contradicting its definition.

Hence, K1 ∩K2 = K ∩K ′. Now, replace (K,K ′) with (K1, K2) in Tct to obtain the graph

T . We prove that T ∈ Υct.

Since the graph T is connected, and has the same number of edges as Tct, the graph

T is a tree. If the unique path P between 2 maximal cliques in T does not contain the

edge e = (K1, K2), the clique-intersection property holds (since the path P will be com-

mon between T and Tct). Now, consider 2 maximal cliques (K3, K4) such that the path

P (in T ) between K3 and K4 contains the edge e. We know that K ∩ K ′ = K1 ∩ K2,

and, since both K,K ′ contain the set K3 ∩K4 (by definition of the clique-intersection tree),

both K1, K2 contain the set K3 ∩ K4 as well. Therefore, all maximal cliques on the path

from K1 to K2 (in Tct) contain K3 ∩ K4. Add the edge (K1, K2) in Tct to obtain a cy-

cle [K3, . . . K,K ′, . . . K4, . . . K2, K1, . . . K3] to obtain a cycle (this cycle contains the edge

(K,K ′)). Now, every maximal clique on this cycle contains the set K3 ∩ K4. The path

P (of T ) is obtained by removing the edge (K,K ′), proving that the path P contains the

intersection K3 ∩K4.

We have, therefore, verified that T ∈ Υct. Furthermore, observe that T has another edge

in common with Tmst, contradicting our assumption that Tct is the clique-intersection tree

with the highest number of common edges with Tmst. Hence, we obtain ΥG
mst ⊆ ΥG

ct (3.5).

From 3.4 and 3.5, we obtain ΥG
mst = ΥG

ct.

Given a chordal graph, we can construct its weighted clique intersection graph by finding

all the maximal cliques (which can be accomplished efficiently using Algorithm 2). We now

illustrate Kruskal’s Algorithm ([13], [9, Chapter 4]) to find the Maximum Spanning Tree of

any given tree, using which, one can find the MST of the weighted clique-intersection graph.

Given a connected graph G = (V,E,w) with w : E → R and |V | = n, we define the

following:
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(b) T

Figure 3.3: Paths K3 → K4 in trees T and T G
ct

• T = (V,ET , w|ET
) is our resulting spanning tree of maximum weight.

• S is the set of edges E, sorted in decreasing order of their weights.

• s[0] is the first element of S.

Algorithm 4 Kruskal’s algorithm

1: procedure Kruskal((G = (V,E,w)) ▷ Finding a MST of G
2: e← s[0]
3: while |ET | ≠ n− 1 do ▷ We have the MST if n− 1 edges exist in T
4: if ET ∪ {e} has no cycle then
5: T ← T ∪ {e}
6: end if
7: S ← S \ {e}
8: end while
9: return T = (V,ET , w|ET

) ▷ The MST is T
10: end procedure

Using the algorithm elucidated above, one can find the MST TG of a weighted clique-

intersection graph WG, where G is chordal. We have also seen that the MST of WG obeys

the clique-intersection property. Observe that any clique-intersection tree of G is also a valid

tree decomposition (due to 2.3.3) of G. Additionally, since all the vertices of the clique-

30



a

b

c

d

e

f

g

h

K1

K2
K3

K4

K5

Figure 3.4: A chordal graph G

intersection tree are maximal cliques of G, the treewidth of the tree decomposition is exactly

ω(G)− 1.
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Figure 3.5: The weighted clique-intersection graph WG and the corresponding MST T G
ct of

WG.

Remark 3.1.1. Every clique-intersection tree of a chordal graph G is a valid tree decompo-

sition of G.

Combining the above with Theorem 3.1.17, we have the following result.

Theorem 3.1.18. For any chordal graph G, we have

ΥG
ct = ΥG

mst = ΥG
td

Furthermore, tw(G) = ω(G)− 1.
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So, for any chordal graph G, we can quickly compute the tree decomposition.

3.1.5 Intersection Models

An intersection graph G = (V,E) is formed in the following manner: we consider sets

S1, S2, . . . Sn, and vertices v1, v2, . . . vn corresponding to these sets such that

E = {(vi, vj)|Si ∩ Sj ̸= ∅}

The sets S1, S2, . . . Sn are called the intersection model of G. Intersection graphs form an

interesting class of graphs, as any graph can be represented as an intersection graph (we

omit the details of this claim, as it is not relevant to the focus of this thesis). For instance,

chordal graphs are the intersection graphs of the induced subtrees of a tree ([12]).

One can place restrictions on the type of set to consider to obtain interesting subclasses

of intersection graphs. One such graph class is the interval graph class. An interval graph is

a graph whose intersection model consists of intervals on the real line. Interval graphs are a

well-studied subclass of chordal graphs. Further information can be found in [1, Chapter 8].

3.2 Split Graphs

The following content, as well as supplementary details, can be found in [1, Chapter 6].

Definition 3.2.1. Any graph G = (V,E) whose vertex set V can be partitioned into a clique

C and an independent set I is termed a split graph.

We also define a subclass of split graphs, called complete split graphs, as follows.

Definition 3.2.2. A complete split graph G is a split graph such that every vertex of the

independent set is adjacent to every vertex of the clique.

We will now look at some basic properties of split graphs, as well as give characterisations

of the same.
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C I

Figure 3.6: An example of a split graph with partitions C and I

C I

Figure 3.7: A complete split graph with partition C and I. Each vertex of I is adjacent to
all vertices of C.

3.2.1 Basic Properties

The fact that cliques and independent sets are complements of one another leads directly to

the theorem that follows.

Theorem 3.2.1. [1, Chapter 6] The split graph class is closed under complements.

The partition of V into C and I need not be unique. The theorem below enumerates the

permissible conditions.
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Theorem 3.2.2. [1, Chapter 6] Let G = (C ∪ I, E) be a split graph, with C being the clique

and I being the independent set. Then, either:

1. |C| = ω(G) and |I| = α(G), and the partition is unique.

2. |C| = ω(G)− 1 and |I| = α(G), and there exists i ∈ I such that C ∪ {i} is complete.

3. |C| = ω(G) and |I| = α(G)− 1, and ∃ c ∈ C such that I ∪ {c} is independent.

Proof. Observe that the clique and independent set can have at most 1 vertex in common.

Hence, for any split graph G, ω(G) + α(G) = |V | or |V |+ 1.

If ω(G) + α(G) = |V |, then assume there is another partition of V into a clique C ′ and an

independent set I ′. Since C ̸= C ′, there exists atleast 1 vertex u /∈ C such that {u} = C ′∩I.

We see that u is the unique vertex in C ′ that is not in C (if this were not the case, I would

not be an independent set as it would contain 2 adjacent vertices). This means that C ∪{u}
is a clique in G, which has more than ω(G) vertices, contradicting the fact that ω(G) is the

size of the maximum clique of G. Hence, if ω(G) + α(G) = |V |, then the partition C ∪ I is

unique, and G is of the form (1).

Now, if ω(G) + α(G) = |V | + 1, C ∪ I ̸= ∅, then one of Case 2 or Case 3 is possible. If

|C| = ω(G)−1 and |I| = α(G), ∃ i ∈ I such that C∪{i} is the maximum clique in G. Hence,

C ∪ {i} is complete, and G is of the form (2). Similarly, if |C| = ω(G) and |I| = α(G)− 1,

∃ c ∈ C such that I ∪ {c} is an independent set. Hence, I ∪ {c} is independent, and G is of

the form (3).

Split graphs are subclasses of chordal graphs with some additional structure imposed on

them. The below theorem formalises and proves the same, and also provides a forbidden

subgraph characterisation of split graphs.
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2K2 C4 C5

Figure 3.8: Forbidden subgraphs of split graphs

Theorem 3.2.3. [1, Chapter 6] The following 3 statements equivalently define split graphs.

1. G is split.

2. G and G are both chordal.

3. G is C-free for C = {2K2, C4, C5}.

Proof. ((1) =⇒ (2)) Here, we only need to prove that the split graph G is chordal, as we

have already established that the complement of any split graph is split. See Theorem 3.2.1.

Since perfect elimination orderings characterise chordal graphs by Theorem 3.1.4, we will

now construct a perfect elimination ordering σG of the split graph G. Note that the vertex

set N [i] for each i ∈ I is a subset of the clique C, and thus, N [i] is complete for all i ∈ I.

This implies that, ∀ i ∈ I, i is a simplicial vertex of G. Thus, the first |I| elements of σG

are simply the vertices of I (can be placed in any order). Now, the graph G[V \ I] = G[C]

is a complete graph, implying that every vertex of G[C] is simplicial in G[C]. Hence, to

complete the ordering σG, we append all vertices of C to σG (in any order). This gives a

perfect elimination ordering σG, proving that split graphs are chordal.

((2) =⇒ (3)) Given G and G are both chordal. Observe that C5 is self-complementary, and

since G and G are both chordal, neither G or G contain an induced C5. Additionally, note

that 2K2 is the complement of C4. Since G is chordal, it contains no induced C4, and, thus,

G contains no induced 2K2. The same argument can be used to prove that G contains no

induced 2K2, by interchanging G and G in the argument above.

((3) =⇒ (1)) Let C be the maximum clique of G so chosen such that G[V − K] has the

fewest possible edges. We will prove that G[I] (where I = V −K) is an independent set.

Let us say G[I] has an edge (u, v). Observe that neither u nor v is adjacent to every vertex
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of C, owing to the maximality of C. Furthermore, if u and v have a common non-neighbour

w in C, then C ∪ {u, v} \ {w} is a clique larger than C, contradicting the fact that C is

a maximum clique. Hence, there exist unique vertices x and y such that (u, x), (v, y) /∈ E.

Since G contains no induced 2K2 or C4, exactly one of (x, v) and (y, u) is an edge in G.

Without loss of generality, say (x, v) is an edge in G. For any z ∈ C \ {x, y}, if neither (z, u)

nor (z, v) are edges in G, then G[{z, y, u, v}] induce a 2K2, which is not possible. However,

if any one of (z, u) ∈ E and (z, v) /∈ E, then G[{z, x, u, v}] induces a C4, a contradiction.

Thus, v is adjacent every vertex of C \ {y}, and C ′ = C ∪ {v} \ {y} is a maximal clique of

same size as C.

Per our assumption, G[V − C] has fewer edges than G[V − C ′]. Hence, ∃ w ̸= v such that

(w, y) ∈ E, but (w, v) /∈ E. Now, if (w, u) /∈ E, then G[{w, y, u, v}] induces a 2K2, which is

not permissible. Thus, (w, u) ∈ E. Additionally, if (w, x) ∈ E, then G[{w, u, v, x}] induces

a C4, which is, again, not permissible. Now, observe that G[{w, u, v, x, y}] induces a C5,

contradicting our assumption. Thus, I = V − C is an independent set, proving that G is a

split graph.

3.3 Well-partitioned Chordal Graphs

We now study a new class of graphs called well-partitioned chordal graphs. This graph class

was first introduced in [4] as a generalisation of split graphs and they are a subclass of chordal

graphs. They can be used to close the complexity gap for problems that are intractable for

chordal graphs but simple for split graphs. The next observation is crucial in arriving at the

definition of well-partitioned chordal graphs. In any split graph, we can partition the vertex

set into a clique C and an independent set I. Thus, if we picture C as the “central clique”

surrounded by cliques of size 1 which are only adjacent to the vertices of C. we arrive at a

structure that resembles a star graph (figure 3.9). We relax this condition in the following

ways:

1. by allowing the partition’s components to be set up in any kind of tree (instead of just

a star), and

2. by allowing each partition to have an arbitrary number of vertices (unlike split graphs,

in which, bar the central clique, every clique is of size 1).
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Figure 3.9: A split graph, with its partitions forming a star

Formally, we define well-partitioned chordal graphs as follows:

Definition 3.3.1. [4] A well-partitioned chordal graph is a connected graph G with a

partition P of V (G) and an associated tree T = (P , E(T )) such that:

1. ∀X ∈ P , G[X] is a clique in G.

2. For each pair of distinct X, Y ∈ P with (X, Y ) /∈ E(T ), E(G[X, Y ]) = ∅.

3. For each edge (X, Y ) ∈ E(T ), there exist X ′ ⊆ X and Y ′ ⊆ Y such that E(G[X, Y ]) =

{(x, y)|x ∈ X ′, y ∈ Y ′}, i.e., G[X ′ ∪ Y ′] is a clique.

The vertices of the tree T are referred to as “bags” and the tree is known as the partition

tree of G.
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Figure 3.10: A well-partitioned chordal graph G

B1 =

{a, b, c, d}
B2 =

{f, e, g, h}

B3 =

{i, j, k, l,m}

B4 = {q}

B5 = {o, p, n}

Figure 3.11: Partition tree T of the graph G

3.3.1 Basic Properties

Here, we mention 2 major results concerning well-partitioned chordal graphs. We first prove

that they are, in fact, chordal. We then characterise these graphs in terms of their forbidden

subgraphs.
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Theorem 3.3.1. Every well-partitioned chordal graph G = (V,E) with partition tree T =

(P , E(T )) is chordal.

Proof. Given a well-partitioned chordal graph G, we will give an explicit construction of

a perfect elimination ordering σG of G. Observe that every leaf bag contains at least 1

simplicial vertex. This is because each bag is a clique, and, for any leaf bag L, either there

exists at least one vertex v such that N [v] ⊆ L (if this were not the case, then every vertex

of the leaf bag will have a neighbor outside the bag, contradicting the fact that the bag

would is a leaf bag of T ), or this bag is a subclique of some maximal clique. Now, let the

set of simplicial vertices of G be SG. Thus, the first |SG| elements of σG are simply the

elements of SG. Once we have exhausted all simplicial vertices of G, we generate a new

well-partitioned chordal graph G′ with vertex set V \ SG and partition tree T ′. We can

continue the same process explained above till all the vertices are exhausted, thus giving

us the perfect elimination ordering, proving that well-partitioned chordal graphs are also

chordal.

Theorem 3.3.2. [4] All well-partitioned chordal graphs are O-free, where O is shown as

below. Furthermore, we can check if a graph is a well-partitioned chordal graph in polynomial

time. If the graph is well-partitioned chordal, the algorithm additionally outputs the partition

tree of the same.

In lieu of providing the proof of this theorem here, we direct the reader to [4] for more

information.
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Figure 3.12: The set O of forbidden subgraphs of well-partitioned chordal graphs (Hk refers
to cycle of length k) [Image credits: [4]]
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Chapter 4

Vertex Deletion Problems

4.1 Introduction

In this chapter, we will give an overview on vertex deletion problems, which are a broad class

of problems on graphs. Generally, given a graph G = (V,E), a vertex deletion problem asks

for a subset S ⊆ V such that G[V − S] satisfies some desirable property. For instance, an

independent set problem is nothing but the vertex deletion problem to an edge-free graph

(that is, the problem asks for a subset S ⊆ V such that G[V − S] is edge-free). Similarly,

a maximum clique problem can be interpreted as the vertex deletion problem to a complete

graph. We now study some basic concepts about vertex deletion problems, and illustrate

some algorithms for the same.

Definition 4.1.1. Given an input graph G = (V,E), a Π-Vertex deletion problem

involves finding a minimum-sized set V ′ ⊆ V such that the induced subgraph G[V − S]

satisfies the property Π.

For properties Π satisfying a certain condition, Lewis and Yannakakis (in [14]) provided a

dichotomy result which resolved the complexity classes of the Π-vertex deletion problems. To

state the mentioned theorem, we require the following definition. If a graph property holds

true for an infinite number of graphs but holds untrue for an infinite number of graphs, it is

said to be nontrivial.

If the graph property Π is not non-trivial, then the Π-vertex deletion problem can be
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solved in polynomial time. To see why this is the case, assume that the property Π is

true only for finitely many graphs G1, G2, . . . Gn. Then, we can simply find the largest Gi

contained in our input graph, which can be done in polynomial time.

We now state the result.

Theorem 4.1.1. [14] The Π-vertex deletion problem for non-trivial Π that are hereditary

on induced subgraphs is NP-Complete.

Subsequently, efforts in solving vertex deletion problems focused either on designing

approximation and parameterized algorithms, or studying these problems by placing re-

strictions on the input graphs. For instance, we know that the Max Clique problem is

NP-Complete on general graphs. However, if our input graph is restricted to the class of

chordal graphs, we have seen that an efficient algorithm exists which provides the size of

the maximum clique of the graph (refer to Algorithm 2). We focus on the latter approach,

namely, we specify an input satisfying certain properties, and attempt to build efficient

algorithms for solving vertex deletion problems on the same.

4.2 Some Basics

To study these problems, we need some rudimentary definitions and notations, which we

specify below.

For a Π-vertex deletion problem,

• C denotes some unspecified hereditary graph class. To specify the same, we use block

letters (for instance, we denote the class of chordal graphs as Chordal).

• For a graph G, if G belongs to a graph class C, we write G ∈ C.

• Unless specified, property Π is some specified hereditary graph class C. A graph satisfies

the property Π if it belongs to the specified graph class C.

• The Π-vertex deletion problem can, thus, be rephrased as vertex deletion problem to

some graph class C.
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• If our input graph is restricted to some graph class C1, and the vertex deletion problem

is to some graph class C2, we denote this problem as C1 → C2.

• C1 is termed as the input graph class, and C2 is termed as the target graph class.

• Thus, by denoting a vertex deletion problem as C1 → C2, we convey that we are

given a graph G = (V,E) ∈ C1, and we require the smallest subset S ⊆ V such that

G[V − S] ∈ C2.

For example, the Chordal → Split problem refers to the vertex deletion problem of

transforming a chordal graph to a split graph, by deleting the fewest number of vertices.

We will now see some examples of vertex deletion problems. We are primarily concerned

in problems where both our input and target graph classes are either chordal graphs, or their

subclasses.

4.3 Vertex Deletion Problems

The following observation helps simplify the input classes to consider.

Remark 4.3.1. [5] Let C1 and C2 be 2 graph classes.

1. If the problem C1 → C2 has a polynomial time algorithm, then so does C → C2, for

every subclass C of C1.

2. If the problem C1 → C2 is NP-Complete, then, for any superclass C of C1, C → C2 is

NP-Complete.

Therefore, if we prove that a problem is NP-Complete for a subclass of chordal graphs,

then we know that the problem is NP-Complete for chordal graphs as well. Similarly, finding

an efficient algorithm on a larger class of graphs automatically solves the same problem on

any subclass of this graph class.

We will now discuss algorithms for some vertex deletion problems. Our focus here is on

designing simple polynomial-time algorithms based on structural properties.
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Graph class Forbidden subgraphs

Chordal Cn(n ≥ 3)

Split 2K2, C4, C5

Complete Split P3, C4

Cluster P3

Block Cn, (n ≥ 3), diamond

a

b

c

d

Forbidden subgraphs of some graph classes The diamond graph

Figure 4.1: Forbidden subgraph characterisations (sourced from [15])

4.3.1 The Well-Partitioned Chordal → Split Problem

Theorem 4.3.1. For a given well-partitioned graph G = (V,E) with partition tree T =

(P , E(T )), let H = (C ∪ I, E ′) be the split subgraph of G of maximum size. Then C ∈ P.

Proof. For a split subgraph H of the well-partitioned chordal graph G, C cannot be a union

of cliques (as C would violate the definition of a clique). Thus, either C ⊊ X or C = X

for some X ∈ P . If C ⊊ X, we can simply append all the remaining vertices of X to H.

Observe that the independence of I is unaffected by performing this procedure. We have,

thus, obtained a split subgraph of G of higher size than H, contradicting our assumption.

Thus, for a maximum split subgraph H of G, we have C = X for some X ∈ P .

Using this theorem, we arrive at the following algorithm. In the below algorithm, IS[G]

(for a graph G) denotes the maximum independent set of G.

Theorem 4.3.2. Algorithm 5 solves the Well-Partitioned Chordal → Split problem

in polynomial time.

Proof. Let the input to Algorithm 5 be a well-partitioned chordal graph G of order n, and let

T be the partition tree of the same. From Theorem 4.3.1, we know that any clique forming

a split graph is a bag of the partition tree. Thus, for every bag K ∈ P , we assume that

K forms the clique of the split graph, and find the biggest independent set of G[V − K],

producing a split subgraph of G. Each such step takes polynomial time, and the size of
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Algorithm 5 Well-Partitioned Chordal → Split

Input: G = (V,E), T = (P , E(T )) ▷ Given a WPCG with partition tree

Output: V D ▷ V D is the required vertex deletion set

1: procedure SVD((G = (V,E))

2: S ← ∅

3: for all X ∈ P do

4: CX ← X ▷ CX is our candidate clique of resultant split graph

5: GX ← G[V − V [X]]

6: IX ← IS[GX ] ▷ Independent set of resultant split graph

7: SX ← G[CX ∪ IX ] ▷ Our resultant split graph with CX as clique

8: S ← S ∪ SX

9: end for

10: return V D = V −max
X∈P

{
|SX |

}
11: end procedure

the partition tree is at most n. Thus, we arrive at a polynomial time algorithm for the

Well-Partitioned Chordal → Split problem.

4.3.2 The Interval → Cluster Problem

The following algorithm was first given and proved in [5].

Given an interval graph G = (V,E) with its interval model, we are required to transform

it into a cluster graph by removing the fewest number of vertices from G. We denote the

left and right endpoints of the interval of a vertex v by l(v) and r(v) respectively.

Let us say that H is the largest cluster subgraph of G, and that it has m cliques. For each

clique Ki, 1 ≤ i ≤ m, we can find 2 endpoints such that

ai = min
v∈Ki

l(v)

bi = max
v∈Ki

r(v)

Now, observe that the intervals for all vertices u ∈ Ki are contained in the interval [ai, bi].
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Additionally, each of the m such intervals is pairwise disjoint i.e. there are no edges between

2 distinct cliques in H. Hence, if we find m such pairs of [ai, bi], our cliques will simply

be the maximal cliques in the graph induced by the vertices corresponding to the intervals

contained in [ai, bi].

To solve this, we build the following weighted interval graph W = (VW , EW) with weight

function w : VW → R:

• For each l(vl) and each r(vr) with l(vl) < r(vr) (and considering vl = vr), we construct

a vertex with its associated interval equal to [l(vl), r(vr)]. Let each vertex be called

u(vl, vr).

• The weight w(u(vl, vr)) is nothing but the size of the maximum clique of the subgraph

induced by {v : l(vl) ≤ l(v) < r(v) ≤ r(vr)}.

• As with any interval graph, 2 vertices are adjacent if and only if their intervals share

at least 1 common element.

Since this is an interval graph, we can find the maximum cliques (i.e. the weights of the

vertices ofW) in polynomial time. Since our target graph is a cluster graph, we require each

clique to be disjoint from all the other cliques. To ensure the same, we find the maximum-

weight independent set ofW . Thus, we have found a maximum-sized cluster graph given an

input interval graph. We omit the proof of the algorithm, and refer the reader to [5] for the

details.
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Chapter 5

Some New Results

In this chapter, we provide some algorithms for vertex deletion problems on subclasses of

chordal graphs, mainly on the well-partitioned chordal graph class. In these algorithms, we

have the operation argmin which takes, as inputs, a collection of sets, and returns the set

corresponding to the minimum cardinality (for instance, given 2 sets A,B with |A| < |B|,
argmin{|A|, |B|} returns the set A).

5.1 The Split → Cluster Problem

We elucidate a different polynomial time algorithm for this problem than the one given in

[5]. Given any split graph G = (V,E) with partition C ∪ I, we want to find the smallest

vertex set S ⊆ V such that G[V − S] is a cluster graph. Let the resultant cluster graph be

H = (V ′, E ′), with cliques K1, K2, . . . Kq for some q ∈ N.

The following observation is crucial. For any v ∈ I, one of three cases are possible:

C1. v /∈ V ′

C2. v ∈ V ′ with dH(v) = 0

C3. v ∈ V ′ with dH(v) ̸= 0

Here, dH(v) is the degree of v in the graph H. Thus, we can design a basic dynamic
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programming algorithm to solve our problem as follows. Here, IG′ denotes the independent

set of the split graph G′.

Theorem 5.1.1. Algorithm 6 solves the Split → Cluster problem in polynomial time.

Proof. For case C1, we add v to the solution and solve the problem for the graph G′ − v.

On the other hand, if we have that C2, we add N(v) to the solution, and solve the problem

for the graph G′−N [v]. These cases are covered in line 5. The case C3 is covered in line 12.

Since each subproblem can be solved in polynomial time, and the number of vertices in IG

is bounded by n, the algorithm takes polynomial time.

Algorithm 6 Split → Cluster

Input: G = (C ∪ I, E) ▷ Given a split graph with the partition

Output: S[G] ▷ S[G] is the required vertex deletion set

1: procedure CVD((G = (C ∪ I, E))

2: dp[∅]← ∅

3: G′ ← G

4: while G′ not a cluster graph do pick v ∈ IG′

5: dp[G′]← argmin{|{v} ∪ dp[G′ − v]|, |N(v) ∪ (dp[G′ −N [v]|} ▷ Cases C1 and C2

6: G′ ← G′ \ dp[G′]

7: if G′ is a cluster graph then

8: dp[G′]← ∅

9: end if

10: end while

11: for all v ∈ I do

12: Sv = N [v] ∪ α(G−N [v]) ▷ Case C3

13: end for

14: S = argmin
v∈I

{|Sv|}

15: S[G] = argmin{|dp[G]|, |G \ ω(G)|, |G \ α(G)|, |G \ S|}
16: return S[G]

17: end procedure
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Algorithm 7 Split → Complete Split

Input: G = (C ∪ I, E) ▷ Given a split graph with the partition

Output: V D ▷ V D is the required vertex deletion set

1: procedure CSVD((G = (C ∪ I, E))

2: V D ← SV D(G) ▷ The procedure SV D refers to Algorithm 6

3: return V D

4: end procedure

Given a split graph G, Algorithm 6 helps transform it into a P3-free graph (cluster graphs

are P3-free, refer to Section 4.1). Observe that complete split graphs are split graphs that

are P3-free. This fact, combined with the result that split graphs are closed under the

complement operation (Theorem 3.2.1) gives us the following result (the same idea was used

in [5] to solve the Split → Complete Split problem).

Corollary 5.1.2. Algorithm 6 solves the Split → Complete Split problem.

More explicitly, given a split graph G = (V,E), we execute Algorithm 6 on the comple-

ment graph G to obtain a set S such that G[V − S] is P3-free. Thus, removing the set S

from G results in the graph G being P3-free, making the resultant graph a complete split

graph (as split graphs are already C4-free). We state the same in Algorithm 7 for brevity.

5.2 The Well-Partitioned Chordal→ Complete Split

Problem

We claim that the Well-Partitioned Chordal → Complete Split vertex deletion

problem can be solved by employing the Split → Complete Split algorithm elucidated

above (Algorithm 7). We first provide the pseudocode for the algorithm, and then argue for

its correctness.

We define the following notations which are necessary for the algorithm.

• G = (V,E) is the given well-partitioned chordal graph, and T = (P , ET ) is the parti-
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tion tree of G. For any B ∈ T , V [B] refers to the set of vertices in clique B.,

• H = (C ∪ I, E ′) is the largest complete split subgraph of G, where C and I are the

clique and independent set, respectively.

• For any B ∈ T , NT (B) is the set of neighbors of B in T .

• Additionally, for B,B′ ∈ T , NE(B,B′) = {v ∈ V [B′]|N(v) ∩B ̸= ∅}.

• The output of implementing Algorithm 7 with input graph R is denoted by A[R]

• For a clique B ∈ P , we contract all the vertices V [B] to obtain a single vertex b. We

denote this operation by C[B].

Algorithm 8 Well-Partitioned Chordal → Complete Split

Input: G = (V,E), T = (P , E(T )) ▷ Given a WPCG with partition tree

Output: V D ▷ V D is the required vertex deletion set

1: procedure CSVD((G = (V,E))

2: S ← ∅

3: for all X ∈ P do

4: for all Y ∈ NT (X) do

5: I ← {y | y = C[Y ]}
6: GX ← G[X ∪ I]

7: SX = A[GX ]

8: end for

9: end for

10: SG ← argmin
X∈P

{
|SX |

}
11: return V D = argmin

{
|SG|, |ω(G)|, |α(G)|

}
12: end procedure

Theorem 5.2.1. Algorithm 8 solves the Well-Partitioned Chordal → Complete

Split problem in polynomial time.

Proof. Let H = (VH , EH) with VH = C ∪ I be the largest complete split subgraph in a

well-partitioned chordal graph G of order n, and let T be the partition tree of the same.
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Let C ⊂ K for some K ∈ T . Then, |I ∩ K ′| ≤ 1 for all K ′ ∈ NT (K). If this were

not the case, then we would have 2 vertices adjacent to each other in I, contradicting the

definition of a complete split graph. Further, VH does not contain any vertices from any

bag B /∈ {K} ∪ NT (K), as no such vertex will be adjacent to the vertices of C. Now,

let NE(K ′, K) = {v ∈ K ′|N(v) ∩ K ̸= ϕ}, where K ′ ∈ NT (K). Observe that, for any

v1, v2 ∈ NE(K ′, K), N(v1)∩B = N(v2)∩B, by definition of well-partitioned chordal graphs.

This is to say that, any vertex in K ′ adjacent to a vertex in K will be adjacent to the

same set of vertices in K, as any other vertex in K ′ with neighbors in K. Thus, every

clique in NT (K) contributes at most one vertex to the complete split subgraph. For every

K ′ ∈ NT (K), contract the vertices of K ′ into a single vertex k′, and remove all other bags

of T to obtain a split graph. For every such split graph, we execute Algorithm 7 to obtain a

complete split subgraph HK . For every k′ ∈ V (HK), we select a vertex vK′ in K ′ such that

vK′ is adjacent to a vertex in K, thus obtaining a complete split subgraph of G.

Each such instance takes polynomial time, and since the size of the partition tree is bounded

by n, the process takes polynomial time.

5.3 The Well-Partitioned Chordal→ Cluster Prob-

lem

Some notation required:

• L is the set of leaves of the partition tree T .

• N(L) refers to the neighborhood set of the vertices of L.

• B(L) refers to the set of vertices of L that have neighbors outside the set L.

• L′ is the neighbor of L in T .

Let us consider a well-partitioned chordal graph G = (V,E) with the partition tree

T = (P , ET ). Let H = (V ′, E ′) be the largest cluster subgraph of G, For any leaf bag

L ∈ P , the following 3 cases are possible:
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1. L−B(L) forms a disjoint clique of H (if L = B(L)), this is equivalent to removing L

from G).

2. L forms a disjoint clique of H.

3. B(L,L′) forms a disjoint clique of H.

For 1, we need to remove B(L) from the graph to make L − B(L) a disjoint clique. For 2,

observe that we need to remove B(L′) from the graph to make L a disjoint clique. For 3, we

need to remove all vertices from L ∪ L′ that are not in B(L,L′). The sets S1, S2 correspond

to the first 2 cases elucidated above. Observe that, for case 3, we need B(L) = L. Thus,

based on whether B(L) = L or B(L) ⊊ L, we modify S3 accordingly.

Theorem 5.3.1. Algorithm 9 solves the Well-Partitioned Chordal→ Cluster prob-

lem.

Proof. Proof by induction on the size of the partition tree. Let |T | = l. For l = 1, nothing

to do as the graph is already a complete graph. Assume true for k < l. Now, if |T | = l,

we prove each of the sets appended to the solution set either generates a disjoint clique, or

removes obstruction to cluster in the graph induced by V = V (L)∪VT (N(L)). Let L be the

new leaf added to T . We go case by case.

Case 1: B(L) ⊊ L

1. S1: makes L−B(L) a disjoint clique.

2. S2: makes L a disjoint clique.

3. S3: makes B(L,L′) a candidate for a disjoint clique (i.e., we modify the leaf L to

K = L \ B(L) so that K = B(K), which implies we can have B(K,L′) as a disjoint

clique.

In either of the cases, we see that the graph induced by V = V (L) ∪ VT (N(L)) becomes

P3−free.

Case 2: B(L) = L
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1. S1: eliminates L from the graph.

2. S2: makes L a disjoint clique.

3. S3: makes B(L,L′) a disjoint clique.

In either of the cases, we see that the graph induced by V = V (L) ∪ VT (N(L)) becomes

P3−free.

To prove our solution is optimal, we use induction on the size of the partition tree.

Trivially true for l = 1, assume true for k < l and |T | = l (observe that, the number of

vertices of the partition tree is bounded by n, and thus the procedure takes polynomial time).

For any bag L of the tree, our cases are (here, B(L) ⊊ L) :

• For 1, we need to add the boundary of L to the solution set to make L−B(L) disjoint,

and solve the problem for G′ − L.

• For 2, we need to add B(L′) to the solution set to make L disjoint.

• For 3, we need to add all vertices of the 2 bags except the shared boundary to the

solution set, to make B(L,L′) disjoint.

Similar arguments hold if B(L) = L.

Now, assume B(L) = L. Our cases are:

• For 1, since L = B(L) we need to add L itself to the solution set, and solve the problem

for G′ − L.

• For 2, we need to add B(L′) to the solution set to make L disjoint.

• For 3, we need to add all vertices of the 2 bags except the shared boundary to the

solution set, to make B(L,L′) disjoint.
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Algorithm 9 Well-Partitioned Chordal → Cluster

Input: G = (V,E), T ▷ Given a WPCG with the partition tree

Output: Sol[G] ▷ Sol[G] is the required vertex deletion set

1: procedure CVD((G = (V,E))

2: dp[∅]← ∅

3: while G′ is not a cluster graph do pick L ∈ L
4: if B(L) ⊊ L then

5: S1 ← B(L) ∪ dp[G′ − L]

6: S2 ← (N(B(L)) ∪ dp[G′ − L]

7: S3 ← (L′ −B(L,L′)) ∪ dp[G′ − (L ∪ L′))]

8: dp[G′]← argmin{|S1|, |S2|, |S3|}
9: G′ ← G′ \ dp[G′]

10: else if B(L) = L then

11: S1 ← L ∪ dp[G′ − L]

12: S2 ← N(L) ∪ dp[G′ − L]

13: S3 ← N(N(L)) ∪ dp[G′ − (L ∪ L′)]

14: dp[G′]← argmin{|S1|, |S2|, |S3|}
15: G′ ← G′ \ dp[G′]

16: end if

17: if G′ is a cluster graph then

18: dp[G′]← ∅

19: end if

20: end while

21: Sol[G] = argmin{|dp[G]|, |G \ ω(G)|, |G \ α(G)|}
22: return Sol[G]

23: end procedure
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Chapter 6

Conclusions and Open Problems

The thesis project contained a study on vertex deletion problems, primarily on subclasses

of chordal graphs. We surveyed crucial properties of chordal graphs and their subclasses in

Chapter 3. We also examined the newly introduced class of well-partitioned chordal graphs.

Post this, in Chapter 4, we studied the basic theory of vertex deletion problems. We

looked at broad ideas for approaching vertex deletion problems and surveyed existing results

on the same. We specifically focused on vertex deletion problems where we are given an

input graph class and a target graph class, and we want to delete the fewest number of

vertices to transform the input class to the target graph class.

In Chapter 5, we attacked the following 3 problems: the Split → Cluster prob-

lem, the Well-Partitioned Chordal → Complete Split problem and the Well-

Partitioned Chordal → Cluster problem. We provided basic polynomial-time algo-

rithms for the above problems, exploiting their structural properties. However, there is a

vast array of still unresolved vertex deletion problems on these classes. In particular, it would

be interesting to explore the computational complexity of other unresolved problems such

as the Chordal → Cluster problem and the Chordal → Unit Interval problem.
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