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QUANTUM NEURAL NETWORK ARCHITECTURE TO PERFORM
MACHINE LEARNING TASKS ON NISQ COMPUTERS

Abstract

by

RITU DHAULAKHANDI

SUPERVISOR: PROF. P. K. PANIGRAHI

EXPERT: PROF. M. S. SANTHANAM

Models known as quantum neural networks (QNNs) combine the benefits of quantum theory with

those of neural networks. They are said to be more proficient in reaching the desired performance

than classical models. But it is challenging to demonstrate this importance using a practically

relevant problem on the current Noisy Intermediate Scale Quantum (NISQ) computers. This thesis

aims to develop a QNN architecture that can be implemented on a real quantum device without

significant changes in results due to errors. The limitations imposed on implementing QNNs are

due to errors in NISQ computers that suffer from decoherence, gate errors, measurement errors,

and cross-talk. To reduce the error introduced due to the high accumulation of gate errors and

decoherence, a combination of small QNNs, Hierarchical bi-linear classification structure, and

Clustering is used.

The architecture is tested for low-dimensional datasets (Iris flower species and Ripley’s crab

datasets) with results provided. An additional classification result for a high-dimensional dataset

is provided. A standard QNN consists of an encoding circuit, parameterized quantum circuit

(PQC), measurement operations, and cost function. The encoding circuit maps the classical data

represented as a column vector to a quantum state. At the same time, PQC transforms the quantum

state (or updates the position of the quantum state on the Bloch sphere) to obtain desired output

state. The cost function is the fidelity between the QNN result and desired output subtracted from

one. The parameters of PQC are updated repeatedly until the cost function is minimized, hence
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completing the learning process.

The quantum state obtained from the QNN circuit is reconstructed by obtaining measurement

results. The statistical distance data obtained from the final measurement is used to classify the data

points into one of the main clusters. The sub-clusters present in these main clusters are identified

with the help of more detailed analysis and QNN unit training. The final number of QNN units

required to implement the classification problem depends on the dataset’s selected features and

target labels. Three IBM cloud devices are used to check the performance of the QNN units against

the simulator results. The variation in the results due to QV and CLOPS is also observed. Small

QNN units might be a desirable alternative for applications based on realistic QML simulations,

but more study is required to boost performance. This is a modest step towards a noise-resilient

quantum machine learning framework.
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C h a p t e r 1

INTRODUCTION

It is essential to understand machine learning before discussing quantum machine learning (quantum

neural networks in particular). Therefore, let us first understand why machine learning came into use,

how it works, and why it is important. For that, we will have to briefly examine the history of artifi-

cial intelligence.

The idea of artificial intelligence (AI) [1] dates back to when philosophers contemplated the

existence of artificially intelligent beings in the future. The invention of the Atanasoff Berry

Computer (ABC) [2], a programmable digital computer, in the 1940s further inspired scientists

to move forward with the idea of an artificially intelligent being. With each decade came new

technological innovations and outcomes, shaping AI’s fundamental knowledge in people. AI got

developed to create computer models that exhibit "intelligent behaviors" like humans. Machine

learning (ML) [3], a sub-field of AI, was part of the evolution of AI until it branched off in the late

1970s. While AI allows computers to learn from experience, ML works more like an optimization

process to help AI learn from the experience faster and better with minimum human intervention.

The economic feasibility and efficiency of ML systems have made a tremendous impact on

society and business. Depending on the industry’s requirements, an ML system can use data to

explain what happened, predict what will happen, or suggest what actions to take. Therefore, ML

is suitable for gaining insight or automating decision-making for big data situations. Furthermore,

with quantum computers’ [4] current development, researchers are now looking at new opportunities

that open up by combining machine learning and quantum computation [5]. In the future, ML

and quantum computing are expected to be critical aspects of how information gets dealt with in

society. Therefore, it is only natural to question how they could be combined. Quantum machine

learning (QML) [6], an emerging discipline, explores the answers to those questions.

Quantum neural network (QNN) [7] is part of the QML field in which quantum computing
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techniques are used to train neural networks. The theory of quantum mind, which explains the

role of quantum effect in cognitive function, gave rise to the idea of the quantum neural network

[8, 9]. Research in QNN mainly involves incorporating the advantages of quantum information

in the classical neural network to develop more efficient algorithms. The primary motivation to

investigate QNN is the quantum advantage (quantum parallelism, interference, and entanglement)

it provides to overcome the difficulty of training CNNs for datasets with complex patterns or "big

data" [10]. Due to the lack of fault-tolerant quantum systems and robust error correction techniques,

implementing a large QNN is still premature. The following sections explain the complete thesis

problem, the project’s scope, the inspiration behind working on the problem, the goals, and the

previous works done in QNN.

1.1 Motivation and Goals

Note: The terms and notations used here will be addressed in more detail in Chapter 2.

A neural network is an abstraction of the biological nervous system in the form of a mathematical

model. Neural networks mostly follow the McCulloch-Pitts neuron model, where a nerve cell is

in an active or resting state based on cell activity [11]. The basic idea behind Quantum Neural

Networks (QNNs) is constructing a quantum neuron as a two-level quantum system analogous to

the two states of the neural networks. The importance of QNNs arises because they are more

proficient in reaching the desired performance (e.g., classification of huge data samples) compared

to the classical models of a similar scale (e.g., with the same number of tunable parameters) [12,

13]. However, demonstrating this importance using a practically relevant problem on the current

NISQ computers is challenging as the results will get affected due to the accumulation of errors.

Until universal fault-tolerant quantum computers are developed, researchers are coming up with

different approaches and architectures for QNN implementation on NISQ devices to see if there is

an advantage to using QNNs over classical neural networks. Drawing inspiration from it, the thesis

aims to develop a QNN architecture that can be implemented on a real quantum device without

significant changes in results due to errors.
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The limitations imposed on implementing QNNs in Noisy Intermediate Scale Quantum (NISQ)

computers are due to decoherence, gate errors, measurement errors, and cross-talk [14]. We aim to

reduce the error introduced due to the high accumulation of gate errors and decoherence. Hence,

obtain high accuracy results from QNN implementation on NISQ systems for machine learning

tasks. The errors are reduced with the help of a combination of small Quantum Neural Networks

(QNNs), Hierarchical bi-linear classification structure, and Clustering. Small QNNs built using

parameterized quantum circuits (PQCs) reduce the errors due to gate and qubit cross-talk [15, 16].

The hierarchical structure allows more room for datasets with multiple classification categories.

The final step of clustering allows us to separate the quantum states visually and provide a clear

classification boundary. The architecture is tested for low-dimensional datasets (Iris flower species

and Ripley’s crab datasets) with results provided in Chapter 3. An additional classification result

for a high-dimensional dataset is provided in Chapter 4 to demonstrate how the protocol can be

scaled for bigger datasets.

Now, some of the questions that come to mind are: Does quantum information add something new

to how machines recognize patterns in data? Can quantum computers help to solve problems faster?

How can we create new machine learning methods using the concepts used in quantum computing?

What are the ingredients of a QNN algorithm, and where lies the bottleneck? Before addressing these

questions, let’s examine the relevant background knowledge needed before discussing about QNNs.

1.1.1 Background

This subsection provides the basic background knowledge of ML problem types and quantum

computation needed to prepare QNNs. First, the task (problem category) is identified. The

problem is first categorized into one of the three main types to determine the type of ML model

and tools that would work for the project problem [17].

Supervised ML models learn and get more accurate over time by training on labeled datasets.

An algorithm can be trained to identify pictures of the cat by training on images labeled cats by

humans. Classification and regression are two main categories of problems in supervised ML.
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Unsupervised ML model is used when there is a requirement for finding patterns or trends in

the unlabeled dataset. One of the main categories of problems in unsupervised ML is clustering.

Reinforcement ML model maximizes the reward in a situation by training using a trial and

error method. It is used to train autonomous vehicles to drive by informing when it made the right

decision, helping it learn to take appropriate action over time.

Figure 1.1: Categories of ML problems.

Depending on the type of information input and outcome required after processing (learning step),
the problems can be classified into different types of ML protocols best suited for the situation.

Source: Thomas Malone | MIT Sloan.

Fig. 1.1 provides a summarized flowchart of ML problem categorization. The problems in the

supervised learning category are utilized for the project problem. After identifying the problem

type, the next step involves using appropriate algorithms to train the model (experience) and testing

the model’s accuracy (performance). The specific algorithms needed to get the best model are

dependent on the problem type and dataset, more details of which will be given in the next chapter.

When modeling a machine learning routine for an organization, the experts are concerned with

the explainability of the ML model [18, 19]. It is the ability to explain what the ML model is

doing and how it makes decisions in a way that makes sense to a person at an acceptable level.

Depending on the types of algorithms used in the ML model, the level of explainability can differ.
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The explainability of a model is essential to avoid bias and unintended outcomes, as systems can be

fooled sometimes or make mistakes due to a programming error while performing specific tasks.

Bias is often introduced due to inequalities in original data or human biases [20]. Careful vetting

of data for training and ethical programming practices can help prevent the introduction of bias in

the model.

Figure 1.2: Bits and Qubits.

The difference between bits and qubits with a visual demonstration is provided.

After going through the bare minimum requirements of an ML task, we now need to understand

how qubits work in order to use them for QNNs. Fig. 1.2 helps visualize how a qubit state is

defined and how it differs from bits. A quantum bit is any bit created using a two-level quantum

system, such as an electron or photon [21]. A quantum bit must have two states, one for "0" and one

for "1," just like conventional bits. A quantum bit is capable of superposition states, incompatible

measurements, and even entanglement in contrast to a classical bit. Qubits are fundamentally

different from classical bits and far more powerful due to their capacity to harness the powers

of superposition, interference, and entanglement. For computation purposes, the qubit states are

represented by two orthonormal basis states |0⟩ and |1⟩ (commonly known as the computational
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basis or z basis states).

|0⟩ =


1

0

 |1⟩ =


0

1


Two qubit states can be represented as |00⟩=|0⟩ ⊗ |0⟩, |01⟩=|0⟩ ⊗ |1⟩, |10⟩=|1⟩ ⊗ |0⟩, and |11⟩=|1⟩ ⊗

|1⟩ (tensor product of first qubit state with the second qubit state). This is similarly extended for

more qubits.

1.2 Organization of the Document/Outline

This thesis starts with a background introduction in Chapter 1, followed by the basic principles

of QNN. After that, an architecture of the QNN model to implement on noisy quantum devices is

proposed in Chapter 2, along with the results from IBM cloud devices in Chapter 3. The challenges

and limitations of the proposed model are discussed from multiple perspectives in Chapter 4.

Lastly, the concluding remarks about the work done and possible future research directions and

applications of the proposed QNN model have been presented in Chapter 5.
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C h a p t e r 2

METHODS AND CALCULATIONS

2.1 Preliminaries

We need to understand the benefits of utilizing the QNN model over the CNN model for the ML

problem and how the two models differ from one another before delving into the QNN architecture.

Quantum mechanical systems produce atypical patterns that are thought to be difficult for

classical systems to simulate. Classical ML methods like deep neural networks can recognize these

statistical patterns. With the recent advancements in quantum computing, combining quantum

information processing and machine learning to identify classically complicated patterns more

efficiently is becoming prevalent. The quantum model of neural networks was the earliest idea

investigated in 1995, inspired by the quantum theory of how the brain works [22] (still controversial

due to lack of evidence) to find explanations. The concept of associative memory always comes

up during the discussion of neural networks. Hopfield’s neural network [23] (or Ising model of

a neural network) model served as an associative memory system (Hopfield, 1982) to understand

human memory. In 1999, Dan Ventura and Tony Martinez introduced the idea of a circuit-based

quantum algorithm that simulated associative memory [24]. While there is a search for quantum ML

techniques to replace classical ML models due to the supposed speed-up and scaling advantage, the

question of whether the advantage exists and whether there is any noticeable difference in outcomes

persists.

The idea of quantum speed-up hinges on whether one adopts a formal computer science

perspective (mathematical proofs) or a perspective based on what is possible with practical, finite-

size devices (which requires solid statistical evidence of a scaling advantage over some finite

range of problem sizes) [25]. It’s not always clear how well classical algorithms will function in

the context of quantum machine learning. Similar to Shor’s polynomial-time quantum algorithm

for integer factorization, there isn’t a sub-exponential-time classical algorithm found, but it’s
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not shown that there isn’t one either. Calculating a scaling advantage between quantum and

classical machine learning would require the presence of a quantum computer and is referred to

as a "bench-marking" challenge. Such advantages can include increased categorization accuracy

and sampling of conventionally inaccessible systems. As a result, idealized measurements from

complexity theory—query complexity and gate complexity—are used to describe quantum speed-

ups in machine learning. Many numerical experiments largely quantify the resources used by

traditional machine learning methods. Quantifying the resources needed for quantum machine

learning algorithms will probably be equally challenging. More details on the practical viability of

using QML models can be studied in the references provided [26, 27].

The key difference between QNN and CNN models is how each neural network layer com-

municates with other layers. The output from one layer gets copied to the other in a CNN. But,

in QNN, the outcome can’t be duplicated due to violation of the no-cloning theorem [28, 29]. A

generalized solution is to substitute the traditional fan-out technique with an arbitrary unitary that

spreads out but does not transfer the output of one layer of qubits to the next layer. Information

from the qubit can be passed on to the subsequent layer of qubits using this fan-out Unitary with a

dummy state qubit in a known state, referred to as an Ancilla bit. This procedure complies with the

reversibility condition of a quantum operation. Only two layers are active at any given time since

the fan-out unitary operators in the discussed quantum neural network only affect their respective

inputs. Hence, the number of qubits needed for a given step varies depending on the number of

inputs in a particular layer, as no Unitary operator is active on the complete network at any given

time. The effectiveness of a quantum neural network is primarily based on the number of qubits in

any given layer and not on the depth of the network because quantum computers are renowned for

their capacity to conduct several iterations in a short time. The references offer a more thorough

examination of the quantum advantage for those interested in reading [30, 31]. After highlighting

the advantages of the QNN model, the remainder of this thesis concentrates on creating a QNN

architecture that can be used to build and evaluate ML problems on a NISQ device.
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2.2 Data Preparation

ML algorithms gain knowledge from data [32]. Feeding the system with the proper data is essential

to solve the ML problem. Even if good data is available, we still need to ensure that it is scaled,

formatted, and has important features. The chances of obtaining more reliable and superior results

increase with the level of data management discipline. Selecting, pre-processing, and transforming

data are the three phases that make up the process of data preparation for an ML algorithm [33].

• Selecting Data: This step focuses on selecting the subset of all relevant data for the problem.

There is always a strong desire to include all accessible data, as more is better. This could

be accurate or inaccurate. Only the data required to resolve the issue should be considered.

Make some assumptions about the necessary data and write them down so you can test them

if necessary. When choosing data, it’s important to keep certain considerations in mind.

– How much data is currently available?

– What data should be available but isn’t?

– What data is not required to solve the issue?

• Pre-processing Data: This stage aims to get the chosen data into a format that the ML model

can use as input. There are three typical stages in data preprocessing:

– Formatting: It’s possible that the selected data isn’t in an editable format. The data

could be in a text file, relational database, or proprietary file format. The file type must

be altered to suit the user’s needs.

– Cleaning: Removing or filling in blanks in data is known as cleaning. There can

be instances where the necessary information to address the issue is missing. It may

be required to remove these instances. It’s also possible that some properties include

sensitive information, in which case the data may need to be completely or anonymously

erased.
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– Sampling: There may be more available selected data than can be used. The amount of

data can cause algorithms to operate much more slowly and increase the memory and

computing required. A smaller representative sample of the chosen data should be used

to explore and prototype ideas more quickly before considering the entire dataset.

The machine learning tools used on the data will likely influence the preprocessing. It is very

likely to revisit this step later.

• Transforming Data: The processed data must be transformed as the last step. This procedure

is also known as feature engineering. This step will be influenced by the particular algorithm

utilized and the understanding of the problem domain. As we work on the issue, we’ll

probably need to go back and review various transformations of the pre-processed data.

There are three typical data transformations:

– Scaling: The pre-processed data may include properties that use a variety of scales for

different units of measurement, such as dollars, kilograms, and sales volume. Several

machine learning algorithms prefer that data characteristics maintain a consistent scale,

such as a range between 0 and 1 for the least and the biggest value for a specific feature.

Take into account any feature scaling as required.

– Decomposition: Splitting apart some attributes that describe complicated concepts into

their component bits may make them more valuable to machine learning techniques.

As an illustration, consider a date that might be divided further into its day and time

components. The hour may be the only time of day that matters. Think about the feature

decompositions that are possible.

– Aggregation: It’s possible that certain features can be combined into a single feature that

will have a more significant impact on the issue you’re seeking to solve. For instance,

data instances for each time a client logged into a system might be combined into a

count for the number of logins, allowing the extra instances to be ignored. Take into

account the possible feature aggregations.
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A lot of time can be spent on engineering features from the data, which can help improve

the performance of an algorithm. It is always best to start small and build on ideas and skills

from the results.

2.3 Algorithms

In machine learning, a dataset’s dimensionality is determined by how many variables represent it.

Regularization techniques could help lower the risk of over-fitting, but using Feature Extraction

techniques instead can also result in other benefits, such as increased accuracy, decreased over-

fitting risk, accelerated training, improved data visualization, and increased model explainability.

With the use of existing features, feature extraction seeks to reduce the number of features in a

dataset (and then discard the original features). This new, smaller set of features should summarize

most of the information in the original collection of characteristics. In this manner, combining the

original set of features can result in a condensed version of the original features. Feature selection

is another approach frequently used to minimize the number of features in a dataset. The goal of

feature selection is to prioritize the significance of the already-present characteristics in the dataset

and eliminate those that are less significant (no new features are created) [34].

2.3.1 Feature Selection

Reducing the quantity of input data features can minimize over-fitting in neural network models.

The existence of redundant characteristics typically increases the variance of the result. As a

result, having too many features might make a model vulnerable to noise or subtle changes in a

highly correlated dataset, reducing its robustness. Following data cleaning, it is visualized using

scatter plots, correlation heat maps, and a covariance matrix to look for trends, correlations, or

anomalies that need further investigation. Let the data after cleaning be of the form (x𝑖, 𝑦𝑖),

where x𝑖 ≡ (𝑥1,𝑖, 𝑥2,𝑖, ..., 𝑥𝑚,𝑖) is the 𝑖𝑡ℎ data feature vector (𝑥1,𝑖, 𝑥2,𝑖,...,𝑥𝑚,𝑖 are 𝑚 distinct data

features/attributes) and 𝑦𝑖 its corresponding class/target label.

One of the most effective starting tools is the pairwise plot (a scatter-plot matrix) to identify

trends. With the aid of a pairwise plot, the distribution of a single variable as well as the connections
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between two variables can be observed. The correlation heat map helps to measure the strength of

the relation between two features. Its range is [−1,1], with 1 denoting perfect correlation between

the two datasets and −1 denoting perfect out-of-phase correlation. Let 𝑥1 and 𝑥2 be two features

with mean values 𝑥1 and 𝑥2, respectively.

𝑟 (Correlation coefficient)=
𝑐𝑜𝑣(𝑥1, 𝑥2)
𝜎𝑥1𝜎𝑥2

, 𝜎𝑥1 =

√︄∑𝑁
𝑖=1(𝑥1𝑖− 𝑥1)2

𝑁 −1
, 𝜎𝑥2 =

√︄∑𝑁
𝑖=1(𝑥2𝑖− 𝑥2)2

𝑁 −1
(2.1)

𝑐𝑜𝑣(𝑥1, 𝑥2) = 1
𝑁 −1

𝑁∑︁
𝑖=1

(𝑥1𝑖− 𝑥1) (𝑥2𝑖− 𝑥2) (2.2)

2.3.2 Feature Extraction

After feature selection, feature extraction techniques are tested out to check if better features can

be found. Before the application of feature extraction algorithms, the data features are normalized.

This is done to put all the features in a similar range so that the true value of variables can be

ascertained. Some of the ways to normalize data features are given as follows:

• Linear transformation using mean and standard deviation:

𝑥𝑛𝑇𝑖 =
𝑥𝑛
𝑖
− 𝑥𝑖

𝜎𝑖

(2.3)

𝑥𝑛
𝑇𝑖

is the transformed 𝑛-th data point of the feature 𝑥𝑖.

• Range Scaling:

𝑥𝑇𝑖 =
𝑥𝑖 − 𝑥𝑖 min

𝑥𝑖 max − 𝑥𝑖 min
(2.4)

𝑥𝑖 max and 𝑥𝑖 min are maximum and minimum values of the feature 𝑥𝑖.

The algorithms used for feature extraction are listed below:

• Principal Components Analysis (PCA): One of the most common methods for reducing the

number of dimensions in a linear model is PCA. While utilizing PCA, we start with our orig-

inal data and search for a combination of input features that can most effectively summarize
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the original data distribution and minimize its original dimensions. These combinations are

made so that the new variables (features selected after using extraction methods) are uncor-

related, and most of the information from the beginning variables is crammed into the first

components. Principal components are the lines that, geometrically speaking, encompass

most of the information in the data and reflect the directions of the data that account for the

greatest amount of variance.

Before computing the covariance matrix of the features in PCA, the original data is first stan-

dardized using the scaling approach. The covariance matrix’s eigenvalues and eigenvectors

are obtained. The first principal component is the eigenvector with the highest eigenvalue,

and the remaining components are arranged in decreasing eigenvalue order. Since PCA is an

unsupervised learning technique, it doesn’t care about the labels of the data but only about

variation. In some instances, this may result in the incorrect classification of data.

• Independent Component Analysis (ICA): ICA is a linear dimensionality reduction tech-

nique that uses a variety of independent components as input data and seeks to identify each

one of them correctly. This differs from a typical PCA in seeking out non-Gaussian, statisti-

cally independent (uncorrelated) components. We need to deconstruct the data to create a set

of independent factors. ICA isn’t needed if there aren’t numerous independent information

producers to identify. ICA uses the principle of non-Gaussianity to identify independent

components. The degree to which a random variable’s distribution deviates from a Gaussian

distribution is measured as non-Gaussianity.

Particularly, PCA is frequently used for dimensionality reduction or data compression. By

converting the input space into a maximally independent basis, ICA tries to segregate infor-

mation. Both methods need input data to be scaled. It is typically advantageous to perform

PCA before ICA.

• Linear Discriminant Analysis (LDA): LDA is a classifier that uses supervised learning to

reduce dimensionality. Each class’s mean should be as far apart as possible, and spreading

within each class should be minimal. Thus, LDA uses within-class and between-class
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comparisons as its metrics. This is a wise decision since maximizing the distance between

the means of each class while projecting the data in a lower-dimensional space means the

linear and nonlinear dependencies of the two input features are equal to zero. Non-Gaussian

data may result in poor classification outcomes because it is anticipated that the input data

when using LDA, follows a Gaussian Distribution.

After acquiring the necessary features, they are dispersed among numerous small QNNs to be

trained for classification. Based on the number of features and qubits used for training in individual

QNNs, the total number of QNNs is calculated. In the QNNs used for thesis work, single qubits

are employed to reduce error.

2.3.3 QNN unit

A standard QNN unit consists of an encoding circuit, parameterized quantum circuit (PQC),

measurement operations, and cost function [16]. The encoding quantum circuit maps the classical

data represented as a column vector to a quantum state. PQC transforms the quantum state to

obtain desired output state by applying unitary operators and tuning the parameters or degrees of

freedom present in the operators. The output state is retrieved by performing measurements. The

cost function is the fidelity between the QNN result and desired output subtracted from one, and

the learning process gets repeated until the cost function is minimized. The steps involved are

summarized below.

• Data encoding: Classical data as column vector : X,

𝑥𝑘 are components of X, 𝑥𝑘
𝑀𝑎𝑝𝑝𝑒𝑑 𝑡𝑜

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑘 𝑡ℎ 𝑑𝑎𝑡𝑎 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡)

\ (𝑥𝑘 ),

therefore X
𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑆𝑡𝑎𝑡𝑒−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(𝑇ℎ𝑟𝑜𝑢𝑔ℎ 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑜 𝑓 𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐺𝑎𝑡𝑒𝑠 𝑄𝐺 (\ (𝑥𝑘)))
|𝑄⟩.

• Applying unitary operators to the quantum state: |𝑄⟩ 𝑃𝑄𝐶−−−−−−−−−−−−−−−−−−−−→
(𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑎𝑛𝑠𝑎𝑡𝑧)

|𝑄′⟩.

• Finally, the measurements are obtained to evaluate the cost function value, and the parameters

of PQC are updated. After each training step, the PQC parameters are updated until the cost

function value is minimum.
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Encoding Circuit

The encoding quantum circuit maps the classical data represented as a column vector (each entry

corresponds to a unique data feature) to a quantum state. The classical data is mapped to the

quantum state by defining a suitable feature map 𝜙: D −→H, where D is the classical data domain

and H is the Hilbert space of the quantum states.

For continuous variables, the classical data (𝑥 𝑗 ,𝑖 where 𝑗 represents 𝑗 𝑡ℎ data feature and 𝑖

represents the 𝑖𝑡ℎ data point in feature 𝑗) is first normalized, and then the angle values are obtained

(𝐴𝑛𝑔𝑙𝑒𝑠(\) 𝑗 ,𝑖) corresponding to the classical data. The angles corresponding to each data point are

obtained in one of the following ways:

𝐴𝑛𝑔𝑙𝑒𝑠(\) 𝑗 ,𝑖 =
2𝜋(𝑥 𝑗 ,𝑖 −min𝑥 𝑗 ,𝑘 )
max𝑥 𝑗 ,𝑘 −min𝑥 𝑗 ,𝑘

, 𝐴𝑛𝑔𝑙𝑒𝑠(\) 𝑗 ,𝑖 = 2× sin−1

√√√√√√√©«
(𝑥 𝑗 ,𝑖)√︃∑
𝑗 (𝑥 𝑗 ,𝑖)2

ª®®¬
2

(2.5)

These angle values ((\) 𝑗 ,𝑖) are used as entries for quantum gates (encoding circuit) to get the

quantum state distribution of the classical data.

• Classical data as column vector : X ≡ (𝑥1, 𝑥2, ..., 𝑥𝑛)

• Through the application of rotation gates (like 𝑅𝑦 (\), 𝑅𝑧 (𝜙) where \, 𝜙 ∈ 𝐴𝑛𝑔𝑙𝑒𝑠(\) 𝑗 ,𝑖), the

quantum state representing a classical data vector is obtained, X −→ |𝜓⟩.

|𝜓⟩ = 1
√

2

( [
cos

(
\

2

)
− 𝑒−𝑖𝜙 sin

(
\

2

)]
|0⟩ +

[
cos

(
\

2

)
+ 𝑒𝑖𝜙 sin

(
\

2

)
|1⟩

] )
, \, 𝜙 ∈ 𝐴𝑛𝑔𝑙𝑒𝑠(\) 𝑗 ,𝑖 (2.6)

The global phase will be useful when working with more than one qubit system. The quantum

state in Eq. 2.6 can be obtained by application of a quantum rotation gate in the following order:

|𝜓⟩ = 𝑅𝑧

(
𝜙

2

)
𝑅𝑦 (\)𝑅𝑧

(
−𝜙

2

)
𝐻 |0⟩ (2.7)
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where the quantum gates 𝑅𝑦, 𝑅𝑧 are defined as:

𝐻 =
1
√

2


1 1

1 −1

 , 𝑅𝑦 (\) =


cos \
2 −sin \

2

sin \
2 cos \

2

 , 𝑅𝑧 (\) =

𝑒−𝑖

\
2 0

0 𝑒𝑖
\
2

 (2.8)

Many different encoding circuits were tested before finding an encoding circuit that can be used

for all datasets without any changes (given in Eq. 2.6).

Parameterized Quantum Circuit (PQC)

Parameterized quantum circuits (PQC) have been suggested as machine learning models for noisy

near-term intermediate-scale quantum devices because of their robustness and ease of implemen-

tation. PQC updates the quantum state (given in Eq. 2.6) by applying phase shifts on individual

qubit states to change their position on the Bloch sphere after every iteration (an iteration corre-

sponds to the application of PQC (𝑈1(𝑝3), 𝑈2(𝑝2, 𝑝3), 𝑈3(𝑝1, 𝑝2, 𝑝3) or a combination of them

with entanglement to the encoding circuit (2.7) after updating the parameters).

𝑈1(𝑝3) =𝑈3(0,0, 𝑝3) =


1 0

0 𝑒𝑖𝑝3

 , 𝑈2(𝑝2, 𝑝3) =𝑈3(
𝜋

2
, 𝑝2, 𝑝3) =

1
√

2


1 −𝑒𝑖𝑝3

𝑒𝑖𝑝2 𝑒𝑖(𝑝2+𝑝3)


(2.9)

𝑈3(𝑝1, 𝑝2, 𝑝3) =


cos
( 𝑝1

2
)

−𝑒𝑖𝑝3 sin
( 𝑝1

2
)

𝑒𝑖𝑝2 sin
( 𝑝1

2
)

𝑒𝑖(𝑝2+𝑝3) cos
( 𝑝1

2
)  (2.10)

The 𝑈1(𝑝3) gate, also known as the phase gate, rotates the quantum state by 𝑝3 around the

Z-axis direction on the Bloch sphere. 𝑈3(𝑝1, 𝑝2, 𝑝3) is the most general form of all single-qubit

quantum gates.

The parameters are randomly initialized for the first iteration, measurements are obtained,

and the parameters are updated (trained) using the gradient descent method. The parameters are

updated to minimize the cost function value in the subsequent iterations. The circuit parameters

value corresponding to the minimum cost function value is stored (remembered) to classify new



17

data points. Depending on the data distribution, multiple applications of parameter gates and

different entanglements could be required.

Measurement

It is essential to recover the quantum state prior to measurement to obtain the relative phase

information that might be used to determine more accurate classification requirements. By taking

measurements on a group of identical quantum states, a quantum state can be rebuilt through

a technique known as quantum state tomography [35]. The measurements must be completely

tomographic in order to be able to identify the state by itself. In other words, the measured operators

must provide an operator basis on the system’s Hilbert space, containing all the state-specific data.

One method entails taking measurements in phase space along various rotational directions.

The probability density of measurements in the direction of phase space \ that result in the value

𝑞 can be found as a probability distribution 𝑤(𝑞, \) for each direction \. The Wigner function,

W(𝑥, 𝑝), is obtained by applying an inverse Radon transformation (the filtered back projection) on

the function 𝑤(𝑞, \), and an inverse Fourier transformation transforms it into the density matrix for

the state in any basis.

For the case of qubits, a single qubit’s density matrix can be represented in terms of its Pauli

and Bloch vectors, ®𝜎 and ®𝑟, respectively:

𝜌 =
1
2
(I+ ®𝑟.®𝜎) = 1

2


1+ 𝑟𝑧 𝑟𝑥 − 𝑖𝑟𝑦

𝑟𝑥 + 𝑖𝑟𝑦 1− 𝑟𝑧

 (2.11)

Single-qubit Pauli measurements can be used to do single-qubit state tomography.

• Make a list of three quantum circuits first, with the first measuring the qubit in the com-

putational basis (Z-basis), the second doing a Hadamard gate prior to measurement (mea-

surement in X-basis). The third performing the proper phase shift gate (
√
𝑍
†
= |0⟩⟨0| +

exp(−i𝜋/2) |1⟩⟨1|) followed by a Hadamard gate prior to measurement (measurement in

Y-basis).
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• The measurement results of the first circuit then used to create 𝑧 = (𝑛𝑧,+−𝑛𝑧,−)/(𝑛𝑧,+ +𝑛𝑧,−),

the second circuit produces 𝑥, and the third circuit produces �̄�.

• Last but not least, if 𝑥2+ �̄�2+ 𝑧2 ≤ 1, then a measured Bloch vector is formed as ®𝑟𝑚 = (𝑥, �̄�, 𝑧),

and the measured density matrix is 𝜌𝑚 = 1
2 (𝐼 + ®𝑟𝑚 · ®𝜎). It will be essential to re-normalize

the measured Bloch vector as ®𝑟𝑚 = (𝑥, �̄�, 𝑧)/
√︁
𝑥2 + �̄�2 + 𝑧2 if 𝑥2+ �̄�2+ 𝑧2 > 1 before calculating

the measured density matrix using it.

Qubit tomography is based on the aforementioned algorithm, which is also used in several

quantum programming operations.

Cost function

The cost function is calculated classically from repeated measurement outcomes. The cost function

is defined using the QNN circuit measurement and desired output’s fidelity. Fidelity conveys

information about how close two quantum states are. For measurement output density matrix (𝜌𝑜𝑢𝑡)

and desired output density matrix (𝜎𝑜𝑢𝑡), the fidelity 𝐹 (𝜌𝑜𝑢𝑡 ,𝜎𝑜𝑢𝑡) is defined as:

𝐹 (𝜌𝑜𝑢𝑡 ,𝜎𝑜𝑢𝑡) =
(
𝑇𝑟 (

√︃√
𝜌𝑜𝑢𝑡𝜎𝑜𝑢𝑡

√
𝜌𝑜𝑢𝑡)

)2
(2.12)

In case of pure quantum states; 𝐹 (𝜌𝑜𝑢𝑡 ,𝜎𝑜𝑢𝑡)=| ⟨𝜓𝜌 | |𝜓𝜎⟩ |2 (𝜌𝑜𝑢𝑡=|𝜓𝜌⟩ ⟨𝜓𝜌 |, 𝜎𝑜𝑢𝑡=|𝜓𝜎⟩ ⟨𝜓𝜎 |). It

may not be obvious from the general definition of fidelity, but it is symmetric (𝐹 (𝜌𝑜𝑢𝑡 ,𝜎𝑜𝑢𝑡)=𝐹 (𝜎𝑜𝑢𝑡 , 𝜌𝑜𝑢𝑡)).

Using the given definition of fidelity, the mean of fidelity of the training data points (𝑖 going

from 1 to 𝑁) is used to write down the cost function (𝐶) such that the minimum value of the cost

function (0) will be attained when the maximum fidelity value (1) is reached.

𝐶 = 1− 1
𝑁

𝑁∑︁
𝑖=1

𝐹 (𝜌𝑜𝑢𝑡 ,𝜎𝑖
𝑜𝑢𝑡) (2.13)

The parameters of PQC are updated using the gradient descent method and cost function. To find

a local minimum of a differentiable function, gradient descent is a first-order iterative optimization

technique in mathematics. As the direction of the steepest descent is in the opposite direction of

the function’s gradient at the present point, the idea is to move in that direction repeatedly. 𝐶 ( ®𝑝𝑛)
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decreases fastest if one goes from ®𝑝𝑛 in the direction of the negative gradient of 𝐶 at ®𝑝𝑛 ,−∇𝐶 ( ®𝑝𝑛).

Therefore, the parameter is updated as:

®𝑝𝑛+1 = ®𝑝𝑛−𝛾∇𝐶 ( ®𝑝𝑛) (2.14)

where 𝛾 ∈ R+ is the learning rate (step size).The term 𝛾∇𝐶 ( ®𝑝𝑛) is subtracted from ®𝑝𝑛 to move

against the gradient and reach the minimum. On reaching the cost function minimum, the training

process of QNN is complete, and the final parameters are saved.

2.3.4 Statistical distances

The quantum state obtained from the QNN circuit using the optimized parameters of PQC is

reconstructed by obtaining measurement results. After that, the statistical distances (𝑑𝑠𝑃𝑆) [36]

between the output states and the mean state of each class is obtained, where 𝑑𝑠𝑃𝑆 is defined as:

1
4
(𝑑𝑠𝑃𝑆)2

𝑖 = [cos−1 ( | ⟨(𝜓𝑚𝑒𝑎𝑛)𝑖 |𝜓𝑏⟩ |)]2 = 1− | ⟨(𝜓𝑚𝑒𝑎𝑛)𝑖 |𝜓𝑏⟩ |2 (2.15)

Using the statistical distance data, the main clusters are identified and separated. The data is

classified into one of the identified main clusters. The sub-clusters present in these main clusters

are identified with the help of another round of detailed analysis and QNN unit training. Classical

clustering protocols (like k-means) are used to separate the target labels.

2.4 Tools and cloud devices

IBM Quantum aims to increase the amount of useful work that quantum computing systems can

accomplish (quantum computing performance). The overarching idea is that scale, quality, and

speed are the three essential components of performance. The superconducting quantum systems

at IBM Quantum are prepared to lead in pushing on all three areas in order to integrate quantum

computers into enterprises’ computing activities. The progress in the number of qubits in the

system measures the scale. Quantum volume is used to measure the quality. CLOPS is the metric

used to measure speed.
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All the protocols used in the work of this thesis have been implemented on IBM quantum cloud

devices. It is, therefore, important to understand these devices’ attributes and limitations.

• Qubits: We introduced qubits and discussed how they differ from conventional bits in

Chapter 1. The qubit can be any two-level quantum mechanical system. If a multilevel

system has two states that can be successfully decoupled from the others, it can also be

employed. Some of the most prevalent qubit systems are listed below as examples.

– Spin: The majority of quantum particles act like tiny magnets. This property is called

spin. A spin qubit can be constructed with "0" as the spin-up state and "1" as the

spin-down state.

– Trapped Atoms and Ions: Qubits can be created using the energy levels of the electrons

in neutral atoms or ions. These electrons are at the lowest energy levels imaginable in

their native state. Lasers can "excite" them to a higher energy level. According to its

energy state, the qubit can be given values with "0" denoting a low energy state and "1"

denoting a high energy level.

– Photons: There are various ways that photons, which are discrete units of light, might

be employed as qubits. For example, A photon qubit can also be created using its arrival

time (Time Qubit: A "photon coming early" ("0") and a "photon arriving late" ("1")).

– Superconducting Circuits: Some materials allow an electrical current to pass with-

out resistance when chilled to a low temperature. These are called superconductors.

Superconducting-based electrical circuits can be created with qubit-like behavior. These

artificial systems, which differ from earlier qubit instances in that they are composed

of billions of atoms, still function as a single quantum system. An electrical circuit’s

current flow direction can be given a value in order to create a superconducting qubit

("0" as clockwise current and "1" as anticlockwise current).

• Quantum Volume (QV): Quantum Volume measures the efficiency with which a quantum

computer can operate a circuit of arbitrary two-qubit gates functioning concurrently on a
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subset of the device’s qubits. It incorporates system characteristics, including connectivity,

the number of qubits, gate, spectator, and measurement errors, into a single numerical value.

Increased processor performance is directly correlated with increased quantum volumes.

Because the number of transistors in a classical computer and the number of quantum bits

in a quantum computer are different, IBM developed the Quantum Volume metric. Few

fault-tolerant bits are more valuable as a performance indicator than a larger number of noisy,

error-prone qubits because qubits decohere and suffer a corresponding performance loss.

• Circuit Layer Operations Per Second (CLOPS): CLOPS is a metric proposed by IBM

Quantum that measures the speed of quantum circuits, the fundamental building block of

quantum computation that encompasses both the interaction of the quantum system with a

classical computer and the sequence of quantum operations. A quantum program incorporates

some classical computing: programmers translate instructions into a format that can be used

by the quantum processing unit (QPU) and receive calculation results using classical gear,

such as a laptop.

Many quantum circuits are realized with each "question" transmitted to the quantum computer.

Therefore, the entire system’s performance depends on how quickly the quantum-classical

interaction takes place. This speed, which takes into account not only the time spent running

each circuit on the device but also the time elapsed between each circuit’s shot on the system

and the time spent getting the circuits ready to run, is what CLOPS measures.

• Processor Type: A laptop’s keyboard wafer is about the size of an IBM Quantum Processor.

A quantum hardware setup is also roughly the size of a vehicle and consists primarily

of cooling mechanisms to maintain the superconducting processor’s ultra-cold operational

temperature. A conventional processor uses bits to perform its tasks. A quantum computer

uses qubits to execute multidimensional quantum computations.

The temperature of the quantum computers is lowered close to absolute zero using super-

cooled super-fluids to produce superconductors. Josephson junctions, employed as super-

conducting qubits, are created when two superconductors are put on opposite sides of an
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Figure 2.1: Segment H of a Falcon processor.

Source: IBM Quantum Computing

insulator at extremely low temperatures. These qubits may be made to keep, modify, and

read out discrete pieces of quantum information by exposing them to microwave photons that

can be controlled.

The family and revision are two general technological characteristics that go into building a

processor type. Family (for instance, Falcon) describes the size and scope of circuits that can

be placed on the chip. The connectivity graph and the number of qubits mostly determine

this. Revisions (such as r1) are design variations within a single family, frequently resulting

in performance gains or trade-offs. Within a particular family, segments are specified as chip

sub-sections. For instance, segment H of a Falcon has seven qubits set up, as depicted in Fig.

2.1.

IBM Quantum’s mission is to create a workable quantum computing system, and they think that

superconducting qubit systems have the best chance of achieving this aim. They claim that various

quantum designs can perform well in some aspects of scale, quality, and speed, but not all. As an

illustration, confined ions have demonstrated the ability to reach high Quantum Volume but have

difficulty achieving speed. In contrast, spin qubits can operate at high speeds but haven’t been able

to push quality or scale yet. In achieving further performance improvements in scalability, quality,

and speed, they anticipate that superconducting qubits will offer the most potential for all three.

The IBM Perth, Oslo, and Quito cloud devices are used to check the performance of the QNN
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Table 2.1: IBM cloud quantum resources and their attributes.

Cloud Qubits Quantum Circuit Layer Operations Processor Calibration
Devices Volume (QV) Per Second (CLOPS) Type Data (Link)

ibm_perth 7 32 2900 Falcon r5.11H Perth
ibm_lagos 7 32 2700 Falcon r5.11H Lagos

ibm_nairobi 7 32 2600 Falcon r5.11H Nairobi
ibm_oslo 7 32 2600 Falcon r5.11H Oslo

ibmq_jakarta 7 16 2400 Falcon r5.11H Jakarta
ibmq_manila 5 32 2800 Falcon r5.11L Manila
ibmq_quito 5 16 2500 Falcon r4T Quito
ibmq_belem 5 16 2500 Falcon r4T Belem
ibmq_lima 5 8 2700 Falcon r4T Lima

ibmq_qasm_simulator 32 - - General, context-aware -

units against the simulator results.

https://quantum-computing.ibm.com/services/resources?system=ibm_perth
https://quantum-computing.ibm.com/services/resources?system=ibm_lagos
https://quantum-computing.ibm.com/services/resources?system=ibm_nairobi
https://quantum-computing.ibm.com/services/resources?system=ibm_oslo
https://quantum-computing.ibm.com/services/resources?system=ibmq_jakarta
https://quantum-computing.ibm.com/services/resources?system=ibmq_manila
https://quantum-computing.ibm.com/services/resources?system=ibmq_quito
https://quantum-computing.ibm.com/services/resources?system=ibmq_belem
https://quantum-computing.ibm.com/services/resources?system=ibmq_lima
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C h a p t e r 3

RESULTS

Python, Jupyter Notebook, Qiskit, and IBM cloud devices are all used in the QNN architecture

implementation and testing. The suggested QNN protocol implementation is described in detail in

the next section. In Appendix A, the codes used are listed. Plots are used to show the distribution,

and a subset of the data is given when it is pertinent. The Iris flower and Ripley’s crab species

are classified using the protocol. This chapter is divided into two parts, each part dedicated to the

individual dataset. The layout is explained before going through the results.

First, data-related details are gathered, such as the number of features, individual feature data

type, null data points, and the total number of distinct data points. After the null data points are

eliminated, the statistics for the remaining features are gathered. The next step is to do a univariate

and bivariate analysis to find outliers and clusters. A pairwise plot is obtained to see if the clusters

belong to different target labels or if their distributions overlap. For subsequent feature extraction

methods (PCA, ICA, and LDA extract features from the scaled data), the correlation heat map is

utilized to determine the degree of connection between features and target labels. The selected

features are used as input for the encoding circuit.

Figure 3.1: A QNN unit in the Hierarchical structure.

The input data is the angles obtained from scaling the final selected features.
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The distribution from the encoding circuit is collected by performing qubit tomography to

see if the mapping results are as expected. The number of QNN units required to implement

the classification problem depends on the dataset’s selected features and target labels. The final

classification model corresponding to each dataset is provided at the end of each dataset section.

All the individual QNN units, as shown in Fig. 3.1, used in the datasets are made of a single qubit

to make the fidelity and updating parameter calculations easy to follow.
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3.1 Iris Flower Dataset

In his 1936 publication "The use of many measures in taxonomic issues," British statistician and

biologist Ronald Fisher introduced the multivariate data set for the iris flower [37]. The information

was gathered to measure the morphologic variance of Iris blossoms from three related species. The

three iris species in the data set have 50 samples each. From each sample, the length and width of the

sepals and petals in centimeters were measured. Several machine-learning statistical classification

approaches used this dataset as a standard test scenario.

3.1.1 Data Preparation

The raw data information table provides the details of the number of data points available. The data

type, species label used, and null points are also provided. The data features are length and width

measurements of the sepal and petal of the iris flower, which need to be scaled before using them

as input for feature extraction. For the first QNN training, the complete 150 data point is taken.

Only the data points corresponding to the bigger cluster (species 1 and 2) are taken for the training

of the second QNN unit.

Table 3.1: Iris Flower Raw Data
S. No. sepal_length sepal_width petal_length petal_width species species label

1 5.1 3.5 1.4 0.2 Iris-setosa 0
2 5.4 3 4.5 1.5 Iris-versicolor 1
3 6.3 2.5 5 1.9 Iris-virginica 2

Feature Null Data Points Total Count Data Type
sepal_length 0 150 float
sepal_width 0 150 float
petal_length 0 150 float
petal_width 0 150 float

Species Total Count Data Label Type
Iris-setosa(0) 50 integer

Iris-versicolor(1) 50 integer
Iris-virginica(2) 50 integer

It can be deduced from the raw data, univariate, and bivariate analysis (Fig. 3.2 and 3.3) that

two clusters are highlighted by the petal length and width attributes. The boxplot of the sepal width

feature shows four outlying points; however, those points are left in since they are not too far from
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Table 3.2: Iris Flower Raw Data Statistical Information
Info Type sepal_length sepal_width petal_length petal_width

mean 5.84 3.05 3.76 1.20
std. dev. 0.83 0.43 1.76 0.76

min 4.3 2.0 1.0 0.1
25% 5.1 2.8 1.6 0.3
50% 5.8 3.0 4.4 1.3
75% 6.4 3.3 5.1 1.8
max 7.9 4.4 6.9 2.5

Figure 3.2: Iris Flower Features Univariate Analysis.

Sepal length is shown at the top of the univariate plot, followed by sepal width, petal length, and
petal width at the bottom. The dataset’s frequency distribution is shown in the left section’s

histogram. The boxplot in the right section displays the minimum, first quartile, median, third
quartile, and maximum values.

the minimum and maximum values. Whole raw data is scaled further for feature extraction because

no null values exist.

The PCA, ICA, and LDA results (Fig. 3.4) are compared with the help of a correlation heat

map to select appropriate features. The final selected features are collected, stored in a separate

data file, and used for the QNN encoding circuit.
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Figure 3.3: Iris Flower Features Bivariate Analysis.

The pairwise plot of petal length and width makes it obvious that two data clusters are present. A
second pairwise plot is obtained to confirm that the clusters correspond to different species. The
heat map of correlation reveals a strong relationship between species and petal length and width.

Figure 3.4: PCA, ICA, and LDA of scaled Iris Flower data for first QNN unit.

The figures demonstrate that species 0 and species 1 and 2 are separated by PC1, IC2, and LDC1.
PC1 and IC2 are the input data for the encoding circuit in the first QNN unit, as they have the

highest correlation with species labels for the two clusters.

3.1.2 First QNN Unit

The first QNN unit is used to separate species 0 from species 1 and 2. PC1 and IC2 are selected as

the features to be used for the QNN unit. The PC1 and IC2 data points are multiplied by 2𝜋 to use

as input (\ and 𝜙 respectively) for the circuit gates.
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Encoding circuit

Initially, the qubit is in |0⟩ state. From Chapter 2 Eq. 2.7, the quantum state after the application

of the encoding circuit is given as:

|𝑄𝑒𝑛𝑐⟩ = 𝑅𝑧
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The simulator measurement results of the encoding circuit (Fig. 3.5) are used to identify

centroids of clusters to be separated. These centroids are used to calculate the fidelity of the entire

QNN circuit during the training steps.

Figure 3.5: Iris Flower encoding circuit distribution for first QNN unit.

The measurement results are obtained in 𝑍 (|0⟩ , |1⟩), 𝑋 (|𝑢𝑝⟩ , |𝑑𝑜𝑤𝑛⟩), and 𝑌 (|𝑟𝑖𝑔ℎ𝑡⟩ , |𝑙𝑒 𝑓 𝑡⟩)
basis. The encoding circuit separates the two clusters. The phase gate parameter is still trained to

adhere to the protocol.
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PQC

The Phase gate is used to separate the two distributions of quantum states as it is only a one-qubit

system. The introduction of too many parameters could lead to more errors and redundancy in the

model.
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The parameter _ is trained to get maximum fidelity (minimum cost function value). The training

results from the simulator and cloud devices are tabulated below. The classification accuracy

corresponds to the accuracy with which the two clusters can be separated using the statistical data

of the final measurement results.

Table 3.3: Iris Flower First QNN Unit

The Optimized Parameter and Accuracy Results from IBM cloud quantum resources are tabulated.
Cloud Device Parameter Value Maximum Fidelity Classification Accuracy

ibmq_qasm_simulator 0 0.8301741163735193 100%
ibm_perth 0.0003873399945222867 0.8299820064457042 100%
ibm_oslo -0.0029373231940700894 0.8202756824232105 100%

ibmq_quito -0.000349514940277223 0.8203307288621763 100%

The effect of noise can be noticed from the lower fidelity values of the cloud devices when

compared to the simulator result (Table 3.3). The parameter value obtained from the training

also deviated from the simulator result. The reason for the Nairobi device to achieve such a

close parameter value could be sudden fluctuations in the systems caused due to large amount of

usage by various users or slow calibration. The fidelity value of the Perth device is closest to the

simulator result. This can be due to higher QV and CLOPS values compared to other devices. The

two clusters remain separated even with deviations in the quantum state distribution for different

devices. Hence the accuracy of classification remains 100% in all the cases.
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Species 0 target label data points are classified and removed from further training. The other

cluster is processed through a new second QNN unit to separate the remaining two species. For

the second part of separating sub-clusters, the raw data of the bigger cluster is analyzed again. The

extracted features from the PCA, ICA, and LDA plot given in Fig. 3.6 are used for training the

second QNN unit.

Figure 3.6: Iris Flower Features obtained from extraction.

The pairwise plot and correlation values show that IC4 and LDC1 are the best choices for features
to separate the clusters of the remaining two iris flower species.

3.1.3 Second QNN Unit

The second QNN unit is used to separate species 1 (renamed as ’0’) and species 2 (renamed as’1’).

IC4 and LDC1 are selected as input features after analyzing the data distributions again. The IC4

and LDC1 data points are multiplied by 𝜋/2 to use as input (𝜙 and \ respectively) for the circuit

gates.

Encoding circuit

Initially, the qubit is in |0⟩ state. The quantum state after the application of the encoding circuit

(same as the one given in Chapter 2, Eq. 2.7) is given as:
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Same as the first QNN unit, the simulator measurement results of the encoding circuit (Fig.

3.7) are used to identify centroids of clusters to be separated. These centroids are used to calculate

the fidelity of the entire QNN circuit during the training steps.

Figure 3.7: Iris Flower encoding circuit distribution for second QNN unit

The measurement results are obtained in 𝑍 (|0⟩ , |1⟩), 𝑋 (|𝑢𝑝⟩ , |𝑑𝑜𝑤𝑛⟩), and 𝑌 (|𝑟𝑖𝑔ℎ𝑡⟩ , |𝑙𝑒 𝑓 𝑡⟩)
basis. The encoding circuit separates the two clusters with a small overlap.

PQC

The two clusters have an overlap which is reduced by training the parameter of the Phase gate.
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Table 3.4: Iris Flower Second QNN Unit

The Optimized Parameter and Accuracy Results from IBM cloud quantum resources are tabulated.
Cloud Parameter Value Maximum Fidelity Classification Accuracy

ibmq_qasm_simulator 0.5899472986937727 0.8675201572767639 98%
ibm_perth 0.5909252006559969 0.8682670104750781 97%
ibm_oslo 0.5911934427928294 0.8674517123083092 97%

ibmq_quito 0.5908367869152529 0.8666303111786496 97%

It can be observed that the overall fidelity is a bit lower than the first QNN unit (Table 3.4). This

is because the raw data of species 1 and 2 have close feature values, making it hard to differentiate

between some data points. In the final simulator result, two data points are not accurately classified

because of the overlapping data points. Generally, the classification outcomes from the cloud

devices are comparable to the outcome from the simulator. It is noticeable that the Perth device has

greater fidelity than the simulator. This might be a result of the slight noise-induced fluctuation in

distribution. Fig. 3.8 shows the final classification model.

Figure 3.8: Iris Flower classification model.
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3.2 Ripley’s Crab Dataset

The dataset for the Leptograpsus variegatus crab species gathered in Fremantle, Western Australia,

comprises 200 rows and 8 columns, describing 5 morphological measurements on 100 crabs each

of the two color types (blue or orange), with 50 male and 50 female crabs in each color [38]. Mostly,

the R programming language uses this dataset (R-data statistics). For the first QNN unit, only the

species are separated.

3.2.1 Data Preparation

The raw data information is provided in the tables below.

Table 3.5: Ripley’s Crab Raw Data

S. No. FL RW CL CW BD species label
1 12.8 10.2 27.2 31.8 10.9 0 (blue)
2 21.6 14.8 43.4 48.2 20.1 1 (orange)

Feature Null Data Points Total Count Data Type
FL 0 200 float
RW 0 200 float
CL 0 200 float
CW 0 200 float
BD 0 200 float

Species Total Count Data Label Type
0 (blue) 100 integer

1 (orange) 100 integer

Table 3.6: Ripley’s Crab Raw Data Statistical Information

Info Type FL RW CL CW BD
mean 15.583000 12.73850 32.105500 36.414500 14.030500

std. dev. 3.495325 2.57334 7.118983 7.871955 3.424772
min 7.2 6.5 14.7 17.1 6.1
25% 12.9 11.0 27.275 31.5 11.4
50% 15.55 12.8 32.1 36.8 13.9
75% 18.05 14.3 37.225 42.0 16.6
max 23.1 20.2 47.6 54.6 2.521.6

It can be deduced from the raw data, univariate, and bivariate analysis (Fig. 3.9 and 3.10) that

no clusters are highlighted by any of the attributes. The boxplot of RW shows one outlying point,

which is not removed as it is close to the maximum value. Whole raw data is scaled further for

feature extraction because no null values exist.
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Figure 3.9: Ripley’s Crab Features Univariate Analysis.

FL is shown at the top of the univariate analysis of Ripley’s Crab features, followed by RW, CL,
CW, and BD at the bottom. The dataset’s frequency distribution is shown in the left section’s
histogram. The boxplot in the right section displays the minimum, first quartile, median, third

quartile, and maximum values.

Figure 3.10: Ripley’s Crab Features Bivariate Analysis.

The pairwise plot of petal length and width makes it obvious that two data clusters are present. A
second pairwise plot is obtained to confirm that the clusters correspond to different species. The

heat map of correlation reveals no strong relationship between species and the features.

To choose the best features, the PCA, ICA, and LDA outputs are compared (Fig. 3.11). In order

to employ the final chosen features for the QNN encoding circuit, they are gathered and saved in a

separate data file.
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Figure 3.11: PCA, ICA, and LDA of scaled Ripley’s crab data for the first QNN unit.

The figures demonstrate that species 0 and 1 are separated by PC3 and IC4. Thus, PC3 and IC4
are used as the input data for the encoding circuit in the first QNN unit.

3.2.2 First QNN Unit

The first QNN unit is used to separate species 0 and species 1. The PC3 and IC4 data points are

multiplied by 2𝜋 to use them as input (\ and 𝜙 respectively) for the circuit gates.

Encoding circuit

Initially, the qubit is in |0⟩ state. The quantum state after the application of the encoding circuit is

given as follows:
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Similar to iris flower QNN units, the simulator measurement results of the encoding circuit

(Fig. 3.12) are used to identify centroids of clusters to be separated. These centroids are used to

calculate the fidelity of the entire QNN circuit during the training steps.

PQC

The Phase gate separates the quantum states as it is only a one-qubit system.
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Figure 3.12: Ripley’s Crab encoding circuit distribution for first QNN unit.

The measurement results are obtained in 𝑍 (|0⟩ , |1⟩), 𝑋 (|𝑢𝑝⟩ , |𝑑𝑜𝑤𝑛⟩), and 𝑌 (|𝑟𝑖𝑔ℎ𝑡⟩ , |𝑙𝑒 𝑓 𝑡⟩)
basis. The encoding circuit separates the two clusters. The distance between the two cluster

distributions will be increased in the QNN training.
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Table 3.7: Ripley’s Crab First QNN Unit

The Optimized Parameter and Accuracy Results from IBM cloud quantum resources are tabulated.
Cloud Parameter Value Maximum Fidelity Classification Accuracy

ibmq_qasm_simulator 0.39269908169872414 0.9057063636584465 100%
ibm_perth 0.39164589418564727 0.9055940024104965 100%
ibm_oslo 0.3909671490780341 0.9051565946302962 100%

ibmq_quito 0.39123400125948793 0.9054003512805725 100%
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Figure 3.13: The final distribution transition

The first figure shows the distribution of the encoding circuit for the chosen features, followed by
the optimized QNN circuit and the clustered target label plot.

From the transition plot (Fig. 3.13), it can be seen that during the training, the species 0

distribution is moved closer to its distribution center. This allowed the proper clustering of the two

species from the statistical distance data. The parameter and fidelity levels of the cloud devices

are reasonably close to those of the simulator (Table 3.7). It could be significant to note that there

was relatively little device usage on the day the results for this QNN unit were acquired. The

classification accuracy for all the cases remained 100%.

The data points from the two species are sorted into their appropriate groupings. A second set of

QNN units is used to process sub-clusters, the gender population in each species, for classification.

A second analysis of the raw data is performed in order to separate sub-clusters. The second QNN



39

unit (blue species) is trained using the retrieved features from the PCA, ICA, and LDA plot shown

in Fig. 3.14.

3.2.3 Second QNN Unit for Blue Species

The second QNN unit is used to separate the gender population in the Blue species cluster. The IC4

and LDC1 data points are multiplied by 𝜋/2 to use as input (\ and 𝜙 respectively) for the circuit

gates.

Figure 3.14: PCA, ICA, and LDA of Ripley’s Crab (Blue species) Features for second QNN unit.

The pairwise plot shows that IC4 and LDC1 are the best choices for features to separate the
clusters as they have a lesser overlap of the clusters.

The same steps as before are repeated for the encoding circuit and the PQC layer. The final

results are provided in Table 3.8.

Table 3.8: Ripley’s Crab Second QNN Unit (Blue species)

The Optimized Parameter and Accuracy Results from IBM cloud quantum resources are tabulated.
Cloud Parameter Value Maximum Fidelity Classification Accuracy

ibmq_qasm_simulator 0.3911143420932814 0.8883250498721621 95%
ibm_perth 0.3899032384903946 0.8882313614700156 93%
ibm_oslo 0.3923461950298759 0.8885650863233748 94%

ibmq_quito 0.3898183660348335 0.8888366600319081 95%

The extracted features from the PCA, ICA, and LDA plot given in Fig. 3.15 are used for training

the second QNN unit (orange species).
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3.2.4 Second QNN Unit for Orange Species

The second QNN unit is used to separate the gender population in the Orange species cluster. The

IC3 and LDC1 data points are multiplied by 2𝜋 to use them as input (\ and 𝜙 respectively) for the

circuit gates.

Figure 3.15: PCA, ICA, and LDA of Ripley’s Crab (Orange species) Features for second QNN unit.

The pairwise plot shows that IC3 and LDC1 are the best choices for features to separate the
clusters.

Repeating the same steps as before for the encoding circuit and the PQC layer. The final results

are provided in Table 3.9.

Table 3.9: Ripley’s Crab Second QNN Unit (Orange species)

The Optimized Parameter and Accuracy Results from IBM cloud quantum resources are tabulated
Cloud Parameter Value Maximum Fidelity Classification Accuracy

ibmq_qasm_simulator 0.9817477042468103 0.6608653762732526 99%
ibm_perth 0.9837888092029138 0.6611557532178729 99%
ibm_oslo 0.9834065701392277 0.6595346588059554 99%

ibmq_quito 0.9842795328356394 0.6614605093160912 100%

The complete Ripley crab classification model (Fig. 3.16) results were obtained on the same

day. The wait time was very low due to the less usage of the device on that day. The fidelity and

parameter values are again found to be close to the simulator outcome. It can be seen from Table

3.9 that noise fluctuations sometimes work in favor of optimization protocols.
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Figure 3.16: Ripley’s Crab classification model.
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C h a p t e r 4

DISCUSSION

What is the proposed architectures’ advantage, and is it scalable?

The hierarchical structure of classification using small QNN units proved to work for NISQ

devices within a reasonable range of deviation from the simulator results. Like any other ML

algorithm, the efficiency of the protocol depends on how well the data features are prepared and

how well the model itself can separate the data clusters. Of course, a deep ML model will beat

this approach as the classical ML protocols have been studied and refined over a few decades of

research, and it would look unfair to suggest that QNNs provide an advantage. Still, drawing

inspiration from classically connecting the results from small quantum ML setups can also help

improve the efficiency of deep ML models for problems where the patterns are too complex for

classical systems. Additionally, this model can be reliably implemented in existing NISQ devices

due to the small size of the QNN unit (1 qubit) and layer depth (1 or 2 PQC layers). The small

depth of the circuit helps avoid the accumulation of errors due to a large number of gates and

decoherence. This architecture can be used to train with large datasets like the breast cancer dataset

or the MNIST handwritten digits dataset. The proposed structure for the classification of the breast

cancer dataset is provided, which can be tested along with the codes provided in the appendix.

Therefore, this model can be scaled to fit a variety of different sizes of the dataset.

Constructing a QNN units hierarchical structure for big dataset.

For any dataset being used, each QNN unit consisting of the encoding circuit, the PQC layer,

and measurements performed are the same as the details provided in Chapter 2 and Chapter 5.

Depending on the number of features extracted from the dataset, multiple QNNs could be required

in one layer of the hierarchical structure. The model’s performance could depend on the number

of QNN units used and the steps needed to separate the clusters of target labels. The results
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Figure 4.1: Breast Cancer dataset classification model.

f1 to f30 are original data features. sf1 and sf2 are the selected features from each subset of the
original features where the colors are used to identify them differently for each QNN unit.

from these datasets can be analyzed classically to identify clusters and separate them in steps.

The QNN units can be implemented one after the other (this will lead to increased run-time) or

simultaneously depending on the user’s available hardware resources. Each publicly available IBM

5-qubit and 7-qubit system can be used to train many single-qubit QNN units. This model can

also be tested on other quantum computing systems of different companies like IonQ (trapped-ion

system) or Honeywell. The QNN units will require modification tailored to the hardware like IonQ

has different types of gate operators than the IBMQ gates. The PQC will also need modification

accordingly while considering using a minimum number of parameters.

Current limitations due to the quantum devices.

Quantum mechanical processes like superposition and entanglement are used to create quantum

computing processing devices. As a result, the qubits in these processors can hold an exponential

number of states. For example, 𝑛-qubits is comparable to 2𝑛 bits. To get an idea of the scale, 100

qubits can hold the state information of all the hard disks in the world, and 300 qubits can hold more

information than the number of atoms in the universe. But, the qubits decohere to a single state



44

due to small environmental disturbances. This means the amount of data retrieved from 𝑛-qubits

cannot be more than the information obtained from 𝑛-bits. This is also referred to as the no-cloning

theorem. Due to this reason, the QNN units are reconstructed multiple times to get the complete

qubit tomography. The reconstructed QNNs are the same in theory. But in reality, due to varying

environmental influences on the cloud system, the original state can never be replicated. Hence,

qubit tomography is imperfect when measurements are carried out on cloud devices. The errors

and delay by applying quantum gates add to the issue of recovering the quantum state.

The above limitations don’t make quantum computing the best option for all computational

problems. Quantum protocols are useful in solving problems that have very complex relations

between the data elements. It makes a good candidate for traveling salesman and logistic problems,

chemical and physical simulations, binary optimization, and AI and ML problems where a large

amount of data needs to be processed. This leads to the question of why not use quantum simulators

instead to get the work done. The quantum simulators that replicate a quantum system’s behavior

face the memory bottleneck problem. To simulate a 𝑛-qubit system, a 2𝑛 dimensional complex state

vector is needed. Depending on the number of qubits (𝑛), the memory requirement can surpass the

limits of classical resources (a lot of bits are required to account for entanglement, interference,

and superposition behavior of qubits) needed to simulate the system.

Limitations of the proposed architecture.

The proposed architecture uses a large number of small QNN units, giving the user an advantage

if they have access to a large number of small quantum processors for parallel computation. Having

access to only a few can create a problem, as the user will need to implement the QNN units

in sequence. Furthermore, they will need to reset the qubits between each call to the quantum

processor, which may raise the overall implementation time because qubit resets can take much

longer than actual gate executions. A way to overcome this problem could be to use QNN units

with more qubits while keeping the number of PQC layers to the minimum. The number of

measurements will increase, leading to increased measurement errors. However, measurement

errors have decreased significantly in the IBM quantum devices in the past few years. On top
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of that, one can reduce measurement errors by applying classical post-processing. The cost and

gradient calculations will become more complex but can be handled using different techniques.

The advantages of less run time, reduced depth, and gate count may outweigh the additional

measurement noise. The user can also implement the big QNN unit network first on simulators to

test the performance before running it on the actual device.
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C h a p t e r 5

CONCLUSION AND OUTLOOK

This thesis presents a hybrid QNN architecture that can be implemented on real cloud quantum

devices. Three datasets (Iris flower, Ripley’s crab, and Breast cancer) and three noisy IBM devices

are used for this work. The accuracy obtained from the results of the real devices of the QNN

architecture is within an acceptable range of error from the simulator results. The framework can

be used for developing various QML models that can withstand noise by combining several tiny

quantum neural networks. It has the potential to impact the study of quantum machine learning

significantly.

This study used quantum simulators from the qiskit framework to demonstrate hybrid QNN

architecture for classification problems. The run time can be sped up using more sophisticated

computing methods such as multi-processing units or distributed computing and allocating QNN

units to multiple simulator instances. The memory bottleneck influences the proposed model less

than the others due to the small number of gates implemented in the individual circuit. As a result,

small QNN units may be an intriguing option for realistic QML simulation-based applications.

Additional applications may include utilizing QNN units for various QML tasks (such as regression,

auto-encoder, and other things) by modifying the cost functions. Further research on these areas

may be fruitful. Another potential research problem could be incorporating quantum fluctuation

devices for optimization and connecting the QNN units network using weights and bias of the

quantum fluctuation model rather than clustering.

The fields of quantum computing and quantum machine learning are still young. The current

generation of classical ML algorithms results from several decades of research. As a result, it

may be unfair to expect QML protocols to perform better than traditional algorithms. Yet, the

proposed architecture performed about as well in this investigation as conventional neural networks

do. It might get even better with the proper encoding techniques, parametric layer architecture, and

measurements. This is just a small step towards a general framework for building noise-resilient
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quantum machine learning models. In the near future, we anticipate it will have an essential role in

quantum machine learning research.

All the datasets used in this study are provided in online repositories. The links to the datasets

have been provided in the bibliography.
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A p p e n d i x A

CODES

A.1 Data Preparation

Figure A.1: The modules required for data preparation.

Figure A.2: Loading the raw dataset and information about null data points.

Figure A.3: Univariate and Bivariate analysis of the raw dataset.

Figure A.4: Feature extraction techniques: LDA, PCA, and ICA.

The final selected features are stored in a new CSV file accessed by the QNN unit notebooks.
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A.2 QNN unit

The codes are combined in the end in one function defined as QNN, where they are individually

called with varying input data for the encoding circuit.

Figure A.5: The modules required to run the quantum circuit.

Figure A.6: Encoding Circuit.

Figure A.7: PQC
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Figure A.8: Cost Function

Figure A.9: Update Parameter

Figure A.10: Get Results
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