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Abstract

Red geysers are an important class of low star forming galaxies that show telltale signs of AGN
maintainence mode driven feedback mechanism that keeps them quenched. There are many ques-
tions left to be answered about the nature of these low luminosity AGNs in maintaining quenched
state - such as which stage of maintainence is dominant in the local galactic population In order to
answer these questions, one requires a statistically significant sample of red geysers to conduct a
study of the distribution of their properties. From a sample of ∼ 4700 in an earlier data release of
the SDSS-MaNGA survey, 139 red geysers were identified by manually inspecting each example.
The latest data release of ∼ 10000 galaxies has not been scoured for red geysers yet. Our goal is
to build an automated machine learning model to solve this problem. We present our results with
different models and discuss a novel algorithm based on the few shot learning paradigm that can
perform the task with ∼ 99% accuracy.
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Chapter 1

Introduction

Among gravitationally bound objects in the universe, galaxies are of intermediate size and have
some of the richest variations in properties. The interplay between the underlying physics and
how they manifest as emergent galaxy properties are difficult to model directly, and thus form
very interesting objects to study. They are workshops for testing theories of cosmology and struc-
ture formation, and influence astrophysical activity on smaller scales such as star formation and
evolution [1].

The variations in galaxy properties and evolutionary histories are influenced by local (group,
cluster) and large scale (sheet, filament) environmental factors, and due to internal (AGN, chemical
enrichment) processes. This complex interplay of factors manifests itself as a rich plethora of ob-
servational properties, which are essential to constrain our understanding of the physical processes
that drive galaxy formation and evolution [2][3].

To observe their time evolution, we can study galaxies that are very far away. Since the speed
of light is taken as a constant across cosmic timescales, we will observe these galaxies as they were
in the past. By connecting how distributions of galaxy properties were at different times in cosmic
history, we can understand how galaxies evolved with time[4].

At a given redshift, it is more complicated to study the time evolution of galaxies. The evo-
lutionary timescales of galaxies are of the order of 108 years, and are thus impossible to observe
directly in a human lifetime. To study them, we collect different galaxies at different stages of their
evolutionary history and attempt to understand how their properties have changed. To accomplish
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this, we need observed properties of large populations of galaxies that span the different stages of
evolution of galaxy populations[4][3].

One of the critical properties of a galaxy is its ability to convert cold molecular gas into stars.
This star formation process can be measured by the stellar mass content of a galaxy. Comparing
it with the total mass tells us how ”good” of a star forming galaxy it is; one typically uses this
”specific star formation rate” as a measure of how actively a galaxy converts its gas to stars[4].

From redshift z ∼ 2 onwards, it has been observed that the global star formation rate has been
declining [5], and the fraction of quenched galaxies has been increasing [6]. This hints at the
existence of mechanisms that suppress star formation over large timescales, as otherwise it would
be difficult to reconcile with there being large reservoirs of molecular gas in the gravitational
potential well of these galaxies that can potentially condense and form stars.

There must be some kind of ”feedback mechanism” that ensure that the star formation in these
galaxies continues to be suppressed. Some of the proposed drivers include gravitational effects due
the presence of the bulge [7] and stellar winds that heat the ISM [8]. However the most popular
candidate yet has been the winds, jets and outflows from the central AGN of the host galaxy [9].
AGN activity is of two types - firstly a violent ”quasar mode” emission that has powerful outflows
which heats the gas in and around the galaxy thereby preventing it from forming stars or by starving
the galaxy of star forming gas by ejecting it during these outflows [10]. Secondly, there is the more
peaceful ”maintenance mode” of AGN activity which mostly deposits its energy as radiation to the
medium of the galaxy, thereby suppressing star formation [9].

There are very few known candidates for which the maintenance mode of AGN activity sup-
presses star formation in the nearby universe; these are typically found in stellar clusters [11].
We are yet to extensively observe candidates from ”typical” populations in the cosmic neighbour-
hood that stay quenched with this mechanism [11]; understanding their properties and behaviour
is critical to solving the problem of why global star formation has been on the decline for the last
10 billion years [12]. Performing large survey projects and searching through its vast database is
essential to identify these candidates.

Observational projects such as the Sloan Digital Sky Survey (SDSS) set out to observe and
characterise large samples of galaxy populations. Earlier observations were restricted to global
properties of galaxies and lacked spatially resolved information which would give better under-
standing of how certain properties were distributed within galaxies. To obtain these, one would
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have to perform time intensive long slit spectroscopy, which among other science based draw-
backs was limited to collecting only a few samples from certain targeted galaxies every observing
run. The ”Mapping Nearby Galaxies with Apache Point Observatory” (MaNGA) project used the
more modern integral field unit (IFU) spectroscopy to obtain resolved spectra over 4 observing
runs, covering ∼ 10000 galaxies from the SDSS. This comprehensive survey gives an opportunity
to perform comprehensive studies of resolved galaxy properties and their statistical distribution in
the near field.

Using the MaNGA survey, [13] discovered a new class of quenched galaxies, dubbed ”red gey-
sers”. The behaviour of these galaxies as observed using spatially resolved information pointed at
maintenance mode AGN activity being responsible for their quenched nature, and opened a new
population of galaxies for further investigating the effect of AGN maintenance mode on quenching.
The AGN signatures in red geysers were confirmed by [12] with radio observations. Investigation
of their HI content using the HI-MaNGA results by [14] revealed no statistically significant dif-
ference in the neutral gas content of red geysers, which they infer as an intermittent phase of red
geyser evolution where the AGN is about to switch off and the energy from the SMBH is deposited
in the ISM.

Currently only 139 of these red geysers are known, which does not provide us a statistically
significant population of galaxies for studying their properties. While the currently known sam-
ple was recovered manually by sorting through each galaxy in the MaNGA sample from earlier
MaNGA releases (which had ∼ 4700 galaxies), we wish to automate the process for the latest
release (∼ 10000) which is more than twice the size of the previous sample. We employ deep
learning techniques for this problem. Our efforts in this direction are motivated by the speed of
inference and increasingly tractable nature of AI/ML techniques in the sciences, particularly in
astronomy.

This thesis currently summarises the proof-of-concept study carried out to study the relative
performances of different ML algorithms for this problem. The Theory chapter provides a basic
overview on galaxy evolution and provides sufficient theoretical background and resources for the
reader to further appreciate the depth of the problem. The Data chapter deals with the instrumen-
tation used for observation, data collecting and cleaning procedure adopted to prepare the data for
our machine learning models. The Methods chapter provides details on the ML models used. The
Results and Discussion chapter details the results of our experiments and provides the scope for
further work in this direction.

7



8



Chapter 2

Theory

The light of a galaxy is made of the emission from each one of its individual component stars, and
the radiation from the gas and dust. In similar lines, the spectrum of a galaxy is a combination of
all the individual spectra of its composite substrates. The key to understanding the evolution of
galaxy properties lies in understanding the collective properties of the stellar populations.

2.1 Population Synthesis

Stellar population synthesis models attempt to explain the spectra of galaxies using the spectra of
the stars in conjunction with the superposition principle as suggested above. Since the physics and
evolution of stars is well known, we can use the distribution of stellar populations and how they
evolve in time to understand how galaxies and their light changes with time. By using spectral
energy distribution (SED) fitting techniques, one can recover parameters that are physically useful,
such as stellar mass, star formation rate and history, metallicity and dust content, etc. For a detailed
review on the topic, an interested reader can refer to [15]. Here we present a simple model and
briefly describe the underlying physics followed by the procedure involved in extracting these
physical parameters.
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2.1.1 Model Assumptions

The hypothesis is that stars are formed from collapsing gas, possibly influenced by the surrounding
medium to collapse into stars of different mass. The distribution of masses in this initial stage is
called the initial mass function (IMF) φ(m) and is normalised as

Z mU

mL

m φ(m) dm = 1 M⊙

Since the minimum mass required for a star to ignite is 0.08M⊙, the lower limit for integration
is taken as this value. The upper limit is taken to be mU ∼ 100M⊙, which is the observed upper
limit for stars.

An ansatz for the form of the function φ(m) can be obtained by observations of young stellar
populations, the most popularly used one is the Salpeter IMF [16] defined as :

φ(m) ∝ m−2.35

This distribution function is not universal - it has been observed to vary with mass, but not
with environment. It has been hypothesized that high redshift galaxies follow a different IMF (to
explain their properties) as do starburst galaxies [17].

Despite the lower mass stars dominating in numbers, the bulk of the luminosity comes from
the high mass stars, as for stars in the main sequence, L ∝ M3.

We define the star formation rate as the mass of gas converted to stars per unit time :

ψ(t) =−dMgas

dt

The metallicity Z of the ISM influences the metallicity of the stars as it is this gas that col-
lapses to form stars. The stellar properties themselves depend on the metallicity. Note that stellar
processes result in increase of the metallicity in the star, which means the ISM has Ż(t)≥ 0.

Suppose we have a group of stars of age t ′ and metallicity Z. The energy emitted per wave-
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length per time interval is then Sλ ,Z(t ′), normalized to 1M⊙. One can then write the total spectral
luminosity of the galaxy as

Fλ (t) =
Z t

0
dt ′ψ(t − t ′)Sλ ,Z(t−t ′)(t

′)

Note how Fλ (t) depends on the star formation history and evolution of the metallicity of the
ISM.

2.2 Spectral Evolution

When a stellar population is formed, the spectra is dominated by UV emission from luminous
stars. As these massive stars burn out their fuel, the flux below 1000 Ådrops after ∼ 107 yrs and
diminishes after ∼ 108 yrs. As these stars evolve into red supergiants, the NIR emission increases.

From 108 yr to 109 yr, the emission in NIR is high and the emission in low frequencies con-
tinues to be low. However, after ∼ 3× 109 yrs, the UV flux increases as there is an increase in
contribution from the blue stars (which were formerly in the asymptotic giant branch) and newly
born white dwarfs. After 4×109 yrs, the spectrum evolves very little.

After ∼ 107 yrs, there is a break in the spectrum at 4000 Ådue to the an increase in opacity
owing to strong transitions of CaII and Balmer lines in the stellar atmospheres. This is a telltale
sign of the age since star formation began.

2.3 Realistic Star Formation Models

The above discussion considered a toy model of star formation in many ways, but one important
fundamental assumption was that all stars were formed at the same time. In reality, star formation
is spread out over time and space, and we would like to describe it with a more realistic model.
The standard model for star formation rate does just this, and is given as :

ψ(t) =
H(t − t f )

τ
exp

�
−(t − t f )/τ

�
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Here H is the Heaviside step function, t f is the time at which star formation onset occurred and
τ is the characteristic duration of star formation. The most significant achievement for this model
is that it can reproduce the colour evolution of the galaxy.

2.4 Galactic Gas Contribution to the Spectrum

The HII regions of galaxies also contribute to the emission from galaxies besides the stars. How-
ever, this diminishes after ∼ 107 yrs and does not significantly add to the broad-band emission
from galaxies. Since these are the biggest contributors to emission from these galaxies, they are
used as a diagnostic for star formation rate (SFR) and metallicity.

2.4.1 Star Formation and Hα maps

Estimating SFR from SED fitting is a tedious and unreliable task :

• Reddening of galaxies due to dust, metallicity and age has a degeneracy which requires high
quality data to be broken, which is expensive to collect

• The choice of dust and SFH model is not very strongly constrained

Thus, proxy measures involving monochromatic indicators are employed to estimate the SFR
- the most commonly used ones being UV, Hα and total IR. The staple review on the topic is
provided by [18]. Here we shall briefly discuss Hα as a star formation proxy.

The presence of young stars implies that there will be a lot of high frequency emission blueward
of the visible spectrum. These energetic photons will be absorbed by the nebulous gas in the galaxy
and re-emitted in higher wavelength regions like Hα and so on.

Calibrated measurements by [19] and [20] show that one can use the Hα luminosity LHα to
obtain the SFR using the relation

SFR[M⊙yr−1] = 7.9×10−49LHα [Js−1]
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Figure 2.1: Spectra of different galaxy morphologies, from early Hubble types (E0) to late Hubble
types (Sc) and dwarf/irregulars (Sm/Im). There is difference in absolute flux among the different
morphologies. The late types have stronger emission features and lack a strong 4000 Åabsorption
feature, both characteristics of ongoing star formation.

Similar relations exist for other spectral lines as well.

2.5 Spectra of Galaxies

Similar to how the photometric image of a galaxy is composed of its individual stars and gas, the
spectra of a galaxy is composed of the emission and absorption from its constituent stars and gas.
This is what leads to exciting features that can be used to study the physical composition of the
galaxy, some of which display trends. In late Hubble types, we see :

• Bluer spectrum

• Stronger emission lines
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• Weaker absorption lines

• Smaller 4000 Åbreak

All characteristics of recent/ongoing star formation events in the galaxy. This is as opposed to
the early type galaxies that predominantly have

• Lower star formation, hence redder spectrum from red stars

• No HII regions which provide emission lines

• Pronounced 4000 Åbreak because of older stellar population

2.6 SED Fitting for SFR

To obtain the SFR for a galaxy from its spectra, one performs SED fitting. [15] and [21] provide
excellent reviews on the topic. We shall briefly discuss the procedure here.

The procedure is an inverse problem where there is an attempt to recreate the spectrum (usually
across all observed bands) using stellar population synthesis (SPS) models. Many ansatz star
formation histories are attempted and SPS models are run to recreate the observed spectrum. This
is then used to calculate the number of young stars and assign the SFR for the galaxy. Inverse
modelling techniques such as Bayesian inference are popular, and in recent years SED fitting has
also been done use ML techniques.

2.7 Galaxy Evolution in a Nutshell

The scope of this section is to provide a brief overview of galaxy evolution in near field cosmology
i.e. at redshifts z ≲ 0.1 . We will briefly discuss galaxy formation followed by feedback processes
that impact galaxy evolution in the near field. The interested reader can refer to a more compre-
hensive introduction from textbooks such as [4] or a detailed understanding through the canon of
[1].
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2.7.1 Formation

The first luminous structures formed in dark matter haloes ∼ 109 yrs after the Big Bang. The
collapse of baryonic matter (mostly HI) into disc like structures and their subsequent cooling and
”condensing” to form the first stars happened at around this time. These were the earliest galaxies.

2.7.2 Supernova Feedback

Once the heaviest stars start going supernova, they eject their stellar matter (which has increased in
metallicity) and heat the surrounding medium. The heating prevents gas from cooling and clump-
ing to form new stars, and the violent explosion expels neutral gas from the galaxy’s gravitational
potential well, which also suppresses star formation.

2.7.3 Mergers

Mergers can take the form of minor mergers (galaxy mass ratio of ≲ 1 : 3) or major mergers (mass
ratio ≳ 1 : 3). Minor mergers involve the smaller galaxy getting stripped of its gas by ram pressure
stripping when it enters the halo of the larger galaxy, thereby halting star formation in the minor
galaxy. The stripped gas is available for the major galaxy to attract and form stars.

Major mergers are more disruptive to both galaxies; almost the entire galactic structure is lost.
The resulting galactic material falls into the gravitational potential, and the gas getting shocked and
forming overdensities condense to form stars. The time scale of infall is ≳ 107 yrs, which allows
for the earliest stars to go supernova and provide feedback that depletes star forming gas as well
as heat it. The first resulting galaxy is an elliptical galaxy, and the resulting material forms a disk
around it forming a bulgy disk/spiral galaxy.

2.7.4 Black Hole and AGN Feedback

Feedback from AGNs and the SMBH at the center of galaxies is the most important internal mech-
anism affecting the evolution of galaxies. [22] provides an understanding of the current status of
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our understanding of the topic, and [23] summarises the topic. Here, we will paint a brief picture
of the same.

It is known that AGN feedback is necessary for replicating the observed mass and star forming
rate distributions of galaxies from simulations. AGNs have a double effect on star formation in
galaxies - they can enhance it (in rare occasions) or suppres it. When there is a smaller satellite
orbiting the AGN host and it receives a shock from the outflow of matter from the AGN, there
is an enhancement in SFR. The outflows and jets themselves expel a lot of radiation and heat
that heats up the ISM, thereby preventing gas from cooling sufficiently to form stars. They also
physically move gas from the galaxy to the outside, thereby depriving the galaxy of star forming
gas. AGNs also suppress star formation by heating up the IGM surrouding the host galaxy - this
process prevents cool gas from flowing into the host galaxy and enabling new star formation.

Different AGN types play different roles in quenching star formation. Among ”radio mode”
AGN (these are the low luminosity counterparts of the more stronger quasar mode AGN), there are
radiatively efficient and radiatively inefficient AGN types. Radiatively efficient AGN are powerful
drivers of outflows and are responsible for the two-sided radio jets that has come to be popularly
associated with AGN. These AGN types suppress star formation by driving out the gas physically
during their violent emission episodes. Radiatively inefficient AGN are responsible for dissipating
a large fraction of their energy into the ISM of the galaxy, thereby heating it and maintaining the
quenched state. These AGNs also have radio jets associated with them.

2.8 Galaxy Classification by Star Formation

Galaxies can be segregated on the basis of their star formation rates. The distribution of galaxies
on a stellar mass - star formation rate plot reveals to us three main populations of galaxies by way
of their SFR. We attempt to understand each population in this section.

2.8.1 Star Forming Galaxies

These are colloquially termed ”blue” galaxies since they have a higher luminosity in the blue side
of the spectrum due to ongoing star formation producing young stars that strongly emit UV light.
The stereotypical star forming galaxy is a spiral galaxy [4], though there are blue ellipticals and
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star forming S0s widely reported [24] [25]. These galaxies are aligned along what is roughly a
straight line. This is named the star forming main sequence (SFMS), but it bears no similarity
to the main sequence we are familiar with in a Hertzsprung-Russel Diagram in that the position
on this sequence does not uniquely determine the properties of the galaxy. The low scatter of the
main sequence indicates that galaxies grow their stars by secular processes and not by stochastic
external processes. These star forming galaxies are mostly dominated by disk galaxies, and are
mostly rotationally supported[4].

Starburst Galaxies

Starburst galaxies are those with anomalously large amounts of ongoing star formation. These are
typically caused due to a recent merger, and are thus common in disk and irregular galaxies. They
can also be driven by the formation of bars in galaxies that drive gas towards the center of the
galaxy that enhances star formation[4].

2.8.2 Quenched Galaxies

As discussed earlier, quenched galaxies are those that have stopped or have reduced their star
formation in recent history. This is typically characterized by the presence of old, redder stars
which gives it a characteristic red colour. They are thus popularly referred to as ”red and dead”
galaxies, and are mostly constituted by ellipticals. There are a few odd disky quenched galaxies
as well, which are mostly due to loss of star forming gas by ram pressure stripping in high density
environments like the vicinity of larger galaxies and in galaxy clusters [26]. The main reason
elliptical galaxies are quenched is because of the lack of star forming gas in the galaxy and in
their vicinity., with the major driver being AGN and SMBH feedback. These galaxies are mostly
supported by dispersion, though towards the lower mass end there are also fast rotating galaxies.
[27] provides an account of the kinematic properties of galaxies on their stellar mass-SFR diagram.

2.8.3 Green Valley Galaxies

There is a small population of galaxies in between the above two populations dubbed ”green valley
galaxies” (see [28] for a review). These are low star forming galaxies that are typically in ”transit”
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from the star forming sequence to the red and dead sequence due to various quenching mechanisms.
The fact that the absolute number of green valley galaxies are low in number in the local universe
compared to the star forming and quenched population hints that the process of quenching is fast,
and these galaxies make it to the quenched population very fast.

2.9 The AGN Primer

In the local universe, quiescent galaxies dominate the galaxy population at stellar masses above
∼ 2×108M⊙ [29]. Once quenched, the galaxy still continues to attract star forming gas from the
IGM. There has to be a feedback mechanism that continues to suppress star formation in quenched
galaxies. Some of the possible candidates are :

• Physical loss of star forming gas by mergers, supernovae and AGN jets

• Heating of the ISM by strong radiative processes from the inside of the galaxy

• Gravitational effects induced by galaxy bulges

However, the most reliable candidate for keeping quenched galaxies quenched seems to be
AGN activity. The center of galaxies host an ”active galactic nucleus” - a region that has higher
than normal emission in certain wavelengths that are not of stellar origin. The sources of most
AGNs are the radiative processes from the accretion disks around black holes. The emission activ-
ity at centre also drives winds, outflows and jets. A review of AGNs can be found in [30].

There are two ways in which AGN activity could continue to quench a galaxy :

• Quasar Mode Feedback : In luminous AGNs and massive quasars, there is a large amount
of energy released in radiative processes from the accretion of matter into the black hole
which heat the surrounding gas, which prevents it from cooling sufficiently to form stars.
These objects also drive powerful gas outflows, which drains the galaxy of its star forming
gas

• Radio Mode Emission (Maintenance Mode) : There are also less luminous AGNs, which
are black holes that accrete at a lower rate and thus emit radiation at a lower flux. This can
only cause the surrounding gas to heat up and this suppress star formation
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The number of galaxies observed exhibiting radio mode emission is quite low as their flux is
pretty low. Thus, observations have been limited to only those in the vicinity of the Milky Way.

2.10 Red Geysers

Red geysers were first discovered by [13] and were further characterized in [12]. They are an
exciting class of galaxies because their properties seem to suggest that their quiescence may be
maintained by AGN radio mode feedback. They were first discovered using optical band obser-
vations in the MaNGA survey. Their quiescence was characterized by their colour i.e. their flux
was such that NUV − r > 5. They also had large scale winds of ionized gas outflows. The salient
feature of these outflows was that it aligned with a bisymmetric enhancement in the spatial distri-
bution of strong emission lines like Hα and [OIII]. This manifested itseelf in the emission width
maps of these lines as a bisymmetric pattern. The ionized emission in these galaxies also extend
throughout the galaxy.

Another characteristic feature is that of the gas kinematics of these galaxies, whose existence
strongly hint at there being outflowing winds. The gradient of the gas velocity field is in alignment
with the aforementioned bisyymetric feature observed in emission. However, it is misaligned with
the major and minor axis of the stellar velocity field. Typical values of this gas velocity field can
reach up to 300km/s, which is an important fact to consider in trying to understand the origin of
these features.

These descriptions are necessary, but are they sufficient? In other words, does searching for
galaxies with these properties provide only red geysers, or are there any ”contaminant” galaxies as
well?

One feature that has other classes of galaxies common with it is the kinematics. Early type
galaxies with accreted disks will show very similar kinematic features, some of these accreted
disks may even have the Hα EW feature of bisymmetric patterns.

This begs the question - are red geysers really driven by AGNs, or are they simply accreted
disks? The accreted disk formation is a very unique formation process - the accreted gas coming
into the galaxy will be acted upon by the torques in its gravitational potential well, aligning it
with the major or minor axis. Thus, the misalignment in the stellar and gas velocities will not be
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Figure 2.2: A red geyser candidate detected using MaNGA, courtesy [12]. Clockwise from top left
: The sky position and other observable properties, along with instrumental details of the candidate
galaxy; the target SDSS galaxy’s MaNGA IFU coverage; the Dn4000 map of the galaxy; the stellar
and gas velocity and velocity dispersions of the galaxy; the Hα flux and EW maps of the candidate
galaxy.
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randomly oriented, as is the case in red geysers, but will be at 90o (polar disk) angle or at 0o/180o

(corotating disk /counterrotating disk) angle. Another simple argument puts this question to rest
- the RMS gas velocities (Vrms =

�√
V 2 +σ2

�
) typically found in red geysers are different from

that one would get from modelling the accreted disk gas velocity by ∼ 100km/s, which is a very
strong discrepancy given the simulated model itself predicts gas velocities of ∼ 200km/s. For this
they dervied escape velocities from the stellar velocity maps, and predicted that 15− 20% of the
gas content would escape the galaxy because it would exceed the escape velocity. The accreted gas
disk model also fails to prove why the bisymmetric pattern is to some degree randomly oriented
with respect to the kinematic axis.

Since we have eliminated the closest competitor to explaining how red geysers work, can we
say with absolute certainty that it is indeed the AGN which is driving these winds? One of the
first steps in this direction is showing that red geysers have a greater possibility to host an AGN
than other quenched galaxies in similar environments. Since the red geyser has very low Edding-
ton ratio, one has to devise special methods to detect the faint radio signatures from them. [12]
performed stacking of red geysers observed in radio using the VLA and compared the flux with a
”control” sample of quiescent galaxies. They found the stacked red geysers had a larger radio flux
than the control sample, hinting at the red geysers indeed having higher AGN activity than their
other quenched counterparts.

2.10.1 Hα disturbed galaxies

A visual inspection of the MaNGA galaxies reveal another similar class of galaxies. They have
very similar gas content - median Hα EW value is ∼ 0.5 Å, compared to red geysers’ ∼ 0.8 Å.
They also have high gas velocity (∼ 250km/s) and gas velocity dispersion (∼ 200km/s) compared
to stellar velocity values of ∼ 60km/s. However, their Hα EW maps do not show a bisymmetric
pattern, but a twisted and disturbed pattern as seen in the Fig.
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Figure 2.3: A Hα disturebed galaxy detected using MaNGA, courtesy [12]. Clockwise from top
left : The sky position and other observable properties, along with instrumental details of the
candidate galaxy; the target SDSS galaxy’s MaNGA IFU coverage; the Dn4000 map of the galaxy;
the stellar and gas velocity and velocity dispersions of the galaxy; the Hα flux and EW maps of
the candidate galaxy. Note how when compared to Fig 2.2, the EW map has more disordered
distribution of Hα enhancements.
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Chapter 3

Data

3.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) [31] is the first digitized optical survey. Operating out
of the Apache Point Observatory in New Mexico, it collected spectroscopic redshifts as well as
photometric data from a large part of the sky. This was possible because of two major pioneering
breakthroughs in technology at the time it was commissioned :

• 30 highly efficient sky scanning CCD cameras that could capture images in five (u,g,r, i,z)
photometric bands

• A spectrograph that consisted of optical fibres that could be inserted into punched holes
towards a designated target that could collect 640 spectra simultaneously

The hundreds of gigabytes of data collected every night was efficiently post processed and
stored by software pipelines, which ultimately produced detailed catalogues of stellar and galac-
tic properties. The 9th Data Release was the last of the photometric data released, with having
observed 109 objects and ∼ 35% of the sky.

The redshift survey managed to go as deep as z ∼ 0.7, whereas the deepest quasar was at
z ∼ 5. The imaging survey managed to capture one quasar at z ∼ 6. Each one of these surveys are
conducted as a part of projects with specific science goals - the Baryon Oscillation Spectroscopic
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Survey (BOSS)[32] is one such example which sought to observe the baryon acoustic oscillations
and had ∼ 800000 spectra collected in the SDSS-III run.

The project facility at the Apache Point Observatory has undergone modernization, with the
manual plug plates for collecting spectra being replaced by automated robotic arms for the same
purpose. Currently, the SDSS-V is in operation, procuring stellar spectra, mapping SMBHs in
select galaxies and analyzing clouds of interstellar gas in the Local Volume [33]

3.2 Spatially Resolved Information

Traditionally, spectra were observed for the entirety of the source. Spectra were expensive to
collect, and thus one had to work with low resolutions to capture the spectra of even extended
objects. In many science cases, it is desired to have spectra for each individual pixel we observe on
the object, as it can help us understand the physics of astronomical objects at a smaller resolution.
Some possible use cases are in studying stellar populations, galactic structures, active galaxies,
clusters, high redshift galaxies and gravitational lenses.

3.2.1 Long Slit Spectroscopy

Long slit spectroscopy (LSS) is a method to obtain spatial and spectral information of an extended
source. One places a slit on the source (see Fig) and passes the slit of light through a diffraction
grating. Along the axis of the slit, we observe the source’s spatial features, and perpendicular to
the slit axis, we observe its spectral features.

3.2.2 Integral Field Spectroscopy

Integral field spectroscopy (integral field unit based spectroscopy) seeks to overcome some of the
defects of LSS like

• Reduce wavelength dependent slit losses due to differential atmospheric refraction

• Mitigates seeing effects by taking simultaneous shots across the spatial extent of the source
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Figure 3.1: Effect of atmospheric dispersion on light from an extended source observed using long
slit spectroscopy

• Reliable coverage of the extent of the object compared to unidimensional single slit exposure

The ultimate goal of IFU Spectroscopy is to provide a 3D datacube - 2 dimensions with the
spatial extent (x,y coordinate, RA/Dec measurements) and a third dimension containing the values
at different wavelengths. Each one of these data points is called a spatial pixel or a spaxel. A
schematic visualization of an IFU datacube is given in the Fig.

There are different modes by which one performs IFU spectroscopy - the most common ones
are :

• Lenslet Array : The input image is split using a microlens array, each focused image is
passed through a spectrograph. One can tilt the microlens array to ensure the image coverage
does not overlap, but the spectrum thus produced extends over a small range.

• Fiber Array : Some instruments have fibres attached to lenslets, some don’t. Irrespective of
the presence of a lenslet, both types are composed of a 2D array of fiber bundles that lead to
the slit of a spectrograph
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Figure 3.2: Cartoon representation of an IFU datacube
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Of these, the fiber array based detector is the most popular one and is what is being used for
state of the art large scale surveys. The advantage of using a fibre array is that there is more
complete sky coverage, and the detector pixels are more efficiently used. The disadvantages are
that the sky sampling is not contiguous and the image is subject to focal ratio degradation.

3.3 IFU Surveys

Apart from collecting spatially resolved information from single sources, it would be scientifically
useful to collect them for a large sample of extended objects. IFU surveys do exactly that, and we
list a few of the prominent ones here. It is also interesting to note that most IFU surveys are done
with galaxy evolution as the main science goal, highlighting the importance of the technique for
galaxy science.

• The SAURON project ([34]) used a lenslet array mechanism to collect resolved data from
nearby early type galaxies. The focus was on studying the gas and stellar kinematic proper-
ties, as well as the line strength distribution of these galaxies.

• The CALIFA([35]) and SAMI([36]) survey used a fiber array to study kinematics, stellar
populations, chemical properties and mass distributions among different components of a
galaxy.

• The MaNGA survey ([37]) also uses a fiber array to study resolved stellar and gas kinemat-
ics, star formation and quenching processes, map stellar populations, and perform dynamic
modelling of the galaxy components.

We will look at the MaNGA survey in particular, as it is relevant to our problem.

3.3.1 MaNGA Survey

The MaNGA survey (Mapping Nearby Galaxies with the Apache Point Observatory) shines above
all other IFU surveys for one major reason - it is simply the largest and most comprehensive
IFU survey done yet, with the latest data release having ∼ 10000 galaxies with spatially resolved
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(a) MaNGA Redshift Coverage (b) MaNGA IFU galaxy coverage

Figure 3.3: Left : Distribution of MaNGA galaxies observed across all observation runs; Right : A
MaNGA target galaxy with the hexagonal IFU coverage

spectra. The statistically significant samples one can get from the datacubes of this survey help
address the vast repertoire of science problems this survey hopes to address by means of collecting
spectra.

The survey does not have any cuts on environment, morphology, inclination angle or size and
is thus an excellent sample of the local universe. It however places a cut on the mass range of
the galaxies, which still spans an impressive 3 orders of magnitude. It also has aimed for collect-
ing galaxies such that their sample has a uniform mass distribution. This implies their sample is
not volume limited, and requires one to perform a volume correction as described in [38] when
performing statistical studies.

The data releases were both private and public - a certain amount of data was released for
members only, but was made publicly available in the next release cycle which followed shortly.
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3.4 Data for the problem

3.4.1 The Marvin API

To access MaNGA data, we use the Marvin API [39]. Its backend consists of a pipeline that takes
the MaNGA datacubes (which are FITS files), flags bad data spaxels and present them in a user
friendly manner. The tool has a GUI web interface as well as a Python interface, and has inbuilt
functions for plotting and remotely accessing the data products. One can access the data for any
galaxy of choice by providing the MaNGA ID (a unique identifier for each MaNGA galaxy) or
plate-ifu ID (identifier for each plate and IFU used for observation). I used the MaNGA ID for all
my work, and in cases where each MaNGA ID had multiple plate-ifus associated with it, I went
for the one with the higher signal to noise ratio.

3.4.2 Selecting the red geyser sample

We obtained the currently known red geyser sample via private correspondence with Dr. Namrata
Roy. Her criteria for obtaining red geysers from the MPL-5 release can be found in [12]. Here, we
briefly mention the procedure followed by her in obtaining this sample.

The first cut is to select galaxies with NUV − r > 5. This UV-optical cut ensures quies-
cent galaxies are selected, and in the MPL-5 release, this accounts for 40% of all galaxies. To
remove dust dominated galaxies, there is a cut on star formation rate made, with those with
SFR

�
M⊙yr−1� < −2. To ensure there are no young stars in the galaxy, the EW map of Dn4000

absorption feature is also demanded to have a minimum value of 1.4 Å. If the misalignment in the
stellar and gaseous velocity maps is 0o,90o or 180o, these are also excluded as they are galaxies
with accreted disks. The spatially resolved gas velocities are expected to be very high (∼ 300km/s),
and the gas velocity dispersion is also high (⪅ 200km/s).

To completely remove all contaminants that might resemble red geysers, we ensure all accreted
disk galaxies are purged from the sample. This is done by removing all edge on galaxies with
b/a < 0.3. This process might also remove some genuine red geysers, but that is something we
will have to live with at the moment. The kinematic λRe and the ellipticity measure ε reveal that
red geysers are fast rotating early type galaxies. To further remove any accreted disk type galaxy,
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a demand is made that the gas velocity dispersion be > 60km/s as this ensures regular rotators are
excluded.

In summary, the five step procedure is as follows (taken from [12]) :

• Quiscent with rest frame NUV − r > 5

• Bisymmetric feature in the Hα EW map

• Bisymmetric feature roughly algined with ionized gas kinematic axis, misaligned with stellar
kinematic axis

• Large spatially resolved gas velocity values (∼±300km/s)

• Very low SFR (log SFR [M⊙ yr−1] <−2)

3.5 Procedure

Here I outline the procedure adopted to obtain each of the MaNGA data products for my work. It
is to be noted that the API calls to download and prepare each one of these images was extremely
time consuming, and had to be run for a long time (∼ days) to completely obtain the datasets.

As for creating the image itself for using in my model, since the Marvin API provided data as a
matrix, I used matplotlib.imshow with hot colour scheme to colour the image. The pixel values
outside the hexagon of observation were masked using masks available with each MaNGA galaxy
observed, and coloured grey. The minimum and maximum value chosen was determined by the
minimum and maximum value of the masked image, thereby providing excellent enhancements to
the colour variation across the image. The data was stored in the PNG format in Google Drive.

3.5.1 Hα maps

For the domain adaptation step (to be discussed later in Methods), we require Hα maps of star
forming, green valley and quenched galaxies. Using the recipe in [28], I distinguished the three as

• Star forming if sSFR ≥−10.8
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(a) Red Geyser (b) Non Red Geyser

Figure 3.4: Representative examples of each class of galaxies used in the classification problem

• Quenched if sSFR ≤−11.8

• Green Valley if −11.8 < sSFR <−10.8

Using the entire final release of the MaNGA survey, I classified the sample as described above.

3.5.2 Red Geysers

In the penultimate release of the MaNGA survey, consisting of ∼ 4700 galaxies, 139 were identi-
fied as red geysers. With the MaNGA IDs of these in hand, I obtained the MaNGA IDs of the other
galaxies from publicly available data. Since the most telltale sign of a red geyser is its bisymmetric
Hα EW feature, I used the Marvin Python API to obtain the Hα EW maps of the entire sample.
The 4700 odd prior data release examples were used for training, validation and testing purpose
[discussed later in Methods].
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Chapter 4

Methods

In this chapter, we shall motivate the need for data driven methods for solving the problem of
identifying red geysers, and provide an overview of the various ML algorithms used in solving the
problem.

4.1 Why Data Driven Methods?

One can approach the problem of identifying red geysers in many ways - manually sorting through
the entire dataset and hosting a citizen science project are two of the simplest ways to do so.

However, these methods have their drawbacks. While one can work through ∼ 10000 galaxies
in a fortnight, it is not practical use of human resources. In the current era of Big Data Astronomy
where larger surveys with terabytes of data are collected every night and 104 observations every
night are becoming the norm, this method does not scale well either. Citizen science projects are
not very reliable sources of data as untrained non-experts without active participation in the science
project is a quality and ethical issue.

With the rapid rise of AI/ML as a tool for performing scientific data analysis in the past decade,
it is tempting to try and implement techniques from this field for our problem. ML algorithms are
fast, easy to use and deploy and major strides have been made in making them interpretable and
tractable. Given these pros, we decide to use them for our problem of identifying new red geysers.
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4.2 Machine Learning

4.2.1 Background

Machine learning is a method used to identify relationships in data without explicitly programming
the instructions for how to do so. In this sense, it is agnostic to domain of use.

Let us suppose we have a dataset D such that

D ≡ {(⃗xi, y⃗i)}n
i=1 = X×Y

of size n where x⃗ ∈ X is the feature vector quantifying different details of each element of D
and y⃗ ∈ Y is an output vector having some desired information about the object that we would like
to predict. The goal of machine learning is to identify a function f defined as :

f : X −→ Y

where
f (⃗x) = y⃗

The idea is that once we have identified a function f that can predict y⃗ with some reliability,
we can use it on an instance of x⃗ that has unknown y⃗ to predict a reasonable expectation for what
y⃗ should be. The central problem of machine learning is to identify methods that can obtain good
approximations of f for different types of x⃗.

The form of x⃗ varies; in some instances, it can be as simple as an element of a table of data. In
certain areas such as astronomy, a lot of data collected is in the raw image format and can take the
form of a p×q image. The specific form of the function f is different in both cases.

Procedure for obtaining a useful function approximator

The basic strategy employed to find f is to input an instance of x⃗, identify what the output f (⃗x) is,
and iteratively change f such that f (⃗x)→ y⃗. It is standard practice to perform this iteration towards
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a ”good” f (referred to as training) using a training set Dtrain ⊂ D, perform reality checks during
training (referred to as validation) using a validation set Dvalid ⊂ D and test the performance of f

on a test set Dtest ⊂ D.

We impose that Dtrain ∩ Dvalid ∩ Dtest = φ so as to ensure that the model does not show a
performance boost in its evaluation metrics due to predicting data it has already learnt how to fit.

4.2.2 Supervised and Unsupervised learning

In supervised learning, one has access to the y⃗ during training, whereas in unsupervised learning,
there is no y⃗ available during the training procedure.

Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised learning technique that is used for di-
mensionality reduction [40]. It does so by identifying directions in the high dimensional space that
have maximum variance, and projecting the image along those directions with maximum variance.
What this does is accentuates the discriminatory features of the data, thereby making it easier to
perform downstream tasks like classification.

Images are an unusual case when it comes to dimensionality reduction using PCA, as they are
not only high dimensional but have some spatial information embedded in the form of relative
location of entries in their data instances. While one obtains a set of ”eigen-images” when per-
forming PCA on images, it is difficult to say whether these truly represent features of the images
that are of any significance for classification, as the PCA algorithm treats the entire image as a 1D
array thereby discarding any of the semantic features of the images.

K Nearest Neighbour Classification

The k-nearest neighbor (kNN) algorithm is a simple but effective non parametric, supervised clas-
sification algorithm which classifies data points based on the class of its k nearest neighbors in the
training dataset. [41] [42]
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Figure 4.1: Graphical representation of the k-nearest neighbour classification algorithm

To explain with an example, suppose we have a classification problem, where we have to
classify a ball with varying greyness as being black or white. We project the ball’s features on
the space where we wish to perform the kNN classification. This is typically chosen as a low
dimensional space to minimise unrelated variations due to the ”curse of dimensionality”, and to
reduce computation time. In our case, since we have only one discriminatory feature i.e. the
greyness of the ball, we perform kNN classification in this 1D space. This space has already been
populated by all the labelled examples at our disposal.

We then compute the distance (using a distance metric; usually the Euclidean distance is used)
to the nearest neighbours of our test ball, and select the top k balls. We assign to the ball the class
which has the maximum number of representatives in the list of k closest balls.

The choice of k is very important parameter here; it decides how our classifier behaves. A
smaller value of k will make a more flexible classifier but be more sensitive to noise in the data
whereas a larger k will give a smoother ”classification boundary” in the classification space, at the
expense of poor classification in regions that have complex data distributions.

Some advantages of using a kNN algorithm for classification are :
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Figure 4.2: Graphical representation of the working principle of a decision tree for classification

• Easy to interpret

• Applicable to a wide variety of data

• Non parametric, so does not make any assumptions about the underlying distribution

However, there are some drawbacks as well :

• The distance computation is a fairly computationally expensive process, especially in high
dimensional spaces

• It is sensitive to the choice of the distance metric

• Performs poorly in high dimensional feature spaces

Decision Trees

A decision tree is a non paramteric, supervised classification algorithm that produces a graphical
representation of all possible decisions and their potential consequences, and is built by recursively
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splitting the data based on the value of certain attributes, until each branch ends in a terminal node
or a decision. [43]

The easy interpretability of decision trees makes them a very useful model to deal with for
classification tasks. However, they are not good enough to perform classification using raw pixel
values, and have to undergo a feature extraction step before classification.

Decision trees work best when predicting the class label based on attributes. It does so by
selecting the attribute that maximizes information gain, which is measured as a reduction in entropy
that results from splitting the data on that attribute. This process is repeated recursively until each
”leaf” node contains instances that have the same class label.

Of the many drawbacks of decision trees, the main one is overfitting to the test dataset. To avoid
overfitting, various techniques such as pruning, setting a minimum number of instances per leaf,
or using ensemble methods like random forests are used which mitigate the effects of overfitting
in different ways.

4.2.3 XGBoost

The state of the art machine learning model used extensively in the industry, Kaggle competi-
tions and research problems is XGBoost [44]. In order to understand XGBoost, it is important to
understand certain key ideas that are briefly discussed here :

Ensemble Learning

In ensemble learning methods, one combines many ”weak learning” models (these are individually
poorly performing models) to create a ”strong learning” model that has better predictive capacity
than any of the individual models. They are particularly useful in improving accuracy and robust-
ness[citation, citation] by working around overfitting, except in the case of noisy datasets using
certain approaches.

Ways to implement ensemble learning include :

• Bagging : Also called bootstrap aggregation. In this technique, one bootstraps the data by
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picking samples with repetition to form sub-datasets, followed by ”voting” on predictions
made by multiple weak learners to identify the correct prediction.

• Boosting : From a classification perspective, one starts with a dataset D1 and a model M1,
trains it and marks the misclassified examples. A new dataset D2 is made where the mis-
classified samples from D1 are given greater weightage and run through an updated model
M2. This allows for poorly classified examples to be properly classified in the final model.
This process is repeated iteratively till a certain preset threshold of misclassified samples
is reached. Then, the weak learners are combined in a manner such that they are tuned to
classify the misclassified examples they were specialized on, and the final classification is
done by voting on the predictions of each of the weak learners.

Gradient Boosting

Gradient boosting is a form of boosting where the iterative procedure of training weak learners to
perform classification on the given dataset is formalized as a gradient descent problem. It does so
by providing targets for subsequent models to reach in terms of a target function.

XGBoost is a particular implementation of this boosting algorithm that is fast and parallelized.
Instead of stacking trees one on the other, it parallelizes them to speed up the inference and training
procedure.

4.3 Deep Learning

4.3.1 Model Architecture

ResNet

Residual Networks (ResNets) are a deep learning architecture that are very good at image classifi-
cation problems [45]. It is capable of having large depths (many layers) as it has skip connections
which address the vanishing gradient problem efficiently.

The skip connections address the vanishing gradient problem during backpropogation by pro-
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Figure 4.3: A simplified pictorial representation of a ResNet, displaying the skip layer protocol

viding gradient highways which allows the gradient to travel across convolutional layers, which
can diminish the gradient.

This allows for constructing very deep layers, which can effectively learn good discriminative
filters for image classification.

4.3.2 Data Augmentation

Since we have less data, can we do something to make sure that we can get more data from the less
data? Data augmentation is a procedure by which one can achieve this. [46] [47]

Traditionally, in common machine learning settings, data augmentation is applied to reduce

Figure 4.4: An assortment of augmenting transformations on an image
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overfitting to the model data during training. For image classification, one applies various trans-
forms that alter certain meta features of the image, leaving most of the image content similar.
That’s not to say there aren’t any transformations that change the character of the image itself!

Some of the most commonly used transformations are show in the Fig.

Is it correct to ”increase” the training data size by performing data augmentation? For the
case of very small image datasets like ours, applying transforms to attempt this can infact lead to
overfitting [48], and is also unphysical for the following reasons :

• Colour transformations remove essential information about the relative pixel values in the
Hα EW maps

• The hexagonal IFU structure gives us a six fold rotational symmetry and three reflective
symmetries. These do not add any additional information about the structure of the red
geyser, and with such a small sample will overfit the model

• Normalizing the image will create Hα EW maps of galaxies that do not exist

4.3.3 Transfer Learning

One of the most common ways in which classification tasks with less training data is dealt with is
by adopting a transfer learning approach. [49] [50]

Suppose that DS ≡ XS ×YS is the source dataset. We have a large number of labelled samples
in this dataset, on which we train a model fS : X −→ Y. Suppose that this model fS is a very good
(by means of some measure of how correct it is on the given data).

Suppose that we have a related dataset DT ≡ XT ×YT. By related, we mean that there is
some similarity between DS and DT in the sense that a human can perceive them to have some
commonalities, but with the constraint that DS ̸= DT. And also suppose that we do not have a lot
of labelled examples in DT. Can we use the fact that DS and DT are related to carry over the model
fS to identify a model that can classify XT efficiently, without extensive training?

When we train a model on a source dataset DS, it will learn the distribution of the data, called
an inductive bias. When this model encounters an unseen example from the same distribution,
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it will classify it with a decent degree of accuracy. In transfer learning, we push the limit of
what it means for an example to belong to the same distribution, by choosing data from a related
distribution instead.

How would one implement this in the case of a deep neural network? In the case of image
classification, one of the most common ways of implementing transfer learning is by starting with
a model with very good inductive biases, where good is defined as very generalizable source dis-
tribution. We then freeze all layers except the final few layers of the model and retrain these layers
using the target dataset. These last few layers have weights corresponding to the highest level dis-
criminative features for classification which are specific to the problem distribution at hand. In this
process of freezing out the lower level layers, we can retain the lower level features which were
learnt during training on the source dataset, which we can combine with the specific features learnt
for the target dataset to achieve a better classification accuracy.

4.4 Few Shot Learning

Humans are extremely efficient at image classification - we are able to learn discriminative features
of objects from a small sample of their images, and generalise these to classify the objects and their
images successfully. Since image classification using CNNs is largely based on how biological
neural networks, can we recreate this data efficient classification using artificial neural networks
too?

Starting from a untrained model, it is a rule of thumb that standard machine learning techniques
require ∼ 10 times more data than the number of model parameters to reliably fit a regression
model. For deep neural architectures, it is recommended to have 1000 images per class for a
classification model. For transfer learning and pre-trained models, the number of training examples
required is lesser, by about 1.2-1.5 times.

Our case is unique in that we only have ∼ 140 galaxies in our sample which we can use for
training. It is then imperative that we use data efficient classification methods for our problem. So
far, we have addressed this issue using an imbalanced training dataset, but can we do better?

We try the ”few shot learning” approach of classification to solve our task [51] [52]. This
paradigm follows the philosophy of meta learning, where the idea is to learn how to learn. One
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Figure 4.5: A schematic representation of a prototypical network implementation

trains the model on multiple classification tasks so that it may be tested and used to perform clas-
sification on hitherto unseen classes.

While there are plenty of techniques to approach few shot learning, we chose to work with
prototypical networks.

4.4.1 Prototypical Networks

If we take a child to a zoo and ask it to identify animals it has never seen before, it is highly unlikely
it will be able to do so satisfactorily. However, if we show it images of different animals and ask
to identify the animal type based on the image representations, it is bound to correctly identify the
correct animal with a high degree of certainty.

Prototypical networks were introduced as a method to perform few shot learning [53]. The
philosophy is very similar to how a child (a metaphor for an untrained network) is able to identify
hitherto unseen animals (classes) from representative images of the animals (image prototypes).
The extensibility of prototypical networks is immense - it is not only adept at classification using
few ”training” images but it also generalises to new classes very easily. We will not discuss the
extensions of this method here but only that which interests us for our problem.

The approach is as following - we start by defining an image embedding map from the space
of images to a lower dimensional embedding space

fφ : Rp×p −→ Rm

43



Here fφ is a function f with parameters φ .

This function is not a given when we start the problem. These functions are non trivial to define
explicitly and we thus use the universal function approximation property of neural networks to
represent this function. Our goal is to identify a good functional form (neural network architecture)
and its parameters (weights and biases of the network) for this embedding function.

Suppose that our problem requires us to classify K classes of images. Let Sk be the set of images
which belong to class k. In the embedding space Rm, we define the prototype representation of the
shot images as follows :

ck =
1
|Sk| ∑

(xi,yi)∈Sk

fφ (xi)

Let us define a metric d on this embedding space :

d : Rm ×Rm −→ [0,∞)

Our prototypical network then can produce a distribution over classes for an input image x
by means of a softmax on the distances between the embedding and prototypes in the embedding
space :

pφ (y = k|x) = exp(−d( fφ (x),ck))

∑k′ exp(−d( fφ (x),c′k))

By increasing the probability for an image to lie close to its target class, we can hope to achieve
the desired embedding function. We can achieve this by defining a loss function which takes
smaller values when the function parameters φ take values that place the image embedding close
to the prototype of the shot images :

J (φ) =−∑
k′

log[pφ (y = k|x)]

The training proceeds by iteratively attempting to minimize this loss function using the algo-
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rithm below :

Algorithm 1 Computing the loss for updating parameters. We have N (number of examples in
the training set), K (number of classes in the training set, NS (number of support examples per
class, NQ (number of query samples per class), RANDOM SAMPLE (S,N) (random sample of
N elements from set S)

for k in {1, . . . ,K} do
SK ← RANDOM SAMPLE(DK,NS)
QK ← RANDOM SAMPLE(DK \SK,NQ)
ck ← 1

|SK | ∑(xi,yi)∈Sk
fφ (xi)

end for
J ← 0
for k in {1, . . . ,K} do

for (x,y) in QK do
J ← J+α

�
d( fφ (x)+ log∑k′ exp(−d( fφ (x),c′k))

�

end for
end for
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Chapter 5

Results and Discussion

The problem of identifying red geysers from the latest MaNGA release is an onerous task. The
conventional method, as detailed in the Data section, requires one to sift the complete catalog after
applying selection cuts followed by manually sorting through the residual dataset to identify the
bisymmetric pattern.

In order to apply machine learning models to automate this task for us, we choose to classify
whether or not an input Hα EW map has bisymmetric features or not. The rationale is that the
Hα bisymmetric feature is the most visually distinctive and discriminative characteristic of the red
geyser population. It is also the most simplest for a human to recognise, and thus we expect the
machine to easily identify this pattern. From a selection perspective, it is also the most tell-tale
sign of the existence of a red geyser, closest to being the smoking gun, as there are other galaxy
populations which share some of the other properties of red geysers.

In the first section, I will first present all the results obtained from our experiments. Then I will
discuss their implications in the following section. Generalization and how it sets up future work
will be discussed in the sections afterwards. This chapter will conclude with a summary of results
and their implications in the broader scheme of solving the problem of identifying red geysers.
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5.1 Image Classification Baseline Models

Since this is the first model of its kind, we need to implement a baseline model with respect to
which we can test our more advanced models.

5.1.1 The Naive Approach - ZeroR Classifier

One of the baselines used to assess whether a classification model is performing well or not is
the random classifier - this is a model that randomly assigns a class to the input object. In a
binary classification task, one can assign a probability p with which the model assigns a sample
as belonging to the positive class. In this case, during testing, if the test sample has n+ positive
samples and n− negative samples, the accuracy would be given as :

Accuracy =
n+p+n−(1− p)

n++n−

if p = 0.5, we see that we should have a baseline accuracy of 0.5.

However, in the case of an imbalanced dataset, we can remodel the accuracy baseline. Note
that in the limit of n+/n− ≪ 1, the accuracy tends to 1− p. If we set p = 0, i.e. the model always
predicts the larger negative class, we would get an accuracy → 1. This is called a ZeroR Classifier.

For our example with n+ = 139 and n− = 4587, the ZeroR Classifier has an accuracy of
96.97%.

5.1.2 kNN Classifier

Since I will be using a metric based deep learning model, for comparision I implemented a simple
ML based kNN to compare the results.

Implementing a kNN classifier directly on images without performing any feature extraction is
a poor idea as kNN performs poorly on classifying high dimensional data and there is disregard
for the structural features of the image. This is because they have features such as the bisymmetric
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structures which need to be semantically encoded, and a simple subtraction would not be able to
capture the invariance of alignment of this jet feature.

We perform feature extraction using an unsupervised technique - PCA. Despite being a simple
and reliable feature extractor, there are some drawbacks :

• Feature extraction step is not interpretable

• The results of feature extraction are stochastic (can be reproduced with seed)

• PCA tries to minimize reconstruction error and not maximize the difference in features be-
tween the many classes

However, the PCA step does provide us with ”useful” features that we can use to implement
standard ML techniques.

Before performing feature extraction, we reduce the dimensions of each image to (64,64) as it
becomes too expensive to perform PCA otherwise. There were two important hyperparameters to
optimize - the number of principal components to choose when performing PCA and the number
of neighbours to consider when performing kNN i.e. the k in kNN. A common mistake is tuning
the hyperparameters using the output from the test set - this is incorrect usage as the model is then
optimized to perform well on the test set itself, and will very obviously yield good results. What is
required is a seperate validation set to perform hyperparameter tuning on, which is set aside apart
from the training and test sets at the beginning of the program.

For this purpose, we use the GridSearchCV option of the sklearn.model selection pack-
age which performs a grid search over input hyperparameters to identify the best performing model
using cross-validation.

Even though we would like to maximize recall, we do not choose hyperparameters that opti-
mize on recall. We instead choose to optimize on accuracy. The reason being that optimizing on
recall will push to model to mark all examples as red geyser, as evident from Fig 5.1c. We thus
stick to accuracy.

Our hyperparameters are chosen as k = 60. We however choose weights=uniform as it is a
faster method.
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(a) Variation in Accuracy (b) Variation in Precision

(c) Variation in Recall (d) Time for Running

Figure 5.1: Hyperparameter tuning for the KNN model

We have a final accuracy of 0.9841, a precision of 0.7353 and a recall of 0.8064

Our experiments reveal that the PCA did a good job of extracting the desired features - the
kNN algorithm on the PCA vectors performed better than the brute force ZeroR Classifier.

5.1.3 Decision Trees

Similar to kNN, we used PCA to extract features from the images and we used a decision tree
algorithm provided by scikit-learn to perform the same binary classification task. We used a
reduced image size of (64, 64) as in the previous problem, and set aside a validation set to perform
hyperparameter tuning.

Apart from providing us with one more baseline test, the performance of decision trees serves
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as a benchmark to compare the XGBoost performance, as we saw in the Methods section how
XGBoost is an ensemble learning method with decision trees as its foundational stone.

By default, the program uses a gini criteria to quantify the difference for performing the split.
We chose hyperparameter values for the trees as follows - maximum tree depth as 2, minimum
sample split as 2 and minimum samples leaf as 1. Our choice was motivated by the following
considerations - the space over which data is distributed is specifically covered when there is atmost
one leaf per node, the generalizability best when the depth is low and most logical and interpretable
(if required) when the sample split is 2.

The classification accuracy was 0.9831, the precision was 0.7419 and the recall was 0.7419.

5.2 XGBoost

5.2.1 Choice of Parameters

The preferred booster for standard XGBoost applications is a gradient boosted tree (gbtree).
The other important hyperparameters such as learning rate (η), minimum split loss (γ) and
maximum tree depth are taken to be the standard default values of 0.3, 0 and 6 respectively.

5.2.2 Evaluation of Predictions

Since XGBoost is an excellent learner of the training data, we expect it to perform satisfactorily
well on the test data. It exceeded expectations and had a classification accuracy of 0.9831, a
precision of 0.9923 and a recall of 0.9902.

The one issue with XGBoost is that despite performing really well on this dataset, it has no
guarantee of performing well on a different dataset as it is very poor to generalization (its weak
learners are trees).
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Batch Size Epochs Valid Tasks Valid Frequency Valid Accuracy Test Accuracy
128 200 20 10 0.583 0.5375
128 20 20 10 0.55 0.5745
128 50 20 4 0.567 0.561
128 30 20 5 0.533 0.568
128 20 5 4 0.8 0.5970

Table 5.1: Training a ResNet on Hα maps for domain adaptation

5.3 Domain Adaptation Experiments

Since there are no pretrained models on the MaNGA dataset at the present, as discussed in the
Methods and Data sections, we train a 10 layered ResNet to classify the galaxies based on their
star forming rates into star forming galaxies, green valley galaxies or quenched galaxies. The
results of the training and testing is provided in Table 5.1

First thing to note is that the test accuracy barely reaches 60%. Since this is a different dataset
than our red geyser dataset (see Data), the baseline metrics for comparision are also different. The
baseline here is simply a random classifier, which comes out to have an accuracy of 50%.

Our model thus performs only marginally better than a random classifier. There may be many
reasons for this :

• The model was not trained for a sufficiently large number of epochs

• The encoder is not able to efficiently learn the features present in the images

• Since we are dealing with Hα maps and the principal discriminatory component is overall
magnitude of the galaxy image, the 10 layered ResNet maybe too deep and may be missing
out on extracting the correct features

• The presence of masked pixels in the training dataset could cause certain regions of the
network to be improperly trained

One seemingly strong indication that our model is unable to pick up useful features is the
training run with lower number of epochs having a better classification accuracy when compared
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to the other ones. This means the pre-existing inductive biases are better at picking up differences
if any than the ones learned by the model.

Possible directions in trying domain adaptation include :

• Working with a different dataset for creating a model for domain adaptation

• Training for more epochs on the dataset to learn the parameters more effectively

5.4 Prototypical Networks

5.4.1 Choosing the optimal model - Hyperparameter tuning

Shot Size

In few shot learning, the number of shots required to predict the class is an important choice of hy-
perparameter during training as well as testing. During training, the goal is to learn a generalizable
representation by trying to minimize a suitable loss function, whereas in testing we typically aim
to obtain a large enough accuracy.

The number of shot images thus chosen is of importance - in the limit of a large sample, a larger
shot size will produce a better prototype, whereas a smaller shot size will be prone to anomalous
shot examples dominating the contribution to the prototype. However, having a larger shot size
will have an overhead in calculating the prototype, whereas smaller shot size will be faster during
training and testing. It is imperative that we decide an optimal shot size for training and testing.

Another important question regarding shot size is whether they have to be the same for training
and testing. This is very dependent on the size of these sets - sometimes we may be constrained by
the number of examples during training or testing to use a smaller shot size.

We use a shot size of 5 as it represents the best among accuracy of prediction and speed of
inference.
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Encoder Classifier Accuracy Precision Recall
- ZeroR 0.9697 0.0300 0.0000

PCA kNN 0.9841 0.7353 0.8064
PCA Decision Trees 0.9831 0.7419 0.7419

ResNet ProtoNet 0.9905 0.5798 0.9928
PCA XGBoost 0.9831 0.9923 0.9902

Table 5.2: Classification, Precision and Recall Scores for different ML techniques used

Depth of the model

As we saw earlier, the ResNet is a demonstrably good choice for image classification tasks. The
choice of the number of ResNet layers in the model is an important hyperparameter - having a lot
of layers may not provide a significant computational advantage over lesser number of layers. In
fact, it is recommended not to have too many layers as the model will have too many parameters
and thus be prone to overfitting. A larger model will also take longer to train, since there are more
parameters whose gradients need evaluation.

By training and testing on the Hα flux dataset, it was identified that the most optimal depth for
the encoder was a 10 layer ResNet.

5.4.2 Prototypical Network Implementation

We implemented prototypical networks as described in the Methods section. We trained the model
using ”classic training”, where we sample data from each class, compute its prototype and compare
the distance to the feature space representation of the image. We perform validation on a regular
basis to ensure our model is not overfitting on the training data.

In our case, we trained for 50 epochs with a batch size of . We performed 15 validation tasks
every 5 epochs. We achieved a validation accuracy of 1.0, our training loss went down to 0.000459
and we achieved a test accuracy of 99.05%
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5.4.3 Classification Metrics for ProtoNets

In a binary classification task with a class imbalance, it is improper to consider the classification
accuracy with much merit, as the class imbalance will tip the classification accuracy towards higher
values. In fact, this is clearly exemplified by the high classification accuracy of the most naive
classifier aka the ZeroR Classifier.

Instead, we look at precision and accuracy, both measures of how ”clean” our classifier is in
classifying the positive class. Precision tells us how contaminated our sample is, i.e. how many
objects that are not positive get misclassified as positive; and recall tells us how complete our
sample is, i.e. whether we’ve managed to catch all objects that are of the positive class when
classifying.

We can express this in the form of a confusion matrix, as in table.

While ideally we would like to have a very high recall and precision, it is not always the case.
For our particular example, since we would like to identify as many red geysers as possible, we
demand that we have a high recall and are satisfied with a reasonably large precision.

This is indeed the case; we have an exceptionally high recall > 0.99, which we hope can
translate into identifying ne red geyser galaxies.

5.4.4 Misclassified galaxies

On closer inspection of the misclassified galaxies we find that the false negative example is actually
a very poorly rendered image of the galaxy. This serves as a very good reality check for our model,
as we know it is not spuriously performing well on our final test sample.

Actual Classes

Predicted
Classes

Red Geyser Non Red Geyser
Red Geyser 138 100

Non Red Geyser 1 4487

Table 5.3: Confusion matrix for the entire dataset classified using ProtoNets with a ResNet encoder
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(a) False Positive (b) False Negative

Figure 5.2: Representative examples of each class of galaxies used in the classification problem

Many of the false positive galaxies have bisymmetric structures in them and require of a seper-
ate inspection by an expert. Many others, like in Fig 5.2a, have a many centers of enhancements
in their Hα EW maps. This is very characteristic of the Hα disturbed galaxies seen in the Data
section. It implies our model is performing well to predict galaxies with these features, and they
are all interesting enough to be worthy of a closer inspection before deciding whether or not to
classify them as red geysers or not. Their numbers are also very manageable; they are of the order
of the number of red geysers themselves so it would not be too taxing on the part of the expert to
manually examine each one of them.

5.5 Generalizing to unseen examples

The task of generalizing to previously unseen training examples is the bane of ML models; the
training procedure involving minimizing the loss function only penalizes the model if it deviates
too far from predicting the manner in which the training data is distributed. One can add more
constraints; techniques such as regularization (penalizing the model for having too many parame-
ters that can lead to overfitting) and dropout (dropping certain fractions of neurons during training
at every iteration) are some ways in which the overfitting issue can be solved. However, a faithful
fit over the complete space of data is still not possible and this leads to very prominent drawbacks
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when attempting to generalize over test and other similar unseen datasets.

5.5.1 XGBoost

The poor generalizing capabilities of decision trees is a well known phenomena; their inability
to create partitions such that their leaves create a cover over the space of data is the chief culprit
[cite Bengio 2010] apart from their tendency to fit the noise in the data. Algorithms like XGBoost
provide an improved performance on the test set by creating an ensemble of tree based learners;
however they still suffer from their tendency to fit the noise in the dataset and the mathematical
constraint as described in [Bengio 2010] that prevents them from generalizing well.

In our case, despite performing with the best overall performance parameters among all other
models, XGBoost fared pretty low when generalizing.

Few Shot Learning methods such as prototypical networks work very well for generalizing to
unseen classes

5.6 Future Scope

So far, our discussion has been mainly on how the model has performed on the training and test
datasets. The excellent performance on this smaller subsample means we have a working model
that has passed the proof-of-concept test.

The immediate next step would be to test it on the full dataset. Preliminary excursions in this
direction were not very fruitful; the models failed to generalize to the larger dataset. There can be
many reasons for this :

• XGBoost is known to be a poorly generalizable algorithm; it may not be suitable to work on
this problem

• PCA as a dimensionality reduction tool for images only manages to minimize the recon-
struction error by design, this is not something we really need for our problem

• ResNet encoders of small size are also poor at generalizing to related datasets
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Some remedies for these drawbacks include :

• Instead of using tree based gradient boosting, other options such as linear function based
boosting could be implemented

• SimCLR [54] is a contrastive learning based dimensionality reduction techinque; its core
tenet is to maximize the difference between different classes and is thus ideal for classifica-
tion tasks

• We can try implementing deeper ResNets for our task

Our models after passing preliminary tests are very close to realizing its ultimate goal of iden-
tifying new red geysers from the latest MaNGA release.

We have also demonstrated that the few shot approach can also be used in an astronomy case. A
natural extension would be to use it in other astronomy use cases where there is not a lot of training
data available. Some prominent examples requiring an urgent intervention include the process of
detecting gravitational waves and fast radio bursts in time domain astronomy.
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