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Abstract

In this thesis, I study an inverse boundary value problem in two dimensions for a polyhar-

monic operator of the form

L = ∂m∂̄m +
m−1∑
j,k=0

Aj,k∂
j ∂̄k, m ≥ 2.

The inverse problem is whether we can recover uniquely the coefficients Aj,k from the set of

Cauchy data

C(L) =
{(
u|∂Ω, ∂νu|∂Ω, ∂2νu|∂Ω . . . , ∂(2m−1)

ν u|∂Ω
)
: u ∈ H2m(Ω),Lu = 0

}
,

where ν is an outer unit normal to ∂Ω.

In joint work with Prof. Krishnan and Dr. Rahul Raju Pattar, I establish that the Cauchy

data for a polyharmonic operator uniquely determines all anisotropic perturbations of order

at most m− 1 and several perturbations of orders m to 2m− 2 with some restrictions. This

restriction is captured in the following representation of the operator L as

(∂∂̄)m + Am−1,m−1(∂∂̄)
m−1 +

m−2∑
l=1

( ∑
j+k=m−l−1

Aj+l,k+l∂
j ∂̄k

)
(∂∂̄)l +

m−1∑
l=0

∑
j+k=l

Aj,k∂
j ∂̄k.

We start this thesis with the Calderón inverse problem, where we followed Prof. Pedro Caro’s

class lecture notes. This is the first problem that represents many ideas. The proof given

here is based on Carleman estimates which is different from the original proof of Sylvester

and Uhlmannn. It is the primary technique in partial data inverse problems for constructing

CGO solutions. After that, we study the inverse boundary value problem for Schrödinger

operator, which will help to discuss our original contribution.
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Chapter 1

What is an inverse problem?

An inverse problem refers to the process of determining the characteristics or properties of

an object or system based on indirect measurements or observations. Real-life examples of

inverse problems include X-ray, CT, and ultrasound imaging, where measurements are taken

of the interior of an object or body to identify healthy and unhealthy parts. The challenge

is interpreting the measurements to reconstruct an accurate image of the object of interest.

This section used notes on Introduction to Inverse Problems by Guillaume Bal.

More precisely, An inverse problem (IP) is a problem that involves determining the parame-

ters of a system or object of interest based on the available data or measurements. The first

step in solving an IP is to establish a mapping between the parameters and the measure-

ments, which is known as the forward problem or measurement operator (MO), denoted by

M.

The measurement operator (MO) is a mathematical function that maps the parameters of

interest, denoted by x, from a functional space X to the space of available data, denoted by

y, which belongs to another functional space Y. Solving the inverse problem requires finding

point(s) x ∈ X from knowledge of the measurements y ∈ Y.

The MO describes our best effort to construct a model for the available data y, which we

assume here depends only on the sought parameters x. The choice of X describes our best

effort to characterize the space where we believe the parameters belong. For reconstructing

the object of interest from the data, we need to ask the following questions about MO:

1
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Uniqueness: The first question to ask about the MO is whether it is injective, meaning

we have enough data to reconstruct the parameters of interest uniquely. Injectivity means

that different parameters in the parameter space cannot produce the same data, which is

necessary for a unique reconstruction of the parameters. More precisely, injectivity of MO

is:

M(x1) = M(x2) =⇒ x1 = x2 for all x1, x2 ∈ X.

Then we can uniquely characterize the parameter x from the data y if given in the range of

M.

Stability: After proving M is injective, we can talk about an inverse operator M−1 which is

a map from the range of M to a unique element in X. As machines are not perfect, we want

to see if we make some measurement error, then what the error will be in the reconstruction

of parameters. This is captured by stability estimates which quantify how errors in the

available data translate into errors in the reconstruction. The modulus of continuity of the

inverse operator M−1 gives an estimate on the reconstruction error ∥x1 − x2∥X based on the

error in the data acquired ∥M(x1)−M(x2)∥Y.

In this thesis, we will study the uniqueness of MO for the Calderón inverse problem

in three and higher dimensions, the inverse problem for the Schrödinger operator in two

dimensions, and the inverse problem for the polyharmonic operator in two dimensions.

The idea of the proof for all of these problems follows the same path: Using that both

operators have the same measurement operator, we write our integral identity, which involves

the object of interest of both, then try to see what type of solutions is needed to show

uniqueness. Then, at last, we try to construct these types of solutions.
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Chapter 2

Calderón inverse problem

2.1 Introduction

The Calderón problem finds application in electrical impedance tomography (EIT) and op-

tical tomography (OT). EIT is a non-invasive modality(which means no break in the skin

is created) that reconstructs tissues’ electrical properties (conductivity) from current and

voltage measurements on part of boundary. More precisely, let Ω is a bounded open subset

of Rn with some regular boundary and conductivity γ is a bounded function with a positive

lower bound on Ω. We find that if a voltage potential f is applied on the boundary ∂Ω, then

the potential u in Ω solves the Dirichlet problem∇ · γ∇u = 0 in Ω

u = f on ∂Ω.
(2.1.1)

By the theory of elliptic equations, there is a unique weak solution u ∈ H1(Ω) for any

boundary value f ∈ H1/2(∂Ω). It is slightly more regular in the sense the normal derivative

on the boundary can be defined in a coherent way as an element of H−1/2(∂Ω) by

⟨γ(∂νu)|∂Ω, g⟩ =
ˆ
Ω

γ(x)∇u(x) · ∇v(x) dx (2.1.2)

where v ∈ H1(Ω) satisfies v|∂Ω = g ∈ H1/2(∂Ω). Using that u is a weak solution to (2.1.1),

it is straightforward to see that the definition (2.1.2) is independent of the extension v of g.

3



Note that when u, v ∈ C2(Ω) and γ ∈ C1(Ω) integration by parts in (2.1.2) gives

⟨γ(∂νu)|∂Ω, g⟩ =
ˆ
∂Ω

γ(x)∂νu(x)v(x) dS(x)

where dS is the usual Euclidean surface measure on ∂Ω. Hence the generalized definition

(2.1.2) of a normal derivative at the boundary coincides with the classical definition when

this makes sense.

The distribution γ(∂νu)|∂Ω describes the current flux through the boundary, and it is the

natural Neumann data for the equation (2.1.1). Thus we can define the Dirichlet-to-Neumann

map Λγ : H
1/2(∂Ω) → H−1/2(∂Ω) by

Λγf = γ(∂νu)
∣∣
∂Ω
.

With X = L∞
+ (Ω) and Y = L(H1/2(∂Ω), H−1/2(∂Ω)), we define the MO Λ by

Λ : X ∋ γ 7→ Λ(γ) = Λγ ∈ Y.

The Calderón problem concerns the inverse of the Λ. There are several important questions

besides the injectivity and stability of Λ. We can ask
1. Can we reconstruct γ if we only know the finite number of measurements, i.e., the

action of Λγ on a finite-dimensional subspace of H1/2(∂Ω) is known.

2. Can we reconstruct γ if we only know measurements on some part of the boundary,

i.e., for some open set Γ ⊂ ∂Ω we know Λγf |Γ for all boundary voltages f .

An interesting fact about the inverse conductivity problem is that the amount of data given

in Λγ depends on the space’s dimension. We can see that the function γ depends on n

variables, while the Schwartz kernel of Λγ is a function of 2(n − 1) variables. So, the

problem is formally determined in two dimensions, whereas in higher dimensions, it is over-

determined. This motivates us somewhat to solve the two-dimensional problem; we have to

invoke a different method than the one used for the higher-dimensional problem.

From a physical perspective, it is reasonable to expect that the conductivity at the boundary

would be the most readily measurable. In [KV84], Kohn and Vogelius established that, for

smooth conductivities, the mapping Λ determines the values of γ and all of its normal deriva-

tives on ∂Ω. It remains a necessary ingredient in many proofs of identifiability in the interior.
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We now summarize some uniqueness results for Calderón’s problem in the following table:

n γ

Sylvester-Uhlmann [SU87] ≥ 3 C2

Nachman-Sylvester-Uhlmann [NSU88] ≥ 3 C1,1

Jerison-Kenig [Cha90] ≥ 3 W 2,n/2+

Brown [Bro96] ≥ 3 C3/2+

Päivärinta-Panchenko-Uhlmann [PPU03] ≥ 3 W 3/2,∞

Brown-Torres [Bro03] ≥ 3 W 3/2,2n+

Haberman-Tataru [HT13] ≥ 3 C1 , W 1,∞ small

Caro-Rogers [CR14] ≥ 3 W 1,∞

Nachman [Nac96] 2 C2

Brown - Uhlmann [BBUU97] 2 C1

Astala–Päivärinta [AP06] 2 L∞

The uniqueness problem for γ ∈ L∞(Ω) is open in n ≥ 3 case. It is fully solved in two

dimensions, and the argument uses complex analysis tools. In this chapter, we will prove

the uniqueness theorem given by Sylvester-Uhlmann in [SU87].

Theorem 2.1.1. Let Ω be bounded domain with C2 boundary in Rn, n ≥ 3 and let γj ∈
C2(Ω). Then Λγ1 = Λγ2 implies γ1 = γ2.

2.2 Integral Identity

Proposition 2.2.1 (Weak Integral Identity). If Λγ1 = Λγ2 then

ˆ
Ω

(γ1 − γ2)∇u1 · ∇u2 = 0 (2.2.1)

for any uj ∈ H1(Ω) solving div(γj∇uj) = 0.

Proof. Let v2 in H
1(Ω) such that div(γ2∇v2) = 0 and v2|∂Ω = u1|∂Ω. Then Λγ1 = Λγ2 implies

ˆ
Ω

γ1∇u1 · ∇u2 =
ˆ
Ω

γ2∇v2 · ∇u2 =
ˆ
Ω

γ2∇u2 · ∇v2 =
ˆ
Ω

γ2∇u2 · ∇u1.

This is exactly as in (2.2.1).
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Lemma 2.2.2 (Reduction to Schrödinger equation).

div(γ∇u) = 0
v=γ1/2u⇐====⇒ (−∆+ q)v = 0

where q = γ−1/2∆γ1/2.

Proof. We can write easily div(γ∇u) = 0 as

−∆u−∇ log γ · ∇u = 0.

We want to replace the first-order term ∇ log γ ·∇u with a zero-order potential term qu. We

can use a Liouville transformation because the coefficient ∇ log γ is a gradient. Indeed, for

any ϕ we have

e−ϕ ◦ (−∆) ◦ eϕ = −∆− 2∇ϕ · ∇ − |∇ϕ|2 −∆ϕ

Setting ϕ = 1
2
log γ, we obtain

−div(γ∇u) = −∆u−∇ log γ · ∇u

= −γ−1/2∆(γ1/2u) +

(
1

4
|∇ log γ|2 + 1

2
∆ log γ

)
u.

It implies

−γ1/2div(γ∇u) = −∆(γ1/2u) + q(γ1/2u),

where

q =
1

4
|∇ log γ|2 + 1

2
∆ log γ,

and we find that the function v = γ1/2u satisfies the time-independent Schrödinger equation

(−∆+ q)v = 0.

By setting u = 1 we may observe that q = γ−1/2∆γ1/2.

Proposition 2.2.3. If Λγ1 = Λγ2 then

ˆ
Ω

(q1 − q2)v1v2 = 0

for all vj ∈ H1(Ω) solving (−∆+ qj)vj = 0 with qj = γ
−1/2
j ∆γ

1/2
j .

6



Proof.

ˆ
Ω

(q1 − q2)v1v2
−∆vj+qjvj=0

=

ˆ
Ω

[∆v1v2 − v1∆v2] =

ˆ
∂Ω

[∂νv1v2 − v1∂νv2]

=

ˆ
∂Ω

[
(γ

1/2
1 ∂νu1 + u1∂νγ

1/2
1 )γ

1/2
2 u2 − γ

1/2
1 u1(γ

1/2
2 ∂νu2 + u2∂νγ

1/2
2 )
]

=

ˆ
∂Ω

[
γ
1/2
2

γ
1/2
1

γ1∂νu1u2 + γ
1/2
2 ∂νγ

1/2
1 u1u2 −

γ
1/2
1

γ
1/2
2

u1γ2∂νu2 − γ
1/2
1 ∂νγ

1/2
2 u1u2

]
=

ˆ
∂Ω

[γ1∂νu1u2 − u1γ2∂νu2]

=

ˆ
∂Ω

[Λγ1(u1|∂Ω)u2 − u1Λγ2(u2|∂Ω)]

=

ˆ
∂Ω

(Λγ1 − Λγ2) (u1|∂Ω)u2 = 0.

2.3 Uniqueness

Now we try to show
´
Ω
(q1 − q2)v1v2 = 0 for all vj ∈ H1(Ω) satisfying (−∆ + qj)vj = 0

in Ω implies q1 = q2. Before that let’s try to do
´
Ω
(q1 − q2)ϑ1ϑ2 = 0 for all ϑj ∈ H1(Ω)

satisfying ∆ϑj = 0 implies q1 = q2. If we able to find for all ξ ∈ Rn harmonic functions ϑj

s.t. ϑ1ϑ2 = e−ix·ξ, then using Fourier inversion we are done. Calderon observed that

∆(ex·ζ) = 0 ⇐⇒ ζ · ζ = 0

⇐⇒ |Reζ| = |Imζ| and Reζ · Imζ = 0

for ζ ∈ Cn. Choose ξ ∈ Rn and ζ1, ζ2 ∈ Cn such that

ζj · ζj = 0

ζ1 + ζ2 = −iξ.

For example, we can take

ζ1 =
1

2
(|ξ|θ − iξ)

ζ2 =
1

2
(−|ξ|θ − iξ)

7



where θ ⊥ ξ and |θ| = 1 which will done this special case. As (−∆+ q) is a perturbation of

Laplacian, we can try

vj = ex·ζj(1 + ωj(x, ζj)),

in new integral identity.

0 =

ˆ
Ω

(q1 − q2)e
x·(ζ1+ζ2)(1 + ω1(x, ζ1))(1 + ω2(x, ζ2))

=

ˆ
Ω

(q1 − q2)e
x·(ζ1+ζ2) +

ˆ
Ω

(q1 − q2)e
x·(ζ1+ζ2) (ω1(x, ζ1) + ω2(x, ζ2) + ω1(x, ζ1)ω2(x, ζ2))

For any ξ ∈ Rn, if we are able to construct family of solutions vj ∈ H1(Ω) such that

ζj · ζj = 0

ζ1 + ζ2 = −iξ
∥ωj∥L2(Ω) → 0 as |ζj| → ∞.

then it gives q1 = q2. Here, we need n ≥ 3 which can be easily seen by characterizing

{ζ · ζ = 0} in two dimensions. For example, in n ≥ 3 we can take

ζ1 = τθ + i

(√(
τ 2 − |ξ|2

4

)
ω − ξ

2

)
,

ζ2 = −τθ − i

(√(
τ 2 − |ξ|2

4

)
ω +

ξ

2

)
.

where τ > |ξ|
2
and θ, ω ∈ Sn−1 satisfying θ · ω = ω · ξ = ξ · θ = 0. Before going to show that

q1 = q2 we need to be sure that q1 = q2 =⇒ γ1 = γ2. A priori, this is not enough to show

that γ1 = γ2. In particular, multiplying each γj by a constant will not change the qj. Thus

we need also determination of γj at the boundary. We can see that q1 = q2 implies

0 = γ
−1/2
1 ∆γ

1/2
1 − γ

−1/2
2 ∆γ

1/2
2

= γ
1/2
2 ∆γ

1/2
1 − γ

1/2
1 ∆γ

1/2
2

= γ
1/2
2 div(∇γ1/21 )− γ

1/2
1 div(∇γ1/22 )

= div(γ
1/2
2 ∇γ1/21 )−∇γ1/21 · ∇γ1/22 − div(γ

1/2
1 ∇γ1/22 ) +∇γ1/22 · ∇γ1/21

= div(γ
1/2
2 ∇γ1/21 − γ

1/2
1 ∇γ1/22 )

= div((γ1γ2)
1/2∇(log γ1 − log γ2))

8



As γ1|∂Ω = γ2|∂Ω implies that log γ1 − log γ2 vanish on ∂Ω, this implies that γ1 = γ2 in Ω.

So,

q1 = q2

γ1|∂Ω = γ2|∂Ω
=⇒ γ1 = γ2.

2.4 Complex Geometric Optics Solutions

In this section, we construct the solution needed in last section. More precisely, we will

construct solutions v ∈ H1(Ω) of the form

v = ex·ζ(1 + ω(x, ζ))

of equation (−∆+ q)v = 0 with ∥ωζ∥L2(Ω) → 0 as |ζ| → ∞. We find that

e−x·ζ(−∆+ q)ex·ζ = −∆− 2ζ · ∇+ q.

So, the error term satisfies

(−∆− 2ζ · ∇)ω(x, ζ) + q(x)ω(x, ζ) = −q.

We actually try to find for any given f ∈ L2(Ω) and ζ ∈ V , function u ∈ L2(Ω) satisfying

Lu = (∆ + 2ζ · ∇ − q)u = f

and ∥u∥L2(Ω) → 0 as |ζ| → ∞. Suppose we can somehow show LT injective for some spaces.

Then we can define a map

l(LTv) = ⟨f, v⟩

which is a well defined linear functional. Suppose we are also able to show l bounded then by

Hahn Banach theorem l extends to a continuous linear functional l̄ on some bigger Hilbert

space H. Then by Riesz representation theorem, there exist unique u such that l̃(ϕ) = ⟨u, ϕ⟩.
So,

⟨u, LTv⟩ = l(LTv) = ⟨f, v⟩

which implies

⟨Lu, v⟩ = ⟨f, v⟩.

9



It’s giving us some idea, we want v ∈ C∞
c (Ω), H = L2(Ω), LT injective and l bounded. We

found that for showing these, we only need to show apriori estimate

∥v∥L2(Ω) ≲ ∥LTv∥L2(Ω), v ∈ C∞
c (Ω)

Because of term −2ζ · ∇ present in LT we can expect apriori estimate (using Poincare

inequality) as |ζ| → ∞

|ζ|∥v∥L2(Ω) ≲ ∥LTv∥L2(Ω), v ∈ C∞
c (Ω).

and it gives also estimate on u, as |ζ| → ∞

∥u∥L2(Ω) ≲
1

|ζ|
∥f∥L2(Ω)

which implies ∥u∥L2(Ω) → 0 as |ζ| → ∞.

Proposition 2.4.1. For any ζ ∈ V we have

|Reζ|∥v∥L2(Rn) ≤ C∥(∆− 2ζ · ∇)v∥L2(Rn)

for all v ∈ S(Rn) satisfying

Supp(v) ⊂ {x ∈ Rn : |Reζ · x| ≤ R|Reζ|},

for some R > 0.

Proof. We find that for all v ∈ S(Rn),

∥(∆− 2ζ · ∇)v∥2L2(Rn) = ∥(−|ξ|2 − 2iζ · ξ)v̂(ξ)∥L2(Rn)

= ∥(−|ξ|2 − 2iReζ · ξ + 2Imζ · ξ)v̂(ξ)∥L2(Rn)

= ∥(−|ξ|2 + 2Imζ · ξ)v̂(ξ)∥L2(Rn) + ∥(2Reζ · ξ)v̂(ξ)∥L2(Rn)

= ∥(∆− 2iImζ · ∇)v∥2L2(Rn) + ∥(−2iReζ · ∇)v∥2L2(Rn)

≥ ∥(2Reζ · ∇)v∥2L2(Rn)

Let Q be orthogonal transformation such that

Q(e1) = Re(ζ)/|Re(ζ)|

10



Choose w(y) = v(Q(y)) then

∂w

∂y1
(y) =

n∑
j=1

∂v

∂xj
(Q(y))Qj1 = ∇v(Q(y)) ·Q(e1) = ∇v(Q(y)) · Re(ζ)

|Re(ζ)|

Then

∥(∆−2ζ·∇)v∥L2(Rn) ≥ 2∥Reζ·∇v∥L2(Rn) = 2∥Reζ·∇v(Q(y))∥L2(Rn) = 2|Reζ|
∥∥∥ ∂w
∂y1

(y)
∥∥∥
L2(Rn)

.

If Supp(w) ⊂ {(y1, y′); y1 ∈ [−R,R]}, then by Poincare inequality we have

∥(∆− 2ζ · ∇)v∥L2(Rn) ≳ |Reζ|∥v(Q(y))∥L2(Rn) = |Reζ|∥v∥L2(Rn).

Then

y1 = e1 · y = Q(e1) ·Q(y) =
1

|Reζ|
Reζ ·Qy for all y ∈ Rn

and

|y1| ≤ R ⇐⇒ |Reζ ·Qy| ≤ R|Reζ|.

So,

Supp(v) ⊂ {x ∈ Rn : |Reζ · x| ≤ R|Reζ|}.

Corollary 2.4.2. For any ζ ∈ V such that |Reζ| ≥ 2C∥q∥L∞(Rn) we have

|ζ|∥v∥L2(Rn) ≲ ∥(∆− 2ζ · ∇ − q)v∥L2(Rn)

for all v ∈ S(Rn) satisfying

Supp(v) ⊂ {x ∈ Rn : |Reζ · x| ≤ R|Reζ|},

for some R > 0. We realize also that Supp(v) contains {|x| ≤ R}.

Proof. By using Proposition 2.4.1 and condition on ζ,

|Reζ|∥v∥L2(Rn) ≤ C∥(∆− 2ζ · ∇ − q)v∥L2(Rn) + C∥qv∥L2(Rn)

≤ C∥(∆− 2ζ · ∇ − q)v∥L2(Rn) +
|Reζ|
2

∥v∥L2(Rn)

11



which easily proves our corollary.

As we discussed, the proof of following Theorems depend on apriori estimate we just

proved. Therefore, following the discussion, we can easily prove the following theorems.

Theorem 2.4.3. Let Ω be a bounded open set and q ∈ L∞(Ω). Then for all f ∈ L2(Ω) and

ζ ∈ V such that |Reζ| ≥ 2C∥q∥L∞(Ω) there exist unique ω ∈ L2(Ω) such that

(∆ + 2ζ · ∇ − q)ω = f

and

∥ω∥L2(Ω) ≲
1

|ζ|
∥f∥L2(Ω).

By observation, we can prove much general result.

Theorem 2.4.4. Let q ∈ L∞(Ω). For any ζ ∈ V satisfying |Reζ| ≥ C∥q∥L∞(Ω), and for any

function a ∈ H2(Ω) satisfying

ζ · ∇a = 0 in Ω,

the equation (∆− q)u = 0 in Ω has a solution

u(x) = eζ·x(a+ w(x, ζ)),

where wζ ∈ L2(Ω) satisfies

∥ω∥L2(Ω) ≲
1

|ζ|
∥(∆− q)a∥L2(Ω).

We have ∆uζ ∈ L2(Ω). We proved that wζ ∈ L2(Ω) which implies uζ ∈ L2(Ω) but we

want uζ ∈ H1(Ω) as discuused in Proposition 2.2.3. In the following proposition, we prove

Cacciopoli estimates which give us uζ in H
1
loc(Ω).

Proposition 2.4.5. Let Ω be a bounded domain in Rn. There exists C > 0 such that for

all χ ∈ C∞
c (Ω) and for all v ∈ C∞(Ω),

∥χ∇v∥L2(Ω) ≤ C
(
∥χ∥L∞(Ω)∥∆v∥L2(Ω) + ∥χ∥W 1,∞(Ω)∥v∥L2(Ω)

)
Proof. ˆ

Ω

|χ∇v|2 =
ˆ
Ω

χ2∇v · ∇v = −
ˆ
Ω

2χ∇χ · ∇vv −
ˆ
Ω

χ2∆vv

12



∣∣∣ˆ
Ω

χ2∆vv
∣∣∣ ≤ ∥χ∥2L∞(Ω)∥∆v∥L2(Ω)∥v∥L2(Ω)

≤ 1

2
∥χ∥2L∞(Ω)

(
∥∆v∥2L2(Ω) + ∥v∥2L2(Ω)

)
∣∣∣ ˆ

Ω

2χ∇χ · ∇vv
∣∣∣ ≤ 2∥χ∇v∥L2(Ω)∥∇χv∥L2(Ω)

≤ 1

2
∥χ∇v∥2L2(Ω) + 2∥∇χ∥2L∞(Ω)∥v∥2L2(Ω)

The proof of Theorem follows by extending the potential q ∈ L∞(Ω) to bigger domain Ω′

by zero. Then doing an analysis of CGO solutions on Ω′, we get uζ ∈ H1
loc(Ω) which implies

uζ ∈ H1(Ω). Then using sections integral identity and uniqueness, we prove our Theorem.

13
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Chapter 3

Inverse problem for Schrödinger

operator in two dimensions

3.1 Introduction

Let us now consider the Magnetic Schrödinger operator of the form

LA,q =
n∑
j=1

(
1

i

∂

∂xj
+ Aj

)2

+ q (3.1.1)

on domain Ω. Here A = (A1, A2, . . . , An) is a magnetic vector potential, and q is a scalar

electric potential. If A⃗ and q are real-valued then LA⃗,q is a self-adjoint operator. Thus

LA⃗,q = −∆u− i div(Au)− iA · ∇u+ |A|2u+ qu,

If we define

IA⃗,q(u, v) =

ˆ
Ω

(
∇u · ∇v̄ + iA · (u∇v̄ − v̄∇u) + (|A|2 + q)uv

)
dx

then a function u ∈ H1(Ω) is a weak solution to LA,qu = 0 if

IA⃗,q(u, v) = 0 when v ∈ H1
0 (Ω).
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Since LA⃗,qu = 0 can have nontrivial solutions vanishing on ∂Ω, the Dirichlet-to-Neumann

map is a multivalued relation. We define it by

ΛA,q =

{(
u|∂Ω,

∂u

∂ν
|∂Ω + i(A · ν)u|∂Ω

)
: u ∈ H1(Ω),LA⃗,qu = 0 in Ω

}
where 〈

∂u

∂ν
|∂Ω + i(A · ν)u|∂Ω, g

〉
= IA⃗,q(u, v).

for any v ∈ H1(Ω) with v|∂Ω = g.

The inverse boundary value problem for (3.1.1) is to recover information of A⃗ and q from

the knowledge of ΛA⃗,q.

This problem has a gauge invariance: If ϕ is a smooth function vanishing at ∂Ω, then

ΛA⃗+∇ϕ,q = ΛA⃗,q. (3.1.2)

In fact, we can obtain e−iϕLA⃗,q(eiϕu) = LA⃗+∇ϕ,qu which implies LA⃗,q(eiϕu) = 0 iff LA⃗+∇ϕ,qu =

0. By using vanishing of ϕ on ∂Ω we get (3.1.2).

This means we can only hope to recover A up to a gradient term. We are considering A1

and A2 as a magnetic vector potentials. Thus the natural problem is to show that

ΛA1,q1 = ΛA2,q2 =⇒ curlA1 = curlA2 and q1 = q2.

Proposition 3.1.1 (Integral Identity). If ΛA1,q1 = ΛA2,q2 then

ˆ
Ω

[
i(A⃗1 − A⃗2) · (u1∇ū2 − ū2∇u1) + (|A⃗1|2 − |A⃗2|2 + q1 − q2)u1ū2

]
dx = 0 (3.1.3)

for any uj ∈ H1(Ω) solving of LA⃗1,q1
u1 = 0 and LĀ2,q̄2u2 = 0.

Proof. If ΛA1,q1 = ΛA2,q2 , then there is some v2 in H1(Ω) such that LA2,q2v2 = 0 and(
u1|∂Ω,

∂u1
∂ν

|∂Ω + i(A1 · ν)u1|∂Ω
)

=

(
v2|∂Ω,

∂v2
∂ν

|∂Ω + i(A2 · ν)v2|∂Ω
)
.

Thus

IA1,q1(u1, u2) = IA2,q2(v2, u2) = IĀ2,q̄2(u2, v2) = IĀ2,q̄2(u2,u1) = IA2,q2(u1, u2).

16



The inverse boundary value problem for the magnetic Schrödinger operator is equivalent to

an inverse scattering problem at fixed energy, provided that the coefficients are compactly

supported. We now state uniqueness results for the Magnetic Schrödinger operator, which

comprises results from inverse scattering theory.

n q A

Khekin - Novikov [NK87] ≥ 3 e−γ⟨x⟩L∞, small 0

Nachman-Sylvester-Uhlmann [NSU88] ≥ 3 L∞(Ω) 0

Novikov[Nov88] ≥ 3 L∞(Ω) 0

Jerison-Kenig [Cha90] ≥ 3 Ln/2+ 0

Lavine-Nachman [Nac92, FKS13] ≥ 3 Ln/2+ 0

Novikov [Nov94] 3 e−γ⟨x⟩L∞ 0

Sun [Sun93a] ≥ 3 L∞(Ω) W 2,∞(Ω) , small

Nakamura-Sun-Uhlmann [NSU95] ≥ 3 L∞(Ω) C∞(Ω)

Eskin-Ralston [ER95] ≥ 3 e−γ⟨x⟩C∞ e−γ|x|C∞

Salo [Sal04, Sal06] ≥ 3 L∞(Ω) W 1,∞(Ω)

Krupchyk-Uhlmann [KU14] ≥ 3 L∞(Ω) L∞(Ω)

Päivärinta-Salo-Uhlmann [PSU10] ≥ 3 e−γ⟨x⟩L∞ e−γ⟨x⟩W 1,∞

Sylvester-Uhlmann [SU86] 2 W 2,2(Ω) , small 0

Novikov [Nov86] 2 e−γ⟨x⟩C∞ , small 0

Novikov [Nov92] 2 e−γ⟨x⟩L∞ , small 0

Sun [Sun93b] 2 W 1,∞(Ω), small W 3,∞(Ω) , small

Bukhgeim [Buk08] 2 W 1,2+(Ω) 0

Blasten[Bl̊a11] 2 W 0+,2+(Ω) 0

Guillarmou-Salo-Tzou [GST11] 2 e−γ|x|
2
L∞∩C1,0+ 0

Lai [Lai11] 2 L∞(Ω) L∞(Ω)

Imanuvilov-Yamamoto [IY12] 2 L2+(Ω) 0

In this Chapter, we will prove the uniqueness Theorem given by Bukhgeim in [Buk08]. This

paper has new techniques in two dimensions that have led too many developments in the

study of inverse boundary value problems.

17



The inverse problem is whether we can uniquely determine the coefficients q from the set of

Cauchy data

Cq =
{
(u|∂Ω, ∂νu|∂Ω) : u ∈ H1(Ω), (−∆+ q)u = 0

}
, (3.1.4)

where ν is an outer unit normal to ∂Ω. The main Theorem is as follows:

Theorem 3.1.2. If qj ∈ W 1,p(Ω), p > 2 then Cq1 = Cq2 implies q1 = q2.

Bukhgeim reduced the problem to a (∂, ∂̄)-system. Recall that the Laplace operator is

∆ = 4∂∂̄ therefore setting ∂̄u = (−1/4)w, we can reduce the equation (−∆+ q)u = 0 to the

equivalent first order system (
(1/4)q −∂
∂̄ −1

)(
u

w

)
= 0,

and Cq determines the boundary value of this system. As we shall see, the Cauchy data at

the boundary

CV = {F |∂Ω : (D + V )F = 0}

for first order systems of the form (D + V )F = 0 determine any complex-valued matrix

potential V ∈ W 1,p(Ω) with p > 2, where

D =

(
0 −∂
∂̄ 0

)
and V =

(
q 0

0 q′

)
. (3.1.5)

Our main theorem is the following :

Theorem 3.1.3. Suppose CV1 = CV2 . Then

1. If qj ∈ W 1,p(Ω) and q′j ∈ L∞(Ω) then q1 = q2.

2. If qj ∈ L∞(Ω) and q′j ∈ W 1,p(Ω) then q′1 = q′2.

3.2 Integral Identity

The key of the proof of Theorem 3.1.3 is the construction of families of h-parameterized

solutions U1 = U1(x;h) and U2 = V (x;h) with h > 0 satisfying (D + V1)U1 = 0 and
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(D + V ∗
2 )U2 = 0. By assuming CV1 = CV2 there exists a solution Ũ1 to (D + V2)Ũ1 = 0

with U1|∂Ω = Ũ1|∂Ω. Therefore, (D+ V2)(U1 − Ũ1) = (V2 − V1)U1, using green’s formula and

vanishing of U1 − Ũ1 on the boundary, we get

0 =

ˆ
Ω

⟨U1 − Ũ1, (D + V ∗
2 )U2⟩

=

ˆ
Ω

⟨(D + V2)(U1 − Ũ1), U2⟩

=

ˆ
Ω

⟨(V2 − V1)U1, U2⟩.

3.3 Complex Geometric Optics Solutions

In this section, we construct CGO solutions solving equation (D + V )u = 0 of the form

u =

[
eΦ/h(a+ rh)

eΦ̄/h(b+ r̃h)

]
(3.3.1)

where a is holomorphic and b is antiholomorphic function. We find that if error terms rh

and r̃h satisfies

rh + ∂̄−1(e−2iψ/hq′r̃h) = −∂̄−1(e−2iψ/hq′b),

r̃h − ∂−1(e2iψ/hqrh) = ∂−1(e2iψ/hqa).
(3.3.2)

then u given in (3.3.1) solves (D + V )u = 0. Indeed,[
e−Φ̄/h 0

0 e−Φ/h

]
(D + V )

[
eΦ/h 0

0 eΦ̄/h

]
= D + Vh, (3.3.3)

where

Vh =

[
e2iψ/hq 0

0 e−2iψ/hq′

]
.

After substituting u of the form (3.3.1) into the equation (D + V )u = 0 and, using (3.3.3),

we obtain

∂̄rh + e−2iψ/hq′r̃h = −e−2iψ/hq′b,

∂r̃h − e2iψ/hqrh = e2iψ/hqa.
(3.3.4)
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Since ∂̄(∂̄−1f) = f and ∂(∂−1f) = f , we can take rh, r̃h as a solution of the system (3.3.2).

For a = 0 After substituting a = 0 in (3.3.2) and solving for rh respectively we get

(I − Sh)rh = −∂̄−1(e−2iψ/hq′b) with Sh(f) = −∂̄−1(e−2iψ/hq′∂−1(e2iψ/hqf)). (3.3.5)

To this end, we estimate the norm of Sh for which we need the following key estimate

from [GT11, Lemma 2.3] and [GT13, Lemma 5.4]. This type of estimate was first given by

Bukhgeim in his seminal work [Buk08].

Lemma 3.3.1. Let r ∈ (1,∞) and p > 2, then there exists C > 0 independent of h such

that for all ω ∈ W 1,p(Ω)

∥∂̄−1(e−2iψ/hω)∥Lr(Ω) ≤ Ch2/3∥ω∥W 1,p(Ω) if 1 < r < 2 (3.3.6)

∥∂̄−1(e−2iψ/hω)∥Lr(Ω) ≤ Ch1/r∥ω∥W 1,p(Ω) if 2 ≤ r ≤ p. (3.3.7)

There exist ϵ > 0 and C > 0 such that for all ω ∈ W 1,p(Ω)

∥∂̄−1(e−2iψ/hω)∥L2(Ω) ≤ Ch
1
2
+ϵ∥ω∥W 1,p(Ω). (3.3.8)

Proof. Let us first prove (3.3.6). Let φ ∈ C∞
c (R2) which on Ω satisfies1 |z − z0| > 2δ

0 |z − z0| ≤ δ

where δ > 0 is a parameter we will choose later, which can depend on h. Using Minkowski

inequality, one can write when r < 2

∥∥∂̄−1
(
(1− ϕ)e−2iψ/hg

)∥∥
Lr(Ω)

≤
ˆ
Ω

∥∥∥∥ 1

| · −ζ|

∥∥∥∥
Lr(Ω)

|(1− ϕ(ζ))g(ζ)| dm(ζ)

≤ C∥g∥L∞(Ω)

ˆ
Ω

|(1− ϕ(ζ))| dm(ζ) ≤ Cδ2∥g∥L∞(Ω).

(3.3.9)

and we know by Sobolev embedding that ∥g∥L∞(Ω) ≤ ∥g∥W 1,p(Ω). On the support of φ, we

observe that since φ = 0 near z0, we can use

∂̄−1(e−2iψ/hφg) =
−h
2i

[
e−2iψ/hφg

∂̄ψ
− ∂̄−1

(
e−2iψ/h∂̄

(
φg

∂̄ψ

))]
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and the boundedness of ∂̄−1 on Lr to deduce that

∥∥∂̄−1(e−2iψ/hφg)
∥∥
Lr(Ω)

≤ Ch

(∥∥∥∥φg∂̄ψ
∥∥∥∥
Lr(Ω)

+

∥∥∥∥(∂̄ϕ)g∂̄ψ

∥∥∥∥
Lr(Ω)

+

∥∥∥∥ φg

(∂̄ψ)2

∥∥∥∥
Lr(Ω)

+

∥∥∥∥ϕ(∂̄g)∂̄ψ

∥∥∥∥
Lr(Ω)

)
:= Ch(I1 + I2 + I3 + I4).

(3.3.10)

The estimates for Ij are

I1 ≤
∥∥∥∥ φ∂̄ψ

∥∥∥∥
L∞(Ω)

∥g∥Lr(Ω), I2 ≤
∥∥∥∥ ∂̄φ∂̄ψ

∥∥∥∥
Lr(Ω)

∥g∥L∞(Ω),

I3 ≤
∥∥∥∥ φ

(∂̄ψ)2

∥∥∥∥
Lr(Ω)

∥g∥L∞(Ω), I4 ≤
∥∥∥∥ φ∂̄ψ

∥∥∥∥
L∞(Ω)

∥∂̄g∥Lr(Ω),

Using ∂̄ψ = z̄ − z̄0 we can find∥∥∥∥ φ∂̄ψ
∥∥∥∥
L∞(Ω)

=

∥∥∥∥ φ

z̄ − z̄0

∥∥∥∥
L∞(Ω)

≤
∥∥∥∥ 1

|z − z0|

∥∥∥∥
L∞(Ω\B(z0,δ))

= δ−1

∥∥∥∥ ∂̄φ∂̄ψ
∥∥∥∥
Lr(Ω)

=

∥∥∥∥ ∂̄φ

z̄ − z̄0

∥∥∥∥
Lr(Ω)

≤ Cδ−1

∥∥∥∥ 1

|z − z0|

∥∥∥∥
Lr({δ<|z−z0|<2δ})

≤ Cδ−1

(ˆ 2δ

δ

s1−r ds

)1/r

≤ Cδ
2
r
−2

∥∥∥∥ φ

(∂̄ψ)2

∥∥∥∥
Lr(Ω)

=

∥∥∥∥ φ

(z̄ − z̄0)2

∥∥∥∥
Lr(Ω)

≤
∥∥∥∥ 1

|z − z0|2

∥∥∥∥
Lr(Ω\B(z0,δ))

≤ C

(ˆ 1

δ

s1−2r ds

)1/r

≤ Cδ
2
r
−2.

Combining these four estimates with (4.3.10) we obtain∥∥∂̄−1(e−2iψ/hφg)
∥∥
Lr(Ω)

≤ Ch∥g∥W 1,p(Ω)

(
δ−1 + δ

2
r
−2
)

Combining this and (3.3.9) and optimizing by taking δ = h1/3 we see that (3.3.6) is estab-

lished.

Let us now focus on the case 2 ≤ r ≤ p. One can use the boundedness of ∂̄−1 on Lr to

obtain ∥∥∂̄−1((1− φ)e−2iψ/hg)
∥∥
Lr(Ω)

≤
∥∥(1− φ)e−2iψ/hg

∥∥
Lr(Ω)

≤ Cδ
2
r ∥g∥L∞(Ω)

(3.3.11)
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Now we can again use the identity

∂̄−1(e−2iψ/hφg) =
−h
2i

[
e−2iψ/hφg

∂̄ψ
− ∂̄−1

(
e−2iψ/h∂̄

(
φg

∂̄ψ

))]
and the boundedness of ∂̄−1 on Lr to deduce that for any r ≤ p, (4.3.10) holds again with

all the terms satisfying the same estimates as before, so that∥∥∂̄−1(e−2iψ/hφg)
∥∥
Lr(Ω)

≤ Ch∥g∥W 1,p(Ω)

(
δ−1 + δ

2
r
−2
)
≤ Chδ

2
r
−2∥g∥W 1,p(Ω)

since now q ≥ 2. Now by combining the above estimate with (3.3.11) and taking δ = h1/2

we establish (3.3.7). The estimate claimed in (3.3.8) is obtained by interpolating the case

r < 2 with r > 2.

Lemma 3.3.2. If q ∈ L∞(Ω) and q′ ∈ W 1,p(Ω), p > 2, then Sh is bounded on Lr(Ω) for

any 1 < r ≤ p and satisfies ∥Sh∥Lr→Lr = O(h1/r) if r > 2 and ∥Sh∥L2→L2 = O(h
1
2
−ϵ) for any

0 < ϵ < 1/2 small.

Proof. Firstly for 2 < r ≤ p we obtain

∥Sh(f)∥Lr(Ω) ≤
∥∥∂̄−1

(
e−2iψ/hq′∂−1

(
e2iψ/hqf

))∥∥
Lr(Ω)

≤ Ch1/r
∥∥q′∂−1

(
e2iψ/hqf

)∥∥
W 1,r(Ω)

≤ Ch1/r
∥∥∂−1

(
e2iψ/hqf

)∥∥
W 1,r(Ω)

≤ Ch1/r
∥∥e2iψ/hqf∥∥

Lr(Ω)

≤ Ch1/r∥f∥Lr(Ω).

Further, for 1 < r < 2,

∥Sh(f)∥Lr(Ω) ≤
∥∥∂̄−1

(
e−2iψ/hq′∂−1

(
e2iψ/hqf

))∥∥
Lr(Ω)

≤ C
∥∥e−2iψ/hq′∂−1

(
e2iψ/hqf

)∥∥
Lr(Ω)

≤ C
∥∥∂−1

(
e2iψ/hqf

)∥∥
Lr(Ω)

≤ C
∥∥e2iψ/hqf∥∥

Lr(Ω)

≤ C∥f∥Lr(Ω).

For all ϵ > 0 small, interpolating between r = 1 + ϵ and r = 2 + ϵ, gives the desired result
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for r = 2.

In view of Lemma 4.3.1, equation (3.3.5) can be solved by using Neumann series by

setting (for small h > 0)

rh := −
∞∑
j=0

Sjh∂̄
−1(e−2iψ/hq′b) (3.3.12)

as an element of any Lr(Ω) for r ≥ 2. Substituting this expression for rh into equation

(3.3.2) when a = 0, we get that

r̃h = ∂−1(e2iψ/hqrh). (3.3.13)

We now derive the asymptotics in h for rh and r̃h.

Lemma 3.3.3. If q ∈ L∞(Ω) and q′ ∈ W 1,p(Ω) for some p > 2, then there exists ϵ > 0 such

that

∥rh∥L2(Ω) + ∥r̃h∥L2(Ω) = O(h
1
2
+ϵ).

Proof. The statement for rh is an easy consequence of Lemma 3.3.1 and 4.3.1: indeed∥∥∂̄−1(e−2iψ/hq′b)
∥∥
L2(Ω)

= O(h
1
2
+ϵ)

by Lemma 3.3.1 and ∥Sh∥L2→L2 = O(h
1
2
−ϵ) thus ∥rh∥L2(Ω) = O(h

1
2
+ϵ). The estimate for r̃h

comes from the fact that
∥∥∂−1(e2iψ/h·)

∥∥
L2→L2 = O(1) and (4.3.1).

The same method can clearly be used by setting b = 0 and solving for r̃h first. We

summarize the results of this section into the following proposition:

Proposition 3.3.4. Let a and b be holomorphic and antiholomorphic functions on Ω. If

q ∈ L∞(Ω) and q′ ∈ W 1,p(Ω) for some p > 2, then there exists solutions to (D+ V )F = 0 in

W 1,2(Ω) of the form

Fh =

[
eΦ/h(rh)

eΦ̄/h(b+ r̃h)

]
(3.3.14)

where ∥rh∥L2(Ω) + ∥r̃h∥L2(Ω) = O(h
1
2
+ϵ) for some ϵ > 0. If conversely q′ ∈ L∞(Ω) and

q ∈ W 1,p(Ω) for some p > 2, then there exists solutions to (D + V )G = 0 in W 1,2(Ω) of the

form

Gh =

[
eΦ/h(a+ rh)

eΦ̄/h(r̃h)

]
(3.3.15)
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where ∥rh∥L2(Ω) + ∥r̃h∥L2(Ω) = O(h
1
2
+ϵ) for some ϵ > 0.

3.4 Uniqueness

In this section, we prove Theorem 3.1.3. Our integral identity, as discussed in Section 3.2, is

ˆ
Ω

⟨(V2 − V1)U1, U2⟩ = 0, (3.4.1)

where (D + V1)(U1) = 0 and (D + V ∗
2 )(U2) = 0.

We prove the first part of Theorem 3.1.3. By using Proposition 3.3.4 we consider U1 and U2

of the form

U1 =

[
eΦ/h(r1h)

eΦ̄/h(b+ r̃1h)

]
U2 =

[
e−Φ/h(r2h)

e−Φ̄/h(b+ r̃2h)

]
with rjh, r̃

j
h as constructed in Proposition 3.3.4.

By using U1 and U2, the integral identity takes the form

0 =

ˆ
Ω

e−2iψ/h(q′2 − q′1)
(
|b|2 + ⟨b, r̃2h⟩+ ⟨r̃1h, r̃2h⟩+ ⟨r̃1h, b⟩

)
+ (q2 − q1)e

2iψ/h⟨r1h, r2h⟩

We use the method of stationary phase to obtain that

ˆ
Ω

e−2iψ/h(q′2 − q′1)|b|2 = Cz0he
2iψ(z0)/h(q′2(z0)− q′1(z0))|b(z0)|2 + o(h). (3.4.2)

where Cz0 ̸= 0.

Next, we use the fact that ∥rjh∥L2(Ω) = O(h
1
2
+ϵ), ∥r̃jh∥L2(Ω) = O(h

1
2
+ϵ), for some ϵ > 0 and

obtain the following estimate

ˆ
Ω

(q′2 − q′1)e
−2iψ/h⟨r̃1h, r̃2h⟩+ (q2 − q1)e

2iψ/h⟨r1h, r2h⟩ = O(h1+2ϵ). (3.4.3)

Now, we have the following estimate

ˆ
Ω

e−2iψ/h(q′2 − q′1)⟨r̃1h, b⟩
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=

ˆ
Ω

e−2iψ/h(q′2 − q′1)⟨∂−1(e2iψ/hq1r
1
h), b⟩

=

ˆ
Ω

∂−1
(
e−2iψ/h(q′2 − q′1)b̄

)
e2iψ/hq1r

1
h

≤ Ch
1
2
+ϵ
∥∥(q′2 − q′1)b̄

∥∥
W 1,p

∥∥r1h∥∥L2(Ω)
,

where we have used Fubini’s theorem in the third equality while the last inequality is obtained

by applying Lemma 3.3.1. Now, using ∥r1h∥L2(Ω) = O(h1/2+ϵ) to obtain

ˆ
Ω

e−2iψ/h(q′2 − q′1)⟨r̃1h, b⟩ = O(h1+2ϵ). (3.4.4)

Similarly, we obtain ˆ
Ω

e−2iψ/h(q′2 − q′1)⟨b, r̃2h⟩ = O(h1+2ϵ). (3.4.5)

By matching the asymptotics as h→ 0 we get q′1 = q′2 since z0 can be arbitrairly chosen in

Ω. Similarly, we can prove the second part.
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Chapter 4

Inverse problem for polyharmonic

operators in two dimensions

4.1 Introduction

In the case of Magnetic Schrödinger, the principle operator is −∆, a harmonic operator,

and it has all lower-order perturbations. In this section, we will study the operators whose

principle operator is (−∆)m and has lower order perturbations.

More precisely, Let

P = (−∆)m +
∑

|α|<2m

AαD
α in Ω.

The inverse problem is whether we can recover the coefficients Aα from the set of Cauchy

data

C(P) =
{(
u|∂Ω, ∂νu|∂Ω, ∂2νu|∂Ω . . . , ∂(2m−1)

ν u|∂Ω
)
: u ∈ H2m(Ω),Pu = 0

}
, (4.1.1)

where ν is an outer unit normal to ∂Ω.

In dimensions n ≥ 3, Krupchyk, Lassas, and Uhlmann [KLU14] established that the Cauchy

data for a polyharmonic operator uniquely determine the first-order perturbations. Many

authors extended this work; see, for instance, [GK16, BG19, BKS21, BG22]. Till now, the

perturbations considered for the polyharmonic operator are of order at most m in n ≥ 3.

27



Until this work with Prof. Krishnan and Dr. Rahul Raju Pattar, to our knowledge, there

is no direct study of the inverse problem for a perturbed polyharmonic operator in two

dimensions compared to higher dimensions. Nevertheless, in [IY15, LUW15], the authors

have studied the Navier-Stokes equation in two dimensions using the biharmonic operator.

We studied the inverse boundary value problem in two dimensions for a polyharmonic oper-

ator of the form:

L = ∂m∂̄m +
m−1∑
j,k=0

Aj,k∂
j ∂̄k, m ≥ 2. (4.1.2)

Note that x = (x1, x2) ∈ Ω ⊂ R2 is identified with z = x1 + ix2 ∈ C and ∂ = 1
2
(∂x1 − i∂x2) ,

∂̄ = 1
2
(∂x1 + i∂x2).

In this work, we establish that the Cauchy data for a polyharmonic operator in two dimen-

sions uniquely determine all anisotropic perturbations of order at most m − 1 and several

perturbations of orders m to 2m− 2 with some restrictions. This restriction is captured in

the following representation of the operator L as

(∂∂̄)m + Am−1,m−1(∂∂̄)
m−1 +

m−2∑
l=1

( ∑
j+k=m−l−1

Aj+l,k+l∂
j ∂̄k

)
(∂∂̄)l +

m−1∑
l=0

∑
j+k=l

Aj,k∂
j ∂̄k.

This constraint on the coefficients of orders m to 2m − 2 is required for the techniques

employed in this paper to work, mainly to make the equation for the amplitude of complex

geometric optics (CGO) solutions to be independent of the coefficients.

Our approach relies on two main techniques - the ∂̄-techniques and the method of stationary

phase. Bukhgeim first used these techniques in his seminal work [Buk08] to recover the

zeroth order perturbation of the Laplacian in two dimensions. This work has led to many

developments in studying two-dimensional inverse boundary value problems.

Now, we state the main theorem of this work.

Theorem 4.1.1. Let Ω be a bounded domain with smooth boundary in R2. Let L and

L̃ be two operators of the form (4.1.2) with coefficients Aj,k, Ãj,k ∈ W j+k+1,p(Ω), p > 2,

respectively. Assume that

∂lνAj,k = ∂lνÃj,k and A0,k = Ã0,k on ∂Ω, for 0 ≤ l ≤ j − 1, 0 ≤ j, k ≤ m− 1. (4.1.3)

Then C(L) = C(L̃) implies that Aj,k = Ãj,k on Ω for 0 ≤ j, k ≤ m− 1.
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To prove Theorem 4.1.1, we need a special type of solutions called CGO solutions. The

next theorem gives the existence of such solutions in our setting. Let us fix some notational

conventions before stating the theorem. Let Φ = i(z − z0)
2 where z0 ∈ Ω and dS be the

surface measure on ∂Ω.

Theorem 4.1.2. Let a be smooth function such that ∂̄ma = 0 in Ω. If Aj,k ∈ W j+k+1,p(Ω),

for some p > 2, then for a small h > 0 there exist solutions u ∈ H2m(Ω) to

Lu = ∂m∂̄mu+
m−1∑
j,k=0

Aj,k∂
j ∂̄ku = 0, in Ω, (4.1.4)

of the form

u = eΦ/h(a+ rh), (4.1.5)

where the correction term rh satisfies ∥rh∥Hm(Ω) = O(h
1
2
+ϵ) for some ϵ > 0.

4.2 Integral Identity

The key of the proof of Theorem 4.1.1 is the construction of families of h-parameterized

solutions u1 = u1(x;h) and v = v(x;h) with h > 0 satisfying Lu1 = 0 and L̃∗v = 0. By

assuming C(L) = C(L̃) there exists a solution u2 to L̃u2 = 0 with

u2|∂Ω = u1|∂Ω,
(∂νu2)|∂Ω = (∂νu1)|∂Ω,

...
...

(∂(2m−1)
ν u2)|∂Ω = (∂(2m−1)

ν u1)|∂Ω.


(4.2.1)

Note that

L̃(u1 − u2) =
m−1∑
j,k=0

(Ãj,k − Aj,k)∂
j ∂̄ku1.

Now we use integration by parts and (4.2.1) to obtain the following integral identity

0 =

ˆ
Ω

(u1 − u2)L̃∗v dx

=

ˆ
Ω

L̃(u1 − u2)v̄ dx
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=

ˆ
Ω

[
m−1∑
j,k=0

(Ãj,k − Aj,k)∂
j ∂̄ku1

]
v̄ dx.

4.3 Complex Geometric Optics Solutions

In this section, we prove Theorem 4.1.2 as stated in Introduction. We begin by writing

Lu = ∂m∂̄mu+
m−1∑
j,k=0

Aj,k∂
j ∂̄ku = 0

in the following form

Lu = ∂m∂̄mu+
m−1∑
j,k=0

∂j(A′
j,k∂̄

ku) = 0, (4.3.1)

where we can define A′
j,k ∈ W j+k+1,p(Ω) uniquely satisfying

Aj,k =
m−1∑
l=j

(
l

j

)
∂l−jA′

l,k. (4.3.2)

Substituting u = eΦ/hf in (4.3.1), we have

∂m
(
eΦ/h∂̄mf

)
+

m−1∑
j,k=0

∂j
(
eΦ/hA′

j,k∂̄
kf
)
= 0.

Now, we write G = eΦ/h∂̄mf and the above expression takes the form

∂̄mf = e−Φ/hG

∂mG = −
m−1∑
j,k=0

∂j
(
eΦ/hA′

j,k∂̄
kf
) (4.3.3)

The problem here is that |e±Φ/h| grows too fast when h→ 0. This can be solved by choosing

G = eΦ̄/hg to get

∂̄mf = e(Φ̄−Φ)/hg (4.3.4)

∂mg = −
m−1∑
j,k=0

∂j
(
e(Φ−Φ̄)/hA′

j,k∂̄
kf
)

(4.3.5)
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For (4.3.4), we take the solution

f = a+ ∂̄−m
(
e(Φ̄−Φ)/hg

)
, where ∂̄ma = 0 (4.3.6)

and for (4.3.5) we choose the solution

g = −
m−1∑
j,k=0

∂j−m
(
e(Φ−Φ̄)/hA′

j,k∂̄
kf
)
. (4.3.7)

By combining these two, we get an integral equation for g of the form

g +
m−1∑
j,k=0

∂j−m
(
e(Φ−Φ̄)/hA′

j,k∂̄
k−m

(
e(Φ̄−Φ)/hg

))
= −

m−1∑
j,k=0

∂j−m
(
e(Φ−Φ̄)/hA′

j,k∂̄
ka
)
. (4.3.8)

The above expression for g can be written in the form

(I − Sh)g = w, (4.3.9)

where

Sh(v) = −
m−1∑
j,k=0

∂j−m
(
e(Φ−Φ̄)/hA′

j,k∂̄
k−m

(
e(Φ̄−Φ)/hv

))
w = −

m−1∑
j,k=0

∂j−m
(
e(Φ−Φ̄)/hA′

j,k∂̄
ka
)
.

(4.3.10)

The existence of a CGO solution of the form (4.1.5) to the equation (4.1.4) depends on the

solvability of (4.3.9). To this end, we estimate the norm of Sh for which we need the following

key estimate from [GT11, Lemma 2.3] and [GT13, Lemma 5.4]. Bukhgeim first gave this

type of estimate in his seminal work [Buk08].

Lemma 4.3.1. For any 1 < r ≤ p, the operator Sh is bounded on Lr(Ω) and satisfies

∥Sh∥Lr→Lr = O(h1/r) for r > 2 and ∥Sh∥L2→L2 = O(h
1
2
−ϵ) for any 0 < ϵ < 1/2 small.

Proof. Firstly, for 2 < r ≤ p, we obtain

∥Sh(v)∥Lr(Ω) ≤
m−1∑
j,k=0

∥∥∥∂j−m (e(Φ−Φ̄)/hA′
j,k∂̄

k−m
(
e(Φ̄−Φ)/hv

))∥∥∥
Lr(Ω)
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≤ C
m−1∑
j,k=0

∥∥∥∂j−m+1
(
e(Φ−Φ̄)/hA′

j,k∂̄
k−m

(
e(Φ̄−Φ)/hv

))∥∥∥
Lr(Ω)

≤ C

m−1∑
j,k=0

∥∥∥∂−1
(
e(Φ−Φ̄)/hA′

j,k∂̄
k−m

(
e(Φ̄−Φ)/hv

))∥∥∥
Lr(Ω)

≤ Ch
1
r

m−1∑
j,k=0

∥∥∥A′
j,k∂̄

k−m
(
e(Φ̄−Φ)/hv

)∥∥∥
W 1,r(Ω)

≤ Ch
1
r

m−1∑
k=0

∥∥∥∂̄k−m (e(Φ̄−Φ)/hv
)∥∥∥

W 1,r(Ω)

≤ Ch
1
r ∥v∥Lr(Ω).

Further, for 1 < r < 2,

∥Sh(v)∥Lr(Ω) ≤
m−1∑
j,k=0

∥∥∥∂j−m (e(Φ−Φ̄)/hA′
j,k∂̄

k−m
(
e(Φ̄−Φ)/hv

))∥∥∥
Lr(Ω)

≤ C
m−1∑
j,k=0

∥∥∥∂−1
(
e(Φ−Φ̄)/hA′

j,k∂̄
k−m

(
e(Φ̄−Φ)/hv

))∥∥∥
Lr(Ω)

≤ C
m−1∑
j,k=0

∥∥∥A′
j,k∂̄

k−m
(
e(Φ̄−Φ)/hv

)∥∥∥
Lr(Ω)

≤ C
m−1∑
k=0

∥∥∥∂̄k−m (e(Φ̄−Φ)/hv
)∥∥∥

Lr(Ω)

≤ C∥v∥Lr(Ω).

For all ε > 0 small, interpolating between r = 1 + ε and r = 2 + ε, gives the desired result

for r = 2.

Proposition 4.3.2. For all sufficiently small h > 0, there exist a solution g ∈ Hm(Ω) to the

equation

(I − Sh)g = w,

where Sh and w defined in (4.3.10) which satisfies ∥g∥L2 = O(h
1
2
+ϵ).

Proof. Given Lemma 4.3.1, equation (4.3.9) can be solved by using the Neumann series by
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setting (for small h > 0)

g =
∞∑
j=0

Sjhw.

as an element of L2(Ω). Indeed ∥w∥L2(Ω) = O(h
1
2
+ϵ) by Lemma 3.3.1 and ∥Sh∥L2→L2 =

O(h
1
2
−ϵ) by Lemma 4.3.1 we obtain

∥∥Sjhw∥∥L2 = O
(
h(

1
2
−ϵ)jh

1
2
+ϵ
)
which implies ∥g∥L2(Ω) =

O(h
1
2
+ϵ).

Now that g ∈ L2(Ω) and A′
j,k ∈ W 2m+j+k+3,p(Ω), we use bootstrapping argument on the

expression (4.3.8) to conclude that g ∈ Hm(Ω).

Proof of Theorem 4.1.2. Choose g as in Proposition 4.3.2 and let

rh = ∂̄−m
(
e(Φ̄−Φ)/hg

)
as observed in (4.3.6). Clearly, rh ∈ H2m(Ω) and ∥rh∥Hm(Ω) = O(h

1
2
+ε). Then we see that

u = eΦ/h(a+ rh) ∈ H2m(Ω) where ∂̄ma = 0 solves Lu = 0. This proves Theorem 4.1.2.

The adjoint operator L∗ has a similar form as the operator L. Hence, by following similar

arguments, we can show that the adjoint equation has the same type of CGO solutions as

given in Theorem 4.1.2.

Remark 4.3.3. One can write an integral equation for f instead of g by substituting (4.3.7)

in (4.3.6), but by following the above procedure, one obtains a coarser estimate, ∥rh∥Hm(Ω) =

O(h
1
2
−ε).

4.4 Uniqueness of Coefficients

In this section, we prove Theorem 4.1.1. Our integral identity, as discussed in Section 4.2 is

m−1∑
j,k=0

(−1)j
ˆ
Ω

(Ã′
j,k − A′

j,k)∂̄
ku1∂

j v̄ = 0, (4.4.1)

where L(u1) = 0 and L̃∗(v) = 0. By our assumption, we get

m−1∑
j,k=0

(
(−1)j

ˆ
Ω

(Ã′
j,k − A′

j,k)∂̄
ku1∂

j v̄ dx

)
= 0. (4.4.2)
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By using Theorem 4.1.2 we consider u1 and v of the form

u1 = eΦ/h(a+ rh), where ∂̄ma = 0,

v = e−Φ/h(b+ sh), where ∂̄mb = 0,
(4.4.3)

with rh and sh satisfy ∥rh∥Hm(Ω) = O(h
1
2
+ϵ) and ∥sh∥Hm(Ω) = O(h

1
2
+ϵ) for some ϵ > 0.

By using u1 and v, the integral identity takes the form

0 =
m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

ka∂j b̄
]

+
m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)(∂̄

ka∂j s̄h + ∂̄krh∂
j b̄+ ∂̄krh∂

j s̄h)
]

We use the method of stationary phase to obtain that

m−1∑
j,k=0

(
(−1)j

ˆ
Ω

e2iψ/h(Ã′
j,k − A′

j,k)(∂̄
ka)(∂j b̄)

)

=
m−1∑
j,k=0

Cj,k(z0)he
2iψ(z0)/h(Ã′

j,k(z0)− A′
j,k(z0))∂̄

ka(z0)∂
j b̄(z0) + o(h). (4.4.4)

where Cj,k(z0) ̸= 0 for all 0 ≤ j, k ≤ m− 1.

Next, we use the fact that ∥rh∥Hm(Ω) = O(h
1
2
+ϵ), ∥sh∥Hm(Ω) = O(h

1
2
+ϵ), for some ϵ > 0 and

obtain the following estimate

m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

krh∂
j s̄h

]
= O(h1+2ϵ). (4.4.5)

Let r̃h and s̃h be such that

rh = ∂̄−m
(
e(Φ̄−Φ)/hr̃h

)
,

sh = ∂̄−m
(
e(Φ̄−Φ)/hs̃h

)
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and they satisfy the equation (4.3.8) in place of g. Using this we have the following estimate

m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

krh∂
j b̄
]

=
m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

k−m
(
e(Φ̄−Φ)/hr̃h

)
∂j b̄
]

=
m−1∑
j,k=0

(−1)j
ˆ
Ω

[
∂̄k−m

(
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂

j b̄
)
e(Φ̄−Φ)/hr̃h

]
≤ Ch

1
2
+ϵ

m−1∑
j,k=0

∥∥∥(Ã′
j,k − A′

j,k)∂
j b̄
∥∥∥
W 1,p

∥r̃h∥L2 ,

where we have used Fubini’s theorem in the third equality while the last inequality is obtained

by applying Lemma 3.3.1. Now, we apply Proposition 4.3.2 to obtain

m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

krh∂
j b̄
]
= O(h1+2ϵ). (4.4.6)

Similarly, we obtain

m−1∑
j,k=0

(−1)j
ˆ
Ω

[
e(Φ−Φ̄)/h(Ã′

j,k − A′
j,k)∂̄

ka∂j s̄h

]
= O(h1+2ϵ). (4.4.7)

Proof of Theorem 4.1.1. Using the estimates (4.4.4) - (4.4.7) and matching the asymp-

totics as h→ 0, we obtain

0 =
m−1∑
j,k=0

(−1)j(Ã′
j,k(z0)− A′

j,k(z0))∂̄
ka(z0)∂

j b̄(z0). (4.4.8)

We now show that A′
0,0 = Ã′

0,0. To this end, let us choose a = b = 1. With this choice we

obtain

Ã′
0,0(z0) = A′

0,0(z0).

Since for any z0 ∈ Ω we can choose Φ with a unique critical point at z0, we have

Ã′
0,0 = A′

0,0 in Ω.
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Next to show that A′
0,1 = Ã′

0,1, we rewrite (4.4.8) by setting the term Ã′
0,0 −A′

0,0 = 0. Then,

we choose a = z̄, b = 1 to obtain

A′
0,1 = Ã′

0,1, in Ω.

Similarly, one can show A′
j,k = Ã′

j,k in an increasing order for j + k by choosing

a =
z̄k

k!
and b =

z̄j

j!

and applying the above procedure to obtain

Ã′
j,k = A′

j,k in Ω for all 0 ≤ j, k ≤ m− 1.

From (4.3.2), we readily obtain that

Ãj,k = Aj,k in Ω for all 0 ≤ j, k ≤ m− 1.

This proves Theorem 4.1.1.
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